
Approximative Policy Iteration for Exit Time
Feedback Control Problems driven by Stochastic
Differential Equations using Tensor Train format

A Preprint

Konstantin Fackeldey
Technische Universität Berlin

Strasse des 17. Juni 135
10623 Berlin, Germany

fackeldey@math.tu-berlin.de

Mathias Oster
Technische Universität Berlin

Strasse des 17. Juni 135
10623 Berlin, Germany

oster@math.tu-berlin.de

Leon Sallandt
Technische Universität Berlin

Strasse des 17. Juni 135
10623 Berlin, Germany

sallandt@math.tu-berlin.de

Reinhold Schneider
Technische Universität Berlin

Strasse des 17. Juni 135
10623 Berlin, Germany

schneidr@math.tu-berlin.de

October 12, 2020

Abstract

We consider a stochastic optimal exit time feedback control problem. The Bellman equation
is solved approximatively via the Policy Iteration algorithm on a polynomial ansatz space by a
sequence of linear equations. As high degree multi-polynomials are needed, the corresponding
equations suffer from the curse of dimensionality even in moderate dimensions. We employ
tensor-train methods to account for this problem. The approximation process within the
Policy Iteration is done via a Least-Squares ansatz and the integration is done via Monte-
Carlo methods. Numerical evidences are given for the (multi dimensional) double well
potential and a three-hole potential.

1 Introduction

Optimal control of ordinary differential equations (ODE) is a field of mathematics and engineering, where we
minimize a cost functional constrained by a controlled ODE. Substituting the ODE by a stochastic differential
equation (SDE) we obtain a stochastic optimal control problem. The inherent structure of the cost functional
determines the behavior of the optimization problem. Within this context several formulations have been
investigated. Among them are finite and infinite horizon problems and exit time problems. For the latter,
one determines the optimal control to reach a predefined exit set with respect to the cost functional. An
inherent difficulty is that the stopping time is not known in advance and depends not only on the control but
also on the stochastic process.
Optimal control problems of stochastic processes have been utilized in various fields of applications, such
as finance, engineering or molecular dynamics, see e.g.[1–3]. Subsequent to the latter in [4, 5] this optimal
control setting has been applied to the characterization of free energy of an uncontrolled dynamical system.
Different numerical methods have been developed and are now widely used and further investigated, see
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e.g. [6–10] . A popular approach is approximating the value function by solving either the Bellman or the
Hamilton-Jacobi-Bellman (HJB) equation.
For low dimensions n ≤ 3 the HJB equations, corresponding to deterministic and stochastic optimal control
problems, have been treated by Finite Element [11] and Finite Difference methods [12, 13], including Semi-
Lagrangian methods [14–17]. These methods are based on grids and are facing the curse of dimensions, which
prevents the treatment of large spatial dimensions n. Popular approaches to get rid of the curse of dimensions
are sparse grids [18, 19], Tensor trains combined with Galerkin [20] or minimal residual [21] methods, or
using Max-Plus algebra [22], see also [23–25] for further ideas. Nowadays deep neural networks (DNN) have
become an attractive tool for solving the HJB [26–28]. In our approach we address the high-dimensionality
by using Monte-Carlo integration and Tensor Train (TT) formats and the non-linearity by using the Policy
Iteration algorithm [29–31].

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ΞC

−3.0

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Figure 1: At a given point on the right hand side different
trajectories of the stochastic process are visualized by the
red arrows. We now seek for the optimal control driving the
process out of the set Ξ.

Here, we consider some stochastic process Xt

starting in X0 = x on a potential landscape (cp
Fig 1). Our goal is to modify Xt by a control
ut such that the process exits a predefined set
Ξ. Of course, there are many possible controls,
driving the system out of Ξ. Our goal is it
to find the optimal control with respect to a
certain cost function J = J (x,u).
It is worth mentioning, that the infinitesimal
version of the Bellman equation is the Hamilton-
Jacobi-Bellman (HJB) equation. If the struc-
ture of the stochastic part is modeled by a
Wiener process, it appears within the HJB as
a Laplace operator [32–35]. Solving the HJB
could be realized by adapting the method in
[20], where the deterministic HJB has been ap-
proximated by using Tensor Trains. Note that
other function approximators like Neural Net-
works can be used for our algorithm. Indeed,
in the HJB case, the Policy Iteration algorithm
leads to solving backward Kolomogorov equations, which have previously been treated with neural networks
in [36].
In the following section we introduce the optimal control problem and the concept of the Bellman equation.
Section 3 is devoted to the Policy Iteration in a function space. In the subsequent sections the Least-Squares
approximation and our function approximator, the Tensor Trains, are introduced. The final section is devoted
to the presentation of the numerical results, where we cover some low-dimensional problems and one problem
in dimension six.

2 Exit Time Control Problem of a Stochastic ODE

We assume, that the stochastic ODE in Ξ ⊂ Rn open, given by
dXt = b(Xt)dt+ σ(Xt)dWt + g(Xt)utdt (1)
X0 = x,

describes the state of a system at time t, where Xt ∈ Rn, b : Rn → Rn is the gradient of a smooth potential
U with bounded derivatives, g : Ξ→ Rn,m, σ : Rn → Rn,n are smooth with bounded derivatives and W is a
Wiener process. Additionally, ut ∈ Rm is a control parameter adapted to the process Xt. In the context of
dynamic programming ut is also known as action, decision or policy of the controller. For each control u we
can define the exit time η

η = inf{t > 0|Xt 6∈ Ξ}
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and the cost function

J (x,u) = E
[ ˆ η

0
c(Xt) + uTt Butdt|X0 = x

]
,

where c : Rn → R is some given continuous, positive function and B ∈ Rm,m is positive definite.
Our goal is it to find the control u with minimal cost, i.e.

min
u
J (x,u).

Here, we do not specify the space that we minimize over. Formally speaking, we consider the space of controls
mapping to Rm that are measurable and adapted to a filtration induced by the Brownian motion. As we are
later considering feedback controls, we omit the technical details and instead refer to [37, 38] and references
therein.
We define the value function v∗ : Rn → R as minimum of the cost functional over all controls, i.e.

v∗(x) := min
u
J (x,u) for all x ∈ Ω.

The control u∗ is optimal if v∗(x) = J (x,u∗) holds.
Under the assumption that there exists a Lipschitz continuous feedback control α : Rn → Rm with finite cost
for any initial state x ∈ Ω we replace (1) by the closed loop system

dXt = b(Xt) + σ(Xt)dWt + g(Xt)α(Xt) (2)

and denote the corresponding state by Xα
t to stress the dependence on the feedback. It has been shown under

suitable regularity assumptions on the right hand side of the SDE, that (2) is well defined and is differentiable
with respect to the intial values [39, chapter 2],[40]. Since we are considering time-homogeneous Itô diffusions,
our processes fulfill the (strong) Markov properity [41].
In the following we only consider feedback laws that give us finite costs. Thus, we define the policy evaluation
function vα with respect to a fixed feedback law α as

vα(x) := E
[ ˆ η

0
c(Xα

t ) + α(Xα
t )TBα(Xα

t )dt|X0 = x
]
. (3)

Remark 1. In our algorithm we will later compute vα approximately. In this case the equality (3) is not
given and we the distinguish between the policy evaluation function, which is vα as in (3) and the policy
estimation function, which is vα computed by our algorithm.

We define the set of feedback laws that induce finite costs

F = {α : Rn → Rm | vα(x) <∞ for all x ∈ Rn}

and assume that there exists an optimal, Lipschitz continuous feedback law. This ensures that the value
function is the policy evaluation functional of the optimal feedback, i.e.

v∗ = vα
∗
.

If the value function v∗ is known and differentiable, the optimal control is given explicitly by [42]

α∗(x) = −1
2B
−1g(x)T∇v∗(x).

Moreover, abbreviating rα(x) = c(x) + α(x)TBα(x) and τ ∧ η = min{τ , η}, a stochastic Bellman equation
[43] is obeyed for every τ > 0

v∗(x) = E
[ ˆ η∧τ

0
r(Xα∗

t )dt+ v∗(Xα∗

η∧τ )|X0 = x
]

(4)

α∗(x) = −1
2B
−1g(x)T∇v∗(x) (5)
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with Dirichlet boundary condition
v∗(x) = 0 on ∂Ξ.

We later employ the Policy Iteration algorithm to solve this coupled equation by alternating between the
value updates given by (4) and the policy updates given by (5). In preparation to that we first notice that by
fixing a policy α this coupled equation becomes uncoupled and a linear function equation is remaining

vα(x) = E
[ ˆ η∧τ

0
r(Xα

t )dt+ vα(Xα
η∧τ )

]
:= E

[ ˆ η∧τ

0
r(Xα

t )dt+ vα(Xα
η∧τ )|Xα

0 = x
]
. (6)

Note, that the expectation value is a conditional expectation value with respect to the initial value X0 = x.
For the ease of notation, in the sequel we sometimes drop the condition X0 = x when the context is clear.

3 Policy Iteration

A typical approach to solve the Bellman equation (6) would be to use a fixed point iteration in the values,
with some given inital guess. This method is known as value iteration e.g. [44, Chapter 3]. When computing
(6) with the value iteration, a sequence of functions {vk}k is generated, such that vk → v∗ under suitable
conditions. However, for a value iteration it must be clarified how to discretize the policy(space).
In the following, we take a different path by using the Policy Iteration, where a sequence of polices {αk}k
instead of values is generated. It has been understood in [21] that the policy evaluation function vα in the
deterministic setting can be computed via the Koopman operator [45]. The Koopman operator is a linear
transfer operator allowing to transfer a system with a non-linear evolution to a linear system in function
space. The structure of the eigenvalues and eigenfunctions of the Koopman operator have been investigated
to obtain a coarse grained description of the system [46–49].
To do so we rewrite (6) by using the Koopman operator [50–53] with a slight modification to incorporate the
exit time

Kα
τ [v] = E[v(Xα

η∧τ )|Xα
0 = x].

This allows us, to reformulate equation (6) as operator equation

(I −Kα
τ )v(x) = E[

ˆ η∧τ

0
r(Xα

t )dt|Xα
0 = x]. (7)

With the operator equation (7) we can now give the Policy Iteration algorithm.

Algorithm 1: Policy Iteration for solving (4)
input :A Policy α0 ∈ F .
output :An approximation of v∗ and α∗.
Set k = 0.
while not converged do

Solve the linear equation

(I −Kα
τ )vk(x) = E

[ˆ η∧τ

0
r(Xαk

s )ds|Xα
0 = x

]
, (8)

then update the policy according to

αk+1(x) = −1
2B
−1g(x)T∇vk(x).

k = k + 1.
end

Note that in the algorithm we have to choose an initial policy α0 ∈ F . In some cases this is a particular
hard challenge, as the policy has to lead to finite cost for every initial state x. However, the Wiener process
ensures that the uncontrolled dynamics driven by a potential arrive at the exit set in finite time almost surely.
Thus, we initialize the Policy Iteration with the zero control α ≡ 0. For solving (8) in the above algorithms
we face the following two problems:

4
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Linearized Bellman In principle the point values of the linearized Bellmann equation (8) can be computed
by Monte Carlo Methods such as Euler-Mayurama. Let us assume that we have computed pointwise values.
How can we ’interpolate’ between these values to obtain an approximation of the policy evaluation function?
For this purpose we propose a Least Squares approach, where the nodes are sampled randomly, i.e. we use
Monte Carlo integration. We call this approach variational Monte Carlo, introduced in section 4.

Model Class The equation (8) is given in an infinite dimensional space V and we need a finite dimensional
ansatz space, or at least a set U ⊂ V of computable aproximation vε,k of vk to achieve a desired accuracy ε.
We choose the intersection of a scaled ball with a submanifoldM. Therefore, we have to approximate the
function vk ∈ U ⊂M ⊂ V . We propose Tensor Trains and Tree based Tensors forM in Section 5 to tackle
this challenge.

4 Variational Monte-Carlo

We now elaborate on how to tackle the computational bottleneck, i.e. the linearized Bellman equation (8),

(I −Kα
τ )vk(x) = E

[ˆ η∧τ

0
r(Xαk

s )ds|Xα
0 = x

]
.

⇐⇒ vk(x) = E
[ˆ η∧τ

0
r(Xαk

s )ds+ vk(Xα
η∧τ )|Xα

0 = x
]
. (9)

This is done in three major steps. First, we interpret the above equation as a fixed-point equation, then we
formulate the subproblems as a Least Squares problem on a finite dimensional function space and, finally, we
use Monte-Carlo quadrature to integrate within the state and probability space.
The policy α := αk is given and we assume that v̂ on the r.h.s. of the equation below is given as well. Let us
introduce ṽ ∈ V such that

ṽ(x) := E
[ˆ η∧τ

0
r(Xα

s )ds+ v̂(Xα
η∧τ )|Xα

0 = x
]

, x ∈ Ω,

Note that if ṽ = v̂ we have found a solution to (9). As this equation is posed in an infinite dimensional
function space, we first rewrite it as a Least-Squares problem on a finite dimensional subspace.
More exactly, consider the Hilbert space V := L2(Ω), (or more generally V := L2(Ω, ρ) with some probability
density ρ) such that v̂, ṽ ∈ V . Then, we have

ṽ = arg min
v∈V

Rα(v, v̂), Rα(v, v̂) = ‖v(·)− E
[ˆ η∧τ

0
r(Xα

s )ds+ v̂(Xα
η∧τ )|Xα

0 = ·
]
‖2V

and since ṽ ∈ V , we have Rα(ṽ, v̂) = 0. Indeed, we are seeking a solution v̂ = ṽ which constitutes a fixed
point problem

ṽ = arg min
v∈V

Rα(v, ṽ), Rα(v, ṽ) = ‖v − E
[ˆ η∧τ

0
r(Xα

s )ds+ ṽ(Xα
η∧τ )|Xα

0 = ·
]
‖2V . (10)

However, finding the exact minimizer ṽ ∈ V is infeasible, and thus we further restrict to a finitely representable
compact subset U ⊂ V .
Classically, U ⊂ V is a closed ball of some finite dimensional subspace Vp ⊂ V . However, in many applications
the subspace Vp is high-dimensional, which makes computations impracticable. Thus, we introduce a lower
dimensional submanifoldM⊂ Vp and consider U ⊂M ⊂ Vp to be a compact subset feasible for computational
treatment, having an intrinsic data complexity, which can be handled by our technical equipment. In our case
M is the set of tensor trains of bounded (multi-linear) rank r = (r1, . . . , rn) and U is the set of rank r tensors
with uniformly bounded norm embedded in the spaceM⊂ Vp of tensor product polynomials of multi-degree
p, which will be covered in detail in the following section. For U ⊂M the Least-squares approximation is
defined by the minimizer (10)

vαU = arg min
v∈U

Rα(v, v). (11)

5



A preprint - October 12, 2020

However, the numerical treatment of the above minimization problem (11) is still infeasible, due to the
presence of the high-dimensional integrals over Ω ⊂ Rd. To handle this problem we replace the exact integral
by a numerical quadrature.
We compute the norm ‖.‖V using Monte-Carlo integration, e.g.

vα(U ,N ,M) = arg min
v∈U

RαN ,M (v, v),

RαN ,M (v, v) = 1
N

N∑
i=1

∣∣v(xi)−
1
M

M∑
j=1

ˆ η∧τ

0
r(xj,αi (t))dt+ v(xj,αi (η ∧ τ))

∣∣2,
(12)

where xj,αi (0) = xi for i = 1, . . . ,N . We remark, that we have two Monte Carlo approximations: The first
for integrating the stochastic differential equation (2) with different paths t 7→ xj,α(t), j = 1, . . . ,M . And
the second Monte Carlo integration for different initial values x = xi, i = 1, . . . N for setting up the Least
Squares functional (11). The integral term

´ η∧τ
0 r(xj,αi (t))dt in (12) is then computed by a trapezoid rule.

The different paths are computed by Euler Mayurana scheme [54] at discrete times tk and the remaining
integral in the formulars above are approximated by trapezoidal rule.
Let us highlight that the the input data are noisy due to stochastic nature of the SDE. Therefore, the Least
Squares method is prone to over-fitting problems. Moreover, an accurate computation of the updated policy,
and therefore an accurate approximation of the gradient of vα is ultimately important for the convergence of
the Policy Iteration.

Regularisation To improve the accuracy, we can enforce better regularity of v by choosing an appropriate
norm ‖ · ‖F . In the numerical calculations, we add a regularization term, such that the actual risk functional
is

R̃αN ,M (v, v) := RαN ,M (v, v) + δ‖v‖2F .
By choosing ‖ · ‖F as the `2 norm of the coefficient tensor A of v the regularization term depends on the
choice of univariate basis functions. Presently, we used mixed (tensor product) Sobolev norms and refer to
remark 2 for a brief discussion. To avoid deviation of the solution caused by the penalty term, we decrease
the penalty parameter adaptively during the ALS iteration process in dependence of the current residual [55].
For any other iterative solver of (12) this procedure can be done analogously.
We have experienced that this part plays a crucial role for the performance of the algorithm. In our present
examples, our method provided quite accurate results. However, for non-smooth viscosity solutions arising
from more difficult problems we expect that improved techniques will be required.
The present optimization problem is tractable by local optimization methods on non-linear manifolds.
Nevertheless, it remains hard to find an exact minimizer, see e.g. [56] for further discussion.

Error Estimates The theoretical justification of this Least Squares Monte Carlo approach is in a very early
stage. Indeed, we are committing variational crimes, since we have replaced the original risk functional by an
empirical risk functional. This introduces an additional error term, even if we assume that we have computed
the exact minimizer of (14). For first theoretical results, we import well known results from empirical risk
minimization in machine learning [57, 58]. Empirical risk minimisation has been considered for the regression
problem in statistical learning theory. However, the present problem is not directly a regression problem,
but the theory [57] can be straightforwardly extended to the present optimization problem, which we called
Variational Monte Carlo. This term has been invented in physics earlier, but Monte Carlo Least Squares
method seems be also an appropriate name. The error E = ‖vα − vα(U ,N ,M)‖

2
v is split into three parts

E = Eapproximation + Egeneralization + Eoptimization.

Due to the uncertain nature of the problem, we cannot expect to show convergence for the generalization term.
Instead, we consider convergence in probability. In particular, the probability that a given error estimates
fails, i.e. P[Egeneralisation > ε], decays exponentially with the number of sample points.
As a first result we recall to following corollary. Under certain assumption, one can show that

6
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P[‖vα − vα(U ,M ,N)‖
2
L2(Ω) > ε] ≤ c1(ε,U)e−c2Nε

2

with c1(ε,U), c2 > 0.
See e.g Theorem 4.12, Corollary 4.19 and Corollary 4.22 from [59].
Overfitting effects introduced by the above interpolation procedure spoil the computation of the optimal
policy α more dramatically, since this requires the gradient of vα (14). We have experienced this effect in our
computation. For a theoretical justification, it would be desirable that the error can be estimated in much
stronger norms, e.g w.r.t. Lipschitz-norms etc.. In the result mentioned above, it was only measured w.r.t an
L2-norm.

A Regression Problem Let us highlight, that the present approach is NOT learning. It is NOT a
statistical task, but a numerical method to solve an operator equation. Instead of solving (12) directly, we
use a fixed point iteration

vk+1 := arg min
v∈U

RαN ,M (v, vk).

In fact, this constitutes a regression problem.

5 Tree Based Tensor Representation - Tensor Trains

For large dimensions n, traditional ansatz functions, e.g. finite elements, splines, multi-variate polynomials
etc. are not appropriate for the numerical solution of the PDE, since they are facing the curse of dimensions.
To this end we choose an underlying finite dimensional but large subspace Vp ⊂ V = L2(Ω) for the
approximation of the sought value function.
First we choose a suitable approximation space for univariate approximation of functions xi 7→ f(xi),
i = 1, . . . ,n. Presently, we have taken one-dimensional polynomials φi = span{φil |0 ≤ il ≤ pi} of degree pi.
However, other choices like splines waveletes etc. are also possible.
For the n-variate case, we consider the tensor product of such polynomial spaces

Vp := span {φ1 ⊗ · · · ⊗ φn : degφi ≤ pi}.

This is a space of multivariate (tensor product) polynomials with bounded multi-degree p = (p1, . . . , pn). For
the sake of simplicity we have chosen the same degree in all coordinates, i.e.pi = p, i = 1, . . . ,n.
A function q ∈ Vp can be expanded w.r.t. to tensor product basis functions via

q(x1, . . . ,xn) =
p1,...,pn∑
i1,...,in=1

A(i1, . . . , in)φi1(x1) · · ·φin(xn).

Interpreting the coefficient representation (i1, . . . , in) 7→ A(i1, . . . , in) of a polynomial q in this vector space
as a tensor of order n, we need storage in O(pn) for the coefficient tensor A ∈ ⊗nj=1Rp.
Let us note that

⋃
p∈N Vp is dense in V . Although the dimension of Vp is finite

dimVp = (p+ 1)n

it is prohibitively large.
In the ambient space Vp, we consider a non-linear, possibly low-dimensional manifold, given by tree based
tensor representations (hierarchical (Tucker) tensors - HT tensors) [60]. In the present applications, we
choose so-called tensor trains (TT tensors), invented by Oseledets in [61, 62], which has considerably smaller
dimensions [63]. They have been applied to various high-dimensional PDE’s [64], but the parametrization has
been used in quantum physics much earlier as Matrix Product States and Tensor Network States, successfully
for the approximation of spin systems and Hubbard models. For a good survey we refer to the papers [56,
65–67]. The tensor train representation have appealing properties making them attractive for treatment of
the present problems, compare [20]. For example they contain sparse polynomials, but are much more flexible

7
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U1 U2 U3 U4

P1 P2 P3 P4

x1 x2 x3 x4

r1 r2 r3

Figure 2: Graphical representation of TT tensor train induced polynomial in four variables.

at a price of a slightly larger overhead, see e.g. [68] for a comparison concerning parametric PDEs. Let us
give brief introduction for a first understanding.
In order to get some notion of the representation and compression, we introduce the TT-rank r ∈ Nn−1 of
the tensor A ∈ R(p1,...,pn−1) as element-wise smallest tuple such that

A(i1, . . . , in) =
r1,...,rn−1∑

k1,...,kn−1=1
U1(i1, k1) · U2(k1, i2, k2) · · ·Un(kn−1, in)

holds for some Ui ∈ Rri−1,pi,ri for i = 1, . . . ,n. The TT-rank is well defined and the set of tensors of fixed
TT-rank r forms a smooth manifold of dimension in O(npr2) [63] in contrast to O(np) of the ambient linear
space Vp. Taking the closure of this set, see e.g. [60] we allow also tensors with smaller TT-rank denoted by
M :=M≤r [56]. This slightly larger set forms an algebraic variety [56, 69]. However, numerical routines like
ALS [55] do not differentiate between the variety and the manifold. For a survey and mathematical theory
we refer to the literature, e.g. [56, 60, 67].
TT tensors can represent polynomials as follows. Let us consider the vectors

Pi : R→ Rpi+1 with Pi(x) =


1

φ0(x)
φ1(x)

...
φpi

(x)

 =


1
x
x2

...
xpi

 .

Then

p(x1, . . . ,xn) =
p1,...,pn∑
i1,...,in

r1,...,rn−1∑
k1,...,kn−1

U1(i1, k1)U2(k1, i2, k2) · · · · Un(kn−1, in)
(
P1(x1)

)
i1

(P2(x2)
)
i2
· · ·
(
Pn(xn)

)
in

=
p1,...,pn∑
i1,...,in

r1,...,rn−1∑
k1,...,kn−1

U1(i1, k1)U2(k1, i2, k2) · · · · Un(kn−1, in)φi1(x1)φi2(x2) · · ·φin(xn)

is a multivariate polynomial of degree (
∑
i pi).

Using the graphical tensor network representation [56, 66] this polynomial can be interpreted as in Figure 2.
Remark 2. Note that other polynomial basis functions can be chosen as well. For numerical reasons we
choose a set of orthogonal polynomials, e.g. φi = `i Legendre polynomials. In this case, Parseval formula
provides a norm equivalence between L2 and `2, which guarantees stability of our representations and
approximation schemes. Presently, we have chosen one-dimensional H1(I) orthogonal polyomials. The
stability is enforced by an additional regularization term, and the penalty parameter has been adaptivley
reduced through the iteration procedures. This procedure enforces the approximations to have small L∞ and
even Lipschitz bounds.

8
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In general, the set of one-dimensional basis functions can be modified to fit better to other norms rather than
L2 or H1.

It turns out, that optimization procedures in this TT format can be solved by consecutively optimizing one
component Ui while the others are fixed. This alternating Least-Squares (ALS) algorithm converges to a
local minimum [55]. Further details on the implementation in a similar context can be found in [21].
Remark 3. The present tensor ansatz has been proved by our experience to provide an advantageous choice,
however there are some alternatives, well known in machine learning which can be used for the present
purpose in same fashion or with some more or less obvious modifications. Among them are sparse grids [70],
sparse polynomials [71] , kernel methods (SVM) [72], in particular with polynomial kernels, and deep neural
networks (DNN) [73] .
In this respect, the essence of the present paper is not restricted to tree based tensor methods.

6 Formal Scaling with Respect to the Spatial Dimensions

We add a brief discussion about the computational complexity, and how the computational complexity scale
with the spatial dimensions n, and how the HJB is prone to the curse of dimension.
Let us assume that we want to achieve a fixed accuracy ε, i.e. we do not consider the scenario ε→ 0. This is
motivated because we want to keep the feedback law fairly simple, since this is required for an online feedback
law.
The number of degrees of freedom of the underlying TT tensor is K ≤ n(p+ 1)r2 = O(n) for fixed accuracy.
Note that p = p(ε), and r = r(ε) and will kept as constants in the sequel. (Presently p = 10,n = 6, r = 5.) In
this regime K ∼ n scales linearly with n instead of exponentially. This linear scaling behavior for storing the
value function, seems to be quite optimal. We have rendered the curse of dimensions in a perfect way.
We further assume that we need at least N = O(K) sample points, which is very optimistic. This is the
best scaling we can expect, and extremely optimistic, and cannot be improved by other methods like kernel
methods or DNN. The best proven rate for linear Least Squares methods is N ∼ K logK [74], and we neglect
further logarithmic terms. Therefore the total numerical Work scales at least O(nN) = O(n2). With the
present approach we have to calculate at each sample points M paths. Then, the total numerical work is
O(n2MS), where S is the work for computing a single path.
For linear function f fully connected, i.e. it is represented by fully populated matrix, the minimal cost for
each path is S = O(n2T ), where T is the number of time steps. In this case we have assumed that the
evaluation of the feedback law which scales with 0 = (n2m), where m is the number of controls. When
n ∼ m the we can have an additional factor n, in the scaling of S. This does not happen in present case. We
summarize that the total work is

O(n4p2r4MT ) or for fixed accuracy O(n4).

In the deterministic case we save the factor M , since we need only a single trajectory for each sample xi.i.e.
for each initial condition. Let us remark, if we use the (linearized) HJB directly, in a Least Squares setting,
the factor MT is no longer apparent. We save also an additional factor n. Here, the scaling will be O(n3p2r4)
Indeed, this can save computing time at a price of less stability and a loss of accuracy. We will discuss this
issue in the outlook.
In the subsequent numerical tests, we had around K= 800 DOF in our models set. We took N = 10K ≈ 8.000
sampled initial values. For each initial value xi we consider 100 paths, i.e. in each iteration step we performed
8 ·105 runs of the Euler Mayurama scheme with 100 time steps. This part was by far the most time consuming
part. However it can be perfectly parallelized, which has not been done so far.
The above scaling is estimated in a very optimistic fashion, and can be considered more as a lower bound.
However, there are situations where the scaling is better, e.g. the matrix representation of f is sparse. It
may be that multi-level Monte Carlo can provide an additional better scaling. All possibilities to reduce the
present scaling O(n4) have to be considered in next future.
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For other model sets, known in machine learning, the scaling can be worse. For a fully connected DNN with
O(n) neurons in each layer, and fixed depth L we have K = O(Ln2) DOFs, and assuming N ∼ K like in the
above setting, we obtain the scaling O(n4L2n2MT ) = O(n6)! For kernel methods O(N3n2MT ), where the
scaling w.r.t to the dimension n number of samples N = NK is not clear. Assuming N ∼ N seems to be
quite optimistic.

7 Numerical Results

We present results of numerical tests for different optimal control problems. For the implementation of the
tensor networks we use the open source c++ library xerus [75]. We also make use the python packages
Numpy[76, 77] and scipy[78]. The calculations were performed on a AMD Phenom II 4x 3.20GHz, 16 GB
RAM Fedora 31 Linux distribution. In every test we consider a compact set E = ΞC where we want to steer
the state to and a cost functional of the form

J (x0,u) = E
ˆ η

0
1 + 1

2 |ut|
2dt.

The equations are defined on a set Ω and we denote by E = Ω \ Ξ the set that we aim to steer the state to.
The first two tests are simple one-dimensional problems, where the exact solution is known either analytically
or numerically. The third test has a two-dimensional state space and finally we test the algorithm on a 6
dimensional state space.
Remark 4. In the following, we distinguish between the policy α, the corresponding policy estimation
function v and the policy evaluation function J (·,α(·)). For fixed x, we obtain v(x) by simply evaluating v.
Here, no trajectory has to be computed. We obtain J (x,α(x)) by numerically integrating along the trajectory
with initial condition x. Note that J (x,α(x)) is basically the numerical approximation of the cost functional
with respect to a policy, defined in (3).
Remark 5. Within the test cases we specify the constants that we chose. Namely, the length of the
trajectory τ , the number of spacial samples N , the number of repetitions for every sample M and, as we set
N proportional to the degrees of freedom of the tensor train representation of v, we also state the number of
degrees of freedom. Note that for the numerical tests the length of the trajectory does not necessarily have to
be the step-size of the Euler-Majurama scheme for solving the SDE. In fact, for every test we use a step size
of 0.001 for the Euler-Majurama scheme. The length of the trajectory is mostly set to 0.1, which means that
100 steps within the SDE solver are used, c.f. [21, Section 6].
For every test we set the regularization constant δ to be adaptive. In the beginning of every ’left-to-right
sweep’ within the ALS algorithm, we set δ to be the current residuum RαN ,M .

7.1 Test 1. One-dimensional exit time problem: Eikonal equation

We first test our algorithm with a simple one dimensional, deterministic problem, where the exact solution is
known, namely the Eikonal equation on Ω = [−2, 2], i.e.

ẋ = u, x(0) = x0, Ξ = [−2, 1),E = [1, 2].
Note that this problem fits into our setting by setting σ = 0 and b = 0. Here, the value function has the form

v∗(x) =
√

2(1− x), x < 1.
Indeed, by choosing a polynomial of degree 1 as ansatz space, the number of samples N = 2 and the number
of repeated samples M = 1, we are able to recover the value function nearly exactly, as seen in Figure 3. The
length of the trajectory is set to τ = 0.001 Note that this example is particularly easy to calculate, because
the optimal value function v∗ on the domain (−∞, 1) is already contained in the ansatz space, and we have
set v(x) = 0 on the exit set E. However, it is possible to extend the domain of the ODE to (−∞,∞) while
maintaining E = [1, 2]. In this case, the corresponding HJB is the well known eikonal equation [42]

|v
′
(x)|2 = 2

with boundary conditions v(1) = v(2) = 0. This Dirichlet problem has multiple weak solution, the mentioned
value function v(x) = max{0,

√
2(|1.5− x| − 0.5)} is the unique viscosity solution [42, 79]. In this respect,
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−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4 vα(x)

v∗(x)

Figure 3: The value function v∗ and the numerical approximation vα.

the present example is not so trivial and can be found in the literature for motivating the notion of viscosity
solution. Let us remark, that the present value function v is still analytic in the exterior of the target set
E = [1, 2]. As long as the abstract Policy Iteration (Algorithm 1) converges to a viscosity solution, we are
going to approximate a viscosity solution. We refer to [80, 81] for a detailed discussion of this issue. We do
not elaborate on this difficult issue and consider mainly classical solutions. Let us remark, that in the present
example σ = 0 and the dynamical system is deterministic.
We next analyze a more involved example, while still being in 1 dimension, namely the classical double well
potential.

7.2 Test 2. One-dimensional double well potential

−2 −1 0 1 2
x

0

10

20

30

40

pot(x)

Figure 4: The double well potential pot.

We next consider the double well potential on Ω =
[−2, 2] with Ξ = [−2, 1), E = [1, 2].

pot(x) = 5(x2 − 1)2,

visualized in figure 4. The corresponding SDE is

dXt = ∇pot(Xt)dt+ σ(Xt)dWt + g(Xt)Ut(Xt)dt,

Here, we cannot expect the value function to be in-
cluded in our ansatz space. Thus, we experiment with
different polynomial degrees, visualized in figures 5a
and 5b. For the computation of the controllers we set
the number of samples to N = 10 · dof , where dof
is the polynomial degree increased by 1. We set the
length of the trajectory to τ = 0.1 and compute for
every sample M = 1000 trajectories. Note that the
length of the trajectory consists of 100 individual steps
in the Euler-Majurana scheme, i.e. 0.1 = 100 · 0.001.
We compare the results to a reference solution that is obtained by solving the HJB equation with a finite
differences scheme with 3000 grid points.
We observe, that higher polynomial degrees yield a better approximation of the reference solution, with
polynomial degree of 20 yielding the best results. We also deduce from figure 5a that we do not exactly

11



A preprint - October 12, 2020

reproduce vref . From figure 5b we deduce that the performance of the controller of polynomial 20 is less
than 1% higher than the performance of the reference solution.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10
v, poldeg 4

v, poldeg 8

v, poldeg 12

v, poldeg 16

v, poldeg 20

v, poldeg 24
vref

(a) The approximated value functions and the reference
solution.

4 8 12 16 20 24 vref
Polynomial Degree

0

2

4

6

8

10

12

10.4

9.51
9.19 8.93 8.97 8.86

7.28

10.57

9.58
9.28

8.82 8.93 8.76

avg. cost

est. cost

(b) Estimated cost and average cost by averaging over
10000 trajectories with initial value x0 = −1. Avg. cost for
polynomial degree 4 is 34.03.

Figure 5: One dimensional double well potential

7.3 Test 3. Two dimensional three-hole potential

We consider a two dimensional three-hole potential with one being less significant than the others. Note that
this potential has already been used in different contextes and is sometimes referred to as Müller-Brown
potential, see i.e. [82, 83]. In particular we have Ω = [−3, 3]2 and
pot(x1,x2) = 3e−x

2
1−(x2−1/3)2

− 3e−x
2
1−(x2−5/3)2

− 5e−(x1−1)2−x2
2 − 5e−(x1+1)2−x2

2 + 0.2x4
1 + 0.2(x2 − 1/3)4.

We choose a ball of radius 0.5 around xtarget ≈ [−1.048,−0.042] as target set E and set Ξ = Ω \ E. Note
that xtarget contains a local minimum of pot. Both sets are visualized in figure 6a. Again, we compare the
performance of controllers with different polynomial degree and see that higher order polynomials substantially
increase the performance of the controllers. The best performance is achieved by a controller of polynomial
degree 16. However, lower polynomial degree yields ’good’ results as well. For the computation of the
controllers we set the number of samples to N = 10 ·dof , where dof is again the number of degrees of freedom
of the tensor train. In this two-dimensional example, we set the rank of the tensor train to be maximal for
every polynomial degree. Further, we set M = 100 and τ = 0.1. In figure 7, we plot different trajectories of
the dynamical system for both, the uncontrolled and controlled system. Note that the controlled trajectories
get steered into the set E within the given time frame of 10, while the uncontrolled dynamics stay in the
minimum on the right. Here, we visually see the effect of controlling this dynamical system. Figure 6b again
visualizes the performance of controllers for different polynomial degrees.
As the polynomial degree of 16 had the best performance, we add contour plots of the value function in
Figure 8. In particular compare this Figure to those in [84], where a similar figure appears in a different
context.

7.4 Test 4: Higher dimensional problem

We consider the multi-dimensional Double Well potential

pot(x) =
n∑
i=1

κi(x2
i − 1)2.

Note that this potential has 2n local minima and the choice of κ determines their metastability. In our test
we use κi = 5 for all i. The exit set E is B0.5

√
n(1), the ball of radius 0.5

√
n around [1, . . . , 1] ∈ Rn. We

12



A preprint - October 12, 2020

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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(a) The potential pot and the exit set ΞC

4 8 12 16 20
Polynomial Degree
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12

6.95

3.61 3.52 3.44 3.47

2.31

3.68 3.69 3.52 3.55

avg. cost

est. cost

(b) Estimated cost and average cost by averaging over
10000 trajectories with initial value x0 = [1.8, 1.8].

Figure 6: Left: The potential pot. Right: Performance of controllers of different polynomial degree.

(a) Visualization of 10 trajectories, uncontrolled (b) Visualization of 10 trajectories, controlled

Figure 7: Top: Plots of 10 trajectories, starting at x0 = [1.8, 1.8]. The colors indicate the time within the
trajectory, starting with green dots and ending with red dots. We stop the simulation at T = 10 or when the
exit set is reached. As no red dots appear for the controlled dynamics, we see that in this case the exit set is
reached in a fast manner. The black cross is the initial value.
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Figure 8: Contour plot of the approximation of the value function. Polynomial degree is 16.
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further choose Ω = [−π2 , π2 ]2. Note that while the radius of the exit set seems large, for the case n = 6, its
volume is only 1.8% of the volume of Ω. We further stress, that while in the dynamics the dimensions are
independent from each other, we cannot expect the value function and thus also the policy to have a strict
separation in the dimensions. Here, the curse of dimensions comes into play. Choosing a polynomial degree of
6 and a tensor train rank of [5, 5, 5, 5, 5] allows us to reduce the ansatz space from 46656 degrees of freedom
to 770. Again, setting N = 10 · dof , M = 100 and τ = 0.1 we visualize the resulting controller in figure 9.
We start the trajectory at [−1, · · · − 1] ∈ Rn. We see that the uncontrolled dynamics approach the exit set
slowly, while the controlled dynamics most trajectories have reached the exit set at time 3. The resulting cost
of the controlled dynamics is 4.44 and the predicted cost 4.74. Note that computing the average cost for the
uncontrolled dynamics is not feasible because of the high metastability of the minima, as seen in Figure 9.

(a) Red: average distance of the exit set to 1000
realizations of the uncontrolled dynamics. Black (dots):
scatter plot of the distance of 50 realizations of the
uncontrolled dynamics to the exit set.

(b) Red: average distance of the exit set to 1000
realizations of the controlled dynamics. Black (dots):
scatter plot of the distance of 50 realizations of the
controlled dynamics to the exit set.

Figure 9: Visualization of the distance of trajectories to the exit set.

Conclusion and Outlook

We have considered a stochastic optimal control problem. In the SDE the control u enters as an affine function
in u and in its corresponding cost functional J quadratically. We solved this problem by using approximative
Policy Iteration whereby we used dynamical programming with the linearized Bellman equation resulting in
a linear operator equation (Koopman operator). The SDE was discretized by the Euler Mayurama method.
The optimality condition has been derived from the HJB equation. For the numerical solution we employed
tree based tensor approximations in the subspace of tensor product polynomials. For the computation of the
Least Squares risk functional R we used Monte Carlo integration. We have provided successful numerical
test for moderate dimensions.
The Least-Squares method allows for incorporating additional penalty terms in (4, 12), which might be zero
for the exact solution. Potential approaches include the following.

• The boundary condition vα = 0 on ∂Ξ, by sampling the boundary and penalizing vα at these sample
points.

• Incorporating the linearized HJB, cf. appendix A and (15) in the risk functional

The most time consuming step is the generation of many different paths (trajectories) that are the numerical
solution of the SDE. The above penalty terms yield extra information about the system with low additional
computational cost. In the next future we want to pursue this direction.
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A Alternate approach via solving the HJB

In this section we consider an alternative approach to finding the value function. Indeed, instead of considering
the Bellman equation, one can instead consider the Hamilton-Jacobi-Bellman (HJB) equation. It has the
form [43, 85]

σ2(x)∆v∗(x) + min
α∈F
{∇v∗(x) · (b(x) + g(x)α(x)) + r(x,α(x))} = 0 on Ξ (13)

v∗ = 0 on ∂Ξ
with a Dirichlet boundary condition. For the exact value function, and the present reward rα(x) =
c(x) + α(x)TBα(x), the minimization within (13) w.r.t. the parameter α can be carried out explicitely. This
yields optimality condition for the optimal policy (feedback law) given by [42]

α∗(x) = −1
2B
−1g(x)T∇v∗(x). (14)

Denoting fα(x) := b(x) + g(x)α(x) and rα(x) = r(x,α(x)) and rαt (x) := rα(Φαt (x)) the corresponding HJB
in coupled form is

0 = σ2(x)∆v∗(x) +∇v∗(x) · fα
∗
(x) + rα

∗
(x)

α∗(x) = −1
2B
−1g(x)T∇v∗(x).

Similar to the approach in Section 2 for given α we have the linear PDE
0 = σ2∆vα +∇vα · fα + rα (15)

to compute the policy evaluation function vα. Note that this equation corresponds to (6) in the Bellman
setting.
As the Policy Iteration algorithm is based on computing vα, one can exchange (8) with (15) within the
Policy Iteration algorithm. This linearized HJB equation is a stationary inhomogenous backward Kolmogorov
equation and thus a deterministic linear PDE in a possibly high-dimensional space. The stochastic nature
of the underlying dynamical system is expressed in the additional viscosity term, i.e. Laplacian ∆. Indeed,
the computational bottleneck is the numerical solution of this high dimensional PDE. Note that the direct
connection between the Koopman operator correspoding to the linearized Bellman equation and the linearized
HJB equation is that the backward Kolmogorov operator is the generator of the Koopman operator semi-group,
see i.e. [86].
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B Reinterpretation of the finite exit time problem as an infinite horizon
problem

In this section we give an informal way to interpret the finite exit time problem as an non smooth infinite
horizon optimal control problem. Taking this viewpoint has the advantage that standard HJB theory can be
(formally) applied and that the usual Koopman operator without the stop time η can be definied. Note that
our implementation we use this viewpoint. To this end we restate the finite exit time problem

J (x,u) = E
ˆ η

0
c(Xt) + uTt Butdt,

subject to

dXt = b(Xt)dt+ σ(Xt)dWt + g(Xt)utdt
X0 = x

and
η = inf{t > 0|Xt 6∈ Ξ}.

Denoting the characteristic function on Ξ by χΞ we can represent this problem as an infinite horizon problem
in the following way.

J (x,u) = E
ˆ ∞

0
χΞ(Xt)(c(Xt) + uTt But)dt,

subject to

dXt = χΞ(Xt)(b(Xt)dt+ σ(Xt)dWt + g(Xt)utdt)
X0 = x.

Note that the characteristic function basically sets the running cost and the dynamics to zero once the state
is steered out of Ξ. Moreover, the dynamics and the cost functional is then non smooth.
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