
Nearly Optimal Planar k Nearest Neighbors
Queries under General Distance Functions
Chih-Hung Liu
Department of Computer Science, ETH Zürich, Zürich, Switzerland
chih-hung.liu@inf.ethz.ch

Abstract
We study the k nearest neighbors problem in the plane for general, convex, pairwise disjoint sites of
constant description complexity such as line segments, disks, and quadrilaterals and with respect to
a general family of distance functions including the Lp-norms and additively weighted Euclidean
distances. For point sites in the Euclidean metric, after four decades of effort, an optimal data
structure has recently been developed with O(n) space, O(logn + k) query time, and O(n logn)
preprocessing time [1, 19]. We develop a static data structure for the general setting with nearly
optimal O(n log logn) space, the optimal O(logn + k) query time, and expected O(n polylog n)
preprocessing time. The O(n log logn) space approaches the linear space, whose achievability is
still unknown with the optimal query time, and improves the so far best O

(
n(log2 n)(log logn)2)

space of Bohler et al.’s work [12]. Our dynamic version (that allows insertions and deletions of
sites) also reduces the space of Kaplan et al.’s work [33] from O(n log3 n) to O(n logn) while keeping
O(log2 n+ k) query time and O(polylog n) update time, thus improving many applications such as
dynamic bichromatic closest pair and dynamic minimum spanning tree in general planar metric,
and shortest path tree and dynamic connectivity in disk intersection graphs.

To obtain these progresses, we devise shallow cuttings of linear size for general distance functions.
Shallow cuttings are a key technique to deal with the k nearest neighbors problem for point sites in
the Euclidean metric. Agarwal et al. [4] already designed linear-size shallow cuttings for general
distance functions, but their shallow cuttings could not be applied to the k nearest neighbors
problem. Recently, Kaplan et al. [33] constructed shallow cuttings that are feasible for the k nearest
neighbors problem, while the size of their shallow cuttings has an extra double logarithmic factor.
Our innovation is a new random sampling technique for the analysis of geometric structures. While
our shallow cuttings seem, to some extent, merely a simple transformation of Agarwal et al.’s [4],
the analysis requires our new technique to attain the linear size. Since our new technique provides a
new way to develop and analyze geometric algorithms, we believe it is of independent interest.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases k nearest neighbors problem, General distance functions, Random sampling,
Shallow Cuttings

1 Introduction

Dating back to Shamos and Hoey (1975) [41], the k nearest neighbors problem is one
fundamental problem in computer science: given a set S of n geometric sites in the plane
and a distance measure, build a data structure that answers for a query point p and a query
integer k, the k nearest sites of p in S. A related problem called circular range query problem
is instead to answer for a query point p and a query radius δ, all the sites in S whose distance
to p is at most δ. A circular range query can be answered through k nearest neighbors
queries for k = logn, 2 logn, 4 logn, . . . until all the sites inside the circular range have been
found, i.e., until one found site is not inside the circular range ([15, Corollary 2.5]). For
point sites in the Euclidean metric, these two problems have received considerable attention
in theoretical computer science [1, 8, 10, 15, 16, 19, 21, 26, 33, 36, 39, 41]. Many practical
scenarios, however, entail non-point sites and non-Euclidean distance measures, which has

ar
X

iv
:1

80
5.

02
06

6v
2

 [
cs

.C
G

]
 2

7
O

ct
 2

01
9

https://orcid.org/0000-0001-9683-5982
mailto:chih-hung.liu@inf.ethz.ch

2 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

been extensively discussed by Kaplan et al. [33]. Therefore, for practical applications, it is
beneficial to study the k nearest neighbors problem for general distance functions.

The key technique for point sites in the Euclidean metric is shallow cuttings, a notion to
be defined later. Agarwal et al. [4] already generalized shallow cuttings to general distance
functions, but their shallow cuttings could not be applied to the k nearest neighbors problem.
Recently, Kaplan et al. [33] constructed shallow cuttings that are feasible for the k nearest
neighbors problem, while the size of their shallow cuttings has an extra double logarithmic
factor. Our main contribution is to devise linear-size shallow cuttings for the k nearest
neighbors problem under general distance functions, shedding light on achieving the same
complexities as point sites in the Euclidean metric.

Based on our linear-size shallow cuttings, we build a static data structure for the k nearest
neighbors problem with nearly optimal O(n log logn) space and the optimal O(logn + k)
query time. The O(n log logn) space approaches the linear space, whose achievability is
still unknown, and improves the so far best O

(
n(log2 n)(log logn)2) space of Bohler et al.’s

work [12]. Our shallow cuttings also enable a dynamic data structure that allows insertions
and deletions of sites with O(n logn) space, improving the O(n log3 n) space of Kaplan et al.’s
work [33].

Our innovation is a new random sampling technique for the analysis of geometric structures.
While our shallow cuttings seem, to some extent, merely a simple transformation of Agarwal
et al.’s [4], to attain the linear size, the analysis requires our new technique to deal with
global and local conflicts of a configuration. For example, to compute a triangulation for n
points, a configuration is a triangle defined by three points, and a point is said to conflict
with a triangle if the point lies inside the triangle. Global and local conflicts of a triangle are
associated respectively with all the n points and a random subset. Our technique employs
relatively many local conflicts to prevent relatively few global conflicts, in contradistinction
to many state-of-the-art techniques that adopt relatively many global conflicts to prevent
zero local conflict. This conceptual difference enables our technique to directly analyze local
geometric structures; for a simple illustration, see Section 1.1.

Each site in S can be represented as the graph of its distance function, namely an
xy-monotone surface in R3 where the z-coordinate is the distance from the (x, y)-coordinates
to the respective site. For example, the surface for a point site (a, b) in the L1 norm is the
inverted pyramid z = |x− a|+ |y − b|. By this interpretation, the k nearest sites of a query
point p become the k lowest surfaces along the vertical line passing through p. In this paper,
we restrict to the case that the lower envelope of any r surfaces has O(r) faces, edges and
vertices, as Kaplan et al. [33] pointed out that this restriction works for many applications.

For point sites in the Euclidean metric, instead of the above interpretation, a standard
lifting technique can map each point site to a plane tangent to the unit paraboloid z =
−(x2 + y2) [37], so that the k nearest point sites of a query point become the k lowest planes
along the vertical line passing through the query point. An optimal data structure for the k
lowest plane problem has recently been developed with O(n) space, O(logn+ k) query time,
and O(n logn) preprocessing time [1, 19]. The dynamic version allows O(log2 n+ k) query
time, amortized O(log3 n) insertion time, and amortized O(log4 n) deletion time [16, 19, 17].

Shallow Cuttings. Let H be a set of n planes in R3, and define the level of a point in R3

as the number of planes in H lying vertically below it and the (≤ l)-level of H as the set
of points in R3 with level of at most l. An l-shallow 1

r -cutting for H is a set of disjoint
downward semi-unbounded vertical triangular prisms covering the (≤ l)-level of H such that
each prism intersects at most n

r planes; see Fig. 1. We abbreviate the n
r -shallow O(1

r)-cutting

Chih-Hung Liu 3

0

1 1

22 2

3 3
4

4 45

Figure 1 Left: The gray area is the ≤ 2 level, where the lines depict the planes and the numbers
show the levels. Right: A downward semi-unbounded vertical triangular prism.

as 1
r
-shallow-cutting. Since a 1

r -shallow-cutting covers the (≤ n
r)-level of H, the triangular

face of each prism lies the above (≤ n
r)-level, so that for any vertical line through a prism,

its n
r lowest planes intersect the prism. Since each prism stores the O(nr) planes intersecting

it, if n
2r < k ≤ n

r , the k lowest planes of a query vertical line can be answered by locating
the prism intersected by the line and selecting the k lowest planes from the O(nr) stored
planes, leading to O(logn+ n

r) = O(logn+ k) query time. To cover the whole range of k,
1
r -shallow-cuttings for r = 2, 4, 8, . . . , n

logn are sufficient.
Matoušek [36] first used “tetrahedra” to define shallow cuttings and proved the existence

of a 1
r -shallow-cutting of O(r) tetrahedra. Then, Chan [15] observed that the tetrahedra can

be turned into disjoint downward semi-unbounded vertical triangular prisms, resulting in the
above-defined shallow cuttings. Since each prism in a 1

r -shallow-cutting stores O(nr) planes, a
1
r -shallow-cutting requires O(r) ·O(nr) = O(n) space, so that the O(logn) 1

r -shallow-cuttings,
i.e., r = 2, 4, 8, . . . , n

logn , directly compose a data structure for the k lowest plane problem
with O(n logn) space and O(logn + k) query time. The further literature about shallow
cuttings is sketched in Appendix A.

Matoušek’s 1
r -shallow-cutting construction picks r planes randomly, builds the canonical

triangulation for the arrangement of the r sample planes (Section 2.1), selects all tetrahedra
in the triangulation, called relevant, that intersect the (≤ n

r)-level of the n input planes,
and if a relevant tetrahedron intersects more than n

r planes, refines this “heavy” one into
smaller “light” ones.

Generalization. Agarwal et al. [4] generalized Matoušek’s construction to general distance
functions by replacing the canonical triangulation with the vertical decomposition of surfaces
(Section 3.1), and built a 1

r -shallow-cutting of O(r) “pseudo-prisms.” Pseudo-prisms, defined
in Section 3.1, can be temporarily viewed as axis-parallel cuboids. Their pseudo-prisms,
however, vertically overlap, i.e., a vertical line would intersect more than one pseudo-prism,
and there is no known efficient method to locate the topmost pseudo-prism intersected by
a query vertical line. Therefore, their shallow cuttings are not suitable for the k nearest
neighbors problem.

Recently, Kaplan et al. [33] instead adopted (p, ε)-approximations [32] to design a 1
r -

shallow-cutting of O(r log2 n) semi-unbounded pseudo-prisms that do not vertically overlap,

4 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

yielding a data structure for the k nearest neighbors problem with O(n log3 n) space, O(logn+
k) query time and expected O(n log3 nλs+2(logn)) preprocessing time, where λt(·) is the
maximum length of a Davenport-Schinzel sequence of order t and s is a constant dependent
on the surfaces. Their dynamic version (that allows insertions and deletions of sites)
achieves O(log2 n+ k) query time, expected amortized O(log5 nλs+2(logn)) insertion time
and expected amortized O(log9 nλs+2(logn)) deletion time. They studied only the case
k = 1, and the general case follows from Chan’s idea [16].

To achieve O(n logn) or smaller space, a 1
r -shallow-cutting of size O(r) would be required.

Since the size of Kaplan et al.’s shallow cutting is tight, an attempt would transform the
pseudo-prisms in Agarwal et al.’s shallow cutting [4] into disjoint downward semi-unbounded
ones. A simple transformation picks the top faces of all pseudo-prisms, computes the
upper envelope of those top faces, builds the trapezoidal decomposition [27, 38] for the
upper envelope, and extends each trapezoid to a downward semi-unbounded pseudo-prism.
However, considering pair-wise vertical overlap among the O(r) top faces, a trivial bound for
the size of the upper envelope is O(r2).

An observation to reduce the size is that the pseudo-prisms before the refinement come
from the vertical decomposition of the r sample surfaces, i.e., they are defined by sample
surfaces. By this observation, the overlap between two top faces can be charged to the higher
pseudo-prism, so that the number of charges for a pseudo-prism might only depend on the
sample surfaces lying fully below the pseudo-prism. Then, if a pseudo-prism lies fully above t
sample surfaces, it could be possible to derive a function of t to bound the contribution from
the pseudo-prism to the size of the upper envelope. Moreover, since a relevant pseudo-prism
intersects the (≤ n

r)-level of the n input surfaces, a relevant pseudo-prism lies fully above
at most n

r surfaces. Therefore, it is worth to study the probability that a pseudo-prism lies
fully above t sample surfaces, but at most above n

r surfaces, i.e., a configuration has many
local conflicts, but relatively few global conflicts.

Other General Results. Agarwal et al. [5, 7] studied the range searching problem with
semialgebraic sets. They considered a set P of n points in Rd, and a collection Γ of ranges
each of which is a subset of Rd and is defined by a constant number of constant-degree
polynomial inequalities. They constructed an O(n)-space data structure in O(n logn) time
that for a query range γ ∈ Γ, reports all the κ points inside γ within O(n1− 1

d + κ) time,
where κ is unknown before the query. Their data structure can be applied to the circular
range query problem by mapping each geometric site to a point site in higher dimensions,
e.g. a line segment in R2 can be mapped to a point in R4.

Bohler et al. [11] generalized the order-k Voronoi diagram [9, 35] to Klein’s abstract
setting [34], which is based on a bisecting curve system for n sites rather than concrete
geometric sites and distance measures. They also proposed randomized divide-and-conquer
and incremental construction algorithms [13, 12]. A combination of their results and Chazelle
et al.’s k nearest neighbors algorithm [21] yields a data structure with O(n log2 n(log logn)2)
space, O(logn+k) query time, and expected O(n log4 n) preprocessing time for the k nearest
neighbors problem.

Agarwal et al. [2] investigated dynamic nearest neighbor queries that allows inserting
and deleting point sites in a static simple polygon of m vertices. They generalized Kaplan
et al.’s shallow cutting [33] to the geodesic distance functions in a simple polygon. The key
techniques are an implicit presentation for their shallow cutting and an efficient algorithm for
the implicit presentation. Their dynamic data structure requires O(n log3 n logm+m) space
and allows O(log2 n log2 m) query time, amortized expected O(log5 n logm+ log4 n log3 m)
insertion time and amortized expected O(log7 n logm+ log6 n log3 m) deletion time.

Chih-Hung Liu 5

1.1 Our Contributions
Random Sampling. We propose a new random sampling technique (Theorem 5) for the
configuration space (Section 2.1). At a high level, our technique says if the local conflict size
is large, the global conflict size is probably not small, while most existing ones say if the
global conflict size is large, the local conflict size is probably not zero. More precisely, for a set
S of n objects and an r-element random subset R of S, we prove that if a configuration in a
geometric structure defined by R conflicts with t objects in R, the probability that it conflicts
with at most n

r objects in S decreases factorially in t. By contrast, many state-of-the-art
techniques [6, 23, 25, 28] show that if a configuration conflicts with at least tnr objects in S,
the probability that it conflicts with no object in R decreases exponentially in t.

This conceptual contrast provides a new way to develop and analyze geometric algorithms,
so we believe our random sampling technique is of independent interest. Roughly speaking,
to bound the number of local configurations satisfying certain properties, by our technique,
one could directly make use of local configurations. For example, our technique enables a
direct analysis for the expected number of relevant tetrahedra. Since a relevant tetrahedron
intersects the (≤ n

r)-level of the n planes, it lies fully above at most n
r planes. Our technique

implies that if a tetrahedron lies fully above t sample planes, the probability that it lies fully
above at most n

r planes is O(1
t!). Since the canonical triangulation of the r sample planes

has O
(
r · (t+ 1) 3

2
)
tetrahedra lying fully above t sample planes [43], the expected number of

relevant tetrahedra is O
(∑

t≥0(r · (t+ 1) 3
2) · 1

t!
)

= O(r).
Clarkson [24] already derived a factorial bound similar to ours, but his analysis involves

all possible configurations instead of only those in a geometric structure, so that a direct
application could not lead to a linear-size shallow cutting; see Remark 6.

k Nearest Neighbors. We design a 1
r -shallow-cutting for the k nearest neighbors problem

under general distance functions, and prove its expected size to be O(r), indicating that
for general distance functions, it could still be possible to achieve the same complexities
as point sites in the Euclidean metric. While our design for a 1

r -shallow-cutting is quite
straightforward, the key to attain the linear size lies in the analysis. The high-level idea
is first to prove that for a relevant pseudo-prism in the vertical decomposition of r sample
surfaces, if it lies fully above t sample surfaces, it contributes O(1 + t4) to the expected size
of our 1

r -shallow cutting, and then to adopt our new random sampling technique to show
that the expected number of such relevant pseudo-prisms is O(rt!), leading to a bound of∑
t≥0 O(1+t4

t! r) = O(r).
Then, we adopt Afshani and Chan’s ideas [1] to compose our shallow cuttings and

Agarwal et al.’s data structure [7] into a static data structure for the k nearest neighbors
problem under general distance functions with the nearly optimal O(n log logn) space and the
optimal O(logn+ k) query time, improving the combination of Bohler et al.’s and Chazelle
et al.’s methods [12, 21] by a

(
(log2 n) log logn

)
-factor in space. The preprocessing time is

O(n log3 nλs+2(logn)) for which we modify Kaplan et al.’s construction algorithm [33] to
compute our shallow cuttings; for the constant s, see Section 3.1. Our data structure works
for point sites in any constant-size algebraic convex distance metric and additively weighted
Euclidean distances, and for disjoint line segments, disks, and constant-size convex polygons
in the Lp norms or under the Hausdorff metric.

Replacing the shallow cuttings in Kaplan et al.’s dynamic data structure [33] with ours
attains O(n logn) space, O(log2 n+ k) query time, expected amortized O

(
log5 nλs+2(logn)

)
insertion time, and expected amortized O

(
log7 nλs+2(logn)

)
deletion time, improving their

space from O(n log3 n) to O(n logn) and reducing a (log2 n)-factor from their deletion time.

6 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

Problem Old Bound [33] New Bound (ours)

Dynamic bichromatic closest pair
in general planar metric

n log3 n space, n logn space,
log10 nλs+2(logn) insertion, log8 nλs+2(logn) insertion,
log11 nλs+2(logn) deletion log9 nλs+2(logn) deletion

Minimum Euclidean planar
bichromatic matching n2 log11 nλs+2(logn) n2 log9 nλs+2(logn)

Dynamic minimum spanning tree
in general planar metric

n log5 n space, n log3 n space,
log13 nλs+2(logn) update log11 nλs+2(logn) update

Dynamic intersection of unit balls
in R3

n log3 n space, n logn space,
log5 nλs+2(logn) insertion, log5 nλs+2(logn) insertion,
log9 nλs+2(logn) deletion, log7 nλs+2(logn) deletion,
queries in log2 n and log5 n queries in log2 n and log5 n

Dynamic smallest stabbing disks

n log3 n space, n logn space,
log5 nλs+2(logn) insertion, log5 nλs+2(logn) insertion,
log9 nλs+2(logn) deletion, log7 nλs+2(logn) deletion,
queries in log5 n queries in log5 n

Table 1 Comparison on direct applications.

The new dynamic data structure consequently improves many applications mentioned by
Kaplan et al. as shown in Table 1 and Table 2. For a detailed explanation, see Appendix B.

This paper is organized as follows. Section 2 introduces the configuration space and
derives the random sampling technique. Section 3 formulates distance functions, designs the
1
r -shallow-cutting, and proves its size to be O(r). Section 4 composes the data structure for
the k nearest neighbors problem. Section 5 presents the construction algorithm for shallow
cuttings. Section 6 makes concluding remarks. Throughout the paper, if not explicitly stated,
the base of the logarithm is 2.

Problem Old Bound [33] New Bound (ours)

Shortest path tree in a unit disk
graph n log11 nλs+2(logn) n log9 nλs+2(logn)

Dynamic connectivity in disk
intersection graphs

Ψ2 log9 nλs+2(logn) update, Ψ2 log7 nλs+2(logn) update
logn/ log logn query logn/ log logn query

BFS tree in a disk intersection
graph n log9 nλs+2(logn) n log7 nλs+2(logn)

(1 + ρ)-spanner for a disk
intersection graph (n/ρ2) log9 nλs+2(logn) (n/ρ2) log7 nλs+2(logn)

Table 2 Comparison on problems with respect to disk intersection graph.

Chih-Hung Liu 7

2 Random Sampling

We first introduce the configuration space and discuss several classical random sampling
techniques. Then, we propose a new random sampling technique that utilizes relatively
many local conflicts to prevent relatively few global conflicts, in contradiction to most state-
of-the-art works that adopt relatively few local conflicts to prevent relatively many global
conflicts. Finally, since our new technique requires some conditions, we further prove that
those conditions are sufficient at high probability. Our random sampling technique is very
general, and for further applications, we describe it in an abstract form.

2.1 Configuration Space
Let S be a set of n objects, and for a subset S′ ⊆ S, let C(S′) be the set of “configurations”
in a geometric structure defined by S′. For example, objects are planes in three dimensions,
and a configuration in C(S′) is a tetrahedron in the so-called canonical triangulation [3, 38]
for the arrangement of the planes in S′, where the arrangement of planes partitions R3

into cells that intersect no plane and the canonical triangulation further partitions each
cell into tetrahedra sharing the same bottom vertex. Let T (S′) be the set of all possible
configurations defined by objects in S′, i.e., T (S′) =

⋃
S′′⊆S′ C(S′′), and let T be T (S). In

the above example, |C(S′)| = Θ(|S′|3) [3, 38], while |T (S′)| = O(|S′|12) (since a tetrahedron
has 4 vertices and a vertex is defined by 3 planes).

For each configuration 4 ∈ T , we associate 4 with two subsets D(4),K(4) ⊆ S.
D(4), called the defining set, defines 4 in a suitable geometric sense. For instance, 4 is
a tetrahedron, and D(4) is the set of planes that define the vertices of 4. Let d(4) be
|D(4)|, and assume that for every 4 ∈ T , d(4) ≤ d for a small constant d.

K(4), called the conflict set, comprises objects being said to conflict with 4; let w(4) =
|K(4)|. The meaning of K(4) depends on the subject. If 4 is a tetrahedron, for computing
the arrangement of planes ([38, Chapter 6]), K(4) is the set of planes intersecting 4, while
in our analysis for the expected number of relevant tetrahedra (Section 1.1), K(4) is the set
of planes lying fully below 4. In the latter example, D(4) may not be disjoint from K(4).

Furthermore, let Cj(S′) be the set of configurations 4 ∈ C(S′) with |K(4) ∩ S′| = j

(i.e., the local conflict size is j), let Cm(S′) be the set of configurations 4 ∈ C(S′) with
|K(4)| = m (i.e., the global conflict size is m), and let Cjm(S′) be Cj(S′) ∩ Cm(S′).

Most works focus on C0(S′). Chazelle and Friedman [23] studied an if-and-only-if
condition:

(∗) 4 ∈ C0(S′) if and only if D(4) ⊆ S′ and K(4) ∩ S′ = ∅.

Agarwal et al. [6] further relaxed the above condition by two weaker conditions:

(i) For any 4 ∈ C0(S′), D(4) ⊆ S′ and K(4) ∩ S′ = ∅.
(ii) If 4 ∈ C0(S′) and S′′ ⊆ S′ with D(4) ⊆ S′′, then 4 ∈ C0(S′′).

Condition (∗) is both necessary and sufficient, while Condition (i) is only necessary and
Condition (ii) is rather monotone. For example, if a conflict relation is defined as that a plane
intersects a tetrahedron, by Condition (∗), C0(S′) would be all tetrahedra in the canonical
triangulation defined by S′, while by Conditions (i)–(ii), C0(S′) can be merely the tetrahedra
in the canonical triangulation defined by S′ that intersect the (≤ n

r)-level of the n planes in
S, i.e., C0(S′) can be the relevant tetrahedra in the canonical triangulation defined by S′.
(The (≤ n

r)-level and relevant tetrahedra are already defined in Section 1.)

8 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

Table 3 Symbol Table.

C(R) Configurations defined by R
Cj(R) Configurations in C(R) in conflict with j objects in R
Cm(R) Configurations in C(R) in conflict with m objects in S
Cj

m(R) Configurations in C(R) in conflict with j objects in R and m objects in S
T All possible configurations defined by objects in S, i.e., T =

⋃
S′⊆S

C(S)
Tm Configurations in T in conflict with at most m objects in S
D(4) objects that define 4
d(4) size of D(4)
K(4) objects that conflict with 4
w(4) size of K(4)
x(4) |K(4) ∩D(4)|

I Remark 1. The property “K(4) ∩ S′ = ∅” in Condition (∗) and Condition (i) is actually
redundant in our notation. In contrast, Agarwal et al.’s notation [6] requires this property
since they do not consider nonzero local conflicts. We keep this redundant property for easier
comparison.

Agarwal et al. generalized Chazelle and Friedman’s concept to bound the expected number
of configurations that conflict with at least tnr objects, but no object in an r-element sample:

I Lemma 2. ([6, Lemma 2.2]) For an r-element random subset R of S, if C0(R) satisfies
Conditions (i) and (ii), then

E[|C0
≥tn

r
(R)|] = O(2−t) · E[|C0(R′)|],

where t is a parameter with 1 ≤ t ≤ r
d and R′ is a random subset of R of size r′ = b rt c.

In addition to the expected results, several high probability results exist if T (S) satisfies
a property called bounded valence: for all subsets S′ ⊆ S, |T (S′)| = O(|S′|d), and for all
configurations 4 ∈ T (S′), D(4) ⊆ S′.

I Lemma 3. ([38, Theorem 5.1.2]) If T (S) satisfies the bounded valence, for an r-element
random subset R of S and a constant c > d, with probability 1−O(r−(c−d)), every configuration
in C0(R) conflicts with at most cnr log r objects in S.

The following corollary can be derived in a similar way as Lemma 3.

I Corollary 4. If T (S) satisfies the bounded valence, for a random subset R of S of size c·t log t
and a sufficiently large constant c, with probability greater than 1/2, every configuration in
C0(R) conflicts with at most n

t objects in S.

Table 3 illustrates symbols that we will use, and in the proofs of the following two
subsections, ab denotes

∏b−1
i=0 (a− i).

2.2 Many Local Conflicts Prevent Few Global Conflicts
Applications, e.g. the analysis for the expected number of relevant tetrahedra in Section 1.1
and our shallow cuttings in Section 3, would need to utilize relatively many local conflicts
to prevent relatively few global conflicts. Such utilization, however, is not allowed by
Conditions (i) and (ii) since they do not consider nonzero local conflicts.

To include nonzero local conflicts, we generalize Conditions (i) and (ii) with t and t′ as
follows:

Chih-Hung Liu 9

(I) For any 4 ∈ Ct(S′), D(4) ⊆ S′ and |K(4) ∩ S′| = t.
(II) If 4 ∈ Ct(S′) and S′′ ⊆ S′ with D(4) ⊆ S′′ and |K(4) ∩ S′′| = t′, then 4 ⊆ Ct′(S′′).

We establish Theorem 5, which roughly states that if the local conflict size of a random
configuration is t, the probability that its global conflict size is linear in n

r decreases factorially
in t. Moreover, it is notable that Lemma 2 has a lower bound on the global conflict size,
while Theorem 5 has an upper bound. As a result, although our proof looks similar to that
of Lemma 2 ([6, Lemma 2.2]), the derivation for bounding the probability is different, and
our proof chooses a sample size between r − t+ d and r − t instead of b rt c.

I Theorem 5. Let R be an r-element random subset of S with 2d ≤ r ≤ n
2 , and let t be an

integer with d ≤ t ≤ r − d. If C(R) satisfies Conditions (I) and (II), then

E[|Ct≤cn
r

(R)|] ≤
d∑
l=0

e2c · ct−l

(t− l)! · E[|Cl(Rl)|],

where Rl is an (r − t+ l)-element random subset of R. (Rl is also a random subset of S.)

Proof. To simplify descriptions, let m be cnr and let Tm be the set of configurations in T
that conflict with at most m objects in S. Consider a configuration 4 ∈ Tm, and let x(4)
be |D(4) ∩K(4)|. It is clear that 0 ≤ x(4) ≤ d. We attempt to prove

Pr[4 ∈ Ct(R)] ≤ e2c · ct−x(4)

(t− x(4))! · Pr[4 ∈ Cx(4)(Rx(4))], (1)

where Rx(4) is an (r − t+ x(4))-element random subset of R. Then, we have

E[Ct≤m(R)] =
∑
4′∈Tm

Pr[4′ ∈ Ct(R)]
(1)
≤

∑
4′∈Tm

e2c · ct−x(4′)

(t− x(4′))! Pr[4′ ∈ Cx(4′)(Rx(4′))]

≤
∑
4′∈Tm

d∑
l=0

e2c · ct−l

(t− l)! Pr[4′ ∈ Cl(Rl)] ≤
∑
4′′∈T

d∑
l=0

e2c · ct−l

(t− l)! Pr[4′′ ∈ Cl(Rl)]

=
d∑
l=0

e2c · ct−l

(t− l)!
∑
4′′∈T

Pr[4′′ ∈ Cl(Rl)] =
d∑
l=0

e2c · ct−l

(t− l)! · E[|Cl(Rl)|].

Let 4 ∈ Tm be a fixed configuration. Also let us assume that t ≤ w(4) holds; otherwise,
4 must not belong to Ct(R), making the claim (1) obvious.

Let A4 be the event that D(4) ⊆ R and |K(4) ∩ R| = t, and let A′4 be the event
that D(4) ⊆ Rx(4) and K(4) ∩ Rx(4) = K(4) ∩D(4), the latter of which implies that
|K(4) ∩Rx(4)| = x(4).

According to Condition (I), we have

Pr[4 ∈ Ct(R)] = Pr[A4] · Pr[4 ∈ Ct(R) | A4],

and

Pr[4 ∈ Cx(4)(Rx(4))] = Pr[A′4] · Pr[4 ∈ Cx(4)(Rx(4)) | A′4].

So, we have

Pr[4 ∈ Ct(R)]
Pr[4 ∈ Cx(4)(Rx(4))]

= Pr[A4]
Pr[A′4] ·

Pr[4 ∈ Ct(R) | A4]
Pr[4 ∈ Cx(4)(Rx(4)) | A′4]

.

10 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

Moreover, according to Condition (II), we have

Pr[4 ∈ Ct(R) | A4] ≤ Pr[4 ∈ Cx(4)(Rx(4)) | A′4],

implying that

Pr[4 ∈ Ct(R)]
Pr[4 ∈ Cx(4)(Rx(4))]

≤ Pr[A4]
Pr[A′4] . (2)

(The implication from Condition (II) can be explained through a random experiment similar
to the random experiment in the proof of [6, Lemma 2.2]; see the end of the current proof.)

Let ` be x(4), w be w(4) and r′ be |Rx(4)|, i.e., r′ = r− (t−x(4)) = r− (t− `). Recall
that w ≤ m = cnr since 4 ∈ Tm.

Pr[A4]
Pr[A′4] =

(d(4)
d(4))(w−`

t−`)(n−d(4)−(w−`)
r−d(4)−(t−`))

(n
r)

(d(4)
d(4))(n−d(4)−(w−`)

r′−d(4))
(n

r′)

=

(w−`
t−`)(n−d(4)−(w−`)

r−d(4)−(t−`))
(n

r)
(n−d(4)−(w−`)

r−d(4)−(t−`))
(n

r−(t−`))

=
(

n
r−(t−`)

)(
w−`
t−`
)(

n
r

)

= n!
(r − (t− `))!(n− r + (t− `))! ·

r!(n− r)!
n! · (w − `)!

(t− `)!(w − t)!

= rt−`

(n− r + (t− `))t−`
· (w − `)t−`

(t− `)! ≤ rt−` · (w − `)t−`

(n− r)t−` · 1
(t− `)!︸ ︷︷ ︸

r
t−`≤rt−`, (w−`)t−`≤(w−`)t−`, (n−r+(t−`))t−`≥(n−r)t−`

≤
rt−` · (c · nr)t−`

(n− r)t−` · 1
(t− `)! = ct−`

(t− `)! · (
n

n− r
)t−` = ct−`

(t− `)! · (1 + r

n− r
)t−`

≤ ct−`

(t− `)! · e
r(t−`)

n−r ≤ ct−`

(t− `)! · e
cn

n−r ≤ e2c · ct−`

(t− `)! ,

which derives the claim (1) from the claim (2). The second to last inequality comes from the
fact that r(t− `) ≤ rw ≤ r · cnr , and the last inequality comes from the fact that n

n−r ≤ 2
(since r ≤ n

2).
Since R needs to contain all the objects in D(4) and exactly t objects in K(4), we let r

be at least t+ d to allow the case that |D(4)| = d and D(4) ∩K(4) = ∅; we also let t be
at least d to allow the case that D(4) ⊆ K(4). These two settings lead to the condition
that d ≤ t ≤ r − d.

A random experiment to explain the implication from Condition (II) is stated as follow:
first select a set Rx(4) by including all the d(4) objects of D(4) into Rx(4), and adding
r − d(4) − t + x(4) randomly chosen objects of S \

(
D(4) ∪ K(4)

)
. By definition of

the conditional probability, the probability that 4 ∈ Cx(4)(Rx(4)) is exactly Pr[4 ∈
Cx(4)(Rx(4)) | A′4]. Then take this Rx(4) and add t − x(4) randomly chosen objects
of K(4) \ D(4) to Rx(4), obtaining a set R. It is clear that the distribution of R is
the same as if we took the d(4) objects of D(4) , added t − x(4) randomly chosen
objects of K(4) \ D(4), and added r − d(4) − t + x(4) randomly chosen objects of
S \

(
D(4) ∪ K(4)

)
. Hence, the probability that 4 ∈ Ct(R) is Pr[4 ∈ Ct(R) | A4].

Since R was created by adding extra objects to Rx(4), i.e., Rx(4) ⊆ R, Condition (II)
implies that whenever 4 appears in Ct(R), it must appear in Cx(4)(Rx(4)), leading to that
Pr[4 ∈ Ct(R) | A4] ≤ Pr[4 ∈ Cx(4)(Rx(4)) | A′4]. J

Chih-Hung Liu 11

I Remark 6. Clarkson also derived a factorial bound that E[|T t≤n
r

(R)|] ≤ O
(
(et)

t
)
· |T (R)|,

where T t≤n
r
(R) is the set of configuration in T (R) that conflict with t objects in R and at

most n
r objects in S ([24, Corollary 4.3]). However, since there is a quantity difference

between |C≤d(R)| and |T (R)|, his factorial bound could not be applied to derive linear-
size shallow cuttings. For example, regarding the canonical triangulation for planes in R3,
|C≤d(R)| = O(r), but |T (R)| = O(r12). A detailed comparison is in Appendix C.
I Remark 7. One could assume D(4) ∩K(4) to be empty by replacing K(4) with K(4) \
D(4), but the main issue is that when |K(4) ∩ S′| > |D(4) ∩ K(4)|, even after the
replacement, K(4) ∩ S′ is still not empty, distinguishing the technical details of bounding
Pr[A4]
Pr[A′4] in the proof of Theorem 5 from previous works [6, 23, 28, 36].

2.3 Logarithmic Local Conflicts are Enough
Theorem 5 requires t to be at most r − d, but t could be r in the worst case. Therefore, we
will prove that at high probability, t is O(log r).

First of all, we analyze the probability that a configuration conflicts with few elements in
S, but relatively many elements in R.

I Lemma 8. Let R be an r-element random subset of S, let 4 be a configuration with
D(4) ⊆ R, let w be |K(4)|, and let t be |K(4) ∩ R|. If max{c(d + m) log r + d +
max{c, d}, 221/c· e

(d+m) } ≤ r ≤ n
(d+m)·logn and w ≤ c · nr , then the probability that t ≥

c(d+m) log r + d is at most r−(d+m).

Proof. Let d′ be |D(4)|, and let ` be |D(4) ∩K(4)|. It is clear that ` ≤ d′ ≤ d. Since R
must contain all the d′ elements of D(4) and exactly t− ` elements of K(4) \D(4), the
probability is(

d′

d′

)(
w−`
t−`
)(
n−(w−`)−d′
r−d′−(t−`)

)(
n
r

) = (w − `)!
(t− `)!(w − t)!

(n− (w − `)− d′)!
(r − d′ − (t− `))!(n− w − r + t)!

r!(n− r)!
n!

= (w − `)t−`

(t− `)!
(n− r)w−t · rd

′+(t−`)

n(w−`)+d′ = 1
(t− `)! ·

(w − `)t−`rt−`

nt−`
· (n− r)w−t(r − (t− `))d′

(n− (t− `))w+d′−t

= 1
(t− `)! ·

(w − `)t−`rt−`

nt−`
· (r − (t− `))d′

(n− (t− `))d′ ·
(n− r)w−t

(n− (t− `)− d′)w−t︸ ︷︷ ︸
r−(t−`)≤n−(t−`) and n−r≤n−(t−`)−d′ (since r≥(t−`)+d′)

≤ 1
(t− `)! ·

(w − `)t−`rt−`

nt−`
≤ 1

(t− `)! ·
(cnr − `)

t−`rt−`

nt−`
= 1

(t− `)! ·
t−`−1∏
i=0

(cnr − i− `)(r − i)
n− i

.

Since c(n− i)− (cnr − i− `)(r− i) = (i+ `)(r− i) + ci(nr − 1) > 0, we have (cn
r−l−i)(r−i)

n−i ≤ c,
implying that the probability is at most

ct−`

(t− `)! ≤ (c · e
t− `

)t−` ≤ (c · e
c · (d+m) log r)c·(d+m) log r ≤ (1

2)(d+m) log r = r−(d+m).

The first inequality comes from Stirling’s approximation, the second inequality comes from the
fact that (1

(t−`))(t−`) is inversely proportional to (t−`) and that t−` ≥ c·(d+m) log r+d−` ≥

c · (d + m) log r, and the third inequality comes from the fact that r ≥ 221/c· e
(d+m) , i.e.,

(e
(d+m) log r)c ≤ 1/2. J

12 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

Then, we assume that T (S) satisfies the bounded valence, i.e., for any subset S′ ⊆ S,
|T (S′)| = O(|S′|d) and for any configuration 4 ∈ T (S′), D(4) ⊆ S′, and prove the following
theorem.

I Theorem 9. Let R be an r-element random subset of S. If T (S) satisfies the bounded
valence and max{c(d + m) log r + d + max{c, d}, 221/c· e

(d+m) } ≤ r ≤ n
(d+m)·logn , then the

probability that there exists a configuration in C(R) in conflict with at most cnr objects in S,
but at least c(d+m) log r + d objects in R is O(r−m).

Proof. Since T (S) satisfies the bounded valence, |C(R)| ≤ |T (R)| = O(rd). By Lemma 8
and the union bound, the probability is O(rd) · r−(d+m) = O(r−m). J

I Remark 10. Corollary 4.3 by Clarkson [24] can also lead to the same result, but he adopted
the random sampling with replacement. Since r is Ω(n

logn) in our situation, his random
sampling gets a multi-set with high probability, and thus his result could not be directly
applied. (In his applications, either r is far from n or a multi-set is feasible.)

3 Shallow Cutting

We first formulate the distance functions as surfaces and introduce the vertical decomposition
of surfaces. Then, we design a 1

r -shallow-cutting for n surfaces using vertical decompositions.
Finally, we adopt our random sampling technique to prove the expected size of our 1

r -shallow-
cutting to be O(r).

3.1 Distance Functions and Vertical Decomposition
Let S be a set of n pairwise disjoint sites that are simply-shaped compact convex regions of
constant description complexity in the plane (e.g., line segments, disks, squares) and let τ be
a continuous distance function between two points in the plane. Assume that τ and the sites
in S are defined by a constant number of polynomial equations and inequalities of constant
maximum degree. For each site q ∈ S, define its distance function fq with respect to any
point (x, y) ∈ R2 as fq(x, y) = min{τ

(
(x, y), p

)
| p ∈ q}, and let F denote the set of distance

functions {fq | q ∈ S}.
The graph of each function in F is a semialgebraic set, defined by a constant number

of polynomial equations and inequalities of constant maximum degree. The lower envelope
EF of F is the graph of the pointwise minimum of the functions in F ; the upper envelope is
defined symmetrically. We assume that for any subset R ⊆ F , the lower envelope ER has
O(|R|) faces, edges, and vertices. This assumption holds for many distance functions, e.g.,
for point sites in any constant-size algebraic convex distance metric and additively weighted
Euclidean distances, and for disjoint line segments, disks, and constant-size convex polygons
in the Lp norms or under the Hausdorff metric.

For conceptual simplicity, each function in F is represented as an xy-monotone surface in
R3. A general position assumption is made on F : no more than three surfaces intersect at
a common point, no more than two surfaces intersect in a one-dimensional curve, no pair
of surfaces are tangent to each other, and if two surfaces intersect, their intersection are
one-dimensional curves. Moreover, s is defined as the maximum number of co-vertical pairs
of points q, q′ with q ∈ f ∩ g, q′ ∈ f ′ ∩ g′ over all quadruples f, g, f ′, g′ of distinct surfaces in
F , and s is assumed to be a constant. For a point p ∈ R3, the level of p with respect to F is
the number of surfaces in F lying below p, and the (≤ l)-level of F is the set of points in R3

whose level with respect to F is at most l.

Chih-Hung Liu 13

For a subset R ⊆ F , let A(R) be the arrangement formed by the surfaces in R. For each
cell C in A(R), its boundary consists of a ceiling and a floor. The ceiling is a part of the
lower envelope of surfaces in R that lie above C, and the floor is a part of the upper envelope
of surfaces in R that lie below C. The topmost (resp. bottommost) cell in A(R) does not
have a ceiling (resp. a floor). If the level of C with respect to R is t, then the vertical line
through a point in C intersects the boundary of C at its (t+ 1)st and tth lowest surfaces in
R.

The vertical decomposition VD(R) of R, proposed by Chazelle et al. [22], decomposes
each cell C of A(R) into pseudo-prisms or shortly prisms, a notion to be defined below;
we also refer to [42, Section 8.3]. First, we project the ceiling and the floor of C, namely
their edges and vertices, onto the xy-plane, and overlap the two projections. Then, we
build the so-called vertical trapezoidal decomposition [27, 38] for the overlap between the two
projections by erecting a y-vertical segment from each vertex, from each intersection point
between edges, and from each locally x-extreme point on the edges, which yields a collection
of pseudo-trapezoids. Finally, we extend each pseudo-trapezoid 4 to a trapezoidal prism
4× R, and form a prism ♦ = (4× R) ∩ C.

Each prism has six faces, top, bottom, left, right, front, and back. Its top (resp. bottom)
face is a part of a surface in F . Its left (resp. right) face is a part of a plane perpendicular to
the x-axis. Its front (resp. back) face is a part of a vertical wall through a intersection curve
between two surfaces in F . Its top and bottom faces are kind of pseudo-trapezoids on their
respective surfaces, so a prism is also the collection of points lying vertically between the
two pseudo-trapezoids.

VD(R) contains O(|R|4) prisms and can be computed in O(|R|5 log |R|) time [22]. The
prisms in the topmost and bottommost cells of A(R) are semi-unbounded. For our algorithmic
aspect, we imagine a surface f∞ : z = ∞, so that each prism in the topmost cell has a
top face lying on f∞. For each prism ♦ ∈ VD(R), let F♦ denote the set of surfaces in F
intersecting ♦.

A prism is defined by at most 10 surfaces under the general position assumption. First,
its top (resp. bottom) face belongs to a surface, and we call this surface top (resp. bottom).
Then, we look at the pseudo-trapezoid4 that is the xy-projection of ♦. A pseudo-trapezoid is
defined by bisecting curves in the plane, each of which is the xy-projections of an intersection
curve between two surfaces. Since a bisecting curve defining 4 must be associated with
the top surface or the bottom surface of ♦, it is sufficient to bound the number of bisecting
curves to define 4, and each of those bisecting curves counts one additional surface. The
upper (resp. lower) edge of 4 belongs to one bisecting curve. The left (resp. right) edge of
4 belongs to a vertical line passing through the left (resp. right) endpoint of the upper edge,
the left (resp. right) endpoint of the lower edge, or an x-extreme point of a bisecting curve.
Each of the first two cases results from one additional bisecting curve, namely each counts
for one additional surface. Although the last case may occur more than once, the same as
Chazelle’s algorithm [20], we can introduce zero-width trapezoids to solve such degenerate
situation.

3.2 Design of Shallow Cutting

A 1
r -shallow-cutting for F is a set of disjoint prisms satisfying the following three conditions:

(a) They cover the (≤ n
r)-level of F .

(b) Each of them is intersected by O(nr) surfaces in F .

14 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

(c) They are downward semi-unbounded, i.e., no bottom face, so they do not vertically
overlap .

To design such a 1
r -shallow-cutting, we take an r-element random subset R of F and

adopt R to generate prisms satisfying the three conditions.
For condition (a), it is natural to consider the prisms in VD(R) that intersect the (≤ n

r)-
level of F , but it is hard to compute those prisms exactly. Thus, we instead select a super
set AD(R) that consists of prisms in VD(R) lying fully above at most n

r surfaces in F .
For condition (b), if a prism ♦ ∈ AD(R) intersects more than n

r surfaces in F , we will
refine it into smaller prisms, and select the ones lying fully above at most n

r surfaces in F .
This refinement is similar to a classical process proposed by Chazelle and Friedman [23]. Let
t be d|F♦|/(nr)e, where F♦ is the set of surfaces in F intersecting ♦. If t > 1, we refine ♦ as
follows:

1. Take a random subset F ′ of F♦ of size O(t log t), and construct VD(F ′) ∩ ♦ by clipping
each surface in F ′ with ♦, building the vertical decomposition on the clipped surfaces
plus the top and bottom faces of ♦, and including the prisms lying inside ♦.

2. If one prism in VD(F ′) ∩ ♦ intersects more than |F♦|
t surfaces in F♦, then repeat Step 1.

3. For each prism ♦′ ∈ VD(F ′)∩♦, if ♦′ lies fully above more than n
r surfaces in F , discard

♦′.

By defining a conflict between a surface and a prism as the surface intersects the prism,
Corollary 4 guarantees the existence of F ′ that passes Step 2. As stated in Section 3.1,
VD(F ′) ∩ ♦ has O(t4 log4 t) prisms. For each prism in VD(F ′) ∩ ♦, since t = d|F♦|/(nr)e, it
intersects at most |F♦|

t ≤
n
r surfaces in F , and if it lies fully above more than n

r surfaces in
F , it will be discarded, implying that each resulting prism intersects or lies fully above at
most 2nr surfaces in F . Let RD(R) be the set of resulting prisms (including the unrefined
prisms in AD(R)).

For condition (c), we generate a set SC(R) of downward semi-unbounded prisms from
RD(R) in two steps. First, we build the upper envelope of the top faces of all prisms in
RD(R). Then, we decompose the region in R3 below the upper envelope into downward
semi-unbounded prisms similarly to the decomposition of the bottommost cell in Section 3.1,
i.e., project the upper envelope onto th xy-plane, build the vertical trapezoidal decomposition
for the projection, extend each trapezoid to a trapezoidal prism, and take the part of each
prism below the upper envelope. Since each prism in RD(R) intersects or lies fully above
at most 2nr surfaces in F , its top face intersects or lies fully above at most 2nr surfaces in
F , and since the top face of each prism in SC(R) is a part of the top face of one prism in
RD(R), each prism in SC(R) intersects at most 2nr surfaces in F .
I Remark 11. Actually, RD(R) is identical to Agarwal et al.’s shallow cutting ([4, Section 3]),
which satisfies the first two conditions, but not the third one. Their analysis for the expected
size of RD(R) ([4, Theorem 3.1]) extends Matoušek’s analysis [36] together with additional
machinery for general distance functions, while our analysis (Theorem 12) makes use of
our new random sampling technique (Theorem 5). Especially, our description of generating
RD(R) directly supports our analysis for the expected size of SC(R) (Theorem 14).

3.3 Structure Complexity
We will apply the random sampling techniques in Section 2 to prove that the expected size
of our shallow cutting in Section 3.2, i.e., E[|SC(R)|], is O(r), which confirms the existence
of linear-size shallow cuttings for the k nearest neighbors problem under general distance

Chih-Hung Liu 15

functions. The high-level idea is that if a relevant prism (i.e., a prism in AD(R)) lies fully
above ` surfaces in R (i.e., ` sample surfaces), it contributes O(1 + `4) to the value of
E[|SC(R)|], and the expected number of such relevant prisms is O(r`!), implying a bound of∑
`≥0 O(1+`4

`! r) = O(r). Recall that the maximum number of surfaces to define a prism is 10
(Section 3.1), and this number is represented by d in the following proofs.

As a warm-up, we first prove that both the expected sizes of AD(R) and RD(R) are O(r),
which we will apply to analyze the construction time in Section 5.4.

I Theorem 12. If 117 ≤ r ≤ n
14 logn , then E[|AD(R)|] = O(r) and E[RD(R)] = O(r).

Proof. To analyze E[|AD(R)|], following the notations in Section 2, an object is a surface,
a configuration is a prism, and a surface f is said to conflict with a prism ♦ if f lies fully
below ♦. Let C(R) be VD(R), so that C≤n

r
(R) is exactly AD(R), Ct(R) is the set of prisms

in VD(R) lying fully above t surfaces in R, and Ct≤n
r

(R) is the set of prisms in AD(R) lying
above t surfaces in R. Note that d, the maximum number of surfaces to define a prism, is 10.

We first use Theorem 9 to show that it is sufficient to consider the case in which all
prisms in AD(R) have a level with respect to R of at most (d+ 4) log r + d, and then adopt
Theorem 5 to derive E[|AD(R)|].

By setting c = 1 and m = 4, Theorem 9 implies that the probability that there exists
a prism in VD(R) lying fully above at most n

r surfaces in F , but fully above at least
(d+ 4) log r+ d surfaces in R is O(r−4). In other words, the probability that AD(R) contains
a prism whose level with respect to R is at least (d + 4) log r + d is only O(r−4). Since
|AD(R)| ≤ |VD(R)| = O(r4), the exception contributes only O(r−4) · O(r4) = O(1) to
E[|AD(R)|].

Since r ≥ 117 and d = 10, we have (d+ 4) log r+d ≤ r−d and thus have [d, (d+ 4) log r+
d] ⊆ [d, r − d]. Therefore, Theorem 5 implies that for t ∈ [d, (d+ 4) log r + d],

E[|Ct≤n
r

(R)|] ≤
d∑
l=0

e2

(t− l)! · E[|Cl(Rl)|], (3)

where Rl is an (r − t + l)-element random subset of F . By [33, Lemma 5.1], we have
|Ct(R)| = O(r · (t+ 1) · λs+2(t+ 1)) = O(r · (t+ 1)3), and by Inequality (3), we have

E[|AD(R)|] =
d∑
t=0

E[|Ct≤n
r

(R)|]︸ ︷︷ ︸
≤E[|Ct(R)|]=O(r·(t+1)3)=O(r)

+
(d+4) log r+d∑

t=d+1
E[|Ct≤n

r
(R)|]

(3)
≤ O(r) +

(d+4) log r+d∑
t=d+1

d∑
l=0

O
(e2

(t− l)!︸ ︷︷ ︸
≤ e2

(t−d)!

)
· E[|Cl(Rl)|]︸ ︷︷ ︸
O
(
r·(l+1)3

)
=O(r)

= O(r) · d · e2︸ ︷︷ ︸
O(1)

·
(d+4) log r+d∑

t=d+1

1
(t− d)!︸ ︷︷ ︸

O(1)

= O(r)

To analyze E[|RD(R)|], re-define a conflict relation as that a surface intersects a prism,
and let C0(R) be AD(R), so that C0

≥tn
r

(R) is the set of prisms in AD(R) that intersect at
least tnr surfaces in F . According to the generation of RD(R) in Section 3.2, a prism in
C0
≥tn

r
(R)\C0

≥(t+1) n
r

(R) will be refined into O
(
(t+1)4 log4(t+1)

)
= O

(
(t+1)5) ones. Moreover,

16 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

by Lemma 2, for t ≥ 1, E[|C0
≥tn

r
(R)|] = O(2−t) · E[|C0(R′)|] = O(2−t) · E[|AD(R′)|] =

O(2−t · rt) = O(2−t · r), where R′ is a b rt c-element random subset of R, concluding that

E[|RD(R)|] = E[|C0(R)|+
∑
t≥1

E[|C0
≥tn

r
(R) \ C0

≥(t+1) n
r

(R)|] ·O((t+ 1)5)

≤
∑
t≥0

E[|C0
≥tn

r
(R)|] ·O((t+ 1)5) =

∑
t≥0

O((t+ 1)5

2t · r) = O(r).

J

To derive E[|SC(R)|], we first show that the expected number of prisms in AD(R) that
lie fully above ` surfaces in R and intersects at least tnr surfaces in F is O(r

`!2t), i.e., decrease
factorially in ` and exponentially in t. Formally, let AD`(R) be the set of prisms in AD(R)
lying fully above ` surfaces in R, let AD≥tn

r
be the set of prisms in AD(R) intersecting at

least tnr in F , and let AD`
≥tn

r
(R) be AD`(R) ∩AD≥tn

r
(R).

I Lemma 13. If 3508 ≤ r ≤ n
27 logn , 0 ≤ ` ≤ 27 log r + 10 and 0 ≤ t ≤ 27 log r, then

E[|AD`
≥tn

r
(R)|] = O(r

`!2t).

This also implies that E[|AD`(R)|] = O(r`!) and E[|AD≥tn
r

(R)|] = O(r2t).

Proof. Let VD≤10(R) be the set of prisms in VD(R) that lie fully above at most 10 surfaces
in R, and VD≤10

≥tn
r
(R) be the set of prisms in VD≤10(R) intersect at least tnr surfaces in F .

We first adopt Lemma 2 to prove E[|VD≤10
≥tn

r
(R)|] = O(r2t) and then use Theorem 5 to show

E[|AD`
≥tn

r
(R)|] = O(r

`!2t).
By [33, Lemma 5.1], we have |VD≤10(S′)| = O(|S′|) for any subset S′ ⊆ S. If t = 0,

|VD≤10
≥tn

r
(R)| = |VD≤10(R)| = O(r) = O(r2t). Define a conflict between a surface and a

prism as the surface intersects the prism, and let C0(R) be VD≤10(R), so that C0
≥tn

r
(R) =

VD≤10
≥tn

r
(R). For t ≥ 1, Lemma 2 implies that E[|C0

≥tn
r
(R)|] = O(2−t · E[|C0(R′)|]) =

O(2−t · |VD≤10(R′)|) = O(2−t · rt) = O(r2t), where R′ is an d rt e-element random subset of R.
If ` ≤ 10, E[|AD`

≥tn
r
(R)|] ≤ E[|AD≤10

≥tn
r

(R)|] ≤ E[|VD≤10
≥tn

r
(R)|] = O(r2t) = O

(
r
`!2t

)
.

Redefine a conflict between a surface and a prism as the surface lies fully below the prism,
and let C(R) be the set of prisms in VD(R) that intersect at least tnr surfaces in F , i.e.
C(R) = VD≥tn

r
(R), so that C`(R) = VD`

≥tn
r

(R), C≤n
r
(R) = AD≥tn

r
(R) and C`≤n

r
(R) =

AD`
≥tn

r
(R). For ` > 10, Theorem 5 implies E[|C`≤n

r
(R)|] = O

(1
`! ·
∑10
i=0 E[|Ci(Ri)|]

)
, where

Ri is an (r − ` + i)-element random subset of R. Since E[|Ci(Ri)|] = E[|VDi
≥tn

r
(Ri)|] ≤

E[|VD≤10
≥tn

r
(Ri)|] = O(r−`+i2t),

E[|AD`
≥tn

r
(R)|] = E[|C`≤n

r
(R)|] = O

(1
`! ·

10∑
i=0

E[|Ci(Ri)|]
)

= O
(1
`! ·

10∑
i=0

r − `+ i

2t
)

= O(r

`!2t).

The lower bound for the value of r is due to the requirement of Lemma 2. Since t must
be at most |Ri|

d , r needs to satisfies 27 log r ≤ r−(27 log r+10)
10 . The upper bound for the value

of r will be applied in the proof of Theorem 14 to show that with probability at least 1− 1
r17 ,

` ≤ 27 log r + 10 and t ≤ 27 log r. Therefore, the exception contributes only O(1) to both
E[|AD`(R)|] and E[|AD≥tn

r
(R)|], and we can conclude that

E[|AD`(R)|] =
∑
t≥0

O(r

`!2t) = O(r
`!) and E[|AD≥tn

r
(R)|] =

∑
`≥0

O(r

`!2t) = O(r2t).

Chih-Hung Liu 17

J

Finally, we adopt Lemma 13 to bound E[|SC(R)|] as follows.

I Theorem 14. If 3508 ≤ r ≤ n
27 logn , then E[|SC(R)|] = O(r).

Proof. We mainly claim that for a prism in AD(R) lying fully above ` surfaces in R and
intersecting at least tnr , but at most (t+ 1)nr surfaces in F , it contributes O

(
(t+ 1)10(1 + `4)

)
to the value of E[|SC(R)|]. Since the expected number of such prisms is O

(
r
`!2t

)
(Lemma 13),

we can conclude the statement as follows:

E[|SC(R)|] =
∑
`≥0

∑
t≥0

O((t+ 1)10(1 + `4) · r

`!2t) = O

(
r ·
∑
`≥1

`4

`!
∑
t≥1

t10

2t︸ ︷︷ ︸
O(1)

)
= O(r).

The remaining technical details are to prove the claim.
By the construction, |SC(R)| is linear in the size of the upper envelope formed by the

top faces of all prisms in RD(R). We say two prisms in RD(R) vertically overlap if their
projections onto the xy-plane intersect. A vertical overlapping between two prisms contributes
O(1) to the size of the upper envelope since the xy-projections of the top faces of any two
prisms intersect O(s) times at their boundaries and s is a constant (defined in Section 3.1).
Thus, the size of the upper envelope is linear in |RD(R)| plus the total number of vertical
overlappings between prisms in RD(R).

It is sufficient to consider the case that all prisms in VD(R) intersect at most 27nr log r
surfaces in F and all prisms in AD(R) lies fully above at most 27 log r + 10 surfaces in R.
Lemma 3 (with C0(R) = VD(R), a conflict between a surface and a prism being defined as
the surface intersects the prism, d = 10 and c = 27) implies that the former condition fails
with probability O(r−17). Moreover, Theorem 9 (with C(R) = VD(R), a conflict between
a surface and a prism as the surface lies fully below the prisms, i.e., C≤n

r
(R) = AD(R),

c = 1, d = 10 and m = 17) implies that the latter condition also fails with probability
O(r−17). Since AD(R) contains O(r4) prisms (when AD(R) = VD(R)) and each prism
in AD(R) can be refined into O(r4 log4 r) prisms for RD(R) (when intersecting with n

surfaces), the number of vertical overlappings between prisms in RD(R) in the worst case is
O
(
(r4 · r4 log4 r)2) = O(r17), so that the exception contributes only O(r17) ·O(r−17) = O(1)

to the value of E[|SC(R)|].
To count the vertical overlapping between two prisms, we charge the prism lying fully

above the other. A prism ♦1 is said to lie vertically below a prism ♦2 if ♦1 and ♦2 vertically
overlap and ♦1 lies below ♦2. For each prism ♦∗ ∈ RD(R), the prisms in RD(R) lying
vertically below ♦∗ can be categorized into two cases: either (1) generated from the same
prism in AD(R) as ♦∗ is (i.e., they and ♦∗ are refined from the same prism in AD(R)) or (2)
generated from a prism in AD(R) lying vertically below ♦∗.

Consider a prism ♦ ∈ AD(R) that lies fully above ` surfaces in R and intersects at
least tnr , but at most (t + 1)nr surfaces in F . By the refinement step in Section 3.2, ♦
will be refined into O

(
(t + 1)4 log4(t + 1)

)
= O

(
(t + 1)5) prisms, so that ♦ contributes

O
(
((t+ 1)5)2) = O

(
(t+ 1)10) vertical overlappings to the quantity of the first case. Let Q be

the set of prisms in AD(R) lying vertically below ♦ and let Q∗ be the set of prisms in RD(R)
generated from the prisms in Q. Then, ♦ contributes O

(
(t+ 1)5 · |Q∗|

)
vertical overlappings

to the quantity of the second case. In other words, ♦ contributes O
(
(t+ 1)10 + (t+ 1)5 · |Q∗|

)
to the value of E[|SC(R)|].

We will show that E[|Q∗|] = O
(
(t + 1)5 · `4). Let D(♦) be the set of surfaces in F

that define ♦, let K(♦) be the set of surfaces in F that intersect ♦, let L(♦) be the set of

18 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

surfaces in F that lie fully below ♦, and let F ′ be F \
(
D(♦) ∪ K(♦) ∪ L(♦)

)
. We have

|D(♦)| ≤ d = 10, |L(♦)| ≤ n
r (since ♦ ∈ AD(R)), and tnr ≤ |K(♦)| ≤ (t + 1)nr . Note that

D(♦) ∩ L(♦) could be nonempty, and recall that it is sufficient to consider ` ≤ 27 log r + 10
and |K(♦)| ≤ 27nr log r.

Let Qh be the set of prisms in Q intersecting with at least h · |F ′|
r−|D(♦)|−(`−|D(♦)∩L(♦)|)

surfaces in F ′. For each prism in Qh \Qh+1, since it may intersect surfaces in D(♦)∪K(♦)∪
L(♦) and since it intersects at most (h+ 1) |F ′|

r−|D(♦)|−(`−|D(♦)∩L(♦)|) = O
(
(h+ 1)nr

)
surfaces

in F ′, it intersects at most 10 + (t+ 1)nr + n
r +O

(
(h+ 1)nr

)
= O

(
(h+ t+ 1)nr

)
surfaces in

F , so that it will be refined into O((h+ t+ 1)5) prisms. Therefore, we have

|Q∗| = O
(∑
h≥0
|Qh \Qh+1| ·O((h+ t+ 1)5)

)
= O

(∑
h≥0
|Qh| · (h5 + t5 + 1)

)
.

We will apply Lemma 2 to show that E[|Qh|] = O(2−h ·E[|Q|]). Due to the assumption of
♦, Rmust contain all surfaces inD(♦), `−|D(♦)∩L(♦)| surfaces in L(♦)\D(♦), and no surface
ofK(♦), so that the corresponding random experiment is to pick r−|D(♦)|−(`−|D(♦)∩L(♦)|)
surfaces from F ′. In this situation, Lemma 2 (in which S is F ′, and for any subset S′ ⊆ S,
C0(S′) is the set of prisms in VD

(
S′ ∪

(
D(♦) ∪ L′)

))
lying vertically fully below ♦, where

L′ is an (`− |D(♦) ∩ L(♦)|)-element random subset of L(♦) \D(♦)) implies that E[|Qh|] =
O(2−h · E[|Q|]), leading to that

E[|Q∗|] = O

(∑
h≥0

(
(2−h · E[|Q|]) · (h5 + t5 + 1)

))
= O

(
((t+ 1)5) · E[|Q|] ·

∑
h≥0

(h+ 1)5

2h
)

= O((t+ 1)5 · E[|Q|]).

We bound |Q| with O(`4). Since ` surfaces in R lies fully below ♦, let R̃♦ denote the set
of those ` surfaces, i.e., R̃♦ = L(♦) ∩R. Note that all the prisms in Q belong to AD(R) and
lie vertically below ♦. For each prism ♦1 ∈ Q, if we only consider its part lying vertically
below ♦, this part must coincide with the part of a prism ♦2 ∈ VD(R̃♦∗) lying vertically
below ♦. In other words, if we extend the top face of ♦ to be a downward semi-unbounded
prism, i.e., without a bottom face, its intersection with ♦1 is exactly its intersection with
♦2. Therefore, |Q| ≤ |VD(R̃♦)| = O(`4), so that E[|Q∗|] = O

(
(t+ 1)5 · `4). To conclude, ♦

contributes O
(
(t+ 1)10 + (t+ 1)5((t+ 1)5 · `4)

)
= O

(
(t+ 1)10(1 + `4)

)
to E[|SC(R)|]. J

4 Data Structure

Given a set F of n surfaces as in Section 3.1, generate a sequence of random subsets of
F , R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ Rm, where |Ri| = 2i+11 for 1 ≤ i ≤ m and n

64 logn < |Rm| ≤
n

32 logn , and let ri be |Ri|. The O(logn) shallow cuttings, SC(R1),SC(R2), . . . ,SC(Rm),
directly yield a data structure for the k nearest neighbors problem with O(n logn) space,
O(logn + k) query time, and expected O

(
n log3 nλs+2(logn)

)
preprocessing time. First,

since E[|SC(Ri)|] = O(ri) (Theorem 14) and each prism in SC(Ri) stores O(nri
) surfaces, the

expected space is O
(∑m

i=1(ri · nri
)
)

= O(n logn). By Markov’s inequality, with probability at
least half, the space is at most twice its expected value, which is also O(n logn). Therefore,
we can repeat the whole construction until the space is at most twice its expected value, and
the expected number of repetitions is 2, i.e., O(1) repetitions makes the space deterministic.

Second, if n
ri+1

< k ≤ n
ri
, the query locates the prism ♦ ∈ SC(Ri) intersected by the

query vertical line (i.e., the vertical line passing through the query point), and selects the k
lowest surfaces from the O(nri

) surfaces stored in ♦. If k < 32 logn, search SC(Rm), and if

Chih-Hung Liu 19

k > n
256 , check F directly. Since the xy-projections of prisms in SC(Ri) do not overlap, a

planar point-location data structure can locate ♦ in O(logn) time, and since the selection
trivially takes O(nri

) = O(2 n
ri+1

) = O(k) time, the query time is O(logn+ k). Finally, since
E[|SC(Ri)|] = O(ri), the m point-location data structures can be constructed in expected∑m
i=1 O(ri) = O(2 · rm) = O(n

logn) time [29], and by Section 5, SC(R1),SC(R2), . . . ,SC(Rm)
can be computed in expected O

(
n log3 nλs+2(logn)

)
time.

By Afshani and Chan’s two ideas ([1, Proposition 2.1, Theorem 3.1]), the space can be
further improved using an O(n)-space data structure for the circular range query problem as
a secondary data structure. Assume that the preprocessing time and the query time of such
a data structure are O(n logn) and O(κ+ g(n)), respectively, where κ is the number of sites
inside the query circular range and g(·) is a function with g(O(n)) = O(g(n)) and g(n) ≤ n/2.
Let m′ be the smallest integer such that g(m′−1)(n) < 32 logn. The first idea is to store, only
for m′ shallow cuttings, each prism together with the surfaces intersecting it, and to store, for
the other m−m′ shallow cuttings, only the prisms. Consider a subsequence (R′1, . . . , R′m′)
of (R1, . . . , Rm) where R′1 is R1, R′m′ is Rm, and |R′i′ | ∼ n

g(i′−1)(n) for 2 ≤ i′ ≤ m′ − 1. For
1 ≤ i′ ≤ m′ and for each prism ♦′ ∈ SC(R′i′), we build the circular range query data structure
for the surfaces stored in ♦′, namely for the respective sites under the given distance measure.
The expected space is O(

∑m
i=1 ri +

∑m′

i′=1
n
|R′

i′
| · |R

′
i′ |) = O(m′n); by the reasoning in the end

of the first paragraph, expected O(1) repetitions would yield deterministic O(m′n) space.
The second idea is to conduct the query in two steps. In the first step, if n

ri+1
< k ≤ n

ri
,

we locate the prism in SC(Ri) intersected by the query vertical line, and find the intersection
point between the vertical line and the top face of the prism. The xy-projection and the
z-coordinate of this intersection point decide, respectively, the center and the radius of a
circular range. It is clear that this circular range contains O(nri

) = O(2 n
ri+1

) = O(k) surfaces.
In the second step, if n

|R′
i′+1|

< k ≤ n
|R′

i′
| , we locate the prism ♦′ ∈ SC(R′i′) intersected by the

query vertical line, conduct the above-defined circular range query on the surfaces stored in
♦′, i.e., on the respective sites, and find the k lowest surfaces from the O(k) surfaces inside
the circular range. The query time is O(logn+ g(n

|R′
i′
|) + k) = O(logn+ g(g(i′−1)(n)) + k) =

O(logn+ n
|R′

i′+1|
+ k) = O(logn+ k).

Finally, we show how to make m′ be O(log logn). Since the geometric sites in S are
of constant description complexity, they can be lifted to points in Rd for a sufficiently
large constant d, e.g., a line segment is mapped to a point in R4, and since the distance
measure is also of constant description complexity, the lifted image of each circular range
can be described by a constant number of d-variate functions of constant maximum degree.
Therefore, Agarwal et al.’s algorithm [7] yields a circular range query data structure with
O(n) space, O(n1/d + κ) query time, and O(n logn) preprocessing time. Since g(n) = n1/d

and m′ is the smallest integer such that g(m′−1)(n) < 32 logn, we have m′ = O(log logn),
concluding the following theorem.

I Theorem 15. Given a distance measure and n geometric sites in the plane as Section 3.1,
there exists a static data structure for the k nearest neighbors problem with O(n log logn)
space, O(logn+ k) query time, and expected O(n log3 nλs+2(logn)) preprocessing time.

By replacing the shallow cuttings in Kaplan et al.’s dynamic data structure [33] with our
shallow cuttings, we obtain a dynamic data structure as the following corollary.

I Corollary 16. There exists a dynamic data structure for the k nearest neighbors problem
with O(n logn) space, O(log2 n+ k) query time, and expected amortized O(log5 nλs+2(logn))
insertion time, and expected amortized O(log7 nλs+2(logn)) deletion time.

20 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

5 Construction Algorithm

Given a set F of n surfaces as in Section 3.1, consider a sequence of random subsets of F ,
R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ Rm, where |Ri| = 2i+11 for 1 ≤ i ≤ m and n

64 logn < |Rm| ≤
n

32 logn ,
let ri be |Ri|. It is clear that |R1| = 4096 and m ≤ logn− 5 log logn.

We will build the 1
ri
-shallow-cuttings SC(Ri) for 1 ≤ i ≤ m in the following three steps:

1. Repeatedly generate R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ Rm and construct VD≤`(Ri) for 1 ≤ i ≤ m,
where ` = Θ(logn) and VD≤`(Ri) is the set of prisms in VD(Ri) whose level with respect
to Ri is at most `,1 until VD≤`(Ri) includes AD(Ri) for 1 ≤ i ≤ m. (Recall that AD(Ri)
is the set of prisms in VD(Ri) lying fully above at most n

ri
surfaces in F .)

2. Generate AD(Ri) from VD≤`(Ri) for 1 ≤ i ≤ m.
3. Build a 1

ri
-shallow-cutting SC(Ri) from AD(Ri) in the same way as Section 3.2 for

1 ≤ i ≤ m.

For simplicity, we use R to denote Ri when the context is clear, and let r be |R|.
We will make use of an auxiliary data structure RDS by Kaplan et al. ([33, Theorem

7.1]) with expected O(n log2 n) preprocessing time and expected O(logn+ k) query time for
the following two types of queries: (a) given a query point p ∈ R3, answer the k surfaces in
F lying below p, where k is unknown, and (b) given a query vertical line and an integer k,
answer the lowest k surfaces in F along the line. Although Kaplan et al. only mentioned the
first type, since their data structure is generalized from Chan’s data structure for planes [15],
it directly works for the second type.

5.1 Construct VD≤`(R)
Let (f1, f2, . . . , fn) be a random sequence of F , and let Fj be {f1, f2, . . . , fj}, so that
Ri = F2i+11 for 1 ≤ i ≤ m. Kaplan et al. ([33, Section 5]) proved the size of VD≤`(Fj) to
be O(j · ` · λs+2(`)) and constructed, in expected O(n log2 n`λs+2(`)) time, VD≤`(Fj) for
1 ≤ j ≤ n together with for each prism ♦ ∈ VD≤`(Fj) the set F♦ of surfaces in F intersecting
♦. Let ` be 30 logn, so that the running time is expected O(n log3 nλs+2(logn)), and with
high probability, AD(Ri) ⊆ VD≤`(Ri) for 1 ≤ i ≤ m, the latter of which will be explained in
the time analysis of Section 5.4.

To verify if AD(R) ⊆ VD≤`(R), we actually examine the “upper envelope” of VD≤`(R).
Precisely, we consider each prism ♦ in VD`(R), where VD`(R) is the set of prisms in VD(R)
whose level with respect to R is exactly `, and check if the top face 4 of ♦ lies fully above at
least n

r surfaces in F . For the latter, we first derive the set F4 of surfaces in F that intersects
4 from F♦, where F♦ is the set of surfaces in F that intersects ♦. Then, we arbitrarily pick
a point p ∈ 4, and use RDS to find the |F4| + n

r lowest surfaces along the vertical line
passing through p. Since a surface lying fully below 4 lies below p and since a surface lying
below p either intersects 4 or lies fully below 4, 4 lies fully above at least n

r surfaces if and
only if 4 lies fully above at least n

r surfaces of the returned |F4|+ n
r ones. Therefore, if 4

lies fully above at least n
r returned surfaces, we say 4 pass the test, and if all the top faces

of prisms in VD`(R) pass the test, we determine that AD(R) ⊆ VD≤`(R).
If we do not determine that AD(Ri) ⊆ VD≤`(Ri) for some i ∈ [1,m], we generate a new

random sequence (f1, f2, . . . , fn) of F , and repeat the above process.

1 Kaplan et al. [33] used the term VD≤`(R), while in this paper, to be consistent with Section 2, we
always use subscripts to describe global relations and superscripts to describe local relations.

Chih-Hung Liu 21

5.2 Select AD(R) from VD≤`(R)

To select AD(R) from VD≤`(R), we conduct a test on each prism ♦ ∈ VD≤`(R), which is
similar to the one in Section 5.1. We arbitrarily pick point p ∈ ♦, use RDS to find the
|F♦|+ n

r + 1 lowest surfaces along the vertical line passing through p, and if ♦ lies fully above
at most n

r returned surfaces, include ♦ in AD(R). Again, since a surface lying fully below
♦ lies below p and since a surface lying below p either intersects ♦ or lies fully below ♦, ♦
lies fully above at most n

r surfaces if and only if ♦ lies fully above at most n
r surfaces of the

returned |F♦|+ n
r + 1 ones.

5.3 Build SC(R) from AD(R)

The procedure is already outlined in Section 3.2, so we provide the implementation details.

5.3.1 Build RD(R) from AD(R)

For each prism ♦ ∈ AD(R), let F♦ be the set of surfaces in F intersecting ♦, and let t be
d |F♦|r

n e. If t > 1, we refine ♦ into smaller prisms by picking an O(t log t)-element random
subset F ′ of F♦, and applying Chazelle et al.’s algorithm [22] to construct VD(F ′)∩♦, which
takes O(|F ′|5 log |F ′|) = O

(
(t5 log5 t) · log(t log t)

)
= O(t6) time and generates O(|F ′|4) =

O(t4 log4 t) = O(t5) prisms. For each prism ♦′ ∈ VD(F ′) ∩ ♦, we generate F♦′ by testing
surfaces in F♦ with ♦′, which takes O(|F♦| · t5) = O(t6 · nr) time. By defining a conflict
between a surface and a prism as the surface intersects the prism, Corollary 4 implies that
with probability at least half, each prism ♦′ ∈ VD(F ′)∩♦ intersects at most |F♦|

t ≤
n
r surfaces

in F , i.e., |F♦′ | ≤ n
r , so that we can repeat the process until the requirement is satisfied and

the expected number of repetitions is O(1). Finally, for each prism ♦′ ∈ VD(F ′) ∩ ♦, we
conduct the same test as in Section 5.2 to check if ♦′ lies fully above at most n

r surfaces in F ,
and if no, discard ♦′, which takes expected O(logn+ |F♦′ |+ n

r + 1) = O(logn+ n
r) time, i.e.,

O(t5 · (logn+ n
r)) in total. Therefore, the refinement of ♦ takes expected O(t6 · nr + t5 logn)

time.

5.3.2 Build SC(R) from RD(R)

First, we construct the upper envelope of top faces of prisms in RD(R) through an algorithm
in [42, Section 7.3.4], which is a mixture of divide-and-conquer and plane-sweep methods.
Then, we partition each face of the upper envelope into trapezoids using Chazelle’s linear
time algorithm [20], and extend these resulting trapezoids to downward semi-unbounded
prisms, leading to SC(R). Finally, for each prism ♦′ ∈ SC(R), we will build F♦′ , i.e., the set
of surfaces in F intersecting ♦′.

To build F♦′ , it is clear that each surface in F♦′ either intersects with or lies fully below
the top face of ♦′. Let ♦ be the prism in RD(R) whose top face contains the top face of
♦′. We check each surface in F♦ with ♦′ to find the surfaces intersecting the top face of ♦′.
Moreover, we arbitrarily pick a point p in the top face of ♦′, and use RDS to find all surfaces
in F lying below p, from which we can find the surfaces lying fully below the top face of
♦′. The above two steps take O(|F♦|) time and expected O(logn+ |F♦′ |) time, respectively.
Since |F♦| ≤ n

r and |F♦′ | ≤ 2nr , the generation of F♦′ takes expected O(logn+ n
r) time. (♦

belongs to RD(R), so |F♦| ≤ n
r ; as discussed in the end of Section 3.2, |F♦′ | ≤ 2nr .)

22 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

5.4 Time Analysis
For the construction time, we analyze the three steps separately. In addition to Lemma 2,
we will also make use of another Agarwal et al.’s result [6] as follow.

I Lemma 17. ([6, Proposition 2.1]) For an r-element random subset R of S, if C0(R) satisfies
Conditions (i) and (ii) (in Section 2.1) and if every subset R′ ⊆ R satisfies E[|C0(R′)|] =
O(f(|R′|)) for an increasing function f(·), then

E[
∑

4∈C0(R)

w(4)] = O
(
(n
r

) · f(|R|)
)
.

For the first step, since ` is 30 logn, by [33, Theorem 5.1], it takes expected
O(n log3 nλs+2(logn)) time to build VD≤`(F1), . . . ,VD≤`(Fn). It is clear that the upper
envelope of VD≤`(R) consists of top faces of prisms in VD`(R). Since it takes for each prism
♦′ ∈ VD`(R) expected O(logn+ n

r + |F♦′ |) time to check if the top face of ♦′ lies fully above
at least n

r surfaces, the total expected time to check all prisms in VD`(R) is

O
(
E[

∑
♦′∈VD`(R)

(logn+ n

r
+ |F♦′ |)]

)
≤ O

(
E[

∑
♦∈VD≤`(R)

(logn+ n

r
+ |F♦|)]

)
.

Since |VD≤`(R)| = O(r lognλs+2(logn)) ([33, Lemma 5.1]), Lemma 17 implies that

E[
∑

♦∈VD≤`(R)

|F♦|] = O(n
r
·E[|VD≤`(R)|]) = O

(n
r
·(r lognλs+2(logn))

)
= O

(
n lognλs+2(logn)

)
.

As a result, since r = |R| ≤ |Rm| = O(n
logn), the expected time to check VD`(R) is

O

((
E[|VD≤`(R)|]︸ ︷︷ ︸

O(r lognλs+2(logn))

)
(logn+ n

r
) + n lognλs+2(logn)

)
= O

(
n lognλs+2(logn)

)
,

implying that the total expected time to check VD≤`(Ri) for 1 ≤ i ≤ m isO
(
n log2 nλs+2(logn)

)
time. Thus, the total expected time is O(n log3 nλs+2(logn)), dominated by the construction
of VD≤`(Fj) for 1 ≤ j ≤ n.

Since ` = 30 logn ≥ 27 logn+ 10, according to the proof of Theorem 14, with probability
1 − O(1

n17), AD(R) ⊆ VD≤`(R), implying that with probability 1 − O(logn
n17), AD(Ri) ⊆

VD≤`(Ri) for 1 ≤ i ≤ m. As a result, the expected number of repetitions for the first step is
O(1), and the first step takes expected O

(
n log3 nλs+2(logn)

)
time in total.

For the second step, since it takes expected O(logn+ n
r + |F♦|) to time check if a prism

♦ ∈ VD≤`(R) belongs to AD(R), the same analysis for the test in the first step yields that
the second step takes expected O

(
n log2 nλs+2(logn)

)
time to build AD(Ri) from VD≤`(Ri)

for 1 ≤ i ≤ m.
For the third step, we analyze the refinement and the upper envelope construction

separately. For the refinement, as discussed in Section 5.3.1, if a prism ♦ ∈ AD(R) intersects
at most tnr functions, it takes O(t6 · nr + t5 logn) time to process ♦, and O(t5) prisms are
generated. By Theorem 12, the expected number of prisms in AD(R) that intersect at least
(t− 1)nr surfaces in F is O(2−(t−1) · r), implying that the expected time is∑

t≥1
O
(
(t6n

r
+ t5 logn) · (2−(t−1) · r)

)
= O(n+ r logn) ·

∑
t≥1

t6 · 2−(t−1) = O(n),

where the last inequality comes from the fact that r = O(n
logn) and

∑
t≥1 t

6 · 2−(t−1) = O(1).

Chih-Hung Liu 23

For constructing the upper envelope of RD(R), the algorithm in [42, Section 7.3.4]
recursively divides RD(R) into two subsets of roughly equal size, and use plane-sweep to
merge the upper envelopes of the two subsets. Since E[|RD(R)|] = O(r) (Theorem 12), there
are expected O(log r) recursion levels. As shown in the proof of Theorem 14, the expected
total number of intersections among the boundaries of the xy-projections of prisms in RD(R)
is O(r), so that the expected total complexity of upper envelopes in a recursion level is O(r).
Therefore, the plane sweep takes expected O(r log r) time for one recursion level, and the
algorithm takes expected O(r log2 r) time to build SC(R).

After the construction of SC(R), we need to compute F♦ for each prism ♦ ∈ SC(R), which
takes expected O(logn+ n

r) time as discussed in Section 5.3.2. Since E[|SC(R)|] = O(r) and
r = O(n

logn), it takes expected O
(
r · (logn+ n

r)
)

= O(n) time for all prisms in SC(R). The
total expected time for the third step is O

(∑m
i=1(n+ ri log2 ri)

)
= O(n logn+ rm log2 rm) =

O(n logn).

I Theorem 18. It takes expected O
(
n log3 nλs+2(logn)

)
time to compute 1

ri
-shallow-cuttings

SC(Ri) of F for 1 ≤ i ≤ m such that the total size of those O(logn) cuttings is O(n
logn) and

the total space to store the surfaces intersecting every prism is O(n logn).

Proof. The running time has been analyzed. By Theorem 14, the expected total size is

E[
m∑
i=1
|SC(Ri)|] =

m∑
i=1

O(ri) =
m∑
i=1

O(2i+11) = O(2m+12) = O(n

logn).

Since each prism in SC(R) intersects O(nr) surfaces in F , the expected total space is

m∑
i=1

(
E[|SC(Ri)|] ·O(n

ri
)
)

=
m∑
i=1

O(ri) ·O(n
ri

) =
m∑
i=1

O(n) = O(n logn).

By Markov’s inequality, with probability at most 1/4, the value is more than four times
its expectation. Therefore, with probability at least 1− (1/4 + 1/4) = 1/2, both the total
size and the total space are at most four times their expected values, respectively. We can
repeat the whole construction algorithm until the both values are at most four times their
expectations, i.e., making the bounds for the total size and the total space deterministic, and
the expected number of repetitions is only 2. J

6 Concluding Remarks

We have derived a new random sampling technique for configuration space, have applied
our new technique to successfully design linear-size shallow cuttings for general distance
functions, and have composed these shallow cuttings into nearly optimal static and dynamic
data structures for the k nearest neighbor problem. The remaining challenges are the optimal
O(n) space and the optimal O(n logn) preprocessing time. Afshani and Chan’s O(n) space for
point sites in the Euclidean metric [1] is an elegant combination of Matoušek’s shallow cutting
lemma and shallow partition theorem [36]. Although we have designed linear-size shallow
cuttings for general distance functions, the generalization of “O(log r)-crossing” shallow
partitions is still unknown since the original proof significantly depends on certain geometric
properties of planes. For the O(n logn) preprocessing time, the traversal idea by Chan [15]
and Ramos [39] seems not to work directly since a pseudo-prism is possibly adjacent to a
“non-constant” number of pseudo-prisms in the vertical decomposition.

24 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

A Literature for Shallow Cuttings

To study the half-space range reporting problem, Matoušek [36] first used “tetrahedra” to
define shallow cuttings and proved the existence of a 1

r -shallow-cutting of O(r) tetrahedra.
Then, he adopted his shallow cuttings to prove Shallow Partition Theorem, and applied the
theorem to construct a data structure for the half-space range reporting problem. Ramos [39]
developed an O(n logn) time randomized algorithm to construct 1

r -shallow-cuttings of
tetrahedra for r = 2, 4, 8, . . . , n

logn . Chan [15] observed that those tetrahedra can be turned
into disjoint downward semi-unbounded vertical triangular prisms, so that the resulting
shallow cuttings can be applied to the k lower plane problem.

Both Ramos [39] and Chan [15] adopted the bootstrapping technique to only select
O(log logn) 1

r -shallow-cuttings instead of O(logn) ones. Since a 1
r -shallow-cutting requires

O(r) · O(nr) = O(n) space, the above results yield a static data structure for the k lowest
plane problem with O(n log logn) space, O(logn+ k) query time, and expected O(n logn)
preprocessing time. Afshani and Chan [1] further exploited Matoušek’s shallow partition
theorem [36] to show that only two 1

r -shallow-cuttings are sufficient, leading to the optimal
O(n) space.

Chan [16] designed a dynamic data structure for the k lower plane problem also based
on shallow cuttings with O(log2 n+ k) query time, expected amortized O(log3 n) insertion
time and expected amortized O(log6 n) deletion time. Chan and Tsakalidis [19] proposed a
deterministic construction algorithm for the 1

r -shallow-cuttings, making the above-mentioned
time complexities deterministic. Later, Kaplan et al. [33] attained the amortized O(log5 n)
deletion time, and very recently, Chan [17] further improved the deletion time to amortized
O(log4 n).

B Applications of the New Dynamic Data Structure

Kaplan et al. [33] mentioned 9 applications that can be improved directly using their dynamic
data structure for neighbor neighbor queries (i.e., with k = 1). Since our dynamic data
structure improves Kaplan et al.’s by a log2 n factor in both space and deletion time, those
applications can be further improved by a log2 n factor in space, update time (deletion or both
insertion and deletion), or construction time. Table 1 and Table 2 show the corresponding
improvements. For the completeness, we introduce those applications in the following two
subsections.

We remind that Kaplan et al.’s dynamic data structure for the lower envelope of surfaces
corresponds to our dynamic data structure for the k nearest neighbors problem, so that we
will not distinguish between a dynamic data structure for the lower envelope of surfaces and a
dynamic data structure for nearest neighbor queries. In fact, a vertical ray shooting query to
the lower envelope of n surfaces is equivalent to a nearest neighbor query to the n respective
sites. Chan [16] showed how to use shallow cuttings to maintain the lower envelope of planes
dynamically and how to use his data structure to answer k nearest neighbors queries. Kaplan
et al. extended his idea to maintain the lower envelope of surfaces using shallow cuttings
of semi-unbounded pseudo-prisms. Our dynamic data structure just replaces the shallow
cuttings in Kaplan et al.’s data structure with our designed ones, whose size is linear and
reduces a double logarithmic factor from their size.

Two classes of distance functions will be applied. First, let p ∈ [1,∞]; for two points
(x1, y1), x2, y2) ∈ R2, their distance in the Lp norm is (|x1−x2|p + |y1− y2|p)1/p. Second, let
S be a set of point sites in R2 and associate each site q ∈ S a weight wq ∈ R; the additively

Chih-Hung Liu 25

weighted Euclidean distance from a point p ∈ R2 to a site q ∈ S is wq + |pq|, where | · |
denotes the Euclidean distance.

B.1 Direct Applications

Dynamic Bichromatic Closest Pair. Let τ be a planar distance metric, and let R and
B be two sets of point sites in the plane. A bichromatic closest pair between R and B

is a pair of points, r ∈ R and b ∈ B, that minimizes τ(r, b). The dynamic version is to
maintain a bichromatic closest pair under insertions and deletions of points. Eppstein [30]
proved that if there exists a data structure that supports insertions, deletions, and nearest-
neighbor queries in O(T (n)) time per operation, a bichromatic closest pair between R

and B can be maintained in O(T (n) logn) time per insertion and O(T (n) log2 n) time
per deletion. Since the insertion time, the deletion time, and the nearest-neighbor query
time in our data structure are O(log5 nλs+2(logn)), O(log7 nλs+2(logn)), and O(logn)
respectively, T (n) = O(log7 nλs+2(logn)), resulting inO(log8 nλs+2(logn)) time per insertion
and O(log9 nλs+2(logn)) time per deletion.

Minimum Euclidean Bichromatic Matching. Let R and B be two sets of n point sites in
the plane. A minimum Euclidean bichromatic matching between R and B is a set of n line
segments rb, r ∈ R and b ∈ B, such that each point site in R ∪ B is incident to exactly
one line segment and such that the total length of the line segments is minimum. Agarwal
et al. ([4, Section 7]) showed how to find a minimum Euclidean bichromatic matching using
a dynamyic bichromatic closest pair data structure for the additively weighted Euclidean
metric, and the construction time is O(n2 · T (n)), where T (n) is the maximum between the
insertion time and the deletion time of the dynamic data structure. Since T (n) in our new
data structure (i.e., the first application) is O(log9 nλs+2(logn)), the construction time is
O(n2 log9 nλs+2(logn)).

Dynamic Minimum Spanning Trees. Let S be a set of sites, and let T be the minimum
spanning tree for S with respect to an Lp norm, p ≥ 1. A dynamic minimum spanning tree
data structure maintains T explicitly as S changes dynamically. Following Eppstein [30],
the first application yields a data structure with O(n log3 n) space and O(log11 nλs+2(logn))
update time.

Dynamic Intersection of Unit Balls in Three Dimensions. Let B be a set of unit balls
in R3. The goal is to maintain the intersection B∩ of the balls in B under insertions and
deletions, and in the meantime to support the two following queries:

(a) for any point p ∈ R3, determine if p ∈ B∩,
(b) and after performing each update, determine whether B∩ = ∅.

Agarwal et al. ([4, Section 8]) adopted dynamic lower envelope data structures to maintains
B∩. Recall that the dynamic lower envelope data structure correspond to our dynamic
nearest neighbor data structure. Since their algorithm performs a query via parametric
search in a black-box fashion, our dynamic data structure for the k nearest neighbors problem
implies a dynamic data structure to maintain B∩ with O(n logn) space, O(log5 nλs+2(logn))
insertion time, O(log7 nλs+2(logn)) deletion time, and O(log2 n) and O(log5 n) query time
respectively for queries (a) and (b).

26 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

Dynamic Smallest Stabbing Disk. Let C be a family of simply-shaped, compact, strictly-
convex sets in the plane. The goal is to dynamically maintain a finite subset C ⊆ C together
with a smallest disk that intersects all the sets of C; please see Section 9 by Agarwal et al. [4]
for precise definitions. Since Agarwal et al. made use of the dynamic data structure for nearest
neighbor queries in a black-box fashion ([4, Theorem 9.3]), our dynamic data structure for
the k nearest neighbors problem yields a dynamic structure to maintain the smallest stabbing
disk with O(n logn) space, O(log5 nλs+2(logn)) insertion time, O(log7 nλs+2(logn)) deletion
time, and O(log5 n) query time.

B.2 Problems on Disk Intersection Graph
As discussed by Kaplan et al. [33], a dynamic data structure for neighbor neighbor queries
enables many applications in the domain of disk intersection graphs: let S be a finite set
of point sites in the plane, and associate each point site p ∈ S with a weight wp > 0. The
disk intersection graph for S, denoted by D(S), has S as the vertex set and an edge between
two point sites p, q ∈ S if and only if |pq| ≤ wp + wq. In other words, D(S) contains an
edge between p and q if and only if the disk with center p and radius wp intersects the
disk with center q and radius wq. If all weights are 1, D(S) is called unit disk graph and
denoted by UD(S). Disk intersection graphs have been received increasing attention due to
the applications in wireless sensor networks [14, 18, 31, 33, 40].

Shortest Path Trees in Unit Disk Graphs. Cabello and Jejcic [14] showed how to find
a shortest path tree in UD(S), for any given site in S, within O(n · T (n)) time using
a dynamic bichromatic closest pair structure, where T (n) is the maximum between the
insertion time and the deletion time. Since our first application in Appendix B.1 attains
T (n) = O(log9 nλs+2(logn)), the construction time is O(n log9 nλs+2(logn)).

Dynamic Connectivity in Disk Graphs. Kaplan et al. [33], in Section 9.2 of their full version,
studied how to dynamically maintain D(S) under insertions and deletions of point sites while
answering reachability queries efficiently: given s, t ∈ S, determine if there is a path in D(S)
between s and t. Let Ψ be the ratio of the largest and the smallest weights of the point
sites. They adopted their dynamic lower envelope structure to attain O(Ψ2 log9 nλs+2(logn))
update time and O(logn/ log logn) query time. Since our dynamic lower envelope structure
improves the deletion time of their dynamic lower envelope structure by a factor of log2 n,
the update time of their dynamic connectivity structure for a disk graph is also improved by
a factor of log2 n.

BFS Trees in Disk Graphs. Kaplan et al. [33], in Section 9.3 of their full version, extended
Roditty and Segal’s observation [40] to compute exact BFS-trees in disk graphs, for any
given root r ∈ S, using a dynamic nearest neighbor query structure. In details, they adopted
additively weighted Euclidean distances, so that the weighted Euclidean distance from a
point site p with weight wp is exactly the Euclidean distance from the disk with center p
and radius wp. Their construction time for a BFS tree is O(n · T (n)), where T (n) is the
maximum between the insertion time and the deletion time per point site. Since T (n) is
O(log7 λs+2(logn)) in our dynamic nearest neighbor query structure, the construction time
is O(n log7 λs+2(logn)).

Spanners for Disk Graphs. A (1 + ρ)-spanner for D(S) is a subgraph H of D(S) such that
the shortest path distances in H approximate the shortest path distances in D(S) up to a

Chih-Hung Liu 27

factor of (1 + ρ). Kaplan et al. [33], in Section 9.4 of their full version, gave a construction
algorithm with O((n/ρ2) log9 nλs+2(logn)) time using their dynamic nearest neighbor query
structure. Since our dynamic data structure improves their deletion time by a factor of
O(log2 n), the construction becomes O((n/ρ2) log7 nλs+2(logn)).

C Comparison with Clarkson 1987’s Result [24]

We first introduce Clarkson 1987’s result ([24, Corollary 4.3]) about relatively many local
conflicts, but relatively few global conflicts, then explain the difficulty in applying his result
to design a linear-size shallow cutting, and finally compare the state-of-the-art techniques
at a high level. Recall the definitions in Section 2.1: C(S′) is the set of configurations in
a geometric structure defined by S′, and T (S′) =

⋃
S′′⊆S′ C(S′′) is the set of all possible

configurations defined by objects in S′. More importantly, there is a quantity difference
between C(S′) and T (S′). In the examples in Section 2.1, objects are planes, C(S′) is
the set of tetrahedra in the canonical triangulation for the arrangement formed by all
planes in S′, and T (S′) is the set of all possible tetrahedra defined by planes in S′, so that
|C(S′)| = Θ(|S′|3) [3, 38], while |T (S′)| = O(|S′|12) (since a tetrahedron has 4 vertices and a
vertex is defined by 3 planes).

Roughly speaking, our Theorem 5 works on C(S′), while Clarkson’s Corollary 4.3 [24]
deals with T (S′). Let R be an r-element random subset of S, and let T t≤n

r
(R) be the set of

configurations in T (R) that conflicts with t objects in R, but at most n
r objects in S. In our

terminology, [24, Corollary 4.3] can be interpreted as follows:

E[|T t≤n
r

(R)|] ≤ O
(
(e
t
)t
)
· |T (R)|. (4)

In the proof of Theorem 14, in order to analyze the expected size of our 1
r -shallow

cutting, C(R) is the set of pseudo-prisms in the vertical decomposition of R (defined in
Section 3.1), and a surface conflicts with a pseudo-prism if the surface lies fully below the
pseudo-prism. We need to bound

∑
t≥0(1 + t4) ·E[|Ct≤n

r
(R)|]. Since |Cl(R)| = O

(
r · (l+ 1)3)

([33, Lemma 5.1]), i.e., |Cl(R)| = O(r) if l = O(1), Theorem 5 (with c = 1 and d = 10)
implies a bound

∑
t≥0

1+t4
t! ·O(r) = O(r). However, if we want to apply [24, Corollary 4.3],

i.e., Inequality (4), we could only use E[|T t≤n
r

(R)|]. Moreover, since a pseudo-prism is defined
by at most 10 surfaces (as shown in Section 3.1), we only have T (R) = O(r10). Therefore, a
direct application of Inequality (4) would only obtain a bound

∑
t≥1

1+t4
tt ·O(r10) = O(r10).

In a chronological order, Clarkson [24] first studied T (S′), then Clarkson and Shor [25]
and Chazelle and Friedman [23] worked on C0(S′) and considered an if-and-only-if condition,

(∗) 4 ∈ C0(S′) if and only if D(4) ⊆ S′ and K(4) ∩ S′ = ∅,

Agarwal et al. [6] and de Berg et al. [28] further relaxed the if-and-only-if condition by two
weaker conditions

(i) for any 4 ∈ C0(S′), D(4) ⊆ S′ and K(4) ∩ S′ = ∅,
(ii) and if 4 ∈ C0(S′) and S′′ ⊆ S′ with D(4) ⊆ S′′, then 4 ∈ C0(S′′),

and we deal with Ct(S′) for which we generalize the above two conditions to include nonzero
local conflicts with t and t′ as follows,

(I) For any 4 ∈ Ct(S′), D(4) ⊆ S′ and |K(4) ∩ S′| = t.
(II) If 4 ∈ Ct(S′) and S′′ ⊆ S′ with D(4) ⊆ S′′ and |K(4) ∩ S′′| = t′, then 4 ⊆ Ct′(S′′).

28 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

At a high-level, Clarkson and Shor [25], Chazelle and Friedman [23], Agarwal et al. [6], and
de Berg et al. [28] derived the probability that a configuration conflicts with no local object,
but at least tnr objects, while we analyze the probability that a configuration conflicts with t
local objects, but at most n

r objects. Clarkson [24]’s work is more general and includes both
cases, while it considers T (S′) instead of C(S′).

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the Twentieth Annual Symposium on Discrete Algorithms (SODA09), pages
180–186, 2009.

2 Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest neighbor
searching in a simple polygon. In Proceedings of the Thirty-Fourth International Symposium
on Computational Geometry (SoCG18), pages 4:1–4:14, 2018.

3 Pankaj K. Agarwal, Mark de Berg, Jiří Matoušek, and Otfried Schwarzkopf. Constructing
levels in arrangements and higher order Voronoi diagrams. SIAM Journal on Computing,
27(3):654–667, 1998.

4 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM Journal on Computing, 29(3):912–953,
1999.

5 Pankaj K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete
& Computational Geometry, 11:393–418, 1994.

6 Pankaj K. Agarwal, Jiří Matoušek, and Otfried Schwarzkopf. Computing many faces in
arrangements of lines and segments. SIAM Journal on Computing, 27(2):491–505, 1998.

7 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM Journal on Computing, 42(6):2039–2062, 2013.

8 Alok Aggarwal, Mark Hansen, and Frank Thomson Leighton. Solving query-retrieval problems
by compacting Voronoi diagrams. In Proceedings of the Twenty-second Symposium on Theory
of Computing (STOC90), pages 331–340, 1990.

9 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, 2013.

10 Jon Louis Bentley and Hermann A. Maurer. A note on Euclidean near neighbor searching in
the plane. Information Processing Letters, 8(3):133–136, 1979.

11 Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou,
and Maksym Zavershynskyi. On the complexity of higher order abstract Voronoi diagrams.
Computational Geometry: Theory and Applications, 48(8):539–551, 2015.

12 Cecilia Bohler, Rolf Klein, and Chih-Hung Liu. An efficient randomized algorithm for higher-
order abstract Voronoi diagrams. Algorithmica, 81(6):2317–2345, 2019.

13 Cecilia Bohler, Chih-Hung Liu, Evanthia Papadopoulou, and Maksym Zavershynskyi. A
randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams. Com-
putational Geometry: Theory and Applications, 59:26–38, 2016.

14 Sergio Cabello and Miha Jejcic. Shortest paths in intersection graphs of unit disks. Computa-
tional Geometry: Theory and Applications, 48(4):360–367, 2015.

15 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (<=
k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

16 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. Journal of the ACM, 57(3):Article 16, 2010.

17 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In Proceedings
of the Thirty-fifth International Symposium on Computational Geometry (SoCG19), pages
24:1–24:13, 2019.

18 Timothy M. Chan, Mihai Patrascu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM Journal on Computing, 40(2):333–349, 2011.

Chih-Hung Liu 29

19 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. Discrete & Computational Geometry, 56(4):866–881, 2016.

20 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6:485–524, 1991.

21 Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap. New upper bounds
for neighbor searching. Information and Control, 68(1-3):105–124, 1986.

22 Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. A singly ex-
ponential stratification scheme for real semi-algebraic varieties and its applications. Theoretical
Computer Science, 84(1):77–105, 1991.

23 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use in
geometry. Combinatorica, 10(3):229–249, 1990.

24 Kenneth L. Clarkson. New applications of random sampling in computational geometry.
Discrete & Computational Geometry, 2:195–222, 1987.

25 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4:387–421, 1989.

26 Richard Cole and Chee-Keng Yap. Geometric retrieval problems. Information and Control,
63:39–57, 1984.

27 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008.

28 Mark de Berg, Katrin Dobrindt, and Otfried Cheong. On lazy randomized incremental
construction. Discrete & Computational Geometry, 14(1):261–286, 1995.

29 Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a
monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.

30 David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.
Discrete & Computational Geometry, 13:111–122, 1995.

31 Martin Fürer and Shiva Prasad Kasiviswanathan. Spanners for geometric intersection graphs
with applications. Journal of Computational Geometry, 3(1):31–64, 2012.

32 Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete &
Computational Geometry, 45(3):462–496, 2011.

33 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proceedings of the Twenty-Eighth Annual Symposium on Discrete Algorithms (SODA17),
pages 2495–2504, 2017. The current full version is in CoRR abs/1604.03654.

34 Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in Computer
Science. Springer, 1989.

35 Der-Tsai Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Transactions on
Computers, 31(6):478–487, 1982.

36 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and Applica-
tions, 2:169–186, 1992.

37 Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002.

38 Ketan Mulmuley. Computational geometry - an introduction through randomized algorithms.
Prentice Hall, 1994.

39 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings of
the Fifteenth Annual Symposium on Computational Geometry (SoCG99), pages 390–399, 1999.
The current complete version is in http://www.unalmed.edu.co/~earamosn/cpapers-list.
html.

40 Liam Roditty and Michael Segal. On bounded leg shortest paths problems. Algorithmica,
59(4):583–600, 2011.

41 Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings of the Sixteenth
Annual Symposium on Foundations of Computer Science (FOCS75), pages 151–162, 1975.

http://www.unalmed.edu.co/~earamosn/cpapers-list.html
http://www.unalmed.edu.co/~earamosn/cpapers-list.html

30 Nearly Optimal Planar k Nearest Neighbors Queries under General Distance Functions

42 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

43 Micha Sharir, Shakhar Smorodinsky, and Gábor Tardos. An improved bound for k-sets in
three dimensions. Discrete & Computational Geometry, 26(2):195–204, 2001.

	1 Introduction
	1.1 Our Contributions

	2 Random Sampling
	2.1 Configuration Space
	2.2 Many Local Conflicts Prevent Few Global Conflicts
	2.3 Logarithmic Local Conflicts are Enough

	3 Shallow Cutting
	3.1 Distance Functions and Vertical Decomposition
	3.2 Design of Shallow Cutting
	3.3 Structure Complexity

	4 Data Structure
	5 Construction Algorithm
	5.1 Construct VD(R)
	5.2 Select AD(R) from VD(R)
	5.3 Build SC(R) from AD(R)
	5.3.1 Build RD(R) from AD(R)
	5.3.2 Build SC(R) from RD(R)

	5.4 Time Analysis

	6 Concluding Remarks
	A Literature for Shallow Cuttings
	B Applications of the New Dynamic Data Structure
	B.1 Direct Applications
	B.2 Problems on Disk Intersection Graph

	C Comparison with Clarkson 1987's Result Clarkson87

