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Abstract. We consider the bilinear optimal control of an advection-reaction-diffusion system,
where the control arises as the velocity field in the advection term. Such a problem is generally
challenging from both theoretical analysis and algorithmic design perspectives mainly because the
state variable depends nonlinearly on the control variable and an additional divergence-free con-
straint on the control is coupled together with the state equation. Mathematically, the proof of the
existence of optimal solutions is delicate, and up to now, only some results are known for a few
special cases where additional restrictions are imposed on the space dimension and the regularity of
the control. We prove the existence of optimal controls and derive the first-order optimality condi-
tions in general settings without any extra assumption. Computationally, the well-known conjugate
gradient (CG) method can be applied conceptually. However, due to the additional divergence-free
constraint on the control variable and the nonlinear relation between the state and control vari-
ables, it is challenging to compute the gradient and the optimal stepsize at each CG iteration, and
thus nontrivial to implement the CG method. To address these issues, we advocate a fast inner
preconditioned CG method to ensure the divergence-free constraint and an efficient inexactness
strategy to determine an appropriate stepsize. An easily implementable nested CG method is thus
proposed for solving such a complicated problem. For the numerical discretization, we combine
finite difference methods for the time discretization and finite element methods for the space dis-
cretization. Efficiency of the proposed nested CG method is promisingly validated by the results of
some preliminary numerical experiments.

1. Introduction

1.1. Background and Motivation. The optimal control of distributed parameter systems has
important applications in various scientific areas, such as physics, chemistry, engineering, medicine,
and finance. We refer to, e.g. [12, 13, 14, 22, 26, 28], for a few references. In a typical mathematical
model of a controlled distributed parameter system, either boundary or internal locally distributed
controls are usually used; these controls have localized support and are called additive controls
because they arise in the model equations as additive terms. Optimal control problems with additive
controls have received a significant attention in past decades following the pioneering work of J. L.
Lions [22], and many mathematical and computational tools have been developed, see e.g., [12, 13,
14, 23, 27, 29]. However, it is worth noting that additive controls describe the effect of external
added sources or forces and they do not change the principal intrinsic properties of the controlled
system. Hence, they are not suitable to deal with processes whose principal intrinsic properties
should be changed by some control actions. For instance, if we aim at changing the reaction rate in
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some chain reaction-type processes from biomedical, nuclear, and chemical applications, additive
controls amount to controlling the chain reaction by adding into or withdrawing out of a certain
amount of the reactants, which is not realistic. To address this issue, a natural idea is to use
certain catalysts or smart materials to control the systems, which can be mathematically modeled
by optimal control problems with bilinear controls. We refer to [19] for more detailed discussions.

Bilinear controls, also known as multiplicative controls, enter the model as coefficients of the
corresponding partial differential equations (PDEs). These bilinear controls can change some main
physical characteristics of the system under investigation, such as a natural frequency response
of a beam or the rate of a chemical reaction. In the literature, bilinear controls of distributed
parameter systems have become an increasingly popular topic and bilinear optimal control problems
constrained by various PDEs, such as elliptic equations [20], convection-diffusion equations [3],
parabolic equations [18], the Schrödinger equation [16] and the Fokker-Planck equation [7], have
been widely studied both mathematically and computationally.

In particular, bilinear controls play a crucial role in optimal control problems modeled by
advection-reaction-diffusion systems. On one hand, the control can be the coefficient of the diffusion
or the reaction term. For instance, a system controlled by the so-called catalysts that can accelerate
or slow down various chemical or biological reactions can be modeled by a bilinear optimal control
problem for an advection-reaction-diffusion equation where the control arises as the coefficient of
the reaction term [18]; this kind of bilinear optimal control problems have been studied in e.g.,
[3, 4, 18, 19]. On the other hand, the systems can also be controlled by the velocity field in the
advection term, which captures important applications in e.g., bioremediation [15], environmental
remediation process [21], and mixing enhancement of different fluids [24]. We note that there is
a very limited research being done on the velocity field controlled bilinear optimal control prob-
lems; and only some special one-dimensional space cases have been studied in [15, 17, 21] for the
existence of an optimal control and the derivation of first-order optimality conditions. To the best
of our knowledge, no work has been done yet to develop efficient numerical methods for solving
multi-dimensional bilinear optimal control problems controlled by the velocity field in the advec-
tion term. All these facts motivate us to study bilinear optimal control problems constrained by an
advection-reaction-diffusion equation, where the control enters into the model as the velocity field
in the advection term. Actually, investigating this kind of problems was suggested to one of us (R.
Glowinski), in the late 1990’s, by J. L. Lions (1928-2001).

1.2. Model. Let Ω be a bounded domain of Rd with d ≥ 1 and let Γ be its boundary. We consider
the following bilinear optimal control problem:{

u ∈ U ,
J(u) ≤ J(v), ∀v ∈ U ,(BCP)

with the objective functional J defined by

(1.1) J(v) =
1

2

∫∫
Q
|v|2dxdt+

α1

2

∫∫
Q
|y − yd|2dxdt+

α2

2

∫
Ω
|y(T )− yT |2dx,

and y = y(t;v) the solution of the following advection-reaction-diffusion equation
∂y

∂t
− ν∇2y + v · ∇y + a0y = f in Q,

y = g on Σ,

y(0) = φ.

(1.2)

Above and below, Q = Ω×(0, T ) and Σ = Γ×(0, T ) with 0 < T < +∞; α1 ≥ 0, α2 ≥ 0, α1 +α2 > 0;
the target functions yd and yT are given in L2(Q) and L2(Ω), respectively; the diffusion coefficient
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ν > 0 and the reaction coefficient a0 are assumed to be constants; the functions f ∈ L2(Q),

g ∈ L2(0, T ;H1/2(Γ)) and φ ∈ L2(Ω). The set U of the admissible controls is defined by

U := {v|v ∈ [L2(Q)]d,∇ · v = 0}.
Clearly, the control variable v arises in (BCP) as a flow velocity field in the advection term of (1.2),
and the divergence-free constraint ∇·v = 0 implies that the flow is incompressible. One can control
the system by changing the flow velocity v in order that y and y(T ) are good approximations to yd
and yT , respectively.

1.3. Difficulties and Goals. In this paper, we intend to study the bilinear optimal control prob-
lem (BCP) in the general case of d ≥ 2 both mathematically and computationally. Precisely, we
first study the well-posedness of (1.2), the existence of an optimal control u, and its first-order
optimality condition. Then, computationally, we propose an efficient and relatively easy to im-
plement numerical method to solve (BCP). For this purpose, we advocate combining a conjugate
gradient (CG) method with a finite difference method (for the time discretization) and a finite
element method (for the space discretization) for the numerical solution of (BCP). Although these
numerical approaches have been well developed in the literature, it is nontrivial to implement them
to solve (BCP) as discussed below, due to the complicated problem settings.

1.3.1. Difficulties in Algorithmic Design. Conceptually, a CG method for solving (BCP) can be
easily derived following [14]. However, CG algorithms are challenging to implement numerically for
the following reasons: 1). The state y depends non-linearly on the control v despite the fact that
the state equation (1.2) is linear. 2). The additional divergence-free constraint on the control v,
i.e., ∇ · v = 0, is coupled together with the state equation (1.2).

To be more precise, the fact that the state y is a nonlinear function of the control v makes the
optimality system a nonlinear problem. Hence, seeking a suitable stepsize in each CG iteration
requires solving an optimization problem and it can not be as easily computed as in the linear case
[14]. Note that commonly used line search strategies are too expensive to employ in our settings
because they require evaluating the objective functional value J(v) repeatedly and every evaluation
of J(v) entails solving the state equation (1.2). The same concern on the computational cost also
applies when the Newton method is employed to solve the corresponding optimization problem
for finding a stepsize. To tackle this issue, we propose an efficient inexact stepsize strategy which
requires solving only one additional linear parabolic problem and is cheap to implement as shown
in Section 3.

Furthermore, due to the divergence-free constraint ∇ · v = 0, an extra projection onto the
admissible set U is required to compute the first-order differential of J at each CG iteration in
order that all iterates of the CG method are feasible. Generally, this projection subproblem has
no closed-form solution and has to be solved iteratively. Here, we introduce a Lagrange multiplier
associated with the constraint ∇ · v = 0, then the computation of the first-order differential DJ(v)
of J at v is equivalent to solving a Stokes type problem. Inspired by [9], we advocate employing a
preconditioned CG method, which operates on the space of the Lagrange multiplier, to solve the
resulting Stokes type problem. With an appropriately chosen preconditioner, a fast convergence
of the resulting preconditioned CG method can be expected in practice (and indeed, has been
observed).

1.3.2. Difficulties in Numerical Discretization. For the numerical discretization of (BCP), we note
that if an implicit finite difference scheme is used for the time discretization of the state equation
(1.2), a stationary advection-reaction-diffusion equation should be solved at each time step. To
solve this stationary advection-reaction-diffusion equation, it is well known that standard finite
element techniques may lead to strongly oscillatory solutions unless the mesh-size is sufficiently
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small with respect to the ratio between ν and ‖v‖. In the context of optimal control problems,
to overcome such difficulties, different stabilized finite element methods have been proposed and
analyzed, see e.g., [1, 6]. Different from the above references, we implement the time discretization
by a semi-implicit finite difference method for simplicity, namely, we use explicit advection and
reaction terms and treat the diffusion term implicitly. Consequently, only a simple linear elliptic
equation is required to be solved at each time step. We then implement the space discretization
of the resulting elliptic equation at each time step by a standard piecewise linear finite element
method and the resulting linear system is very easy to solve.

Moreover, we recall that the divergence-free constraint∇·v = 0 leads to a projection subproblem,
which is equivalent to a Stokes type problem, at each iteration of the CG algorithm. As discussed
in [8], to discretize a Stokes type problem, direct applications of standard finite element methods
always lead to an ill-posed discrete problem. To overcome this difficulty, one can use different types
of element approximations for pressure and velocity. Inspired by [8, 9], we employ the Bercovier-
Pironneau finite element pair [2] (also known as P1-P1 iso P2 finite element) to approximate the
control v and the Lagrange multiplier associated with the divergence-free constraint. More con-
cretely, we approximate the Lagrange multiplier by a piecewise linear finite element space which is
twice coarser than the one for the control v. In this way, the discrete problem is well-posed and
can be solved by a preconditioned CG method. As a byproduct of the above discretization, the
total number of degrees of freedom of the discrete Lagrange multiplier is only 1

d2d
of the number

of the discrete control. Hence, the inner preconditioned CG method is implemented in a lower-
dimensional space than that of the state equation (1.2), implying a computational cost reduction.
With the above mentioned discretization schemes, we can relatively easily obtain the fully discrete
version of (BCP) and derive the discrete analogue of our proposed nested CG method.

1.4. Organization. An outline of this paper is as follows. In Section 2, we prove the existence of
optimal controls for (BCP) and derive the associated first-order optimality conditions. An easily
implementable nested CG method is proposed in Section 3 for solving (BCP) numerically. In
Section 4, we discuss the numerical discretization of (BCP) by finite difference and finite element
methods. Some preliminary numerical results are reported in Section 5 to validate the efficiency of
our proposed numerical approach. Finally, some conclusions are drawn in Section 6.

2. Existence of optimal controls and first-order optimality conditions

In this section, first we present some notation and known results from the literature that will be
used in later analysis. Then, we prove the existence of optimal controls for (BCP) and derive the
associated first-order optimality conditions. Without loss of generality, we assume that f = 0 and
g = 0 in (1.2) for convenience.

2.1. Preliminaries. Throughout, we denote by Ls(Ω) and Hs(Ω) the usual Sobolev spaces for any
s > 0. The space Hs

0(Ω) denotes the completion of C∞0 (Ω) in Hs(Ω), where C∞0 (Ω) denotes the
space of all infinitely differentiable functions over Ω with a compact support in Ω. In addition, we
shall also use the following vector-valued function spaces:

L2(Ω) := [L2(Ω)]d,

L2
div(Ω) := {v ∈ L2(Ω),∇ · v = 0 in Ω}.

Let X be a Banach space with a norm ‖ · ‖X , then the space L2(0, T ;X) consists of all measurable
functions z : (0, T )→ X satisfying

‖z‖L2(0,T ;X) :=

(∫ T

0
‖z(t)‖2Xdt

) 1
2

< +∞.



BILINEAR OPTIMAL CONTROL OF AN ADVECTION-REACTION-DIFFUSION SYSTEM 5

With the above notation, it is clear that the admissible set U can be denoted as U := L2(0, T ;L2
div(Ω)).

Moreover, the spaceW (0, T ) consists of all functions z ∈ L2(0, T ;H1
0 (Ω)) such that ∂z

∂t ∈ L
2(0, T ;H−1(Ω))

exists in a weak sense, i.e.

W (0, T ) := {z|z ∈ L2(0, T ;H1
0 (Ω)),

∂z

∂t
∈ L2(0, T ;H−1(Ω))},

where H−1(Ω)(= H1
0 (Ω)′) is the dual space of H1

0 (Ω).
Next, we summarize some known results for the advection-reaction-diffusion equation (1.2) in

the literature for the convenience of further analysis.
The variational formulation of the state equation (1.2) reads: find y ∈W (0, T ) such that y(0) = φ

and ∀z ∈ L2(0, T ;H1
0 (Ω)),

(2.1)

∫ T

0

〈
∂y

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q
∇y · ∇zdxdt+

∫∫
Q
v · ∇yzdxdt+ a0

∫∫
Q
yzdxdt = 0,

where 〈·, ·〉H−1(Ω),H1
0 (Ω) denotes the duality pairing between H−1(Ω) and H1

0 (Ω). The existence and

uniqueness of the solution y ∈ W (0, T ) to problem (2.1) can be proved by standard arguments
relying on the Lax-Milgram theorem, we refer to [22] for the details. Moreover, we can define
the control-to-state operator S : U → W (0, T ), which maps v to y = S(v). Then, the objective
functional J in (BCP) can be reformulated as

J(v) =
1

2

∫∫
Q
|v|2dxdt+

α1

2

∫∫
Q
|S(v)− yd|2dxdt+

α2

2

∫
Ω
|S(v)(T )− yT |2dx,

and the nonlinearity of the solution operator S implies that (BCP) is nonconvex.
For the solution y ∈W (0, T ), we have the following estimates.

Lemma 2.1. Let v ∈ L2(0, T ;L2
div(Ω)), then the solution y ∈ W (0, T ) of the state equation (1.2)

satisfies the following estimate:

(2.2) ‖y(t)‖2L2(Ω) + 2ν

∫ t

0
‖∇y(s)‖2L2(Ω)ds+ 2a0

∫ t

0
‖y(s)‖2L2(Ω)ds = ‖φ‖2L2(Ω).

Proof. We first multiply the state equation (1.2) by y(t), then applying the Green’s formula in
space yields

(2.3)
1

2

d

dt
‖y(t)‖2L2(Ω) = −ν‖∇y(t)‖2L2(Ω) − a0‖y(t)‖2L2(Ω).

The desired result (2.2) can be directly obtained by integrating (2.3) over [0, t]. �

Above estimate implies that

(2.4) y is bounded in L2(0, T ;H1
0 (Ω)).

On the other hand,
∂y

∂t
= ν∇2y − v · ∇y − a0y,

and the right hand side is bounded in L2(0, T ;H−1(Ω)). Hence,

(2.5)
∂y

∂t
is bounded in L2(0, T ;H−1(Ω)).

Furthermore, since ∇ · v = 0, it is clear that∫∫
Q
v·∇yzdxdt =

∫∫
Q
∇y·(vz)dxdt = −

∫∫
Q
y∇·(vz)dxdt = −

∫∫
Q
y(v·∇z)dxdt,∀z ∈ L2(0, T ;H1

0 (Ω)).
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Hence, the variational formulation (2.1) can be equivalently written as:“ find y ∈ W (0, T ) such
that y(0) = φ and ∀z ∈ L2(0, T ;H1

0 (Ω)),∫ T

0

〈
∂y

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q
∇y · ∇zdxdt−

∫∫
Q

(v · ∇z)ydxdt+ a0

∫∫
Q
yzdxdt = 0.

2.2. Existence of Optimal Controls. With above preparations, we prove in this subsection the
existence of optimal controls for (BCP). For this purpose, we first show that the objective functional
J is weakly lower semi-continuous.

Lemma 2.2. The objective functional J given by (1.1) is weakly lower semi-continuous. That is,
if a sequence {vn} converges weakly to v̄ in L2(0, T ;L2

div(Ω)), we have

J(v̄) ≤ lim inf
n→∞

J(vn).

Proof. Let {vn} be a sequence that converges weakly to v̄ in L2(0, T ;L2
div(Ω)) and yn := y(x, t;vn)

the solution of the following variational problem: find yn ∈ W (0, T ) such that yn(0) = φ and
∀z ∈ L2(0, T ;H1

0 (Ω)),
(2.6)∫ T

0

〈
∂yn
∂t

, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q
∇yn · ∇zdxdt−

∫∫
Q

(vn · ∇z)yndxdt+ a0

∫∫
Q
ynzdxdt = 0.

Moreover, it follows from (2.4) and (2.5) that there exists a subsequence of {yn}, still denoted by
{yn} for convenience, such that

yn → ȳ weakly in L2(0, T ;H1
0 (Ω)),

and
∂yn
∂t
→ ∂ȳ

∂t
weakly in L2(0, T ;H−1(Ω)).

Since Ω is bounded, it follows directly from the compactness property (also known as Rellich’s
Theorem) that

yn → ȳ strongly in L2(0, T ;L2(Ω)).

Taking vn → v̄ weakly in L2(0, T ;L2
div(Ω)) into account, we can pass the limit in (2.6) and derive

that ȳ(0) = φ and ∀z ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

〈
∂ȳ

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q
∇ȳ · ∇zdxdt−

∫∫
Q

(v̄ · ∇z)ȳdxdt+ a0

∫∫
Q
ȳzdxdt = 0,

which implies that ȳ is the solution of the state equation (1.2) associated with v̄.
Since any norm of a Banach space is weakly lower semi-continuous, we have that

lim inf
n→∞

J(vn)

=lim inf
n→∞

(
1

2

∫∫
Q
|vn|2dxdt+

α1

2

∫∫
Q
|yn − yd|2dxdt+

α2

2

∫
Ω
|yn(T )− yT |2dx

)
≥1

2

∫∫
Q
|v̄|2dxdt+

α1

2

∫∫
Q
|ȳ − yd|2dxdt+

α2

2

∫
Ω
|ȳ(T )− yT |2dx

=J(v̄).

We thus obtain that the objective functional J is weakly lower semi-continuous and complete the
proof. �

Now, we are in a position to prove the existence of an optimal solution u to (BCP).
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Theorem 2.3. There exists at least one optimal control u ∈ U = L2(0, T ;L2
div(Ω)) such that

J(u) ≤ J(v), ∀v ∈ U .

Proof. We first observe that J(v) ≥ 0, ∀v ∈ U , then the infimum of J(v) exists and we denote it as

j = inf
v∈U

J(v),

and there is a minimizing sequence {vn} ⊂ U such that

lim
n→∞

J(vn) = j.

This fact, together with 1
2‖vn‖

2
L2(0,T ;L2

div(Ω))
≤ J(vn), implies that {vn} is bounded in L2(0, T ;L2

div(Ω)).

Hence, there exists a subsequence, still denoted by {vn}, that converges weakly to u in L2(0, T ;L2
div(Ω)).

It follows from Lemma 2.2 that J is weakly lower semi-continuous and we thus have

J(u) ≤ lim inf
n→∞

J(vn) = j.

Since u ∈ U , we must have J(u) = j, and u is therefore an optimal control. �

We note that the uniqueness of optimal control u cannot be guaranteed and only a local optimal
solution can be pursued because the objective functional J is nonconvex due to the nonlinear
relationship between the state y and the control v.

2.3. First-order Optimality Conditions. Let DJ(v) be the first-order differential of J at v and
u an optimal control of (BCP). It is clear that the first-order optimality condition of (BCP) reads

DJ(u) = 0.

In the sequel of this subsection, we discuss the computation of DJ(v), which will play an important
role in subsequent sections.

To compute DJ(v), we employ a formal perturbation analysis as in [14]. First, let δv ∈ U be a
perturbation of v ∈ U , we clearly have

(2.7) δJ(v) =

∫∫
Q
DJ(v) · δvdxdt,

and also

δJ(v) =

∫∫
Q
v · δvdxdt+ α1

∫∫
Q

(y − yd)δydxdt+ α2

∫
Ω

(y(T )− yT )δy(T )dx,(2.8)

in which δy is the solution of
∂δy

∂t
− ν∇2δy + δv · ∇y + v · ∇δy + a0δy = 0 in Q,

δy = 0 on Σ,

δy(0) = 0.

(2.9)

Consider now a function p defined over Q (the closure of Q); and assume that p is a differentiable
function of x and t. Multiplying both sides of the first equation in (2.9) by p and integrating over
Q, we obtain∫∫

Q
p
∂

∂t
δydxdt− ν

∫∫
Q
p∇2δydxdt+

∫∫
Q
δv · ∇ypdxdt+

∫∫
Q
v · ∇δypdxdt+ a0

∫∫
Q
pδydxdt = 0.
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Integration by parts in time and application of Green’s formula in space yield∫
Ω
p(T )δy(T )dx−

∫
Ω
p(0)δy(0)dx+

∫∫
Q

[
− ∂p

∂t
− ν∇2p− v · ∇p+ a0p

]
δydxdt

+

∫∫
Q
δv · ∇ypdxdt− ν

∫∫
Σ

(
∂δy

∂n
p− ∂p

∂n
δy)dxdt+

∫∫
Σ
pδyv · ndxdt = 0.

(2.10)

where n is the unit outward normal vector at Γ.
Next, let us assume that the function p is the solution to the following adjoint system

−∂p
∂t
− ν∇2p− v · ∇p+ a0p = α1(y − yd) in Q,

p = 0 on Σ,

p(T ) = α2(y(T )− yT ).

(2.11)

It follows from (2.8), (2.9), (2.10) and (2.11) that

δJ(v) =

∫∫
Q

(v − p∇y) · δvdxdt.

which, together with (2.7), implies that

(2.12)


DJ(v) ∈ U ,∫∫

Q
DJ(v) · zdxdt =

∫∫
Q

(v − p∇y) · zdxdt,∀z ∈ U .

From the discussion above, the first-order optimality condition of (BCP) can be summarized as
follows.

Theorem 2.4. Let u ∈ U be a solution of (BCP). Then, it satisfies the following optimality
condition ∫∫

Q
(u− p∇y) · zdxdt = 0,∀z ∈ U ,

where y and p are obtained from u via the solutions of the following two parabolic equations:
∂y

∂t
− ν∇2y + u · ∇y + a0y = f in Q,

y = g on Σ,

y(0) = φ,

(state equation)

and 
−∂p
∂t
− ν∇2p− u · ∇p+ a0p = α1(y − yd) in Q,

p = 0 on Σ,

p(T ) = α2(y(T )− yT ).

(adjoint equation)

3. An Implementable Nested Conjugate Gradient Method

In this section, we discuss the application of a CG strategy to solve (BCP). In particular, we
elaborate on the computation of the gradient and the stepsize at each CG iteration, and thus obtain
an easily implementable algorithm.
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3.1. A Generic Conjugate Gradient Method for (BCP). Conceptually, implementing the
CG method to (BCP), we readily obtain the following algorithm:

(a) Given u0 ∈ U .
(b) Compute g0 = DJ(u0). If DJ(u0) = 0, then u = u0; otherwise set w0 = g0.

For k ≥ 0, uk, gk and wk being known, the last two different from 0, one computes
uk+1, gk+1 and wk+1 as follows:

(c) Compute the stepsize ρk by solving the following optimization problem{
ρk ∈ R,

J(uk − ρkwk) ≤ J(uk − ρwk), ∀ρ ∈ R.
(3.1)

(d) Update uk+1 and gk+1, respectively, by

uk+1 = uk − ρkwk,

and

gk+1 = DJ(uk+1).

If DJ(uk+1) = 0, take u = uk+1; otherwise,
(e) Compute

βk =

∫∫
Q |g

k+1|2dxdt∫∫
Q |gk|2dxdt

,

and then update

wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to (c).

The above iterative method looks very simple, but practically, the implementation of the CG
method (a)–(e) for the solution of (BCP) is nontrivial. In particular, it is numerically challenging
to compute DJ(v), ∀v ∈ U and ρk as illustrated below. We shall discuss how to address these two
issues in the following part of this section.

3.2. Computation of DJ(v). It is clear that the implementation of the generic CG method (a)–
(e) for the solution of (BCP) requires the knowledge of DJ(v) for various v ∈ U , and this has been
conceptually provided in (2.12). However, it is numerically challenging to compute DJ(v) by (2.12)
due to the restriction ∇ ·DJ(v) = 0 which ensures that all iterates uk of the CG method meet the
additional divergence-free constraint ∇ · uk = 0. In this subsection, we show that equation (2.12)
can be reformulated as a saddle point problem by introducing a Lagrange multiplier associated with
the constraint ∇ ·DJ(v) = 0. Then, a preconditioned CG method is proposed to solve this saddle
point problem.

We first note that equation (2.12) can be equivalently reformulated as

(3.2)


DJ(v)(t) ∈ S,∫

Ω
DJ(v)(t) · zdx =

∫
Ω

(v(t)− p(t)∇y(t)) · zdx, ∀z ∈ S,

where

S = {z|z ∈ [L2(Ω)]d,∇ · z = 0}.
Clearly, problem (3.2) is a particular case of

(3.3)


g ∈ S,∫

Ω
g · zdx =

∫
Ω
f · zdx, ∀z ∈ S,
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with f given in [L2(Ω)]d.
Introducing a Lagrange multiplier λ ∈ H1

0 (Ω) associated with the constraint ∇ · z = 0, it is clear
that problem (3.3) is equivalent to the following saddle point problem

(3.4)



(g, λ) ∈ [L2(Ω)]d ×H1
0 (Ω),∫

Ω
g · zdx =

∫
Ω
f · zdx+

∫
Ω
λ∇ · zdx,∀z ∈ [L2(Ω)]d,∫

Ω
∇ · gqdx = 0, ∀q ∈ H1

0 (Ω),

which is actually a Stokes type problem.
In order to solve problem (3.4), we advocate a CG method inspired from [9, 10]. For this purpose,

one has to specify the inner product to be used over H1
0 (Ω). As discussed in [9], the usual L2-inner

product, namely, {q, q′} →
∫

Ω qq
′dx leads to a CG method with poor convergence properties.

Indeed, using some arguments similar to those in [8, 9], we can show that the saddle point problem
(3.4) can be reformulated as a linear variational problem in terms of the Lagrange multiplier λ.
The corresponding coefficient matrix after space discretization with mesh size h has a condition
number of the order of h−2, which is ill-conditioned especially for small h and makes the CG method
converges fairly slow. Hence, preconditioning is necessary for solving problem (3.4). As suggested
in [9], we choose −∇·∇ as a preconditioner for problem (3.4), and the corresponding preconditioned
CG method operates in the space H1

0 (Ω) equipped with the inner product {q, q′} →
∫

Ω∇q · ∇q
′dx

and the associated norm ‖q‖H1
0 (Ω) = (

∫
Ω |∇q|

2dx)1/2, ∀q, q′ ∈ H1
0 (Ω). The resulting algorithm reads

as:

G1 Choose λ0 ∈ H1
0 (Ω).

G2 Solve 
g0 ∈ [L2(Ω)]d,∫

Ω
g0 · zdx =

∫
Ω
f · zdx+

∫
Ω
λ0∇ · zdx,∀z ∈ [L2(Ω)]d,

and 
r0 ∈ H1

0 (Ω),∫
Ω
∇r0 · ∇qdx =

∫
Ω
∇ · g0qdx,∀q ∈ H1

0 (Ω).

If
∫
Ω |∇r

0|2dx
max{1,

∫
Ω |∇λ0|2dx} ≤ tol1, take λ = λ0 and g = g0; otherwise set w0 = r0. For k ≥ 0,

λk, gk, rk and wk being known with the last two different from 0, we compute λk+1, gk+1, rk+1

and if necessary wk+1, as follows:

G3 Solve 
ḡk ∈ [L2(Ω)]d,∫

Ω
ḡk · zdx =

∫
Ω
wk∇ · zdx,∀z ∈ [L2(Ω)]d,

and 
r̄k ∈ H1

0 (Ω),∫
Ω
∇r̄k · ∇qdx =

∫
Ω
∇ · ḡkqdx,∀q ∈ H1

0 (Ω),

and compute the stepsize via

ηk =

∫
Ω |∇r

k|2dx∫
Ω∇r̄k · ∇wkdx

.
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G4 Update λk, gk and rk via

λk+1 = λk − ηkwk, gk+1 = gk − ηkḡk, and rk+1 = rk − ηkr̄k.

If
∫
Ω |∇r

k+1|2dx
max{1,

∫
Ω |∇r0|2dx} ≤ tol1, take λ = λk+1 and g = gk+1; otherwise,

G5 Compute

γk =

∫
Ω |∇r

k+1|2dx∫
Ω |∇rk|2dx

,

and update wk via

wk+1 = rk+1 + γkw
k.

Do k + 1→ k and return to G3.

Clearly, one only needs to solve two simple linear equations at each iteration of the preconditioned
CG algorithm (G1)-(G5), which implies that the algorithm is easy and cheap to implement. More-
over, due to the well-chosen preconditioner −∇ · ∇, one can expect the above preconditioned CG
algorithm to have a fast convergence; this will be validated by the numerical experiments reported
in Section 5.

3.3. Computation of the Stepsize ρk. Another crucial step to implement the CG method (a)–
(e) is the computation of the stepsize ρk. It is the solution of the optimization problem (3.1) which
is numerically expensive to be solved exactly or up to a high accuracy. For instance, to solve (3.1),
one may consider the Newton method applied to the solution of

H ′k(ρk) = 0,

where

Hk(ρ) = J(uk − ρwk).

The Newton method requires the second-order derivative H ′′k (ρ) which can be computed via an
iterated adjoint technique requiring the solution of four parabolic problems per Newton’s iteration.
Hence, the implementation of the Newton method is numerically expensive.

The high computational load for solving (3.1) motivates us to implement certain stepsize rule
to determine an approximation of ρk. Here, we advocate the following procedure to compute an
approximate stepsize ρ̂k.

For a given wk ∈ U , we replace the state y = S(uk−ρwk) in the objective functional J(uk−ρwk)
by

S(uk)− ρS′(uk)wk,

which is indeed the linearization of the mapping ρ 7→ S(uk − ρwk) at ρ = 0. We thus obtain the
following quadratic approximation of Hk(ρ):
(3.5)

Qk(ρ) :=
1

2

∫∫
Q
|uk − ρwk|2dxdt+

α1

2

∫∫
Q
|yk − ρzk − yd|2dxdt+

α2

2

∫
Ω
|yk(T )− ρzk(T )− yT |2dx,

where yk = S(uk) is the solution of the state equation (1.2) associated with uk, and zk = S′(uk)wk

satisfies the following linear parabolic problem
∂zk

∂t
− ν∇2zk + wk · ∇yk + uk · ∇zk + a0z

k = 0 in Q,

zk = 0 on Σ,

zk(0) = 0.

(3.6)
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Then, it is easy to show that the equation Q′k(ρ) = 0 admits a unique solution

(3.7) ρ̂k =

∫∫
Q gk ·wkdxdt∫∫

Q |wk|2dxdt+ α1

∫∫
Q |zk|2dxdt+ α2

∫
Ω |zk(T )|2dx

,

and we take ρ̂k, which is clearly an approximation of ρk, as the stepsize in each CG iteration.
Altogether, with the stepsize given by (3.7), every iteration of the resulting CG algorithm requires

solving only three parabolic problems, namely, the state equation (1.2) forward in time and the
associated adjoint equation (2.11) backward in time for the computation of gk, and to solving the
linearized parabolic equation (3.6) forward in time for the stepsize ρ̂k. For comparison, if the Newton
method is employed to compute the stepsize ρk by solving (3.1), at least six parabolic problems are
required to be solved at each iteration of the CG method, which is much more expensive numerically.

Remark 3.1. To find an appropriate stepsize, a natural idea is to employ some line search strategies,
such as the backtracking strategy based on the Armijo–Goldstein condition or the Wolf condition,
see e.g., [25]. It is worth noting that these line search strategies require the evaluation of J(v)
repeatedly, which is numerically expensive because every evaluation of J(v) for a given v requires
solving the state equation (1.2). Moreover, we have implemented the CG method for solving (BCP)
with various line search strategies and observed from the numerical results that line search strategies
always lead to tiny stepsizes making extremely slow the convergence of the CG method.

3.4. A Nested CG Method for Solving (BCP). Following Sections 3.2 and 3.3, we advocate
the following nested CG method for solving (BCP):

I. Given u0 ∈ U .
II. Compute y0 and p0 by solving the state equation (1.2) and the adjoint equation (2.11)

corresponding to u0. Then, for a.e. t ∈ (0, T ), solve
g0(t) ∈ S,∫

Ω
g0(t) · zdx =

∫
Ω

(u0(t)− p0(t)∇y0(t)) · zdx,∀z ∈ S,

by the preconditioned CG algorithm (G1)–(G5); and set w0 = g0.

For k ≥ 0, uk, gk and wk being known, the last two different from 0, one computes
uk+1, gk+1 and wk+1 as follows:

III. Compute the stepsize ρ̂k by (3.7).
IV. Update uk+1 by

uk+1 = uk − ρ̂kwk.

Compute yk+1 and pk+1 by solving the state equation (1.2) and the adjoint equation (2.11)
corresponding to uk+1; and for a.e. t ∈ (0, T ), solve

gk+1(t) ∈ S,∫
Ω
gk+1(t) · zdx =

∫
Ω

(uk+1(t)− pk+1(t)∇yk+1(t)) · zdx,∀z ∈ S,

by the preconditioned CG algorithm (G1)–(G5).

If

∫∫
Q |g

k+1|2dxdt∫∫
Q |g0|2dxdt ≤ tol, take u = uk+1; else
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V. Compute

βk =

∫∫
Q |g

k+1|2dxdt∫∫
Q |gk|2dxdt

, and wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to III.

4. Space and time discretizations

In this section, we discuss first the numerical discretization of the bilinear optimal control problem
(BCP). We achieve the time discretization by a semi-implicit finite difference method and the space
discretization by a piecewise linear finite element method. Then, we discuss an implementable
nested CG method for solving the fully discrete bilinear optimal control problem.

4.1. Time Discretization of (BCP). First, we define a time discretization step ∆t by ∆t = T/N ,
with N a positive integer. Then, we approximate the control space U = L2(0, T ; S) by U∆t := (S)N ;
and equip U∆t with the following inner product

(v,w)∆t = ∆t
N∑
n=1

∫
Ω
vn ·wndx, ∀v = {vn}Nn=1,w = {wn}Nn=1 ∈ U∆t,

and the norm

‖v‖∆t =

(
∆t

N∑
n=1

∫
Ω
|vn|2dx

) 1
2

, ∀v = {vn}Nn=1 ∈ U∆t.

Then, (BCP) is approximated by the following semi-discrete bilinear control problem (BCP)∆t:

(BCP)∆t

{
u∆t ∈ U∆t,

J∆t(u∆t) ≤ J∆t(v), ∀v = {vn}Nn=1 ∈ U∆t,

where the cost functional J∆t is defined by

J∆t(v) =
1

2
∆t

N∑
n=1

∫
Ω
|vn|2dx+

α1

2
∆t

N∑
n=1

∫
Ω
|yn − ynd |2dx+

α2

2

∫
Ω
|yN − yT |2dx,

with {yn}Nn=1 the solution of the following semi-discrete state equation: y0 = φ; then for n =
1, . . . , N , with yn−1 being known, we obtain yn from the solution of the following linear elliptic
problem: 

yn − yn−1

∆t
− ν∇2yn + vn · ∇yn−1 + a0yn−1 = fn in Ω,

yn = gn on Γ.
(4.1)

Remark 4.1. For simplicity, we have chosen a one-step semi-explicit scheme to discretize system
(1.2). This scheme is first-order accurate and reasonably robust, once combined to an appropri-
ate space discretization. The application of second-order accurate time discretization schemes to
optimal control problems has been discussed in e.g., [5].

Remark 4.2. At each step of scheme (4.1), we only need to solve a simple linear elliptic problem to
obtain yn from yn−1, and there is no particular difficulty in solving such a problem.

The existence of a solution to the semi-discrete bilinear optimal control problem (BCP)∆t can
be proved in a similar way as what we have done for the continuous case. Let u∆t be a solution of
(BCP)∆t, then it verifies the following first-order optimality condition:

DJ∆t(u∆t) = 0,
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where DJ∆t(v) is the first-order differential of the functional J∆t at v ∈ U∆t.
Proceeding as in the continuous case, we can show that DJ∆t(v) = {gn}Nn=1 ∈ U∆t where

gn ∈ S,∫
Ω
gn ·wdx =

∫
Ω

(vn − pn∇yn−1) ·wdx,∀w ∈ S,

and the vector-valued function {pn}Nn=1 is the solution of the semi-discrete adjoint system below:

pN+1 = α2(yN − yT );

for n = N , solve 
pN − pN+1

∆t
− ν∇2pN = α1(yN − yNd ) in Ω,

pN = 0 on Γ,

and for n = N − 1, · · · , 1, solve
pn − pn+1

∆t
− ν∇2pn − vn+1 · ∇pn+1 + a0pn+1 = α1(yn − ynd ) in Ω,

pn = 0 on Γ.

4.2. Space Discretization of (BCP)∆t. In this subsection, we discuss the space discretization
of (BCP)∆t, obtaining thus a full space-time discretization of (BCP). For simplicity, we suppose
from now on that Ω is a polygonal domain of R2 (or has been approximated by a family of such
domains).

Let TH be a classical triangulation of Ω, with H the largest length of the edges of the triangles of
TH . From TH we construct Th with h = H/2 by joining the mid-points of the edges of the triangles
of TH .

We first consider the finite element space Vh defined by

Vh = {ϕh|ϕh ∈ C0(Ω̄);ϕh |T ∈ P1, ∀T ∈ Th}

with P1 the space of the polynomials of two variables of degree ≤ 1. Two useful sub-spaces of Vh
are

V0h = {ϕh|ϕh ∈ Vh, ϕh |Γ= 0} := Vh ∩H1
0 (Ω),

and (assuming that g(t) ∈ C0(Γ))

Vgh(t) = {ϕh|ϕh ∈ Vh, ϕh(Q) = g(Q, t),∀Q vertex of Th located on Γ}.

In order to construct the discrete control space, we introduce first

ΛH = {ϕH |ϕH ∈ C0(Ω̄);ϕH |T ∈ P1,∀T ∈ TH}, and Λ0H = {ϕH |ϕH ∈ ΛH , ϕH |Γ= 0}.

Then, the discrete control space U∆t
h is defined by

U∆t
h = (Sh)N , with Sh = {vh|vh ∈ Vh × Vh,

∫
Ω
∇ · vhqHdx

(
= −

∫
Ω
vh · ∇qHdx

)
= 0,∀qH ∈ Λ0H}.

With the above finite element spaces, we approximate (BCP) and (BCP)∆t by (BCP)∆t
h defined

by

(BCP)∆t
h

{
u∆t
h ∈ U∆t

h ,

J∆t
h (u∆t

h ) ≤ J∆t
h (v∆t

h ), ∀v∆t
h ∈ U∆t

h ,
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where the fully discrete cost functional J∆t
h is defined by

(4.2) J∆t
h (v∆t

h ) =
1

2
∆t

N∑
n=1

∫
Ω
|vn,h|2dx+

α1

2
∆t

N∑
n=1

∫
Ω
|yn,h − ynd |2dx+

α2

2

∫
Ω
|yN,h − yT |2dx

with {yn,h}Nn=1 the solution of the following fully discrete state equation: y0,h = φh ∈ Vh, where φh
verifies

φh ∈ Vh,∀h > 0, and lim
h→0

φh = φ, in L2(Ω),

then, for n = 1, . . . , N , with yn−1,h being known, we obtain yn,h ∈ Vgh(n∆t) from the solution of
the following linear variational problem:
(4.3)∫

Ω

yn,h − yn−1,h

∆t
ϕdx+ν

∫
Ω
∇yn,h·∇ϕdx+

∫
Ω
vn·∇yn−1,hϕdx+

∫
Ω
a0yn−1,hϕdx =

∫
Ω
fnϕdx,∀ϕ ∈ V0h.

In the following discussion, the subscript h in all variables will be omitted for simplicity.
In a similar way as what we have done in the continuous case, one can show that the first-order

differential of J∆t
h at v ∈ U∆t

h is DJ∆t
h (v) = {gn}Nn=1 ∈ (Sh)N where

(4.4)


gn ∈ Sh,∫

Ω
gn · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx, ∀z ∈ Sh,

and the vector-valued function {pn}Nn=1 is the solution of the following fully discrete adjoint system:

(4.5) pN+1 = α2(yN − yT );

for n = N , solve
pN ∈ V0h,∫

Ω

pN − pN+1

∆t
ϕdx+ ν

∫
Ω
∇pN · ∇ϕdx =

∫
Ω
α1(yN − yNd )ϕdx,∀ϕ ∈ V0h,

(4.6)

then, for n = N − 1, · · · , 1,, solve
pn ∈ V0h,∫

Ω

pn − pn+1

∆t
ϕdx+ ν

∫
Ω
∇pn · ∇ϕdx−

∫
Ω
vn+1 · ∇pn+1ϕdx

+ a0

∫
Ω
pn+1ϕdx =

∫
Ω
α1(yn − ynd )ϕdx,∀ϕ ∈ V0h.

(4.7)

It is worth mentioning that the so-called discretize-then-optimize strategy is employed here, which
implies that we first discretize (BCP), and to compute the gradient in a discrete setting, the fully
discrete adjoint equation (4.5)–(4.7) has been derived from the fully discrete cost functional J∆t

h (v)
(4.2) and the fully discrete state equation (4.3). This implies that the fully discrete state equation
(4.3) and the fully discrete adjoint equation (4.5)–(4.7) are strictly in duality. This fact guarantees
that −DJ∆t

h (v) is a descent direction of the fully discrete bilinear optimal control problem (BCP)∆t
h .

Remark 4.3. A natural alternative has been advocated in the literature: (i) Derive the adjoint
equation to compute the first-order differential of the cost functional in a continuous setting; (ii)
Discretize the state and adjoint state equations by certain numerical schemes; (iii) Use the resulting
discrete analogs of y and p to compute a discretization of the differential of the cost functional. The
main problem with this optimize-then-discretize approach is that it may not preserve a strict duality
between the discrete state equation and the discrete adjoint equation. This fact implies in turn
that the resulting discretization of the continuous gradient may not be a gradient of the discrete
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optimal control problem. As a consequence, the resulting algorithm is not a descent algorithm and
divergence may take place (see [11] for a related discussion).

4.3. A Nested CG Method for Solving the Fully Discrete Problem (BCP)∆t
h . In this

subsection, we propose a nested CG method for solving the fully discrete problem (BCP)∆t
h . As

discussed in Section 3, the implementation of CG requires the knowledge of DJ∆t
h (v) and an

appropriate stepsize. In the following discussion, we address these two issues by extending the
results for the continuous case in Sections 3.2 and 3.3 to the fully discrete settings; and derive the
corresponding CG algorithm.

First, it is clear that one can compute DJ∆t
h (v) via the solution of the N linear variational

problems encountered in (4.4). For this purpose, we introduce a Lagrange multiplier λ ∈ Λ0H

associated with the divergence-free constraint, then problem (4.4) is equivalent to the following
saddle point system

(4.8)



(gn, λ) ∈ (Vh × Vh)× Λ0H ,∫
Ω
gn · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx+

∫
Ω
λ∇ · zdx,∀z ∈ Vh × Vh,∫

Ω
∇ · gnqdx = 0,∀q ∈ Λ0H .

As discussed in Section 3.2, problem (4.8) can be solved by the following preconditioned CG
algorithm, which is actually a discrete analogue of (G1)–(G5).

DG1 Choose λ0 ∈ Λ0H .
DG2 Solve 

g0
n ∈ Vh × Vh,∫
Ω
g0
n · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx+

∫
Ω
λ0∇ · zdx, ∀z ∈ Vh × Vh,

and 
r0 ∈ Λ0H ,∫

Ω
∇r0 · ∇qdx =

∫
Ω
∇ · g0

nqdx,∀q ∈ Λ0H .

If
∫
Ω |∇r

0|2dx
max{1,

∫
Ω |∇λ0|2dx} ≤ tol1, take λ = λ0 and gn = g0

n; otherwise set w0 = r0. For k ≥ 0,

λk, gkn, r
k and wk being known with the last two different from 0, we define λk+1, gk+1

n , rk+1

and if necessary wk+1, as follows:

DG3 Solve 
ḡkn ∈ Vh × Vh,∫

Ω
ḡkn · zdx =

∫
Ω
wk∇ · zdx,∀z ∈ Vh × Vh,

and 
r̄k ∈ Λ0H ,∫

Ω
∇r̄k · ∇qdx =

∫
Ω
∇ · ḡknqdx,∀q ∈ Λ0H ,

and compute

ηk =

∫
Ω |∇r

k|2dx∫
Ω∇r̄k · ∇wkdx

.
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DG4 Update λk, gkn and rk via

λk+1 = λk − ηkwk, gk+1
n = gkn − ηkḡkn, and rk+1 = rk − ηkr̄k.

If
∫
Ω |∇r

k+1|2dx
max{1,

∫
Ω |∇r0|2dx} ≤ tol1, take λ = λk+1 and gn = gk+1

n ; otherwise,

DG5 Compute

γk =

∫
Ω |∇r

k+1|2dx∫
Ω |∇rk|2dx

,

and update wk via

wk+1 = rk+1 + γkw
k.

Do k + 1→ k and return to DG3.

To find an appropriate stepsize in the CG iteration for the solution of (BCP)∆t
h , we note that,

for any {wn}Nn=1 ∈ (Sh)N , the fully discrete analogue of Qk(ρ) in (3.5) reads as

Q∆t
h (ρ) =

1

2
∆t

N∑
n=1

∫
Ω
|un− ρwn|2dx+

α1

2
∆t

N∑
n=1

∫
Ω
|yn− ρzn− ynd |2dx+

α2

2

∫
Ω
|yN − ρzN − yT |2dx,

where the vector-valued function {zn}Nn=1 is obtained as follows: z0 = 0; then for n = 1, . . . , N ,
with zn−1 being known, zn is obtained from the solution of the linear variational problem

zn ∈ V0h,∫
Ω

zn − zn−1

∆t
ϕdx+ ν

∫
Ω
∇zn · ∇ϕdx+

∫
Ω
wn · ∇ynϕdx

+

∫
Ω
un · ∇zn−1ϕdx+ a0

∫
Ω
zn−1ϕdx = 0,∀ϕ ∈ V0h.

As discussed in Section 3.3 for the continuous case, we take the unique solution of Q∆t
h
′
(ρ) = 0 as

the stepsize in each CG iteration, that is

(4.9) ρ̂∆t
h =

∆t
∑N

n=1

∫
Ω gn ·wndx

∆t
∑N

n=1

∫
Ω |wn|2dxdt+ α1∆t

∑N
n=1

∫
Ω |zn|2dxdt+ α2

∫
Ω |zN |2dx

.

Finally, with above preparations, we propose the following nested CG algorithm for the solution
of the fully discrete control problem (BCP)∆t

h .

DI. Given u0 := {u0
n}Nn=1 ∈ (Sh)N .

DII. Compute {y0
n}Nn=0 and {p0

n}N+1
n=1 by solving the fully discrete state equation (4.3) and the

fully discrete adjoint equation (4.5)–(4.7) corresponding to u0. Then, for n = 1, · · · , N
solve 

g0
n ∈ Sh,∫
Ω
g0
n · zdx =

∫
Ω

(u0
n − p0

n∇y0
n−1) · zdx,∀z ∈ Sh,

by the preconditioned CG algorithm (DG1)–(DG5), and set w0
n = g0

n.

For k ≥ 0, uk, gk and wk being known, the last two different from 0, one computes
uk+1, gk+1 and wk+1 as follows:

DIII. Compute the stepsize ρ̂k by (4.9).
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DIV. Update uk+1 by

uk+1 = uk − ρ̂kwk.

Compute {yk+1
n }Nn=0 and {pk+1

n }N+1
n=1 by solving the fully discrete state equation (4.3) and the

fully discrete adjoint equation (4.5)–(4.7) corresponding to uk+1. Then, for n = 1, · · · , N ,
solve

(4.10)


gk+1
n ∈ Sh,∫
Ω
gk+1
n · zdx =

∫
Ω

(uk+1
n − pk+1

n ∇yk+1
n−1) · zdx, ∀z ∈ Sh,

by the preconditioned CG algorithm (DG1)–(DG5).

If
∆t

∑N
n=1

∫
Ω |g

k+1
n |2dx

∆t
∑N

n=1

∫
Ω |g0

n|2dx
≤ tol, take u = uk+1; else

DV. Compute

βk =
∆t
∑N

n=1

∫
Ω |g

k+1
n |2dx

∆t
∑N

n=1

∫
Ω |gkn|2dx

, and wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to DIII.

Despite its apparent complexity, the CG algorithm (DI)-(DV) is easy to implement. Actually,
one of the main computational difficulties in the implementation of the above algorithm seems to be
the solution of N linear systems (4.10), which is time-consuming. However, it is worth noting that
the linear systems (4.10) are separable with respect to different n and they can be solved in parallel.
As a consequent, one can compute the gradient {gkn}Nn=1 simultaneously and the computation time
can be reduced significantly.

Moreover, it is clear that the computation of {gkn}Nn=1 requires the storage of the solutions of (4.3)
and (4.5)-(4.7) at all points in space and time. For large scale problems, especially in three space
dimensions, it will be very memory demanding and maybe even impossible to store the full sets
{ykn}Nn=0 and {pkn}N+1

n=1 simultaneously. To tackle this issue, one can employ the strategy described
in e.g., [14, Section 1.12] that can drastically reduce the storage requirements at the expense of a
small CPU increase.

5. Numerical Experiments

In this section, we report some preliminary numerical results validating the efficiency of the
proposed CG algorithm (DI)–(DV) for (BCP). All codes were written in MATLAB R2016b and
numerical experiments were conducted on a Surface Pro 5 laptop with 64-bit Windows 10.0 oper-
ation system, Intel(R) Core(TM) i7-7660U CPU (2.50 GHz), and 16 GB RAM.

Example 1. We consider the bilinear optimal control problem (BCP) on the domain Q = Ω×(0, T )
with Ω = (0, 1)2 and T = 1. In particular, we take the control v(x, t) in a finite-dimensional space,
i.e. v ∈ L2(0, T ;R2). In addition, we set α2 = 0 in (1.1) and consider the following tracking-type
bilinear optimal control problem:

(5.1) min
v∈L2(0,T ;R2)

J(v) =
1

2

∫ T

0
|v(t)|2dt+

α1

2

∫∫
Q
|y − yd|2dxdt,

where |v(t)| =
√

v1(t)2 + v2(t)2 is the canonical 2-norm, and y is obtained from v via the solution
of the state equation (1.2).
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Since the control v is considered in a finite-dimensional space, the divergence-free constraint
∇ · v = 0 is verified automatically. As a consequence, the first-order differential DJ(v) can be
easily computed. Indeed, it is easy to show that

(5.2) DJ(v) =

{
vi(t) +

∫
Ω
y(t)

∂p(t)

∂xi
dx

}2

i=1

, a.e. on (0, T ),∀v ∈ L2(0, T ;R2),

where p(t) is the solution of the adjoint equation (2.11). The inner preconditioned CG algorithm
(DG1)-(DG5) for the computation of the gradient {gn}Nn=1 is thus avoided.

In order to examine the efficiency of the proposed CG algorithm (DI)–(DV), we construct an
example with a known exact solution. To this end, we set ν = 1 and a0 = 1 in (1.2), and

y = et(−3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2)), p = (T − t) sinπx1 sinπx2.

Substituting these two functions into the optimality condition DJ(u(t)) = 0, we have

u = (u1,u2)> = (2et(T − t),−et(T − t))>.
We further set

f =
∂y

∂t
−∇2y + u · ∇y + y, φ = −3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2),

yd = y − 1

α1

(
−∂p
∂t
−∇2p− u · ∇p+ p

)
, g = 0.

Then, it is easy to verify that u is a solution point of the problem (5.1). We display the solution u
and the target function yd at different instants of time in Figure 1 and Figure 2, respectively.

0 0.2 0.4 0.6 0.8 1

t
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-0.5
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0.5
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2

u

Exact u
1

Exact u
2

Figure 1. The exact optimal control u for Example 1.

The stopping criterion of the CG algorithm (DI)–(DV) is set as

∆t
∑N

n=1 |gk+1
n |2

∆t
∑N

n=1 |g0
n|2

≤ 10−5.

The initial value is chosen as u0 = (0, 0)>; and we denote by u∆t and y∆t
h the computed control

and state, respectively.
First, we take h = 1

2i
, i = 5, 6, 7, 8, ∆t = h

2 and α1 = 106, and implement the proposed CG
algorithm (DI)–(DV) for solving the problem (5.1). The numerical results reported in Table 1
show that the CG algorithm converges fairly fast and is robust with respect to different mesh sizes.
We also observe that the target function yd has been reached within a good accuracy. Similar
comments hold for the approximation of the optimal control u and of the state y of problem (5.1).
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Figure 2. The target function yd at t = 0.25, 0.5 and 0.75 (from left to right) for
Example 1.

By taking h = 1
27 and ∆t = 1

28 , the computed state y∆t
h and y∆t

h − yd at t = 0.25, 0.5 and 0.75 are

reported in Figures 3, 4 and 5, respectively; and the computed control u∆t and error u∆t − u are
visualized in Figure 6.

Table 1. Results of the CG algorithm (DI)–(DV) with different h and ∆t for
Example 1.

Mesh sizes Iter ‖u∆t − u‖L2(0,T ;R2) ‖y∆t
h − y‖L2(Q) ‖y∆t

h − yd‖L2(Q)/‖yd‖L2(Q)

h = 1/25,∆t = 1/26 117 2.8820×10−2 1.1569×10−2 3.8433×10−3

h = 1/26,∆t = 1/27 48 1.3912×10−2 2.5739×10−3 8.5623×10−4

h = 1/27,∆t = 1/28 48 6.9095×10−3 4.8574×10−4 1.6516×10−4

h = 1/28,∆t = 1/29 31 3.4845×10−3 6.6231×10−5 2.2196×10−5

Figure 3. Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right) at

t = 0.25 for Example 1.

Furthermore, we tested the proposed CG algorithm (DI)–(DV) with h = 1
26 and ∆t = 1

27 for
different penalty parameter α1. The results reported in Table 2 show that the performance of the
proposed CG algorithm is robust with respect to the penalty parameter, at least for the example

being considered. We also observe that as α1 increases, the value of
‖y∆t

h −yd‖L2(Q)

‖yd‖L2(Q)
decreases. This

implies that, as expected, the computed state y∆t
h is closer to the target function yd when the

penalty parameter gets larger.

Example 2. As in Example 1, we consider the bilinear optimal control problem (BCP) on the
domain Q = Ω × (0, T ) with Ω = (0, 1)2 and T = 1. Now, we take the control v(x, t) in the
infinite-dimensional space U = {v|v ∈ [L2(Q)]2,∇ · v = 0}. We set α2 = 0 in (1.1), ν = 1 and
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Figure 4. Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right) at

t = 0.5 for Example 1.

Figure 5. Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right) at

t = 0.75 for Example 1.
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Figure 6. Computed optimal control u∆t and error u∆t − u for Example 1.

Table 2. Results of the CG algorithm (DI)–(DV) with different α1 for Example 1.

α1 Iter CPU(s) ‖u∆t − u‖L2(0,T ;R2) ‖y∆t
h − y‖L2(Q)

‖y∆t
h −yd‖L2(Q)

‖yd‖L2(Q)

104 46 126.0666 1.3872×10−2 2.5739×10−3 8.7666×10−4

105 48 126.4185 1.3908×10−2 2.5739×10−3 8.6596×10−4

106 48 128.2346 1.3912×10−2 2.5739×10−3 8.5623×10−4

107 48 127.1858 1.3912×10−2 2.5739×10−3 8.5612×10−4

108 48 124.1160 1.3912×10−2 2.5739×10−3 8.5610×10−4
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a0 = 1 in (1.2), and consider the following tracking-type bilinear optimal control problem:

(5.3) min
v∈U

J(v) =
1

2

∫∫
Q
|v|2dxdt+

α1

2

∫∫
Q
|y − yd|2dxdt,

where y is obtained from v via the solution of the state equation (1.2).
First, we let

y = et(−3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2)),

p = (T − t) sinπx1 sinπx2, and u = PU (p∇y),

where PU (·) is the projection onto the set U .
We further set

f =
∂y

∂t
−∇2y + u · ∇y + y, φ = −3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2),

yd = y − 1

α1

(
−∂p
∂t
−∇2p− u · ∇p+ p

)
, g = 0.

Then, it is easy to show that u is a solution point of the problem (5.3). We note that u = PU (p∇y)
has no analytical solution and it can only be solved numerically. Here, we solve u = PU (p∇y) by
the preconditioned CG algorithm (DG1)–(DG5) with h = 1

29 and ∆t = 1
210 , and use the resulting

control u as a reference solution for the example we considered.

Figure 7. The target function yd with h = 1
27 and ∆t = 1

28 at t = 0.25, 0.5 and
0.75 (from left to right) for Example 2.

The stopping criteria of the outer CG algorithm (DI)–(DV) and the inner preconditioned CG
algorithm (DG1)–(DG5) are respectively set as

∆t
∑N

n=1

∫
Ω |g

k+1
n |2dx

∆t
∑N

n=1

∫
Ω |g0

n|2dx
≤ 5× 10−8, and

∫
Ω |∇r

k+1|2dx
max{1,

∫
Ω |∇r0|2dx}

≤ 10−8.

The initial values are chosen as u0 = (0, 0)> and λ0 = 0; and we denote by u∆t
h and y∆t

h the
computed control and state, respectively.

First, we take h = 1
2i
, i = 6, 7, 8, ∆t = h

2 , α1 = 106, and implement the proposed nested CG
algorithm (DI)–(DV) for solving the problem (5.3). The numerical results reported in Table 3
show that the CG algorithm converges fast and is robust with respect to different mesh sizes. In
addition, the preconditioned CG algorithm (DG1)–(DG5) converges within 10 iterations for all
cases and thus is efficient for computing the gradient {gn}Nn=1. We also observe that the target
function yd has been reached within a good accuracy. Similar comments hold for the approximation
of the optimal control u and of the state y of problem (5.3).

Taking h = 1
27 and ∆t = 1

28 , the computed state y∆t
h , the error y∆t

h − y and y∆t
h − yd at

t = 0.25, 0.5, 0.75 are reported in Figures 8, 9 and 10, respectively; and the computed control u∆t
h ,
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Table 3. Results of the nested CG algorithm (DI)–(DV) with different h and ∆t
for Example 2.

Mesh sizes IterCG MaxIterPCG ‖u∆t
h − u‖L2(Q) ‖y∆t

h − y‖L2(Q)
‖y∆t

h −yd‖L2(Q)

‖yd‖L2(Q)

h = 1/26,∆t = 1/27 443 9 3.7450×10−3 9.7930×10−5 1.0906×10−6

h = 1/27,∆t = 1/28 410 9 1.8990×10−3 1.7423×10−5 3.3863×10−7

h = 1/28,∆t = 1/29 405 8 1.1223×10−3 4.4003×10−6 1.0378×10−7

the exact control u, and the error u∆t
h −u at t = 0.25, 0.5, 0.75 are presented in Figures 11, 12 and

13.

Figure 8. Computed state y∆t
h , error y∆t

h −y and y∆t
h −yd with h = 1

27 and ∆t = 1
28

(from left to right) at t = 0.25 for Example 2.

Figure 9. Computed state y∆t
h , error y∆t

h −y and y∆t
h −yd with h = 1

27 and ∆t = 1
28

(from left to right) at t = 0.5 for Example 2.

Figure 10. Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd with h = 1

27 and

∆t = 1
28 (from left to right) at t = 0.75 for Example 2.
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Figure 11. Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.25 for Example 2.

Figure 12. Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.5 for Example 2.

Figure 13. Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.75 for Example 2.
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6. Conclusion and Outlook

We studied the bilinear control of an advection-reaction-diffusion system, where the control vari-
able enters the model as a velocity field of the advection term. Mathematically, we proved the
existence of optimal controls and derived the associated first-order optimality conditions. Compu-
tationally, the conjugate gradient (CG) method was suggested and its implementation is nontrivial.
In particular, an additional divergence-free constraint on the control variable leads to a projection
subproblem to compute the gradient; and the computation of a stepsize at each CG iteration re-
quires solving the state equation repeatedly due to the nonlinear relation between the state and
control variables. To resolve the above issues, we reformulated the gradient computation as a
Stokes-type problem and proposed a fast preconditioned CG method to solve it. We also proposed
an efficient inexactness strategy to determine the stepsize, which only requires the solution of one
linear parabolic equation. An easily implementable nested CG method was thus proposed. For
the numerical discretization, we employed the standard piecewise linear finite element method and
the Bercovier-Pironneau finite element method for the space discretizations of the bilinear optimal
control and the Stokes-type problem, respectively, and a semi-implicit finite difference method for
the time discretization. The resulting algorithm was shown to be numerically efficient by some
preliminary numerical experiments.

We focused in this paper on an advection-reaction-diffusion system controlled by a general form
velocity field. In a real physical system, the velocity field may be determined by some partial differ-
ential equations (PDEs), such as the Navier-Stokes equations. As a result, we meet some bilinear
optimal control problems constrained by coupled PDE systems. Moreover, instead of (1.1), one can
also consider other types of objective functionals in the bilinear optimal control of an advection-
reaction-diffusion system. For instance, one can incorporate

∫∫
Q |∇v|

2dxdt and
∫∫
Q |

∂v
∂t |

2dxdt into

the objective functional to promote that the optimal velocity field has the least rotation and is
almost steady, respectively, which are essential in e.g., mixing enhancement for different flows [24].
All these problems are of practical interest but more challenging from algorithmic design perspec-
tives, and they have not been well-addressed numerically in the literature. Our current work has
laid a solid foundation for solving these problems and we leave them in the future.
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