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A note on seminormality of cut polytopes

Micha l Lasoń* and Mateusz Micha lek†

Abstract. We prove that seminormality of cut polytopes is equivalent to nor-
mality. This settles two conjectures regarding seminormality of cut polytopes.

A cut A|B in a graph G(V,E) is an unordered partition (A|B = B|A) of its
vertices, i.e. A ⊔ B = V . A cut A|B determines a point in R

|E|, denoted by δA|B,
with value 1 on edges e separated by the cut (i.e. |e ∩ A| = 1 and |e ∩ B| = 1)
and value 0 on edges e within cut parts (i.e. e ⊂ A or e ⊂ B). The cut polytope

Cut�(G) corresponding to a graph G is the convex hull of points δA|B over all cuts
A|B in G, see e.g. [10].

A polytope P is normal if for any k ∈ N every lattice point (a point that
belongs to the lattice spanned by the lattice points of P ) in kP is a sum of k lattice
points from P . A slightly weaker property of a polytope is ‘very ampleness’, see
e.g. [6]. A polytope P is very ample if it has only finitely many gaps – lattice
points in kP (for some k) which are not a sum of k lattice points from P . This is
equivalent to the fact that for every vertex v ∈ P the monoid of lattice points in the
real cone generated by P − v is generated by lattice points of P − v [1, Def. 2.2.7],
[7, Ex. 4.9]. A polytope P is seminormal [5] if for every lattice point x, if 2x and
3x are not gaps, then nor is x.

The most well-known conjecture in this area is the following.

Conjecture 1 ([10]). The cut polytope Cut�(G) is normal if and only if the

graph G has no K5 minor.

The implication from the left to the right is known, as Cut�(K5) is not normal
[10] and normality of cut polytopes is a minor closed property [8]. The difficulty
of the conjecture lies in proving that for graphs with no K5 minor the cut polytope
is normal. We start with a proof of a weaker property – very ampleness, for which
we did not find an explicit reference and which is a corollary of [4, Corollary 1.3].

Theorem 2. Suppose a graph G has no K5 minor. Then the cut polytope

Cut�(G) is very ample.
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Proof. First, we show that the cut polytope is transitive. That is, for any two

vertices v1, v2 of Cut�(G) there exists an affine isomorphism ϕ of R|E| such that

ϕ(Cut�(G)) = Cut�(G) and ϕ(v1) = v2. It is enough to show that when v1 = δ∅|E
and v2 = δA|B is arbitrary. Map ϕA|B is defined by: xe → xe when e is contained
in A or B, and xe → 1 − xe when e is separated by the cut A|B. Observe that

ϕA|B(δC|D) = δ(A∩D)∪(B∩C)|(A∩C)∪(B∩D).

In particular, ϕA|B(δ∅|E) = δA|B.

Next, we note that for every vertex δA|B ∈ Cut�(G) the monoid of lattice points

in the real cone generated by Cut�(G) − δA|B is isomorphic, via (ϕA|B − δA|B)−1,

to the monoid of lattice points in the real cone generated by Cut�(G) − δ∅|E =

Cut�(G). Thus, in order to show that Cut�(G) is very ample it is enough to
check the second characterization of very ample polytopes for a single vertex δ∅|E.
Therefore, very ample property of the cut polytope coincides with the class H in
[3] of graphs whose set of cuts is a Hilbert basis in R

|E|.
The statement that remains is proved in [4, Corollary 1.3] and for planar graphs

already in [9]. Since both rely on the four color theorem, the theorem also does. �

Remark that the cut polytope of K5 is very ample [2]. Moreover, very ample-
ness of cut polytopes is not a minor closed property [3]. In particular, Theorem 2
does not give a characterization of graphs with very ample cut polytopes.

Using Theorem 2 we settle Conjectures 1.2 and 4.5 from [5].

Theorem 3. The cut polytope Cut�(G) of a graph G is seminormal if and

only if it is normal. In particular, the class of graphs G for which Cut�(G) is

seminormal is minor closed.

Proof. If Cut�(G) is normal, then clearly it is seminormal.

Let G be a graph such that Cut�(G) is seminormal. Then by [5, Corollary 4.4]

graph G has no K5 minor. By Theorem 2 the cut polytope Cut�(G) is very ample.

Suppose contrary, that Cut�(G) is not normal – it has gaps. Since Cut�(G) is very
ample, it has only finitely many gaps. Let x be a largest gap, i.e. a gap that belongs
to the largest dilation k. Then 2x and 3x belong to larger dilations, so they are not

gaps. Since Cut�(G) is seminormal, x is also not a gap. A contradiction. �

We show how a part of Conjecture 1 is equivalent to the four color theorem.

Theorem 4. The fact that every lattice point in 3 Cut�(G) is a sum of 3 lattice

points from Cut�(G) for a planar graph G is equivalent to the four color theorem.

Proof. One implication, proving the four color theorem, is presented in [7,
Proposition 9.4], but originally the idea is due to David Speyer. We note that this

implication only uses a decomposition of one specific point in 3 Cut�(G).
For the other implication we extend the assertion to loopless multigraphs and

proceed by induction on the number of edges. Let p ∈ 3 Cut�(G) be a lattice point.
Let E0 be the set of edges e ∈ E(G) such that p(e) = 0. Consider the contraction
G′ := G/E0. Notice that G′ may have multiple edges, but it is loopless. Indeed, if
e ∈ E(G) became a loop in G′, then there was a path between endpoints x, y of e
consisting of edges from E0. This is impossible, as since p(e) > 0 and p is a convex
combination of cuts, points x, y were separated by some cut. Now, we may identify
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p with a point in 3 Cut�(G′) and conclude by induction. Similarly, if there is an
edge e ∈ G such that p(e) = 3 we may take a cut A|B that separates e and apply
the isomorphism ϕA|B . We have ϕA|B(p)(e) = 0. Hence, by induction ϕA|B(p) is a
sum of three cuts and so is p.

We are left with the case when for each edge e we have p(e) = 1 or p(e) = 2.
We claim that the set E1 of edges e for which p(e) = 1 forms precisely the edges of
some cut A|B. This is equivalent to the fact that on the dual graph G∗ the set E1

is a cycle – by which we mean an edge disjoint union of circuits, in the language of
matroid theory, or simple cycles, in the language of graph theory. As p is a lattice
point, for any cut of G∗ the sum of values p(e) over the cut is even. The same must
be true for E1. In particular, every vertex v ∈ G∗ must be adjacent to an even
number of edges of E1. By the Euler cycle argument, we know that E1 is a cycle,
which finishes the proof of the claim.

Let V = V1 ⊔ V2 ⊔ V3 ⊔ V4 be the four coloring of G. Since G is loopless

(2, 2, . . . , 2) = δV1⊔V2|V3⊔V4
+ δV1⊔V3|V2⊔V4

+ δV1⊔V4|V2⊔V3
.

Therefore, after applying ϕA|B we get the assertion of the theorem

p = ϕA|B(δV1⊔V2|V3⊔V4
) + ϕA|B(δV1⊔V3|V2⊔V4

) + ϕA|B(δV1⊔V4|V2⊔V3
).

�

Corollary 5. Let G be a planar graph. For k = 1, 2, 3 every lattice point of

kCut�(G) is a sum of k lattice points of Cut�(G).

Proof. The case k = 1 is obvious. The case k = 3 follows from the four color
theorem by Theorem 4. For k = 2, as in the proof of Theorem 4, we may reduce it
to the case where on every edge the point has value one. As in the proof of Theorem
4, this must be a cut point, and as a consequence the graph must be bipartite. We

add δ∅|V = 0 to obtain a sum of precisely two lattice points of Cut�(G). �
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