
Distributed Lower Bounds for Ruling
Sets

Alkida Balliu · University of Freiburg

Sebastian Brandt · ETH Zurich

Dennis Olivetti · University of Freiburg

Given a graph G = (V,E), an (α, β)-ruling set is a subset S ⊆ V such that the
distance between any two vertices in S is at least α, and the distance between any vertex
in V and the closest vertex in S is at most β. We present lower bounds for distributedly
computing ruling sets.

More precisely, for the problem of computing a (2, β)-ruling set (and hence also any
(α, β)-ruling set with α > 2) in the LOCAL model of distributed computing, we show
the following, where n denotes the number of vertices, ∆ the maximum degree, and c is
some universal constant independent of n and ∆.

• Any deterministic algorithm requires Ω
(

min
{

log ∆
β log log ∆ , log∆ n

})
rounds, for all

β ≤ c · min
{√

log ∆
log log ∆ , log∆ n

}
. By optimizing ∆, this implies a deterministic

lower bound of Ω
(√

logn
β log logn

)
for all β ≤ c 3

√
logn

log logn .

• Any randomized algorithm requires Ω
(

min
{

log ∆
β log log ∆ , log∆ log n

})
rounds, for all

β ≤ c ·min
{√

log ∆
log log ∆ , log∆ log n

}
. By optimizing ∆, this implies a randomized

lower bound of Ω
(√

log logn
β log log logn

)
for all β ≤ c 3

√
log logn

log log logn .

For β > 1, this improves on the previously best lower bound of Ω(log∗ n) rounds that
follows from the 30-year-old bounds of Linial [FOCS’87] and Naor [J.Disc.Math.’91]
(resp. Ω(1) rounds if β ∈ ω(log∗ n)). For β = 1, i.e., for the problem of computing a
maximal independent set (which is nothing else than a (2, 1)-ruling set), our results
improve on the previously best lower bound of Ω(log∗ n) on trees, as our bounds already
hold on trees. For maximal independent set on general graphs, a deterministic lower
bound of Ω(min{∆, log∆ n}) and a randomized lower bound of Ω(min{∆, log∆ log n})
were already known due to Balliu et al. [FOCS’19].

ar
X

iv
:2

00
4.

08
28

2v
4

 [
cs

.D
C

]
 2

 J
un

 2
02

2

Contents

1 Introduction 2
1.1 Our results . 5
1.2 Our techniques . 6
1.3 Further discussion of related work . 8

2 Background 10
2.1 Model . 10
2.2 Problems . 11
2.3 Round elimination . 13
2.4 Roadmap . 18

3 The problem family 19
3.1 Problem definition . 19
3.2 From the problem family to ruling sets, and vice versa 21
3.3 The idea behind this problem family . 21
3.4 The edge diagram . 22

4 The intermediate problems 23
4.1 Edge constraint . 23
4.2 Properties . 24
4.3 Node constraint . 26

5 Upper bound 26
5.1 Proof of Lemma 14 . 27
5.2 Proof of Lemma 15 . 30
5.3 Intuition behind the algorithm . 30

6 Lower bound 32

7 Lifting results to the LOCAL model 37
7.1 Evolution of local failure probability . 38
7.2 Making ∆ as large as possible . 41
7.3 Stronger deterministic lower bound . 42

8 Conclusion and open problems 43

1

1 Introduction

In this work, we study the problems of finding maximal independent sets (MIS) and ruling sets in
the LOCAL model of distributed computing. In the LOCAL model, each node of the input graph
is considered as a computational device and each edge as a communication link. Computation
proceeds in synchronous rounds, where in each round each node can send a message of arbitrary size
to each neighbor and then, after the messages arrive, perform some local computation. Each node
has to terminate at some point and then output its local part of the global solution, i.e., whether it
is in the MIS (resp. ruling set) or not. For a more detailed introduction to the LOCAL model, we
refer the reader to Section 2.1.

MIS The problem of finding an MIS in a given graph is one of the most central and well-studied
problems in the LOCAL model. Already in the ’80s, the very first papers of the area [1, 29, 34–36]
gave first upper and lower bounds for the complexity of computing an MIS, and since then there
has been an abundance of papers (e.g., [2, 6, 8–10, 22, 26, 33, 40, 42, 43]) studying the problem and
variants thereof. A major open question was whether an MIS can be computed deterministically in
a polylogarithmic number of rounds (see, e.g., [34], or Open Problem 11.2 in the book by Barenboim
and Elkin [8])—this question was finally answered in the affirmative in a very recent breakthrough
by Rozhoň and Ghaffari [42] on network decompositions. In contrast, if randomization is allowed,
already more than 30 years ago, Luby [35] and Alon, Babai, and Itai [1] presented O(log n)-round
algorithms for solving MIS, where n denotes the number of nodes of the input graph. This is still
the best randomized upper bound known if the complexity is expressed solely as a function of n.

On the lower bound side, the Ω(log∗ n)-round bound from the ’80s and early ’90s by Linial [34]
and Naor [36] was the state of the art, until Kuhn, Moscibroda, and Wattenhofer (KMW) [31]
proved in 2004 that there is no algorithm computing an MIS in t = f(∆) + g(n) rounds (even
allowing randomization) if f(∆) ∈ o(log ∆/ log log ∆) and g(n) ∈ o(

√
log n/ log logn). Here, log∗()

denotes the iterated logarithm and ∆ the maximum node degree. Finally, last year, the KMW
bounds were improved and complemented by Balliu et al. [3] who showed that f(∆) + g(n) rounds
are not sufficient for deterministic algorithms if f(∆) ∈ o(∆) and g(n) ∈ o(log n/ log logn), and not
sufficient for randomized algorithms if f(∆) ∈ o(∆) and g(n) ∈ o(log logn/ log log log n). Due to an
O(∆ + log∗ n)-round upper bound by Barenboim, Elkin, and Kuhn [9], the linear dependency on ∆
is tight.

While the above bounds imply that the complexity of MIS on general graphs must lie in the
polylogarithmic (in n) regime, the situation on trees is far less clear. Both the KMW lower bounds
and the lower bounds by Balliu et al. are achieved by first proving the same bounds for the problem
of finding a maximal matching1 and then obtaining the MIS bounds as an immediate corollary
due to the fact that maximal matching on general graphs is essentially the same problem as MIS
on line graphs. As the line graph of any graph with ∆ ≥ 3 contains a cycle (of length 3), both
lower bounds are not applicable on trees; in fact, as there seems to be no way around line graphs in
order to transform the maximal matching bounds to MIS, there is little hope that the proofs can be
adapted to work on trees. Hence, on trees, the state of the art is given by the Ω(log∗ n)-round lower
bounds by Linial and Naor, exhibiting a large gap to the best known deterministic upper bound of
O(log n/ log log n) rounds on trees by Barenboim and Elkin [6]. This suggests the following question.

1The KMW lower bound is actually proved for an even easier problem, that is, for finding a poly(logn) approximation
of a minimum vertex cover.

2

Question 1
Is polylogarithmic time needed for deterministically computing an MIS on trees or is there a
(much) faster algorithm?

Ruling sets Ruling sets are a generalization of maximal independent sets. Let α ≥ 2, β ≥ 1 be
integers. An (α, β)-ruling set S is a subset of the nodes of the input graph such that the distance
between any two nodes from S is at least α and any node not contained in S has a distance of at
most β to the closest node in S. An MIS is a (2, 1)-ruling set. We observe that an (α, β)-ruling set
is also an (α′, β′)-ruling set for any α′ ≤ α and β′ ≥ β, hence finding the latter is at least as easy as
finding the former. In particular, the problem of finding a (2, β)-ruling set for some β > 1 is at least
as easy as the problem of finding an MIS. Moreover, as our goal is to prove lower bounds, we can
safely restrict attention to α = 2 without affecting the generality of our results.

Due to their relation to MIS (but also as interesting combinatorial objects of their own), ruling
sets have been a natural object of interest in the LOCAL model and are well-studied (see, e.g.,
[2, 10, 11, 21, 22, 44]). In particular, the computation of ruling sets often constitutes a useful
subroutine in the computation of other objects, such as maximal matching [10], maximal independent
set [22], or distributed coloring [15, 25]. This is not a surprise: also the computation of an MIS is an
important step in many algorithms, and it is quite natural to replace this step by the computation
of a (2, β)-ruling set for some β > 1, if the latter suffices and can be computed faster. Hence, from
the perspective of applications, a lower bound for MIS that also applies to such ruling sets can be
considered as substantially more robust than a lower bound that cannot be extended to ruling sets.

Unfortunately, there is a simple argument why the existing lower bounds for MIS by KMW and
Balliu et al. cannot be extended to (2, β)-ruling sets: as mentioned before, those lower bounds are
achieved on line graphs; however, on line graphs already a (2, 2)-ruling set can be found in O(log∗ n)
rounds as shown by Kuhn, Maus, and Weidner [32]. The best lower bound for (2, β)-ruling sets
follows again from the lower bounds by Linial and Naor for MIS, and stands at Ω(log∗ n), both
on trees and general graphs, up to some β ∈ Θ(log∗ n). For β ∈ ω(log∗ n), no non-constant lower
bound is known. In contrast, for up to polylogarithmic2 β, the best known upper bound (expressed
solely as a function of n) for computing a (2, β)-ruling set is polylogarithmic in n [2, 26, 44].

Question 2
Is polylogarithmic time needed for deterministically computing a (2, β)-ruling set (for up to
polylogarithmic β) or is there a (much) faster algorithm?

Round elimination Traditionally, proving lower bounds in the LOCAL model has been a
challenging task. Until 2015, to the best of our knowledge, only about a handful of (non-trivial,
non-global) lower bounds were known [18, 27, 31, 34, 36, 37], with the only lower bound (as a
function of n) beyond Ω(log∗ n) being the KMW lower bound. A major obstacle seemed to be the
lack of techniques that could be used to obtain (improved) lower bounds.

In 2016, things changed when it was discovered that a technique used in the proof for Linial’s
Ω(log∗ n)-round lower bound is more widely applicable: Brandt et al. [14] used the technique, now
known under the name round elimination, to prove lower bounds for the Lovász Local Lemma (LLL),

2As long as β is not too close to n, also no subpolylogarithmic upper bounds are known for larger β, but the (at
most) polylogarithmic regime is arguably the most interesting; for instance, we are not aware of any algorithms that
make use of (2, β)-ruling sets where β is superpolylogarithmic.

3

sinkless orientation (as a special case of the LLL) and ∆-coloring. Since then, round elimination
has been used to prove lower bounds for a variety of problems [3–5, 12, 13, 17].

In 2019, Brandt [12] showed that round elimination can, in principle, be applied to (almost) any
problem that is locally checkable3, by providing a so-called automatic version of round elimination,
which, roughly speaking, is a blueprint for obtaining a lower bound via round elimination in which
the problem of interest can be inserted. Unfortunately, for most problems, a crucial step in the
general blueprint is (perhaps far) beyond the reach of current techniques, which is the reason why we
have not seen a flurry of new lower bounds in the past year. By using additional techniques inside
this framework, a number of new lower bounds have been achieved [3, 5, 13], but the framework itself
is still far from being well-understood. As such, we believe that obtaining a better understanding
of (automatic) round elimination is one of the most promising research directions in the LOCAL
model currently available and crucial for the design of new lower bounds.

Informally, the general idea of round elimination is as follows. In order to prove a lower bound
for some problem Π0 of interest, we want to find a sequence of problems

Π0 → Π1 → Π2 → . . .

such that for any two consecutive problems Πi,Πi+1, we have Ti+1 ≤ Ti − 1 whenever Ti > 0, where
Tj denotes the complexity of problem Πj for any j. In other words, Πi+1 is at least one round faster
solvable than Πi as long as Πi is not 0-round solvable, which we will call the round elimination
property. Now all that is necessary for proving a lower bound of T for problem Π0 is to show that
problem ΠT−1 is not 0-round solvable, or equivalently, that the first 0-round solvable problem in
the sequence has index at least T . In fact, if ΠT−1 requires at least 1 round, then by the round
elimination property ΠT−2 requires at least 2 rounds, ΠT−3 requires at least 3 rounds, and so on.

Automatic round elimination explicitly generates such a sequence of problems for any locally
checkable problem Π0, by repeatedly applying a fixed process that takes some locally checkable
problem Πi as input and returns Πi+1. The main issue with the obtained sequence is that the
descriptions of the problems in the sequence usually become very complicated already for small
indices; without applying any additional techniques, already the size of the problem description
grows roughly doubly exponential for each subsequent problem. Hence, it is not surprising that
the crucial step of determining the first 0-round solvable problem Πj in the sequence cannot be
performed (in general) with the currently available techniques. Moreover, even if one could keep the
problem description sizes reasonably small, no general method how to find the desired problem Πj

is known.4

Nevertheless, when studying a specific problem Π0, it seems reasonable to try to make the
problems in the sequence easier to understand. All currently known lower bound proofs via automatic
round elimination follow the idea of modifying the problems in the sequence in a way that preserves
the round elimination property while simplifying the problem descriptions, as suggested in [12]. The
proofs can be grouped into two categories, depending on the chosen modification.

1. There exists a constant c such that each problem in the sequence can be described5 by using
at most c output labels. Examples are [3, 5, 13].

2. The size of the problem description grows doubly exponentially when going from Πi to Πi+1,
for all i. Examples are [4, 12].

3For a definition, see Section 2.2.
4Note that it is usually easy to check for a given problem whether it can be solved in 0 rounds; the difficulty lies in

first obtaining a concise (parameterized) description of the problems in the sequence.
5The description is required to be in a certain standardized form. For details, we refer to Section 2.2.

4

The idea of the second approach is to simplify the structure6 of the descriptions of the problems
in the sequence, but roughly preserve the size of the descriptions. The lower bound is achieved by
showing that as long as the description size of a problem in the sequence is in o(n) (or (o(∆))), the
problem is not 0-round solvable. Hence, this approach only yields lower bounds of Ω(log∗ n) (resp.
Ω(log∗∆)).

In contrast, the first approach can yield higher lower bounds, but requires finding a sequence of
problems that can be described with a constant number of labels. Considering that to obtain a
good lower bound we also must make sure that we do not reach a 0-round solvable problem too
fast, for many problems such a sequence might simply not exist. In fact, characterizing the set
of problems (or at least interesting subsets thereof) that admit such a sequence is an interesting
open problem mentioned in [13]. For instance, while we do not have a proof, we do not believe that
for MIS such a sequence yielding a polylogarithmic lower bound exists. This discussion raises the
following question.

Question 3
How can we design a problem sequence satisfying the round elimination property that yields a
better lower bound than Ω(log∗ n) without restricting the problem descriptions to a constant
number of labels?

1.1 Our results

We prove the following result for deterministic algorithms.

Theorem 1. In the LOCAL model, any deterministic algorithm that solves the (2, β)-ruling set

problem requires Ω
(

min
{

log ∆
β log log ∆ , log∆ n

})
rounds, for all β ≤ c · min

{√
log ∆

log log ∆ , log∆ n
}

, for

some constant c independent of n and ∆.

By setting ∆ := 2
√
β logn log logn, we maximize our lower bound as a function of n, thereby

obtaining the following corollary.

Corollary 2. In the LOCAL model, any deterministic algorithm that solves the (2, β)-ruling set

problem requires Ω
(√

logn
β log logn

)
rounds, for all β ≤ c 3

√
logn

log logn , for some constant c independent of

n and ∆.

This settles Question 2 for all β ≤ c 3

√
logn

log logn . As any (α, β)-ruling set is also a (2, β)-ruling set

for all α > 2, Theorem 1 also holds for (α, β)-ruling sets. Moreover, since the given lower bounds
already hold on trees, we obtain the following corollary, by setting β = 1.

Corollary 3. In the LOCAL model, any deterministic algorithm that solves MIS on trees requires

Ω
(√

logn
log logn

)
rounds.

This settles Question 1. Corollaries 2 and 3 provide the first polylogarithmic lower bounds for
ruling sets, and for MIS on trees. Due to an O(log n/ log logn)-round deterministic upper bound
for MIS on trees by Barenboim and Elkin [6], and a polylogarithmic deterministic upper bound
for (2, β)-ruling sets on general graphs following from the work by Ghaffari et al. [26], the only
remaining question for the given range of β is the exponent in the polylog.

For randomized algorithms, we prove the following.

6For instance, the simplification could consist in transforming a problem with complicated constraints using a large
number of output labels into a (much easier to understand) coloring problem with a large number of colors.

5

Theorem 4. In the LOCAL model, any randomized algorithm that solves the (2, β)-ruling set problem

w.h.p.7 requires Ω
(

min
{

log ∆
β log log ∆ , log∆ log n

})
rounds, for all β ≤ c ·min

{√
log ∆

log log ∆ , log∆ log n
}

,

for some constant c independent of n and ∆.

By setting ∆ := 2
√
β log logn log log logn, we maximize our lower bound as a function of n, thereby

obtaining the following corollary.

Corollary 5. In the LOCAL model, any randomized algorithm that solves the (2, β)-ruling set

problem w.h.p. requires Ω
(√

log logn
β log log logn

)
rounds, for all β ≤ c 3

√
log logn

log log logn , for some constant c

independent of n and ∆.

Again, this bound already holds on trees and we obtain the following corollary for MIS.

Corollary 6. In the LOCAL model, any randomized algorithm that solves MIS on trees w.h.p.

requires Ω
(√

log logn
log log logn

)
rounds.

Note that Theorem 4 implies that there is no randomized algorithm that solves the (2, β)-ruling

set problem w.h.p. in t = f(∆) + g(n) rounds if f(∆) ∈ o
(

log ∆
β log log ∆

)
and g(n) ∈ o

(√
log logn

β log log logn

)
.

Hence, we obtain that the O(log ∆ + log logn/ log log log n)-round randomized upper bound for MIS
(and hence also (2, β)-ruling set) on trees by Ghaffari [22] cannot be improved substantially in both
∆ and n simultaneously, for any indicated β. Furthermore, Corollary 6 provides the first progress on
Open Problem 10.15 from the book by Barenboim and Elkin [8] (on the lower bound side), asking
for the randomized complexity of MIS on trees.

Our results are achieved by designing a sequence of problems with the round elimination property
for (2, β)-ruling sets, where the number of used labels is non-constant. More precisely, our problem
sequence will satisfy that the number of labels used in the description of problem Πi is in Θ(iβ/(β!)).
In particular, for the special case of MIS, the number of used labels grows linearly. Hence, our
construction of the problem sequence provides an answer to Question 3.

1.2 Our techniques

In order to successfully apply the round elimination technique, two main ingredients are required.
The first is finding a good problem family: we need to define some family {Πi≥0} such that the
sequence Π0 → Π1 → . . . satisfies the round elimination property and Π0 is the problem for which
we want to prove a lower bound. The second ingredient is proving that the defined sequence indeed
satisfies the desired property.

While the second ingredient is technically involved, the conceptually crucial part is the first one,
designing a good sequence of problems. Usually, when applying the round elimination technique,
finding the right problem family involves some guessing.8 For instance, in [3] the problem family
was found by trying to make each subsequent problem in the sequence look very similar to the
previous one while using the same output labels in the description (see [3, Section 3.7]). In the
case where each problem in the family can be described using a constant number of labels, there is
even very recent software available, written by Olivetti [38], that automatically searches the space
of potential problems for small ∆. Unfortunately, for the MIS problem (and for ruling sets) this

7As usual, we say that an algorithm solves a problem with high probability if the global success probability is at
least 1− 1/n.

8In rare cases the sequence suggests itself, e.g., for sinkless orientation [14] the sequence is obtained by setting
Π0 = Π1 = . . .

6

approach fails, suggesting that a constant number of labels is not sufficient. Instead, we propose a
more explicit and perhaps surprising approach to find the desired problem family, by first proving
an upper bound for the problem of interest such that the proof can be “represented” via a similar
sequence of problems.

As explained in [12, 20], the round elimination technique can also be used to find upper bounds:
Instead of finding a problem sequence with the round elimination property, i.e., with the property
that Ti+1 ≤ Ti − 1, the idea is to find a problem sequence with the property that Ti+1 ≥ Ti − 1.
This ensures that the index j of the first 0-round solvable problem Πj in the sequence (if such a
problem exists) is an upper bound for the complexity of Π0. Accordingly, we will call a sequence
satisfying Ti+1 ≤ Ti − 1 a lower bound sequence and a sequence satisfying Ti+1 ≥ Ti − 1 an upper
bound sequence. We note that the automatic sequence provided by automatic round elimination is
both a lower and an upper bound sequence since there we have Ti+1 = Ti − 1; in fact, it can be
seen as the tightest sequence with the property Ti+1 ≥ Ti − 1. In the following, we will use this
automatic sequence to informally describe the intuition behind our approach.

Intuition behind our approach In the round elimination framework, each problem is described
via a list of “allowed” configurations that specify which local output label configurations around a
node or on an edge are considered correct. As mentioned before, in the automatic sequence these
descriptions grow very fast. On the other hand, due to the nature of 0-round algorithms, it seems to
be the case that in the first (or more generally, any) 0-round solvable problem Πj only very few of
those allowed configurations are actually required for the correctness of a given 0-round algorithm.
In other words, Πj would still remain 0-round solvable if we removed a large number of the allowed
configurations; moreover, the remaining part of the problem usually has an intuitive interpretation.
Assuming that the previous problems in the automatic sequence behave similarly, we obtain the
following intuition for each problem Πi with i ≤ j:

(1) There is some small part of the problem description that has some intuitive meaning and is
relevant for solving the problem in j − i rounds, and

(2) there are additional allowed configurations that seem to be an artifact of the automatic process
that generates the sequence.

Intuitively, Part (1) can be thought of as the essence of the problem, and we argue that the
information encoded therein should suffice to prove lower bounds. Hence, we would like to restrict
attention to Part (1).

If we had a concise description of problem Πj and the complete automatic sequence leading to
Πj , it would be straightforward to extract Part (1) of each problem and thereby obtain a comparably
simple sequence Π∗0 → Π∗1 → . . . of problems. However, there are two issues: first, we do not
have feasible access to Πj and the preceding sequence (otherwise we would be done), and second,
for technical reasons, the obtained sequence is an upper bound sequence, but not a lower bound
sequence (in general), i.e., even if we had such access, the fact that Ti+1 ≤ Ti − 1 is not satisfied
prevents us from using the sequence in a lower bound proof.

To solve the second issue, we make use of so-called wildcards, a notion introduced in [3]. We
show for the case of MIS and ruling sets that, perhaps surprisingly, adding a sufficient number of
wildcards to the allowed configurations in the problems from Π∗0 → Π∗1 → . . . turns the upper bound
sequence into a lower bound sequence that is “tight enough” to yield a polylogarithmic lower bound.

Our solution to the first issue is to try to design an upper bound sequence Π′0 → Π′1 → . . .
that is as close to the desired sequence Π∗0 → Π∗1 → . . . as possible, and then work with problem
family {Π′i≥0} instead of {Π∗i≥0}. As the latter sequence is unknown, our guideline for designing

7

{Π′i≥0} will be simplicity, following the above intuition that Part (1) of each Πi (i.e., Π∗i) is small
and intuitive. A key idea in the design will be to introduce a coloring component into the MIS
and ruling set problems. Roughly speaking, the purpose of this coloring component is that, with
enough care, we can make sure that only the coloring part of the problem description grows when
we go from Π′i to Π′i+1, while the MIS (resp. ruling set) part remains unchanged. This allows us to
keep the structure of the problems in the sequence comparably simple, which in turn allows us to
determine at which point in the sequence the problems become 0-round solvable.

Essentially, our approach reduces the task of proving lower bounds to proving upper bounds,
which usually is considered to be an easier task.9 However, the designed algorithm should also
have a “simple representation” as an upper bound sequence, and this does not seem to be the
case for existing ruling set algorithms. Hence, we will design a new, genuinely different ruling set
algorithm that gives state-of-the-art upper bounds in terms of ∆ (which is the relevant dependency
for the round elimination technique, from a technical perspective) and yields a simple upper bound
sequence.

Figure 1 depicts the high level idea of what happens when using the round elimination technique
to prove upper and lower bounds by doing simplifications.

Approach To summarize, our approach works as follows. First, we prove an upper bound for
finding a (2, β)-ruling set (of which MIS is a special case) that can be represented by a comparably
simple upper bound sequence. To this end, we consider the initial problem Π0 of the sequence as
“(2, β)-ruling set with some coloring component” and then introduce more and more colors into the
problem over the course of the sequence, in a certain hierarchical manner. Second, we insert (an
increasing number of) wildcards into the problems in our sequence, and prove that this turns the
upper bound sequence into a lower bound sequence that yields a polylogarithmic lower bound.

While the individual parts of our approach are technically challenging, the approach itself is
surprisingly simple. Hence, we believe that this general approach does not only work for MIS and
ruling sets but should also be applicable to other problems; however, as it involves, e.g., finding an
upper bound proof that can be described well via a sequence of problems, obtaining new bounds
using this approach is not automatic. Moreover, we think that the idea of introducing a coloring
component into problems that do not seem to have any particular relation to coloring should be
more widely applicable; one intuitive reason is that, similar to wildcards, it gives a relatively simple
way to represent progress towards 0-round solvability in the sequence, which seems like a necessary
ingredient for designing a lower or upper bound sequence (which we can feasibly infer bounds from).

1.3 Further discussion of related work

MIS The maximal independent set problem has been widely studied in the LOCAL model.
Barenboim et al. showed that, if we also consider the dependency in ∆, MIS can be solved in
O(log2 ∆)+2O(

√
log logn) rounds [10]. Ghaffari improved this running time to O(log ∆)+2O(

√
log logn)

[22]. The MIS problem has been studied also in specific classes of graphs [6, 7, 10, 43]. For
example, for computing MIS on trees with randomized algorithms, Lenzen and Wattenhofer showed
an O(

√
log n log log n)-round algorithm [10, 33]. This was later improved by Barenboim et al. to

O(
√

log n log log n) [10], and then further improved to O(
√

log n) by Ghaffari [22]. Barenboim et al.

9While the current literature uses round elimination primarily to prove lower bounds, this statement arguably also
holds for lower/upper bounds via round elimination. One main reason is that to make a problem given in the form
specified by round elimination harder (a technique instrumental for the design of upper bound sequences), we can
simply discard allowed configurations, while to make a problem easier (instrumental for lower bound sequences), more
complicated operations have to be used.

8

T

T

Number of round elimination steps

Complexity

LB UB

Figure 1: T is the unknown complexity of some problem Π. By directly applying the round elimination
technique to Π we obtain a sequence of problems, each one being exactly one round easier than the previous
one, and after T steps we reach a 0-round solvable problem. The problems in this sequence all lie on the grey
line. Unfortunately, it is often practically not feasible to compute such a sequence. In order to prove lower
bounds, we can try to relax the obtained problems to problems with simpler descriptions, and in some cases
the simplified problems may become strictly easier. This is depicted in the orange lower bound sequence,
and the obtained lower bound is given by the value of the horizontal axis where the orange line intersects
it. Similarly, we may lose precision also in an upper bound sequence, depicted in blue, where we simplify
problems in a manner that makes them potentially harder.

also showed that MIS on trees can be solved in O(log ∆ log log ∆ + log log n/ log log log n) rounds
[10]. Ghaffari later improved this bound to O(log ∆ + log log n/ log log log n) rounds [22].

While all the above algorithms are randomized, Panconesi and Srinivasan provided a deterministic
algorithm for solving MIS in 2O(

√
logn) rounds [40]. Later, Barenboim, Elkin and Kuhn showed an

O(∆ + log∗ n)-round algorithm [9]. Very recently, Rozhoň and Ghaffari proved that MIS can be
solved deterministically in poly(log n) rounds [42]. Meanwhile, the exponent of the polylog has been
improved by Ghaffari et al. [26]. The MIS problem has been studied also in the CONGEST10 model
(e.g., see [23, 24]).

Ruling sets Ruling sets have been introduced by Awerbuch et al. [2], where the authors showed
how to construct (α,O(α log n))-ruling sets in O(α log n) deterministic rounds in the LOCAL model.
Since then, there have been several works in this direction both in the deterministic and randomized
setting. As far as deterministic algorithms are concerned, Schneider, Elkin, and Wattenhofer showed
how to get (2, β)-ruling sets in O(β∆2/β + log∗ n) rounds in the LOCAL model [45]. It is then
easy to obtain an (α, (α− 1)β)-ruling set of a graph G in the LOCAL model by just computing a
(2, β)-ruling set on the power graph Gα−1.

If randomness is allowed, Gfeller and Vicari showed how to compute a version of (1, O(log log ∆))-

10The CONGEST model is the same as the LOCAL model with the difference that in CONGEST the size of the
messages is bounded by O(logn) bits. We refer the reader to Section 2.1 for more details on these models.

9

ruling sets where each node in the ruling set is allowed to have at most O(log5 n) neighbors also
in the ruling set, in O(log log ∆) rounds [21], and by then applying the algorithm of [45] on the
graph induced by selected nodes, we can obtain an algorithm for (2, log logn)-ruling sets running
in O(log log n) time. Kothapalli and Pemmaraju showed how to compute (2, 2)-ruling sets in

O
(

log ∆
(logn)ε + (log n)1/2+ε

)
rounds, for any ε > 0 [30]. One year later, Bisht, Kothapalli, and

Pemmaraju provided a sparsifying procedure that can be used, together with some MIS algorithm,
to obtain (2, β)-ruling sets (in a runtime that depends on the respective MIS algorithm) [11]. For
instance, by combining this sparsifying procedure with the MIS algorithm by Barenboim et al. [10], a
(2, β)-ruling set can be computed in O(β log1/(β−1/2) ∆)+2O(

√
log logn) rounds. By using the improved

MIS algorithm by Ghaffari [22] instead, we obtain a runtime of O(β log1/β ∆) + 2O(
√

log logn) rounds,
which can in turn be improved to O(β log1/β ∆) + poly(log log n) rounds by making use of the
poly(log n)-round network decomposition algorithm by Rozhoň and Ghaffari [42]. Ruling sets have
been investigated also in the more restrictive CONGEST model (e.g., see [28, 32, 39]).

2 Background

2.1 Model

The LOCAL model The model of computation used in this paper is the widely studied LOCAL
model of distributed computing [41]. In this model, each node of the input graph has a unique
identifier from 1 to poly n, and the computation proceeds in synchronous rounds. At each round,
each node can send a message of arbitrary size to each neighbor, and, after receiving the messages
from its neighbors, perform some local computation of arbitrary complexity. In the LOCAL model,
each node knows initially its unique identifier and its degree. As commonly done in this context,
we also assume that each node knows the number of nodes n in the graph (or a polynomial upper
bound of it) and the maximum degree ∆. Clearly, this can make the task of proving lower bounds
only harder. Each node executes the same algorithm (which is what we call a distributed algorithm),
and each node has to terminate at some point and then output its local part of the global solution,
e.g., in the case of MIS whether the node is in the MIS or not. The runtime of such a distributed
algorithm is the number of synchronous rounds until the last node terminates. In the randomized
version of the LOCAL model, each node additionally has access to a stream of private random bits.
We will study Monte Carlo algorithms that solve the desired problem with high probability, that is,
the global success probability must be at least 1− 1/n.

Another well-studied model in the area of distributed computing is the CONGEST model [41],
which is defined as the LOCAL model with the only difference that the size of each message sent
between the nodes is restricted to O(log n) bits. As the CONGEST model is strictly weaker than
the LOCAL model, our lower bounds hold also in the CONGEST model.

The Port Numbering model Our results hold in the LOCAL model of distributed computing,
however, for technical reasons we pass through the Port Numbering (PN) model, in the sense that
we first show how to obtain our results in the PN model, and then lift them to the LOCAL model.
The PN model is a variant of the LOCAL model where nodes do not have identifiers, but each
node v has an internal ordering of its incident edges given by an arbitrary assignment of (pairwise
distinct) so-called port numbers from 1 to deg(v) to the edges. This model is also synchronous, and,
as in the LOCAL model, the size of the messages and the computational power of each node is not
bounded. In the randomized version of the PN model, each node has access to a stream of private
random bits and we require that randomized algorithms succeed with high probability.

10

To be able to apply the round elimination framework, we also need that edges have port numbers;
in other words, we assume that an orientation of the edges is given. However, this is just a technical
detail that does not have any effect on our argumentation, and as such we will ignore it in the
following.11 Note that, in the LOCAL model, such an edge orientation can be obtained from
the unique identifiers in one round; therefore also the presented upper bounds do not change
asymptotically if we assume that an edge orientation is given.

2.2 Problems

In the round elimination framework a problem is characterized by an alphabet Σ of labels, a node
constraint N and an edge constraint E . We will only consider problems defined on ∆-regular graphs
in this formalism, since, as we will later see, this is enough for our purposes. The node constraint
N is a collection of words of length ∆ over the alphabet Σ, and the edge constraint E is a collection
of words of length 2 over Σ. The same label can appear several times in a word and the order of the
elements that compose a word does not matter, hence each word technically is a multiset. We call a
word in N a node configuration and a word in E an edge configuration.

Let G = (V,E) be our input graph and let A = {(v, e) ∈ V ×E | v ∈ e} be the set that contains
all pairs (node, incident edge). The output for a problem in this formalism is given by a labeling
of each (v, e) ∈ A with one element from Σ. Put otherwise, each node has to output an element
of the set Σ on each incident edge. We say that such an output is correct if it satisfies N and E ,
i.e., for each node v′ ∈ V , the collection of ∆ output labels assigned to the (v, e) ∈ A with v = v′ is
a node configuration listed in N , and for each edge e′ ∈ E, the two output labels assigned to the
(v, e) with e = e′ is an edge configuration listed in E .

We use regular expressions to represent (collections of) node and edges configurations. For
example, the expression PO∆−1 describes a node configuration that consists of exactly one label P
and ∆−1 labels O. Similarly, the expression M[PO] describes a collection of edge configurations that
consists of one label M and the other label can be either P or O, i.e., M[PO] = {MP,MO}. We call
a part of an expression such as [PO], where we have a choice between different labels, a disjunction.
While technically an expression containing a disjunction describes a set of configurations, we will use
the term configuration also for such an expression, for simplicity. In order to explicitly specify that
the expression contains a disjunction, we will use the term condensed configuration. Moreover, we
will say that a configuration is contained in a condensed configuration if we can obtain the former
from the latter by picking a choice in each disjunction.

With a few exceptions, all problems from a large class of problems of interest in the LOCAL
model, so-called locally checkable problems, can be described in this formalism. A locally checkable
problem is simply a problem for which the correctness of a solution can be verified by checking
whether the O(1)-hop neighborhood of each node is locally correct. For technical reasons, locally
checkable problems whose definitions involve small cycles (such as determining for each node whether
it is contained in a triangle) cannot be described in the above formalism. For example, consider the
triangle-detection problem, and consider a graph G that is a triangle. Assume for a contradiction
that there is an alphabet Σ, and node and edge constraints, satisfying that a graph can be labeled
correctly if and only if it contains a triangle. Consider a valid labeling for G. We can construct
a 6-cycle H satisfying that each node and edge configuration that appears in H also appears in

11For the interested reader, we note that the edge orientations are (only) required in the proof of the round
elimination theorem [12, Theorem 1, arxiv version], i.e., in the proof of the statement asserting that a problem Π1

constructed in a fixed deterministic manner from a given problem Π0 has a complexity of precisely 1 round less than
Π0. Conveniently, given the theorem, to prove a lower bound, only the mentioned construction is relevant, allowing us
to ignore, e.g., the edge orientations needed for the theorem to hold.

11

G (that is, H is a lift of G). Hence, the labeling is valid, even if H does not contain any triangle,
contradicting the correctness of the labeling. Hence, for simplicity, in the remainder of the paper we
will use the term “locally checkable” for (locally checkable) problems that are not of this kind.

In the following we present two examples highlighting how we arrive at the description of a
problem in the new formalism. In Section 3.2, we will show more formally that the given descriptions
capture the MIS and ruling set problems.

Example: MIS Let us see, for example, how we can describe the MIS problem in this formalism.
We define Σ = {M,P,O}. We will use the node constraint to represent whether a node is in the
independent set or not. Nodes that are in the independent set must output the label M (as in “in
the MIS”) on all incident edges. For nodes that are not in the independent set, we have to make
sure that at least one neighbor is in the independet set. To this end, we require that nodes that
are not in the independent set point to a neighbor that is in the independent set, thereby ensuring
maximality. In other words, these nodes must output a label P (as in “pointer”) on exactly one
incident edge and the label O (as in “other”) on all the other ∆− 1 incident edges. Now the edge
constraint must guarantee that no two neighbors are in the MIS, hence MM /∈ E , and that a pointer
points to a node that is in the MIS, hence PM ∈ E , but PP /∈ E , and PO /∈ E . In order to capture
the situation where a node not in the MIS has several neighbors in the MIS, we must allow MO ∈ E .
Also, since two nodes not in the MIS may be neighbors, OO ∈ E . This leads to the following formal
definition of the node and edge constraint.

N :

M∆

PO∆−1

E :

M[PO]

OO

Example: (2,2)-ruling set In order to encode the (2, 2)-ruling set problem we need to use a
larger set of labels compared to the one used for the MIS problem. Let Σ = {M,P1,P2,O1,O2}.
Intuitively, similarly as before, the M label can be seen as the “I am in the ruling set” label, while
the labels P1 and P2 are “pointer” labels that are used to point to nodes in the ruling set and
to nodes that are at distance 1 from a node in the ruling set. Notice that, as a (2, 1)-ruling set
(i.e., MIS) solves the (2, 2)-ruling set problem, the encoding of the (2, 2)-ruling set problem will
contain the node and edge configurations of the MIS problem. For instance, a node in the ruling set
will output M∆. Nodes at distance 1 from a node in the ruling set may output either P1O

∆−1
1 or

P2O
∆−1
2 , but those at distance 2 must output P2O

∆−1
2 . On the edge side, we must guarantee that,

for any pair of nodes in the ruling set, they do not share an edge, hence MM /∈ E . Also, a pointer of
type 1 must point to a node in the ruling set, while a pointer of type 2 must point to a node at
distance at most 1 from a node in the ruling set, hence M[P1P2] ∈ E and O1P2 ∈ E . On the other
hand, we want to forbid bad pointing. In fact, nodes at distance 1 from a node in the ruling set
must not be able to point to a node that is not in the ruling set, hence P1 [O1O2P1P2] /∈ E . Also,
nodes at distance 2 from a node in the ruling set must not point to another node that is at distance
2 as well, hence P2 [O2P2] /∈ E . More precisely, the (2, 2)-ruling set problem can be encoded in the
formalism as follows.

12

N :

M∆

P1O
∆−1
1

P2O
∆−1
2

E :

M[P1O1P2]

O1 [O1O2P2]

O2O2

(1)

2.3 Round elimination

In our proofs, we will use the result of [12, Theorem 4.3], that is at the core of the round elimination
technique. On a high level, this theorem says that, on ∆-regular high-girth graphs, given a locally
checkable problem Π with time complexity T , there exists a locally checkable problem Π′′ with time
complexity T − 1. The procedure of showing this theorem goes through an intermediate problem,
that we call Π′. Given Π, Brandt [12] shows how to construct first Π′ and then Π′′. We will formally
define these problems and then we will see an example where we compute Π′ and Π′′ starting from
a specific problem Π. Let ΣΠ, NΠ, and EΠ be the alphabet of labels, the node constraint, and the
edge constraint for problem Π, respectively.

Problem Π′ In order to define problem Π′, we must define the alphabet ΣΠ′ , the node constraint
NΠ′ , and the edge constraint EΠ′ .

• ΣΠ′ : The set of labels for Π′ is the set of all non-empty subsets of ΣΠ, i.e., ΣΠ′ = 2ΣΠ \ {{}}.

• EΠ′ : We construct the edge constraint in the following way. Consider a configuration A1A2,
where A1,A2 ∈ ΣΠ′ , such that, for all (a1, a2) ∈ A1×A2, it holds that a1a2 ∈ EΠ (notice that, by
construction of ΣΠ′ , it holds that a1, a2 ∈ ΣΠ). Let A be the collection of all such configurations.
We call a configuration A1A2 ∈ A non-maximal if there exists another configuration A′1A

′
2 ∈ A

such that Ai ⊆ A′i for all i ∈ {1, 2}, and Ai (A′i for at least one i ∈ {1, 2}. In other words, if we
have a configuration A′1A

′
2 ∈ A that is obtained from A1A2 by adding at least one element to

at least one of A1 and A2, then we say that A1A2 is non-maximal. We delete all non-maximal
configurations from S, and what remains is our set EΠ′ of configurations.

• NΠ′ : Consider a configuration B1B2 . . . B∆ where Bi ∈ ΣΠ′ for all i ∈ {1, . . . ,∆}, such that
there exists a tuple (b1, . . . , b∆) ∈ B1 × . . .× B∆ such that b1b2 . . . b∆ ∈ NΠ. Let B be the
collection of all such configurations. We delete from the set B all configurations that contain
some set Bi that does not appear in any configuration in EΠ′ . The modified set B is our set
NΠ′ .

For simplicity, we can (and will) assume that all labels that occur neither in EΠ′ , nor in NΠ′ , are
also removed from ΣΠ′ .

Problem Π′′ Similarly as before, we need to define the alphabet ΣΠ′′ , the node constraint NΠ′′ ,
and the edge constraint EΠ′′ .

• ΣΠ′′ : The set of labels for Π′′ is the set of all non-empty subsets of ΣΠ′ , i.e., ΣΠ′′ = 2ΣΠ′ \{{}}.

• NΠ′′ : The node constraint is constructed as follows. Consider a configuration B1B2 . . . B∆

where Bi ∈ ΣΠ′′ for all i ∈ {1, . . . ,∆}, such that for all (b1, . . . , b∆) ∈ B1 × . . .× B∆ it holds
that b1b2 . . . b∆ ∈ NΠ′ . Let B be the collection of all such configurations. We delete from B
all non-maximal configurations, i.e., all those configurations B1 . . . B∆ such that there exists

13

some other configuration B′1 . . . B
′
∆ that is obtained from the former by adding at least one

element to at least one of the Bi sets. After performing these deletions, we set NΠ′′ = B.

• EΠ′′ : Consider a configuration A1A2, where A1,A2 ∈ ΣΠ′′ , such that there exists a pair
(a1, a2) ∈ A1 × A2 such that a1a2 ∈ EΠ′ . Let A be the collection of all such configurations. We
delete from the set A all configurations that contain some set A1 or A2 that does not appear
in any configuration in NΠ′′ , then we set EΠ′′ = A.

Again, we can (and will) assume that all labels that occur neither in NΠ′′ , nor in EΠ′′ , are also
removed from ΣΠ′′ .

As Π′ is uniquely defined by Π, we can define a function R(·) that takes Π as input and returns
Π′. Similarly, as Π′′ is uniquely defined by Π′, we can define a function R(·) that takes Π′ as input
and returns Π′′. With these definitions, we have Π′′ = R(R(Π)). Note that R(·) can take any
problem as input that is of the form specified by round elimination—it is not necessary that the
input problem has been obtained by applying R(·) to some problem.

Now [12, Theorem 4.3] provides the following relation between a problem Π and R(R(Π)) that
provides the fundament for automatic round elimination. For technical reasons, the theorem itself
only holds in the port numbering model, but we will show later how to lift the obtained bounds to
the LOCAL model.

Theorem 7 ([12], rephrased). Let T > 0. Consider a class G of graphs12 with girth at least 2T + 2,
and some locally checkable problem Π. Then, there exists an algorithm that solves problem Π on G
in T rounds if and only if there exists an algorithm that solves problem R(R(Π)) in T − 1 rounds.

In more technical detail, for any pair (n,∆), Theorem 7 holds for graph classes G = G(n,∆)
consisting of n-node graphs with maximum degree ∆ and girth at least T = T (n,∆) > 0. However,
for simplicity, we will usually omit the dependency on n and ∆. We note that Theorem 7 also holds
if we add a proper input vertex coloring to the setting. Moreover, we will assume that the input
graphs satisfy the given girth requirement whenever we apply Theorem 7. In Section 7, we will see
how this requirement affects the obtained bounds.

An interesting fact that we have not seen mentioned in [12] (or any other work) is that the
equivalence breaks only in one direction when we go from high-girth graphs to general graphs: it is
straightforward to go through the proof of [12, Theorem 4.3] and check that even on general graphs,
Π can be solved in 1 round given a solution to R(R(Π)).13 In other words, R(R(Π)) is at most one
round faster solvable than Π. Hence, any upper bound achieved via automatic round elimination
holds on general graphs, both in the port numbering model and the LOCAL model (as the latter is
a stronger model). In particular, this is true for our upper bounds for ruling sets.

Example: sinkless orientation Let Π be the sinkless orientation problem, where the goal is to
consistently orient edges such that no node is a sink. In this example, we will see how to encode
sinkless orientation in the round elimination framework, and we will see what the problems R(Π)
and R(R(Π)) look like.

12Technically, the class of graphs has to satisfy a certain property, called t-independence in [12], but since it is
straightforward to check that our considered class of ∆-regular high-girth graphs satisfies this property, we omit this
detail.

13Roughly speaking, the output of a node in a correct solution for R(R(Π)) is a collection of sets of sets of output
labels for Π, and a node can infer a correct solution for Π from it by collecting the outputs of the adjacent nodes and
then choosing output labels from the seen sets in a certain manner. As the topology of the graph does not enter the
argumentation, the obtained 1-round transformation holds on general graphs.

14

The sinkless orientation problem can be encoded using two labels. So, let the set of labels be
ΣΠ = {I,O}. If a node outputs label I in one the endpoint of one of the incident edges, it can be
interpreted as that edge being incoming. Similarly, if the label is O, that would indicate an outgoing
edge. Hence, on the node side, we want that each node has the label O on at least one of its incident
edges. On the edge side, we want each edge to be consistently oriented, hence if in one endpoint it
has the label I, in the other endpoint there must be the label O, and vice versa. More precisely, our
problem Π is the following.

NΠ: O[IO]∆−1

EΠ: IO

Let Π′ = R(Π). By definition, ΣΠ′ = 2ΣΠ = {{I}, {O}, {I,O}}. Next we should define the edge
constraint, where we want all configurations of the form S1S2 such that, for any choice in S1 and
for any choice in S2 we obtain a configuration in EΠ. Also, we want to eliminate all non-maximal
configurations. Before going to that, for simplicity of the presentation, in order to avoid writing set
of sets, let us rename the labels of ΣΠ′ in the following way: {I} 7→ I , {O} 7→ O , and {I,O} 7→ IO .
Now we can define the edge constraint. We must satisfy the universal quantification specified in
the definition of EΠ′ , which means that we must forbid configurations that may result in II or OO,
hence EΠ′ : I O . The node constrant must satisfy an existential and all configurations must not
use labels that do not appear in EΠ′ . In other words, we want to be able to pick at least one O,
hence something like [O IO][I O IO]∆−1 would do, but since IO does not appear in EΠ′ , we get
NΠ′ : O [I O]∆−1. So, problem Π′ = R(Π) is the following.

EΠ′ : I O

NΠ′ : O [I O]∆−1

Now we are ready to define problem Π′′ = R(R(Π)) which, by Theorem 7, we know that is
exactly one round faster solvable than the sinkless orientation problem. By definition ΣΠ′′ = 2ΣΠ′ =
{{ I }, { O }, { I , O }}. Again, in order to avoid writing set of sets, let us rename the labels of ΣΠ′′

as follows: { O } 7→ O, { I } 7→ I′ (as in “the non-maximal set that contains the I label”), and
{ I , O } 7→ I. We must first define the node constraint, that must satisfy a universal quantifier. We
want to avoid that there is the label I in each of the ∆ positions, since in that case the configuration
I ∆ would be possible, but it is not allowed in NΠ′ . The configuration that satisfies this condition is
O[II′O]∆−1, and after removing the non-maximal sets, we have NΠ′′ : OI∆−1. For the edge constraint
we must satisfy an existential, hence on one side we can have all labels that contain I , while on the
other all labels that contain O . The configuration that satisfies this is [IO][I′I], but since I′ is not
used in the set NΠ′′ , we have that EΠ′′ : I[IO]. Hence, the problem Π′′ = R(R(Π)) that is exactly
one round faster solvable that the sinkless orientation one is:

NΠ′′ : OI∆−1

EΠ′′ : I[IO]
(2)

Relations between labels For computing R(Π) or R(Π), given some problem Π, it will be very
useful to relate the labels used in Π to each other according to their “usefulness” in satisfying the
edge constraint EΠ (resp. the node constraint NΠ).

Let A and B be labels from ΣΠ with the following property: for each edge configuration in EΠ

containing A, replacing one occurrence of A in that configuration by B again results in a configuration
in EΠ. Then we say that B is at least as strong as A according to EΠ and, equivalently that A is

15

at least as weak as B according to EΠ. We may omit the reference constraint if it is clear from
context. Moreover, if B is at least as strong as A, but A is not at least as strong as B, we say that
B is stronger than A, and A is weaker than B. For example, consider the aforementioned problem
Π′′ = R(R(Π)) where Π is sinkless orientation. Recall that the edge constraints are I[IO]. We can
say that label I is stronger than label O (and equivalently, label O is weaker than label I), since, for
each edge configuration, replacing one occurrence of O with I results in a configuration that is still
allowed. We also define the analogous notions for node constraints.

It is helpful to illustrate the strengths of labels via diagrams. The edge diagram of a problem Π
is a directed graph where the nodes are the labels in ΣΠ and we have an edge from some label A to
some label B if B 6= A, B is at least as strong as A, and there exists no label Z ∈ ΣΠ such that B is
stronger than Z and Z is stronger than A, all according to EΠ. The latter condition simply ensures
that we only illustrate “irreducible” strength relations, i.e., none that can be decomposed into
“smaller” strength relations. We define the node diagram of a problem Π analogously, by considering
the strengths of labels according to NΠ. For examples of such diagrams, see Figures 2 and 3.

Note that the definition of strength implies that the diagrams do not contain directed cycles
of length greater than 2, and cycles of length 2 appear exactly between all pairs of labels of equal
strength. In particular, if there are no pairs (A,B) of labels such that A is stronger than B and vice
versa, the respective diagram will be a directed acyclic (not necessarily connected) graph.

Additional Notation While the above notions are already known from [3, 12, 13], we now
introduce some useful new notation. For a set {A1, . . . ,Ap} ⊆ ΣΠ of labels, we denote by 〈A1, . . . ,Ap〉
the set of all labels from ΣΠ that are at least as strong as at least one of the Ai. In other words,
we can read 〈A1, . . . ,Ap〉 off of the respective diagram by collecting each Ai together with all its
successors. Technically, for the definition of 〈〉, we need to specify whether the label strengths are
considered w.r.t. NΠ or EΠ. However, whenever we consider 〈〉, the labels that 〈〉 takes as arguments
will either come from (the alphabet of) a problem that we (are about to) apply the function R(·) to,
or a problem that we apply the function R(·) to. In the former case, we will always consider 〈〉 w.r.t.
the edge constraint of the considered problem, and in the latter case w.r.t the node constraint. In
particular, in the context of computing R(R(Π)) for some problem Π, we will consider expressions
such as 〈〈A〉〉 (where A ∈ ΣΠ), which represents a set of sets of labels from ΣΠ; here the inner 〈〉 is
taken w.r.t. the edge constraint of Π, and the outer 〈〉 w.r.t. the node constraint of R(Π).

Example Let Π be the maximal independent set problem, which we can express in the round
elimination formalism as follows.

NΠ: M∆

PU∆−1

EΠ: M[PU]

UU

A node in the MIS outputs M∆. Otherwise, if a node is not in the MIS it must output P on one
incident edge and U on all the others. The edge constraint implies that a node in the MIS can accept
a pointer label P or label U. Also, since P is only compatible with M, each node not in the MIS can
use label P only for pointing to a neighbor in the MIS. Moreover UU is allowed since two nodes not
in the MIS may be neighbors. The relations between the strengths of the labels in ΣΠ is shown in
the edge diagram of Π, given in Figure 2. Expressions in 〈〉 notation can be easily read from the
edge diagram; for instance, we have 〈M〉 = {M}, 〈P〉 = {P,U}, 〈U〉 = {U} 〈M,P〉 = {M,P,U}.

16

M
<latexit sha1_base64="QrZ8UL0PDAs82DGs3f+1jSfTCUw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkqqLuCGzdCBfvAtpRMeqcNzWSGJCOUoX/hxoUibv0bd/6N6XQW2nogcDjnXnLu8WPBtXHdb2dldW19Y7OwVdze2d3bLx0cNnWUKIYNFolItX2qUXCJDcONwHaskIa+wJY/vpn5rSdUmkfywUxi7IV0KHnAGTVWeuyG1Ix0kN5N+6WyW3EzkGXi5aQMOer90ld3ELEkRGmYoFp3PDc2vZQqw5nAabGbaIwpG9MhdiyVNETdS7PEU3JqlQEJImWfNCRTf2+kNNR6Evp2Mku46M3E/7xOYoKrXsplnBiUbP5RkAhiIjI7nwy4QmbExBLKFLdZCRtRRZmxJRVtCd7iycukWa1455Xq/UW5dp3XUYBjOIEz8OASanALdWgAAwnP8ApvjnZenHfnYz664uQ7R/AHzucP1IOQ/Q==</latexit>

M
<latexit sha1_base64="QrZ8UL0PDAs82DGs3f+1jSfTCUw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkqqLuCGzdCBfvAtpRMeqcNzWSGJCOUoX/hxoUibv0bd/6N6XQW2nogcDjnXnLu8WPBtXHdb2dldW19Y7OwVdze2d3bLx0cNnWUKIYNFolItX2qUXCJDcONwHaskIa+wJY/vpn5rSdUmkfywUxi7IV0KHnAGTVWeuyG1Ix0kN5N+6WyW3EzkGXi5aQMOer90ld3ELEkRGmYoFp3PDc2vZQqw5nAabGbaIwpG9MhdiyVNETdS7PEU3JqlQEJImWfNCRTf2+kNNR6Evp2Mku46M3E/7xOYoKrXsplnBiUbP5RkAhiIjI7nwy4QmbExBLKFLdZCRtRRZmxJRVtCd7iycukWa1455Xq/UW5dp3XUYBjOIEz8OASanALdWgAAwnP8ApvjnZenHfnYz664uQ7R/AHzucP1IOQ/Q==</latexit>

P
<latexit sha1_base64="jP6al2cR31P5a7A8n5ro4EcL72o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQd0V3LisYB/YlpJJ77ShmcyQZIQy9C/cuFDErX/jzr8xnc5CWw8EDufcS849fiy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJYthkkYhUx6caBZfYNNwI7MQKaegLbPuT27nffkKleSQfzDTGfkhHkgecUWOlx15IzVgHaWM2KFfcqpuBrBIvJxXI0RiUv3rDiCUhSsME1brrubHpp1QZzgTOSr1EY0zZhI6wa6mkIep+miWekTOrDEkQKfukIZn6eyOlodbT0LeTWcJlby7+53UTE1z3Uy7jxKBki4+CRBATkfn5ZMgVMiOmllCmuM1K2JgqyowtqWRL8JZPXiWtWtW7qNbuLyv1m7yOIpzAKZyDB1dQhztoQBMYSHiGV3hztPPivDsfi9GCk+8cwx84nz/ZEpEA</latexit>

P
<latexit sha1_base64="jP6al2cR31P5a7A8n5ro4EcL72o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQd0V3LisYB/YlpJJ77ShmcyQZIQy9C/cuFDErX/jzr8xnc5CWw8EDufcS849fiy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJYthkkYhUx6caBZfYNNwI7MQKaegLbPuT27nffkKleSQfzDTGfkhHkgecUWOlx15IzVgHaWM2KFfcqpuBrBIvJxXI0RiUv3rDiCUhSsME1brrubHpp1QZzgTOSr1EY0zZhI6wa6mkIep+miWekTOrDEkQKfukIZn6eyOlodbT0LeTWcJlby7+53UTE1z3Uy7jxKBki4+CRBATkfn5ZMgVMiOmllCmuM1K2JgqyowtqWRL8JZPXiWtWtW7qNbuLyv1m7yOIpzAKZyDB1dQhztoQBMYSHiGV3hztPPivDsfi9GCk+8cwx84nz/ZEpEA</latexit>

U
<latexit sha1_base64="koF3N2eHsbLiPluGYajv/gq+oTk=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OKxgtsW26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvTLd70NaBwDDzHpk3YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknt3O/80SVZlI8mGlCgxiPBIsYwcZKj/0Ym7GOMn82qNbcupsDrRKvIDUo0BpUv/pDSdKYCkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUCx1QHWZ54hs6sMkSRVPYJg3L190aGY62ncWgn84TL3lz8z+ulJroOMiaS1FBBFh9FKUdGovn5aMgUJYZPLcFEMZsVkTFWmBhbUsWW4C2fvErajbp3UW/cX9aaN0UdZTiBUzgHD66gCXfQAh8ICHiGV3hztPPivDsfi9GSU+wcwx84nz/gq5EF</latexit>

U
<latexit sha1_base64="koF3N2eHsbLiPluGYajv/gq+oTk=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OKxgtsW26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvTLd70NaBwDDzHpk3YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknt3O/80SVZlI8mGlCgxiPBIsYwcZKj/0Ym7GOMn82qNbcupsDrRKvIDUo0BpUv/pDSdKYCkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUCx1QHWZ54hs6sMkSRVPYJg3L190aGY62ncWgn84TL3lz8z+ulJroOMiaS1FBBFh9FKUdGovn5aMgUJYZPLcFEMZsVkTFWmBhbUsWW4C2fvErajbp3UW/cX9aaN0UdZTiBUzgHD66gCXfQAh8ICHiGV3hztPPivDsfi9GSU+wcwx84nz/gq5EF</latexit>

Figure 2: Relations between the strengths of the labels of the MIS problem: label U is stronger than P, while
there is no relation between label M and labels P or U.

Now, let Π′ = R(Π), and consider the following mapping: {U} 7→ U , {M} 7→ M , {M,U} 7→ MU ,
{P,U} 7→ PU . The edge and node constraint of Π′ are as follows.

EΠ′ : U MU

M PU

NΠ′ : [M MU]∆

PU [U MU PU]∆−1

The node diagram of Π′, representing the relations of the strengths of the labels in ΣΠ′ , is depicted
in Figure 3. Regarding the 〈〈〉〉 notation, we obtain, for instance, that 〈〈M〉〉 = 〈 M 〉 = { M , MU } =
{{M}, {M,U}}, 〈〈U〉〉 = 〈 U 〉 = { U , MU , PU } = {{U}, {M,U}, {P,U}}, 〈〈M,U〉〉 = 〈 MU 〉 =
{ MU } = {{M,U}}, 〈〈P〉〉 = 〈 PU 〉 = { PU } = {{P,U}}.

M
<latexit sha1_base64="QrZ8UL0PDAs82DGs3f+1jSfTCUw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkqqLuCGzdCBfvAtpRMeqcNzWSGJCOUoX/hxoUibv0bd/6N6XQW2nogcDjnXnLu8WPBtXHdb2dldW19Y7OwVdze2d3bLx0cNnWUKIYNFolItX2qUXCJDcONwHaskIa+wJY/vpn5rSdUmkfywUxi7IV0KHnAGTVWeuyG1Ix0kN5N+6WyW3EzkGXi5aQMOer90ld3ELEkRGmYoFp3PDc2vZQqw5nAabGbaIwpG9MhdiyVNETdS7PEU3JqlQEJImWfNCRTf2+kNNR6Evp2Mku46M3E/7xOYoKrXsplnBiUbP5RkAhiIjI7nwy4QmbExBLKFLdZCRtRRZmxJRVtCd7iycukWa1455Xq/UW5dp3XUYBjOIEz8OASanALdWgAAwnP8ApvjnZenHfnYz664uQ7R/AHzucP1IOQ/Q==</latexit>

M
<latexit sha1_base64="QrZ8UL0PDAs82DGs3f+1jSfTCUw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkqqLuCGzdCBfvAtpRMeqcNzWSGJCOUoX/hxoUibv0bd/6N6XQW2nogcDjnXnLu8WPBtXHdb2dldW19Y7OwVdze2d3bLx0cNnWUKIYNFolItX2qUXCJDcONwHaskIa+wJY/vpn5rSdUmkfywUxi7IV0KHnAGTVWeuyG1Ix0kN5N+6WyW3EzkGXi5aQMOer90ld3ELEkRGmYoFp3PDc2vZQqw5nAabGbaIwpG9MhdiyVNETdS7PEU3JqlQEJImWfNCRTf2+kNNR6Evp2Mku46M3E/7xOYoKrXsplnBiUbP5RkAhiIjI7nwy4QmbExBLKFLdZCRtRRZmxJRVtCd7iycukWa1455Xq/UW5dp3XUYBjOIEz8OASanALdWgAAwnP8ApvjnZenHfnYz664uQ7R/AHzucP1IOQ/Q==</latexit>

MU
<latexit sha1_base64="0KBlC5T/+NZ92bO2xpm5F99IJCo=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OJFqOC2hW0p2TTbhmaTJckKZenP8OJBEa/+Gm/+G9PtHrR1IDDMvEfmTZhwpo3rfjultfWNza3ydmVnd2//oHp41NYyVYT6RHKpuiHWlDNBfcMMp91EURyHnHbCye3c7zxRpZkUj2aa0H6MR4JFjGBjpaAXYzPWUXbvzwbVmlt3c6BV4hWkBgVag+pXbyhJGlNhCMdaB56bmH6GlWGE01mll2qaYDLBIxpYKnBMdT/LI8/QmVWGKJLKPmFQrv7eyHCs9TQO7WQecdmbi/95QWqi637GRJIaKsjioyjlyEg0vx8NmaLE8KklmChmsyIyxgoTY1uq2BK85ZNXSbtR9y7qjYfLWvOmqKMMJ3AK5+DBFTThDlrgAwEJz/AKb45xXpx352MxWnKKnWP4A+fzB35YkVw=</latexit>

MU
<latexit sha1_base64="0KBlC5T/+NZ92bO2xpm5F99IJCo=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OJFqOC2hW0p2TTbhmaTJckKZenP8OJBEa/+Gm/+G9PtHrR1IDDMvEfmTZhwpo3rfjultfWNza3ydmVnd2//oHp41NYyVYT6RHKpuiHWlDNBfcMMp91EURyHnHbCye3c7zxRpZkUj2aa0H6MR4JFjGBjpaAXYzPWUXbvzwbVmlt3c6BV4hWkBgVag+pXbyhJGlNhCMdaB56bmH6GlWGE01mll2qaYDLBIxpYKnBMdT/LI8/QmVWGKJLKPmFQrv7eyHCs9TQO7WQecdmbi/95QWqi637GRJIaKsjioyjlyEg0vx8NmaLE8KklmChmsyIyxgoTY1uq2BK85ZNXSbtR9y7qjYfLWvOmqKMMJ3AK5+DBFTThDlrgAwEJz/AKb45xXpx352MxWnKKnWP4A+fzB35YkVw=</latexit>

PU
<latexit sha1_base64="ylMyKkWb9EctvmsNq0lBLXk3E24=">AAAB8nicbVBNSwMxFMz6WetX1aOXYBE8ld0qqLeCF48V3LawXUo2zbah2WRJ3gpl6c/w4kERr/4ab/4b0+0etHUgMMy8R+ZNlApuwHW/nbX1jc2t7cpOdXdv/+CwdnTcMSrTlPlUCaV7ETFMcMl84CBYL9WMJJFg3WhyN/e7T0wbruQjTFMWJmQkecwpASsF/YTA2MR5258NanW34RbAq8QrSR2VaA9qX/2holnCJFBBjAk8N4UwJxo4FWxW7WeGpYROyIgFlkqSMBPmReQZPrfKEMdK2ycBF+rvjZwkxkyTyE4WEZe9ufifF2QQ34Q5l2kGTNLFR3EmMCg8vx8PuWYUxNQSQjW3WTEdE00o2JaqtgRv+eRV0mk2vMtG8+Gq3rot66igU3SGLpCHrlEL3aM28hFFCj2jV/TmgPPivDsfi9E1p9w5QX/gfP4AguqRXw==</latexit>

PU
<latexit sha1_base64="ylMyKkWb9EctvmsNq0lBLXk3E24=">AAAB8nicbVBNSwMxFMz6WetX1aOXYBE8ld0qqLeCF48V3LawXUo2zbah2WRJ3gpl6c/w4kERr/4ab/4b0+0etHUgMMy8R+ZNlApuwHW/nbX1jc2t7cpOdXdv/+CwdnTcMSrTlPlUCaV7ETFMcMl84CBYL9WMJJFg3WhyN/e7T0wbruQjTFMWJmQkecwpASsF/YTA2MR5258NanW34RbAq8QrSR2VaA9qX/2holnCJFBBjAk8N4UwJxo4FWxW7WeGpYROyIgFlkqSMBPmReQZPrfKEMdK2ycBF+rvjZwkxkyTyE4WEZe9ufifF2QQ34Q5l2kGTNLFR3EmMCg8vx8PuWYUxNQSQjW3WTEdE00o2JaqtgRv+eRV0mk2vMtG8+Gq3rot66igU3SGLpCHrlEL3aM28hFFCj2jV/TmgPPivDsfi9E1p9w5QX/gfP4AguqRXw==</latexit>

U
<latexit sha1_base64="koF3N2eHsbLiPluGYajv/gq+oTk=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OKxgtsW26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvTLd70NaBwDDzHpk3YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknt3O/80SVZlI8mGlCgxiPBIsYwcZKj/0Ym7GOMn82qNbcupsDrRKvIDUo0BpUv/pDSdKYCkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUCx1QHWZ54hs6sMkSRVPYJg3L190aGY62ncWgn84TL3lz8z+ulJroOMiaS1FBBFh9FKUdGovn5aMgUJYZPLcFEMZsVkTFWmBhbUsWW4C2fvErajbp3UW/cX9aaN0UdZTiBUzgHD66gCXfQAh8ICHiGV3hztPPivDsfi9GSU+wcwx84nz/gq5EF</latexit>

U
<latexit sha1_base64="koF3N2eHsbLiPluGYajv/gq+oTk=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7JbBfVW8OKxgtsW26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvTLd70NaBwDDzHpk3YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknt3O/80SVZlI8mGlCgxiPBIsYwcZKj/0Ym7GOMn82qNbcupsDrRKvIDUo0BpUv/pDSdKYCkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUCx1QHWZ54hs6sMkSRVPYJg3L190aGY62ncWgn84TL3lz8z+ulJroOMiaS1FBBFh9FKUdGovn5aMgUJYZPLcFEMZsVkTFWmBhbUsWW4C2fvErajbp3UW/cX9aaN0UdZTiBUzgHD66gCXfQAh8ICHiGV3hztPPivDsfi9GSU+wcwx84nz/gq5EF</latexit>

Figure 3: Relations between the strengths of the labels of problem R(Π), where Π is the MIS problem; the
diagram shows that label MU is stronger than both labels M and U , also label PU is stronger than label
U .

We call a set S = {A1, . . . ,Ap} ⊆ ΣΠ right-closed if S = 〈A1, . . . ,Ap〉. In other words, S is right-
closed if and only if for each label Ai contained in S also all successors of Ai in the respective diagram
are contained in S. The definitions of R(·) and R(·), in particular the removal of non-maximal
configurations in the definitions, imply the following observation.

Observation 8. Consider an arbitrary collection of labels A1, . . . ,Ap ∈ ΣΠ. If {A1, . . . ,Ap} ∈
ΣR(Π), then the set {A1, . . . ,Ap} is right-closed (w.r.t. EΠ). If {A1, . . . ,Ap} ∈ ΣR(Π), then the set

{A1, . . . ,Ap} is right-closed (w.r.t. NΠ).

Proof. For reasons of symmetry, we only need to prove the first statement. Let S = {A1, . . . ,Ap}
and assume that S ∈ ΣR(Π). Then there must be an edge configuration in ER(Π) containing S, by the
definition of R(·). Consider an arbitrary label B ∈ ΣΠ that is at least as strong as at least one Ai
w.r.t. EΠ. By the definition of strength, and the definition of ER(Π) (or EΠ′), adding label B to set S
in the considered edge configuration results in a configuration that is still contained in ER(Π). Since
ER(Π) does not contain any non-maximal configurations, this implies that B was already contained
in S, i.e., B = Ai for some i. It follows that S is right-closed (w.r.t. EΠ).

Observation 8 enables us to prove the following observation.

17

Observation 9. Let U,W ∈ ΣR(Π) be two sets satisfying U ⊆ W. Then W is at least as strong as U
according to NR(Π). In particular, for any label A ∈ ΣΠ such that 〈A〉 ∈ ΣR(Π), every set X ∈ ΣR(Π)

containing A is contained in 〈〈A〉〉.
Analogous statements hold for R(·) instead of R(·).

Proof. For reasons of symmetry, we only need to prove the statements for R(·). The definition of
R(·) immediately implies that replacing U by W in any configuration contained in NR(Π) results in
a configuration that is also contained in NR(Π). Hence, W is at least as strong as U according to
NR(Π).

Now, let A and X be as described in the lemma. By Observation 8, the set X is right-closed w.r.t.
EΠ, which, by the definition of 〈〉, implies 〈A〉 ⊆ X, since X contains A. It follows that X is at least
as strong as 〈A〉 according to NR(Π), by the first part of Observation 9. Hence, X ∈ 〈〈A〉〉.

Moreover, for a set S = {A1, . . . ,Ap} ⊆ ΣΠ of labels, we denote by disj(S) the disjunction
[A1 . . .Ap]. For instance, disj(〈A〉) is the disjunction of all labels that are at least as strong as A.

Generalizing to non-regular graphs As mentioned before, in this paper we will restrict
attention to regular graphs. Since we are proving lower bounds, this does not affect the generality of
our results; however, for the upper bound we prove along the way, some additional step is required
to lift the bound to general graphs. In its full generality, the round elimination framework can also
be applied to non-regular graphs, and the arguments in our upper bound would essentially remain
the same; however, describing the framework formally is somewhat cumbersome. Hence, we will
choose a different route to show that our upper bound holds on general graphs: we will present a
“human-understandable” version of the algorithm obtained by round elimination for which it will be
easy to check that its correctness is not affected by having nodes of different degrees.

2.4 Roadmap

We will start, in Section 3, by defining a family of problems Π∆,β(v, x), for which we will later show
how it relates to the (2, β)-ruling set problem. The parameter v = [v0, . . . , vβ] is a list of non-negative
numbers, that can be interpreted as a number of colors. Intuitively, the problem Π∆,β(v, x) can

be solved in 0 rounds if we are given some vertex coloring with size(v) :=
∑β

i=0 vi colors. The
parameter x is some relaxation parameter: we will allow nodes to violate edge constraints on at
most x of their incident edges.

In Sections 4, 5, and 6, we will use the round elimination theorem to relate problems of this
family. In Section 4, we will compute the problem that we obtain by applying our operator R(·)
to Π∆,β(v, x). In Section 5 we will prove upper bounds for the (2, β)-ruling set problem. We will
consider a subset of the problems of the family, that is, those where parameter x is set to be 0. We
will first show that R(Π′∆,β(v, 0)) is at least as easy as some other problem of the family, that is
Π∆,β(v′, 0), where v′ is the inclusive prefix sum of v (i.e., v′i =

∑
j≤i vj). The round elimination

theorem will imply that, given a solution for Π∆,β(v′, 0), we can obtain a solution for Π∆,β(v, 0)
in at most one round of communication. We will finally combine multiple steps of such reasoning
to obtain upper bounds: we will show how parameter v evolves over multiple steps. Crucially, a
solution for Π∆,β([1, 0, . . . , 0], 0) will directly imply a solution for the (2, β)-ruling set problem, and
by repeatedly applying the round elimination theorem we will obtain some problem Π∆,β(v′, 0) where
size(v′) is at least as large as the number of colors in the given vertex coloring. We will first prove
an upper bound on the number of steps required to obtain such a problem, thereby giving an upper
bound on the time complexity of the algorithm. Then, we will provide a human-understandable

18

version of the round-elimination-generated algorithm, in order to argue that this algorithm does not
only work on regular graphs, but on all graphs.

In Section 6, we will prove lower bounds for the (2, β)-ruling set problem. The main idea here
will be to show that, by increasing parameter x, we can essentially relate the problems of the family
in the same way as we do for the upper bounds. That is, we can get the same evolution of parameter
v as in the upper bound, at the price of increasing parameter x. Essentially, this will allow us to
use the ideas obtained from the upper bound to get a lower bound. We will show in Section 7 how
to lift the obtained lower bounds from the port numbering model to the LOCAL model.

3 The problem family

3.1 Problem definition

In this section, we define a family of problems Π∆,β(v, x), that we will use to prove lower and
upper bounds for the (2, β)-ruling set problem on graphs of maximum degree ∆. The parameter
v = [v0, . . . , vβ] is a list of non-negative integers, and the parameter x satisfies 0 ≤ x ≤ ∆ (while
proving upper bounds, we will actually only consider the case where x = 0). Intuitively, v represents
a list of color groups, where each vi represents the number of colors in that group, while x represents
some relaxation parameter we will refer to as the number of wildcards. As we will see, if we start
from a problem in this family, and we increase the value of x, or we increase the value of vi for
some i, we will get a problem that is at least as easy as the one we started from. More precisely,
given a solution for the starting problem, we can use it to solve the new problem in 0 rounds of
communication.

The high-level idea of the construction of the problem family is that we have colors and pointers,
and nodes can either output a color (satisfying the usual constraints of the vertex coloring problem),
or a pointer. Moreover, we have β + 1 groups called group 0 to group β, and each color and each
pointer belongs to exactly one of these groups. More precisely, there are exactly vi colors in group
i, and there is exactly one pointer in each group except group 0 (which contains no pointer). A
pointer can only point to a node outputting a pointer, or a color, of a lower group. An example of a
correct solution is given in Figure 4. Moreover, each node can label at most x of its incident edges
with a so-called wildcard. If an edge is labeled with a wildcard by one of its endpoints, the resulting
output label pair on the edge is correct by definition (i.e., it is an edge configuration listed in the
edge constraint) regardless of the label the other endpoint outputs on the edge.

The (2, β)-ruling set problem is the special case where we allow only 1 color, i.e., v0 = 1 and
vi = 0 for all i > 0, β pointers, and no wildcards, i.e., x = 0. In fact, the nodes in the ruling set will
be exactly the nodes that output the color (note that since the ruling set nodes form an independent
set, the coloring constraints are satisfied), and we allow the other nodes to point using pointers of
different groups, depending on the distance they have from a node in the ruling set. We will later
show that, while a solution for Π∆,β([1, 0, . . . , 0], 0) can be converted in 0 rounds to a solution for
the (2, β)-ruling set problem, we may need up to β rounds to do the converse (and we will have to
take this in consideration later when determining the actual lower bounds).

We define size(v) = v0 + · · · + vβ. If we increase the number of colors in Π∆,β(v, x), i.e.,
if we increase size(v), the problem becomes easier: once we reach, for example, the case where
size(v) = Ω(∆2), we have a problem that can be solved in O(log∗ n) rounds in the LOCAL model,
since in this model a graph can be colored in O(log∗ n) rounds with O(∆2) colors [34]. Also, by
letting parameter x grow we get an easier problem: in the extreme case of x = ∆ we have a problem
that is 0-round solvable, since we can output wildcards everywhere.

19

.

.

.
β

0

2

1

1

1 3

4

v�
<latexit sha1_base64="nq/c6ik8tnfV/jYarsD8OnR6GKY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN4KXjxWsB/QhrLZbtqlm03YnRRK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp/77QnXRsTqCacJ9yM6VCIUjKKV2pN+L+BI++WKW3UXIOvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5rNRLDU8oG9Mh71qqaMSNny3OnZELqwxIGGtbCslC/T2R0ciYaRTYzojiyKx6c/E/r5tieOtnQiUpcsWWi8JUEozJ/HcyEJozlFNLKNPC3krYiGrK0CZUsiF4qy+vk1at6l1Va4/XlfpdHkcRzuAcLsGDG6jDAzSgCQzG8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gBT2o+I</latexit>

v�
<latexit sha1_base64="nq/c6ik8tnfV/jYarsD8OnR6GKY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN4KXjxWsB/QhrLZbtqlm03YnRRK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp/77QnXRsTqCacJ9yM6VCIUjKKV2pN+L+BI++WKW3UXIOvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5rNRLDU8oG9Mh71qqaMSNny3OnZELqwxIGGtbCslC/T2R0ciYaRTYzojiyKx6c/E/r5tieOtnQiUpcsWWi8JUEozJ/HcyEJozlFNLKNPC3krYiGrK0CZUsiF4qy+vk1at6l1Va4/XlfpdHkcRzuAcLsGDG6jDAzSgCQzG8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gBT2o+I</latexit>

v2
<latexit sha1_base64="Q6ZViehOuIE2O02brX6FYSdGu3Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbTbt0swm7k0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7mZ+a8y1EbF6wknC/YgOlAgFo2ilx3Gv2iuV3Yo7B1klXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJp8VuanhC2YgOeMdSRSNu/Gx+6pScW6VPwljbUkjm6u+JjEbGTKLAdkYUh2bZm4n/eZ0Uwxs/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadog3BW355lTSrFe+yUn24Ktdu8zgKcApncAEeXEMN7qEODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wcIwY2a</latexit>

v2
<latexit sha1_base64="Q6ZViehOuIE2O02brX6FYSdGu3Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbTbt0swm7k0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7mZ+a8y1EbF6wknC/YgOlAgFo2ilx3Gv2iuV3Yo7B1klXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJp8VuanhC2YgOeMdSRSNu/Gx+6pScW6VPwljbUkjm6u+JjEbGTKLAdkYUh2bZm4n/eZ0Uwxs/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadog3BW355lTSrFe+yUn24Ktdu8zgKcApncAEeXEMN7qEODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wcIwY2a</latexit>

v1
<latexit sha1_base64="Omf3RhNhsL1VoNsYAW+RbHRgdmY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO55vVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeONnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QMHPY2Z</latexit>

v1
<latexit sha1_base64="Omf3RhNhsL1VoNsYAW+RbHRgdmY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO55vVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeONnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QMHPY2Z</latexit>

v0
<latexit sha1_base64="6MWp9TWxCftYfY+qBxlLIXuu8UQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO65vVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeONnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QMFuY2Y</latexit>

v0
<latexit sha1_base64="6MWp9TWxCftYfY+qBxlLIXuu8UQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV1FvBi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvjVFpHssnM0nQj+hA8pAzaqz0OO65vVLZrbhzkFXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgtNhNNSaUjegAO5ZKGqH2s/mpU3JulT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeONnXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtO0YbgLb+8SprVindZqT5clWu3eRwFOIUzuAAPrqEG91CHBjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QMFuY2Y</latexit>

Group �
<latexit sha1_base64="ek9mIlbCi71SaVpzhH02ajwno+4=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclaQK6q7gQpcV7AOaUCbTSTt0HmFmIi0hv+LGhSJu/RF3/o3TNgttPXDhcM693HtPlDCqjed9O2vrG5tb26Wd8u7e/sGhe1Rpa5kqTFpYMqm6EdKEUUFahhpGuokiiEeMdKLx7czvPBGlqRSPZpqQkKOhoDHFyFip71YCHslJdqdkmsA8iIhBfbfq1bw54CrxC1IFBZp99ysYSJxyIgxmSOue7yUmzJAyFDOSl4NUkwThMRqSnqUCcaLDbH57Ds+sMoCxVLaEgXP190SGuNZTHtlOjsxIL3sz8T+vl5r4OsyoSFJDBF4silMGjYSzIOCAKoINm1qCsKL2VohHSCFsbFxlG4K//PIqaddr/kWt/nBZbdwUcZTACTgF58AHV6AB7kETtAAGE/AMXsGbkzsvzrvzsWhdc4qZY/AHzucPPQOUiQ==</latexit>

Group �
<latexit sha1_base64="ek9mIlbCi71SaVpzhH02ajwno+4=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclaQK6q7gQpcV7AOaUCbTSTt0HmFmIi0hv+LGhSJu/RF3/o3TNgttPXDhcM693HtPlDCqjed9O2vrG5tb26Wd8u7e/sGhe1Rpa5kqTFpYMqm6EdKEUUFahhpGuokiiEeMdKLx7czvPBGlqRSPZpqQkKOhoDHFyFip71YCHslJdqdkmsA8iIhBfbfq1bw54CrxC1IFBZp99ysYSJxyIgxmSOue7yUmzJAyFDOSl4NUkwThMRqSnqUCcaLDbH57Ds+sMoCxVLaEgXP190SGuNZTHtlOjsxIL3sz8T+vl5r4OsyoSFJDBF4silMGjYSzIOCAKoINm1qCsKL2VohHSCFsbFxlG4K//PIqaddr/kWt/nBZbdwUcZTACTgF58AHV6AB7kETtAAGE/AMXsGbkzsvzrvzsWhdc4qZY/AHzucPPQOUiQ==</latexit>

Group 2
<latexit sha1_base64="dxqCQuZ2ivBFaltSEAMDRJRiIyY=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAas8vB5VgBrhMwpyUQY56z//q9iW2nAiDGdK6EwapiTKkDMWMTIpdq0mK8AgNSMdRgTjRUTY7fAJPnNKHiVSuhIEz9fdEhrjWYx67To7MUC96U/E/r2NNchllVKTWEIHnixLLoJFwmgLsU0WwYWNHEFbU3QrxECmEjcuq6EIIF19eJs1qJTyrVO/Oy7WrPI4COALH4BSE4ALUwC2ogwbAwIJn8ArevCfvxXv3PuatK14+cwj+wPv8ATqCksU=</latexit>

Group 2
<latexit sha1_base64="dxqCQuZ2ivBFaltSEAMDRJRiIyY=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAas8vB5VgBrhMwpyUQY56z//q9iW2nAiDGdK6EwapiTKkDMWMTIpdq0mK8AgNSMdRgTjRUTY7fAJPnNKHiVSuhIEz9fdEhrjWYx67To7MUC96U/E/r2NNchllVKTWEIHnixLLoJFwmgLsU0WwYWNHEFbU3QrxECmEjcuq6EIIF19eJs1qJTyrVO/Oy7WrPI4COALH4BSE4ALUwC2ogwbAwIJn8ArevCfvxXv3PuatK14+cwj+wPv8ATqCksU=</latexit>

Group 1
<latexit sha1_base64="kTWuXoJyng3BY5DDJWmPVcuxKGw=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAsOeXg0owA1wmYU7KIEe95391+xJbToTBDGndCYPURBlShmJGJsWu1SRFeIQGpOOoQJzoKJsdPoEnTunDRCpXwsCZ+nsiQ1zrMY9dJ0dmqBe9qfif17EmuYwyKlJriMDzRYll0Eg4TQH2qSLYsLEjCCvqboV4iBTCxmVVdCGEiy8vk2a1Ep5Vqnfn5dpVHkcBHIFjcApCcAFq4BbUQQNgYMEzeAVv3pP34r17H/PWFS+fOQR/4H3+ADj+ksQ=</latexit>

Group 1
<latexit sha1_base64="kTWuXoJyng3BY5DDJWmPVcuxKGw=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAsOeXg0owA1wmYU7KIEe95391+xJbToTBDGndCYPURBlShmJGJsWu1SRFeIQGpOOoQJzoKJsdPoEnTunDRCpXwsCZ+nsiQ1zrMY9dJ0dmqBe9qfif17EmuYwyKlJriMDzRYll0Eg4TQH2qSLYsLEjCCvqboV4iBTCxmVVdCGEiy8vk2a1Ep5Vqnfn5dpVHkcBHIFjcApCcAFq4BbUQQNgYMEzeAVv3pP34r17H/PWFS+fOQR/4H3+ADj+ksQ=</latexit>

Group 0
<latexit sha1_base64="nu4m0+/9j+cKaIv4I77AiEkzOJw=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAoOeXg0owA1wmYU7KIEe95391+xJbToTBDGndCYPURBlShmJGJsWu1SRFeIQGpOOoQJzoKJsdPoEnTunDRCpXwsCZ+nsiQ1zrMY9dJ0dmqBe9qfif17EmuYwyKlJriMDzRYll0Eg4TQH2qSLYsLEjCCvqboV4iBTCxmVVdCGEiy8vk2a1Ep5Vqnfn5dpVHkcBHIFjcApCcAFq4BbUQQNgYMEzeAVv3pP34r17H/PWFS+fOQR/4H3+ADd6ksM=</latexit>

Group 0
<latexit sha1_base64="nu4m0+/9j+cKaIv4I77AiEkzOJw=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGaioN4CHvQYwSyQDKGn05M06WXoRYxDvsSLB0W8+ine/Bs7yRw08UHB470qqurFKaPaBMG3t7K6tr6xWdgqbu/s7pX8/YOmllZh0sCSSdWOkSaMCtIw1DDSThVBPGakFY+up37rgShNpbg345REHA0ETShGxkk9v9TlsXzMbpS0KZzAoOeXg0owA1wmYU7KIEe95391+xJbToTBDGndCYPURBlShmJGJsWu1SRFeIQGpOOoQJzoKJsdPoEnTunDRCpXwsCZ+nsiQ1zrMY9dJ0dmqBe9qfif17EmuYwyKlJriMDzRYll0Eg4TQH2qSLYsLEjCCvqboV4iBTCxmVVdCGEiy8vk2a1Ep5Vqnfn5dpVHkcBHIFjcApCcAFq4BbUQQNgYMEzeAVv3pP34r17H/PWFS+fOQR/4H3+ADd6ksM=</latexit>

Figure 4: An example of a problem with parameters [v0, v1, . . . , vβ] and x = 0. Each node in the graph
outputs either a color of some group, or a pointer pointing to a color or a pointer of a strictly smaller group.
Neighboring nodes are not allowed to output the same color, but they can output colors belonging to the
same group.

Labels We now formally define the set Σ∆,β(v, x) of labels of the problem Π∆,β(v, x). Let
Σ∆,β(v, x) = P ∪ C ∪ X , where

• P = {Ai,Bi | 1 ≤ i ≤ β},

• C = {Ci,j | 0 ≤ i ≤ β, 1 ≤ j ≤ vi},

• X = {X} if x > 0 and X = {} if x = 0 (that is, if x = 0 there is no label X in the set Σ).

These labels can be interpreted as follows:

• The label X is a wildcard. Nodes write it on an edge to mark that edge as “don’t care”.

• The label Ai is a pointer, and the label Bi can be used to “accept” pointers (of higher groups)
that are output by neighboring nodes on connecting edges.

• The label Ci,j is the j-th color of group i.

Node constraint We now define the node constraint N∆,β(v, x), i.e., the set of allowed node
configurations. The set N∆,β(v, x) contains the following:

• c∆−xXx, for each c ∈ C. That is, nodes output some color c ∈ C, marking x incident edges as
“don’t care”.

• AiB
∆−1
i , for each 1 ≤ i ≤ β. That is, nodes can output a pointer Ai on one incident edge.

All other incident edges are marked as Bi. We will see, when defining the edge constraint,
that this will allow to accept pointers of higher groups. Intuitively, a node outputting this
configuration must be at distance at most i from a node outputting a color (of some group
< i).

20

Edge constraint We now define the edge constraint E∆,β(v, x). It contains the following edge
configurations:

• Ci,jCi′,j′ if (i, j) 6= (i′, j′), for each 1 ≤ i, i′ ≤ β, 1 ≤ j ≤ vi, 1 ≤ j′ ≤ vi′ . That is, all colors
are compatible with all other colors (except themselves).

• BiBj , for each 1 ≤ i, j ≤ β. That is, all B labels are compatible with all other B labels
(including themselves).

• AjBi, for each 1 ≤ i < j ≤ β. That is, pointers can point to non-colored nodes of lower groups.

• BiCi′,j , for each 1 ≤ i, i′ ≤ β, 1 ≤ j ≤ vi′ . That is, all B labels are compatible with all colors.

• AiCi′,j , for each 1 ≤ i′ < i ≤ β, 1 ≤ j ≤ vi′ . That is, pointers can point to colored nodes of
lower groups.

• XL, for each L ∈ Σ, if x > 0. That is, the wildcard X is compatible with all labels.

3.2 From the problem family to ruling sets, and vice versa

We now discuss the relation between Π∆,β([1, 0, . . . , 0], 0) and the (2, β)-ruling set problem. We
argue that a solution for Π∆,β([1, 0, . . . , 0], 0) can be turned in 0 rounds into a solution for the
(2, β)-ruling set problem, and that a solution for the (2, β)-ruling set problem can be turned in β
rounds into a solution for Π∆,β([1, 0, . . . , 0], 0). In Section 6 we will use this relation to transform
a lower bound of T rounds for Π∆,β([1, 0, . . . , 0], 0) into a lower bound of (T − β) rounds for the
(2, β)-ruling set problem.

Let us start by showing how to turn a solution for (2, β)-ruling set into a solution for the
Π∆,β([1, 0, . . . , 0], 0) problem. Given a solution for the (2, β)-ruling set problem, proceed as follows.
Nodes in the ruling set output C0,1 on each incident edge. Each node v can find in β rounds the
closest node of the ruling set (breaking ties arbitrarily); let this distance be dv, satisfying 1 ≤ dv ≤ β.
Node v outputs Adv on the incident edge contained in the shortest path to this closest ruling set
node, and Bdv on all the other incident edges. The node constraint of Π∆,β([1, 0, . . . , 0], 0) is clearly
satisfied. Moreover, by construction, no neighboring nodes are outputting C0,1 on the same edge,
and since other nodes use their distance to the closest ruling set node to output pointers, also the
edge constraint is satisfied.

Consider now a solution for the problem Π∆,β([1, 0, . . . , 0], 0). Nodes are either labeled with the
color C0,1, or with one of the β configurations that contain a pointer. We put exactly the colored
nodes in the ruling set. Since the configuration C0,1C0,1 is not contained in the edge constraint, the
colored nodes form an independent set. Also, since the constraints of Π∆,β([1, 0, . . . , 0], 0) guarantee
that each node that outputs AiB

∆−1
i has a colored neighbor, or a neighbor that outputs AjB

∆−1
j

with j < i, nodes that are not in the independent set are at distance at most β from a node in the
independent set.

3.3 The idea behind this problem family

While the definition of the problem family Π∆,β(v, x) may seem arbitrary, we argue that there is a
natural way to obtain it, at least for the case x = 0, that is the following:

• Start from a problem of the family (at the beginning, this means to start from the (2, β)-ruling
set problem).

21

• Apply the round elimination theorem.

• Note that in the obtained problem there are some allowed configurations that directly corre-
spond to the original AiB

∆−1
i allowed configurations. Keep these configurations.

• Note that in the obtained problem there are some allowed configurations that directly corre-
spond to a coloring problem (configurations of the form C∆ such that label C is compatible with
all the labels of the configurations of the same form, except itself). Keep these configurations.

• Discard everything else.

Essentially what we need to do is to keep the part of the problem that has some intuitive meaning
(that is, colors and pointers), and discard everything else.

In the upper bound section, we will prove how the color groups evolve at each step. Intuitively,
by applying the round elimination theorem to the problem Π∆,β(v, 0) (and by discarding some
allowed configurations, thus by making the problem harder), we obtain the problem Π∆,β(v′, 0),
where v′ is the inclusive prefix sum list of v. For example, the (2, 2)-ruling set problem is equivalent
to Π∆,2([1, 0, 0], 0), and by applying the round elimination theorem we get a problem that is not
harder than Π∆,2([1, 1, 1], 0), and by repeating the same procedure we get Π∆,2([1, 2, 3], 0), and then
we get Π∆,2([1, 3, 6], 0), and so on. This gives a quadratic growth in the number of colors, and we
thus get an algorithm that, given some c coloring can solve the (2, 2)-ruling set problem in O(

√
c)

rounds. By generalizing the same reasoning to (2, β)-ruling sets, we get an algorithm that, given a c
coloring, solves the problem in O(βc1/β) rounds, matching the current state-of-the-art algorithm
w.r.t. dependency on ∆, c and β [45]. While an algorithm obtained in the specific round elimination
framework we use only works on regular graphs, we will show that the algorithm that we obtain
actually works in any graph.

In the lower bound section, we will show that, by increasing parameter x at each step, we can
prove that the color groups evolve in the same way as in the upper bound, and that we can thus
prove a lower bound using a problem family suggested by the upper bound. In particular, we will
show that all the non-intuitive allowed configurations can be relaxed to the intuitive ones, if we
allow some slack on them.

3.4 The edge diagram

We now show the structure of the edge diagram of our Π∆,β(v, x) problems. Knowing such structure
will be helpful in the following sections. In particular, as previously discussed in Section 2, when
defining R(Π∆,β(v, x)) we will only have to consider right-closed subsets of labels with regard to
this diagram (see Observation 8). The following relations between the labels of Π∆,β(v, x) derive
directly from the definition of E∆,β(v, x).

• Bi ≤ Bj , if j < i.

• Ai ≤ Aj , if i < j.

• Ai ≤ Ci′,j , if 1 ≤ i ≤ i′.

• Ci′,j ≤ Bi, if 1 ≤ i ≤ i′.

• L ≤ X for all L ∈ Σ.

Notice that this also implies Ai ≤ Bj for all 1 ≤ i, j ≤ β. An example of the diagram for
Π∆,3([1, 2, 3, 4], 1) is shown in Figure 5.

22

C0,1
<latexit sha1_base64="cWF4+ri9UVQkPe2fMLSF7LJIp4Y=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJKUgVdFrrRXQX7gDbEyXTSDp1MwsykUEL+xI0LRdy68D/c+QMu/QanqQttPTBwOOde7pnjx4xKZdsfRmFpeWV1rbhe2tjc2t4xd/daMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH9anfHhMhacRv1SQmbogGnAYUI6UlzzR7IVJDGaR1L7VPnSzzzLJdsXNYi8T5IeXawfXn11vhruGZ771+hJOQcIUZkrLr2LFyUyQUxYxkpV4iSYzwCA1IV1OOQiLdNE+eWcda6VtBJPTjysrV3xspCqWchL6ezHPOe1PxP6+bqODSTSmPE0U4nh0KEmapyJrWYPWpIFixiSYIC6qzWniIBMJKl1XSJTjzX14krWrFOatUb3Qb5zBDEQ7hCE7AgQuowRU0oAkYxnAPj/BkpMaD8Wy8zEYLxs/OPvyB8foN2SmWyA==</latexit>

X
<latexit sha1_base64="O9t5a8Yw+r5jzfmse/Yh5KY8aP0=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6M2AF48RzAOTJcxOZpMhszPLzKwQlvyFlwiKePUL/A1v/o2zmxw0saChqOqmqzuIOdPGdb+dldW19Y3NwlZxe2d3b790cNjUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkY3md96pEozKe7NOKZ+hAeChYxgY6WHboTNUIdpe9Irld2KmwMtE29Oytef0wzP9V7pq9uXJImoMIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCpwRLWf5okn6NQqfRRKZUsYlKu/J1IcaT2OAtuZJ1z0MvE/r5OY8MpPmYgTQwWZLQoTjoxE2fmozxQlho8twUQxmxWRIVaYGPukon2Ct3jyMmlWK955pXrnlmsXMEMBjuEEzsCDS6jBLdShAQQEPMELvDramTpvzvusdcWZzxzBHzgfPwRjlY4=</latexit>

B1
<latexit sha1_base64="AY/g7FvRGUJYkUmtvcb4ktajFtE=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzJTC7os6sJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBell35n2ixW7amdAq8RZkEoj//lRun4rN/vFL3cQkSSkQhOOleo5dqy9FEvNCKfTgpsoGmMyxkPaM1TgkCovzTJP0YlRBiiIpHlCo0z9vZHiUKlJ6JvJLOOyNxP/83qJDi68lIk40VSQ+aEg4UhHaFYAGjBJieYTQzCRzGRFZIQlJtrUVDAlOMtfXiXtWtU5q9ZuTRt1mCMPx1CGU3DgHBpwA01oAYEYHuAJnq3EerRerNf5aM5a7BzBH1jvP+BKlHw=</latexit>

B2
<latexit sha1_base64="ZTTSDZKRsEEqscy9NA5A+MZBKJ8=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzJTC7os6sJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBellvzbtFyt21c6AVomzIJVG/vOjdP1WbvaLX+4gIklIhSYcK9Vz7Fh7KZaaEU6nBTdRNMZkjIe0Z6jAIVVemmWeohOjDFAQSfOERpn6eyPFoVKT0DeTWcZlbyb+5/USHVx4KRNxoqkg80NBwpGO0KwANGCSEs0nhmAimcmKyAhLTLSpqWBKcJa/vEratapzVq3dmjbqMEcejqEMp+DAOTTgBprQAgIxPMATPFuJ9Wi9WK/z0Zy12DmCP7DefwDhz5R9</latexit>

B3
<latexit sha1_base64="cDC0wZu6QhJKXp6kj5PpAk0NvI0=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzLTCros6sJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBellvz7tFyt21c6AVomzIJVG/vOjdP1WbvaLX+4gIklIhSYcK9Vz7Fh7KZaaEU6nBTdRNMZkjIe0Z6jAIVVemmWeohOjDFAQSfOERpn6eyPFoVKT0DeTWcZlbyb+5/USHVx4KRNxoqkg80NBwpGO0KwANGCSEs0nhmAimcmKyAhLTLSpqWBKcJa/vEratapTr9ZuTRtnMEcejqEMp+DAOTTgBprQAgIxPMATPFuJ9Wi9WK/z0Zy12DmCP7DefwDjVJR+</latexit>

A3
<latexit sha1_base64="6go3ht8ChLPCYUCx9/9rASfmY6U=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzLTCrqs6MJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBellvz7tFyt21c6AVomzIJVG/vOjdP1WbvaLX+4gIklIhSYcK9Vz7Fh7KZaaEU6nBTdRNMZkjIe0Z6jAIVVemmWeohOjDFAQSfOERpn6eyPFoVKT0DeTWcZlbyb+5/USHVx4KRNxoqkg80NBwpGO0KwANGCSEs0nhmAimcmKyAhLTLSpqWBKcJa/vEratapTr9ZuTRtnMEcejqEMp+DAOTTgBprQAgIxPMATPFuJ9Wi9WK/z0Zy12DmCP7DefwDhzZR9</latexit>

A2
<latexit sha1_base64="3ySrmGcS0RJxq9FPOLpMDM55ebU=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzJTC7qs6MJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBellvzbtFyt21c6AVomzIJVG/vOjdP1WbvaLX+4gIklIhSYcK9Vz7Fh7KZaaEU6nBTdRNMZkjIe0Z6jAIVVemmWeohOjDFAQSfOERpn6eyPFoVKT0DeTWcZlbyb+5/USHVx4KRNxoqkg80NBwpGO0KwANGCSEs0nhmAimcmKyAhLTLSpqWBKcJa/vEratapzVq3dmjbqMEcejqEMp+DAOTTgBprQAgIxPMATPFuJ9Wi9WK/z0Zy12DmCP7DefwDgSJR8</latexit>

A1
<latexit sha1_base64="+Vtis/+F0JkefUQxxd/VfxmxRA0=">AAAB83icbVDLSgMxFL1TX7W+al26CS2CqzJTC7qs6MJlBfuAzlAyaaYNzWSGJCOUob/hxoUi4s5P8A9cufNvTKddaOuBwOGce7knx485U9q2v63c2vrG5lZ+u7Czu7d/UDwstVWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57Tjj69mfueeSsUicacnMfVCPBQsYARrI7luiPVIBell35n2ixW7amdAq8RZkEoj//lRun4rN/vFL3cQkSSkQhOOleo5dqy9FEvNCKfTgpsoGmMyxkPaM1TgkCovzTJP0YlRBiiIpHlCo0z9vZHiUKlJ6JvJLOOyNxP/83qJDi68lIk40VSQ+aEg4UhHaFYAGjBJieYTQzCRzGRFZIQlJtrUVDAlOMtfXiXtWtU5q9ZuTRt1mCMPx1CGU3DgHBpwA01oAYEYHuAJnq3EerRerNf5aM5a7BzBH1jvP97DlHs=</latexit>

C1,1
<latexit sha1_base64="8LvUSPPRSHdKAAURspHxRxrjneA=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJKUgVdFrrRXQX7gDbEyXTSDp1MwsykUEL+xI0LRdy68D/c+QMu/QanqQttPTBwOOde7pnjx4xKZdsfRmFpeWV1rbhe2tjc2t4xd/daMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH9anfHhMhacRv1SQmbogGnAYUI6UlzzR7IVJDGaR1L3VOnSzzzLJdsXNYi8T5IeXawfXn11vhruGZ771+hJOQcIUZkrLr2LFyUyQUxYxkpV4iSYzwCA1IV1OOQiLdNE+eWcda6VtBJPTjysrV3xspCqWchL6ezHPOe1PxP6+bqODSTSmPE0U4nh0KEmapyJrWYPWpIFixiSYIC6qzWniIBMJKl1XSJTjzX14krWrFOatUb3Qb5zBDEQ7hCE7AgQuowRU0oAkYxnAPj/BkpMaD8Wy8zEYLxs/OPvyB8foN2rGWyQ==</latexit>

C1,2
<latexit sha1_base64="Othoo0tsWQArkGq5N2fD/34VDyE=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJKUgVdFrrRXQX7gDbEyXTSDp1MwsykUEL+xI0LRdy68D/c+QMu/QanqQttPTBwOOde7pnjx4xKZdsfRmFpeWV1rbhe2tjc2t4xd/daMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH9anfHhMhacRv1SQmbogGnAYUI6UlzzR7IVJDGaR1L3VOq1nmmWW7YuewFonzQ8q1g+vPr7fCXcMz33v9CCch4QozJGXXsWPlpkgoihnJSr1EkhjhERqQrqYchUS6aZ48s4610reCSOjHlZWrvzdSFEo5CX09meec96bif143UcGlm1IeJ4pwPDsUJMxSkTWtwepTQbBiE00QFlRntfAQCYSVLqukS3Dmv7xIWtWKc1ap3ug2zmGGIhzCEZyAAxdQgytoQBMwjOEeHuHJSI0H49l4mY0WjJ+dffgD4/Ub3DeWyg==</latexit>

C2,1
<latexit sha1_base64="FQdyYMJjlCuPhVSoVEnbPn2IyJA=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJKUgVdFrrRXQX7gDbEyXTSDp1MwsykUEL+xI0LRdy68D/c+QMu/QanqQttPTBwOOde7pnjx4xKZdsfRmFpeWV1rbhe2tjc2t4xd/daMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH9anfHhMhacRv1SQmbogGnAYUI6UlzzR7IVJDGaR1L62eOlnmmWW7YuewFonzQ8q1g+vPr7fCXcMz33v9CCch4QozJGXXsWPlpkgoihnJSr1EkhjhERqQrqYchUS6aZ48s4610reCSOjHlZWrvzdSFEo5CX09meec96bif143UcGlm1IeJ4pwPDsUJMxSkTWtwepTQbBiE00QFlRntfAQCYSVLqukS3Dmv7xIWtWKc1ap3ug2zmGGIhzCEZyAAxdQgytoQBMwjOEeHuHJSI0H49l4mY0WjJ+dffgD4/Ub3DmWyg==</latexit>

C2,2
<latexit sha1_base64="tYrNYlOPUHiBI5ns7BtLtgpXuj8=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJKEgVdFrrRXQX7gDbEyXTSDp1MwsykUEL/xI0LRdy68D/c+QMu/QanqQttPTBwOOde7pkTJIxKZdsfRmFpeWV1rbhe2tjc2t4xd/eaMk4FJg0cs1i0AyQJo5w0FFWMtBNBUBQw0gqGtanfGhEhacxv1TghXoT6nIYUI6Ul3zS7EVIDGWY1P3NP3cnEN8t2xc5hLRLnh5SrB9efX2+Fu7pvvnd7MU4jwhVmSMqOYyfKy5BQFDMyKXVTSRKEh6hPOppyFBHpZXnyiXWslZ4VxkI/rqxc/b2RoUjKcRToyTznvDcV//M6qQovvYzyJFWE49mhMGWWiq1pDVaPCoIVG2uCsKA6q4UHSCCsdFklXYIz/+VF0nQrzlnFvdFtnMMMRTiEIzgBBy6gCldQhwZgGME9PMKTkRkPxrPxMhstGD87+/AHxus33b+Wyw==</latexit>

C2,3
<latexit sha1_base64="LpUL1ADKks2xwsfkY2lRMSpJvLk=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJK0gq6LHSjuwr2AW2ok+mkHTqZhJlJoYT8iRsXirh14X+48wdc+g1O0y609cDA4Zx7uWeOFzEqlW1/GrmV1bX1jfxmYWt7Z3fP3D9oyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsb1aZ+a0yEpCG/U5OIuAEacOpTjJSWeqbZDZAaSj+p9ZLyeSVNe2bRLtkZrGXizEmxenTz9f2eu6/3zI9uP8RxQLjCDEnZcexIuQkSimJG0kI3liRCeIQGpKMpRwGRbpIlT61TrfQtPxT6cWVl6u+NBAVSTgJPT2Y5F72p+J/XiZV/5SaUR7EiHM8O+TGzVGhNa7D6VBCs2EQThAXVWS08RAJhpcsq6BKcxS8vk2a55FRK5VvdxgXMkIdjOIEzcOASqnANdWgAhjE8wBM8G4nxaLwYr7PRnDHfOYQ/MN5+AN9Flsw=</latexit>

C3,1
<latexit sha1_base64="aXFT3hJYmz41ku1mrGfPjjCzdAM=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJK0gq6LHSjuwr2AW2ok+mkHTqZhJlJoYT8iRsXirh14X+48wdc+g1O0y609cDA4Zx7uWeOFzEqlW1/GrmV1bX1jfxmYWt7Z3fP3D9oyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsb1aZ+a0yEpCG/U5OIuAEacOpTjJSWeqbZDZAaSj+p9ZLKuZOmPbNol+wM1jJx5qRYPbr5+n7P3dd75ke3H+I4IFxhhqTsOHak3AQJRTEjaaEbSxIhPEID0tGUo4BIN8mSp9apVvqWHwr9uLIy9fdGggIpJ4GnJ7Oci95U/M/rxMq/chPKo1gRjmeH/JhZKrSmNVh9KghWbKIJwoLqrBYeIoGw0mUVdAnO4peXSbNcciql8q1u4wJmyMMxnMAZOHAJVbiGOjQAwxge4AmejcR4NF6M19lozpjvHMIfGG8/3cGWyw==</latexit>

C3,2
<latexit sha1_base64="WgIaEnpq9eZ065pCUqI+qH+FSuk=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJK0gq6LHSjuwr2AW2ok+mkHTqZhJlJoYT8iRsXirh14X+48wdc+g1O0y609cDA4Zx7uWeOFzEqlW1/GrmV1bX1jfxmYWt7Z3fP3D9oyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsb1aZ+a0yEpCG/U5OIuAEacOpTjJSWeqbZDZAaSj+p9ZLKeTlNe2bRLtkZrGXizEmxenTz9f2eu6/3zI9uP8RxQLjCDEnZcexIuQkSimJG0kI3liRCeIQGpKMpRwGRbpIlT61TrfQtPxT6cWVl6u+NBAVSTgJPT2Y5F72p+J/XiZV/5SaUR7EiHM8O+TGzVGhNa7D6VBCs2EQThAXVWS08RAJhpcsq6BKcxS8vk2a55FRK5VvdxgXMkIdjOIEzcOASqnANdWgAhjE8wBM8G4nxaLwYr7PRnDHfOYQ/MN5+AN9Hlsw=</latexit>

C3,3
<latexit sha1_base64="ZZMzHHV3ltWHt7rf2HkK1dH3uaA=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJK0gq6LHSjuwr2AW2ok+mkHTqZhJlJoYT8iRsXirh14X+48wdc+g1O0y609cDA4Zx7uWeOFzEqlW1/GrmV1bX1jfxmYWt7Z3fP3D9oyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsb1aZ+a0yEpCG/U5OIuAEacOpTjJSWeqbZDZAaSj+p9ZLKeSVNe2bRLtkZrGXizEmxenTz9f2eu6/3zI9uP8RxQLjCDEnZcexIuQkSimJG0kI3liRCeIQGpKMpRwGRbpIlT61TrfQtPxT6cWVl6u+NBAVSTgJPT2Y5F72p+J/XiZV/5SaUR7EiHM8O+TGzVGhNa7D6VBCs2EQThAXVWS08RAJhpcsq6BKcxS8vk2a55FRK5VvdxgXMkIdjOIEzcOASqnANdWgAhjE8wBM8G4nxaLwYr7PRnDHfOYQ/MN5+AODNls0=</latexit>

C3,4
<latexit sha1_base64="OPdkFgvr0yanhmEM1p3i+hdL918=">AAAB+XicbVDLSsNAFL2pr1pfURcu3ASL4EJK0hZ0WehGdxXsA9pQJ9NJO3QyCTOTQgn5EzcuFHHrwv9w5w+49Bucpi609cDA4Zx7uWeOFzEqlW1/GLmV1bX1jfxmYWt7Z3fP3D9oyTAWmDRxyELR8ZAkjHLSVFQx0okEQYHHSNsb12d+e0KEpCG/VdOIuAEacupTjJSW+qbZC5AaST+p95PKeTVN+2bRLtkZrGXi/JBi7ej68+std9fom++9QYjjgHCFGZKy69iRchMkFMWMpIVeLEmE8BgNSVdTjgIi3SRLnlqnWhlYfij048rK1N8bCQqknAaensxyLnoz8T+vGyv/0k0oj2JFOJ4f8mNmqdCa1WANqCBYsakmCAuqs1p4hATCSpdV0CU4i19eJq1yyamUyje6jSrMkYdjOIEzcOACanAFDWgChgncwyM8GYnxYDwbL/PRnPGzcwh/YLx+A+JTls4=</latexit>

Figure 5: Edge diagram of Π∆,3([1, 2, 3, 4], 1)

4 The intermediate problems

In Section 3.2 we formally introduced a family of problems Π∆,β(v, x) by defining Σ∆,β(v, x),
N∆,β(v, x) and E∆,β(v, x). In this section, we compute R(Π∆,β(v, x)), i.e., we compute the family of
problems that we get by applying the function R(·) to Π∆,β(v, x). In other words, we will compute
the set of labels Σ′∆,β(v, x), the node constraint N ′∆,β(v, x) and the edge constraint E ′∆,β(v, x) of
R(Π∆,β(v, x)). In this section, we will always assume that x < ∆ (or, where indicated, even
x ≤ ∆− 2).

Labels By the definition of R(·), the set of labels of R(Π∆,β(v, x)) is the set of non-empty subsets
of the set Σ∆,β(v, x), that is, Σ′∆,β(v, x) = 2Σ∆,β(v,x). In other words, Σ′∆,β(v, x) = 2P∪C∪X , where

• P = {Ai,Bi | 1 ≤ i ≤ β} is the set of pointers,

• C = {Ci,j | 0 ≤ i ≤ β, 1 ≤ j ≤ vi} is the set of colors, and

• X = {X} if x > 0, and X = {} if x = 0, is the set of wildcards.

4.1 Edge constraint

Given a set of colors C ⊆ C, let g(C) be the largest index k such that Ck,` ∈ C for some ` (if C
is empty, let g(C) = −1). In other words, g(C) is the highest group of all colors contained in C .
Consider all the possible pairs (C , i) where C ⊆ C and 0 ≤ i ≤ β. A pair (C , i) is good if and
only if i ≥ g(C). If x = 0, we additionally require that, in order for a pair to be good, it must be
different from (∅, 0). Essentially, good pairs represent all ways to combine subsets of colors and
group indices such that the index is at least as large as the highest color group appearing in the set.
Let S1((C , i)) = C ∪ {Bj | 1 ≤ j ≤ i}} ∪ X . Let S2((C , i)) = (C \ C) ∪ {Bj | 1 ≤ j ≤ β} ∪ {Aj | i <
j ≤ β} ∪ X .

Lemma 10. The edge constraint of R(Π∆,β(v, x)) is

E ′∆,β(v, x) = {S1((C , i))S2((C , i)) | (C , i) is a good pair}.

Proof. Let us start with some observations. First of all, recall that the R(·) operator requires
E ′∆,β(v, x) to contain all (and only) pairs of sets S1S2 that satisfy that for all s1 ∈ S1 and for all
s2 ∈ S2, s1s2 is in E∆,β(v, x). Also, recall that we can discard all non-maximal pairs, and that

23

pairs are equivalent up to reordering. Moreover, recall that we do not need to consider all possible
subsets in Σ′∆,β(v, x), but only right-closed subsets with respect to the edge diagram of Π∆,β(v, x)
(see Observation 8). Essentially, in E ′∆,β(v, x) we must have all possible pairs S1S2, where S1 is a
right-closed subset, and S2 is the intersection of all sets of labels compatible with each s1 ∈ S1 (note
that also the resulting set S2 must be right-closed).

We consider all cases where S1 does not contain any label Ai. Since no A-type label is compatible
(with regard to E∆,β(v, x)) with any other A-type label, it is not possible to have some configuration
S1S2 that contains Ai ∈ S1 and Aj ∈ S2, for any i and j. Thus, for all valid configurations, either S1

or S2 does not contain any A-type label, and this implies that by only considering the case where S1

does not contain any A-type label, we cover all cases (up to symmetry). By the definition of the
edge diagram of Π∆,β(v, x), right-closed subsets S of Σ′∆,β(v, x) that do not contain any label Ai are
of the following form: we have a subset of colors, and if a color of group i is in S, all Bj satisfying
j ≤ i are also present. Also, additional Bj may be in S, and if Bj is present, all Bj′ satisfying j′ ≤ j
must also be there. Finally, the label X is also present, if x 6= 0. Notice that there is a one-to-one
correspondence between all good pairs and all right-closed subsets not containing any label Ai
(the case distinction on the value of x ensures that we are not considering the empty set). In fact,
since i ≥ g(C), when creating a set we put at least all B-type labels with index between 1 and the
maximum color group appearing in C , and by increasing i we put additional B-type labels.

For each good pair (C , i), we add the configuration S1((C , i))S2((C , i)) to E ′∆,β(v, x). We need
to prove that S2 := S2((C , i)) contains all and only the labels that are edge compatible with all
the labels in S1 := S1((C , i)). First, note that a color cannot appear in both S1 and S2, since a
color is not compatible with itself in E∆,β(v, x). Hence, since S2 contains C \ C , colors added to S2

are all valid, and no color can be added. Then, all Bi are present in S2, thus, trivially, we cannot
add more B-type labels to S2, and since each B-type label is edge compatible with all other B-type
labels and with all colors, the configurations in E∆,β(v, x) are not violated. The same holds for the
label X, that we add to S2 if present in Σ′∆,β(v, x). Note that X is compatible with any label, so
the configurations in E∆,β(v, x) are trivially not violated. The last remaining case to analyze is the
A-type labels: if labels {B1, . . . ,Bi} are present in S1 we added {Ai+1, . . . ,Aβ} to S2. Since Ai is not
compatible with Bi with regard to E∆,β(v, x), this implies that we cannot add more A-type labels to
S2. Also, note that the presence of a color of group j in S1 implies that i ≥ j, and thus the presence
of Bj , and since Ai is edge compatible with all colors of groups strictly less than i, the A-type labels
added to S2 do not violate the E∆,β(v, x) configurations.

4.2 Properties

Before computing the node constraint of R(Π∆,β(v, x)) in Section 4.3, we will first collect two facts
about problem R(Π∆,β(v, x)) that we can derive from the description of the edge constraint in
Section 4.1 and will be useful later.

Lemma 11. Consider two sets U,W ∈ Σ′∆,β(v, x), and assume that x+ 2 ≤ ∆. Then W is at least
as strong as U according to N ′∆,β(v, x) if and only if U ⊆W.

Proof. If U ⊆W, then W is at least as strong as U according to N ′∆,β(v, x), by Observation 9. For
the other direction, assume that U * W, and let u ∈ Σ∆,β(v, x) be a label contained in U \W. We
want to show that W is not at least as strong as U according to N ′∆,β(v, x). For a contradiction
assume that W is at least as strong as U. Consider some configuration uy2y3 . . . y∆ ∈ N∆,β(v, x).
We first show that the configuration U〈y2〉〈y3〉 . . . 〈y∆〉 is contained in N ′∆,β(v, x). Recalling the
definition of R(·), we see that, since yj ∈ 〈yj〉, for all 2 ≤ j ≤ ∆, and u ∈ U, the only case in which
the configuration might not be contained in N ′∆,β(v, x) is that one of the labels in the configuration

24

is not contained in any configuration in E ′∆,β(v, x). Hence, for our first step it suffices to show that
each of the 〈yj〉, and also U , is contained in some configuration in E ′∆,β(v, x). As U ∈ Σ′∆,β(v, x) by
definition, U is contained in such a configuration. The analogous statement for the 〈yj〉 follows from
Lemma 10 and the fact that for any label L ∈ Σ∆,β(v, x), there exists some good pair (C , i) such
that 〈L〉 = S1((C , i)) or 〈L〉 = S2((C , i)). To see the latter, observe that

〈Ai〉 = S2((C , i− 1)) where C = {Ck,j | 0 ≤ k ≤ i− 1, 1 ≤ j ≤ vk},
〈Bi〉 = S1((C , i)) where C = ∅,
〈Ci,j〉 = S1((C , i)) where C = {Ci,j}, and

〈X〉 = S1((∅, 0)) if x > 0.

It follows that the configuration U〈y2〉〈y3〉 . . . 〈y∆〉 is contained in N ′∆,β(v, x).
Since W is at least as strong as U, we obtain that also W〈y2〉〈y3〉 . . . 〈y∆〉 ∈ N ′∆,β(v, x).

By the definition of N ′∆,β(v, x), there is a configuration wy′2y
′
3 . . . y

′
∆ ∈ N∆,β(v, x) such that

(w, y′2, y
′
3, . . . , y

′
∆) ∈ W × 〈y2〉 × 〈y3〉 × · · · × 〈y∆〉. Since W is right-closed by Observation 8,

the fact that u is not contained in W implies that also any label that is at least as weak as u
according to E∆,β(v, x) is not contained in W; thus, w is not at least as weak as u according to
E∆,β(v, x). Moreover, as y′j ∈ 〈yj〉 for any 2 ≤ j ≤ ∆, we obtain the following picture: there are
two configurations U = uy2y3 . . . y∆ and W = wy′2y

′
3 . . . y

′
∆ in N∆,β(v, x) such that w is not at least

as weak as u, and y′j is at least as strong as yj , for all 2 ≤ j ≤ ∆. Now it is straightforward to
check that there are no two configurations in N∆,β(v, x) with these properties, by going through all
possible pairs of configurations. To this end, recall the strength relations of the labels in Σ∆,β(v, x)
given in Section 3.4 (in particular, Figure 5), and assume for a contradiction that such configurations
U ,W exist (recall that two configurations that are identical up to reordering of the contained labels
are considered as the same configuration).

Consider first the case that W = C∆−x
i,j Xx for some 0 ≤ i ≤ β, 1 ≤ j ≤ vi, and 0 ≤ x ≤ ∆− 2.

Since ∆− x ≥ 2, there is some index 2 ≤ k ≤ ∆ such that y′k = Ci,j , which implies that U =W or
U = A`B

∆−1
` for some 1 ≤ ` ≤ i, as otherwise y′k cannot be at least as strong as yk. If U =W , then

we have u = Ci,j and w = X, as otherwise w is at least as weak as u. It follows that there is some
index 2 ≤ k′ ≤ ∆ such that yk′ = X and y′k′ = Ci,j , yielding a contradiction to the fact that y′k′ is at
least as strong as yk′ . If U = A`B

∆−1
` for some 1 ≤ ` ≤ i, then we have u = B` and w = Ci,j , or

there is some index 2 ≤ k′ ≤ ∆ such that yk′ = B` and y′k′ = Ci,j , since ∆− x ≥ 2. In both cases,
we obtain a contradiction, since Ci,j is weaker than B`.

Now, consider the other case, i.e., that W = A`B
∆−1
` for some 1 ≤ ` ≤ β. If U = C∆−x

i,j Xx for
some 0 ≤ i ≤ β, 1 ≤ j ≤ vi, and 0 ≤ x ≤ ∆− 2, then we have i < `, as otherwise A` is weaker than
any label in U , which would yield a contradiction no matter whether w = A` or y′k = A` for some
2 ≤ k ≤ ∆. But since ∆ − x ≥ 2 implies that there is some 2 ≤ k ≤ ∆ such that yk = Ci,j and
y′k = B`, the case i < ` also yields a contradiction, as B` is not at least as strong as Ci,j if i < `. If
U = A`′B

∆−1
`′ for some 1 ≤ `′ ≤ β, then we see that `′ ≤ `, as otherwise, again, A` is weaker than

any label in U . If `′ < `, then B`′ , which is contained in U , is stronger than any label in W , leading
to a contradiction no matter whether u = B`′ or yk = B`′ for some 2 ≤ k ≤ ∆. If `′ = `, then we
have u = A` and w = B`, as otherwise w is at least as weak as u. But then it follows that there is
some index 2 ≤ k ≤ ∆ such that yk = B` and y′k = A`, yielding a contradiction to the fact that y′k is
at least as strong as yk.

Corollary 12. Let U1,U2 ∈ Σ∆,β(v, x) be two labels such that U2 is stronger than U1 according to
E∆,β(v, x), and assume that x+ 2 ≤ ∆. Then 〈U1〉 is stronger than 〈U2〉 according to N ′∆,β(v, x).

25

Proof. Recall that, by definition, 〈U1〉 and 〈U2〉 contain exactly those labels from Σ∆,β(v, x) that
are at least as strong as U1 and U2, respectively. Hence, the fact that U2 is stronger than U1 implies
that 〈U2〉 ⊆ 〈U1〉 and 〈U1〉 * 〈U2〉. Now, applying Lemma 11 yields the corollary.

4.3 Node constraint

We now compute the node constraint of R(Π∆,β(v, x)).

Lemma 13. Let x+ 2 ≤ ∆. The node constraint N ′∆,β(v, x) of R(Π∆,β(v, x)) is the collection of
the following (condensed) configurations:

• For each color Ci,j ∈ C, where 0 ≤ i ≤ β and 1 ≤ j ≤ vi,

disj(〈〈Ci,j〉〉)∆−x disj(〈〈X〉〉)x .

• For each 1 ≤ i ≤ β
disj(〈〈Ai〉〉) disj(〈〈Bi〉〉)∆−1 .

Proof. First of all, note that the definition of 〈〈L〉〉, for some label L of Π∆,β(v, x), depends on the
strength of the labels of R(Π∆,β(v, x)), which in turn depends on the node constraint N ′∆,β(v, x),
which we are currently defining by using the 〈〈·〉〉 notation. Notice that such a recursive definition
is not an issue: by Lemma 10 we know what are the labels of R(Π∆,β(v, x)), and by Lemma 11
we know that the strength relation of these labels is given exactly by set inclusion. Hence we
already know enough about the strength of the labels of R(Π∆,β(v, x)) even before formally defining
N ′∆,β(v, x), and this allows us to use the 〈〈·〉〉 notation to define them.

The above lemma says that N ′∆,β(v, x) is given by the union, over all configurations L1 . . . L∆ ∈
N∆,β(v, x), of the configurations disj(〈〈L1〉〉) . . . disj(〈〈L∆〉〉). Recall that the R(·) operator requires
that N ′∆,β(v, x) contains all (and only) configurations S1 . . . S∆ that satisfy that there exists a choice
(s1, . . . , s∆) ∈ S1× . . .×S∆ such that s1 . . . s∆ is in N∆,β(v, x). Also, recall that tuples are equivalent
up to reordering. We argue that N ′∆,β(v, x) can be obtained as follows. Start from N ′ = {}. For
each configuration L1 . . . L∆ ∈ N∆,β(v, x) add to N ′ all the configurations that can be obtained
from the condensed configuration disj(〈〈L1〉〉) . . . disj(〈〈L∆〉〉). We now prove that the obtained set
N ′ is equivalent to N ′∆,β(v, x).

By Lemma 11, and by definition of 〈〉, 〈〈Li〉〉 contains all and only the sets containing Li, hence,
N ′ satisfies the requirements of the existential quantifier. We now prove that N ′ is maximal, in the
sense that we cannot add any new valid configuration S′1 . . . S

′
∆ to N ′. Assume for a contradiction

that S′1 . . . S
′
∆ is a valid maximal configuration not contained in N ′. There must exist a choice

(s′1, . . . , s
′
∆) ∈ S′1 × . . . × S′∆ such that s′1 . . . s

′
∆ is in N∆,β(v, x). Note that, by construction, N ′

contains disj(〈〈s′1〉〉) . . . disj(〈〈s′∆〉〉), and by definition of 〈〈s′i〉〉 and Observation 9 we have that
S′i ∈ 〈〈s′i〉〉, for all 1 ≤ i ≤ ∆. Hence, S′1 . . . S

′
∆ is present in N ′, contradicting the assumption. Hence

the constructed set N ′ is equal to N ′∆,β(v, x).

5 Upper bound

In this section we prove upper bounds for the (2, β)-ruling set problem. While an upper bound is
not necessary to prove the main results of our work, perhaps surprisingly, it will serve the purpose
of giving some intuition behind the definition of the problem family that we use to prove lower
bounds. We will first prove that Π∆,β(v′, 0) is at least as hard as R(R(Π∆,β(v, 0))), where v′ is
the inclusive prefix sum list of v (i.e., v′i =

∑
j≤i vj). That is, we can apply the round elimination

26

theorem on Π∆,β(v, 0) to get a problem that can be solved in (at most) 1 round given a solution for
Π∆,β(v′, 0). Hence, we will prove the following lemma.

Lemma 14. The problem R(R(Π∆,β(v, 0))) can be solved in 0 rounds given a solution for Π∆,β(v′, 0),
where v′ is the inclusive prefix sum list of v. Hence, given a solution for Π∆,β(v′, 0) we can solve
Π∆,β(v, 0) in at most 1 round.

We will then analyze the whole problem family in order to provide an upper bound for the
(2, β)-ruling set problem. In particular, we will analyze how the number of colors evolves over time,
and we will prove that the time required to compute a (2, β)-ruling set is at most the minimum t
such that

(
β+t
β

)
≥ c, if nodes are initially labeled with some c-vertex coloring. In particular, this

implies that a (2, β)-ruling set can be found in O(β c1/β) rounds, and that a (2, β c1/β)-ruling set
can be found in β rounds, for all β ≤ c. While this upper bound does match but not improve the
current state of the art, we will later show how this family, essentially obtained while proving upper
bounds, can be turned into a lower bound by increasing parameter x (recall the definition of the
problem family Π∆,β(v, x) in Section 3). Hence, we will prove the following lemma.

Lemma 15. The time required to solve the (2, β)-ruling set problem in the port numbering model
given a c-vertex coloring is at most the minimum t such that

(
β+t
β

)
≥ c. In particular, the (2, β)-

ruling set problem can be solved in t ≤ β c1/β rounds. Also, the (2, β c1/β)-ruling set problem can be
solved in at most β rounds.

Interestingly, the strategy that we will use to prove that Π∆,β(v′, 0) can be used to solve
R(R((Π∆,β(v, 0))) shows that, by just blindly applying the round elimination theorem and discarding
everything that has no intuitive meaning, we can obtain algorithms that are able to compete with
the current state of the art.

5.1 Proof of Lemma 14

For simplicity, let us define Π′∆,β(v, 0) := R(Π∆,β(v, 0)) and Π′′∆,β(v, 0) := R(R(Π∆,β(v, 0))) =

R(Π′∆,β(v, 0)). We want to understand Π′′∆,β(v, 0), but it seems highly non trivial to show the exact
form for Π′′∆,β(v, 0) using the round elimination technique. Instead, starting from Π′∆,β(v, 0), we
prove that some specific configurations are present in the node constraint N ′′∆,β(v, 0) of Π′′∆,β(v, 0).
This is enough for our purposes, since, even if there are more configurations that we do not consider,
it means that we are only making the problem harder. We will then show that we can rename
labels appearing in Π′′∆,β(v, 0) such that the collection of configurations that we consider matches
the node constraint definition of Π∆,β(v′, 0). We will also show that the edge constraint E ′′∆,β(v, 0)
of Π′′∆,β(v, 0) matches the edge constraint E∆,β(v, 0) of Π∆,β(v, 0). This will imply that, by applying
Theorem 7 on Π∆,β(v, 0), we get a problem where we can discard some allowed configurations, and
rename the obtained sets of sets, such that we get problem Π∆,β(v′, 0), and thus that a solution
for Π∆,β(v′, 0) can be transformed in 0 rounds to a solution for R(R(Π∆,β(v, 0))). Hence, and by
Theorem 7 this will imply that, given a solution for Π∆,β(v′, 0) we can solve Π∆,β(v, 0) in at most 1
round of communication.

Node constraint We start by showing that, for each possible pair (Ci,j , i
′) such that Ci,j is a color

of group i of the original problem and i ≤ i′ ≤ β, N ′′∆,β(v, 0) contains some allowed configuration
that corresponds to a color of group i′ of the new problem. In other words, we show that the colors
of the new problem are generated by all possible pairs composed of a color of the original problem

27

Group 2

Group 1

Group 0

Group 2

Group 1

Group 0

Figure 6: An example of how colors in Π′′ are generated from colors in Π. In the depicted case, the colors of
Π can be described by the vector [1, 2, 3], and each color of group i in Π generates a color for every group
j ≥ i in Π′′; hence the colors in Π′′ can be described by the vector [1, 3, 6]. For example, the orange color in
Π, in group 1, generates two colors (orange and pink) in groups 1 and 2 in Π′′.

and a color group, where the color group is at least as large as the group of the original color. See
Figure 6 for an example.

Consider an arbitrary choice of i, j, i′ as described above, and the set C of sets defined as
〈〈Ci,j ,Bi′〉, 〈Ai′〉〉 if i′ > 0 and as 〈〈Ci,j〉〉 if i′ = 0. We show that C∆ is an allowed configuration
of N ′′∆,β(v, 0), that is, any choice of sets (s1, . . . , s∆) ∈ C∆ is an allowed configuration in the node
constraint of Π′∆,β(v, 0). Any choice satisfies (by construction) the following: each chosen set either
contains both Ci,j and Bi′ (or just Ci,j if i′ = 0), or it contains Ai′ (condition allowed only if i′ > 0).
If all choices fall in the first case, hence also if i′ = 0, then this configuration is contained in
N ′∆,β(v, 0), since all choices over disj(〈〈Ci,j〉〉)∆ are contained in N ′∆,β(v, 0).Thus let us now consider
the case where at least one choice contains Ai′ , for i′ > 0. Other choices either also contain Ai′ ,
or they contain Bi′ . Since Bi′ is stronger than Ai′ with regard to the edge diagram of Π∆,β(v, 0),
the presence of Ai′ in a set implies the presence of Bi′ (see Observation 8). Hence, we have a
set containing Ai′ and all other sets containing Bi′ , which is a configuration present in N ′∆,β(v, 0),

given by the presence of all choices over disj(〈〈Ai′〉〉) disj(〈〈Bi′〉〉)∆−1. Notice that, even though we
required i ≤ i′, this is not strictly necessary for obtaining allowed configurations. Nevertheless,
since all sets containing Ci,j also contain Bi (by Observation 8, since sets are right-closed and Bi is
stronger than Ci,j) and all Bj for j < i, the configuration obtained by using the pair (Ci,j , i

′) would
be the same as the one obtained by using (Ci,j , i) if i′ < i.

We now show that also 〈〈Ai〉〉〈〈Bi〉〉∆−1 is an allowed configuration of N ′′∆,β(v, 0), for all 1 ≤
i ≤ β. Consider an arbitrary choice: it must be a set containing Ai and all other sets containing
Bi, and thus a configuration present in N ′∆,β(v, 0), given by the presence of all choices over

disj(〈〈Ai〉〉) disj(〈〈Bi〉〉)∆−1.

Renaming We show how to rename the obtained sets of sets, such that, under the proposed
renaming, we have the desired relation between Π′′∆,β(v, 0) and Π∆,β(v′, 0). We consider the set of
sets obtained starting from (Ci,j , i

′) as a new color of group i′. Then we map the other set of sets
as follows: 〈〈Bi〉〉 7→ Bi, and 〈〈Ai〉〉 7→ Ai. Notice that v′ is indeed the inclusive prefix sum of v:
since we assume that i ≤ i′, in the new group i′ we have a number of colors equal to the sum of
the number of colors of the old groups i ≤ i′. Also, we have all the AiB

∆−1
i configurations in the

node constraint of Π′′∆,β(v, 0). This means that N ′′∆,β(v, 0) is the same as N∆,β(v′, 0) of Π∆,β(v′, 0),
defined in Section 3. On the other hand, we want to show that E ′′∆,β(v, 0) is the same as E∆,β(v′, 0)
of Π∆,β(v′, 0). For that, it is enough to show that that the following statements hold for the edge
constraint E ′′∆,β(v, 0).

28

Edge constraint In order to show the desired properties mentioned above, we must show that
the configurations of the edge constraint E ′′∆,β(v, 0) are the following.

1. All (new) colors are compatible with all other (new) colors (except themselves).

2. 〈〈Bi〉〉 is compatible with 〈〈Bj〉〉, for all 1 ≤ i, j ≤ β.

3. 〈〈Aj〉〉 is compatible with 〈〈Bi〉〉, if and only if i < j.

4. 〈〈Aj〉〉 is compatible with all colors of the new group i, if and only if i < j.

We start with color compatibility. Let Ci,j,k be the color (a set of sets) obtained from the pair (Ci,j , k).
Consider two new colors Ci,j,k and Ci′,j′,k′ . We need to show that there exists a set s1 ∈ Ci,j,k and
a set s2 ∈ Ci′,j′,k′ such that s1s2 is in E ′∆,β(v, 0), if and only if (i, j, k) 6= (i′, j′, k′). Consider the
case where (i, j) 6= (i′, j′), that is, either i 6= i′ or j 6= j′. We argue that such sets are given by
the configuration s1s2 added to E ′∆,β(v, 0) starting from the good pair ({Ci,j}, k) when defining
the problem Π′∆,β(v, 0) (recall the definition of good pair given in Section 4). By construction, s1
contains both Ci,j and Bk if k > 0, or Ci,j if k = 0. Since Ci,j,k is defined as 〈〈Ci,j ,Bk〉, 〈Ak〉〉 if k > 0
and as 〈〈Ci,j〉〉 if k = 0, then s1 ∈ Ci,j,k, thus we can pick such set. Since (i, j) 6= (i′, j′), and since
by construction s2 contains all colors not present in s1 and all B-type labels, then s2 is contained in
Ci′,j′,k′ (because s2 is in disj(〈〈Ci′,j′ ,Bk′〉〉) if k′ > 0, or in the disjunction disj(〈〈Ci′,j′〉〉) if k′ = 0,
and Ci′,j′,k′ contains all elements of such disjunction), and thus we can choose such set. Let us
now consider the case k 6= k′. Without loss of generality, consider the case where k < k′. Consider
again the configuration s1s2 added to E ′∆,β(v, 0) starting from the good pair ({Ci,j}, k). The set s2
contains Ak′ , since k′ > k, and it is thus contained in 〈〈Ak′〉〉, that is a subset of Ci′,j′,k′ , thus we can
pick such set. We now show that color Ci,j,k is not compatible with itself. By picking a pair of sets
that both contain Ci,j we get a configuration not in E ′∆,β(v, 0), since a color never appears on both
sides of an edge configuration. By picking a pair of sets that both contain Ak we get a configuration
not in E ′∆,β(v, 0), since A-type labels never appears on both sides. By picking on one side a set that
contains Ci,j and on the other side a set that contains Ak, we get a configuration not in E ′∆,β(v, 0),
because the first choice must also contain Bk (since all B-type labels are stronger than all A-type
labels), and all configurations in E ′∆,β(v, 0) are such that if Bk is contained on one side, Ak is not
contained on the other side.

We now argue about compatibility between 〈〈Bi〉〉 and 〈〈Bj〉〉, for all 1 ≤ i, j ≤ β. Consider the
configuration s1s2 added to E ′∆,β(v, 0) starting from the good pair ({}, i). Recall from Section 4.1
that, for this specific good pair, s1 is defined as {B1, . . . ,Bi}, and that {B1, . . . ,Bβ} ⊆ s2. The set s1
can be picked from 〈〈Bi〉〉, and since s2 contains all B-type labels, and 〈〈Bj〉〉 contains {B1, . . . ,Bj}
and hence a subset of s2, the set s2 can be picked from 〈〈Bj〉〉.

Regarding the compatibility between 〈〈Aj〉〉 and 〈〈Bi〉〉, notice that, if i < j, then the aforemen-
tioned set s2, by construction, contains also Aj , and thus s2 can be picked from 〈〈Aj〉〉. Moreover, if
i ≥ j, 〈〈Aj〉〉 is not compatible with 〈〈Bi〉〉, since any pair of choices must contain Bi on one side
and Aj on the other, but by construction all configurations in E ′∆,β(v, 0) satisfy that if Bi is present
on one side, and j ≤ i, then Aj is not present on the other side.

Let us now prove the last point. If j ≥ k, 〈〈Ak〉〉 is not compatible with colors in the new group j,
since any choice over such colors either contains another A-type label, or Bj , and such configurations
never appear in E ′∆,β(v, 0). If j < k, consider color Ci,j,k, and consider the configuration s1s2 added
to E ′∆,β(v, 0) starting from the good pair ({Ci,j}, k). By definition of Ci,j,k, we know that s1 is
contained in Ci,j,k, and thus we can choose such set. Then, since k > j, Ak is contained in s2, and
thus s2 is contained in 〈〈Aj〉〉.

29

We showed that up to the above renaming, N ′′∆,β(v, 0) = N∆,β(v′, 0) and E ′′∆,β(v, 0) = E∆,β(v′, 0),

which means that Π′′∆,β(v, 0) = R(R(Π∆,β(v, 0))) can be solved in 0 rounds given a solution for
Π∆,β(v′, 0), proving Lemma 14.

5.2 Proof of Lemma 15

While the algorithm that we implicitly obtain by applying round elimination multiple times only
works on ∆-regular graphs, we will later show, by giving a human-readable version of such algorithm,
that it can be adapted to work on any graph.

Let p(v) be the inclusive prefix sum of v, and let pt(v) be the function that recursively applies t
times p to v (if t = 0, then pt(v) = v). That is, pt+1(v)j =

∑j
i=0 p

t(v)i, for all 0 ≤ j ≤ β.
Let us see what we get by applying Lemma 14 multiple times. We start from Π∆,β(v =

[1, 0, . . . , 0], 0), and by applying Lemma 14 we get that it can be solved in 1 round given a solution
for Π∆,β(p(v), 0). Applying the same reasoning, the latter problem can be solved in 1 round given a
solution for Π∆,β(p(p(v)), 0), and so on. We get that Π∆,β([1, 0, . . . , 0], 0) can be solved in t rounds
given a coloring with c ≤ size(pt(v)) colors. Hence, the time required to solve Π∆,β([1, 0, . . . , 0], 0),
and thus the (2, β)-ruling set problem, given a c-vertex coloring, is upper bounded by the minimum
t such that c ≤ size(pt(v)), since Π∆,β(pt(v), 0), the problem obtained by applying t times Lemma
14, can be solved by defining a one-to-one mapping between the given coloring and the size(pt(v))
configurations of N∆,β(pt(v), 0) that do not correspond to pointers. Let us now give an exact bound
on the size of pt(v), assuming v = [1, 0, . . . , 0].

Lemma 16. For all 0 ≤ k ≤ β, and for all j ≥ 1, pj(v)k =
(
j+k−1
k

)
.

Proof. For j = 1, the definition of pj(v)k yields p(v)k = 1 + 0 + 0 + · · · + 0 =
(
k
k

)
for any

0 ≤ k ≤ β, so the claim holds trivially in that case. By induction, and using the binomial
identity

∑b
a=0

(
c+a
a

)
=
(
c+b+1
b

)
, we obtain that for j > 1 and any 0 ≤ k ≤ β, we have pj(v)k =∑k

i=0 p
j−1(v)i =

∑k
i=0

(
j−2+i
i

)
=
(
j+k−1
k

)
.

By applying Lemma 16, we get that size(pt(v)) = pt+1(v)β =
(
β+t
β

)
. This implies that, given

some c-coloring, the time required to solve (2, β)-ruling sets is upper bounded by the minimum t such

that
(
β+t
β

)
≥ c. Since, for t = β c1/β, we have that

(
β+t
β

)
≥
(
t
β

)β
≥ c, we obtain that (2, β)-ruling

sets can be found in β c1/β rounds. Also, by using the inequality
(
x+y
x

)
≥
(
x
y

)y
, we obtain that

(2, β c1/β)-ruling sets can be found in at most β rounds, since
(βc1/β+β
βc1/β

)
≥
(
βc1/β

β

)β
= c.

5.3 Intuition behind the algorithm

While proving Lemma 14 we showed that, starting from problem Π∆,β(v, 0), we can apply the
round elimination theorem and obtain a problem that can be made harder such that the obtained
sets of sets can be renamed to obtain problem Π∆,β(v′, 0), where v′ is the inclusive prefix sum of
v. This implies that, given a solution for Π∆,β(v′, 0), we can obtain, in 0 rounds, a solution for
R(R(Π∆,β(v, 0))). Also, note that each problem Π∆,β(v, 0) can be solved given a c ≤ size(v) coloring.
Moreover, the round elimination theorem implies that by spending 1 round of communication, given
a solution for R(R(Π∆,β(v, 0))) nodes can obtain a solution for Π∆,β(v, 0). Hence, given a solution
for Π∆,β(v′, 0), we can obtain a solution for Π∆,β(v, 0) by spending 1 round of communication. In
order to do that, nodes can compute (offline) the inverse renaming from the labels of the current
problem to the labels (sets of sets) of the previous problem. Then, they can spend 1 round to share

30

their current labels with the neighbors, and choose a label for the previous problem that satisfies
the previous node constraint and edge constraint (and the round elimination theorem guarantees
that this is possible). Essentially, this means that, given a proof for an upper bound using round
elimination, a proper algorithm can be obtained by “executing the proof in the reverse order”, and
a crucial part is that the (inverse) label renaming can be computed without need of coordination.

While the round elimination theorem guarantees us the existence of an algorithm, we can actually
extract some human-understandable version of such procedure by recalling how we defined the
colors of the new problem starting from the colors of the old problem. In fact, there is a very simple
idea behind the round elimination generated algorithm: we have colors and pointers. Each color
corresponds to a pair containing a color c and a group i of the previous step. Group numbers give
priorities. If no neighbor has the same color c with a better (lower) priority, pick color c, otherwise
point to that neighbor. An example of this color reduction step is shown in Figure 7 (note that this
is essentially the inverse of the mapping previously shown in Figure 6).

Group 2

Group 1

Group 0

Group 2

Group 1

Group 0

Figure 7: An example of the reduction of the colors. A pink node would either change its color to orange, if
no neighbor has that color, or it would uncolor itself and point to an orange neighbor.

More formally, let us now see how to transform a solution for Π∆,β(pt(v), 0), given a c ≤ pt(v)
coloring, to a solution for Π∆,β(v = [1, 0, . . . , 0], 0), in t rounds of communication. At first, nodes
start by (offline) computing some mapping from colors to groups such that in each group k, at
most pt(v)k colors are present. Thus each color can be seen as Ck,i′ , for some 0 ≤ k ≤ β and
1 ≤ i′ ≤ pt(v)k. Now, let us see how nodes can convert a solution for Π∆,β(pt

′+1(v), 0) to a solution
for Π∆,β(pt

′
(v), 0) in 1 round of communication, for each 0 ≤ t′ < t. Recall that each color of the

current problem corresponds to a good pair of the previous problem, and nodes can compute offline
such an inverse mapping. Hence each color Ck,i′ corresponds to some pair (Ci,j , k) satisfying k ≥ i.
The algorithm, for a node having the pair (Ci,j , k), does the following:

1. Gather the pair (cu, gu) of each neighbor u.

2. If no neighbor satisfies cu = Ci,j ∧ gu < k, then set Ci,j as new color.

3. Otherwise, output Ai on the port connecting to that neighbor, and Bi on the others.

The reason why this algorithm works is the following. At each step the number of colors reduces,
and at the end there is only one “color” that corresponds to nodes in the ruling set. In order to
get rid of colors fast, nodes do not wait to know if nodes are in the ruling set in order to point to
them. Instead, they are ensured that if they output some pointer with distance i, in the next step
the pointed node will either output some color of group smaller than i, or a pointer with distance
smaller than i. In case the neighbor outputs a color, in the next steps such node will either output
a color of smaller groups or a smaller pointer (this condition is guaranteed by how “good pairs” are
defined). Notice that the provided algorithm does not need the graph to be ∆-regular, hence we get
an algorithm that works in all graphs.

31

6 Lower bound

In this section we prove lower bounds on the time complexity for computing (2, β)-ruling sets using
deterministic algorithms in the port numbering model. We will prove such lower bounds using the
round elimination theorem. While it is not difficult to argue that in the port numbering model
(2, β)-ruling sets are not solvable with deterministic algorithms, we will later see in Section 7 how to
convert the lower bounds obtained in this section to lower bounds for the LOCAL model. We will
heavily exploit the fact that the lower bounds that we prove in this section show the existence of
a sequence of problems Π0 → Π1 → · · · → Πt, where Πt is not 0-round solvable, and the problem
family is obtained by applying the round elimination theorem multiple times in a way that preserves
the property that the number of labels of each problem is not too large. As we will see in Section 7,
this is the only property that we need, in order to ensure that, even by allowing randomization, the
problems of such a family do not become much easier.

We start by defining the notion of relaxation, which allows us to relate different configurations.

Definition 17. We say that a configuration A1 . . . A∆ of sets can be relaxed to a configuration
B1 . . . B∆ of sets if there exists a bijection σ : {1, . . . ,∆} → {1, . . . ,∆} such that Ak ⊆ Bσ(k) for
each 1 ≤ k ≤ ∆. For simplicity, we will assume in the following w.l.o.g., that σ(k) = k for each
1 ≤ k ≤ ∆, i.e., that the bijection is the identity.

We now define a node constraint Z∆,β(v, x) that will be useful later. In particular, we will show
in Lemma 21 that each node configuration of R(R(Π∆,β(v, x))) can be relaxed to some configuration
in Z∆,β(v, x).

Definition 18. Recall that Σ∆,β(v, x) denotes the set of all labels used in Π∆,β(v, x), Σ′∆,β(v, x)
the set of all labels used in R(Π∆,β(v, x)), and C the set of all colors Ci,j ∈ Σ∆,β(v, x), and that
size(v) = v0 + · · ·+ vβ. We will denote the group of a color C ∈ C by g(C), i.e., if C = Ci,j , then
g(C) = i (similar to the already defined notion for sets of colors). Moreover, for any v, x such that
size(v) · (x+ 1) + 1 ≤ ∆, we denote by Z∆,β(v, x) the set containing the configurations

〈〈Ai〉〉 〈〈Bi〉〉∆−1 for any 1 ≤ i ≤ β,

〈〈C〉〉∆−size(v)·(x+1) (Σ′∆,β(v, x))size(v)·(x+1) for any C ∈ C satisfying g(C) = 0, and

〈〈C,Bi〉, 〈Ai〉〉∆−size(v)·(x+1) (Σ′∆,β(v, x))size(v)·(x+1) for any C ∈ C and max{1, g(C)} ≤ i ≤ β.

Here, the inner 〈〉 are taken w.r.t. E∆,β(v, x), and the outer 〈〉 w.r.t. N ′∆,β(v, x).

The next lemma restricts the space of configurations that can possibly appear in the node
constraint of R(R(Π∆,β(v, x))). We will later use this lemma inductively in order to restrict this
space even further.

Lemma 19. Let 1 ≤ i ≤ β − 1, and let v, x satisfy size(v) · (x+ 1) + 1 ≤ ∆. Let U = U1 . . . U∆ be
a node configuration of R(R(Π∆,β(v, x))) such that

(i) U cannot be relaxed to any configuration in Z∆,β(v, x), and

(ii) each set contained in Uk contains Bi, for any 1 ≤ k ≤ ∆.

Then, each set contained in Uk contains Bi+1, for any 1 ≤ k ≤ ∆.

Proof. We begin by proving two useful claims.
Claim 1: For any color C ∈ C, there are at least size(v) · (x+ 1) + 1 distinct indices k such that

Uk contains a set that contains neither Ai nor C.

32

For a contradiction, suppose that there is a color C for which the claim is false. W.l.o.g.,
we can assume that U1, . . . ,Uk′ are exactly those Uk that contain a set that contains neither Ai
nor C, where k′ ≤ size(v) · (x + 1). Now consider an arbitrary set Uk with k > k′, and some
arbitrary set W ∈ Uk. Since k > k′, we know that W must contain Ai or C. As W also con-
tains Bi by Property (ii) and is right-closed by Observation 8 (since W is a label/set used in
R(Π∆,β(v, x))), it follows that W is a superset of 〈C,Bi〉 or a superset of 〈Ai,Bi〉. Since Bi is
stronger than Ai according to E∆,β(v, x), we have 〈Ai,Bi〉 = 〈Ai〉; hence, W ∈ 〈〈C,Bi〉, 〈Ai〉〉, by
Lemma 11, and we obtain that Uk ⊆ 〈〈C,Bi〉, 〈Ai〉〉. This implies that every Uk with k > k′ is a
subset of 〈〈C,Bi〉, 〈Ai〉〉, and since every Uk is a subset of Σ′∆,β(v, x), and k′ ≤ size(v) · (x+ 1), it

follows that U can be relaxed to the configuration 〈〈C,Bi〉, 〈Ai〉〉∆−size(v)·(x+1) (Σ′∆,β(v, x))size(v)·(x+1).
We observe that, for all 1 ≤ j ≤ g(C), we have that 〈C,Bj〉 = 〈C〉 since Bj is stronger than
C according to E∆,β(v, x). Therefore, 〈C,Bi〉 = 〈C,Bmax{i,g(C)}〉, which implies that the configu-

ration 〈〈C,Bi〉, 〈Ai〉〉∆−size(v)·(x+1) (Σ′∆,β(v, x))size(v)·(x+1) is contained in Z∆,β(v, x). This yields a
contradiction to Property (i) and proves the claim.

Claim 2: Each Uk contains a set that does not contain Ai.
For a contradiction, suppose that the claim is false, and let k′ be an index such that any set

W contained in Uk′ contains Ai. Since any such W is right-closed by Observation 8 (since W is a
label/set used in R(Π∆,β(v, x))), this implies that 〈Ai〉 ⊆W for any W ∈ Uk′ . Hence, by Lemma 11,
we obtain that, for any W ∈ Uk′ , W is at least as strong as 〈Ai〉 according to N ′∆,β(v, x), and
it follows that Uk′ is a subset of 〈〈Ai〉〉. With an analogous argumentation, we see that any Uk
is a subset of 〈〈Bi〉〉 since for any Uk, each set contained in Uk contains Bi, by Property (ii). It
follows that U can be relaxed to the configuration 〈〈Ai〉〉〈〈Bi〉〉∆−1 contained in Z∆,β(v, x), yielding
a contradiction to Property (i) and proving the claim.

Now, we are set to prove the lemma. For a contradiction, suppose that the lemma does not
hold, and, w.l.o.g., let W1 ∈ U1 be a set that does not contain Bi+1. We will now pick one set from
each Uk such that the obtained configuration satisfies certain useful properties. Consider the partial
configuration of sets obtained by picking W1 from U1, and picking, for each color C ∈ C, (x+ 1) sets
Wk from distinct Uk such that Wk contains neither Ai nor C. To be precise, the size(v) · (x+ 1) + 1
sets picked so far are picked from size(v) · (x + 1) + 1 Uk with pairwise distinct index. This is
possible due to Claim 1 (by simply picking W1 first, and then picking the remaining size(v) · (x+ 1)
sets with the desired properties in an arbitrary order). We complete this partial configuration to a
configuration W1, . . .W∆ containing ∆ sets by picking from each remaining Uk a set that does not
contain Ai. This is possible by Claim 2.

We argue that W1 . . .W∆ is not a node configuration of R(Π∆,β(v, x)): Since, by construction,
for each color C ∈ C, there are at least x+ 1 distinct indices k such that Wk does not contain C, the
configuration W1 . . .W∆ is not contained in the condensed configuration disj(〈〈C〉〉)∆−x disj(〈〈X〉〉)x.
Moreover, as Bi+1 is stronger than Ai according to E∆,β(v, x), the fact that W1 does not contain
Bi+1 implies that W1 also does not contain Ai, as W1 is right-closed by Observation 8. Thus, none
of the Wk contains Ai, and we obtain for each i′ ≤ i that none of the Wk contains Ai′ , since Ai is
stronger than Ai′ according to E∆,β(v, x) and each Wk is right-closed. It follows that W1 . . .W∆ is
not contained in the condensed configuration disj(〈〈Ai′〉〉) disj(〈〈Bi′〉〉)∆−1, for any i′ ≤ i. Finally,
for any i′ > i, the fact that W1 does not contain Bi+1 implies that W1 also contains neither Ai′ nor
Bi′ since both are at least as weak as Bi+1 according to E∆,β(v, x) and W1 is right-closed. Hence,
W1 . . .W∆ is not contained in the condensed configuration disj(〈〈Ai′〉〉) disj(〈〈Bi′〉〉)∆−1, for any
i′ > i.

Therefore, W1 . . .W∆ is contained in none of the condensed configurations in N ′∆,β(v, x), and
we conclude that W1 . . .W∆ is not a node configuration of R(Π∆,β(v, x)). Since we have Wk ∈ Uk

33

for each 1 ≤ k ≤ ∆, it follows by the definition of the function R(·) that U1 . . . U∆ is not a node
configuration of R(R(Π∆,β(v, x))). This yields the desired contradiction and proves the lemma.

We now prove an analogous statement of the previous lemma, for the case where i = 0.

Lemma 20. Let v, x satisfy size(v) · (x+ 1) + 1 ≤ ∆, and let U = U1 . . . U∆ be a node configuration
of R(R(Π∆,β(v, x))) such that U cannot be relaxed to any configuration in Z∆,β(v, x). Then, each
set contained in Uk contains B1, for any 1 ≤ k ≤ ∆.

Proof. This proof is essentially a special case of the proof of Lemma 19 that only requires a subset of
the arguments. Given that the approach is analogous, we will only provide the minimally necessary
arguments without additional explanations.

Claim 1: For any color C ∈ C, there are at least size(v) · (x+ 1) + 1 distinct indices k such that
Uk contains a set that does not contain C.

For a contradiction, we assume that the claim is false for some color C, and that U1, . . . ,Uk′

are those Uk that contain a set that does not contain C, where k′ ≤ size(v) · (x + 1). Hence, for
any Uk with k > k′, any set contained in Uk must contain C, which implies that Uk ⊆ 〈〈C〉〉,
due to the right-closedness of all sets contained in Uk and Lemma 11. Thus, U can be relaxed
to 〈〈C〉〉∆−size(v)·(x+1) (Σ′∆,β(v, x))size(v)·(x+1). If g(C) = 0, the latter configuration is contained
in Z∆,β(v, x), yielding a contradiction and proving the claim. Hence, assume that g(C) ≥ 1.
Since Bg(C) is stronger than C according to E∆,β(v, x), we have 〈C〉 = 〈C,Bg(C)〉, by the definition
of 〈〉. Furthermore, since Ag(C) is weaker than C according to E∆,β(v, x), we have that 〈Ag(C)〉
is stronger than 〈C〉 according to N ′∆,β(v, x), by Corollary 12. Hence, 〈〈C〉〉 = 〈〈C〉, 〈Ag(C)〉〉 =

〈〈C,Bg(C)〉, 〈Ag(C)〉〉. It follows that the configuration 〈〈C〉〉∆−size(v)·(x+1)(Σ′∆,β(v, x))size(v)·(x+1) is
contained in Z∆,β(v, x), which yields a contradiction and proves the claim.

Now assume for a contradiction that the lemma does not hold, and w.l.o.g., pick one set Wk from
each Uk, such that W1 does not contain B1, and for each color C, there are at least (x+ 1) distinct
k such that Wk does not contain C. This is possible due to Claim 1, by an analogous argumentation
to the one in the proof of Lemma 19.

Now, again, the fact that for each color C, at least x + 1 many Wk do not contain C ensures
that W1 . . .W∆ is not contained in the condensed configuration disj(〈〈C〉〉)∆−x disj(〈〈X〉〉)x. Also,
since for any 1 ≤ i ≤ β both Ai and Bi are at least as weak as B1 according to E∆,β(v, x), W1 does
not contain any Ai or Bi due to the right-closedness of W1, which ensures that W1 . . .W∆ is not
contained in the condensed configuration disj(〈〈Ai〉〉) disj(〈〈Bi〉〉)∆−1, for any 1 ≤ i ≤ β. Hence,
W1 . . .W∆ is not a node configuration of R(Π∆,β(v, x)), and we conclude that U is not a node
configuration of R(R(Π∆,β(v, x))). This yields the desired contradiction and proves the lemma.

Again, we prove an analogous statement of Lemma 19, for the case where i = β.

Lemma 21. Let v, x satisfy size(v)·(x+1)+1 ≤ ∆. Then any node configuration of R(R(Π∆,β(v, x)))
can be relaxed to some configuration in Z∆,β(v, x).

Proof. This proof is essentially a special case of the proof of Lemma 19, where i = β. For a
contradiction, assume that the lemma is false, and let U = U1 . . . U∆ be a node configuration of
R(R(Π∆,β(v, x))) such that U cannot be relaxed to any configuration in Z∆,β(v, x). By Lemma 19
and Lemma 20, we know that for each 1 ≤ k ≤ ∆, any set contained in Uk contains Bβ . Hence, the
premises of Lemma 19 are satisfied for i = β, and by an analogous argumentation to the one in the
proof of Lemma 19, we obtain the following: we can pick one set Wk from each Uk, such that for
each color C, there are at least (x+ 1) distinct k such that Wk does not contain C, and each Wk

34

does not contain Aβ. We note that in our case of i = β, we do not pick a special set W1, and that
the condition i ≤ β − 1 in Lemma 19 is not used in the parts of the proof we use here analogously.

Now, similarly as before, the fact that there are at least (x + 1) distinct k such that Wk

does not contain C ensures that W1 . . .W∆ is not contained in the condensed configuration
disj(〈〈C〉〉)∆−x disj(〈〈X〉〉)x, and the fact that Aβ is not contained in any Wk ensures that, for
any 1 ≤ i ≤ β, label Ai is not contained in any Wk, which in turn implies that W1 . . .W∆ is not
contained in the condensed configuration disj(〈〈Ai〉〉) disj(〈〈Bi〉〉)∆−1, for any 1 ≤ i ≤ β. Again, we
obtain a contradiction to the fact that U is a node configuration of R(R(Π∆,β(v, x))).

We now prove that, given a solution for R(R(Π∆,β(v, x))), problem Π∆,β(v′, x′) can be solved in
0 rounds, for some specific value of v′ and x′. We will exploit the fact that any node configuration of
R(R(Π∆,β(v, x))) can be relaxed to some node configuration of Π∆,β(v′, x′), and we will additionally
relate the edge constraints of the two problems.

Lemma 22. Let v, x satisfy size(v) · (x+ 1) + 1 ≤ ∆, and set v′ := [v′0, . . . , v
′
β], v′i :=

∑i
j=0 vj for

all 0 ≤ i ≤ β, and x′ := size(v) · (x + 1). Then, given a solution for R(R(Π∆,β(v, x))), problem
Π∆,β(v′, x′) can be solved in 0 rounds.

Proof. Denote the set of colors contained in Σ∆,β(v, x) by C, and the set of colors contained in
Σ∆,β(v′, x′) by D. W.l.o.g, we can assume that C and D are disjoint, as we can simply rename colors
if they are not disjoint. Furthermore, we will use Ai, Bi, and X as usual when talking about labels
from Σ∆,β(v, x), and use A′i, B

′
i, and X′ instead when talking about labels from Σ∆,β(v′, x′). We

transform a solution for R(R(Π∆,β(v, x))) into a solution for Π∆,β(v′, x′) in 0 rounds as follows.
Let f : {(C, i) | C ∈ C, 0 ≤ i ≤ β, g(C) ≤ i} → D be an arbitrary, but fixed, bijection such that

g(f((C, i))) = i, i.e., such that any pair (C, i) is mapped to a color in D that is contained in group
i. By the definition of v′, such a bijection exists. Consider a node u and let U = U1 . . . U∆ be the
node configuration around u in the given solution for R(R(Π∆,β(v, x))). Node u starts by choosing
a configuration U ′ = U′1 . . . U

′
∆ ∈ Z∆,β(v, x) such that Uk ⊆ U′k for each 1 ≤ k ≤ ∆, and replacing

each Uk with U′k on the respective incident edges. By Lemma 21, such a configuration exists. Then,
u proceeds as follows.

If U ′ = 〈〈Ai〉〉〈〈Bi〉〉∆−1 for some 1 ≤ i ≤ β, then node u simply replaces 〈〈Ai〉〉 with A′i
and 〈〈Bi〉〉 with B′i on the respective incident edges to produce its output. If, for some C ∈ C
satisfying g(C) = 0, U ′ = 〈〈C〉〉∆−size(v)·(x+1)(Σ′∆,β(v, x))size(v)·(x+1), then u replaces 〈〈C〉〉 with
f((C, 0)) and (Σ′∆,β(v, x)) with X′ on the respective incident edges to produce its output. If

U ′ = 〈〈C,Bi〉, 〈Ai〉〉∆−size(v)·(x+1)(Σ′∆,β(v, x))size(v)·(x+1) for some (C, i) with max{1, g(C)} ≤ i ≤ β,
then u replaces 〈〈C,Bi〉, 〈Ai〉〉 with f((C, i)) and (Σ′∆,β(v, x)) with X′ on the respective incident edges
to produce its output. In the following, we show that this yields a correct output for Π∆,β(v′, x′).

As the nodes clearly produce node configurations that are contained in N∆,β(v′, x′), the only
thing to be shown is that the output pair on each edge is an edge configuration contained in
E∆,β(v′, x′). Hence, consider an edge {u,w}, and let UW be the edge configuration on {u,w} in
the solution for R(R(Π∆,β(v, x))). Let U′ be the label with which u replaces U (in the first step),
and W′ the label w replaces W with, and let U′′W′′ be the final output on edge {u,w} (after the
second replacement). We now show that the above 0-round algorithm does not produce an incorrect
edge configuration, by going through all incorrect edge configurations one by one and showing that
they do not occur. For this, we use that the correctness of UW (i.e., the fact that UW is contained
in the edge constraint of R(R(Π∆,β(v, x)))) implies that there exist sets U∗ ∈ U′ and W∗ ∈ W′

such that for all pairs (u∗,w∗) with u∗ ∈ U∗, w∗ ∈W∗ we have that u∗w∗ is an edge configuration
contained in E∆,β(v, x). This follows by the definitions of R(·) and R(·), and the fact that U ⊆ U′

35

and W ⊆ W′. In the following, U∗ and W∗ will always be arbitrarily chosen sets contained in U′ and
W′, respectively, and u∗ and w∗ will be picked suitably from U∗ and W∗, respectively.

If U′′ = C′ = W′′ for some C′ ∈ D satisfying g(C′) ≥ 1, then we have U′ = 〈〈C,Bi〉, 〈Ai〉〉 = W′ for
some (C, i) with max{1, g(C)} ≤ i ≤ β. Hence, by Lemma 11, we have 〈C,Bi〉 ⊆ U∗ or 〈Ai〉 ⊆ U∗,
which implies that {C,Bi} ⊆ U∗ or Ai ∈ U∗. Since analogous statements hold for W∗, we see that
we can pick u∗ and w∗ such that u∗w∗ is one of the configurations listed in {AiAi,CC,AiBi}. Since
neither of the listed configurations is contained in E∆,β(v, x), we obtain the desired contradiction.

If U′′ = C′ = W′′ for some C′ ∈ D satisfying g(C′) = 0, then we have U′ = 〈〈C〉〉 = W′ for some
C ∈ C. Analogously to the previous case, we obtain C ∈ U∗ and C ∈ W∗. Picking u∗ = C = w∗ yields
the desired contradiction as CC /∈ E∆,β(v, x).

If U′′ = A′i, W
′′ = B′j where i ≤ j, then U′ = 〈〈Ai〉〉, W′ = 〈〈Bj〉〉. Analogously to before, we

obtain Ai ∈ U∗ and Bj ∈W∗. Picking u∗ = Ai and w∗ = Bj yields the desired contradiction since
AiBj /∈ E∆,β(v, x) if i ≤ j.

If U′′ = A′i, W
′′ = C′ where i ≤ g(C′), then U′ = 〈〈Ai〉〉, W′ = 〈〈C,Bj〉, 〈Aj〉〉 where i ≤ j and

g(C) ≤ j. Analogously to before, we obtain Ai ∈ U∗, and {C,Bj} ⊆W∗ or Aj ∈W∗. Hence, we can
pick u∗ = Ai and w∗ = Aj , or u∗ = Ai and w∗ = Bj ; in both cases, we obtain a contradiction as both
AiAj and AiBj are not contained in E∆,β(v, x) if i ≤ j.

Finally, if U′′ = A′i, W
′′ = A′j for some 1 ≤ i, j ≤ β, then U′ = 〈〈Ai〉〉, W′ = 〈〈Aj〉〉. Analogously

to before, we obtain Ai ∈ U∗ and Aj ∈W∗. By picking u∗ = Ai and w∗ = Aj , we obtain the desired
contradiction.

As these cases cover all the edge configurations that are not contained in E∆,β(v′, x′) (up to
exchanging U′′ and W′′), and none of the cases can occur, it follows that the output pair on edge
{u,w} is an edge configuration contained in E∆,β(v′, x′). Hence, the output produced by our 0-round
algorithm is correct.

We now prove a lemma that is basically the result of applying Lemma 22 multiple times. This
is our main result of this section; it essentially shows a lower bound for ruling sets for the port
numbering model, with the additional property of providing a family of problems that satisfies the
round elimination property, such that all problems of the family have a number of labels that is not
too large.

Lemma 23. Let β ≥ 1, and let t = 1/2 · log ∆/(β log log ∆). If β ≤ t, then there exists a sequence
Π0 → Π1 → · · · → Πt of problems such that

(i) Π0 = Π∆,β([1, 0, 0, . . . , 0], 0),

(ii) Πj+1 can be solved in 0 rounds given a solution to R(R(Πj)), for all 0 ≤ j ≤ t− 1,

(iii) Πt−1 cannot be solved in 0 rounds in the deterministic PN model.

Proof. For all 0 ≤ j ≤ t, define Πj := Π∆,β(v(j), x(j)), where v(j) = [v
(j)
0 , . . . , v

(j)
β] and x(j) are

recursively defined by v
(j+1)
k :=

∑k
i=0 v

(j)
i , for all 0 ≤ k ≤ β, and x(j+1) := size(v(j)) · (x(j) + 1),

where we set v(0) := [1, 0, 0, . . . , 0] and x(j) := 0. This definition immediately ensures Property (i).
In order to show Property (ii), we would like to use Lemma 22, so we have to make sure that
size(v(j)) and x(j) satisfy the condition given in Lemma 22 for all 0 ≤ j ≤ t− 1. To this end, we

can apply Lemma 16, that proves that for all 1 ≤ j ≤ t and all 0 ≤ k ≤ β, we have v
(j)
k =

(
j+k−1
k

)
.

Hence, we can now bound size(v(j)) and x(j) from above. Since size(v(j)) and x(j) are monotoni-
cally increasing (with increasing j), it suffices to bound size(v(t−1)) and x(t−1) to obtain bounds

for size(v(j)) and x(j), for all 0 ≤ j ≤ t − 1. As size(v(t−1)) = v
(t)
β by definition of v

(t)
β , we

36

have size(v(t−1)) =
(
t+β−1
β

)
≤ (2t)β − 1 since β ≤ t. This implies that x(j) ≤ (2t)jβ − 1, for all

0 ≤ j ≤ t − 1, by induction: clearly, x(0) = 0 ≤ (2t)0 − 1, and using the induction hypothesis
x(j−1) ≤ (2t)(j−1)β−1, we obtain x(j) ≤ size(v(j−1)) ·(x(j−1) +1) ≤ ((2t)β−1) ·(2t)(j−1)β ≤ (2t)jβ−1,
for all 1 ≤ j ≤ t − 1. In particular, x(t−1) ≤ (2t)(t−1)β − 1. Hence, for any 0 ≤ j ≤ t − 1, we
have size(v(j)) · (x(j) + 1) + 1 ≤ size(v(t−1)) · (x(t−1) + 1) + 1 ≤ ((2t)β − 1) · (2t)(t−1)β + 1 ≤
(2t)(tβ) ≤ (log ∆/(β log log ∆))log ∆/(2 log log ∆) ≤ ∆. Therefore, for all 0 ≤ j ≤ t − 1, the condition
size(v) · (x+ 1) + 1 ≤ ∆ in Lemma 22 is satisfied by setting v := v(j) and x := x(j), and Property (ii)
follows by applying Lemma 22 inductively.

Now, we will prove Property (iii). For a contradiction, assume that there is a deterministic
0-round algorithm solving Πt−1 in the PN model. As the algorithm is deterministic, no node has
any information about other nodes, and the nodes of the input graph are not distinguished by
unique identifiers, the labels that the nodes output must form the same node configuration around
every node. Let U = U1 . . . U∆ denote this node configuration, and w.l.o.g., assume that each node
u outputs Uk on the incident edge connected to u via port k. In order for the algorithm to be
correct, we must have U ∈ N∆,β(v(t−1), x(t−1)). Since, by the above calculations, x(t−1) ≤ ∆− 1, we
see that the number of wildcards in the problem definition is strictly less than ∆. Hence, we have
Uk = Ai or Uk = C, for some 1 ≤ k ≤ ∆, some index 1 ≤ i ≤ β, and some color C ∈ C, according to
the definition of Πt−1 = Π∆,β(v(t−1), x(t−1)). Now consider a graph, where some edge e = {u,w} is
connected to both endpoints via port k. If Uk = Ai, then the output produces the edge configuration
AiAi on edge e; if Uk = C, then the output produces the edge configuration CC on e. Since both
configurations are not contained in E∆,β(v(t−1), x(t−1)), we obtain the desired contradiction. This
concludes the proof of Property (iii).

7 Lifting results to the LOCAL model

In the previous sections we obtained upper and lower bounds for the port numbering model. While
upper bounds trivially hold also for the LOCAL model, lower bounds need some additional analysis
to be lifted to the LOCAL model. The main challenge here is that the round elimination theorem
does not tolerate the presence of node identifiers. Previous works that used the round elimination
technique to prove lower bounds [3, 5, 13] followed a common approach to lift an f(∆) lower bound
for the port numbering model to a lower bound as a function of ∆ and n for the LOCAL model,
and we will follow the same approach to lift our lower bounds as well. We perform such a lifting of
our results in the (usual) following way:

• We first adapt our lower bound proof to randomized algorithms, showing that if Π∆,β(v, x)
can be solved in t rounds with local failure probability p, then R(R(Π∆,β(v, x))) can be solved
in t− 1 rounds with some local failure probability p′.

• We then give a lower bound on the failure probability of any algorithm that runs “too fast”,
that is, in strictly fewer rounds than the t given in Lemma 23 (i.e., than the implicit lower
bound proved in Section 6). This yields a lower bound for the runtime of any randomized
algorithm in the port numbering model as a function of ∆ and n. In particular, we obtain a
lower bound of Ω(min{f(∆), log∆ log n}).

• We make ∆ as large as possible, as a function of n, in order to obtain the best possible lower
bound (for randomized algorithms in the port numbering model) as a function of n. In other
words, we choose the value of ∆ that makes f(∆) equal to log∆ log n.

37

• Randomized algorithms in the port numbering model can generate unique IDs with high
probability and then simulate algorithms for the LOCAL model. Thus we get a lower bound
for randomized algorithms in the LOCAL model.

• Lower bounds for randomized algorithms in the LOCAL model imply lower bounds for
deterministic algorithms as well. We use standard techniques to obtain better lower bounds
(as a function of n) for deterministic algorithms.

We will provide lower bounds for high-girth regular graphs, in particular in graphs where the girth
is larger than the running time. Such lower bounds directly apply on trees as well.

7.1 Evolution of local failure probability

Balliu et al. [5] proved that, given some problem Π defined on graphs of degree ∆ using labels from
a set Σ, we can upper bound the local failure probability p′ of any algorithm solving R(R(Π)) in
t− 1 rounds by a function that depends only on ∆, |Σ|, and p, where p is an upper bound on the
local failure probability of an algorithm solving Π in t rounds. More formally, the authors prove
the following result in [5] (rephrased for our purposes), which is a version of the round elimination
theorem that applies to randomized algorithms.

Lemma 24 (Lemma 41 of [5]). Let A be a randomized t-round algorithm for Π with local failure proba-
bility at most p (where t > 0). Then there exists a randomized (t−1)-round algorithm A′ for R(R(Π))

with local failure probability p′′ ≤ 2
1

∆+1 (∆|Σ′|)
∆

∆+1 p′
1

∆+1 + p′, where p′ ≤ 2
1

∆+1 (∆|Σ|)
∆

∆+1 p
1

∆+1 + p
and Σ′ is the label set of R(Π).

This lemma basically states that if there exists an algorithm that solves some problem Π in t
rounds with some small failure probability p, then there also exists a faster algorithm that solves
R(R(Π)) with some possibly larger but still small enough failure probability. Let R̂(Π) = R(R(Π)),

and let R̂j(Π) be the function that recursively applies the R̂ function j times. By using Lemma 24

multiple times, we can give an upper bound on the failure probability of an algorithm solving R̂j(Π)
in max{0, t− j} rounds, as a function of an upper bound on the failure probability of an algorithm
solving Π in t rounds.

Unfortunately, we cannot directly apply this lemma multiple times to Π∆,β([1, 0, . . . , 0], 0), as

we do not know an upper bound on the number of labels of the problem R̂j−1
(Π∆,β([1, 0, . . . , 0], 0))

and of all the intermediate problems (notice that the number of labels appears in the bound given
by Lemma 24). But what we can do instead is to consider the family of problems Πi defined in
Lemma 23, where Π0 is the locally checkable version of the (2, β)-ruling set problem, and Πi+1 is a
problem that can be obtained by relaxing the configurations in the node constraint of R(R(Πi)). By
applying Lemma 24 we can conclude that, if we have an algorithm for Πi running in t > 0 rounds
that fails with probability at most p, then there exists an algorithm solving Πi+1 running in t− 1
rounds that fails with probability at most p′′. Moreover, for any problem Πi where index i is at
most the t from Lemma 23, we have that the number of colors, and hence the number of distinct
configurations in the node constraint of Πi, is in O(∆). We now prove a bound on the failure
probability obtained by applying Lemma 24 multiple times. We will prove a general statement that
not only applies to the family of problems defined in Lemma 23, but to all problems for which the
number of labels is bounded by O(∆2). Since the number of labels that we consider is bounded by
O(∆2), and since the number of labels of the intermediate problems is always at most exponential
in the original number of labels, we can now apply the lemma multiple times, assuming |Σ| = O(∆2)
and |Σ′| = 2O(∆2) for the whole family. Hence, we prove the following lemma.

38

Lemma 25. Let Π0 → Π1 → · · · → Πt be a sequence of problems such that Πi+1 can be solved
in 0 rounds given a solution for R(R(Πi)), and such that the number of labels of each problem
Πi is upper bounded by O(∆2). Let A be a randomized t-round algorithm for Π0 with local failure
probability at most p. Then there exists a randomized (t− j)-round algorithm A′ for Πj with local

failure probability at most 2K∆2
p1/(∆+1)2j

for some constant K, for all 0 < j ≤ t, for large enough
∆.

Proof. For large enough ∆, and for our choice of parameters, by Lemma 24 we have that

p′′ ≤ 2
1

∆+1 (∆|Σ′|)
∆

∆+1 p′
1

∆+1 + p′

≤ (∆|Σ′|)
1

∆+1 (∆|Σ′|)
∆

∆+1 p′
1

∆+1 + p′

≤ (∆|Σ′|)p′
1

∆+1 + p′

≤ (2log ∆2|Σ|)p′
1

∆+1 + p′

≤ 2O(∆2)p′
1

∆+1 .

Similarly,

p′ ≤ 2
1

∆+1 (∆|Σ|)
∆

∆+1 p
1

∆+1 + p

≤ (∆|Σ′|)
1

∆+1 (∆|Σ′|)
∆

∆+1 p
1

∆+1 + p

≤ 2O(∆2)p
1

∆+1 .

Hence, this implies that

p′′ ≤ 2K∆2
p′

1
∆+1 , where

p′ ≤ 2K∆2
p

1
∆+1 ,

for some constant K. By recursively applying Lemma 24 we get the following:

pj ≤ 2K∆2
p

1
∆+1

j−1 ,

where p0 = p and p2j , are, respectively, the local failure probability bounds for Π0 and Πj . We
prove by induction that for all j > 0,

pj ≤ 2K
∑j
i=1 ∆3−i

p
1

(∆+1)j .

For the base case where j = 1, we get that p1 ≤ 2K∆2
p

1
∆+1 , which holds, as we showed above. Let

us assume that the claim holds for j, and let us prove it for j + 1.

pj+1 ≤ 2K∆2
p

1
∆+1

j ≤ 2K∆2

(
2K

∑j
i=1 ∆3−i

p
1

(∆+1)j

) 1
∆+1

≤ 2K∆2
2K

∑j
i=1 ∆3−i−1

p
1

(∆+1)j+1 = 2K
∑j+1
i=1 ∆3−i

p
1

(∆+1)j+1

Since for ∆ ≥ 2 and for any j,
∑j

i=1 ∆3−i ≤ ∆2 + ∆ + 2, we get the following:

pj ≤ 2K(∆2+∆+2)p
1

(∆+1)j ≤ 2K
′∆2

p
1

(∆+1)j ,

for some constant K ′, hence the claim follows.

39

We now give a lower bound on the failure probability of any algorithm solving Πi in 0 rounds,
for any i < t, where t is the lower bound obtained in Section 6 for the time complexity of Π0. Again,
we will prove a stronger result, that applies to any family of problems where the number of allowed
configurations is O(∆2), a condition that is satisfied by the family of Lemma 23, since there are
β = o(∆) possible pointer configurations and at most O(∆) color configurations.

Lemma 26. Let Π be a problem that cannot be solved in 0 rounds with deterministic algorithms in
the port numbering model, such that the node constraint N contains O(∆2) allowed configurations.
Then any 0-round algorithm solving Π must fail with probability at least 1/∆8.

Proof. We follow the same strategy as in [13, Lemma 6.4]. Since in 0 rounds of communication all
nodes have the same information, we can see any 0-round algorithm as a probability assignment
to each node configuration. That is, for each ci ∈ N , the algorithm outputs ci with probability pi,
such that

∑
pi = 1. Hence, by the pigeonhole principle, there exists some configuration c̄ that all

nodes output with probability at least 1
K∆2 for some constant K. Since by assumption Π is not

0-rounds solvable, then there exists no node configuration such that, for all pairs of choices `1`2
over such configuration, `1`2 is in E , i.e., in the edge constraint of Π (otherwise the problem would
be 0-round solvable in the port numbering model, by making all nodes output that configuration).
Thus, there exist 2 (possibly the same) labels `1 and `2 appearing in c̄ such that `1`2 is not in E .
Moreover, conditioned on the fact that the node is outputting the configuration c̄, since `1 and `2
appear at least once in such configuration, there must exist some ports i and j where `1 and `2 are
written with probability at least 1

∆ . Thus, two neighboring nodes connected through ports i and j
will both output configuration c̄ and produce the invalid edge configuration `1`2 with probability at
least 1

(K∆3)2 , that for large enough ∆ is at least 1/∆8.

We now bound the failure probability of any algorithm solving Π0 in strictly less than t rounds.

Lemma 27. Let Π0 → Π1 → · · · → Πt be a sequence of problems such that Πi+1 can be solved in 0
rounds given a solution for R(R(Πi)), the number of labels of each problem Πi is upper bounded by
O(∆2), and the node constraint of each problem Πi contains O(∆2) allowed configurations. Let t
be a number satisfying that, for all t′ < t, Πt′ is not 0-round solvable in the port numbering model
using deterministic algorithms. Any algorithm for Π0 running in strictly less than t rounds must
fail with probability at least 1

2∆4t , if ∆ is large enough.

Proof. By applying Lemma 25 we get that an algorithm solving Π0 in t′ < t rounds with local failure
probability at most p implies an algorithm solving Πt′ in 0 rounds with local failure probability at

most 2K∆2
p1/(∆+1)2t′

. Then, since Πt′ is not 0-round solvable in the port numbering model using
deterministic algorithms by assumption, by applying Lemma 26 we get the following:

2K∆2
p1/(∆+1)2t′ ≥ 1

∆8
,

that for large enough ∆ implies the following:

p ≥ 1

2(K∆2+8 log ∆)(∆+1)2t′ ≥
1

2∆3(∆+1)2t′ ≥
1

2∆4t′+3
≥ 1

2∆4t

40

7.2 Making ∆ as large as possible

By Lemma 23 we know that, for t = 1/2 · log ∆/(β log log ∆), if β ≤ t, problem Π∆,β([1, 0, . . . , 0], 0)
is not t-round solvable in the port numbering model using deterministic algorithms, and each
problem of the family used to prove this result uses O(∆) labels, and O(∆) node configurations.
Hence, by combining Lemma 23 and Lemma 27 we get that any randomized algorithm for problem
Π∆,β([1, 0, . . . , 0], 0) running in t = o(log ∆

β log log ∆) rounds must fail with probability at least 1

2∆4t , in

some ∆-regular neighborhood of girth at least 2t+ 2 (condition required by the round elimination
theorem, see Theorem 7), in the randomized port numbering model, provided β ≤ t.

We are now ready to lift this bound to the LOCAL model. The main idea is that, since in
the randomized port numbering model nodes can generate unique IDs with high probability, the
existence of an algorithm for the randomized LOCAL model with some failure probability directly
implies the existence of an algorithm for the randomized port numbering model with roughly the
same failure probability (up to a factor of 1− 1/nc for an arbitrary constant c, that is the success
probability of the randomized ID generation process). Hence, a lower bound for the randomized
port numbering model directly applies to the LOCAL model as well. We first prove Theorem 4, and
then we obtain Corollary 5 by taking a value of ∆, as a function of n, that maximizes the result of
the theorem.

Theorem 4. In the LOCAL model, any randomized algorithm that solves the (2, β)-ruling set problem

w.h.p.14 requires Ω
(

min
{

log ∆
β log log ∆ , log∆ log n

})
rounds, for all β ≤ c ·min

{√
log ∆

log log ∆ , log∆ log n
}

,

for some constant c independent of n and ∆.

Proof. As mentioned above, any randomized algorithm solving Π∆,β([1, 0, . . . , 0], 0) in the LOCAL

model running in t = o(log ∆
β log log ∆) rounds must fail with probability at least 1

2∆4t , in some ∆-regular
neighborhood of girth at least 2t+ 2, provided that β ≤ t. Later we will show that, for the choice of
parameters stated in the theorem, we have t− β = Ω(t), which implies that β ≤ t. Hence, to prove
the theorem, we need to show how large we can make t such that:

• the failure probability is still too large, that is, 1

2∆4t > 1/n, and

• there exists a ∆-regular graph of girth at least 2t+ 2.

The first requirement is satisfied (for all sufficiently large n) if t = o(log∆ log n). The second
requirement is satisfied if t = o(log∆ n), since from extremal graph theory we know that, for infinite
values of n, there exist ∆-regular graphs of girth Ω(log∆ n) (see, e.g., [19]). By combining the
obtained lower bounds, we get that any randomized algorithm that succeeds w.h.p. requires at least

t = Ω
(

min
{

log ∆
β log log ∆ , log∆ log n

})
rounds.

Unfortunately, as discussed in Section 3, Π∆,β([1, 0, . . . , 0], 0) may be (at most) β rounds harder
than the (2, β)-ruling set problem, since Π∆,β([1, 0, . . . , 0], 0) requires to output some additional point-
ers that make the solution locally checkable. Hence, a t-round lower bound for Π∆,β([1, 0, . . . , 0], 0)
only implies a lower bound of t − β for (2, β)-ruling sets. We now prove that, for the range of
values of β stated in the theorem, the lower bound obtained for Π∆,β([1, 0, . . . , 0], 0) also applies
to (2, β)-ruling sets, which implies the theorem. For this purpose, we prove that t− β = Ω(t), by
considering two cases.

14As usual, we say that an algorithm solves a problem with high probability if the global success probability is at
least 1− 1/n.

41

•
√

log ∆
log log ∆ ≤ log∆ log n. In this case, β ≤ c ·

√
log ∆

log log ∆ , and hence log ∆
β log log ∆ ≥

1
c ·
√

log ∆
log log ∆ .

We obtain that t− β = Ω
(

min
(

log ∆
β log log ∆ − c ·

√
log ∆

log log ∆ , log∆ log n− c ·
√

log ∆
log log ∆

))
, which,

for small enough c, is Ω(t).

• log∆ log n ≤
√

log ∆
log log ∆ . In this case, β ≤ c · log∆ log n.

We obtain that t − β = Ω
(

min
(

log ∆
β log log ∆ − c · log∆ log n, (1− c) · log∆ log n

))
, which, for

small enough c, is Ω(t).

We are now ready to prove Corollary 5.

Corollary 5. In the LOCAL model, any randomized algorithm that solves the (2, β)-ruling set

problem w.h.p. requires Ω
(√

log logn
β log log logn

)
rounds, for all β ≤ c 3

√
log logn

log log logn , for some constant c

independent of n and ∆.

Proof. We apply Theorem 4 where we set ∆ = 2
√
β log logn log log logn. We obtain

log ∆

β log log ∆
=

√
β log log n log log log n

β log
√
β log log n log log log n

= Ω

(√
log log n

β log log log n

)
, and

log∆ log n =
log logn√

β log logn log log log n
=

√
log logn

β log log log n
.

Hence, we obtain a lower bound of t = Ω
(

min
{

log ∆
β log log ∆ , log∆ log n

})
= Ω

(√
log logn

β log log logn

)
. Note

that by choosing c small enough (depending on the c in Theorem 4), we can ensure that any

β ≤ c · 3

√
log logn

log log logn satisfies the condition for β given in Theorem 4.

7.3 Stronger deterministic lower bound

We will now prove that, assuming that there is a fast deterministic algorithm, we can construct an
even faster randomized algorithm, contradicting the results proved in Theorem 4.

Theorem 1. In the LOCAL model, any deterministic algorithm that solves the (2, β)-ruling set

problem requires Ω
(

min
{

log ∆
β log log ∆ , log∆ n

})
rounds, for all β ≤ c · min

{√
log ∆

log log ∆ , log∆ n
}

, for

some constant c independent of n and ∆.

Proof. Assume for a contradiction that an algorithm violating the claimed bound exists and let
t(n) be its runtime on n-node graphs. We use this algorithm to construct an algorithm running
within a time bound that would violate Theorem 4. The idea is to execute such an algorithm by
lying about the size of the network, by claiming that it is of size N = log n. This immediately
yields an algorithm with a runtime of O(t(N)) = O(t(log n)), which contradicts the bound given in
Theorem 4. This algorithm is even deterministic, but, in the context of Theorem 4, can equivalently
be seen as a randomized algorithm with failure probability 0.

In order to use this idea, we need to make sure that the algorithm does not detect such a lie.
Using standard arguments (see e.g. [16, Theorem 4.5]), one can show that the following conditions
are sufficient for this purpose:

42

• We need to compute a new ID assignment, with IDs of O(log log n) bits, in O(t(N)) rounds.
This ensures that the algorithm does not detect that IDs are too large. It is sufficient that
these IDs are unique in each (t(N) + 1)-radius neighborhood.

• Each t(N)-radius neighborhood must contain at most N nodes, so that the algorithm does
not detect that there are more nodes than the claimed amount.

In order to compute the new ID assignment we can compute a k = (∆2(2t(N)+2)(log logN +
log(∆2t(N)+2)))-coloring of G2t(N)+2, and this can be done in O(t(N)) rounds using Linial’s coloring
algorithm [34, Corollary 4.1]. Since t(N) = o(log∆N), we see that each t(N)-radius neighborhood
contains O(∆t(N)) = o(N) nodes and that k = o(N). Hence, the supposed algorithm cannot detect
the lie, which concludes the proof.

Corollary 2 follows by applying Theorem 1 with ∆ = 2
√
β logn log logn.

8 Conclusion and open problems

In this work, we proved that the deterministic complexity of computing (2, β)-ruling sets is at least
poly log n, unless β is too large. Combined with existing poly log n upper bounds, our results imply
that the deterministic complexity of ruling sets lies in the poly log n region. An interesting open
question is how many log factors are required exactly.

Another open question concerns the techniques that we use: We first prove a lower bound
for a constant-radius checkable version of the ruling set problem, and then transform this bound
into a lower bound for the original problem, where we lose an additive β-factor. Hence, currently
our technique is not capable to prove lower bounds for (2, β)-ruling sets where β is so large that
the problem can be solved in o(β) rounds. An open question is to get rid of this restriction. For
example, can we show that finding (2, log1/3 n)-ruling sets requires Ω(log1/3 n/ log1/2 log n) rounds
with deterministic algorithms?

While we now have a good picture of the dependency of the complexity of (2, β)-ruling sets on n,
the dependency on ∆ is far less clear. Even in the case where a (∆ + 1)-vertex coloring is provided,
the current best upper bound is O(β∆1/β) rounds. Note that, for constant values of β, we get a
complexity that is polynomial in ∆, while the lower bound that we provide lies in the poly log ∆
region. Hence, there is an exponential gap between the current upper and lower bounds, as a
function of ∆. We know that, on general graphs, any algorithm that solves MIS in time f(∆) + g(n),
must either satisfy f(∆) = Ω(∆), or g(n) = Ω(log logn/ log log log n) for randomized algorithms
and g(n) = Ω(log n/ log log n) for deterministic ones [3], and we think that a necessary step for
really understanding the ∆-dependency of (2, β)-ruling sets is to first prove an Ω(∆) lower bound
for MIS on trees.

Finally, a number of interesting open questions revolve around our new technique of proving a
lower bound via an upper bound. Can we characterize the problems that allow such an approach?
What properties does an algorithm have to have to be well-representable as an upper bound
sequence? Can the related technique of introducing a coloring component into non-coloring problems
be successfully applied to other problems? We believe that finding answers to these and related
questions will constitute an important step towards a better understanding of the round elimination
technique.

43

Acknowledgments

We are very thankful to the anonymous reviewers of the conference version of this paper for their
fruitful comments. We would also like to thank Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and
Julian Portmann for helpful comments on related works.

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:10.1016/0196-
6774(86)90019-2.

[2] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In Proceedings of the 30th An-
nual Symposium on Foundations of Computer Science (FOCS 1989), pages 364–369, 1989.
doi:10.1109/SFCS.1989.63504.

[3] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 481–497, 2019. doi:10.1109/FOCS.2019.00037.

[4] Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal symme-
try breaking in distributed computing. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, (PODC), pages 369–378, 2019. doi:10.1145/3293611.3331605.

[5] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proceedings of
the 34th International Symposium on Distributed Computing (DISC), 2020.

[6] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for
sparse graphs using Nash-Williams decomposition. Distributed Comput., 22:363–379, 2010.
doi:10.1007/s00446-009-0088-2.

[7] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polyloga-
rithmic time. Journal of ACM, 58:23:1–23:25, 2011. doi:10.1145/2027216.2027221.

[8] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments, volume 4. 2013. doi:10.2200/S00520ED1V01Y201307DCT011.

[9] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-Coloring in Linear
(in ∆) Time. SIAM Journal on Computing, 43(1):72–95, 2014. doi:10.1137/12088848X.

[10] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. Journal of the ACM, 63(3):1–45, 2016. doi:10.1145/2903137.

[11] Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. Brief announcement: Super-fast
t-ruling sets. In Proceedings of the 2014 Symposium on Principles of Distributed Computing
(PODC), pages 379–381, 2014. doi:10.1145/2611462.2611512.

44

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/2027216.2027221
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1137/12088848X
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2611462.2611512

[12] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 379–388, 2019. doi:10.1145/3293611.3331611.

[13] Sebastian Brandt and Dennis Olivetti. Truly tight-in-∆ bounds for bipartite maximal matching
and variants. pages 69–78, 2020. doi:10.1145/3382734.3405745.

[14] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local lemma.
In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC 2016), pages
479–488. ACM Press, 2016. doi:10.1145/2897518.2897570.

[15] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring algorithm?
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, (STOC
2018), pages 445–456, 2018. doi:10.1145/3188745.3188964.

[16] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized
and deterministic complexity in the LOCAL model. SIAM Journal on Computing, 48(1):122–143,
2019. doi:10.1137/17M1117537.

[17] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive Lovász local lemma. ACM Transactions on
Algorithms, 16(1):8:1–8:51, 2020. doi:10.1145/3365004.

[18] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. Distributed Computing, 30(4):261–280, 2017. doi:10.1007/s00446-
016-0287-6.

[19] Xavier Dahan. Regular graphs of large girth and arbitrary degree. Combinatorica, 34(4):
407–426, 2014.

[20] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 625–634.
IEEE, 2016. doi:10.1109/FOCS.2016.73.

[21] Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the maximal independent
set problem in growth-bounded graphs. In Proceedings of the 2007 ACM Symposium on
Principles of Distributed Computing (PODC), pages 53–60, 2007. doi:10.1145/1281100.1281111.

[22] Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2016), pages 270–277. Society for Industrial and Applied Mathematics, 2016.
doi:10.1137/1.9781611974331.ch20.

[23] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA 2019), pages
805–820, 2019. doi:10.1137/1.9781611975482.50.

[24] Mohsen Ghaffari and Julian Portmann. Improved Network Decompositions Using Small
Messages with Applications on MIS, Neighborhood Covers, and Beyond. In Proceedings of the
33rd International Symposium on Distributed Computing (DISC 2019), pages 18:1–18:16, 2019.
doi:10.4230/LIPIcs.DISC.2019.18.

45

https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3382734.3405745
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1137/17M1117537
https://doi.org/10.1145/3365004
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1145/1281100.1281111
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.4230/LIPIcs.DISC.2019.18

[25] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed ∆-
coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
(PODC 2018), pages 427–436, 2018. doi:10.1145/3212734.3212764.

[26] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network
decomposition. CoRR, abs/2007.08253, 2020.

[27] Mika Göös, Juho Hirvonen, and Jukka Suomela. Linear-in-delta lower bounds in the LOCAL
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC, pages 86–95, 2014. doi:10.1145/2611462.2611467.

[28] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight
distributed algorithm for approximating single-source shortest paths. In Proceedings 48th Symp.
on Theory of Computing (STOC 2016), pages 489–498, 2016. doi:10.1145/2897518.2897638.

[29] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal independent
set problem. Journal of ACM, 32:762–773, 1985. doi:10.1145/4221.4226.

[30] Kishore Kothapalli and Sriram V. Pemmaraju. Super-fast 3-ruling sets. In Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (IARCS 2012),
volume 18, pages 136–147, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.136.

[31] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of ACM, 63(2):17:1–17:44, 2016. doi:10.1145/2742012.

[32] Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling sets of
line graphs. In Structural Information and Communication Complexity - 25th International
Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected
Papers, pages 193–208, 2018. doi:10.1007/978-3-030-01325-7 19.

[33] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In Proceedings of the
2011 Annual ACM Symposium on Principles of Distributed (PODC), pages 41–48, 2011.
doi:10.1145/1993806.1993813.

[34] Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):
193–201, 1992. doi:10.1137/0221015.

[35] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/0215074.

[36] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

[37] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

[38] Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation, 2019. URL
https://github.com/olidennis/round-eliminator.

[39] Shreyas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, Talal Riaz, and Peter Robinson.
Symmetry breaking in the CONGEST model: Time- and message-efficient algorithms for ruling
sets. In Proceedings of 31st International Symposium on Distributed Computing, (DISC 2017),
volume 91, pages 38:1–38:16, 2017. doi:10.4230/LIPIcs.DISC.2017.38.

46

https://doi.org/10.1145/3212734.3212764
https://doi.org/10.1145/2611462.2611467
https://doi.org/10.1145/2897518.2897638
https://doi.org/10.1145/4221.4226
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136
https://doi.org/10.1145/2742012
https://doi.org/10.1007/978-3-030-01325-7_19
https://doi.org/10.1145/1993806.1993813
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://doi.org/10.4230/LIPIcs.DISC.2017.38

[40] Alessandro Panconesi and Aravind Srinivasan. On the Complexity of Distributed Network
Decomposition. Journal of Algorithms, 20(2):356–374, 1996. doi:10.1006/jagm.1996.0017.

[41] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and
Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

[42] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition
and distributed derandomization. In Proceedings of 52nd Annual ACM Symposium on Theory
of Computing (STOC 2020), 2020.

[43] Johannes Schneider and Roger Wattenhofer. An optimal maximal independent set algorithm for
bounded-independence graphs. Distributed Computing, 22:349–361, 2010. doi:10.1007/s00446-
010-0097-1.

[44] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking.
In Proceedings of the 2010 Annual ACM Symposium on Principles of Distributed Computing,
(PODC), pages 257–266, 2010. doi:10.1145/1835698.1835760.

[45] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending on
the chromatic number or the neighborhood growth. Theoretical Computer Science, 509:40–50,
2013. doi:10.1016/j.tcs.2012.09.004.

47

https://doi.org/10.1006/jagm.1996.0017
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1145/1835698.1835760
https://doi.org/10.1016/j.tcs.2012.09.004

	1 Introduction
	1.1 Our results
	1.2 Our techniques
	1.3 Further discussion of related work

	2 Background
	2.1 Model
	2.2 Problems
	2.3 Round elimination
	2.4 Roadmap

	3 The problem family
	3.1 Problem definition
	3.2 From the problem family to ruling sets, and vice versa
	3.3 The idea behind this problem family
	3.4 The edge diagram

	4 The intermediate problems
	4.1 Edge constraint
	4.2 Properties
	4.3 Node constraint

	5 Upper bound
	5.1 Proof of Lemma 14
	5.2 Proof of Lemma 15
	5.3 Intuition behind the algorithm

	6 Lower bound
	7 Lifting results to the LOCAL model
	7.1 Evolution of local failure probability
	7.2 Making as large as possible
	7.3 Stronger deterministic lower bound

	8 Conclusion and open problems

