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Abstract. We extend the definition of the Maslov index to a broad class of non-Hamiltonian dy-

namical systems. To do this, we introduce a family of topological spaces — which we call Maslov–

Arnold spaces — that share key topological features with the Lagrangian Grassmannian, and hence

admit a similar index theory. This family contains the Lagrangian Grassmannian, and much more.

We construct a family of examples, called hyperplane Maslov–Arnold spaces, that are dense in the

Grassmannian, and hence are much larger than the Lagrangian Grassmannian (which is a subman-

ifold of positive codimension). The resulting index is then used to study eigenvalue problems for

non-symmetric reaction–diffusion systems. A highlight of our analysis is a topological interpreta-

tion of the Turing instability: the bifurcation that occurs as one increases the ratio of diffusion

coefficients corresponds to a change in the generalized Maslov index.
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1. Introduction

The Maslov index is an powerful tool for distinguishing trajectories in a Hamiltonian system, and

provides a natural setting for many well-known results in stability theory, such at the Morse index

theorem and the Sturm oscillation theorem. Its definition depends crucially on the topology of the

Lagrangian Grassmannian, and the fact that it is invariant under the flow of a Hamiltonian system.

An interesting and difficult question is whether this restriction to systems with an underlying

Hamiltonian structure can be weakened in order to open up a greater range of applications. The

idea we pursue in this paper is to look for subsets of the Grassmannian that have the needed

topological properties. We first clarify what these topological properties are.

We take R2n as the phase space, and denote the Grassmannian of n-dimensional subspaces by

Grn(R2n). Such an n-dimensional subspace is said to be Lagrangian, with respect to a given sym-

plectic form ω, if ω vanishes on it. The set of Lagrangian subspaces, known as the Lagrangian

Grassmannian, is then denoted Λ(n). The Maslov index is an integral homotopy invariant de-

fined for continuous paths in the Lagrangian Grassmannian Λ(n). This is well defined because

H1(Λ(n);Z) = Z. Moreover, the generator of H1(Λ(n);Z) can be explicitly identified in such a way

that the index of a curve is interpreted as a signed count of its intersections with a fixed Lagrangian

subspace.

Both the index being an integer and its interpretation as an intersection number are important

in applications to dynamical systems. We thus seek generalizations with both of these properties.

We will define a class of spaces that captures these features and call them Maslov–Arnold Spaces.

First, we recall that the train of an n-dimensional subspace P ∈ Grn(R2n) is the set

ZP :=
{
W ∈ Grn(R2n) : W ∩ P 6= {0}

}
(1)

of all n-dimensional subspaces intersecting P non-trivially, and the subset

Z1
P

:=
{
W ∈ Grn(R2n) : dim(W ∩ P ) = 1

}
⊆ ZP

is a smoothly embedded hypersurface.

As described above, the Maslov index for curves in the Lagrangian Grassmannian has two features

that make it useful in applications:
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(1) There exists a cohomology class α0 ∈ H1(Λ(n);Z) such that the Maslov index of any

continuous loop γ : S1 → Λ(n) equals the canonical pairing 〈α0, [γ]〉 ∈ Z, where [γ] ∈
H1(Λ(n);Z) is the homology class represented by γ.

(2) If γ : S1 → Λ(n) is a sufficiently generic loop, then its Maslov index is equal1 to its geometric

intersection number with the train of a fixed Lagrangian subspace P .

Motivated by these properties, we give the following definition.

Definition 1.1. A rank n Maslov–Arnold (MA) space (M, P, α) consists of

• a subset M⊆ Grn(R2n),

• an n-dimensional subspace P ∈ Grn(R2n), and

• a cohomology class α ∈ H1(M;Z) of infinite order,

where Z1
P
∩M has a co-orientation such that for any sufficiently generic loop γ : S1 → M, the

geometric intersection number with ZP equals the pairing 〈α, [γ]〉.

Note thatM is not required to be a manifold, and the distinguished subspace P is not required to

be an element of M. We next define the generalized Maslov index.

Definition 1.2. For any continuous loop γ : S1 →M, we define the generalized Maslov index of

γ with respect to P by

Mas(γ;P ) = 〈α, [γ]〉. (2)

The definition of a Maslov–Arnold space guarantees that the generalized Maslov index of any

sufficiently generic loop is equal to its geometric intersection number with the train ZP . However,

it is important to note that (2) defines the generalized Maslov index for any continuous loop γ in

M, with no genericity assumptions needed.

In this terminology, the main result of Arnold’s seminal paper [2] is that (Λ(n), P, α0) is a Maslov–

Arnold space for any P ∈ Λ(n), where α0 ∈ H1(Λ(n);Z) ∼= Z is one of the two generators. The

symplectic form defining Λ(n) determines a canonical choice of α0, called the Maslov class; with

this choice of generator we call (Λ(n), P, α0) a classical Maslov–Arnold space. On the other hand,

Grn(R2n) cannot be an MA space if n ≥ 2, because H1(Grn(R2n);Z) ∼= Z2 contains no cohomology

classes of infinite order. In the case n = 1, it is easy to see that Λ(1) = Gr1(R2) = RP 1 ∼= S1.

This is the home of classical Sturm–Liouville theory, which is often approached through studying

the angle of a path in S1.

To apply our generalized index theory to dynamical systems, we must find non-trivial examples

of MA spaces where the index can be computed. A natural approach would be to “fatten up”

the Lagrangian Grassmannian to obtain a strictly larger Maslov–Arnold space. It is possible to

construct such spaces (which we do in Theorem 6.2), but we show in Theorem 6.3 that no MA

space exists that properly contains the Lagrangian Grassmannian and is also a smooth submanifold

of Grn(R2n). Therefore, in constructing MA spaces, we must make a choice: we can have a space

1In Section 3.1 we will clarify this statement by giving a precise definition of a “sufficiently generic loop” and its

geometric intersection number with the train.
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that extends the Lagrangian Grassmannian, or is a smooth submanifold of the Grassmannian, but

not both.

The main focus of this paper is a resolution to this conundrum through the construction of a

large class of Maslov–Arnold spaces, which we call Hyperplane Maslov–Arnold Spaces, that are

open, dense subsets (and hence smooth submanifolds) of the Grassmannian, but do not contain the

entire Lagrangian Grassmannian. For these spaces the index has a simple geometric interpretation

as a winding number in RP 1. This gives us a practical method for computing the index, and also

allows us to define it for continuous paths with distinct endpoints.

Given a nonzero n-form ω on R2n, consider the subset

Hω :=
{

span{v1, . . . , vn} ∈ Grn(R2n) : ω(v1, . . . , vn) = 0
}

(3)

of the Grassmannian Grn(R2n). We call this the hyperplane associated to ω. A special case is

when kerω is n dimensional. Then it can be shown that the associated hyperplane is the train of

the subspace kerω, i.e.

Hω =
{
W ∈ Grn(R2n) : W ∩ kerω 6= {0}

}
. (4)

Another special case is when n = 2 and ω is a non-degenerate two-form, i.e. a symplectic form, in

which case Hω ⊂ Gr2(R4) is the corresponding Lagrangian Grassmannian.

Definition 1.3. A hyperplane Maslov–Arnold space is a set

M = Grn(R2n) \
(
Hω1 ∩Hω2

)
, (5)

where ω1 and ω2 are linearly independent n-forms and kerω1 is n-dimensional.

That is, M is obtained from the Grassmannian by removing the intersection of two hyperplanes,

at least one of which is the train of an n-dimensional subspace. It will be shown below that such

an M is indeed a Maslov–Arnold space in the sense of Definition 1.1, where P = kerω1 is the

distinguished subspace and the cohomology class α is determined by Hω1 ; see Theorem 3.4 for a

precise statement.

For the hyperplane Maslov–Arnold spaces, our generalized Maslov index has a simple geometric

interpretation. Defining a map φ : M→ RP 1 by

φ
(

span{v1, . . . , vn}
)

=
[
ω1(v1, . . . , vn) : ω2(v1, . . . , vn)

]
, (6)

we will show that the index of a loop γ : S1 →M is equal to the winding number of φ ◦ γ in RP 1.

From the definition of φ we see that a subspace W ∈ M is contained in the train Hω1 if and only

if φ(W ) = [0 : 1]. We thus extend our definition of the index to arbitrary paths (possibly having

distinct endpoints) by simply defining it to be the winding number through the point [0 : 1] ∈ RP 1,

with a suitable convention chosen for the endpoints. This gives a well-defined index for paths in the

hyperplane MA spaceM that detects intersections with the train of kerω1, much like the classical

Maslov index does for paths in the Lagrangian Grassmannian.

However, there is an important difference between our hyperplane index and the classical Maslov

index. To illustrate this, suppose γ(t) is a continuous path in M with γ(t∗) ∈ Hω1 , i.e. γ(t∗) ∩
kerω1 6= {0}, for some t∗. This means the path φ ◦ γ in RP 1 has φ(γ(t∗)) = [0 : 1]. Depending
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on the direction in which this curve passes through the point [0 : 1], the local contribution to the

winding number will be either 0, 1 or −1. That is, the largest absolute change to the index at each

intersection is 1, regardless of the dimension of the intersection γ(t∗) ∩ kerω1.

In other words, while our index is sensitive to the direction of crossing, it does not measure the

dimension, unlike the classical Maslov index. This point will reoccur throughout the paper; see for

instance Remark 1.4.

Using our hyperplane index theory, we prove a generalized Morse index theorem (Theorem 4.1)

relating conjugate points and positive eigenvalues for a non-selfadjoint boundary value problem. A

special case is the Dirichlet eigenvalue problem on a bounded interval (0, L),

uxx + V (x)u = λu, u(0) = u(L) = 0, (7)

where u ∈ Rn and V (x) is a real (but not necessarily symmetric) n × n matrix-valued potential.

Assuming a certain invariance condition (34) holds (which is generically the case), we find that

#
{

positive real eigenvalues of (7)
}
≥ #

{
conjugate points

}
−m (8)

where m ∈ Z is a topological correction that can be explicitly computed in many cases of interest.

Remark 1.4. The notation # denotes the cardinality of a set, so the left-hand side of (8) is

the number of distinct positive real eigenvalues, and similarly for the right-hand side. This is

very different from the classical Maslov index, which counts eigenvalues and conjugate points with

multiplicity. This means our hyperplane index is much simpler to work with, and is a valuable tool

for detecting instability even though it does not capture information about geometric or algebraic

multiplicity.

The inequality (8) differs from the classical Morse index theorem, and hence from Sturm–Liouville

theory, in three significant ways:

(1) positive eigenvalues and conjugate points are counted without multiplicity;

(2) we obtain a lower bound, rather than an exact formula, for the number of positive eigen-

values (though in some cases this can be improved to an equality, see Lemma 5.7);

(3) there is a topological correction m that is not present in the usual Morse index theorem.

The term m, which has no analogue in the classical theory, encodes non-trivial dynamical informa-

tion about the system. For instance, when m > 0 it is possible to have conjugate points but no

positive eigenvalues. In general, the presence of a conjugate point will only imply the existence of

a positive eigenvalue if m ≤ 0.

The significance of the index m is illustrated in Section 5.3. There we study the well-known

Turing instability phenomenon, whereby a stable, homogeneous equilibrium of a chemical reaction

is counter-intuitively destabilized in the presence of diffusion. We find that such an instability

occurs if and only if the index m is nonzero. Moreover, we find a topological mechanism for the

onset of the Turing instability (the so-called Turing bifurcation) in terms of the topology of the

underlying Maslov–Arnold space.
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Outline of paper. In Section 2 we provide further motivation for our construction by describing

its application to systems of reaction–diffusion equations, and contrast it with the classical Maslov

index. In Section 3, we establish relevant topological properties of Maslov–Arnold spaces, in partic-

ular the so-called hyperplane MA spaces. In Section 4 we begin to apply our theory of hyperplane

MA spaces by proving a general Morse index theorem (Theorem 4.1), that relates conjugate points

and unstable eigenvalues for non-selfadjoint operators. Next, in Section 5, we look at two concrete

applications of this general result: systems with large diffusion, and systems admitting homoge-

neous equilibria. We characterize the Turing bifurcation using our generalized index theory, and

also describe possible numerical applications of our theory. Finally, in Section 6 we describe addi-

tional examples (and non-examples) of Maslov–Arnold spaces, going beyond the hyperplane spaces

that are emphasized in the rest of the paper.

2. Background and motivation

Many interesting physical phenomena are described by systems of reaction–diffusion equations.

These have the form

ut = Duxx + F (u), (9)

where u(x, t) ∈ Rn, D = diag(d1, . . . , dn) with all di > 0, and F : Rn → Rn. Given a steady state

ū(x), i.e. a solution to Dūxx + F (ū) = 0, it is natural to ask whether or not it is stable to small

perturbations.

The linear stability of ū is determined by the spectrum of the linearized operator

L = D
d2

dx2
+∇F (ū). (10)

For the study of traveling waves it is natural to take the real line as the spatial domain, in which

case L would be a closed, unbounded operator on L2(R), with domain H2(R). The resulting

eigenvalue problem and index theory on the line are more involved than for a bounded interval,

but the difficulties are analytic, rather than topological, in nature. In the Hamiltonian case these

issues have been satisfactorily addressed in many places, for instance [4, 10, 16, 15], and we expect

that similar methods will work here. Therefore, in order to emphasize the relevant topology of

the Maslov–Arnold spaces, which is the main purpose of this paper, we restrict our attention to

problems on a bounded interval (0, L), and hence will view L as an operator on L2(0, L), with

domain in H2(0, L) depending on the choice of boundary conditions.

The eigenvalue equation Lv = λv can be written as a 2n× 2n system

d

dx

(
v

w

)
=

(
0 D−1

λI −∇F (ū) 0

)(
v

w

)
. (11)

If F = ∇G for some function G : Rn → R, then ∇F = ∇2G is symmetric, hence L is self-adjoint,

and the system (11) is Hamiltonian. In this case the state ū has a well defined Maslov index, which

can be shown to equal the number of positive eigenvalues of L.

The need for the eigenvalue equation Lv = λv to be expressible as a Hamiltonian system imposes

certain restrictions on the PDE (9) under consideration. For instance, the system (11) is Hamil-

tonian if and only if ∇F (ū) is symmetric, in which case the linearized operator (10) is self-adjoint.
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In the context of reaction–diffusion systems, this means that the nonlinearity must be of gradient

type, which rules out many physically relevant models. Reaction–diffusion equations are primarily

studied for their propensity to support patterns and other permanent structures, and it was was

shown by Turing [25] (see Section 5.3 for an in-depth discussion) that a fundamental mechanism for

generating such patterns requires that ∇F has competing terms, thus ensuring that F is not a gra-

dient. In the literature, equations of the form (9) for which a stable equilibrium can be destabilized

in the presence of diffusion are called activator–inhibitor systems.

Of course (11) is not the only way of writing the eigenvalue equation as a first order system, and

there is no reason to only consider the standard symplectic structure on the phase space R2n.

Yanagida [27, 28] initiated the study of a broad class of activator–inhibitor systems called skew-

gradient, for which F = Q∇G with Q = diag{qi}, qi = ±1. Such problems can be put into

Hamiltonian form by a suitable change of variables. Chen and Hu subsequently showed how to

define the Maslov index of a standing wave and how to use it as a tool in stability analysis for the

skew-gradient case [10, 11]. Cornwell and Jones extended these ideas to traveling waves in [12, 13].

In both cases, the parity of the Maslov index is shown to determine the sign of the derivative of

the Evans function [1] at λ = 0; cf. [7, 14]. The results in the aforementioned works hinged on

the fact that the eigenvalue equation for L preserves the manifold of Lagrangian planes for a non-

standard symplectic form. In contrast to the Hamiltonian case, the index might be non-monotone

in its parameters, and L might possess complex eigenvalues. Nonetheless, a nonzero Maslov index

can still be used to prove instability; cf. (8). (Jones used the same idea to prove an instability

criterion for standing waves in nonlinear Schrödinger-type equations [19].) The index can also be

used to prove stability in a particular case if the above concerns are addressed. For example, the

Maslov index was used to prove stability of both standing and traveling waves in a doubly-diffusive

FitzHugh–Nagumo equation [11, 13].

In addition to skew-gradient systems, the Maslov index has also been successfully applied to other

PDEs that are conservative, such as the Nonlinear Schrödinger equation [17, 18, 19], and various

water wave problems [7]. Therefore, there are many cases where the Maslov index is relevant even

though the linearized operator L is not self-adjoint. In all of these cases, however, it can be shown

that there is some hidden Hamiltonian structure in the linearized problem, see for instance [12].

The main achievement of this paper is the definition and subsequent application of a Maslov-like

index for very general systems of equations, only requiring a mild invariance condition (34) to

be satisfied. As already described in the introduction, we do this by introducing Maslov–Arnold

spaces, and in particular the family of hyperplane Maslov–Arnold spaces. Using these spaces and

the resulting indices, we prove generalized Morse index theorems for the non-selfadjoint operator

L in (10), which we use to give sufficient conditions for the instability of the steady state ū of (9).

3. Maslov–Arnold spaces

The definition of a Maslov–Arnold space already appeared in the introduction; in this section

we clarify some of their topological properties, in particular for the hyperplane MA spaces. In

Section 3.1 we precisely define the geometric intersection number of a “sufficiently generic” loop,
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which appears in the definition of an MA space. In Section 3.2 we construct the hyperplane

Maslov–Arnold spaces, which are open, dense subsets of the Grassmannian; these will be our main

tool when we study reaction–diffusion systems in Sections 4 and 5. In Section 3.3 we elaborate on

the generalized Maslov index for a hyperplane MA space, which we call the hyperplane index, and

explain how to define it for paths with different endpoints. Finally, in Section 3.4 we describe the

two-dimensional case in detail.

While the hyperplane spaces suffice for the applications in this paper, we will revisit general Maslov–

Arnold spaces in Section 6, where we settle some natural theoretical questions by providing further

examples (and non-examples) of MA spaces.

3.1. The intersection number of a sufficiently generic loop. The subset

Z1
P

:=
{
W ∈ Grn(R2n) : dim(W ∩ P ) = 1

}
⊆ ZP

is a smooth submanifold of Grn(R2n) with one-dimensional normal bundle ν. We say a map

γ : S1 → Grn(R2n) is sufficiently generic if

• it is smooth (i.e. C∞),

• all intersections between the image γ(S1) and the train ZP are contained in Z1
P

, and

• all of these intersections are transverse, meaning that if γ(t) ∈ Z1
P

for some t, then the

velocity vector γ̇(t) ∈ Tγ(t)Grn(R2n) is not tangent to Z1
P

.

Given a subset M ⊆ Grn(R2n) and an n-plane P ∈ Grn(R2n), we call ZP ∩M the train of P in

M. A co-orientation2 of the train is an orientation of the restricted line bundle ν|Z1
P
∩M, where

ν is the normal bundle of Z1
P

. Given a sufficiently generic curve γ : S1 → M ⊆ Grn(R2n) and a

co-orientation ofM∩Z1
P

, the geometric intersection number of γ with the train ZP ∩M is defined

to be the finite sum ∑
t∈S1

γ(t)∈Z
P

sgn(t) (12)

where sgn(t) = 1 (resp. −1) if the induced linear isomorphism TtS
1 → νγ(t) is orientation preserving

(resp. reversing).

3.2. Hyperplane Maslov–Arnold spaces. Let V ∼= R2n and denote by
∧n(V ) the nth degree

exterior product of V , which is a vector space of dimension
(

2n
n

)
. The projective space P (

∧n(V ))

is the set of the one-dimensional subspaces of
∧n(V ). Given a non-zero n-vector ξ ∈

∧n(V ), we

denote by [ξ] ∈ P (
∧n(V )) the span of ξ. The Plücker embedding maps Grn(V ) into P (

∧n(V )),

sending span{v1, . . . , vn} to [v1 ∧ · · · ∧ vn]. We will sometimes abuse notation and simply identify

Grn(V ) with its image G ⊆ P (
∧n(V )). Observe that G equals the subset of those [ξ] ∈ P (

∧n(V ))

for which ξ is decomposable as a product of vectors in V .

Let V ∗ := Hom(V,R) denote the dual vector space of V . For k ≥ 1, each ω ∈
∧k(V ∗) corresponds

to a skew-symmetric multilinear map ω : V k = V ×· · ·×V → R. There is a canonical isomorphism

2The existence of a co-orientation is equivalent to the restricted line bundle being trivializable, meaning that there

exists an isomorphism of topological line bundles ν|Z1
P
∩M
∼= R×

(
Z1

P
∩M

)
.
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∧k(V )∗, so elements ω ∈

∧k(V ∗) are in one-to-one correspondence with linear maps

ω :
∧k(V )→ R. Both interpretations of

∧k(V ∗) will be important in what follows.

Each non-zero n-form ω ∈
∧n(V ∗) determines a hyperplane

Hω :=
{

[ξ] ∈ P
(∧n

(V )
)

: ω(ξ) = 0
}
. (13)

Conversely, a hyperplane H ⊆ P (
∧n(V )) determines, up to multiplication by a non-zero scalar, an

n-form ω such that H = Hω. If the hyperplane Hω is intersected with G, we get

G ∩Hω =
{

[v1 ∧ · · · ∧ vn] ∈ P
(∧n

(V )
)

: ω(v1, . . . , vn) = 0
}
, (14)

and by the Plücker embedding this corresponds to

G ∩Hω
∼=
{

span{v1, . . . , vn} ∈ Grn(V ) : ω(v1, . . . , vn) = 0
}
. (15)

For instance, if n = 2 and ω is a non-degenerate two-form (i.e. a symplectic form), then G ∩Hω is

the Lagrangian Grassmannian Λω.

Remark 3.1. The preimage of G ∩Hω under the Plücker embedding, which appears on the right-

hand side of (15), is precisely the set Hω defined in (3). For the rest of the paper we will identify

these spaces whenever convenient, and use the notation G \ (H1 ∩H2) and Grn(R2n) \
(
Hω1 ∩Hω2

)
interchangably.

Another important type of hyperplane, particularly relevant to our theory of Maslov–Arnold spaces,

is that corresponding to the train of a fixed subspace, as defined in (1). Given a vector v ∈ V ,

the contraction map ιv :
∧k(V ∗) →

∧k−1(V ∗) is defined for each k ≥ 1 by (ιvω)(w1, . . . , wk−1) :=

ω(v, w1, . . . , wk−1). Define the kernel of ω by kerω := {v ∈ V : ιvω = 0}.

Lemma 3.2. Let ω ∈
∧n(V ∗). If kerω ⊆ V has dimension n, then G ∩ Hω is the train of the

subspace kerω, i.e.

G ∩Hω
∼= Zkerω =

{
W ∈ Grn(V ) : W ∩ kerω 6= {0}

}
. (16)

Moreover, letting Z1 ⊆ G denote the image of Z1
kerω under the Plücker embedding, the normal

bundle of Z1 in G is naturally isomorphic to the restriction to Z1 of the normal bundle of Hω in

P (
∧n(V )).

Proof. Let v1, . . . , vn be a basis of kerω, and extend to a basis v1, . . . , v2n of V , with dual basis

v∗1, . . . , v
∗
2n ∈ V ∗. Expressing ω in terms of this dual basis, and imposing the condition that ιviω = 0

for 1 ≤ i ≤ n, we deduce that

ω = cv∗n+1 ∧ · · · ∧ v∗2n (17)

for some nonzero c ∈ R. It follows from (14) that [w1 ∧ · · · ∧ wn] ∈ G ∩ Hω if and only if

span{w1, . . . , wn} intersects kerω non-trivially, proving (16).

Since Z1 is a smooth submanifold of codimension one in G and Hω is a smooth submanifold of

codimension one in P (
∧n(V )), to prove the isomorphism of normal bundles, it suffices to show that

G and Hω intersect transversely along Z1 in P (
∧n(V )).

A point in Z1 represents a n-dimensional subspace W for which W ∩ kerω is one dimensional. We

can choose a basis {v1, ..., v2n} for V so that
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• span{v1, ..., vn} = kerω,

• span{v1, vn+2, ..., v2n} = W ,

• span{v1} = W ∩ kerω.

In terms of the dual basis, ω is of the form (17). Consider the smooth path in
∧n(V ) defined by

γ(t) := (v1 + tvn+1) ∧ vn+2 ∧ · · · ∧ v2n. Notice that [γ(t)] defines a path in G, that γ(0) = W ,

and that ω(γ(t)) = t, so dω(γ(t))/dt = 1 6= 0. It follows that the velocity vector of [γ(t)] at W is

tangent to G, but not to Hω, so we conclude that the intersection between G and Hω is transverse

at that point. �

In view of Lemma 3.2, one can try to construct an MA space using the following strategy. Given

an n-dimensional subspace P ⊆ V , choose an n-form ω for which kerω = P , then look for an open

subset U ⊆ P (
∧n(V )) such that the normal bundle of U ∩Hω is orientable. This then determines

a cohomology class in H1(U ;Z) dual to U ∩ Hω (by pulling back the Thom class of the normal

bundle, as described in [6, §6]). If the restriction of this class to U ∩G has infinite order, then U ∩G
is an MA space. Our hyperplane construction can be described in these terms, but it can also be

explained in elementary geometric terms that avoids the machinery of Thom classes and allows us

to interpret the Maslov index of a loop as the winding number of that loop around a circle.

Given an integer m ≥ 1, consider the projection map π : Rm+1 → R2 defined by π(x1, . . . , xm+1) =

(xm, xm+1). This is surjective, with kernel naturally isomorphic to Rm−1. More generally, for any

point p ∈ R2, the preimage π−1(p) is an affine space modelled on Rm−1.

Consider the open subset

U :=
{

[x1 : · · · : xm+1] ∈ RPm : (xm, xm+1) 6= (0, 0)
}
,

which can be identified with the complement of a copy of RPm−2 in RPm. Then π descends to a

C∞ map [π] : U → RP 1 defined by the rule

[π]
(
[x1 : · · · : xm+1]

)
:= [π(x1, . . . , xm+1)]. (18)

Notice that U is precisely the subset of RPm where (18) is well-defined.

Lemma 3.3. The map [π] : U → RP 1 is a smooth fibre bundle, with fibres diffeomorphic to Rm−1.

In particular, [π] is a homotopy equivalence between U and RP 1, and the preimage [π]−1([0 : 1]) is

an embedded submanifold of codimension one in U with a trivializable normal bundle.

Proof. That [π] is a submersion follows immediately from the fact that π is a submersion. If

x ∈ R2 \ {(0, 0)} then it is easy to see that the natural forgetful map from π−1(x) to [π]−1([x]) is a

diffeomorphism. By the implicit function theorem, the fibres [π] are embedded submanifolds with

trivializable normal bundles. �

To understand Lemma 3.3 it may be helpful to consider the example when m = 2, so RPm = RP 2

is a real projective plane and RPm−2 = RP 0 is a single point. Then U is RP 2 with a single point

removed, which is diffeomorphic to the Möbius strip, and the R1-fibre bundle [π] : U → RP 1 is

simply the projection of the Möbius strip onto the base circle. The general case is much like this,

but with fibre Rm−1.
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We now have the ingredients necessary to construct an MA–space. Let V ∼= R2n and let P ⊆ V be

an n-dimensional subspace. Suppose that ω1, ω2 ∈ Λn(V ∗) are linearly independent n-forms and

that P = kerω1. Define M⊆ G by

M := G \ (Hω1 ∩Hω2) (19)

=
{

[u1 ∧ · · · ∧ un] ∈ G : ω1(u1, . . . , un) 6= 0 or ω2(u1, . . . , un) 6= 0
}
. (20)

We therefore have a well-defined continuous map φ : M→ RP 1 given by

φ
(
[u1 ∧ · · · ∧ un]

)
= [ω1(u1, . . . , un) : ω2(u1, . . . , un)]. (21)

A choice of orientation on RP 1 determines a generator µ ∈ H1(RP 1;Z) ∼= Z and we set

α = φ∗(µ) ∈ H1(M;Z). (22)

Theorem 3.4. The triple (M, P, α) defined above is an MA space. Moreover, the index of a

continuous loop γ : S1 →M is simply the winding number of the composite map φ ◦ γ : S1 → RP 1.

Proof. Combining Lemmas 3.2 and 3.3, we see that φ−1([0 : 1]) = M∩ Hω1 = M∩ ZP and all

points lying in M∩ Z1
P are regular values for φ. Therefore the normal bundle of M∩ Z1

P in M
is simply the pull back of the tangent space T[0:1]RP 1. The geometric intersection number of a

sufficiently generic loop γ : S1 → M will thus agree with the usual intersection number of the

composite φ ◦ γ : S1 → RP 1 with the point [0 : 1], which in turn agrees with the winding number

of φ ◦ γ.

It only remains to prove that α has infinite order. It is enough to produce a loop γ : [0, 1] → M
with non-zero index.

By iterative application of Lemma 3.5 we can find vectors v1, . . . , vn−1 so that the contractions

ιv1∧···∧vn−1ω1 and ιv1∧···∧vn−1ω2 are linearly independent. Therefore, there exist u1, u2 ∈ V such

that ωi(uj , v1, . . . , vn−1) = δij . Consequently, the loop

γ(t) = span{cos(πt)u1 + sin(πt)u2, v1, . . . , vn−1}

has index one. �

Lemma 3.5. Let V be a vector space and k ≥ 2. If ω1, ω2 ∈
∧k(V ∗) are linearly independent,

then there exists a vector v ∈ V such that the contractions ιvω1, ιvω2 ∈
∧k−1(V ∗) are linearly

independent.

Proof. Choose a basis e1, . . . , en ∈ V , with dual basis e∗1, . . . , e
∗
n ∈ V ∗, and expand ω1 =

∑
I aIe

∗
I

and ω2 =
∑

I bIe
∗
I , where I = {i1 < · · · < ik} are multi-indices and e∗I := e∗i1 ∧ ... ∧ e

∗
ik

. Since ω1

and ω2 are linearly independent, there is a pair of multi-indices I, J such that the minor

det

(
aI bI

aJ bJ

)
6= 0. (23)

If there exists a pair of multi-indices I, J satisfying (23) and an index i ∈ I ∩ J , then ιeiω1 and

ιeiω2 are linearly independent and we are done.
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Suppose instead that every pair of multi-indices satisfying (23) has I ∩ J = ∅. For a particular

such pair, select i ∈ I and j ∈ J and define I ′ := I ∪ {j} \ {i} and J ′ := J ∪ {i} \ {j}. Since k ≥ 2

it follows that each of I ∩ I ′, I ′ ∩J , I ∩J ′, and J ∩J ′ is non-empty. Considering the corresponding

minors, we deduce that aI′ = aJ ′ = bI′ = bJ ′ = 0 and consequently that ιei+ejω1 and ιei+ejω2 are

linearly independent. �

3.3. The hyperplane index. Since the generalized Maslov index for loops in a hyperplane space

M can be interpreted as a winding number, we can easily extend its definition to non-closed paths.

This amounts to choosing a convention for the endpoints.

We start by defining the winding number through [0 : 1] for a continuous path in RP 1. We do this

by first mapping to S1 and then looking at the winding through the point eiπ. Viewing S1 as a

subset of the complex plane, we define a map τ : RP 1 → S1 by

τ
(
[x : y]

)
=

(
x− iy
|x− iy|

)2

. (24)

Definition 3.6. Let η : [a, b] → RP 1 be a continuous path. If η(t0) = [0 : 1] for some t0 ∈ [a, b],

then there is a unique lift θ : [a, b]→ R such that θ(t0) = π and eiθ(t) = (τ ◦ η)(t) for t ∈ [a, b], and

we define

Wind(η) =

⌊
θ(b)− π

2π

⌋
−
⌊
θ(a)− π

2π

⌋
. (25)

If no such t0 exists we set Wind(η) = 0.

It is not hard to see that this is well defined (independent of the choice of t0). It is clearly additive

under concatenation of paths, and if η(a) = η(b) it reduces to the usual winding number of a loop,

(θ(b) − θ(a))/2π. Some consequences of this definition can be seen in Figure 1, where we show

the composite path τ ◦ η in S1. These illustrate four possible cases: a positive or negative curve,

passing through eiπ at either t0 = a or t0 = b. All four examples are parameterized so that t0 = π.

• eit, π/2 ≤ t ≤ π has θ(t) = t, so the winding number is b0c − b−1/4c = 1

• eit, π ≤ t ≤ 3π/2 has θ(t) = t, so the winding number is b1/4c − b0c = 0

• e−it, π/2 ≤ t ≤ π has θ(t) = 2π − t, so the winding number is b0c − b1/4c = 0

• e−it, π ≤ t ≤ 3π/2 has θ(t) = 2π − t, so the winding number is b−1/4c − b0c = −1

These four cases are shown from left to right. Therefore, Definition 3.6 says that for a positively

oriented curve we count crossings at t0 = b but not t0 = a, and vice versa for a negatively oriented

curve.

This leads to the following results for monotone paths. If η : [a, b] → RP 1 is continuously differ-

entiable and has the property that θ′(t∗) > 0 whenever η(t∗) = [0 : 1], then the set {t∗ ∈ [a, b] :

η(t∗) = [0 : 1]} is finite, and

Wind(η) = #
{
t∗ ∈ (a, b] : η(t∗) = [0 : 1]

}
. (26)

Similarly, if θ′(t∗) < 0 whenever η(t∗) = [0 : 1], then

Wind(η) = −#
{
t∗ ∈ [a, b) : η(t∗) = [0 : 1]

}
. (27)
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Wind = 1 Wind = 0 Wind = 0 Wind = −1

Figure 1. Illustrating the winding number, with respect to the point eiπ, or equiv-

alently the negative real axis, for non-closed curves in S1 with crossings at their

endpoints. Our convention is to count negative crossings at the beginning of a curve

and positive crossings at the end.

In general, for any continuous path η we have∣∣Wind(η)
∣∣ ≤ #

{
t∗ ∈ [a, b] : η(t∗) = [0 : 1]

}
. (28)

To make use of these formulas, we need to find the lift θ(t) when the path η(t) is given in terms

of homogeneous coordinates. Suppose η(t) = [x(t) : y(t)] has x(t0) = 0, and hence y(t0) 6= 0. It

follows from (24) that

τ ◦ η =
(x2 − y2)− 2ixy

x2 + y2
.

In the notation of Definition 3.6, this means the lift of τ ◦ η is θ(t) = π − arctan 2x(t)y(t)
x(t)2−y(t)2

, and

hence

θ′(t0) = 2
x′(t0)

y(t0)
. (29)

That is, the monotonicity of the path is determined by the sign of the ratio x′(t0)/y(t0). This

simple observation will be used repeatedly in Section 4.

Having described the winding number for a path in RP 1 with different endpoints, we are finally

ready to extend the definition of the generalized Maslov index from loops to arbitrary paths in a

hyperplane MA space.

Definition 3.7. Let γ : [a, b] → M be a continuous path in the hyperplane MA space M = G \
(H1 ∩H2). We define its hyperplane index to be

Ind(γ;P ) := Wind(φ ◦ γ), (30)

where φ : M→ RP 1 is defined in (21).

For future reference we summarize some important properties of this index, which follow easily

from the definition.

Proposition 3.8. The hyperplane index has the following properties:

(i) (extension) If γ : S1 →M is a loop, then Ind(γ;P ) is equal to the generalized Maslov index

Mas(γ;P ) from Definition 1.2.

(ii) (nullity) If γ : [a, b]→M is a path with γ(t) /∈ H1 for all t ∈ [a, b], then Ind(γ;P ) = 0.
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(iii) (additivity) If γ1 : [a, b]→M and γ2 : [b, c]→M are paths with γ1(b) = γ2(b), and γ2 ∗ γ1

denotes their concatenation, then

Ind(γ2 ∗ γ1;P ) = Ind(γ1;P ) + Ind(γ2;P ).

(iv) (homotopy invariance) If γ1, γ2 : [a, b] → M are homotopic in M, with fixed endpoints,

then

Ind(γ1;P ) = Ind(γ2;P ).

3.4. The two-dimensional case. We consider in detail the n = 2 case, whereM can be described

explicitly. The hyperplanes now come in two types. If ω is a non-degenerate 2-form, i.e. a sympectic

form, then Hω∩G is the corresponding Lagrangian Grassmanian. If ω is degenerate, then kerω ⊆ V
is two-dimensional, and Hω ∩G is the train of kerω.

Given linearly independent forms ω1, ω2 ∈
∧2(V ), they span a pencil of bilinear forms xω1 + yω2,

(x, y) 6= (0, 0). Choose a basis for V , so that the ωi are represented by skew-symmetric 4 × 4-

matrices. Consider the homogeneous quadratic polynomial q(x, y) := Pf(xω1 + yω2), where Pf

denotes the Pfaffian3. The roots of q correspond to the degenerate two-forms in the pencil. There

can be zero, one, two, or infinitely many roots.

Proposition 3.9. Up to a change of basis transformation of V , there are four possible isomorphism

types for M. They are classified by the number of real roots of q(x, y) := Pf(xω1 + yω2).

Proof. The Plücker embedding identifies G ⊆ P (
∧2(V )) ∼= RP 5 as a quadric, the so-called Klein

quadric, defined by the non-degenerate, split signature symmetric bilinear form

B :
∧2

(V )⊗
∧2

(V )→
∧4

(V ) ∼= R, B(η, ξ) = η ∧ ξ.

We call a linear transformation A ∈ GL(
∧2(V )) orthogonal if it leaves B invariant and anti-

orthogonal if it sends B to −B. Observe that both orthogonal and anti-orthogonal transformations

preserve G.

Let W ⊆
∧2(V ) be the four-dimensional subspace for which P (W ) = Hω1 ∩ Hω2 . Since B is

non-degenerate, the B-complement of W , W⊥ := {u ∈
∧2(V ) : B(u,w) = 0, for all w ∈ W}, is

two dimensional. Consider the restricted bilinear form B′ := B|W⊥ . The associated quadratic form

q′(v) := B(v, v) on W⊥ can be identified via duality with q(x, y). By Sylvester’s law of inertia,

there are six possible isomorphism classes for B′ modulo change of basis, and four isomorphism

classes modulo multiplication by ±1. These are classified by the number of roots of q(x, y).

If W1,W2 ⊆
∧2(V ) are four-dimensional subspaces such that B|W⊥1 is isomorphic to B|W⊥2 , then

by Witt’s Theorem (see [21, Thm 1.2]) there exists an orthogonal transformation of
∧2(V ) sending

W1 to W2. Similarly, if B|W⊥1 is isomorphic to −B|W⊥2 then there exists an anti-orthogonal trans-

formation sending W1 to W2. It follows in either case that G \ P (W1) is isomorphic to G \ P (W2).

Finally we must show that the orthogonal transformation of
∧2(V ) used above can be induced by

a linear transformation of V (the anti-orthogonal case is an easy consequence). Denote by O(B)

the group of orthogonal transformations of (
∧2(V ), B). The natural homomorphism SL(V ) →

3Recall that for a skew symmetric 4×4 matrix A, Pf(A) := A1,2A3,4−A1,3A2,4+A1,4A2,3 satisfies Pf(A)2 = det(A).
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O(B) has kernel ±I4, so since both groups are 15 dimensional, it is a surjection onto the identity

component of O(B). It remains to show that for each two-dimensional U ⊆
∧2(V ), there exists

A ∈ O(B) in each path component of O(B) such that A(U) = U .

Choose a basis e1, . . . , e6 ∈
∧2(V ) so that B(ei, ej) = (−1)iδij , where δij is the Kronecker delta.

According to [21, Cor 1.1], representatives for the four path components of O(B) are given by

the transformations that fix e1, e2, e3, e4 and send e5 7→ ±e5 and e6 7→ ±e6. Since every different

isomorphism class of B|U can be realized by a two-dimensional U ⊆ span{e1, . . . , e4}, this completes

the proof. �

Up to a change of basis for V , the pencil of bilinear forms above is isomorphic to one of four

possibilities
0 x y 0

−x 0 0 0

−y 0 0 0

0 0 0 0

 ,


0 x 0 0

−x 0 0 0

0 0 0 y

0 0 −y 0

 ,


0 0 x y

0 0 −y x

−x y 0 0

−y −x 0 0

 ,


0 x y 0

−x 0 0 y

−y 0 0 0

0 −y 0 0

 ,

which have respective Pfaffians (up to sign) q(x, y) = 0, xy, x2 + y2, and y2.

Remark 3.10. If n = 2 then X := G ∩ H1 ∩ H2 is homeomorphic to one of the following four

respective types.

(i) If q = 0, then every linear combination xω1 + yω2 is degenerate. In this case X is the

intersection of trains for kerω1 and kerω2, which intersect non-trivially. It follows that X

is a union of RP 1 × RP 1 with RP 2 along a wedge sum RP 1 ∨ RP 1.

(ii) If q has two distinct real roots, then X is the intersection of trains for a pair of two-

dimensional subspaces P1, P2 ⊆ V which intersect trivially. In this case X = P (P1) ×
P (P2) ∼= RP 1 × RP 1 is a torus.

(iii) If q has one root with multiplicity two, then X can be identified with the intersection of

the Lagrangian Grassmannian and the train of a Lagrangian subspace, for some symplectic

form ω. Therefore, X is isomorphic to the Maslov cycle described by Arnol’d [3, §3]; it is

homeomorphic to the one point compactification of S1 × R.

(iv) If q has no real roots, then there exists a quaternionic structure I, J,K on V in which

the pencil is spanned by symplectic forms ωI and ωJ , and X can be identified with the

intersection of their respective Lagrangian Grassmanians, ΛI∩ΛJ . Equivalently, X ∼= S2 is

identified with the complex projective line P (C2
K) with respect to the third complex structure

K. In this case G \X is not an MA space, because H1 is not a train.

We note that G \X can also be identified with the homogeneous space GL2(C)/GL2(R).

To see this, consider the action of GL2(C) on G determined by a choice of complex basis

v1, v2 ∈ (V,K) ∼= C2. This action has two orbits: the orbit X consisting of complex

one-dimensional subspaces of (V,K), and its complement G \ X consisting of real two-

dimensional subspaces that are not invariant under K. The stabilizer of the real span
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of {v1, v2} is identified with GL2(R), whence G \ X ∼= GL2(C)/GL2(R) by the orbit-

stablizer theorem. This is analogous to the homogeneous space construction of the classical

Lagrangian Grassmannian as U(n)/O(n).

In Section 4 we construct a hyperplane Maslov–Arnold space for the study of n × n systems of

reaction–diffusion equations. When n = 2 it is of the type (iii) described above.

Proposition 3.11. If M is one of the four cases above, then H1(M;Z) ∼= Z and is generated by

the class α defined in (22).

Proof. By Poincaré duality H1(M;Z) ∼= H3(G,X;Z). Consider the long exact sequence of the pair

· · · → H3(G;Z)→ H3(G,X;Z)→ H2(X;Z)→ H2(G;Z)→ · · ·

The homology groups of real Grassmannian have been calculated in [20, Table IV], givingH3(G;Z) =

0 and H2(G;Z) ∼= Z/2. Since X is isomorphic to a two-dimensional cell complex, H2(X;Z) is tor-

sion free. Exactness therefore implies that H3(G,X;Z) is isomorphic to H2(X;Z). In all four cases

above it is straightforward to check H2(X;Z) ∼= Z, so it follows that H1(M;Z) ∼= Z. In Theo-

rem 3.4 we constructed a loop in M whose geometric intersection number with H1 ∩M is one, so

it must generate H3(G,X;Z) ∼= H1(M;Z). �

4. Counting unstable eigenvalues with the hyperplane index

We now explain how our theory of Maslov–Arnold spaces applies to the eigenvalue problem Lv = λv

for the operator L defined in (10), with suitable boundary conditions. In this section we construct

a hyperplane MA space that has desirable monotonicity properties for reaction–diffusion systems

and hence allows us to relate real unstable eigenvalues to conjugate points, leading to the general

result in Theorem 4.1. Specific applications of this theorem will be explored in Section 5.

We consider a coupled system of eigenvalue equations on a bounded interval (0, L), with separated

boundary conditions given by subspaces P0, P1 ∈ Grn(R2n). That is, we seek solutions to the

first-order system

d

dx

(
v

w

)
=

(
0 D−1

λI −∇F (ū) 0

)(
v

w

)
(31)

satisfying the boundary conditions(
v(0)

w(0)

)
∈ P0,

(
v(L)

w(L)

)
∈ P1. (32)

For instance, Dirichlet and Neumann boundary conditions correspond to the subspaces PD =

{(0, p) : p ∈ Rn} and PN = {(q, 0) : q ∈ Rn}, respectively. The Robin boundary condition

Dux = Θu, where Θ is a real n× n matrix, corresponds to PR = {(q,Θq) : q ∈ Rn}. Note that PR

is Lagrangian if and only if Θ is symmetric, and the special case Θ = 0 yields Neumann boundary

conditions.
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For each x ∈ [0, L] and λ ≥ 0 we define the subspace

W (x, λ) =

{(
v(x)

w(x)

)
:

(
v

w

)
satisfies (31) and

(
v(0)

w(0)

)
∈ P0

}
, (33)

so that λ is an eigenvalue of L if and only W (L, λ) ∩ P1 6= {0}.

Using our theory of hyperplane Maslov–Arnold spaces, we obtain a generalized Morse index theorem

that relates unstable eigenvalues of L to conjugate points, where x∗ is said to be a conjugate point

if W (x∗, 0) ∩ P1 6= {0}.

Theorem 4.1. Assume that P1 = PD and P0 is either PD or PR for some Θ ∈Mn(R).

(i) For the path W (x, λ) defined by (33), there exists λ∞ > 0 such that W (x, λ) ∩ P1 = {0}
for all 0 < x ≤ L and λ ≥ λ∞.

(ii) If H1 is the hyperplane corresponding to P1, and H2 6= H1 is a hyperplane such that

W (x, 0) ∈ G \ (H1 ∩H2) and W (L, λ) ∈ G \ (H1 ∩H2) (34)

for all x ∈ (0, L] and all λ ∈ [0, λ∞], then

#
{

nonnegative eigenvalues of L
}
≥ Ind

(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
−m (35)

for 0 < δ � 1, where m denotes the generalized Maslov index of the image (under W ) of

the boundary of [δ, L]× [0, λ∞], oriented counterclockwise.

(iii) There is a hyperplane H2 with the property that if (34) holds, then

Ind
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
(36)

for 0 < δ � 1, hence

#
{

nonnegative eigenvalues of L
}
≥ #

{
conjugate points in (0, L]

}
−m (37)

and

#
{

positive eigenvalues of L
}
≥ #

{
conjugate points in (0, L)

}
−m. (38)

We emphasize, as in Remark 1.4, that the hyperplane index counts eigenvalues and conjugate points

without multiplicity, unlike the classical Maslov index.

The choice of λ∞ and the condition (34) guarantee that the image of the boundary of [δ, L]× [0, λ∞]

remains in the MA space, provided δ > 0 is sufficiently small, and so the index m is defined. The

hypothesis (34) is significantly weaker than the assumption that W maps the entire rectangle

[δ, L] × [0, λ∞] into the MA space. However, if this stronger invariance property holds, then the

boundary of the rectangle is null homotopic and hence has zero index.

Corollary 4.2. If, in addition to the hypotheses of Theorem 4.1, W (x, λ) ∈ G \ (H1 ∩H2) for all

(x, λ) ∈ (0, L]× [0, λ∞], then m = 0, and so

#
{

positive eigenvalues of L
}
≥ #

{
conjugate points in (0, L)

}
. (39)
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x

λ

W (δ, λ) W (L, λ)

W (x, λ∞)

W (x, 0)

× γ

Figure 2. The homotopy argument in Theorem 4.1. If the MA space contains the

image of [δ, L]× [0, λ∞] minus a single interior point, then m equals the index of the

loop γ, which can be shrunk to an arbitrarily small neighbourhood of ×.

The hyperplane Maslov index only detects real eigenvalues, whereas L can have complex eigenvalues,

since it is not assumed to be selfadjoint. However, since the number of unstable eigenvalues (i.e.

those with positive real part) is bounded below by the number of positive eigenvalues, the existence

of an interior conjugate point is a sufficient condition for instability, as long as m ≤ 0. (In Section

5.3 we will see an example with m > 0, where there are interior conjugate points but no unstable

eigenvalues.)

The main restrictions in Theorem 4.1 and Corollary 4.2 are the invariance conditions on W (x, λ). In

the Hamiltonian case, this is guaranteed by the invariance of the Lagrangian Grassmannian under

the associated flow. For the hyperplane MA spaces we do not know a corresponding family of

dynamical systems for which such an invariance result necessarily holds, and in general these seem

difficult to characterize. However, this can be checked on a case-by-case basis, as we demonstrate

for several classes of examples in Section 5.

Of particular interest are cases when the hypotheses of Theorem 4.1 are satisfied but those of

Corollary 4.2 are not, meaning the boundary of the rectangle [δ, L] × [0, λ∞] is mapped into the

MA space, but some points in its interior are not. Since the rectangle is two-dimensional and the

set H1 ∩ H2 ⊆ G has codimension two, their intersection will generically consist of a finite set of

points. If this is the case, the index m can be computed using an arbitrarily small loop around each

of these points, as illustrated in Figure 2. This makes it possible to determine m using purely local

information; this is described in Lemma 4.10, which will be used repeatedly in Section 5.

In Section 5.3 we will see that m gives a topological characterization of the Turing bifurcation: as

the ratio of diffusion coefficients increases through the critical value, the image of [δ, L] × [0, λ∞]

leaves the MA space, after which its boundary has nonzero index.

Most of this section is devoted to the proof of Theorem 4.1. In Section 4.1 we give some preliminary

calculations that will be of use here, and also in the applications in Section 5. In Section 4.2 we

construct the promised hyperplane space, and in Section 4.3 we complete the proof by computing
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the hyperplane indices. Finally, in Section 4.4, we explain how the index m can be computed using

local information about W (x, λ).

4.1. Preliminary calculations. We start by considering the more general system

du

dx
= A(x)u, (40)

where u ∈ R2n and A(·) is a continuous family of real 2n× 2n matrices.

We first recall from (13) that each nonzero n-form ω corresponds to a hyperplane Hω, whose image

under the Plücker embedding intersects the Grassmannian in the set{
span{v1, . . . , vn} ∈ Grn(V ) : ω(v1, . . . , vn) = 0

}
. (41)

For an oriented n-plane W̃ ⊆ R2n we then define

ψω(W̃ ) :=
ω(f1, . . . , fn)

|f1 ∧ · · · ∧ fn|
, (42)

where (f1, . . . , fn) is any positively oriented basis. It follows that ψω(W̃ ) = 0 if and only if the

unoriented subspace W is contained in the set defined in (41). The denominator of (42) can be

computed as
√

detG, where G denotes the Gram matrix, with entries Gij = 〈fi, fj〉. For a positive

orthonormal basis we have Gij = δij and hence ψω(W̃ ) = ω(f1, . . . , fn).

Since ω is skew symmetric, we have ψω(−W̃ ) = −ψω(W̃ ), where −W̃ is the oppositely oriented

version of W̃ . For an unoriented subspace W , ψω(W ) is therefore only defined up to a sign, but

the product and quotient ψ1(W )ψ2(W ) and ψ1(W )/ψ2(W ) are both well defined, where ω1 and ω2

are any two n-forms and we have abbreviated ψi = ψωi .

Lemma 4.3. Let W (x) be an integral curve of (40). If (f1, . . . , fn) is a positive orthonormal basis

for W (x0), then

dψω(W̃ )

dx

∣∣∣∣
x=x0

=

n∑
j=1

ω(f1, . . . , A(x0)fj , . . . , fn)− ψω(W̃ )

n∑
j=1

〈A(x0)fj , fj〉 . (43)

Proof. Write ψω(W̃ ) = n/d where n and d are the numerator and denominator of the expression

(42). Then

dψω(W̃ )

dx

∣∣∣∣
x=x0

=
dn′ − nd′

d2

∣∣∣∣
x=x0

= n′(x0)− ψω(W̃ )d′(x0),

where we have substituted d(x0) = 1 and n(x0) = ψω(W̃ ). Using the fact that W (x) is an integral

curve, one easily calculates

n′(x0) =
n∑
j=1

ω(f1, . . . , A(x0)fj , . . . , fn).

Moreover, since d(x) =
√

detG(x) and G(x0) is the identity matrix, Jacobi’s formula for the

derivative of the determinant yields

d′(x0) =
1

2
tr

(
dG

dx

∣∣∣
x=x0

)
=

n∑
j=1

〈A(x0)fj , fj〉 ,
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which completes the proof. �

4.2. Choosing hyperplanes for a reaction–diffusion system. We now restrict our attention

to the eigenvalue problem (11), letting

A(x, λ) =

(
0 D−1

B(x, λ) 0

)
(44)

in (40), where D = diag(d1, . . . , dn).

For Dirichlet boundary conditions it is natural to let H1 ∩G be the train of the Dirichlet subspace.

We thus choose H1 to be the hyperplane corresponding to the degenerate n-form

ω1 = e∗1 ∧ · · · ∧ e∗n, (45)

where e1, . . . , e2n denotes the standard orthonormal basis for R2n. Since the resulting index equals

the geometric intersection number with H1 ∩ G, it will count solutions to the Dirichlet problem,

which are (by definition) conjugate points. When n = 2, the two-form ω1 corresponds to the matrix

Ω1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 ,

in the sense that ω1(v, w) = vTΩ1w for any v, w ∈ R4.

The choice of H2 is less obvious. Motivated by the calculation to follow in Lemma 4.4, we let

ω2 =

n∑
j=1

1

dj
e∗1 ∧ · · · ∧ ê∗j ∧ e

∗
j+n ∧ · · · ∧ e∗n, (46)

i.e. the jth summand is proportional to ω1 but with e∗j replaced by e∗j+n. When n = 2 this is

ω2 =
1

d1
e∗3 ∧ e∗2 +

1

d2
e∗1 ∧ e∗4,

corresponding to the matrix

Ω2 =


0 0 0 1/d2

0 0 −1/d1 0

0 1/d1 0 0

−1/d2 0 0 0

 . (47)

This choice yields a monotonicity result (Lemma 4.8) that is key to the third part of Theorem 4.1.

Moreover, it will play a prominent role in Section 5, where we prove a long-time invariance result

for reaction–diffusion systems with large diffusivities.

We now apply Lemma 4.3 to the symplectic forms ω1 and ω2. To state the result, we additionally

define

ω3 =

n∑
j,k=1
j<k

2

djdk
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n. (48)
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That is, the j-k summand is obtained from ω1 by replacing e∗j and e∗k by e∗j+n and e∗k+n, respectively.

For n = 2 we have

ω3 =
2

d1d2
e∗3 ∧ e∗4,

which is a degenerate two-form whose corresponding hyperplane is the train of the Neumann sub-

space.

Lemma 4.4. Let W (x, λ) be an integral curve of du
dx = A(x, λ)u, with A(x, λ) given by (44), and

define ω1, ω2 and ω3 by (45), (46) and (48), respectively. Then

dψ1

dx
= ψ2 − γψ1 (49)

and
dψ2

dx
=

(
b11

d1
+ · · ·+ bnn

dn

)
ψ1 + ψ3 − γψ2, (50)

where γ =
∑n

j=1 〈Afj , fj〉 and bij is the i-j component of the matrix B. Moreover, if W (x0, λ) = PD

is the Dirichlet subspace, then

ψ1(x0) = ψ′1(x0) = · · · = ψ
(n−1)
1 (x0) = 0 (51)

and

ψ
(n)
1 (x0) =

n!

d1 · · · dn
6= 0. (52)

Proof. From Lemma 4.3 we have

dψi
dx

=
n∑
j=1

ωi(f1, . . . , Afj , . . . , fn)− γψi

for i = 1, 2. For ω1 we observe that

ω1(f1, . . . , Afj , . . . , fn) =
(
e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗n

)
(f1, . . . , fn).

The composition e∗jA : V → R is given by e∗jA =
∑2n

k=1Ajke
∗
k, hence

e∗jA =
1

dj
e∗j+n, e∗j+nA =

n∑
k=1

bjke
∗
k,

for any 1 ≤ j ≤ n. It follows that

e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗n =
1

dj
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗n,

which is precisely the jth summand in the definition of ω2. This implies

n∑
j=1

ω1(f1, . . . , Afj , . . . , fn) = ω2(f1, . . . , fn), (53)

and completes the proof of (49).

For (50) we need to compute

n∑
j=1

ω2(f1, . . . , Afj , . . . , fn) =
n∑

j,k=1

ωk2 (f1, . . . , Afj , . . . , fn),
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where ωk2 := d−1
k e∗1 ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n denotes the kth summand in the definition of ω2. For

summands with j = k we have

1

dj
e∗1 ∧ · · · ∧ e∗j+nA ∧ · · · ∧ e∗n =

1

dj
e∗1 ∧ · · · ∧

(
n∑
l=1

bjle
∗
l

)
∧ · · · ∧ e∗n

=
bjj
dj
ω1.

For summands with j 6= k we have

1

dk
e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n =

1

dk
e∗1 ∧ · · · ∧

(
1

dj
e∗j+n

)
∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n,

which is precisely the j,k term in the definition of ω3, so the proof of (50) is complete.

To prove the final statement, we recall that PD = span{en+1, . . . , e2n}, so an n-form ω = e∗j1∧· · ·∧e
∗
jn

will vanish on PD unless {j1, . . . , jn} = {n + 1, . . . , 2n}. In general, suppose m of the indices

j1, . . . , jn are contained in {n + 1, . . . , 2n}, with the remaining n −m in {1, . . . , n}. Then, as in

the calculations above, the derivative of ψω will have terms with m − 1, m and m + 1 indices in

{n + 1, . . . , 2n}. To find the first nonvanishing derivative of ψω on PD, we therefore only need to

keep track of the m+ 1 term. We thus compute

dψ1

dx
= ψ2 + · · · ,

dψ2

dx
= ψ3 + · · · ,

dψ3

dx
= ψ4 + · · · , ω4 :=

n∑
j,k,l=1
j<k<l

3!

djdk
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗l+n ∧ · · · ∧ e∗n

...

dψn
dx

= ψn+1 + · · · , ωn+1 :=
n!

d1 · · · dn
e∗n+1 ∧ · · · ∧ e∗2n,

and the result follows. �

Remark 4.5. The form ω2 was chosen to make the equality (53) hold. For a general matrix A(x, λ)

there is no guarantee that this can be done with a constant form ω2. The fact that it is possible

here is a consequence of the block structure of A in (44), and the fact that ω1 only depends on the

first n coordinates.

4.3. Positive eigenvalues and conjugate points. We are now ready to begin the proof of

Theorem 4.1. We start with the existence of λ∞.

Lemma 4.6. Assuming the hypotheses of Theorem 4.1, there exists λ∞ > 0 such that W (x, λ)∩P1 =

{0} for all 0 < x ≤ L and λ ≥ λ∞. Moreover, every eigenvalue λ ∈ σ(L) has Reλ ≤ λ∞.

Note that the property W (x, λ) ∩ P1 = {0} is only guaranteed for 0 < x ≤ L. It is possible for

W (0, λ) to intersect P1 nontrivially, for instance if P0 = P1.
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Proof. Suppose there is a (possibly complex-valued) solution v to

Dvxx +∇F (ū)v = λv

on [0, x∗], satisfying the boundary conditions(
v

Dvx

)∣∣∣∣∣
x=0

∈ P0,

(
v

Dvx

)∣∣∣∣∣
x=x∗

∈ P1.

Since P1 = PD, this means v(x∗) = 0. Similarly, at x = 0 we have either v(0) = 0 or Dvx(0) =

Θv(0), depending on the choice of P0.

Multiplying the eigenvalue equation by the conjugate of v and integrating by parts, using v(x∗) = 0,

we find that

λ

∫ x∗

0
|v|2 dx = −〈Dvx(0), v(0)〉+

∫ x∗

0

(
〈∇F (ū)v, v〉 − 〈Dvx, vx〉

)
dx, (54)

where 〈·, ·〉 denotes the Cn inner product. Defining constants

d = min{d1, . . . , dn}, K = sup
x∈[0,L]

∥∥∇F (ū(x))
∥∥,

we obtain

Re

∫ x∗

0

(
〈∇F (ū)v, v〉 − 〈Dvx, vx〉

)
dx ≤ K

∫ x∗

0
|v|2 dx− d

∫ x∗

0
|vx|2 dx. (55)

To deal with the boundary term in (54), we treat the Dirichlet and Robin cases separately. If

P0 = PD, then the boundary term vanishes, so we get

Reλ ≤ K

and it suffices to choose any λ∞ > K. On the other hand, if P0 = PR, the boundary term

satisfies |〈Dvx(0), v(0)〉| = |〈Θv(0), v(0)〉| ≤ C|v(0)|2 for some positive constant C. Moreover, since

v(x∗) = 0, we have

|v(0)|2 =

∣∣∣∣∫ x∗

0

d

dx
|v(x)|2dx

∣∣∣∣
≤ 2

∫ x∗

0
|v||vx| dx

≤ ε−1

∫ x∗

0
|v|2 dx+ ε

∫ x∗

0
|vx|2 dx

for any ε > 0. Choosing ε = d/C, and combining the above inequality with (54) and (55), we

obtain

Reλ ≤ K +
C2

d
,

which completes the proof. �

This proves the first assertion in Theorem 4.1. Moving onto the second part, we consider the

Maslov–Arnold space M = G \ (H1 ∩ H2), with H1 as in Section 4.2 and any H2 6= H1, and

consider the path W (x, λ) in Grn(R2n) defined by (33).

We first show that the image of the boundary of [δ, L] × [0, λ∞] is contained in M, and hence its

hyperplane index m is well defined.
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Referring to Figure 2, the hypothesis (34) guarantees that the bottom and right side of the rectangle

are mapped into M for any δ > 0. Lemma 4.6 guarantees that the top of the rectangle is mapped

into M, and in fact

Ind
(
W (x, λ∞)

∣∣
x∈[δ,L]

;P1

)
= 0, (56)

for any δ > 0, by Proposition 3.8(ii). The following lemma guarantees that the left side of the

rectangle is also mapped into M, with

Ind
(
W (δ, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= 0, (57)

provided δ is sufficiently small.

Lemma 4.7. There exists δ0 > 0 such that W (x, λ) ∩ P1 = {0} for all λ ∈ [0, λ∞] and x ∈ (0, δ0].

Proof. Recalling that W (0, λ) = P0, there are two cases to consider. If P0 = PR, then W (0, λ)∩P1 =

PR ∩ PD = {0} for all λ. Since W (x, λ) in continuous in x and λ, and [0, λ∞] is compact, there

exists δ > 0 such that W (x, λ) ∩ P1 = {0} for all λ ∈ [0, λ∞] and x ∈ [0, δ). (Note that x = 0 is

allowed in this case.)

The other case is when P0 = PD, so W (0, λ) ∩ P1 = PD 6= {0}. Defining η(x, λ) = ψ1(x, λ)2, we

have

η(0, λ) = · · · = η(2n−1)(0, λ) = 0 and η(2n)(0, λ) > 0

from Lemma 4.4. Therefore, for fixed λ we have η(x, λ) > 0 for sufficiently small x > 0, and so

by compactness there exists δ > 0 such that η(x, λ) > 0 for all λ ∈ [0, λ∞] and x ∈ (0, δ). This

completes the proof, since η(x, λ) > 0 implies ψ1(x, λ) 6= 0 and hence W (x, λ) ∩ P1 = {0}. �

It follows that the hyperplane index m of the boundary is well defined, and is given by

m = Ind
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
+ Ind

(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
(58)

as a result of (56), (57) and Proposition 3.8(iii). To complete the proof of Theorem 4.1(ii) we use

(28) to obtain

− Ind
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
≤ #

{
λ ∈ [0, λ∞] : W (1, λ) ∩ P1 6= {0}

}
= #

{
eigenvalues of L in [0, λ∞]

}
= #

{
nonnegative eigenvalues of L

}
,

where the last equality follows from Lemma 4.6.

The following lemma verifies (37), and hence completes the proof of Theorem 4.1. Note that up to

this point H2 has been an arbitrary hyperplane different from H1, and did not appear explicitly in

any of the preceding calculations.

Lemma 4.8. If H2 corresponds to the form ω2 defined in (46), then

Ind
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
for 0 < δ � 1.
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The hyperplane index on the left-hand side is a signed count of the x∗ ∈ [δ, L] for which W (x∗, 0)∩
P1 6= {0}. These are conjugate points (by definition) so to prove the lemma we just need to show

that they all contribute to the Maslov index with the same sign. This is where the choice of H2

becomes crucial.

Proof. For simplicity we abbreviate ψi(x) = ψi(W (x, 0)). If x∗ ∈ [δ, L] is a conjugate point, then

ψ1(x∗) = 0, so (49) implies ψ′1(x0) = ψ2(x0). Substituting this in (29), we obtain

θ′(x∗) =
d

dx

ψ1(v1, . . . , vn)

ψ2(v1, . . . , vn)

∣∣∣∣
x=x∗

= 1 > 0.

Using (26), we conclude that the Maslov index equals the number of conjugate points in (δ, L], and

hence the number of conjugate points in (0, L] if δ is sufficiently small. �

4.4. Computing the index m. We now explain how to compute the index m using information

about W (x, λ) near a point (x∗, λ∗) where it leaves the MA space. We first describe what happens

when W leaves the MA space.

Lemma 4.9. Suppose (x∗, λ∗) is contained in a neighbourhood U ⊂ R2 such that {(x, λ) ∈ U :

ψ1(x, λ) = 0} can be written as the graph of continuously differentiable functions λ1(x), . . . , λn(x)

with λi(x∗) = λ∗ for all i. Then W (x∗, λ∗) ∈ H1 ∩H2 if and only if either

∂ψ1

∂λ
(x∗, λ∗) = 0 (59)

or λ′i(x∗) = 0 for all i.

For instance, if two eigenvalue curves λi(x) and λj(x) intersect transversely at (x∗, λ∗), then (59)

must hold, otherwise the implicit function would be violated. Some examples are shown in Figure 3.

Proof. Recall that W (x∗, λ∗) ∈ H1 ∩H2 if and only if ψ1(x∗, λ∗) = ψ2(x∗, λ∗) = 0. For each i we

have ψ1(x, λi(x)) = 0 when x is close to x∗, and hence

0 =
∂ψ1

∂x
(x, λi(x)) +

∂ψ1

∂λ
(x, λi(x))λ′i(x).

Moreover, (49) implies ∂ψ1/∂x = ψ2 at any point where ψ1 = 0, so we conclude that W (x∗, λ∗) ∈
H1 ∩H2 if and only if

∂ψ1

∂λ
(x∗, λi(x∗))λ

′
i(x) = 0 (60)

for each i, and the claim follows. �

We now give a simple rule for computing the index locally, assuming the zero set of ψ1 can be

parameterized as in Lemma 4.9.

Lemma 4.10. Suppose W (x∗, λ∗) ∈ H1 ∩H2, and assume there is a neighbourhood U of (x∗, λ∗)

such that {(x, λ) ∈ U : ψ1(x, λ) = 0} is given by the graphs of continuous functions λ1(x), . . . , λn(x),

only intersecting at the point (x∗, λ∗), of which i− are strictly increasing for x < x∗ and i+ are

strictly increasing for x > x∗, with the rest strictly decreasing. If H2 is chosen as in Theorem

4.1(iii), then

Ind(W ◦ γ∗;P1) = 2(i− − i+), (61)
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x

λ

i− = i+ = 1

Ind = 0

×

x

λ

i− = i+ = 2

Ind = 0

×

x

λ

i− = 1, i+ = 0

Ind = 2

×

Figure 3. Some possible configurations in Lemma 4.10 and the corresponding in-

dices. The curves λ1(x), . . . , λn(x) are denoted by solid lines, and the loop γ∗ is

the dashed box. The index of the loop W ◦ γ∗, given by (61), equals the number of

crossings on the bottom of the box minus the number of crossings on the top.

where γ∗ is a sufficiently small loop around (x∗, λ∗) in the (x, λ)-plane, oriented counterclockwise.

Figure 3 illustrates some possibles cases of the theorem, and also shows the idea of the proof.

Proof. By homotopy invariance we can assume that γ∗ is a small rectangle centered at (x∗, λ∗).

Moreover, since every curve λi(x) is either strictly increasing or strictly decreasing to the left and

right of x∗, we can assume that they only intersect the top and bottom of the rectangle, and not

its sides, by making it sufficiently thin in the λ direction.

Since these curves only intersect at (x∗, λ∗), it follows that there are i−+(n− i+) distinct crossings

on the bottom of the rectangle, and (n− i−) + i+ on the top. Using Lemma 4.8, we conclude that

Ind(W ◦ γ∗;P1) =
(
i− + (n− i+)

)
−
(
(n− i−) + i+

)
= 2(i− − i+),

as claimed. �

5. Applications to reaction–diffusion systems

We now apply our results to various systems of reaction–diffusion equations. In each case, the

main difficulty is verifying the invariance conditions of either Theorem 4.1 or Corollary 4.2. In

Section 5.1 we do this under the assumption that one of the diffusion coefficients is large, relative

to the size of the domain. In Section 5.2 we specialize to the case of homogeneous equilibria, in

which case the linearization has constant coefficients and the invariance conditions can be verified

by explicit computation. Finally, in Section 5.3 we use our constant-coefficient results to analyze

the Turing instability mechanism.

5.1. Systems with large diffusion. Consider the eigenvalue problem with mixed boundary con-

ditions

D
d2u

dx2
+ V u = λu, u′(0) = u(L) = 0, (62)
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recalling that D = diag(d1, . . . , dn). The corresponding boundary subspaces are

P0 = {(q, 0) : q ∈ Rn}, P1 = {(0, p) : p ∈ Rn},

and so x∗ is a conjugate point if and only if there exists a nontrivial solution to the boundary value

problem

D
d2u

dx2
+ V u = 0, u′(0) = u(x∗) = 0.

Our result is that Corollary 4.2 applies to the above system as long as none of the dj are too small,

and all of the products djdk with j 6= k are sufficiently large.

Theorem 5.1. Fix L and d∗ > 0, and suppose V ∈ C[0, L]. There exists a constant ∆ > 0 such

that if dj ≥ d∗ for all j and djdk ≥ ∆ for j 6= k, then the hypotheses of Corollary 4.2 are satisfied,

and hence

#
{

positive real eigenvalues of (62)
}
≥ #

{
conjugate points in (0, L)

}
. (63)

The constant ∆ depends on L, d∗ and V , and can be estimated from the proof if desired. In

particular, we see that it suffices to choose ∆ = (2/C)eCL, where C is a constant depending only

on d∗ and V .

Proof. From Lemma 4.6 we see that λ∞ can be any number satisfying

λ∞ > sup
x∈[0,L]

∥∥V (x)
∥∥.

In particular, it can be chosen independent of D.

We now use Lemma 4.4, with B(x, λ) = λI − V (x). Define

ρ =
1

2

(
ψ2

1 + ψ2
2), (64)

so that ρ(0, λ) = 1/2. It follows that

dρ

dx
= −2γρ+

(
1 +

b11

d1
+ · · ·+ bnn

dn

)
ψ1ψ2 + ψ2ψ3.

From the definition of γ (in Lemma 4.4) we obtain

|γ(x, λ)| ≤ n‖A(x, λ)‖ ≤ n
(
‖B(x, λ)‖+ ‖D−1‖

)
≤ n

(
max ‖B(x, λ)‖+

1

d∗

)
=: C1

where the maximum is taken over (x, λ) ∈ [0, L]× [0, λ∞]. We similarly have∣∣∣∣(1 +
b11

d1
+ · · ·+ bnn

dn

)
ψ1ψ2

∣∣∣∣ ≤ (1 +
max |b11(x, λ)|

d∗
+ · · ·+ max |bnn(x, λ)|

d∗

)
︸ ︷︷ ︸

C2

ρ.

Moreover, using

|ψ3| ≤
n∑

j,k=1
j<k

2

djdk
≤ n(n− 1)

∆
,



28 T. BAIRD, P. CORNWELL, G. COX, C. JONES, AND R. MARANGELL

we obtain

|ψ2ψ3| ≤ |ψ2|
n(n− 1)

∆
≤ 1

2

(
n(n− 1)

d∗

)2

︸ ︷︷ ︸
C3

ρ+
1

∆
,

and hence dρ
dx ≥ −Cρ−∆−1, where C = 2C1 +C2 +C3 depends only on d∗ and V . This is equivalent

to
d

dx

(
eCxρ(x)

)
≥ −e

Cx

∆
so we have

eCxρ(x)− 1

2
≥ − 1

∆

∫ x

0
eCtdt =

1− eCx

C∆
.

Therefore, we will have ρ(x, λ) > 0 for λ ∈ [0, λ∞] provided

eCx < 1 +
C∆

2
.

This equality will hold for all (x, λ) ∈ [0, L] × [0, λ∞] if it holds when x = L. Therefore, we need

eCL < 1 + C∆
2 . This is satisfied for a sufficiently large choice of ∆, depending only on L and C (i.e.

on L, d∗ and V ). �

5.2. Stability of homogeneous equilibria. If the steady state ū is homogeneous (constant in

x) and D = I, then the linearized operator (10) has the form

L =
d2

dx2
+ V

where V = ∇F (ū) ∈ Mn(R) is a constant real matrix. The case of unequal diffusivities, D 6= I,

can be treated by similar methods but the calculations are more involved; see Section 5.3 for an

example.

Consider the Dirichlet problem on (0, L),

Lv = λv, v(0) = v(L) = 0 ∈ R2, (65)

with constant potential V ∈M2(R). It follows from a direct computation that

#
{

positive eigenvalues of L
}

= #
{

conjugate points in (0, L)
}
. (66)

Here we reconsider this problem using the machinery developed in the previous section, to see if

the same conclusion can be obtained using our hyperplane index. We first require a definition.

Definition 5.2. We say that V ∈M2(R) is non-generic for (0, L) if either of the following condi-

tions hold:

(i) its eigenvalues ν1 and ν2 are positive and satisfy

ν1

ν2
=
(m
n

)2
(67)

for some integers m and n with

1 ≤ m ≤
√
ν1L

π
, 1 ≤ n ≤

√
ν2L

π
; (68)
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(ii) ν1 and ν2 satisfy

ν1 − ν2 = (m2 − n2)(π/L)2 (69)

for some integers m and n.

Otherwise V is said to be generic for (0, L).

For each L the set of generic matrices is clearly open and dense in M2(R). For a problem on an

unbounded domain it is natural to approximate by a sequence of of bounded domains, for instance

(0,∞) by (0, N) for N → ∞. While we do not consider such problems here, we note in passing

that the set {
V ∈M2(R) : V is generic for (0, N) for every N ∈ N

}
(70)

is a countable intersection of open, dense sets, and hence is residual. Finally, we note that for any

value of L, (69) forbids the possibility that ν1 = ν2.

Our result is the following.

Theorem 5.3. If V is generic for (0, L), in the sense of Definition 5.2, then Theorem 4.1 applies,

and we have

#
{

nonnegative eigenvalues of L
}

= − Ind
(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
= − Ind

(
W (·, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
and

#
{

positive eigenvalues of L
}

= #
{

conjugate points in (0, L)
}
.

The proof consists of three steps. First, we show that W (x, λ) satisfies the invariance condition

(34) in Theorem 4.1, and hence

#
{

nonnegative eigenvalues of L
}
≥ − Ind

(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
= Ind

(
W (·, 0)

∣∣
x∈[δ,L]

;P1

)
−m

= #
{

conjugate points in (0, L]
}
−m.

Next, we show that the path W (L, λ) is monotone in λ, which implies

#
{

nonnegative eigenvalues of L
}

= − Ind
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
.

Finally, we use Lemma 4.10 to show that m = 0, which completes the proof.

We write the eigenvalue problem in the general form

d

dx

(
v

w

)
=

(
0 I

B(λ) 0

)(
v

w

)
, (71)

where B(λ) ∈M2(R) does not depend on x. Later we will set B(λ) = λI − V . As above, we define

a family of two-dimensional subspaces

W (x, λ) =

{(
v(x)

w(x)

)
:

(
v

w

)
satisfies (71) and v(0) = 0

}
⊆ R4 (72)
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for x ≥ 0.

The system (71) is of the form considered in Section 4, with d1 = d2 = 1, so we choose ω1 and ω2

corresponding to the matrices

Ω1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , Ω2 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (73)

Let H1 and H2 denote the corresponding hyperplanes, and M = G \ (H1 ∩ H2) the resulting

Maslov–Arnold space.

Proposition 5.4. Let W (x, λ) be defined by (72). For x 6= 0 we have W (x, λ) ∈ H1 ∩H2 if and

only if the eigenvalues β1, β2 of B(λ) are real and negative and satisfy

sin
√
−β1x = sin

√
−β2x = 0.

Proof. We first compute a frame for W (x, λ). A frame for a two-dimensional subspace W is (by

definition) a 4× 2 matrix whose columns span W . Writing this as

(
X

Y

)
=


x11 x12

x21 x22

y11 y12

y21 y22

 ,

and denoting the columns by u1 and u2, we compute

ω1(u1, u2) = x11x22 − x12x21

= detX

and

ω2(u1, u2) = x11y22 − x21y12 + y11x22 − y21x12

= det(X + Y )− detX − detY.

It follows that

W ∈ H1 ⇐⇒ detX = 0

and

W ∈ H2 ⇐⇒ det(X + Y ) = detX + detY.

Note that W (x, λ) is spanned by the last two columns of the fundamental solution matrix eAx,

where A =
(

0 I
B 0

)
. We thus compute

eAx =

∞∑
m=0

1

(2m)!

(
Bmx2m 0

0 Bmx2m

)
+

∞∑
m=0

1

(2m+ 1)!

(
0 Bmx2m+1

Bm+1x2m+1 0

)
to conclude that a frame for W (x, λ) is given by(

X

Y

)
=
∞∑
m=0

(
Bmx2m+1

(2m+1)!
Bmx2m

(2m)!

)
=

(
B−1/2 sinh(

√
Bx)

cosh(
√
Bx)

)
. (74)



GENERALIZED MASLOV INDICES FOR NON-HAMILTONIAN SYSTEMS 31

The functions on the right-hand side are defined by their power series, which converge for all

numbers x and matrices B.

Letting β1 and β2 denote the eigenvalues of B(λ), it follows that W (x, λ) ∈ H1 ∩H2 if and only if

detX =
sinh(

√
β1x)√
β1

sinh(
√
β2x)√
β2

= 0 (75)

and

det(X + Y )− detX − detY =
sinh(

√
β1x)√
β1

cosh(
√
β2x) +

sinh(
√
β2x)√
β2

cosh(
√
β1x) = 0. (76)

As in (74), the functions β−1/2 sinh(
√
βx) and cosh(

√
βx) are defined by power series which converge

for all values of x and β. In particular, when β = 0 we obtain β−1/2 sinh(
√
βx) = x, and when

x = 0 we obtain β−1/2 sinh(
√
βx) = 0 for any value of β.

Now suppose that W (x, λ) ∈ H1∩H2, so both (75) and (76) are satisfied. If β
−1/2
1 sinh(

√
β1x) = 0,

then β1 6= 0, hence sinh(
√
β1x) = 0 and so cosh(

√
β1x) 6= 0. Then (76) implies β

−1/2
2 sinh(

√
β2x) =

0, hence β2 6= 0 and sinh(
√
β2x) = 0. Therefore, W (x, λ) ∈ H1 ∩H2 if and only if sinh(

√
β1x) =

sinh(
√
β2x) = 0, which is possible if and only if β1 and β2 are both real and negative and satisfy

sin(
√
−β1x) = sin(

√
−β2x) = 0. �

Remark 5.5. The above calculations show that x∗ is a conjugate point if and only if at least one

of the eigenvalues of X(x∗, 0) is zero, whereas W (x∗, 0) ∈ H1 ∩H2 if and only if both eigenvalues

are zero, so there are three possibilities:

(i) The eigenvalues of X do not vanish for any x∗ ∈ (0, L], so the index is zero.

(ii) For some x∗ ∈ (0, L] both eigenvalues of X vanish, so the index is not defined.

(iii) For some x∗ ∈ (0, L] exactly one eigenvalue of X vanishes, so the index is nonzero.

All three cases will arise in Section 5.3, when we use our index theory to characterize the Turing

instability.

Proposition 5.4 implies the following.

Corollary 5.6. If B(λ) = λI − V and V is generic, then

W (x, 0) ∈ G \ (H1 ∩H2) and W (L, λ) ∈ G \ (H1 ∩H2) (77)

for all x ∈ (0, L] and all λ ∈ R.

Proof. The eigenvalues of B(λ) are given by βi(λ) = λ − νi. If W (x, 0) ∈ H1 ∩ H2 for some

0 < x ≤ L, then ν1 and ν2 are both positive and satisfy sin
√
ν1x = sin

√
ν2x = 0. This implies

ν1 = (mπ/x)2 and ν2 = (nπ/x)2, where

1 ≤ m =

√
ν1x

π
≤
√
ν1L

π

and likewise for n, which is not possible if V is generic. Similarly, if W (L, λ) ∈ H1 ∩H2 for some

λ, we have ν1 = λ + (mπ/L)2 and ν2 = λ + (nπ/L)2, hence ν1 − ν2 = (m2 − n2)(π/L)2, which is

not possible if V is generic. �



32 T. BAIRD, P. CORNWELL, G. COX, C. JONES, AND R. MARANGELL

m

b
√
ν1L
π c

n

b
√
ν2L
π c

Figure 4. Illustrating the result of Corollary 5.6: (67) is satisfied if and only if the

line through (0, 0) and (
√
ν1,
√
ν2) intersects a lattice point (m,n) with m and n as

in (68).

This first part of the corollary can be visualized as in Figure 4. The condition (67) is satisfied if

and only if the line through (0, 0) and (
√
ν1,
√
ν2) intersects one of the indicated lattice points.

Given the invariance result of Corollary 5.6, we can now apply Theorem 4.1 to obtain

#
{

nonnegative eigenvalues of L
}
≥ − Ind

(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
= #

{
conjugate points in (0, L]

}
−m.

We next show that the above inequality is in fact an equality.

Lemma 5.7. Assuming the hypotheses of Theorem 5.3, we have

#
{

nonnegative eigenvalues of L
}

= − Ind
(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
for sufficiently large λ∞.

Proof. It is enough to show that the curve λ 7→W (L, λ) is negative. Using (27), this will imply

Ind
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= −#

{
λ ∈ [0, λ∞) : W (L, λ) ∩ P1 6= {0}

}
= −#

{
eigenvalues of L in [0, λ∞)

}
= −#

{
nonnegative eigenvalues of L

}
and hence complete the proof.

We prove monotonicity using (29). For convenience we abbreviate ψi(λ) = ψi(W (L, λ)). From the

computations in Proposition 5.4 we have

ψ1(λ)

ψ2(λ)
=

detX

det(X + Y )− detX − detY

and so
ψ′1(λ∗)

ψ2(λ∗)
=

d
dλ detX

det(X + Y )− detY
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x

λ

× γ1

× γ2

× γ3

Figure 5. Illustrating the proof of Lemma 5.8: if W (x, λ) leaves the MA space at

three points, then m is sum of the indices of the loops γ1, γ2 and γ3.

at any point λ∗ where detX = 0.

To differentiate detX, as given by (75), we first observe that

d

dλ

sinh(
√
λ− νx)√
λ− ν

=
1

2(λ− ν)

(
x cosh(

√
λ− νx)− sinh(

√
λ− νx)√
λ− ν

)
.

If sinh(
√
λ∗ − ν1L) = 0, then

d

dλ
detX

∣∣∣
λ=λ∗

=
L

2(λ∗ − ν1)
cosh(

√
λ∗ − ν1L)

sinh(
√
λ∗ − ν2L)√
λ∗ − ν2

.

Similarly, using (76) we obtain(
det(X + Y )− detY

)∣∣∣
λ=λ∗

=
sinh(

√
λ∗ − ν2L)√
λ∗ − ν2

cosh(
√
λ∗ − ν1L)

and hence
ψ′1(λ∗)

ψ2(λ∗)
=

L

2(λ∗ − ν1)
< 0

where λ∗ − ν1 < 0 because sinh(
√
λ− ν1L) = 0. The case sinh(

√
λ∗ − ν2L) = 0 is identical. �

Finally, we prove that m = 0.

Lemma 5.8. Assuming the hypotheses of Theorem 5.3, we have m = 0.

Proof. From (75) we see that the set {(x, λ) : ψ1(x, λ) = 0} is the union of the curves

λn,i(x) = νi −
(nπ
x

)2
(78)

for all n ∈ N and i = 1, 2. Moreover, Proposition 5.4 show that W (x∗, λ∗) = 0 if and only if

λm,1(x∗) = λn,2(x∗) = λ∗ for some m and n. This occurs when

x∗ = π

√
m2 − n2

ν1 − ν2
,
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where we recall that ν1 6= ν2 because V is generic. The set of all such x∗ is discrete, and so it

suffices to consider a single point (x∗, λ∗) ∈ (δ, L) × (0, λ∞) at which W leaves the MA space; see

Figure 5.

For a suitable neighbourhood U of (x∗, λ∗), it follows from (78) that the set {(x, λ) : ψ1(x, λ) =

0} ∩ U is the union of two strictly increasing curves, λm,1(x) and λn,2(x), as shown in the middle

of Figure 3. In this case we have i− = i+ = 2, and hence Ind(W ◦ γ∗;P1) = 0 by Lemma 4.10. �

5.3. The Turing instability. In the previous section, where D = I, we saw that m = 0 even if

the image of [δ, L]× [0, λ∞] left the MA space at a finite set of points. In this section we show that

m can be nonzero when the diffusion coefficients d1 and d2 are not equal. The setting is a two-

component reaction–diffusion system (9) with a so-called Turing instability. This phenomenon —

first discovered by A.M. Turing [25] — refers to a stable, homogeneous equilibrium of a chemical

reaction that is counter-intuitively destabilized in the presence of diffusion.

A necessary and sufficient condition for this destabilization to occur is that the ratio d2/d1 be

sufficiently far from 1. The main result of this section is that the index m is nonzero if and only if

this condition is satisfied. The non-vanishing of the hyperplane index therefore gives a topological

criterion for the Turing bifurcation. We give a precise statement below, in Theorem 5.9, after

describing the general framework.

Assume that there exists ū ∈ R2 such that F (ū) = 0, and the eigenvalues ν1, ν2 of ∇F (ū) have

negative real part. In other words, ū is a stable equilibrium of the dynamical system

ut = F (u). (79)

Setting

∇F (ū) := A =

(
a11 a12

a21 a22

)
, (80)

we thus have

detA > 0, trA < 0. (81)

By rescaling the independent variable, we may assume that the matrix D takes the form D = (1, d),

where d = d2/d1. We further assume that ū undergoes a Turing bifurcation, which is to say that d

is chosen so that (10) has positive spectrum, hence ū is unstable. It is well known (see, for instance,

[22, §2.3]) that a Turing instability exists in this setting if and only if

a22 + da11 > 2
√
ddetA. (82)

It is worth noting that a necessary condition for a Turing instability is that a12a21 < 0, so in

particular F (u) cannot be a gradient. Moreover, (81) and (82) together imply that d 6= 1, so

Theorem 5.3 does not apply.

The condition (82) is derived for the stability problem on R, whereas our results are only formulated

for finite intervals. Nonetheless, the problem on R can shed light on what is happening on large

enough intervals [24]. With this in mind, the statement of our theorem is natural: the hyperplane

index detects the Turing instability as long as we take L sufficiently large.
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Theorem 5.9. Assume that A satisfies (81). For d > 0, the condition (82) holds if and only if

there exists a number L0 > 0 for which the index of [δ, L0]× [0, λ∞] is nonzero.

We have thus given a topological condition that is both necessary and sufficient for the Turing

instability to occur: the condition (82) is satisfied if and only if the hyperplane index is non-zero

for some L.

In fact, if (82) is satisfied, then the index of [δ, L]× [0, λ∞] will be nonzero for almost all L ≥ L0.

Precisely formulating this requires some care, however, since larger values of L make it more likely

that the path W (x, 0) will leave the MA space for some 0 < x∗ ≤ L. We can prevent this by

excluding a small set of d values.

Corollary 5.10. Assume that A satisfies (81). There is a countable set ∆∗ ⊆ (0,∞) with the

following property:

(i) If a22 +da11 < 2
√
ddetA, then the index of [δ, L]× [0, λ∞] is equal to zero for every L > 0.

(ii) If a22 + da11 > 2
√
ddetA and d /∈ ∆∗, then the index of [δ, L] × [0, λ∞] is defined and

nonzero for all L in an open, dense subset of [L0,∞).

We will see below that the index is not defined at the critical value d∗ where (82) is an equality.

This is to be expected, since m is a homotopy invariant but its value changes as d passes through

d∗. In other words, the images of the boundary of [δ, L] × [0, λ∞] for d < d∗ and d > d∗ are not

homotopic inM, though they are homotopic in the Grassmannian. We therefore have a topological

characterization of the Turing bifurcation: it occurs at the value of d for which the boundary of

[δ, L]× [0, λ∞] first leaves the MA space.

To prove the above results we will use Theorem 4.1 as well as the calculations in Section 5.2 for

systems with constant coefficients. We therefore write the eigenvalue equation in the form (71), i.e.

d

dx

(
v

w

)
=

(
0 I

D−1(λI −A) 0

)(
v

w

)
, (83)

so that B(λ) = D−1(λI − A). To use Proposition 5.4 we need to understand how the eigenvalues

of B(λ) depends on λ and d. When we want to make this dependence explicit we will denote these

by βi(λ; d). Recalling from (75) that the determinant of X (or equivalently the function ψ1) can

only vanish when either β1 or β2 is a negative real number, we prove the following result.

Proposition 5.11. Assume that A satisfies (81). The eigenvalues β1(λ; d) and β2(λ; d) of B(λ) =

D−1(λI −A) have the following properties:

(i) If a22 +da11 < 2
√
d detA, then β1(λ; d) and β2(λ; d) are either non-real complex conjugates

or positive real numbers for every λ ≥ 0;

(ii) If a22 + da11 = 2
√
ddetA, then β1(0; d) = β2(0; d) is a negative real number, and β1(λ; d)

and β2(λ; d) are either non-real complex conjugates or positive real numbers for every λ > 0;

(iii) If a22 +da11 > 2
√
ddetA, then there exists a number λc > 0 such that β1(λ; d) and β2(λ; d)

are distinct negative real numbers for 0 ≤ λ < λc, are equal and negative for λ = λc, and

are non-real complex conjugates or positive real numbers for λ > λc.
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λ = 0 λ = λc λ� 1

Figure 6. Case (iii) of Proposition 5.11: the eigenvalues of B(λ) are negative and

distinct when λ < λc. At λ = λc they collide and leave the real axis as a complex

conjugate pair, crossing the imaginary axis into the right-half plane, later rejoining

on positive real axis.

For (iii) we can assume that β1(λ; d) < β2(λ; d) for all 0 ≤ λ < λc, in which case

β′1(λ; d) > 0 > β′2(λ; d). (84)

We will see below that these correspond to the three cases in Remark 5.5. Case (iii) is the most

interesting: the eigenvalues β1 and β2 increases and decrease, respectively, until they collide at

λ = λc and move off of the real axis in a complex conjugate pair, as shown in Figure 6. They later

rejoin on the real axis, at which point they are both positive. It is similarly possible to describe

the eigenvalues of B(λ) for λ < 0, but we omit this as it plays no role in our analysis.

Proof. We first compute

detB(λ) =
1

d

(
λ2 − λ trA+ detA

)
trB(λ) =

1

d

(
λ(1 + d)− (a22 + da11)

)
.

(85)

It follows from (81) that detB(λ) > 0 for all λ ≥ 0. Therefore, the eigenvalues of B(λ) are either

complex conjugates or real numbers of the same sign. In particular, they are never zero. An

elementary calculation shows that the discriminant ∆B(λ) =
(

trB(λ)
)2 − 4 detB(λ) satisfies

d2∆B(λ) = (d− 1)2λ2 + 2(d− 1)(a22 − da11)λ+
(
(a22 + da11)2 − 4ddetA

)
. (86)

We divide the proof of (i) into two cases. If a22 + da11 ≤ 0, then trB(λ) ≥ 0 for all λ ≥ 0, and the

claim follows. For the case 0 < a22 + da11 < 2
√
ddetA we must have d 6= 1, so the discriminant is

quadratic in λ, with ∆B(0) < 0. Therefore, there exists a number λ+ > 0 such that ∆B(λ) < 0 for

0 ≤ λ < λ+ and ∆B(λ) > 0 for λ > λ+. It follows that B(λ) has complex conjugate eigenvalues

for 0 ≤ λ < λ+ and real eigenvalues for λ ≥ λ+. For λ ≥ λ+ we have trB(λ) ≥ 2
√

detB(λ) > 0,

and so the real eigenvalues are both positive.

We now consider (ii), where a22 +da11 = 2
√
ddetA. We again must have d 6= 1, so the discriminant

is quadratic, with ∆B(0) = 0. We claim that (d− 1)(a22 − da11) is negative. If a11 > 0, then (81)

implies a22 < 0, and the fact that a22 + da11 > 0 implies d > 1, hence a22 − da11 < 0 and

(d − 1)(a22 − da11) < 0. The proof when a11 < 0 is similar. Therefore ∆B(λ) has a zero and is
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decreasing at λ = 0, so there exists a number λ+ > 0 such that ∆B(λ) < 0 for 0 < λ < λ+ and

∆B(λ) > 0 for λ > λ+. The conclusion follows as in the proof of (i).

For (iii) we similarly find that d 6= 1 and ∆B(0) > 0, with ∆B(λ) decreasing at λ = 0. Therefore,

there exists numbers 0 < λ− < λ+ such that ∆B(λ) is positive on (0, λ−) ∪ (λ+,∞) and negative

on (λ−, λ+). Setting λc = λ− completes the proof.

For the last part of the proof, we abbreviate βi = βi(λ; d) and use (85) to compute

β′1 + β′2 = (trB)′ > 0,

which implies at least one of β′1 and β′2 is positive. If the other was non-negative we would have

β′1β2 + β1β
′
2 < 0, since β1 and β2 are both negative for 0 ≤ λ < λc. However, this contradicts the

fact that

β′1β2 + β1β
′
2 = (detB)′(λ) > 0

and thus completes the proof. �

Using this result, we easily obtain the following.

Corollary 5.12. If A satisfies (81) and

a22 + da11 < 2
√
ddetA, (87)

then W (x, λ) /∈ H1 for all x > 0 and λ ≥ 0, hence the boundary of [δ, L]× [0, λ∞] has index m = 0

for every L > 0.

This corresponds to case (i) of Remark 5.5 — the frame matrix X(x, λ) is always invertible, so the

index is well defined but necessarily zero.

Proof. Proposition 5.11(i) implies β1(λ; d) and β2(λ; d) are either non-real or positive for any λ ≥ 0.

It follows from (75) that detX(x, λ) 6= 0, and hence W (x, λ) /∈ H1, for all x > 0 and λ ≥ 0. �

This means if the index of [δ, L0]× [0, λ∞] is defined and nonzero for some L0 > 0, then a22 +da11 ≥
2
√
d detA. We next show that this is in fact a strict inequality; in the critical case of equality the

index is either equal to zero or is not defined.

Lemma 5.13. If d = d∗ is chosen so that (82) is an equality, then there exists L∗ > 0 such that

the index of [δ, L]× [0, λ∞] is zero for L < L∗ and is not defined for L ≥ L∗.

This corresponds to case (ii) in Remark 5.5.

Proof. From Proposition 5.11(ii) we know that β1(λ; d∗) and β2(λ; d∗) are either positive or non-real

for all λ > 0, and so detX(x, λ) 6= 0 for all x > 0 and λ > 0. On the other hand, for λ = 0 we have

that β1(0; d∗) = β2(0; d∗) is negative, and so (75) implies that the following equivalence:

W (x, 0) ∈ H1 ⇐⇒ detX(x, 0) = 0

⇐⇒ x =
mπ√
−β1(0; d∗)

for some m ∈ N

⇐⇒ W (x, 0) ∈ H1 ∩H2.
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The index is therefore defined and equal to zero for L < L∗ := π/
√
−β1(0; d∗) and is not defined

for L ≥ L∗. �

Combined with Corollary 5.12, this lemma proves one direction of Theorem 5.9: if the index of

[δ, L0]× [0, λ∞] is defined and nonzero for some L0 > 0, then a22 + da11 > 2
√
ddetA. To complete

the proof, we must show the reverse implication.

The idea of the proof is shown in Figure 7. Parameterizing the set {(x, λ) : detX(x, λ) = 0} as a

union of smooth curves {λn(x)}, we will show that W (x∗, λ∗) ∈ H1 ∩H2 if and only if λ∗ = λn(x∗)

is either a maximum of a single eigenvalue curve or a transverse intersection of two distinct curves.

Moreover, each maximum contributes +2 to the index m, while the intersections contribute nothing.

Therefore, it suffices to choose L0 larger than the x coordinate of the first maximum but smaller

than the x coordinate of the first intersection. This will guarantee that the index is well defined

but not equal to zero.

Lemma 5.14. Suppose that β1(λ∗; d) and β2(λ∗; d) are both negative and satisfy

β1(λ∗; d)

β2(λ∗; d)
=
(m
n

)2
(88)

for some m,n ∈ N, so that W (x∗, λ∗) ∈ H1 ∩H2 at the point

x∗ =
mπ√

−β1(λ∗; d)
=

nπ√
−β2(λ∗; d)

. (89)

Letting γ∗ denote a small loop around (x∗, λ∗), we have

Ind(W ◦ γ∗;P1) =

2 if m = n,

0 otherwise.
(90)

Geometrically, points with m = n correspond to maxima of the eigenvalue curves, whereas points

with m 6= n correspond to transverse intersections of different curves; see Figures 3 and 7.

Proof. Using (75) and Proposition 5.11, we can write the set {detX = 0} as a countable union of

smooth curves

∞⋃
n=1

{(
nπ√
−β1(λ; d)

, λ

)
: λ ≤ λc

}
︸ ︷︷ ︸

=Γ1,n

∪

{(
nπ√
−β2(λ; d)

, λ

)
: λ ≤ λc

}
︸ ︷︷ ︸

=Γ2,n

. (91)

The condition (88) holds precisely when Γ1,m and Γ2,n intersect at the point (x∗, λ∗). There are

two cases to consider.

If m = n, then (84) implies that the curve Γ1,n∪Γ2,n has a strict maximum at (x∗, λ∗), so it follows

from Lemma 4.10 that Ind(W ◦ γ∗;P1) = 2, as in Figure 3(right). On the other hand, if m 6= n,

then (89) implies β1(λ∗; d) 6= β2(λ∗; d), and hence λ∗ < λc by Proposition 5.11(iii). If follows that

the curves Γ1,m and Γ1,n are strictly increasing and strictly decreasing, respectively, so Lemma 4.10

implies that Ind(W ◦ γ∗;P1) = 0, as in Figure 3 (left). �
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Figure 7. A plot of the eigenvalue curves λn(x) in Remark 5.15. The left figure

shows a maximum of λ1 (meaning (88) is satisfied with m = n = 1) and an inter-

section between λ1 and λ2, at which point (88) is satisfied with m = 2 and n = 1.

Similarly, the right figures shows maxima of the first four eigenvalue curves, as well

as intersections with m/n = 4/3 (where λ∗ < 0) and m/n = 5/4 (λ∗ > 0).

Remark 5.15. For each n the set Γ1,n ∪ Γ2,n is given by the graph of a single function λn(x), as

in the hypotheses of Lemmas 4.9 and 4.10. In terms of this parameterization, the condition (88)

with m = n corresponds to a maximum of λn, and m > n corresponds to a transverse intersection

of λm and λn.

We are now ready to prove the main result in this section.

Proof of Theorem 5.9. From Proposition 5.11(iii) and the definition of λ∞ we know that 0 < λc <

λ∞, so any maxima of eigenvalue curves that occur will be contained in the rectangle [δ, L]×[0, λ∞].

The first maximum will occur at

xmax =
π√

−β1(λc; d)
=

π√
−β2(λc; d)

.

whereas the first intersection will occur at

xint =
2π√

−β1(λ∗; d)
=

π√
−β2(λ∗; d)

.

Since β2(λ; d) is strictly decreasing for 0 ≤ λ < λc and λ∗ < λc, we have

π√
−β2(λc; d)

<
π√

−β2(λ∗; d)

and hence xmax < xint. Choosing L0 ∈ (xmax, xint) completes the proof. �

With the tools developed above, we can easily prove Corollary 5.10.
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Proof of Corollary 5.10. Part (i) was already shown in Corollary 5.12. To prove (ii) we first check

the invariance conditions (34). To ensure W (x, 0) ∈M for all x > 0, it suffices, by Proposition 5.4,

to know that the ratio

β1(0; d)

β2(0; d)
=
−a22 − da11 −

√
4da21a21 + (a22 − da11)2

−a22 − da11 +
√

4da21a21 + (a22 − da11)2

is not the square of a rational number. Asking that this be equal to q2 for some q ∈ Q gives

d(q2) =
(1 + q4) detA− 2a21a12q

2 +
√

det(A)(1 + q2)2
(
(1 + q4) detA+ 2(a11a22 + a21a12)q2

)
2a11q2

,

so we define the set ∆∗ = {d(q2) : q ∈ Q}.

On the other hand, we have that W (L, λ∗) ∈ H1∩H2 for some λ∗ ≥ 0 if and only if (89) is satisfied

for x∗ = L. The fact that β1 and β2 are strictly monotone implies that this equality can only hold

for a discrete set of L values. Therefore, assuming d /∈ ∆∗, the index of [δ, L] × [0, λ∞] is defined

for an open, dense set of L > δ. For any such L, Lemma 5.14 says that the index m is twice the

number of local maxima of the eigenvalue curves (i.e. intersections for which m = n) between x = δ

and x = L, and hence is nonzero for L ≥ L0. �

For an explicit example, consider the matrix

A :=

(
1 −2

3 −4

)
, (92)

for which we compute

d∗ = 4
(√

2 + 3
)
≈ 14.92.

The matrix B(λ) is thus

B(λ) =

(
−1 + λ 2

−3
d

4+λ
d

)
,

and for d = 31
2 > d∗ we find that

β1

(
0; 31

2

)
β2

(
0; 31

2

) =
281 + 23

√
33

248
. (93)

This is clearly not the square of a rational number, and so the path W (x, 0) remains in the MA

space for all x > 0. That is, d = 31
2 is not in the set ∆∗ from Corollary 5.10. However, it is

unavoidable that the path W (L, λ) will leave the MA space for a discrete set of L values. Some

examples are shown in Figures 7 and 8.

5.4. Numerical prospects. The classical Maslov index has seen many successful numerical treat-

ments; see for instance [5, 8, 9]. We expect that the theory developed in this paper will be equally

amenable to numerical applications, if not more so.

To justify this, we recall from Theorem 4.1(ii) that

#
{

nonnegative eigenvalues of L
}
≥ Ind

(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
(94)
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Figure 8. A plot of {detX = 0} (solid curve - blue online) in the region [0, L] ×
[0, 0.05], as well as the Maslov box (dashed), with L = 5 on the left and L = 10 on

the right. Here d = 15.5, and A is as in (92). Intersections of the solid curve with the

line λ = 0, are conjugate points, while intersections with the line x = L represent

solutions to the eigenvalue problem (83) with Dirichlet boundary conditions at x = 0

and x = L. For L = 5 the entire rectangle is mapped into the MA space, but for

L = 10 it leaves at the point (x∗, λ∗) ≈ (5.4, 0.015), and the boundary has index

m = 2 as a result.

as long as W (x, λ) ∈M = G\ (H1∩H2) for all (x, λ) ∈ (0, L]× [0, λ∞], where H1 is the hyperplane

corresponding to the train of the Dirichlet subspace and H2 is arbitrary.

The particular choice of H2 in the third part of Theorem 4.1 guaranteed monotonicity in x, but this

is not important if the index is to be computed numerically — for any choice of H2 the Maslov index

computation simply becomes a winding number calculation in RP 1. This is numerically robust,

due to the homotopy invariance of the index. For instance, the curves

η(t) =

eit, −π/2 ≤ t ≤ 0

e−it, 0 ≤ t ≤ π/2
, η+(t) = eiεη(t), η−(t) = e−iεη(t)

are ε-close, pass through the point 1 ∈ S1 one, two and zero times, respectively, and all have zero

winding number. That is, the signed count of conjugate points (i.e. the generalized Maslov index)

is stable under small perturbations, while the unsigned count is not.

Therefore, a small approximation error in the calculation of the path W (x, λ) (i.e. in the numerical

solution of an initial-value problem) will not change the numerically computed winding number.

The only possible complication is the presence of a conjugate point near x = L. If there is a

conjugate point near (but not exactly at) the endpoint, it will be possible to determine so with

sufficiently accurate numerics. Indeed, this can be established rigorously using validated numerics;

see [26] for an overview of rigorous numerical methods applied to dynamical systems.
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Figure 9. A plot of detX(x, 0) vs x for the system (83) with A from (92) and

d = 15.5. The calculation (96) says that W (x∗, 0) ∈ H1 ∩ H2 if and only if the

determinant vanishes to (at least) first order at x∗, which never happens for this

choice of A and d, according to (93). The right figure is a magnification of the dashed

box in the left figure, clarifying that there is not a double root near x ≈ 41.6.

The case of a conjugate point at x = L is more subtle, since it cannot be distinguished from a

conjugate point that is very close (within some numerical tolerance) to x = L. Generically the

endpoint is not a conjugate point, and when it is, this is usually a consequence of an underlying

symmetry of the system. If we know a priori that x = L is a conjugate point, and understand the

mechanism that causes this to happen, then we can (rigorously) find a neighbourhood around it

containing no other conjugate points, and hence the discussion in the previous paragraph applies.

We finally note an equivalent invariance condition that may be easier to verify in practice. While

the condition that the image of W remains inM depends on both ψ1 and ψ2, which are proportional

to detX and det(X +Y )− detX − detY , respectively, it is possible to describe the invariance just

in terms of X. We recall that W (x∗, λ∗) ∈ H1 if and only if ψ1(x∗, λ∗) = 0. At such a point (x∗, λ∗),

(49) implies ∂ψ1/∂x = ψ2, so we conclude that

W (x∗, λ∗) ∈ H1 ∩H2 ⇐⇒ ψ1(x∗, λ∗) =
∂ψ1

∂x
(x∗, λ∗) = 0. (95)

Since ψ1 is proportional to detX, this is equivalent to

W (x∗, λ∗) ∈ H1 ∩H2 ⇐⇒ detX(x∗, λ∗) =
∂ detX

∂x
(x∗, λ∗) = 0. (96)

That is, W leaves the MA space at the point (x∗, λ∗) if and only if detX vanishes at least to first

order in x. A numerical example, corresponding to the Turing system in (83), is shown in Figure 9.

In this example, it can be seen by inspection that no double roots occur.

6. Further examples (and non-examples) of Maslov–Arnold spaces

In Section 3 we focused on the MA spaces of hyperplane type, as those have proven most useful in

applications so far. We now return to the general concept of a Maslov–Arnold space, as given in

Definition 1.1, and construct additional examples of MA spaces. We also describe some spaces that

do not satisfy the definition. This sheds additional light onto the general definition, and motivates
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our use of the hyperplane Maslov–Arnold spaces, which do not contain all of Λ(n). We begin with

a definition.

Definition 6.1. Given a pair of equal rank Maslov–Arnold spaces, we say (M2, P2, α2) extends

(M1, P1, α1) if M1 ⊆ M2, P1 = P2, and i∗(α2) = α1, where i : M1 ↪→M2 is subspace inclusion.

The extension is said to be proper if M1 6=M2.

It is natural to look for extensions of the classical Maslov–Arnold space (Λ(n), P, α0). A proper

extension does exist when n = 2.

Theorem 6.2. There exists a rank two Maslov–Arnold space (F , P, α), with F dense in Gr2(R4),

that extends the classical Maslov–Arnold space (Λ(2), P, α0).

A generalized Maslov index is therefore defined for each loop in F ; for a sufficiently generic loop it

is given by the geometric intersection number with the train of P , and for a loop contained entirely

in Λ(2) it coincides with the classical Maslov index. This index is much more broadly defined than

the classical Maslov index, since F is dense in Gr2(R4), whereas Λ(2) is a hypersurface.

However, the space F given by Theorem 6.2 is not a submanifold of the Grassmannian. It will be

seen in the proof (which we give in Section 6.1) that it does not contain an open neighbourhood

of Λ(2). This makes it difficult to use in practice — although F is left invariant by the flow of any

Hamiltonian system with Lagrangian initial data (because Λ(2) is), an arbitrarily small perturbation

of the system may cause its trajectories to leave F , in which case the index is no longer defined.

It turns out this undesirable behaviour is inevitable for extensions of the classical Maslov–Arnold

spaces.

Theorem 6.3. There does not exist a proper extension (M, P, α) of the classical Maslov–Arnold

space (Λ(n), P, α0) for which M is a connected, smoothly embedded submanifold of Grn(R2n).

In other words, the only smooth, connected MA space that extends Λ(n) is Λ(n) itself. Compare

Remark 3.10(iv), which is smooth and contains a Lagrangian Grassmanian, but is not an MA space.

The remainder of this section is devoted to the proof of these two theorems.

6.1. The Fat Lagrangian Grassmannian. In this section we prove Theorem 6.2 by constructing

a rank two Maslov–Arnold space (F , P ) that extends the classical Maslov–Arnold space (Λ(2), P )

for any P ∈ Λ(2).

As described above, F has the desirable property of being a large MA space that contains the entire

Lagrangian Grassmannian, and the undesirable property of not being a smooth manifold. The lack

of smoothness follows directly from the construction given below, but also from Theorem 6.3, which

demonstrates that this problem is essential, and does not depend on the particular details of our

construction.

Let v1, v2, v3, v4 ∈ V ∼= R4 be a basis, with dual basis v∗1, v
∗
2, v
∗
3, v
∗
4 ∈ V ∗. Define symplectic forms

ωI := v∗1 ∧ v∗3 + v∗2 ∧ v∗4 ωJ := v∗1 ∧ v∗4 − v∗2 ∧ v∗3,
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with corresponding Lagrangian Grassmannians

ΛI := G ∩HωI ΛJ := G ∩HωJ ,

and observe that both Q := [v1 ∧ v2] and P := [v3 ∧ v4] lie in the intersection ΛI ∩ ΛJ .

Denote Plücker coordinates by pij = v∗i ∧ v∗j , regarded as linear functions pij :
∧2(V ) → R. The

image of the Plücker embedding, G ⊆ P (
∧2(V )), is defined by the homogeneous quadratic equation

p12p34 − p13p24 + p14p23 = 0.

Consider the closed subset S ⊆ P (
∧2(V )) defined by the linear equation p14 − p23 = 0 and the

inequality p12p34 ≥ 0. The inequality makes sense in P (
∧2(V )) because given ξ ∈ Λ2(V ) and c ∈ R,

we have p12p34(cξ) = c2p12p34(ξ), so the sign of p12p34 is well-defined.

Lemma 6.4. The intersection ΛI ∩ S consists of the two points P,Q ∈ G.

Proof. The intersection is determined by the system of inequalities

p12p34 − p13p24 + p14p23 = 0

p13 = −p24

p14 = p23

p12p34 ≥ 0

where the first two equations determine ΛI and the second two inequalities determine S. Substi-

tuting the first three equalities into the inequality yields p2
13 + p2

24 ≤ 0, which is only possible if

p13 = p24 = 0. We are thus reduced to the equivalent equations

p12p34 = p13 = p24 = p14 = p23 = 0,

which have only two solutions: Q = [v1 ∧ v2] and P = [v3 ∧ v4]. �

Define U := G \ S. This is an open, dense subset of G, hence it is a non-compact, orientable

4-manifold, so by Poincaré duality H1(U ;Z) is naturally isomorphic to the relative homology group

H3(G,S;Z) (alternatively, the Borel–Moore homology group HBM
3 (U ;Z)). The train of P in U is

the intersection U ∩Hv∗3∧v∗4 .

Lemma 6.5. The train of ZP ∩ U in U is a smooth, closed, co-orientable submanifold of U .

Proof. The intersection G ∩ Hv∗3∧v∗4 is transverse except at P = [v3 ∧ v4]. By Lemma 6.4 we see

P 6∈ U , so the intersection U ∩Hv∗3∧v∗4 is transverse, hence it is a smoothly embedded codimension

one submanifold.

The intersection U ∩Hv∗3∧v∗4 is determined in Plücker coordinates by

U ∩Hv∗3∧v∗4 = G ∩ ({p14 − p23 = 0} ∩ {p12p34 ≥ 0})c ∩ {p34 = 0}

= G ∩ {p34 = 0} ∩ {p14 − p23 = 0}c

= (G \HωJ ) ∩Hv∗3∧v∗4
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where we have applied de Morgan’s law and the fact that {p34 = 0} ⊆ {p12p34 ≥ 0}. Therefore,

the normal bundle of U ∩ Hv∗3∧v∗4 in U is the pullback of the normal bundle of the affine space(
P (
∧2(V )) \HωJ

)
∩ Hv∗3∧v∗4

∼= R4 in the affine space P (
∧2(V )) \ HωJ

∼= R5. But this is clearly

co-orientable, so we are done. �

Remark 6.6. One might expect, based on the above argument, that since the linear inclusion

R4 ⊆ R5 has a trivial Poincaré dual in H1(R5) ∼= {0}, the same must be true of U ∩Hv∗3∧v∗4 in U .

However, since U is not a subset of P (
∧2(V ) \HωJ

∼= R5, there is no natural map in cohomology

from H1(R5) to H1(U).

Corollary 6.7. The open set U ⊆ G is a Maslov–Arnold space with respect to P .

Proof. Let N := ΛI \ {P,Q}. By Lemma 6.4 we know N = U ∩ ΛI . Since ΛI is a 3-manifold

and N is the complement of two isolated points in ΛI , the inclusion determines an isomorphism

H1(N ;Z) ∼= H1(ΛI ;Z) ∼= Z, which is generated in both cases by the Poincaré dual of the train of

P (with a chosen co-orientation).

It follows from Lemma 6.5 that the train ZP ∩U , equipped with a chosen co-orientation, represents a

well-defined cohomology class in H1(U ;Z) ∼= HBM
3 (U ;Z). This cohomology class must have infinite

order, because it is sent to a generator of H1(N ;Z) under restriction to N ⊆ U . �

We now define the Fat Lagrangian Grassmannian

F := U ∪ Λ(2) = U ∪ {P,Q}. (97)

Note that F is not a manifold. However, it is a semialgebraic set, since U is defined by polynomial

inequalities.

Consider the coordinate neighbourhood of P ∈ G by

UP = {gr(A) : A ∈ Hom(P,Q)}

consisting of all 2-planes that intersect Q trivially, and hence can be realized as graphs of linear

maps from P to Q. Denote by J : P → Q the complex structure with J(v3) = −v2 and J(v4) = v1.

As in the proof of Theorem 6.3, we have

UP = {gr(JA) : A ∈ Hom(P, P )} ∼= Hom(P, P ).

Using the matrix representation with respect to the basis {v3, v4} of P determines a coordinate

chart

UP ∼= R4 =

{
A =

(
x y

z w

)
: x, y, z, w ∈ R

}
.

Under this identification

ΛJ ∩ UP = {gr(JA) : A = AT },

Hv∗3∧v∗4 ∩ UP = {gr(JA) : det(A) = 0}.

Similarly, we have a coordinate neighbourhood of Q ∈ G,

UQ = {gr(A) : A ∈ Hom(Q,P )} = {gr(AJ−1) : A ∈ Hom(P, P )} ∼= R4.
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Lemma 6.8. The spaces UQ \ S and UP \ S are both homeomorphic to R × (R3 \ {0}), and are

therefore homotopy equivalent to S2.

Proof. Under the identification UP ∼= Hom(P, P ) ∼= R4, the intersection S ∩ UP is defined by the

equations tr(A) = x + w = 0 and det(A) = xw − yz ≥ 0. These describe a solid, closed double

cone in the three-dimensional subspace {x+w = 0}. The complement UP \S is therefore invariant

under multiplication by the positive scalar R+ and intersects the unit sphere S3 in the complement

of two closed 2-disks, which is diffeomorphic to R3 \ {0}. The case UQ \ S is similar. �

Proposition 6.9. The inclusion U ⊆ F defines an isomorphism H1(F ;Z) ∼= H1(U ;Z). Conse-

quently, F is an MA space that extends ΛI and is dense in G.

Proof. By definition U = F \ {P,Q}. Let U ′ be the union of two small open balls around P and

Q in UP and UQ, respectively, intersected with F . From the local picture described in the proof of

Lemma 6.8, it is clear that U ′ deformation retracts onto the two point set {Q,P} and that U ∩ U ′

deformation retracts onto S2
∐
S2. The isomorphism follows from the Mayer–Vietoris long exact

sequence

H0(U)⊕H0(U ′) � H0(U ∩ U ′)→ H1(F)→ H1(U)⊕H1(U ′)→ H1(U ∩ U ′)

since H1(U ′) ∼= H1(U ∩ U ′) ∼= {0} and H0(U)⊕H0(U ′) � H0(U ∩ U ′) is surjective.

Any sufficiently generic loop γ : S1 → F is contained in U , so F is an MA space extending U .

Finally, following the proof of Corollary 6.7, subspace inclusions determine a commuting diagram

of isomorphisms

H1(F ;Z)
∼= //

∼=
��

H1(ΛI ,Z)

∼=
��

H1(U ;Z)
∼= // H1(N ;Z)

so F also extends ΛI . �

6.2. Non-existence of smooth extensions. We now prove Theorem 6.3, on the non-existence

of smooth extensions of the classical Maslov–Arnold spaces.

Proof of Theorem 6.3. Suppose that there exists a proper extension Λ(n) ( M for which M is

a connected, smoothly embedded submanifold of Grn(R2n). This implies dimM > dim Λ(n).

Using these extra degrees of freedom, we will construct a sufficiently generic loop in M that is

contractible but has a non-zero geometric intersection number with the train (see Section 3.1),

producing a contradiction.

Our construction takes place within a coordinate neighbourhood of Grn(R2n), wherein the classical

Maslov index may be interpreted as a spectral flow, as described by Robbin and Salamon [23]. Equip

R2n with the standard inner product product 〈·, ·〉 and define a complex structure J : R2n → R2n

by ω(v, w) = 〈v, Jw〉. The Lagrangian subspace P has a Lagrangian complement Q := J(P ) = P⊥,
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so R2n = Q ⊕ P . We define the coordinate neighbourhood UP ⊆ Grn(R2n) to be the set of n-

dimensional subspaces in R2n that intersect Q trivially and can therefore be represented as graphs

of linear maps from P to Q. We have an identification

UP = {gr(B) : B ∈ Hom(P,Q)} = {gr(JA) : A ∈ Hom(P, P )} ∼= Hom(P, P ), (98)

where we have abused notation and denoted by J : P → Q the restriction of J . In this coordinate

neighbourhood we have

Λ(n) ∩ UP ∼= {A ∈ Hom(P, P ) : A = AT }, (99)

Z ∩ UP ∼= {A ∈ Hom(P, P ) : detA = 0}. (100)

The co-orientation of the train in Λ(n) is such that under the identification (98), the index of a

path γ : [0, 1]→ UP ∩Λ(n) counts the difference between the number of positive eigenvalues of the

symmetric matrices γ(1) and γ(0). That is, the Maslov index of γ equals the spectral flow of the

corresponding family of symmetric matrices; see [23, Theorem 2.3].

While Λ(n) and Z have a simple description in the coordinate chart UP , the same is not true of

the supposed extension M; we only know that it contains Λ(n) and has strictly larger dimension.

Therefore, we will give our construction in the tangent space TPM, then transfer it to M using

the exponential map of a suitably chosen Riemannian metric.

Let us regard the tangent space TPM as a subspace of T0 Hom(P, P ) = Hom(P, P ). Since TPM
must strictly contain TPΛ(n), i.e. the subspace of symmetric operators, it must also contain some

non-zero B ∈ Hom(P, P ) with B = −BT . Such a B is diagonalizable, and must have at least one

non-zero, purely imaginary eigenvalue λ0, with eigenvector v0. Let Π be the orthogonal projection

onto span{v0} and let Π′ := IP −Π. The paths in TPM defined by

A1(t) := Π′ + cos(πt)Π, A2(t) := Π′ + cos(πt)Π + sin(πt)B

for t ∈ [0, 1] have the same endpoints, IP and IP −2Π, which are both symmetric and have different

numbers of positive eigenvalues (n and n− 1 respectively). We claim that A2(t) is non-degenerate

for all t ∈ [0, 1]. Assuming A2(t)v = 0 for some non-zero v ∈ P , we obtain

cos(πt)Πv + sin(πt)B(Πv) = Π′v + sin(πt)B(Π′v) = 0,

using the fact that Π and Π′ commute with B. If sin(πt) = 0, these equations imply Πv = Π′v = 0,

a contradiction. If sin(πt) 6= 0, the second equation implies Π′v = 0, because B does not have any

non-zero real eigenvalues. Then Πv = v, and hence Bv = λ0v, but the first equation reduces to

Bv = − cot(πt)v, which is a contradiction because λ0 is not real.

To obtain the desired loop in M, we choose a flat, translation invariant Riemannian metric

on Hom(P, P ) ∼= Rn2
, so that the geodesic through 0 ∈ Hom(P, P ) with initial velocity A ∈

T0 Hom(P, P ) is just the line γA(t) = tA. Restricting this metric to M, we obtain an exponential

map exp: VP → M ∩ UP , where VP is a open ball around 0 ∈ TPM and can be chosen small

enough to ensure exp is a diffeomorphism from VP onto its image. Identifying M ∩ UP with a
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subset of Hom(P, P ), we see that any line contained in M∩ UP is a geodesic4 in M, because it

locally minimizes length in UP , and hence also in M. Therefore, if A ∈ TPM is symmetric, the

line γA(t) = tA is a geodesic in M∩ UP , which means exp(A) = γA(1) = A is symmetric, and

hence corresponds to a Lagrangian subspace via the identification (99).

Choosing ε > 0 small enough that εA1(t) and εA2(t) are in VP for all t ∈ [0, 1], we define smooth

paths

γ1(t) := exp(εA1(t)) = εA1(t), γ2(t) := exp(εA2(t)),

and then let γ denote the concatenation of γ1 with the reverse of γ2. Since εA1 is homotopic to εA2

in VP and exp is a local diffeomorphism, we immediately see that γ is contractible, so its generalized

Maslov index vanishes, Mas(γ;P ) = 0.

However, recalling that we have identified M∩ UP with a subset of Hom(P, P ), Taylor’s theorem

gives the uniform estimate exp(A) = A +O(|A|2) for small A ∈ TPM. This implies the loop γ is

sufficiently generic for small enough ε > 0, and γ2 does not intersect the train Z (because A2 is

always non-degenerate). Definition 1.1 then says that Mas(γ;P ) equals the geometric intersection

number of γ (and hence of γ1) with Z. On the other hand, since the matrices A1(t) are symmetric,

γ1(t) is a path in the Lagrangian Grassmannian, and its geometric intersection number with the

train equals its Maslov index. By the spectral flow interpretation of the Maslov index, this is non-

zero, because γ1(0) = εA1(0) and γ2(0) = εA2(0) have different numbers of positive eigenvalues.

This contradiction finishes the proof. �
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