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A note on seminormality of cut polytopes

Michat Lason™ and Mateusz Michalek!

ABSTRACT. We prove that seminormality of cut polytopes is equivalent to nor-
mality. This settles two conjectures regarding seminormality of cut polytopes.

A cut A|B in a graph G(V, E) is an unordered partition (A|B = B|A) of its
vertices, i.e. AU B =V. A cut A|B determines a point in RIZl denoted by 0A|Bs
with value 1 on edges e separated by the cut (i.e. [eN Al =1 and |[eNn B| = 1)
and value 0 on edges e within cut parts (i.e. e C A or e C B). The cut polytope
Cut” (G) corresponding to a graph G is the convex hull of points 045 over all cuts
A|B in G, see e.g. [10].

A polytope P is normal if for any k& € N every lattice point (a point that
belongs to the lattice spanned by the lattice points of P) in kP is a sum of k lattice
points from P. A slightly weaker property of a polytope is ‘very ampleness’, see
e.g. [6]. A polytope P is very ample if it has only finitely many gaps — lattice
points in kP (for some k) which are not a sum of k lattice points from P. This is
equivalent to the fact that for every vertex v € P the monoid of lattice points in the
real cone generated by P — v is generated by lattice points of P — v [II, Def. 2.2.7],
[7, Ex. 4.9]. A polytope P is seminormal [5] if for every lattice point z, if 2z and
3z are not gaps, then nor is x.

The most well-known conjecture in this area is the following.

CoNJECTURE 1 ([10]). The cut polytope Cut™(G) is normal if and only if the
graph G has no K5 minor.

The implication from the left to the right is known, as CutD(K 5) is not normal
[10] and normality of cut polytopes is a minor closed property [8]. The difficulty
of the conjecture lies in proving that for graphs with no K5 minor the cut polytope
is normal. We start with a proof of a weaker property — very ampleness, for which
we did not find an explicit reference and which is a corollary of [4, Corollary 1.3].

THEOREM 2. Suppose a graph G has no Ks minor. Then the cut polytope
Cwt™(@) is very ample.
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PROOF. First, we show that the cut polytope is transitive. That is, for any two
vertices v1, vy of Cut®(G) there exists an affine isomorphism ¢ of RIZ| such that
o(Cut?(@)) = Cut™(G) and ¢(v1) = vs. It is enough to show that when v, = S0|E
and vg = d4|p is arbitrary. Map ¢4 p is defined by: z. — x. when e is contained
in A or B, and z. — 1 — . when e is separated by the cut A|B. Observe that

©A1B(0c|p) = d(AnD)U(BNC)|(ANC)U(BND)-

In particular, ¢ 4 5(dpz) = 648

Next, we note that for every vertex d4p € CutD(G) the monoid of lattice points
in the real cone generated by CutD(G) — 04| is isomorphic, via (pa|p — 5,4‘3)_1,
to the monoid of lattice points in the real cone generated by Cut™(G) — Spip =
Cut?(G). Thus, in order to show that Cut®(@) is very ample it is enough to
check the second characterization of very ample polytopes for a single vertex dg) -
Therefore, very ample property of the cut polytope coincides with the class ¢ in
[3] of graphs whose set of cuts is a Hilbert basis in RIZI.

The statement that remains is proved in [4, Corollary 1.3] and for planar graphs
already in [9]. Since both rely on the four color theorem, the theorem also does. O

Remark that the cut polytope of K5 is very ample [2]. Moreover, very ample-
ness of cut polytopes is not a minor closed property [3]. In particular, Theorem
does not give a characterization of graphs with very ample cut polytopes.

Using Theorem [2] we settle Conjectures 1.2 and 4.5 from [5].

THEOREM 3. The cut polytope CutD(G) of a graph G is seminormal if and
only if it s normal. In particular, the class of graphs G for which CutD(G) 18
seminormal s minor closed.

PRrOOF. If Cut” (G) is normal, then clearly it is seminormal.

Let G be a graph such that Cut™ (@) is seminormal. Then by [5] Corollary 4.4]
graph G has no K5 minor. By Theorem B the cut polytope Cut™(G) is very ample.
Suppose contrary, that Cut™(G) is not normal — it has gaps. Since Cut" (@) is very
ample, it has only finitely many gaps. Let x be a largest gap, i.e. a gap that belongs
to the largest dilation k. Then 2z and 3x belong to larger dilations, so they are not
gaps. Since CutD(G) is seminormal, z is also not a gap. A contradiction. O

We show how a part of Conjecture [I]is equivalent to the four color theorem.

THEOREM 4. The fact that every lattice point in 3 CutD(G) is a sum of 3 lattice
points from Cut” (@) for a planar graph G is equivalent to the four color theorem.

PROOF. One implication, proving the four color theorem, is presented in [7,
Proposition 9.4], but originally the idea is due to David Speyer. We note that this
implication only uses a decomposition of one specific point in 3 Cut™(@).

For the other implication we extend the assertion to loopless multigraphs and
proceed by induction on the number of edges. Let p € 3 Cut” (G) be a lattice point.
Let Ey be the set of edges e € E(G) such that p(e) = 0. Consider the contraction
G’ := G/Ey. Notice that G’ may have multiple edges, but it is loopless. Indeed, if
e € E(G) became a loop in G’, then there was a path between endpoints x,y of e
consisting of edges from Ey. This is impossible, as since p(e) > 0 and p is a convex
combination of cuts, points x, y were separated by some cut. Now, we may identify
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p with a point in 3 Cut® (G") and conclude by induction. Similarly, if there is an
edge e € GG such that p(e) = 3 we may take a cut A|B that separates e and apply
the isomorphism ¢ 4 5. We have p 4 5(p)(e) = 0. Hence, by induction ¢ 45(p) is a
sum of three cuts and so is p.

We are left with the case when for each edge e we have p(e) = 1 or p(e) = 2.
We claim that the set E; of edges e for which p(e) = 1 forms precisely the edges of
some cut A|B. This is equivalent to the fact that on the dual graph G* the set E;
is a cycle — by which we mean an edge disjoint union of circuits, in the language of
matroid theory, or simple cycles, in the language of graph theory. As p is a lattice
point, for any cut of G* the sum of values p(e) over the cut is even. The same must
be true for F;. In particular, every vertex v € G* must be adjacent to an even
number of edges of £;. By the Euler cycle argument, we know that E; is a cycle,
which finishes the proof of the claim.

Let V =V UV, U V3 UV, be the four coloring of G. Since G is loopless

(27 2) sy 2) = 6V1L1V2‘V3L1V4 + 6V1L1V3|V2L1V4 + 5V1L1V4|V2HV3'
Therefore, after applying ¢ 4p we get the assertion of the theorem

P = ©A1BOviuva|vsuva) + 9418 (Ovi,uvsvauvs) + 0418 (Ov,uva [vaivs) -
O

COROLLARY 5. Let G be a planar graph. For k = 1,2,3 every lattice point of
kCwt®(G) is a sum of k lattice points of Cut®(Q).

PROOF. The case k = 1 is obvious. The case k = 3 follows from the four color
theorem by Theorem [ For k = 2, as in the proof of Theorem [4, we may reduce it
to the case where on every edge the point has value one. As in the proof of Theorem
[ this must be a cut point, and as a consequence the graph must be bipartite. We
add dp;y = 0 to obtain a sum of precisely two lattice points of CutD(G). O
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