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HYPERBOLIC RELAXATION OF k-LOCALLY POSITIVE

SEMIDEFINITE MATRICES

GRIGORIY BLEKHERMAN∗, SANTANU S. DEY∗∗, KEVIN SHU∗,
AND SHENGDING SUN∗

Abstract. A successful computational approach for solving large-scale posi-
tive semidefinite (PSD) programs is to enforce PSD-ness on only a collection of
submatrices. For our study, we let Sn,k be the convex cone of n×n symmetric
matrices where all k × k principal submatrices are PSD. We call a matrix in
this k-locally PSD. In order to compare Sn,k to the of PSD matrices, we study

eigenvalues of k-locally PSD matrices. The key insight in this paper is that
there is a convex cone H(en

k
) so that ifX ∈ Sn,k, then the vector of eigenvalues

of X is contained in H(en
k
). The cone H(en

k
) is the hyperbolicity cone of the

elementary symmetric polynomial ekn (where en
k
(x) =

∑
S⊆[n]:|S|=k

∏
i∈S xi)

with respect to the all ones vector. Using this insight, we are able to improve
previously known upper bounds on the Frobenius distance between matrices
in Sn,k and PSD matrices. We also study the quality of the convex relaxation
H(en

k
). We first show that this relaxation is tight for the case of k = n−1, that

is, for every vector in H(enn−1) there exists a matrix in Sn,n−1 whose eigen-
values are equal to the components of the vector. We then prove a structure
theorem on nonsingular matrices in Sn,k all of whose k × k principal minors
are zero, which we believe is of independent interest. This result shows shows
that for 1 < k < n−1 “large parts” of the boundary of H(en

k
) do not intersect

with the eigenvalues of matrices in Sn,k.
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1. Introduction

1.1. k-Locally positive semidefinite matrices. Positive semidefinite (PSD) ma-
trices are of fundamental interest in a wide variety of fields, ranging from optimiza-
tion [32] to physics [8]. Formally, a symmetric matrix X ∈ Symn is PSD if and
only if

u⊤Xu ≥ 0 for all u ∈ Rn.

The property of being positive semidefinite is very strong, and implies a large
amount of structure in a matrix. For example, all the eigenvalues of a PSD matrix
are non-negative. Another important property of a PSD matrix is that all its
principal submatrices are also PSD. There are various conceivable converses to
this fact which fail to hold; for instance, even if all of the proper submatrices of
a matrix are PSD, it is still possible for the matrix to have a negative eigenvalue.
Nevertheless, one might be interested in a partial converse: if enough submatrices of
a matrix are PSD, we should expect that the matrix is ‘close’ to being PSD, in some
sense. Such a result would help explain a phenomenon observed in various recent
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2 HYPERBOLIC RELAXATION OF K-LOCALLY POSITIVE SEMIDEFINITE MATRICES

computational experiments, where the constraint of a matrix being PSD is relaxed
to that of some principal submatrices being PSD. It has been empirically observed
that the resulting relaxation has an optimal objective function value close to the
optimal objective function of the original problem. See [17, 18, 29] for examples
involving SDP relaxation of optimal electrical power flow problem and [2, 9, 23] for
examples involving SDP relaxation of box quadratic programs.

To formally understand the relaxation of enforcing positive semidefiniteness on
submatrices, we investigate a class of matrices, where we impose the conditions
that all k × k principal submatrices of an n× n matrix are PSD. We will call such
a matrix k-locally PSD. This terminology is meant to suggest that we only check
the PSD conditions locally on some small parts of the matrix rather than globally.
Let

Sn,k := {X ∈ Symn | every k × k principal submatrix of X is PSD}(1)

be the set of k-locally PSD matrices. The set Sn,k is a closed convex cone and its
dual cone is the set of symmetric matrices with factor width k, defined and studied
in [6, 22, 11]. The set of symmetric matrices with factor width 2 is the set of scaled
diagonally dominant matrices [6, 31], i.e., symmetric matrices A such that DAD
is diagonally dominant for some positive diagonal matrix D. The paper [1] uses
scaled diagonally dominant matrices for constructing inner approximation of the
PSD cone for use in solving polynomial optimization problems. See [15, 26, 27] for
related papers.

For X ∈ Symn, we let λ(X) = (λ1(X), . . . , λn(X)), where λ1(X) ≤ λ2(X) ≤
. . . λn(X) are the eigenvalues of X counting multiplicity. We say that a vector
λ ∈ Rn is a vector of eigenvalues of X if it can be obtained from λ(X) by permuting
its coordinates.

Our main goal is to understand properties of eigenvalues of k-locally PSD ma-

trices. In particular, we would like to understand how as k gets closer to n, the
matrices in Sn,k become closer to PSD matrices in terms of eigenvalues. This work
extends (and improves) results in a recent paper [3], by identifying a relaxation
of the set of eigenvalues of k-locally PSD matrices. This relaxation is based on
the machinery of hyperbolic polynomials and hyperbolicity cones, which we discuss
next.

1.2. The Hyperbolic Relaxation. In order to motivate the the machinery of
hyperbolic polynomials and corresponding hyperbolicity cones (which we formally
define later), let us first construct a natural relaxation of the set of eigenvalues of
matrices in Sn,k.

Given an n × n matrix X , recall the definition of the characteristic polynomial
of X :

pX(t) = det(X − tI) =

n
∑

ℓ=0

(−1)n−ℓcnℓ (X)tn−ℓ,

where

cnℓ (X) =
∑

S⊆[n]
|S|=ℓ

det(X |S).

Here, X |S is the principal submatrix of X obtained by restricting X to the rows
and columns contained in S. Notice that if X ∈ Sn,k, then for all S ⊆ [n] with
|S| ≤ k, X |S is PSD and in particular, then det(X |S) ≥ 0. This implies that
cnℓ (X) ≥ 0 for ℓ ≤ k.

Let us introduce the set

H(cnk ) = {X ∈ Symn : ∀ℓ ≤ k, cnℓ (X) ≥ 0}.



HYPERBOLIC RELAXATION OF k-LOCALLY POSITIVE SEMIDEFINITE MATRICES 3

Our first observation is then that:

Sn,k ⊆ H(cnk ).(2)

The roots of pX are precisely the negatives of the eigenvalues of X , so we have
that

pX(t) =

n
∏

i=1

(λi − t) =

n
∑

ℓ=0

(−1)n−ℓenk (λ1, . . . , λn)t
n−ℓ,

where λ1, λ2, . . . λn are the eigenvalues of X in any order, counting multiplicity, and
enk ∈ R[x1, . . . , xn] is the elementary symmetric polynomial

enk (x) =
∑

S⊆[n]
|S|=ℓ

∏

i∈S

xi.

Comparing coefficients of the tk terms, we see that for 0 ≤ k ≤ n,

cnk (X) = enk(λ1, . . . , λn).

Combining our previous observations, we see that X ∈ H(cnk ) if and only if,
enℓ (λ1, . . . , λn) ≥ 0 for ℓ ≤ k.

We will define the set

H(enk) = {λ ∈ Rn : ∀ℓ ≤ k, enℓ (λ) ≥ 0}.
Combining these observations, we obtain the following:

Observation 1. Sn,k ⊆ H(cnk ). Also, λ = (λ1, . . . , λn) is a vector of eigenvalues

of some X ∈ H(cnk ) if only if λ ∈ H(enk ).

The set H(enk ) will turn out to be the hyperbolicity cone of the polynomial enk
with respect to the all ones vector, and in particular will turn out to be invariant
to permutations of the coordinates and convex [10, 13]. We will refer to H(enk ) as
the hyperbolic relaxation for the eigenvalues of Sn,k Similarly, H(cnk ) will be the
hyperbolicity cone of cnk with respect to the identity matrix. The cone H(cnk ) is
well-known in the literature and is sometimes referred to as the (n− k)th Renegar
derivative of the PSD cone [24].

By exploiting properties of these convex cones, we obtain bounds that indicate
that if X ∈ Sn,k, then in fact, X is close to being PSD in a number of different
norms.

As an example, notice that enn =
∏n

i=1 xi, and H(enn) = Rn
+, the nonnegative

orthant. Similarly, H(cnn) is the PSD cone, and we have that H(enn) is exactly the
set of possible eigenvalue vectors for matrices in H(cnn).

This observation motivates us to ask the following related questions that tie in
with our goal of understanding properties of λ(X) for X ∈ Sn,k:

• Is it possible to obtain understanding of {λ(X) |X ∈ Sn,k} in comparison

to eigenvalues of PSD matrices, by studying properties of H(enk )?
• How good is the approximation of the set {λ(X) |X ∈ Sn,k} by H(enk )?

In this paper, we answer ‘yes’ to the first question by improving on results
in [3] via the hyperbolic relaxation of the set of eigenvalues of matrices in Sn,k.
This motivates us to delve further into the second question and we verify various
structural results that give a better understanding of relationship between the sets
{λ(X) |X ∈ Sn,k} and H(enk ). One particularly interesting result that we would
like to highlight is a structure theorem for matrices in Sn,k all of whose principal
k × k minors vanish (Theorem 2.3). This theorem has relations to previous results
in linear algebra: Theorem 13 in [30] and results of [21].
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1.3. Notation. For a positive integer n, let [n] := {1, . . . , n}. Let Symn denote the
vector space of n×n symmetric matrices. Let Sn denote the cone of PSD matrices
inside of Symn. Note that Sn,n = Sn. If M ∈ Sn, we write M � 0. We use Sn,k to
refer to the k-locally PSD matrices, which are defined above in equation (1). We
will refer to k-locally PSD matrices for convenience as locally PSD matrices if k is
clear from context. An important example of a non-PSD matrix lying in Sn,k is
given by

G(n, k) =
k

k − 1
I − 1

k − 1
~1~1⊤.(3)

Here, ~1 denotes the all ones vector of dimension n. All diagonal entries of G(n, k)
are identically 1, and all off-diagonal entries are identically − 1

k−1 . Notice that all

k × k principal minors of G(n, k) vanish, but the matrix is nonsingular.
Given a matrix M ∈ Sn,k and a diagonal matrix D with non-zero diagonal

entries, observe that

DMD ∈ Sn,k.

We say that the matrixDMD is diagonally congruent toM . By applying Sylvester’s
law of inertia to any submarix of M , the number of positive and negative eigen-
values are conserved for the same submatrix of a diagonally congruent matrix. In
particular, a principal submatrix of a diagonally congruent matrix is singular iff the
same submatrix is singular in the original matrix.

The rest of the paper is organized as follows: Section 2 lists all our main results
and Section 3 concludes with some open questions. Then Section 4 presents back-
ground results needed for proving the main results. The remaining sections present
our proofs of the main results.

2. Main results

2.1. Bounds on minimum eigenvalues of matrices in Sn,k. The primary way
we can measure the distance between a matrix in Sn,k and the cone of PSD matrices
is by considering the smallest eigenvalue of such a matrix. Certainly, if the minimum
eigenvalue of a matrix is nonnegative, then the matrix is positive semidefinite, and
we will say that a (suitably normalized) matrix is close to being PSD if its minimum
eigenvalue is close to being nonnegative. We show that if k is sufficiently close to
n, then the k-locally PSD matrices are close to the PSD matrices. Let λ1(M) be
the minimum eigenvalue of a matrix M ∈ Sn,k. Because λ1 is 1-homogeneous, i.e.,
if a ≥ 0, then λ1(aM) = aλ1(M), we should try to compare λ1(M) for M ∈ Sn,k

to other 1-homogeneous (also called positively homogeneous) quantities on M .
Formally, let F be the class of functions F : Symn → R so that F is a unitarily

invariant matrix norm (thus, a norm depending entirely on the eigenvalues) or the
trace function. Examples of unitarily invariant matrix norms are the Schatten p-
norms, ‖M‖p = p

√
∑n

i=1 |λi(M)|p for p ≥ 1. Note that the Frobenius norm is a
special case of the Schatten p-norm when p = 2. Also, recall that G(n, k) is defined
in equation (3)

Theorem 2.1. Let k ∈ {2, . . . , n}. Let F ∈ F and let G̃(n, k) = G(n,k)
F (G(n,k)) . For

any M ∈ Sn,k with F (M) = 1, the minimum eigenvalue of M is at least as large

as the minimum eigenvalue of G̃(n, k), that is,

λ1(M) ≥ λ1(G̃(n, k)) for all M ∈ Sn,k such that F (M) = 1.

The bound on λ1(M) is tight since G̃(n, k) ∈ Sn,k achieves this bound.

An immediate corollary of Theorem 2.1 in the case when F is the trace function
is the following:
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Corollary 1. Let k ∈ {2, . . . , n}. For any M ∈ Sn,k such that Trace(M) = 1, we
have

λ1(M) ≥ k − n

n(k − 1)
.

The proof of Theorem 2.1 is a direct application of the fact that H (enk ) is a
convex relaxation of the set of eigenvalues of matrices in Sn,k. This allows us
to write a convex relaxation of the optimization problem minimizing λ1(M) over
M ∈ Sn,k. The optimal solution of this convex relaxation is the bound obtained in
the above theorem.

Remark 1. The bound on λ1(M) presented in Theorem 2.1 holds for M ∈ H(enk ).
Therefore, this bound can be used to provide upper bounds on the distance between

the PSD cone and the Renegar derivative H(cnk ) of the PSD cone.

We can use Theorem 2.1 to bound Frobenius distances of matrices in Sn,k from
those in Sn (when we normalize the matrices using the Frobenius norm) as in the
following result.

Corollary 2. Let dist(Sn,k,Sn) = maxA∈Sn,k:‖A‖F=1 (minG∈Sn‖A−G‖F ). Then

dist(Sn,k,Sn) ≤ (n−k)3/2√
(n−k)2+(n−1)k2

.

This corollary improves upon Theorem 2 in a previous paper [3]. Our new result
has a better constant factor, and applies to all regimes of k and n.

2.2. Tightness of the relaxation H (enk ) for the set of eigenvalues of ma-

trices in Sn,k. We have seen that the vector of eigenvalues of matrices in Sn
k

is precisely H(enk ) for n = k. We next show that this observation holds for two
additional cases of k.

Theorem 2.2. If k is one of 1, n− 1 or n, and x ∈ H(enk ), then x is the vector of

eigenvalues of some matrix in Sn,k.

Since H(enk) is a convex set for all k, in particular, Theorem 2.2 implies that
the set of possible vectors of eigenvalues for matrices in Sn,n−1 is convex, although
there does not seem to be an easy way to see this directly. Therefore we have:

Corollary 3. The set of all vectors of eigenvalues of matrices in Sn,n−1 is convex.

On the other hand, we show that {λ(X) |X ∈ Sn,k} is strictly contained in
H(enk ) for 2 < k < n − 1, and thus completely characterize the tightness of this
hyperbolic relaxation.

In order to do so, we examine the boundary of the cone H(enk), and obtain
a result which is of independent interest. Recall that the boundary of H(enk ) is
precisely the set of points in the hyperbolicity cone on which the polynomial enk
vanishes.

Recall that if M is a matrix, and λ(M) is a vector of eigenvalues of M , we have
that

enk(λ(M)) =
∑

S⊆[n]:|S|=k

det(M |S).

Because of this, we see that if enk (λ(M)) = 0, and M ∈ Sn,k, then we have that
det(M |S) = 0 for all subsets S of size k. We formalize this notion:

Definition 1. We say that a matrix M is (n, k)-locally singular if it lies in Sn,k

and all of the k × k minors of M are singular.
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We see that for M ∈ Sn,k, λ(M) is on the boundary of H(enk ) if and only if M is
(n, k)-locally singular. Sometimes (n, k) is omitted and we say a matrix is locally
singular if n and k are clear from context.

The simplest class of examples of locally singular matrices are matrices of rank
less than k. In particular, rank 1 PSD matrices will be locally singular for any
n and k. A more interesting example of locally singular matrices are the G(n, k)
matrices defined in equation (3). Not only are these matrices locally singular, but
they are also non-singular. From this example we can construct an n-dimensional
space of locally singular matrices by taking an arbitrary invertible diagonal matrix
D, and considering

DG(n, k)D ∈ Sn,k,

that is the set of matrices that are diagonally congruent to G(n, k). It follows from
Sylvester’s law of inertia, applied to the various submatrices of G(n, k), that any
matrix diagonally congruent to G(n, k) is in fact locally singular and nonsingular.

On the other hand, it is worth performing a quick dimension counting heuristic
to estimate how many possible matrices satisfy these conditions: Each submatrix
that is constrained to be singular imposes a single polynomial equation on the
possible solution set. If n − 1 > k > 2, then we see that the number of equations
is
(

n
k

)

, which is in fact greater than the dimension of the space of n× n symmetric

matrices, which is
(

n
2

)

. This indicates that solutions to this type of system should
be somewhat “uncommon”. Therefore, it is perhaps not surprising that in the cases
when n− 1 > k > 2, we are able to show that all of the locally singular matrices in
Sn,k, which are not singular, are diagonally congruent to G(n, k).

The following theorem formalizes this idea. Both the statement and the proof
of this theorem seem closely related to Theorem 13 in [30]. More generally, the
theorem can be viewed as giving semialgebraic relations between the various prin-
cipal minors of a symmetric matrix. A complete characterization of the algebraic
relations between the principal minors of a symmetric matrix was given in [21].

Theorem 2.3. Let n− 1 > k > 2 or (n, k) = (4, 2). Suppose that M ∈ Sn,k, M is

(n, k)-locally singular, and M is invertible. Then M must be diagonally congruent

to G(n, k).

Note that this immediately implies that there are points on the boundary of
H(enk ) which are not the eigenvalues of any matrix in Sn,k: since G(n, k) has only
one negative eigenvalue, any matrix diagonally congruent to G(n, k) has at most
one negative eigenvalue, and there are points on the boundary of H(enk) with as
many as n− k negative entries and no zero entries.

When k = 2 and n = 4, locally singular matrices in S4,2 are diagonally congruent
to a symmetric matrix with diagonal entries identically one and ±1 off-diagonal
entries. We can numerically check that a such matrix has at most one negative
eigenvalue. Thus by Cauchy’s Interlacing Theorem, for any n > 4 and k = 2, any
locally singular matrix in Sn,2 can have at most n−3 negative eigenvalues, whereas
the boundary of H(en2 ) contains points with as many as n− 2 negative eigenvalues.
Thus we get the following corollary.

Corollary 4. If n − 1 > k ≥ 2, then the set of possible eigenvalue vectors for

matrices in Sn,k is strictly contained in H(enk ).

2.3. Eigenvalues of matrices in S4,2 whose eigenvalues lie on the bound-

ary of H(e42). Theorem 2.3 implies that if X is a nonsingular matrix in Sn,k

whose eigenvalues lie on the boundary of H(enk ), then X is in fact diagonally con-
gruent to the matrix G(n, k). Because G(n, k) has only one nonnegative eigenvalue,
Sylvester’s law of inertia [14] implies that a matrix of this form has at most one
negative eigenvalue.



HYPERBOLIC RELAXATION OF k-LOCALLY POSITIVE SEMIDEFINITE MATRICES 7

The next lemma is a converse to the previous observation when n = 4 and k = 2.

Lemma 1. If λ ∈ H(e42), so that e42(λ) = 0 and λ has at most one negative eigen-

value, then λ is a vector of eigenvalues for matrix which is diagonally congruent to

G(4, 2).

The idea of the proof is to use a characterization of the coefficients of real rooted
polynomials to reduce the problem to proving that there exist real rooted polyno-
mials having certain properties. These properties can be described entirely in terms
of polynomial inequalities, so we can use algorithms for quantifier elimination over
real closed fields to solve this problem. We do not know of a proof of this result
that does not rely on computational methods.

3. Conclusions and open questions

The key insight in this paper is the observation thatH(enk ), i.e., the hyperbolicity
cone of the elementary symmetric polynomial enk , is a convex relaxation of the set
of the eigenvalue of matrices in Sn,k. Using this insight, we are able to improve
upper bounds on the distance of the matrices in Sn,k from PSD matrices Sn given
in [3]. The next question that was considered is how good is the relaxation H(enk ):
We first show that this relaxation (apart from the trivial case of n = k) is tight for
the case of k = n − 1. Indeed, in this case, we are able to show that H(enn−1) is
exactly the set of eigenvalues of matrices in Sn,n−1. However, in general we prove
that if λ(M) belongs to the boundary of H(enk ) and M ∈ Sn,k, then either M is
non-singular or M is diagonally congruent to G(n, k). Since there are points on
the boundary of H(enk ) with as many as n− k negative entries and no zero entries,
this shows that “large parts” of the boundary of H(enk ) do not intersect with the
eigenvalues of matrices in Sn,k.

There are many interesting open questions. As discussed above, we have shown
that the set of eigenvalues of matrices in Sn,n−1 is convex. It was recently shown in
[19] that the set of eigenvalue vectors of matrices in S4,2 is not convex, but it is still
an open question for all other values of k < n− 1. Another question vis-á-vis the
structure theorem is to classify singular matrices in Sn,k that lie on the boundary
of H(enk ). Finally, instead of enforcing PSD-ness on all submatrices, we can enforce
PSD-ness of a smaller set of submatrices. Are there similar relaxations like H(enk)
for specially structured collections of submatrices?

4. Preliminaries

4.1. Introduction to hyperbolic polynomials and hyperbolicity cones. Hy-
perbolic multivariate polynomials are a rich collection of polynomials with connec-
tions to convex optimization, combinatorics and theoretical computer science. We
give a brief description of the important properties of hyperbolic polynomials here.
We say that a polynomial p ∈ R[x1, . . . , xn] is hyperbolic with respect to a fixed vec-
tor v if p(v) > 0, and for any fixed x ∈ Rn, the univariate polynomial p(x−tv) ∈ R[t]
has only real roots. An important example of this comes from the determinant of
symmetric matrices, det(X) ∈ R[xij : i ≤ j], which is hyperbolic with respect to
the identity matrix, by the spectral theorem. Another example which is critical for
our purposes is the elementary symmetric polynomial enk (x), defined as

enk (x) =
∑

S⊆[n]:|S|=k

∏

i∈S

xi.

This polynomial is hyperbolic with respect to ~1, the all ones vector.
Let V (p) ⊂ Rn be the set of zeros of the polynomial p. Let p be hyperbolic with

respect to v ∈ Rn. The closed hyperbolicity cone of polynomial p with respect to
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v, is the closure of the connected component of Rn \V (p) containing v [10, 13, 25].
We will denote it by Hv(p). When p is the determinant or sum of certain principal
subdeterminants of a symmetric matrix, we will abbreviate H(p) = HI(p), where
I is the identity matrix.

The hyperbolicity cone of elementary symmetric polynomial enk (x) with respect

to ~1 will be denoted by H(enk ). A simple algebraic characterization of H(enk ) is
given by (see for example [34])

H(enk) = {x ∈ Rn : enl (x) ≥ 0 for all 1 ≤ l ≤ k}.
It is also known that H(enk ) is spectrahedral [7] for all 1 ≤ k ≤ n, i.e., an affine
slice of a higher dimensional PSD cone.

The key fact for our purposes is Proposition 1 in [25] originally proved by G̊arding
in [10].

Lemma 2. If p is hyperbolic with respect to v, then Hv(p) is convex, and its

boundary is precisely Hv(p) ∩ V (p).

4.2. Linear algebra. We use the following standard results in the paper.
Proofs can be found in [14].

Theorem 4.1 (Schur-Horn theorem). Let d, λ ∈ Rn such that di ≥ di+1 and

λi ≥ λi+1, i ∈ [n − 1]. There is a symmetric matrix with diagonal values d and

eigenvalues λ if and only if:

• ∑j

i=1 di ≤
∑j

i=1 λi for all j ∈ [n− 1],
• ∑n

i=1 di =
∑n

i=1 λi.

Note that the original theorem in [14] proves the existence of a real symmetric
matrix (not just Hermitian) that achieves the desired eigenvalues and diagonal
entries.

We next present the famous Cauchy’s Interlacing Theorem.

Theorem 4.2 (Cauchy’s Interlacing theorem). Consider an n×n symmetric matrix

A and let A|J be any of its k × k principal submatrices. Then for all 1 ≤ i ≤ k,

λn−k+i(A) ≤ λi(A|J ) ≤ λi(A).

We also present the symmetric case of Jacobi Complementary Minors formula.
The proof for general case can be found in [20]:

Theorem 4.3 (Jacobi’s Complementary Minors Formula, symmetric case). Let M
be an invertible n× n matrix and ∅ ( S ( [n].

(4) det(M |S) = det(M) det(M−1|Sc).

This theorem states that the minor of M corresponding to a subset S, can be
written in terms of the minor of M−1 with respect to the complement Sc. In the
simplest case when |S| = n−1, this is simply Cramer’s rule for the diagonal entries
of the inverse matrix.

5. Proof of Theorem 2.1 and Corollary 2

5.1. Proof of Theorem 2.1. For the remainder of this section, fix n > k ≥ 2 and
an F ∈ F . Let f be the function so that f(λ(M)) = F (M) for each M ∈ Symn.

In order to prove the theorem, we would like to verify an appropriate lower bound
on z∗ defined as:

z∗ := minimize λ1(M)

s.t. f(λ(M)) = 1

M ∈ Sn,k,
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where λ1(M) is the smallest eigenvalue of M .
In order to provide a lower bound on z∗, we apply (i) the hyperbolic relaxation

for the eigenvalues of Sn,k to replace {λ(M) |M ∈ Sn,k} with H(enk ), (ii) replace
f(λ(M)) = 1 by f(λ(M)) ≤ 1 to obtain the following convex optimization problem:

zl := minimize λ1

s.t. λ1 ≤ λi ∀i ∈ {2, . . . , n}
f(λ) ≤ 1
(λ1, λ2, . . . , λn) ∈ H(enk ).

(5)

It is straightforward to verify that the set {λ | f(λ) ≤ 1, λ ∈ H(enk )} is compact.
Thus zl is finite and at least one optimal solution exists. Also note that since (5)
is a convex program which is symmetric with regards to variables λ2, . . . , λn, it is
straightforward to verify that there exists an optimal solution where λ2 = · · · = λn.
Therefore, we arrive at the following two variable optimization problem:

zl := minimize λ1

s.t. λ1 ≤ λ2

f(λ1, λ2, . . . , λ2) ≤ 1
(λ1, λ2, . . . , λ2) ∈ H(enk ).

(6)

Next observe that if we remove the constraint (λ1, λ2, . . . , λ2) ∈ H(enk) from (6),
then

• If f corresponds to a norm, then the optimal solution of the resulting prob-
lem is of the form (a, 0, . . . , 0) where a < 0, which is infeasible for (6) since it
does not satisfy the constraint (λ1, λ2, . . . , λ2) ∈ H(enk ). Thus, the optimal
solution of (6) belongs to the boundary of of H(enk ).

• If f corresponds to the trace function, then the optimal solution of the
resulting problem is unbounded. Thus, again we can conclude that the
optimal solution of (6) belongs to the boundary of H(enk ).

Simple computation shows that for (λ1, λ2, . . . , λ2) to be on the boundary ofH(enk ),

we have λ1 = −n−k
k

λ2. Thus, we obtain that zl = − 1

f(−1, k
n−k ,..., k

n−k )
. Since f is

1-homogeneous, it is easy to verify that λ1(G̃(n, k)) = − 1

f(−1, k
n−k ,..., k

n−k )
, which

completes the proof of the theorem.

5.2. Proof of Corollary 2. Let A ∈ Sn,k with ‖A‖F = 1. If A is PSD then
the distance is zero, so we assume A has at least one negative eigenvalue. By
the Cauchy interlacing theorem (Theorem 4.2), A has at most n − k negative
eigenvalues. So dist(A,Sn

+) ≤ |λ1(A)|
√
n− k. By Theorem 2.1 we have that

|λ1(A)| ≤ 1
√

1+(n−1) k2

(n−k)2

, which completes the proof.

6. Proof of Theorem 2.2

When k = n the statement is clear, since x ∈ H(enn) if and only if x ≥ 0, and
it is the eigenvalues of diag(x) which is PSD. When k = 1, let x ∈ H(en1 ) = {y :
∑n

i=1 yi ≥ 0}. By the Schur-Horn theorem (Theorem 4.1), there exists a symmetric

matrix M0 with identically zero diagonal entries and eigenvalues x−
∑n

i=1 xi

n
. Thus,

M0 +
∑n

i=1 xi

n
I has eigenvalues x and is in Sn,1, since all of its diagonal entries are

nonnegative.
Now let k = n − 1. First, we reduce to the case when x is on the boundary of

H(enn−1). To do that, we note that if x is any point in H(enn−1), then for some

t > 0, x− t~1 will lie on the boundary of the cone. If x− t~1 is a vector of eigenvalues
of a matrix M in Sn,n−1, then x is a vector of eigenvalues of M+ tI, also in Sn,n−1.
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We apply a corollary 3.2 in [34] to argue that if x is in H(enn−1), then it has at
most one negative eigenvalue.

Lemma 3. If x ∈ H(enn−1), and x has a negative entry, then all other entries of x
are strictly positive.

Proof. By Theorem 1.1 in [28], we have that x ∈ H(enn−1) if and only if

X = diag(x1, . . . , xn−1) + xn
~1n−1

~1⊺n−1 � 0.

Here, we use ~1n−1 to denote the all ones vector in n− 1 dimensions for emphasis.
By permuting the coordinates, we can assume that xn is an entry so that xn < 0.

Then, we have that the diagonal entries of X are nonnegative, so for i 6= n,

xi + xn ≥ 0.

So, xi ≥ −xn > 0, concluding the theorem.
�

Thus, if x lies on the boundary, we will consider two cases: either all entries of x
are nonnegative, or exactly one entry of x is negative and others are positive. If all
entries of x are nonnegative, then there is a PSD matrix whose vector of eigenvalues
is x, and in particular, a matrix in Sn,n−1 with these eigenvalues.

If x lies on the boundary and exactly one entry of x is negative, then consider

enn−1(x) =
∑

i∈[n]

∏

j∈[n]\i
xj =





∏

j∈[n]

xj





∑

i∈[n]

1

xi

= 0,

which is well defined since in the previous lemma, we showed that all entries of x
are nonzero. Thus,

∑

i∈[n]
1
xi

= 0.

Now, we can apply the Schur-Horn theorem (Theorem 4.1), which implies that
there is a matrix L whose diagonal entries are all zeros, and whose eigenvalues are
{ 1
xi
}. In particular, L is invertible, so let M = L−1. Since all of the diagonal entries

of L are 0, all of the (n − 1)× (n − 1) minors of M are zero by Cramer’s rule for
the diagonal entries of the inverse matrix. Also note that x has (n − 1) positive
entries, so by eigenvalue interlacing, all of the (n− 1)× (n− 1) minors of M have
at most 1 non-positive eigenvalue. Now, simply by noting that they all have 0 as
an eigenvalue, this in particular implies that all (n− 1)× (n− 1) minors of M have
nonnegative eigenvalues, and hence are PSD. Thus, M is a matrix in Sn,n−1 with
the desired eigenvalues.

7. Proof of the structure theorem for Sn,k

7.1. Proof roadmap. Given a matrix in Sn,k, which is nonsingular and locally
singular – we will abbreviate by saying that M is an NLS matrix.

We show Theorem 2.3 in three steps. We first prove base cases n − k = 2 and
k = 3, and then we use double induction on n− k and k to prove the statement for
general k. For the base case n − k = 2, there is a very interesting step of taking
the inverse of a given NLS matrix, and using some facts about the structure of the
inverse matrix.

The inductive step for this argument relies on some observations about Schur
complements. The Schur complement of a symmetric matrix M with respect to a
nonzero diagonal entry Mii is defined to be the (n− 1)× (n− 1) matrix

M \ {i} = M |[n]\{i} −
1

Mii

M̃iM̃
⊤
i ,

where M̃i is obtained from the ith column of M after removing ith entry.
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Now, we recall some facts for matrices M with strictly positive diagonal en-
tries [33].

• Schur complements preserve PSD-ness. M is PSD if and only if
M \ {i} is PSD.

• Schur complements preserve singularness. M is nonsingular if and
only if M \ {i} is nonsingular.

• Schur complements commute with taking submatrices. If i /∈ S,
then (M \ {i})|S = (M |S∪{i}) \ {i}.

The previous three properties imply the following: a matrix in Sn,k is NLS, if and
only if for each i ∈ [n], M \ {i} is in Sn−1,k−1 and NLS.

7.2. Structure theorem when k = n− 2. Let M be a matrix in Sn,n−2, which
is NLS. Observe that NLS matrices in Sn,n−2 must have strictly positive diagonal
entries. If any diagonal entry is zero, then since 2×2 minors of M are nonnegative,
an entire row and column of M are filled with zeros, and then M is singular, which
is a contradiction.

As a base case when n = 4, consider an NLS matrix M ∈ S4,2. We can perform
a diagonal congruence transformation to obtain a matrix M̃ , such that all of the
diagonal entries of M̃ are 1, and since all 2 × 2 minors of M are zero, we see that
all off diagonal entries of M̃ are ±1. There are 6 off-diagonal entries, so that there
are 64 distinct possibilities for locally singular matrices, up to diagonal congruence.
All of these 64 matrices are either singular or congruent to G(4, 2), which can be
checked using direct computation.

Lemma 4. Let M ∈ Sn,n−2 be an NLS matrix. Then the following hold:

(1) det(M) < 0.
(2) All (n− 1)× (n− 1) principal minors of M are strictly negative.

(3) All (n− 3)× (n− 3) principal minors of M are strictly positive.

Proof. We prove these facts by inducting on n, with the base case S4,2 following
from direct checking of the 64 cases above. For the inductive step we take the Schur
complement of an NLS matrix M with respect to a diagonal entry. Observe that a
diagonal entry of the Schur complement cannot be zero. Otherwise the whole row
of the Schur complement must be zero as all 2 × 2 minors are nonnegative, and
this is a contradiction since M is nonsingular, and Schur complements preserve
nonsingularity. Since taking Schur complements with respect to a positive diagonal
entry preserves the property of being NLS, preserves the signs of determinants, and
commutes with the operation of taking submatrices, all three above statements
follow by induction. �

Now we are ready to prove the main theorem of this Section.

Theorem 7.1. Let M ∈ Sn,n−2 be an NLS matrix. Then M is diagonally congru-

ent to G(n, n− 2).

Proof. Let M ∈ Sn,n−2 be an NLS matrix and consider the inverse matrix M−1.
Using Lemma 4 and Theorem 4.3 and what we know about principal minors of M ,
we have the following:

(1) All diagonal entries of M−1 are strictly positive.
(2) All 2× 2 principal minors of M−1 are zero.
(3) All 3× 3 principal minors of M−1 are strictly negative.

Observe that (1) and (2) together imply that all off-diagonal entries of M−1 are

nonzero. We conjugateM−1 by a diagonal matrixD given byD11 = −1/
√

(M−1)11
and Dii = sgn(M1i)/

√

(M−1)ii. to obtain matrix T with 1’s on the diagonal, and
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−1’s in first row and column other than the (1, 1) entry. By Theorem 4.3, all 2× 2
principal minors of T are zero, so of its off-diagonal entries must be ±1.

Now for all distinct i, j 6= 1, we consider the principal submatrix with rows and

columns indexed by {1, i, j}. It has form





1 −1 −1
−1 1 x
−1 x 1



 where x is either 1 or

−1. Since this submatrix has negative determinant, we must have x = −1. Thus
T is G(n, 2), and M−1 is diagonally congruent to G(n, 2).

Finally, notice that inverting a matrix sends diagonally congruent matrices to
diagonally congruent matrices, and that for n ≥ 4,

G(n, 2)−1 =
n− 3

2(n− 2)
G(n, n− 2).

Thus, we have shown that M is diagonally congruent to G(n, n− 2), as desired.
�

7.3. Structure theorem for k = 3. In this section we prove the structure theorem
for k = 3:

Theorem 7.2. Let M ∈ Sn,3 with n ≥ 5 be an NLS matrix. Then M is diagonally

congruent to G(n, 3).

Our proof proceeds by induction on n. As a base case, note that the result holds
for S5,3 by Theorem 7.1.

To finish the induction we need the following lemma.

Lemma 5. If M is a nonsingular symmetric matrix, then either one of its (n −
1) × (n − 1) principal minors is nonzero, or one of its (n − 2) × (n − 2) principal

minors is nonzero.

Proof. Let M be a nonsingular matrix and consider M−1. If all of the principal
(n − 1) × (n − 1) minors of M are zero, then by Theorem 4.3 all of the diagonal
entries of M−1 are 0. If, in addition, all (n − 2) × (n − 2) principal minors of M
are zero, then all 2× 2 minors of M−1 are zero, and then M−1 is the zero matrix,
which is a contradiction. �

Now for an inductive hypothesis, assume that for 5 ≤ m < n, any NLS M ∈ Sm,3

is diagonally congruent to G(m, 3). Fix n and let M ∈ Sn,3 be any NLS matrix.
If the submatrix of M given by Lemma 5 has size at least 5, then it must be
diagonally congruent to G(n− 1, 3) or G(n− 2, 3) due to the inductive hypothesis.
We divide the remaining proof into three cases:

(1) n ≥ 6, and there exists an (n − 1) × (n − 1) submatrix of M that is
diagonally congruent to G(n − 1, 3). Then after permutation and suitable
diagonal congruence we may assume

M =

(

G(n− 1, 3) v

v⊤ 1

)

,

for some vector v ∈ Rn−1.
Let M ′ be any 5 × 5 principal submatrix of M which includes index n.

Then M ′ must have the form

M ′ =













1 − 1
2 − 1

2 − 1
2 v1

− 1
2 1 − 1

2 − 1
2 v2

− 1
2 − 1

2 1 − 1
2 v3

− 1
2 − 1

2 − 1
2 1 v4

v1 v2 v3 v4 1













.
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If we look at the 3× 3 submatrix corresponding to entries {i, j, 5}, we get




1 − 1
2 vi

− 1
2 1 vj

vi vj 1



 .

The determinant of this matrix is

(7)
3

4
− v2i − vivj − v2j .

Because all 3× 3 submatrices of M ′ are singular, this determinant must
equal 0 for all i, j ∈ {1, 2, 3, 4}. Notice that this is a quadratic equation
in vi and vj . If we fix a value for v1, then (7) implies that the remaining
three vi can take on at most 2 other values (which only depend on v1).
By the pigeonhole principle, at least two of these vi must be equal. After
permuting entries we may assume v2 = v3. Plugging this into (7), we see
that either v2 = v3 = 1

2 or v2 = v3 = − 1
2 . In the first case we may conjugate

M ′ by diag(1, 1, 1, 1,−1). Therefore we may assume v2 = v3 = − 1
2 .

Now, we can consider the equation (7) for the cases when i = 2 and
j = 1, or i = 2 and j = 4. Because we assume v2 = − 1

2 , equation 7 implies
that

3

4
− v22 − v1v2 − v21 = −(v1 − 1)(v1 +

1

2
),

and
3

4
− v22 − v2v4 − v24 = −(v4 − 1)(v4 +

1

2
).

We then get that both v1, v4 are either 1 or − 1
2 . They cannot both be

1, otherwise the equation fails for i = 1, j = 4. Therefore at least one of
them must be − 1

2 , and after permuting entries we may assume v1 = − 1
2 .

Summarize above, we see that M ′ can only take on two values up to
diagonal congruence and permutation: either M ′ = G(5, 3), or

M ′ =













1 − 1
2 − 1

2 − 1
2 − 1

2
− 1

2 1 − 1
2 − 1

2 − 1
2

− 1
2 − 1

2 1 − 1
2 − 1

2
− 1

2 − 1
2 − 1

2 1 1
− 1

2 − 1
2 − 1

2 1 1













.

Now, because this holds for all 5 × 5 submatrices of M , it is clear that v
must have the properties that all entries of v are either − 1

2 or 1, and that

at most one entry of v can be 1. If the ith entry of v is 1, then notice
that rows i and row n of M are the same, meaning that M is singular, a
contradiction. We conclude that all entries of v are − 1

2 , and we have shown
that M is diagonally congruent to G(n, 3).

(2) n ≥ 7, and there exists an (n − 2) × (n − 2) submatrix of M which is
nonsingular. By induction, this implies that this submatrix is diagonally
congruent to G(n − 2, 3). Then after permutation and suitable diagonal
congruence we may assume

M =





G(n− 2, 3) v w
v⊤ 1 x
w⊤ x 1



 .

If either v or w has all entries − 1
2 , then M has an (n − 1) × (n − 1)

principal submatrix equal to G
(

(n−1), 3
)

, and we are back to the previous
case.



14 HYPERBOLIC RELAXATION OF K-LOCALLY POSITIVE SEMIDEFINITE MATRICES

Upon considering any 5 × 5 principal submatrix of M that has exactly
one index from {n− 1, n}, and using observations from the previous case,
we may assume v and w to both have exactly one entry that is 1, with
the remaining entries are − 1

2 , and x is some scalar number. There are two
cases of interest: either v and w have the 1 entry in the same position, or
in different positions.

If they are both in the same place, then without loss of generality, let us
assume that they are in position (n− 2). Now, if we look at the 3× 3 block
corresponding to entries {n− 2, n− 1, n}, then we will see the 3× 3 matrix





1 1 1
1 1 x
1 x 1



 .

The determinant of this matrix is −(x− 1)2. We can see that if this matrix
is singular, then x must in fact be equal to 1, and so we see that the last
3 rows of M are all the same, implying M is singular. Now, suppose that
v and w have these 1 entries in two different positions. Then we see that
there is a 3× 3 submatrix of the form





1 1 − 1
2

1 1 x
− 1

2 x 1



 .

The determinant of this matrix is 1+x−x2− 1
4 −1 = −(x+ 1

2 )
2, and we

must then have x = − 1
2 . In this case, we see that the (n − 2) and (n − 3)

rows of M are equal, and so M is singular. In other words, if M ∈ Sn,3 is
locally singular, and M is nonsingular, and some (n− 2)× (n− 2) minor of
M is diagonally congruent to G(n− 2, 3), then M is diagonally congruent
to G(n, 3).

(3) n = 6, and all (n− 1)× (n− 1) principal minors of M are zero. Then using
Theorem 4.3, all diagonal entries of M−1 are zero. Since M ∈ S6,3 is NLS,
again using Theorem 4.3, we also see that all 3× 3 minors of M−1 are zero.
Any 3× 3 submatrix of M−1 must be of the form





0 a b
a 0 c
b c 0



 ,

which has determinant 2abc. Since the determinant must be 0, this
means that there cannot be any 3 × 3 submatrix of M−1 where all off-
diagonal entries are nonzero. Now we define an edge coloring on K6, the
complete graph with 6 vertices, as follows. An edge (i, j) is colored red if
(M−1)ij = 0, and blue otherwise. Our previous result shows that there
cannot be any blue triangles in this colored graph. Therefore using the fact
that the Ramsey number R(3, 3) is at most 6 [12], there must exist a red
triangle.

In other words, there must exist an identically zero 3×3 submatrix within
M−1. After permuting rows and columns we may assume its index to be
{1, 2, 3}. Now consider the submatrix of M−1 indexed by {1, 2, 3, 4, 5}.
The span of first three rows is at most two dimensional, so this submatrix
is singular. Using Theorem 4.3 we get M66 = 0. But this is a contradiction
since all diagonal entries of M must be nonzero.

7.4. Structure theorem in general. We have shown the structure theorem in
the cases when k = 3 or n−k = 2. Now we use induction to prove the general case.
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Theorem 7.3. Fix integers n ≥ 5 and 3 ≤ k ≤ n−2. Let M ∈ Sn,k be NLS. Then

M is diagonally congruent to G(n, k).

Proof. We will use induction. The base cases are when k = 3 or k = n − 2, and
they are already proven. These include all cases when n = 5 or n = 6.

For induction, fix n ≥ 7 and 3 < k < n−2. Assume the theorem statement holds
for (n−1, k) and (n−1, k−1). Let M ∈ Sn,k be NLS. The Schur complement of M
with respect to any diagonal entry is NLS in Sn−1,k−1, and is therefore diagonally
congruent to G(n− 1, k− 1). Because all (n− 2)× (n− 2) principal submatrices of
G(n−1, k−1) are nonsingular for k < n−1, all of the (n−2)×(n−2) minors of the
Schur complement of M are nonsingular. This implies that all of (n− 1)× (n− 1)
minors of M are nonsingular, since Schur complements preserve the property of
being singular.

Thus, if we consider any (n − 1) × (n − 1) principal submatrix of M , we see
that it is NLS in Sn−1,k, and by our inductive hypothesis, all (n − 1) × (n − 1)
submatrices of M are diagonally congruent to G(n−1, k). This in particular shows
that all entries of M must be nonzero, and all diagonal entries strictly positive.

Let D′ be a non-singular diagonal matrix so that DM |{1,...,n−1}D = G(n−1, k).
Since we may freely choose between D′ and −D′, without loss of generality we may

assume D′
11 is negative. Let c = sgn(M1n)√

Mnn
(where sgn(x) is −1 if x is negative, 1 if

x is positive, and sgn(0) = 0). We then have
[

D′ 0
0 c

]

M

[

D′ 0
0 c

]

= M ′ =

[

G(n− 1, k) v
v⊤ 1

]

,

for some vector v, and we know v1 < 0. Our goal now is to show that all entries of
v must be − 1

k−1 , and M is therefore diagonally congruent to G(n, k).

Consider any size n − 1 principal submatrix of M ′ containing columns 1 and
n. It is diagonally congruent to G(n − 1, k) so there exists diagonal matrix D =
diag(d1, ..., dn) such that

D

[

G(n− 2, k) v̂
v̂⊤ 1

]

D = G(n− 1, k),

where v̂ is obtained from v by truncating one entry other than the first coordinate,
and v̂1 < 0. We may also choose d1 > 0. Now comparing diagonal entries of both
sides we get d2i = 1 for all i. Now for all i > 1 the (1, i) entry on both sides is
negative, so did1 > 0 for all i > 1. This shows in fact D = I, and all entries of v̂ are
− 1

k−1 . Now varying over all possible choices of principal submatrices containing

columns 1 and n, we see all entries of v must be − 1
k−1 . This concludes the proof. �

8. Eigenvalues of Locally Singular Matrices in S4,2

In the previous section, we found that all locally singular matrices in S4,2 are
either singular or congruent to G(n, k). In this section, we consider the eigenvalues
of NLS matrices in S4,2.

In general, we may ask the following question: what are the possible eigenvalues
of a matrix of the form DG(n, k)D, where D is a nonsingular diagonal matrix.
We know that DG(n, k)D is locally singular and in Sn,k, which implies that its
eigenvalues lie on the boundary of H(enk ).

Furthermore, by Sylvester’s law of inertia, for any nonsingular diagonal matrix
D, DG(n, k)D has exactly one negative eigenvalue, and the remainder are positive.
Hence, if λ is the eigenvalue vector of a DG(n, k)D, then λ has exactly one negative
entry. We conjecture that this is in fact sufficient for λ to be the vector of eigenvalues
for an NLS matrix in Sn,k.
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Conjecture 1. If λ ∈ H(enk), e
n
k (λ) = 0, and λ has at most 1 negative entry, then

λ is a vector of eigenvalues for DG(n, k)D for some diagonal matrix D.

As evidence for this conjecture, we will give a computational proof of the follow-
ing theorem:

Theorem 8.1. If λ ∈ H(e42) lies on the boundary of the hyperbolicity cone of e42
and λ has exactly 1 negative entry, then λ is an eigenvalue vector of some matrix

in S4,2.

We prove this by converting the question into a question about real rooted poly-
nomials. We should think of these as being the characteristic polynomials of certain
types of symmetric matrices, and these characteristic polynomials completely char-
acterize their eigenvalues. We defer the proofs of these characterizations to the
appendix.

We say that a univariate polynomial of degree 4, p = a0+a1x+a2x
2+a3x

3+x4,
has good roots if it is real rooted, a0 < 0, a2 = 0 and a3 ≤ 0.

Lemma 6. A real rooted polynomial p has good roots if and only if p has no zero

roots, exactly one negative root, and the roots of p lie on the boundary of H(e42).

We then say that a polynomial p = a0 + a1x + a2x
2 + a3x

3 + x4 is almost-

nonnegative rooted if there is some k ∈ R so that the polynomial q = a0

−16 +
a1

−4x+ kx2 + a3x
3 + x4 has nonnegative real roots.

Lemma 7. p is almost-nonnegative rooted if and only if there is some nonsingular

diagonal matrix D, so that p is the characteristic polynomial of DG(4, 2)D.

Now, Theorem 8.1 is easily seen to be equivalent to the following lemma.

Lemma 8. A polynomial p has good roots if and only if it is almost-nonnegative

rooted.

We will prove Lemma 8 precisely in the appendix, but sketch the ideas here. In
principle, Lemma 8 is a statement in the first order theory of real closed fields. That
is, it can expressed entirely in terms of universal and existential quantifiers applied
to real polynomial inequalities. Such questions are well known to be answerable
algorithmically through quantifier elimination techniques. The first such algorithm
for deciding such statements was found by Tarksi and Seidenberg, and further
developments in this field can be found, for example in [5]. We used the quantifier
elimination methods in Mathematica[16] to solve this problem.

The main technical difficulty in applying these quantifier elimination methods
is reducing the number of variables needed to express the inequalities so that the
problem becomes tractable on a computer. For this purpose, we prove a number of
polynomial inequalities in the coefficients of a degree 4 univariate polynomial which
imply both good-rootedness and almost-real-rootedness in the appendix. Once
these polynomial inequalities have been proven, the problem can be directly solved
by a computer.
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Appendix A. Proofs of results in Section 8

We first prove the characterization of the eigenvalues of matrices diagonally
congruent to G(4, 2) in terms of characteristic polynomials.

Proof. (of lemma 6) Suppose that p(x) = (x− r1)(x − r2)(x− r3)(x − r4), so that
the roots of p are r1, r2, r3, r4.

Note that the condition that a2 ≥ 0, a3 ≤ 0 is equivalent to the condition
that e42(r1, r2, r3, r4), e

4
1(r1, r2, r3, r4) ≥ 0. These inequalities are equivalent to the

condition that (r1, r2, r3, r4) ∈ H(e42) [13]. Once we know that (r1, r2, r3, r4) ∈
H(e42), a2 = e42(r1, r2, r3, r4) = 0 is equivalent to the condition that (r1, r2, r3, r4)
lies on the boundary of the hyperbolicity cone.

Every (r1, r2, r3, r4) ∈ H(e42) has at most 2 negative entries, and if there were
exactly 2 negative negative entries, then r1r2r3r4 > 0 (it cannot be the case that
there are two negative entries and a zero entry by interlacing). Therefore, the
condition that a0 < 0 is equivalent to there being at most 1 negative entry in
(r1, r2, r3, r4). �

Proof. (of 7)
Consider the characteristic polynomial of the matrix DG(4, 2)D. By definition,

it is

p(λ) = det(DG(4, 2)D − Iλ) =
4

∑

i=0

∑

S⊆[n],|S|=i

(−1)i det
(

(DG(4, 2)D)|S
)

λ4−i.

Now, note that because D is diagonal,

det
(

(DG(4, 2)D)|S
)

= det(D|S)2 det(G(4, 2)|S).
Also, because G(n, k) is symmetric with respect to permutations of the coordinates,
det(G(n, k)|S) only depends on the size of S. So, we have that

p(λ) =

4
∑

i=0

det(G(4, 2)|[i])
∑

S⊆[n],|S|=i

(−1)i det
(

(D)2|S
)

λ4−i.

Now, we simply compute

det(G(4, 2)|{1}) = 1,

det(G(4, 2)|{1,2}) = 0,

det(G(4, 2)|{1,2,3}) = −4,

det(G(4, 2)|{1,2,3,4}) = −16.

Now, consider the polynomial

q(λ) =

4
∑

i=0

∑

S⊆[n],|S|=i

(−1)i det
(

(D)2|S
)

λi = b0 + b1λ+ b2λ
2 + b3λ

3 + λ4.

This is equal to the characteristic polynomial of the matrix D2. As D2 is a diagonal
matrix with nonnegative real entries, its eigenvalues are nonnegative. Moreover, if
q is a polynomial with nonnegative real roots, then there is a diagonal matrix D so
that q is its characteristic polynomial.
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Finally, note that from our above characterization of the coefficients of p,

p(λ) = −16b0 +−4b1λ+ b3λ
3 + λ4.

On the other hand, if p has almost-nonnegative roots, then we can construct the
desiredD from the roots of q, and then DG(n, k)D will have the desired eigenvalues.

�

We now prove a number of polynomial inequalities which are equivalent to the
good-rooted and almost-real-rooted conditions.

Lemma 9. p = a0 + a1x− x3 + x4 has good roots if and only if a0 < 0, and

−4a31 − 27a41 − 6a21a0 − 27a20 − 192a1a
2
0 + 256a30 ≥ 0.

Proof. This polynomial −4a31 − 27a41 − 6a21a0 − 27a20 − 192a1a
2
0 + 256a30 is the dis-

criminant of p, which is nonnegative if and only if the number of real roots of p is
a multiple of 4, or p has a double root.

If p has 4 nonreal roots, say r1, r2, r3, r4, then they must come in conjugate pairs,
so that, say, r1 = r̄2 and r3 = r̄4, which would imply that then

a0 = r1r2r3r4 = |r1|2|r3|2,

is nonnegative, a contradiction.
Similarly, if p has a double root, say r3 = r4, and a pair of complex conjugate

roots, say r1 = r̄2 then we see that

a0 = r23 |r1|2 ≥ 0,

which is a contradiction. �

Lemma 10. p = a0 + a1x − x3 + x4 has almost-nonnegative roots if and only if

a0 < 0, a1 < 0, and there is k > 0, so that the following 4 inequalities are satisfied:
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(

− 27a41
256

− 9a31k

32
+

a31
16

− 9

16
a21a0k +

3a21a0
128

− a21k
3

4
+

a21k
2

16
+

3a1a
2
0

16

−5

4
a1a0k

2 +
9a1a0k

32
− a30

16
− a20k

2

2
+

9a20k

16
− 27a20

256
− a0k

4 +
a0k

3

4

)

≥ 0,

(27a41
256

+
9a31k

32
+

a31
8

+
45

128
a21a0k − 9a21a0

128
+

a21k
3

4
+

45a21k
2

16
+ a21k+

37a21
8

− 9a1a
2
0

128
+

11

16
a1a0k

2 − 43a1a0k

32
− 53a1a0

32
+ 9a1k

3 +
27a1k

2
−

3a1 +
a30
64

+
3a20k

2

16
+

23a20k

128
+

77a20
256

+
a0k

4

2
+

27a0k
3

8
− 3a0k

2 +
3a0k

8
−

3a0
8

+ 8k5 − 2k4 + 16k3 − 4k2
)

≤ 0,

(

− 3a31
16

+
3a21a0
64

− 19a21k
2

16
− a21k − 17a21

16
+

11a1a0k

32
+

17a1a0
32

−
9a1k

3

2
− a1k

2 + 3a1k − 15a1
2

− 3a20k

32
− 17a20

256
− 5a0k

3

4
+

9a0k
2

8
−

11a0k

8
+

21a0
8

− 4k5 + k4 − 16k3 + 33k2 − 38k + 9
)

≥ 0,

(

−3a21
16

− 3a1k +
5a1
2

+
3a0k

8
− 5a0

8
+ 2k3 − 11k2 + 12k − 7

)

≤ 0.

Proof. The classical results that we need about real rooted univariate polynomials,
such as the Newton identities and the Hermite-Sylvester conditions can be found
at [4, Section 3.1].

If we have the sign conditions on the coefficients, a0 < 0, a1 < 0, k > 0, then
the polynomial q = a0

−16 + a1

−4x + kx2 − x3 + x4 has coefficients which alternate in
sign. If q is real rooted, then we can apply Descartes’ rule of signs to conclude that
q has nonnegative real roots.

The remaining inequalities cut out the space of real-rooted polynomials. This
follows from the Hermite-Sylvester criterion for the polynomial having real roots.
It states that if we let mk =

∑4
i=1 r

k
i , where r1, r2, r3, r4 are the roots of q, then p

has nonnegative real roots if and only if the 4× 4 matrix M given by

Mij = mi+j .

is positive semidefinite.
We can then use the Newton identities to determine the mk in terms of a0, a1

and k.
Once M has been computed, the 4 polynomials above are the 4 coefficients of

the characteristic polynomial of M . M being positive semidefinite is equivalent
to these 4 polynomials alternating in sign, which results in the four inequalities
listed. �

Proof. (Of lemma 8)
We want to show that for all a0 and a1 satisfying the conditions of 9, there exists

k satisfying the conditions of 10.
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We are now at the point where we can directly apply any quantifier elimination
algorithm to solve this problem, say the one included in Mathematica[16]. The
results of this computation show that the lemma holds. �
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