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MATHEMATICAL FOUNDATIONS OF DISTRIBUTIONALLY

ROBUST MULTISTAGE OPTIMIZATION∗

ALOIS PICHLER† AND ALEXANDER SHAPIRO‡

Abstract. Distributionally robust optimization involves various probability measures in its
problem formulation. They can be bundled to constitute a risk functional. For this equivalence, risk
functionals constitute a fundamental building block in distributionally robust stochastic program-
ming. Multistage programming requires conditional versions of risk functionals to re-assess future
risk after partial realizations and after preceding decisions.

This paper discusses a construction of the conditional counterpart of a risk functional by passing
its genuine characteristics to its conditional counterparts. The conditional risk functionals turn
out to be different from the nested analogues of the original (law invariant) risk measure. It is
demonstrated that the initial measure and its nested decomposition can be used in a distributionally
robust multistage setting.

Key words. Multistage stochastic programming, distributional robustness, conditional risk
measures, dynamic equations, stochastic games, rectangularity
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1. Introduction. This paper addresses Distributionally Robust Optimization
(DRO) when applied to multistage stochastic programming problems. This robust ap-
proach involves various probability measures and discloses an optimal solution which
is robust with respect to varying distributions. DRO involves the functional

(1.1) R(Z) := sup
Q∈M

EQ[Z]

for a chosen so-called ambiguity set M of probability measures. Various constructions
of the ambiguity set were suggested in the applications. It is beyond the scope of
this paper to give a survey of this literature, we can mention for example [6, 23,
24] and references therein. By duality, DRO is closely related to the risk averse
approach where R is viewed as a risk measure (cf. [2, 4, 19]). In case the ambiguity
set M = {P} is a singleton this reduces to the risk neutral approach. The essential
difference between the DRO and the risk averse approaches is how the corresponding
functional R is defined.

In the static setting the equation (1.1) of the objective functional R is reasonably
straightforward. Multistage problems with decisions made dynamically, on the other
hand, are considerably more involved. In the risk averse approach the corresponding
risk measure, associated with the sequential decision process, usually is formulated in
the nested (composite) form (cf. [5, 12, 15]). Such nested formulations are amendable
to Bellman’s principle of optimality and suitable for writing the respective dynamic
programming equations. This in turn is directly related to the concept of time consis-
tency meaning that a decision maker should not reconsider optimality of the decisions
at the later stages of the process. In that respect nested formulations provide a natural
framework for the optimality criteria at every stage of the process.
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In the DRO setting the situation is more delicate. It turns out that seemingly
natural extensions of the DRO and the risk averse approaches could lead to somewhat
different frameworks. The basic question of formulating a conditional counterpart of
the DRO functional (1.1) turns out to be not straightforward. The main goal of
this paper is to elaborate on the involved fundamental questions in a mathematical
context.

Outline. The following section elaborates the mathematical setting for distribu-
tionally robust functionals and risk measures. Section 3 addresses their conditional
counterparts. Nested formulations are important in multistage stochastic optimiza-
tion, they are considered in Section 4. The corresponding dynamic programming
equations are elaborated in Section 5 before we conclude in Section 6.

2. Preliminaries and the static setting. Let (Ω,F) be a measurable space
and M be a nonempty set of probability measures (distributions) on (Ω,F). We
denote by P the set of all probability distributions on (Ω,F), thus M ⊂ P. The
corresponding functional

(2.1) R(Z) := sup
Q∈M

EQ[Z], Z ∈ Z,

is defined on a linear space Z of measurable functions Z : Ω → R, where we use the
notation EQ[Z] to emphasize that the expectation is with respect to the probability
measure Q ∈ P. We refer to M as the ambiguity set of probability measures and to
R as the distributionally robust functional.

We assume that Z is a linear (vector) space of measurable functions such that
1Ω ∈ Z, where 1A is the indicator function of the set A, i.e., 1A(x) = 1 for x ∈ A and
1A(x) = 0 otherwise. This implies that Z + a ∈ Z, if Z ∈ Z and a ∈ R. We associate
with Z a linear space Z∗ of finite signed measures on (Ω,F) such that Z and Z∗ are
paired vector spaces with respect to the bilinear form

(2.2) 〈Z,Q〉 :=

∫

Ω

Z(ω)Q(dω), Z ∈ Z, Q ∈ Z∗.

The integral in (2.2) is supposed to be well-defined and finite valued for all Z ∈ Z
and Q ∈ Z∗. We assume that M ⊂ Z∗ and hence, for any Z ∈ Z and Q ∈ M, the
expectation EQ[Z] = 〈Z,Q〉 is well-defined and finite valued.

Stochastic optimization problems are often formulated by involving continuous
probability measures, but computations need to be implemented with discrete mea-
sures. It is thus essential to elaborate on both, discrete and continuous probability
measures. For this reason we consider and address the following settings separately
before combining them in the general framework.

2.1. Random variables with finite moments. Consider the space Z :=
Lp(Ω,F , P ), p ∈ [1,∞), of random variables Z : Ω → R with finite p-th order
moments. We refer to P as the reference probability measure. The space Z, equipped
with the corresponding norm ‖ · ‖p, is a Banach space. Its dual space (of continuous
linear functionals) is Lq(Ω,F , P ) such that 1/p+ 1/q = 1, q ∈ (1,∞]. Suppose that
the set M consists of probability measures Q absolutely continuous with respect to P
such that their density ζ = dQ/dP belongs to the space Lq(Ω,F , P ).

Specifically, we pair Z = Lp(Ω,F , P ) with its dual Z∗ = Lq(Ω,F , P ) with the
respective bilinear form

(2.3) 〈Z, ζ〉 :=

∫

Ω

Z(ω)ζ(ω)P (dω), Z ∈ Z, ζ ∈ Z∗.
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Note that here Z ∈ Z is actually a class of measurable variables which can be different
from each other on sets of P -measure zero. We have that the respective functional
R(·) is finite valued on Z iff the set

(2.4) A := {ζ = dQ/dP : Q ∈ M}

is bounded in the corresponding norm ‖ · ‖q. The set A can be assumed to be convex
and closed in the weak∗ topology of the dual space Z∗. We refer to A as the dual set
of the risk functional R.

2.2. Continuous random variables. Suppose that the set Ω is a compact
metric space and F is its Borel σ-algebra. Let Z := C(Ω) be the space of continuous
functions Z : Ω → R equipped with the supremum norm ‖Z‖∞ = supω∈Ω |Z(ω)|. The
dual space of C(Ω) is formed by finite signed measures on (Ω,F) with respect to the
bilinear form (2.2) (Riesz representation). It could be noted that the dual norm ‖ · ‖∗

of Z∗ = C(Ω)∗ is the total variation norm and ‖Q‖∗ = 1 for any probability measure
Q ∈ P. Also, for any Q ∈ P and Z, Z ′ ∈ Z we have that

EQ[Z
′] = EQ[Z + Z ′ − Z] ≤ EQ[Z] + a,

where a := supω∈Ω |Z ′(ω) − Z(ω)| = ‖Z ′ − Z‖∞. It follows that R(·), as defined
in (2.1), is finite valued and

(2.5) |R(Z ′)−R(Z)| ≤ ‖Z ′ − Z‖∞,

i.e., R is Lipschitz continuous with Lipschitz constant 1.

2.3. Bounded functions. Consider the space Z := B(Ω) consisting of measur-
able and bounded functions Z : Ω → R. Equipped with the supremum norm ‖ · ‖∞
this becomes a Banach space. Its dual (of continuous linear functionals) is quite com-
plicated. Nevertheless, we can pair it with the space Z∗ of finite signed measures on
(Ω,F) employing the bilinear form (2.2). As in the previous example, it can be shown
that the inequality (2.5) holds for any Z, Z ′ ∈ B(Ω), and hence the corresponding
distributionally robust functional (2.1) is finite valued and continuous in the norm
‖ · ‖∞ topology. However, we will have to deal here with the paired topologies of the
spaces Z and Z∗.

There is a natural order relation making the space Z from any of the three
subsections above a partially ordered set. For Z, Z ′ ∈ Z we write Z ′ � Z (or Z � Z ′)
if Z ′ ≥ Z almost surely with respect to the reference measure P in the Lp setting,
and Z ′(ω) ≥ Z(ω) for all ω ∈ Ω in the C(Ω) and B(Ω) settings.

2.4. Correspondence of robust functionals with risk functionals. It is
straightforward to verify that the distributionally robust functional (2.1) satisfies the
following conditions for any Z, Z ′ ∈ Z:

1. subadditivity: R(Z + Z ′) ≤ R(Z) +R(Z ′),
2. monotonicity: if Z ′ � Z, then R(Z ′) ≥ R(Z),
3. translation equivariance: if a ∈ R, then R(Z + a) = R(Z) + a,
4. positive homogeneity: if λ > 0, then R(λZ) = λR(Z).

Conversely, in the Lp and C(Ω) frameworks, any real valued functional R : Z → R

satisfying the axioms 1–4 is continuous and can be represented in the dual form (1.1)
for an appropriate set M of probability measures (cf. [16, Proposition 3.1]). For the
B(Ω) setting this is more involved, in order to guarantee the dual representation it
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should be also verified that R is lower semi-continuous with respect to the considered
paired topologies.

In the risk averse perspective the most important example of the functional R is
the Average Value-at-Risk

(2.6) AV@Rα(Z) = inf
τ∈R

{
τ + (1− α)−1

EP [Z − τ ]+
}
, α ∈ [0, 1),

with Z = L1(Ω,F , P ). In some publications it is also called Conditional Value-at-
Risk, Expected Shortfall, Expected Tail Loss; variational representation (2.6) is due
to Rockafellar and Uryasev [13]. In the dual form, it has the representation (2.1) with
the corresponding dual set

(2.7) A =

{
ζ : 0 ≤ ζ ≤ 1/(1− α), and

∫

Ω

ζ dP = 1

}
,

which constitute densities with respect to the reference measure P . For α = 1,
AV@R1(Z) = ess sup(Z) is the essential supremum.

3. Conditional counterparts of distributionally robust functionals. To
set up the distributionally robust optimization in a multistage framework we need to
define a conditional counterpart of the robust functional R defined in (2.1). To this
end let G be a σ-subalgebra of F . Then for any Q ∈ M we can consider the corre-
sponding conditional expectation EQ|G [Z] of a random variable Z ∈ Z (we can refer to
[8], e.g., for a rigorous discussion of the precise meaning of conditional expectations).

3.1. Conditional discrepancy of risk functionals. A general caveat arises
with a rigorous definition of conditional functionals, i.e., with functionals conditioned
on σ-subalgebras. To elaborate the disparity we consider a conditional counterpart
of the risk functional (2.1) first and a variant next, which is most common in the
literature. Both approaches seem natural in convenient contexts, but they differ
essentially.

3.1.1. The conditional analogue. Consider the conditional counterpart

(3.1) R|G(Z) = ess sup
Q∈M

EQ|G [Z]

of (2.1). A rigorous meaning of (3.1) is given in Section 3.4 below; however, the
inconsistency already occurs in a finite setting in which the essential supremum in (3.1)
is a usual maximum.

Definition 3.1. We say that a family {Ai}i∈I of nonempty sets Ai ∈ F is a
partition of a set A ∈ F if ∪i∈IAi = A and Ai ∩ Aj = ∅ for i 6= j. It is said that the
partition is countable (finite) if the index set I is countable (finite).

Example 3.2. Suppose the set Ω = {ω1, . . . , ωn} is finite, equipped with the
σ-algebra F of all its subsets and the reference probability measure P assigns prob-
abilities pi > 0 to each ωi ∈ Ω, i ∈ {1, . . . , n}. Then any probability measure Q on
(Ω,F) is absolutely continuous with respect to P , and with a subalgebra G of F is as-
sociated a finite partition {Υi}i∈I of Ω such that a variable Z : Ω → R is G-measurable
iff it is constant on every Υi, i ∈ I.

Now suppose that the ambiguity set M has the following property:

(3.2)
For every i ∈ I and every ω̄ ∈ Υi there is a measure Q ∈ M such that:
Q({ω̄}) > 0 and Q({ω}) = 0 for all ω ∈ Υi \ {ω̄}.
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For such a measure Q the conditional expectation EQ|G [Z](·) is constant on the set Υi

with the corresponding value

(3.3) EQ[Z 1Υi
]/Q(Υi) = Z(ω̄).

It follows with (3.1) that the corresponding conditional risk functional is

(3.4) R|G(Z)(ω) = max
ω′∈Υi

Z(ω′), ω ∈ Υi.

That is, R|G(Z) is the conditional supremum of Z, conditioned on the atoms Υi of
the σ-algebra G. Note that the conditional risk functional (3.4) is independent of the
reference measure P , provided that P ({ω}) > 0 for all ω ∈ Ω.

The property (3.2) above is not uncommon. Consider, for example, the functional
R := AV@Rα, α ∈ (0, 1). Its dual representation (2.7), of the ambiguity (dual) set A,
has the property (3.2) if P (Υi) ≤ α for all i ∈ I, i.e., if the atoms of G are small
relative to α. Indeed, the set A consists of densities ζ such that 0 ≤ ζ(ω) ≤ (1−α)−1

for all ω ∈ Ω, and
∑

ω∈Ω ζ(ω)P ({ω}) = 1. For i ∈ I consider Υi and a point ω̄ ∈ Υi.
Choose ζ ∈ A such that ζ(ω̄) = 1, and ζ(ω) = 0 for ω ∈ Υi \ {ω̄) and ζ(ω) := κ for

ω ∈ Ω \ Υi with κ := 1−P ({ω̄})
1−P (Υi)

. Note that 0 ≤ κ ≤ (1 − α)−1 since P (Υi) ≤ α. The

probability measure corresponding to this density is the required measure Q.

3.1.2. The law invariant analogue. The definition (2.6) of the AV@Rα leads
to the following definition of its conditional counterpart (e.g., [15])

(3.5) AV@Rα|G(Z) = ess inf
Y ∈L1(Ω,G,P )

{
Y + (1 − α)−1

EP |G [Z − Y ]+
}
.

The above Example 3.2 demonstrates the difference between the nested AV@R, de-
fined in (3.5), and the distributionally robust counterpart of AV@R obtained from
the dual representation (2.7). In contrast to formula (3.4), the nested AV@Rα|G(Z)
takes the value given by the respective Average Value-at-Risk on every set Υi. The
approach (3.1) seems to be natural from the distributional robustness point of view
while it is different from the nested approach to (law invariant) risk measures. We
are going to discuss this in the next section.

3.2. The “right” conditional analogue. In the risk averse approach it is
natural to consider law invariant risk measures such that the value R(Z) depends
only on the distribution (with respect to the reference probability measure) of Z.
Then intuitively the nested conditional counterpart is defined in the same way as
a function of the conditional distribution of P . The definition (3.5) of the nested
Average Value-at-Risk is of that form.

On the other hand, suppose for example that the ambiguity set M is given by
convex combinations of a finite set {Q1, . . . , Qm} of probability measures. Then the
definition via (3.1) makes sense. Also in some cases the functional R is not law invari-
ant, and consequently its law invariant conditional counterpart cannot be defined. So
the question of what is a right definition of the conditional counterpart of the distribu-
tionally robust functional is open for discussion. The nested approach was discussed
extensively in the literature on risk averse stochastic optimization (e.g., [12, 15]). On
the other hand the conditional counterpart (3.1) appears naturally as an extension of
the definition (2.1) of the distributionally robust functional (e.g., [17]). In Section 4.2
we will discuss the rectangular setting where both approaches are equivalent. Unless
stated otherwise we deal in the remainder with the conditional distributed robust
functional R|G stated in (3.1) above.
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To address the mathematical foundation we need to give a rigorous meaning to
the setting (3.1) for uncountable measurable spaces. It is tempting to define the
conditional counterpart of R(Z) as the pointwise supremum,

(3.6) R|G(Z)(ω) := sup
Q∈M

EQ|G [Z](ω), ω ∈ Ω.

However, there are several technical problems with a rigorous meaning of the right-
hand side of (3.6). Actually EQ|G [Z] is a class of G-measurable functions such that
its versions can be different from each other on a set of Q-measure zero. So it is not
clear what the supremum of such functions over Q ∈ M really means; even if properly
defined, its measurability is not obvious when the set M is uncountable. We will need
the concepts of essential supremum and infimum, discussed in the next section.

3.3. The essential supremum. Unless stated differently we assume in this
section that there is a reference probability measure P on (Ω,F) and that every
Q ∈ M is absolutely continuous with respect to P . We use the notation Q ≪ P to
denote that Q is absolutely continuous with respect to P . We employ the concept of
essential supremum.

Let us start with some basic definitions of partially ordered sets. A binary re-
lation � on a set S is said to be a partial order on S if for any x, x′, x′′ ∈ S the
following properties hold: (i) x � x, (ii) if x � x′ and x′ � x, then x = x′, (iii) if
x � x′ and x′ � x′′, then x � x′′. It said that an element y ∈ S is an upper bound for
a (nonempty) set V ⊂ S if x � y for any x ∈ V. If an upper bound y of V belongs
to V, then y is said to be the largest element of V. The lower bound and the smallest
element of V are defined in the analogous way. Note that by the property (ii) of the
partial order, it follows that if the largest (smallest) element exists, then it is unique.
The least upper bound of V, which is the smallest element of the set of the upper
bounds of V, is called the supremum of V and denoted supV. That is, supV is an
element of S such that x � supV for any x ∈ V, and if y is an upper bound of V,
then supV � y. If the supremum supV exists, then it is unique.

Clearly if the set V has the largest element x̄, then x̄ = supV. With the set V
we associate its order complement

(3.7) Vc := {y ∈ S : x � y for all x ∈ V}.

It is straightforward to verify the following well known result.

Lemma 3.3. The supremum supV exists iff its order complement set Vc has the
smallest element ȳ, in which case ȳ = supV.

For random variables X , Y we can define the partial order X � Y meaning that
X ≤ Y almost surely with respect to the reference measure P . In the considered set-
ting the supremum of a set X of measurable functions is called the essential supremum
of X. Denote by R := R ∪ {±∞} the extended real line.

Definition 3.4. The essential supremum of a (nonempty) set X of measurable
functions X : Ω → R, denoted ess supX, is a measurable function X∗ satisfying the
following properties: (i) for any X ∈ X it follows that X � X∗, (ii) if Y is a measur-
able function such that X � Y for all X ∈ X, then X∗ � Y .

The essential infimum is defined in the analogous way and is denoted ess inf X,
that is ess inf X := − ess sup(−X). Let us emphasize that these concepts of the essential
supremum and infimum are defined with respect to the reference measure P . In the
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setting of Definition 3.4 the essential supremum always exists and, as it was pointed
above, is unique (e.g., [4, Appendix A.5]).

Proposition 3.5. Let X = {Xi}i∈I be a nonempty set of measurable functions
Xi : Ω → R. Then the essential supremum X∗ = ess supX exists and, moreover, there
is a countable set J ⊂ I such that P -almost surely X∗ = supi∈J Xi.

Remark 3.6. In some settings there is no natural reference probability measure.
In such cases we can consider the settings of Z = C(Ω) or Z = B(Ω). Let X ⊂ Z be
a nonempty set of functions and Xc be its order complement. Consider the pointwise
partial order X � Y , meaning that X(ω) ≤ Y (ω) for all ω ∈ Ω, and the respective
pointwise supremum and pointwise infimum functions

X∗(ω) := sup
X∈X

X(ω) and X̄(ω) := inf
X∈Xc

X(ω), ω ∈ Ω.

It is not difficult to see that the set X has the largest element iff X∗ ∈ Z (i.e., X∗

is continuous in the C(Ω) setting and measurable in the B(Ω) setting), in which case
X∗ = ess supX. Also, by Lemma 3.3 we have that the ess supX exists iff X̄ belongs
to Z, in which case X̄(ω) = ess supX.

For example, consider the C(Ω)-setting with Ω := [0, 1]. Let [a, b] be an interval
such that 0 < a ≤ b < 1, and X be the set of functions X : [0, 1] → R such that
0 ≤ X(ω) ≤ 1, ω ∈ [0, 1], X(ω) = 0, ω ∈ [a, b]. Here the pointwise supremum
function X∗ has the form X∗(ω) = 0 for ω ∈ [a, b], and X∗(ω) = 1 otherwise. Since
X∗ is not a continuous function, the set X does not have the largest element. Consider
now the order complement Xc and the corresponding pointwise infimum function X̄.
If a < b, then X̄(ω) = 0 for ω ∈ (a, b), and X̄(ω) = 1 otherwise. In that case the set
Xc does not have the smallest element and the essential supremum of the set X does
not exist. On the other hand if a = b, then the constant function X̄(·) ≡ 1 is the
smallest element of Xc and is the essential supremum of X.

3.4. Conditioning risk functionals. This section resumes the Lp-setting de-
scribed in Section 2.1 above; that is, Z = Lp(Ω,F , P ). It could be noted that condi-
tional expectations with respect to different probability measures could have arbitrary
values on sets having positive reference probability measure. The following remark
elaborates the consequences for the conditional risk functional.

Remark 3.7. Let P be a reference probability measure on (Ω,F). Suppose that
G = F . For any Q ∈ M and F -measurable variable Z : Ω → R, we have that Q-almost
surely EQ|F [Z] = Z. If R|G is viewed as a mapping from Lp(Ω,F , P ) to Lp(Ω,G, P ),
then the respective translation equivariance axiom (cf. 3) requires that P -almost surely
R|G(Y ) = Y for any G-measurable Y . When G = F this means that P -almost surely
R|G(Z) = Z for any Z ∈ Z. On the other hand, it could happen for some Q ∈ M

and A ∈ F that Q(A) = 0 while P (A) > 0, i.e., P is not absolutely continuous with
respect to Q. In that case a version of EQ|F [Z] can have arbitrary values on the set A,
and hence is not equal Z almost surely with respect to the reference measure P .

In order to provide a definition of conditional distributionally robust functionals
we use the concept of essential supremum applied to the family

{
EQ|G [Z](·) : Q ∈ M

}

of G-measurable functions. For that we need to choose a specific version of EQ|G [Z] for
a given Z ∈ Z. If P is absolutely continuous with respect to every Q ∈ M, then we
can use any version of EQ|G [Z]. However, there are natural examples where this does
not hold for some Q ∈ M. In order to deal with this we consider the essential infimum
(taken with respect to P ) of the set of versions of EQ|G [Z], denoted ess inf EQ|G [Z].
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Definition 3.8. For a probability measure Q and a random variable Z we define

ess inf EQ|G [Z]

(taken with respect to P ) as the essential infimum of the set of versions of EQ|G [Z].

The ess inf EQ|G [Z] takes the value−∞ on any set A ∈ G such that Q(A) = 0 while
P (A) > 0. If P is absolutely continuous with respect to Q, then ess inf EQ|G [Z] =
EQ|G [Z]. The essential infimum ess inf EQ|G [Z] exists for every Q ∈ M. However, for
Z ∈ Lp(Ω,F , P ), the corresponding ess inf EQ|G [Z] belongs to Lp(Ω,F , P ) only if it
takes the value −∞ on a set of P -measure zero, that is only if P ≪ Q.

The essential supremum of the family
{
ess inf EQ|G [Z], Q ∈ M

}
leads to the fol-

lowing definition of the conditional functional R|G . As before, X � Y means that
X ≤ Y almost surely with respect to the reference measure P .

Definition 3.9 (Conditional distributionally robust functional). Let G be a
σ-subalgebra of F . A version of the conditional distributionally robust functional is
defined as a G-measurable variable R|G(Z) : Ω → R satisfying the following properties:

(i) for every Q ∈ M the inequality ess inf EQ|G [Z] � R|G(Z) holds,

(ii) if Y : Ω → R is a G-measurable variable such that ess inf EQ|G [Z] � Y holds
for every Q ∈ M, then R|G(Z) � Y .

We use the notation

(3.8) R|G(Z) = ess sup
Q∈M

EQ|G [Z]

for the conditional distributionally robust functional.

Note that if G = {∅,Ω} is trivial, then R|G coincides with the initial distributionally
robust functional R in (2.1).

Proposition 3.10. For all Z ∈ Z it holds that

R(Z) ≤ R
(
R|G(Z)

)
.

Proof. For every Q ∈ M we have from the tower property of the expectation that

EQ R|G(Z) ≥ EQ EQ|G [Z] = EQ[Z].

The assertion follows by passing to the supremum with respect to Q ∈ M.

It is not difficult to verify that R|G satisfies the respective counterparts of the
axioms 1, 2 and 4 specified in Section 2. The conditional counterpart of the translation
equivariance axiom 3 is: R|G(Z + Y ) = R|G(Z) + Y for any Z ∈ Z and G-measurable
Y ∈ Z. If there is a set A ∈ F such that P (A) > 0 and Q(A) = 0 for every Q ∈ M,
then R|G would not satisfy the translation equivariance axiom (see the discussion of
Remark 3.7). If P ∈ M then this cannot happen and the translation equivariance
axiom follows.

3.5. Conditioning on strictly monotone risk functionals. It was already
mentioned that the conditional distributionally robust functional R|G is monotone,
i.e., if Z ′ � Z, then R|G(Z

′) � R|G(Z). For verification of certain interchangeability
properties of minimization operators and risk measures, which are used for deriving
the dynamic equations, there is a need for a stronger property of strict monotonicity
(cf. [18]). When Z ′ � Z and Z ′ 6= Z we write this as Z ′ ≻ Z, which means that
P -almost surely Z ′ ≥ Z and P{Z ′ > Z} > 0.
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Definition 3.11 (Strict monotonicity). It is said that R|G is strictly monotone
if for any random variables Z ′, Z such that R|G(Z

′) and R|G(Z) are well-defined the
following implication holds: Z ′ ≻ Z implies R|G(Z

′) ≻ R|G(Z).

If G = {∅,Ω} is trivial, then R|G = R and Definition 3.11 reduces to the definition
of strict monotonicity for the distributionally robust functional R. The natural ques-
tion is: “What is a relation between the strict monotonicity of R and its conditional
counterpart?”

Proposition 3.12. Suppose that R is strictly monotone. Then for any A ∈ F
such that P (A) > 0 there is ε > 0 such that Q(A) ≥ ε for every Q ∈ M.

Proof. Let
A := {ζ ∈ Z∗ : ζ = dQ/dP, Q ∈ M}

be the corresponding (convex, bounded, weakly∗ closed) dual set of density functions.
We have that R is strictly monotone iff (cf. [18])

(3.9)

∫

A

ζ(ω)P (dω) > 0 for every ζ ∈ A and any A ∈ F such that P (A) > 0.

Note that since the set A is weakly∗ compact, the minimum of
∫
A
ζ dP over ζ ∈ A

is attained. Therefore, for the respective set M condition (3.9) can be restated as
announced.

The property (3.9) implies that P is absolutely continuous with respect to every
Q ∈ M. Thus, if R is strictly monotone, then ess inf EQ|G [Z] coincides with EQ|G [Z]
for every Q ∈ M.

Remark 3.13. Suppose that G = F , and P -almost surely R|F (Z) = Z for every
Z ∈ Z. Then R|F (Z

′) 6= R|F (Z) whenever Z ′ 6= Z, and hence R|F is strictly
monotone by the definition. On the other hand, R can be not strictly monotone, i.e.,
it can happen that there is a measurable set A such that Q(A) = 0 for some Q ∈ M

while P (A) > 0. This indicates that the conditional functional R|G can be strictly
monotone even if R is not.

Proposition 3.14. If the distributionally robust functional R is strictly mono-
tone, then the respective conditional distributionally robust functional R|G is strictly
monotone.

Proof. Suppose that R is strictly monotone. Let Z ′, Z ∈ Z be such that Z ′ ≻ Z.
It follows that Z ′ � Z + Y , where Y = γ 1A for some γ > 0 and A ∈ F such that
P (A) > 0. We need to show that R|G(Z

′) 6= R|G(Z). We argue by a contradiction, so
suppose that R|G(Z

′) = R|G(Z). By Proposition 3.5 there is a sequence {Qn} ⊂ M

such that R|G [Z] = supn∈N EQn|G [Z]. We have that

R|G(Z
′) � sup

n∈N

EQn|G [Z
′] = sup

n∈N

(
EQn|G [Z] + EQn|G [Y ]

)
� sup

n∈N

EQn|G [Z].

It follows that EQn|G [Y ] converges a.s. to 0 as n → ∞. On the other hand,

E
{
EQn|G [Y ]

}
= E[Y ] = γ Qn(A).

Moreover, by (3.9) we have that Qn(A) ≥ ε for some ε > 0 and all n ∈ N. It follows
that EQn|G [Y ] cannot converge a.s. to 0, which gives the required contradiction. This
completes the proof that R|G is strictly monotone.

As it was pointed in Remark 3.13, the converse implication: “if R|G is strictly
monotone, then R is strictly monotone” does not hold.
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3.6. The reference measure. The preceding subsections require that there
exists a reference probability measure. However, there are natural examples where
there is no a priori defined reference probability measure. That is, the measures in M

are not necessarily defined with respect to a reference measure and indeed, there are
situations where a priori reference probability measure does not exist. This section
describes situations where it is possible to construct a reference probability measure P
on (Ω,F). We say that a probability measure P is a reference measure for M if every
Q ∈ M is absolutely continuous with respect to P . The following construction reveals
the smallest of all reference measures dominating all measures in M.

Consider

(3.10) µ(A) := sup
Qi∈M

{∑

i∈I

Qi(Ai) : A =
⋃

i∈I

Ai, |I| < ∞

}
, A ∈ F .

The supremum in (3.10) is taken among all finite partitions {Ai}i∈I of the set A and
{Qi : i ∈ I} ⊂ M. In particular, if the set Ω = {ω1, . . . } is countable equipped with
the σ-algebra F of all its subsets, then

(3.11) µ({ωi}) = sup
Q∈M

Q({ωi}).

Proposition 3.15 (Reference measure). The set valued function µ(·), defined
in (3.10), is the smallest measure such that

(3.12) Q(A) ≤ µ(A), ∀Q ∈ M, A ∈ F .

Proof. It is evident that µ(A) ≥ 0 and µ(∅) = 0. To demonstrate that (3.10) is a
measure it remains to demonstrate its σ-additivity. To this end consider a set B ∈ F
and let {Bj}j∈N be its countable partition. By the definition of µ for any ε > 0 there
is a finite partition {Ai}i∈I of B such that

(3.13) µ(B) <
∑

i∈I

µ(Ai) + ε.

Then
µ(B)− ε <

∑

i∈I

µ(Ai) =
∑

j∈N

∑

i∈I

Qi(Ai ∩Bj) ≤
∑

j∈N

µ(Bj).

For the converse inequality, let {Aji}i∈Ij be a partition of Bj , j ∈ N, such that

(3.14) µ(Bj) <
∑

i∈Ij

Qi(Aji) + ε 2−j.

By summing (3.14) for j ∈ N, we obtain that
∑

j∈N
µ(Bj) < µ(B) + ε. This demon-

strates that µ(B) =
∑

j∈N
µ(Bj), and hence µ is a measure.

Finally, let ν be a measure such that ν(B) ≥ Q(B) for all Q ∈ M. Let the
partition be chosen as in (3.13). Then

ν(B) =
∑

i∈I

ν(Ai) ≥
∑

i∈I

Qi(Ai) > µ(B)− ε.

It follows that ν ≥ µ and µ thus is the smallest of all measures dominating the
measures in M.

Remark 3.16. We have by (3.12) that µ dominates every measure Q ∈ M, i.e.,
Q ≪ µ for all Q ∈ M. The measure µ is not necessarily a probability measure.
If µ(Ω) < ∞, then it can be normalized by considering the probability measure
P̃ (A) := µ(A)/µ(Ω), A ∈ F .
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3.7. Conditioning risk functionals on countable partitions. As it was
pointed above, in some settings there is no a priori defined reference probability mea-
sure on (Ω,F). This motivates to consider the following construction for conditioned
risk functionals on countably generated sigma fields.

Let {Υi}i∈I be a countable partition of the set Ω (cf. Definition 3.1). This partition
generates a subalgebra G := σ(Υi : i ∈ I) of F , consisting of the empty set and the
sets A = ∪j∈JΥj taken over all index sets J ⊂ I. Then X : Ω → R is G-measurable
iff X(ω) is constant on every Υi, i ∈ I. The conditional expectation EQ|G [X ] is a
G-measurable function EQ|G [X ] : Ω → R taking the following value at ω ∈ Υi, i ∈ I,
such that Q(Υi) 6= 0,

EQ|G [X ](ω) =
1

Q(Υi)

∫

Υi

X(ω′)Q(dω′)(3.15)

=
1

Q(Υi)

∑

ω′∈Υi

Q({ω′})X(ω′).(3.16)

When the σ-subalgebra G is generated by the countable partition, formula (3.15)
defines a version of the corresponding conditional expectation. Again any two versions
of EQ|G [X ] can have different values on such Υi that Q(Υi) = 0.

As above, we can now define a version of R|G(Z) as a G-measurable variable
taking value

R|G(Z)(ω) := sup
Q∈M, Q(Υi) 6=0

1

Q(Υi)

∫

Υi

Z(ω′)Q(dω′)(3.17)

= sup
Q∈M, Q(Υi) 6=0

EQ|G [Z](ω)

at ω ∈ Υi such that Q(Υi) 6= 0 for at least one Q ∈ M.
We have here that ess inf EQ|G [Z](ω) = −∞ for such ω ∈ Υi that Q(Υi) =

0. Therefore, in the case of countable partition, formula (3.17) gives a closed form
expression for the ess supQ∈M EQ|G [Z] described in Definition 3.9. Let Ῡ be the union
of the sets Υi such that Q(Υi) 6= 0 for at least one Q ∈ M. Then a version of the
conditional functional R|G(Z)(ω) is uniquely defined for ω ∈ Ῡ, and can be arbitrary
on Ω \ Ῡ. If the set Ῡ is strictly smaller than Ω, i.e., there is i ∈ I such that
Q(Υi) = 0 for all Q ∈ M, then the corresponding translation equivariance property
does not hold. In fact, it is not difficult to verify that this condition is also sufficient
for the translation equivariance. That is, the following lemma holds.

Lemma 3.17. In the considered framework of countable partition, the conditional
translation equivariance property holds iff for every i ∈ I there is Q ∈ M such that
Q(Υi) > 0.

Framework of C(Ω)-setting. Let Ω be a compact metric space and R be defined
in the form (2.1) with M ⊂ C(Ω)∗ being a nonempty convex set of probability mea-
sures. We can assume that M is closed in the weak∗ topology of C(Ω)∗. Let G be
a σ-subalgebra of F generated by a countable partition {Υi}i∈I of the set Ω. Then
R|G can be written in the form (3.17). In particular, this framework is relevant for
the moment constraints setting (we will discuss this below). Here the functional R is
strictly monotone iff the following condition holds (cf. [18]):

(3.18) Q(A) > 0 for every Q ∈ M and any open set A ⊂ Ω.
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Consequently, if R is strictly monotone, then ess inf EQ|G [Z] coincides with EQ|G [Z]
for every Z ∈ Z.

Let Z, Z ′ ∈ C(Ω) be such that Z ′ ≻ Z. Since Z, Z ′ : Ω → R are continuous
functions, this implies that there is an open set A ⊂ Ω such that Z ′(ω) > Z(ω) for
all ω ∈ A. By using (3.18) it is possible to show in a way similar to Proposition 3.14,
that in this framework strict monotonicity of R implies strict monotonicity of the
corresponding conditional functional R|G .

Example 3.18. Let Ω ⊂ R
d be a convex compact set with a nonempty interior,

equipped with its Borel σ-algebra F . Suppose that the set M consists of a family of
probability measures Q on (Ω,F) such that |supp(Q)| ≤ n, i.e., the support of each
Q ∈ M has no more than n points. This setting is relevant when the ambiguity set
is defined by a finite number m of moment constraints. By the Richter–Rogosinski
Theorem in that case it suffices to consider probability measures supported on no
more than m + 1 points. Let G be the σ-algebra generated by a countable partition
{Υi}i∈I of Ω. Then formula (3.17) can be applied using the respective conditional
expectation in the form (3.16). By (3.18) the corresponding distributionally robust
functional R cannot be strictly monotone in this setting. On the other hand, its
conditional counterpart R|G is strictly monotone if Q(Υi) > 0 for every Q ∈ M and
i ∈ I. Of course this could happen only if |I| ≤ n.

4. Composite distributionally robust functionals. The results presented
in this section are motivated by [17]. Unless stated otherwise we assume here the Lp-
setting of Section 2.1. We also assume that the translation equivariance axiom holds
for the conditional distributionally robust functional R|G for every subalgebra G, in
particular R|F (Z) = Z for every Z ∈ Z. Let F1 ⊂ · · · ⊂ FT be a filtration (sequence
of σ-algebras) on (Ω,F), with FT = F and F1 = {∅,Ω} being trivial. By the tower
property of the conditional expectation we have for Q ∈ M that

(4.1) EQ[Z] = EQ|F1

[
EQ|F2

[
· · ·EQ|FT−1

[EQ|FT
[Z]]

]]
.

Note that since F1 is trivial, EQ|F1
is just the unconditional expectation EQ, we write

it in that form for uniformity of the notation.
Suppose that ess supQ∈M EQ|Ft

(Z) is well-defined for every Z ∈ Z and t =
1, . . . , T . It follows that

R(Z) = sup
Q∈M

EQ|F1

[
EQ|F2

[
· · ·EQ|FT−1

[EQ|FT
[Z]]

]]
(4.2)

≤ sup
Q1∈M

EQ1|F1

[
· · · ess sup

QT−1∈M

EQT−1|FT−1

[
ess sup
QT ∈M

EQT |FT
[Z]

]]
.(4.3)

That is (cf. Proposition 3.10)

(4.4) R(Z) ≤ R(Z),

where

(4.5) R(Z) := sup
Q1∈M

EQ1|F1

[
· · · ess sup

QT−1∈M

EQT−1|FT−1

[
ess sup
QT∈M

EQT |FT
[Z]

]]
.

This can be also written as

(4.6) R(Z) = R|F1

(
R|F2

(
· · · R|FT−1

(R|FT
(Z))

))
,
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with R|Ft
being the respective conditional distributionally robust functionals. Note

that R|F1
= R since F1 is trivial.

Remark 4.1. Suppose that the conditional functionals R|Ft
in the right-hand side

of (4.6) are defined as the nested counterparts of the corresponding law invariant
coherent risk measures. Formula (4.6) still defines a (possibly not law invariant)
coherent risk measure R. For example R|Ft

can be the nested AV@Rα|Ft
. In that

case it can happen that the inequality (4.4) does not hold (see, e.g., [10, 11]).

Note that since FT = F it follows that Q-almost surely EQ|FT
[Z] = Z. However,

as it was discussed in the previous section, this does not imply that EQ|FT
[Z] = Z in

the P -a.s. sense unless P is absolutely continuous with respect to Q. Anyway, because
of the assumption R|F (Z) = Z, we have that R|FT

(Z) = Z for every Z ∈ Z. We
refer to R as the composite (distributionally robust) functional associated with the
filtration F = {F1, . . . ,FT}.

Suppose that R(Z) is finite valued for every Z ∈ Z. Since the conditional func-
tionals inherit the respective properties of subadditivity, monotonicity and positive
homogeneity, it follows that R : Z → R satisfies the respective axioms 1, 2 and 4.
The translation equivariance axiom is also assumed to hold. Since R is finite val-
ued, it follows that it is continuous and has the following dual representation (cf. [19,
Theorem 6.7]).

Proposition 4.2. Suppose that the composite functional R : Z → R is finite
valued and the translation equivariance axiom holds for every subalgebra of F . Then
there exists a convex, bounded, weakly∗ closed set Â ⊂ Z∗ of density functions such
that

(4.7) R(Z) = sup
ζ∈Â

∫

Ω

Z(ω)ζ(ω)P (dω), Z ∈ Z.

We can also write (4.7) in the form

(4.8) R(Z) = sup
Q∈M̂

EQ[Z], Z ∈ Z,

where M̂ is the set of probability measures Q absolutely continuous with respect to
the reference probability measure P such that dQ/dP ∈ Â, that is

(4.9) M̂ =
{
Q ∈ P : dQ/dP ∈ Â

}
.

Compared with the representation (1.1) of R, we have by (4.4) that M ⊂ M̂. More-

over, the inclusion is strict, i.e. M̂ 6= M, if the inequality (4.4) is strict for some
Z ∈ Z.

The set M̂, in the representation (4.8), is derived in an abstract way; its construc-
tive description could be complicated even in the rectangular case discussed below (see
Example 4.7).

Remark 4.3. A similar analysis can be applied to the C(Ω)-setting. Since the
space C(Ω) is a Banach lattice, we have that if a functional defined on C(Ω) is real
(finite) valued convex and monotone, then it is continuous in the norm topology of
C(Ω) (cf. [19, Theorem 7.91]). It follows that if the composite functional R, of the
form (4.6), is well-defined and finite valued, then it has the dual representation (4.8)

for some set M̂ ⊂ C(Ω)∗ of probability measures.
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In the B(Ω)-setting the situation is more delicate. Even if the corresponding
composite functional is well-defined and finite valued, in order to ensure its dual
representation (4.7) it should be verified that it is lower semi-continuous with respect
to the considered paired topologies.

4.1. The nested functional. As it was discussed in Section 3.4 the nested and
the ‘ess sup’ approaches could lead to different definitions of conditional functionals.
In order to reconcile these two approaches we can proceed as follows. Let Ξt ⊂ R

dt

be a nonempty, closed set equipped with its Borel σ-algebra Bt, t = 1, . . . , T , and
B = B1 ⊗ · · · ⊗ BT be the Borel σ-algebra on the set Ξ := Ξ1 × · · · × ΞT . We deal
in this section with the measurable space (Ξ,B) and the corresponding space Z of

random variables Ξ → R. For t = 2, . . . , T , letM
ξ[t−1]

t be a nonempty set of (marginal)
probability distributions on (Ξt,Bt), depending on the history ξ[t−1] ∈ Ξ1×· · ·×Ξt−1,
and M1 be a set of probability distributions on (Ξ1,B1).

Consider a variable Z ∈ Z, and going backward in time for t = T, . . . , 2, starting
with ZT = Z, define

(4.10) Zt−1(ξ[t−1]) := ess sup

Qt∈M
ξ[t−1]
t

{
EQt|ξ[t−1]

[Zt] =

∫

Ξt

Zt(ξ[t−1], ξt)Qt(dξt)

}
.

The corresponding nested functional is defined as

(4.11) R(Z) := sup
Q1∈M1

EQ1 [Z1(ξ1)] .

In the construction (4.10)–(4.11) there is no naturally defined ambiguity setM and the
associated distributionally robust functional R is obtained by the construction (4.3).
On the other hand, if the above functional R is finite valued on the space Z then it can

be represented in the form (4.8). The corresponding set M̂ of probability distributions
could be quite complicated.

In a finite dimensional setting we can think about data process as the correspond-
ing scenario tree, with a node at stage t representing the history ξ[t] := (ξ1, . . . , ξt)

of the process. Then at every node ξ[t] is defined the corresponding set M
ξ[t−1]

t of

conditional probability distributions of the child nodes of ξ[t]. With the set M
ξ[t−1]

t is
associated the respective coherent risk measure defined on the space of child nodes.
The composition of these conditional risk measures defines the corresponding nested
risk measure. For such detail construction we can refer to [19, Section 6.8.1]. In the
general setting of continuous distributions a rigorous formulation of the right-hand
side of (4.10) could be quite delicate and is beyond the scope of this paper. We can
refer to [8, Section 5] for an introduction of disintegration with mathematical rigor
and for an appropriate discussion.

Next we discuss the rectangular setting where the conditional distributionally
robust approach, associated with an ambiguity set, is equivalent to the nested con-
struction.

4.2. Rectangular setting. The nested construction (4.10) is simplified consid-
erably if the sets of marginal distributions do not depend on the history of the data
process. That is, for t = 1, . . . , T , let Mt be a nonempty set of probability measures
on (Ξt,Bt) and consider the corresponding set

(4.12) M := {Q = Q1 × · · · ×QT : Qt ∈ Mt, t = 1, . . . , T }
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of probability measures on (Ξ,B). We refer to this setting as rectangular. The vector
ξt ∈ Ξt can be viewed as an element of the measurable space (Ξt,Bt) or as a random
vector having a considered probability distribution (measure) on (Ξt,Bt). The sets
Mt represent respective marginal distributions and the rectangular setting can be
considered as a distributionally robust counterpart of the stagewise independence
condition. If we view ξ1, . . . , ξT as a random process having distribution Q ∈ M,
then (4.12) means that the random vectors ξ1, . . . , ξT , are mutually independent with
respective marginal distributions Qt ∈ Mt.

The corresponding variables, defined in (4.10), can be written here as

(4.13) Zt−1(ξ[t−1]) := sup
Qt∈Mt

{
EQt|ξ[t−1]

[Zt] =

∫

Ξt

Zt(ξ[t−1], ξt)Qt(dξt)

}
.

The supremum in (4.13) is taken with respect to the respective marginal distributions.
The rectangular setting constitutes a notable, special case.

Remark 4.4 (Equivalence of the nested and the conditional approach). In the
considered rectangular setting the composite functionalR does not depend on whether
the nested or conditional distributionally robust approach is used.

Example 4.5 (Average Value-at-Risk). Suppose that for every t = 1, . . . , T , the
set Mt of marginal distributions consists of probability measures absolutely contin-
uous with respect to a reference distribution Pt on (Ξt,Bt) and the corresponding
densities correspond to the AV@Rαt

risk measure taken with respect to Pt. Then for
t = T, . . . , 2 and ZT = Z we have

(4.14) Zt−1(ξ[t−1]) = AV@Rαt

(
Zt(ξ[t−1], ξt)

)
,

where for given ξ[t−1] the Average Value-at-Risk of Zt(ξ[t−1], ·) is computed with
respect to the distribution Pt of ξt. Finally, R(Z) = AV@Rα1(Z1).

When ξ[T ] is viewed as random, the supremum should be replaced by the essential
supremum. Consequently, the composite functional R can be written as

(4.15) R(Z) = sup
Q1∈M1

EQ1

[
ess sup
Q2∈M2

EQ2|ξ[1]

[
· · · ess sup

QT∈MT

EQT |ξ[T−1]
[Z]

]]
.

On the other hand the functional R(Z) is

(4.16) R(Z) = sup
Q1∈M1,...,QT∈MT

∫

Ξ

Z(ξ1, . . . , ξT )Q1(dξ1) . . . QT (dξT ),

Ξ = Ξ1 × · · · × ΞT . As before the inequality (4.4) and the representation (4.8) hold.

The set M̂ is different from the set M and does not have the rectangular structure
of the form (4.12). The equality R(Z) = R(Z), for some Z ∈ Z, can happen only in
rather exceptional cases even in this rectangular setting.

Remark 4.6. The integral in the right-hand side of (4.16) does not depend on the
order of integration, i.e., for any permutation {i1, . . . , iT } of the set {1, . . . , T }, we
can write

(4.17) R(Z) = sup
Qi1∈Mi1 ,...,QiT

∈MiT

∫
Z(ξ1, . . . , ξT )Qi1(dξi1 ) . . .QiT (dξiT ).

On the other hand in the definition (4.15) of the composite functional R the order is
important.
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4.3. Difference of the distributionally robust and the composite func-

tional. Remark 4.4 above addresses a special risk functional which can be employed
in both, the nested and the conditional settings. In order to see how the compos-
ite functional R differs from R let us consider (in the rectangular framework) the
following example of two stage case.

Example 4.7. For T = 2 and the rectangular setting consider the corresponding
composite functional

(4.18) R(Z) = sup
Q1∈M1

EQ1

[
sup

Q2∈M2

EQ2|ξ1 [Z]

]
.

Under suitable regularity conditions (e.g., [14, Theorem 14.60]), we can interchange
the supremum and integral operators to write

(4.19) EQ1

[
sup

Q2∈M2

EQ2|ξ1 [Z]

]
= sup

Q
(·)
2 ∈V

EQ1

[
E
Q

ξ1
2 |ξ1

[Z]
]
.

The maximum in the right-hand side of (4.19) is with respect to family V of mappings

ξ1 7→ Qξ1
2 , from Ξ1 to M2, such that the integral

(4.20) EQ1

[
E
Q

ξ1
2 |ξ1

[Z]
]
=

∫

Ξ1

(∫

Ξ2

Z(ξ1, ξ2)Q
ξ1
2 (dξ2)

)
Q1(dξ1)

is well-defined. The notation Q
(·)
2 emphasizes that the probability measure Qξ1

2

in (4.19) is a function of ξ1. If we take the mapping ξ1 7→ Qξ1
2 in (4.19) to be

constant, i.e., Qξ1
2 = Q2 for all ξ1, then the corresponding measure is Q = Q1 ×Q2.

The right-hand side of (4.20) defines a functional φ : Z → R. This functional is
linear, monotone and φ(Z + a) = φ(Z) + a for Z ∈ Z and a ∈ R. Hence, there exists

a probability measure Q on Ξ1 × Ξ2, which depends on the mapping ξ1 7→ Qξ1
2 (and

also on Q1), such that

(4.21) EQ1

[
E
Q

ξ1
2 |ξ1

[Z]
]
= EQ[Z].

For measurable sets A1 ⊂ Ξ1 and A2 ⊂ Ξ2, and Z(ξ1, ξ2) := 1A1(ξ1)1A2(ξ2), we have

(4.22)

∫

A1

(∫

A2

Z(ξ1, ξ2)Q
ξ1
2 (dξ2)

)
Q1(dξ1) =

∫

A1

Qξ1
2 (A2)Q1(dξ1)

and hence, for A := A1 ×A2,

(4.23) Q(A) =

∫

A1

Qξ1
2 (A2)Q1(dξ1).

The set M̂ is obtained by taking the union of such measures Q over all mappings in
V and Q1 ∈ M1, and then taking the topological closure of the convex hull of that
family. Consequently,

R(Z) = sup
Q1∈M1,Q

(·)
2 ∈V

∫

Ξ1

∫

Ξ2

Z(ξ1, ξ2)Q
ξ1
2 (dξ2)Q1(dξ1)(4.24)

= sup
Q∈M̂

EQ[Z].(4.25)
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For example suppose that the set Ξ1 is finite, |Ξ1| = n, and the set M1 is given by
the convex hull of a finite family {Q1

1, . . . , Q
m1
1 } of probability measures on (Ξ1,B1),

and M2 is given by the convex hull of a finite family {Q1
2, . . . , Q

m2
2 } of probability

measures on (Ξ2,B2). Then the set M is given by the convex hull of the family

(4.26) {Qi
1 ×Qj

2}, i = 1, . . . ,m1, j = 1, . . . ,m2.

The set M̂, on the other hand, is obtained by taking the convex hull of the family

(4.27) {Qi
1 ×Qjk

2 }, i = 1, . . . ,m1, jk ∈ {1, . . . ,m2}, k = 1, . . . , n.

The number of elements (probability measures) in the family (4.26) could be as large
as m1 ×m2, while in the family (4.27) it could be as large as m1 × (m2)

n (some of
these probability measures could be equal to each other). Family (4.26) is a subset of
family (4.27) obtained by taking indexes jk ≡ j constant (independent of k). It could
be noted that R(Z) = R(Z) for some Z ∈ Z if the supremum in (4.24) with respect

to Qξ1
2 does not depend on ξ1.

In the considered rectangular framework it is possible to consider cases without
assuming existence of a reference probability measure.

Moment constraints. Suppose that for t = 1, . . . , T , the set Mt consists of prob-
ability distributions Qt on (Ξt,Bt) such that

(4.28) EQt
[Ψti(ξt)] = bti, i = 1, . . . ,mt,

for some measurable functions Ψti : Ξt → R and bti ∈ R. By duality, under mild
regularity conditions, the corresponding variable Zt−1(ξ[t−1]), defined in (4.13), is
give by the optimal value of the following problem (e.g., [19, Section 6.7])

(4.29)
min

λt∈R×Rmt

λt0 +
∑mt

i=1 btiλti

s.t. λt0 +
∑mt

i=1 λtiΨti(ξt) ≥ Zt(ξ[t−1], ξt), ξt ∈ Ξt.

If every set Ξt is compact (and hence the set Ξ is compact) and the function ZT = Z
is continuous on the set Ξ, then every Zt is continuous on the set Ξ1 × · · · × Ξt

(this can be shown by induction going backward in time and using, e.g., [19, Theo-
rem 7.23]). It is natural here to use the framework of the C(Ξ) setting (discussed in

Section 2.2). Consequently, there is a set M̂ of probability measures on (Ξ,B) such
that the corresponding composite functional R is representable in the form (4.8). The

set M̂ can be different from the corresponding set M (defined in (4.12)).

Example 4.8. Suppose that Ξ2 := [α, β], for some α < β, and the setM2 consists
of probability measures supported on the interval [α, β] and having mean µ ∈ [α, β].
Suppose further that Z(ξ1, ξ2) is convex continuous in ξ2 ∈ [α, β]. Then the respective
maximum over Q2 ∈ M2 is attained at the probability measure Q∗

2 = p δ(α) + (1 −
p)δ(β) supported on the end points of the interval [α, β], with p := (β − µ)/(β − α).
For such Z the respective maximum over Q2 ∈ M2 does not depend on ξ1, and hence
R(Z) = R(Z). Note that the assumption that Z(ξ1, ξ2) is convex in ξ2 is essential
here, and that R(Z) can be different from R(Z) for general Z.

4.4. Consequences for multistage stochastic optimization. A typical set-
ting in stochastic optimization considers robustifications at every new decision, i.e.,
based on the realized history of the entire process. In a scenario tree, this corresponds



18 A. PICHLER, AND A. SHAPIRO

to a robustification at every node. A convenient and widely used setting in this re-
spect involves the Wasserstein metric and the nested distance. In what follows we
elaborate this setting in the two-stage case first and then proceed to the more general
multistage situation.

4.4.1. Two-stage regularity. The Wasserstein distance is a distance for prob-
ability measures. Given this distance d of measures, a typical ambiguity set is (called
Wasserstein ambiguity set in [3, 6])

(4.30) M := {Q : d(P,Q) ≤ r},

where P is some reference measure, often an empirical measure P = 1
n

∑n
i=1 δXi

for
independent observations Xi, i = 1, . . . , n. The radius r of the Wasserstein ball (4.30)
is given the interpretation of a confidence interval to collect all empirical measures
with a probability of 95%, say.

Definition 4.9 (Wasserstein distance). Let P and Q be probability measures on
a Polish space (Ξ, d). The Wasserstein distance of order r ≥ 1 is

(4.31) dr(P,Q)r = inf

∫∫

Ξ×Ξ

d(ξ, ξ̃)r π(dξ, dξ̃),

where the infimum is among all bivariate measures π with marginals

π(A× Ξ) = P (A) and(4.32)

π(Ξ ×B) = Q(B)(4.33)

for all Borel sets A,B ∈ B(Ξ).

The Wasserstein distance is of importance because of its duality relation, which is the
content of the Kantorovich–Rubinstein theorem, cf. [22] or [1]. Indeed, it holds that

(4.34) |EQ[Z]− EP [Z]| ≤ LZ · d1(Q,P ),

where LZ is the Lipschitz constant of the random variable Z, i.e., |Z(ξ) − Z(ξ̃)| ≤
LZ d(ξ, ξ̃). For Lipschitz continuous functions we find ourselves in the C(Ω) setting
addressed in the introduction. Note that this setting allows addressing atomic and
non-atomic probability measures simultaneously.

Based on (4.34) we have the following result in a two-stage setting.

Theorem 4.10. Let P be a reference measure and the ambiguity set

(4.35) M = {Q : d1(P,Q) ≤ ǫ}

collect all measures, which do note deviate by more than ǫ ≥ 0 in Wasserstein distance
from the reference measure P . Then the bound

(4.36) |R(Z)− EP [Z]| ≤ LZ · ǫ

holds for the risk functional R(Z) = supQ∈M EQ[Z].

The ambiguity set (4.35) is popular in applications (cf. [3]). For this reason we
emphasize that the C(Ω) setting is important here, as the measures in (4.35) are non-
dominated in the sense of Section 3.6. Further, the bound (4.36) allows comparing
the risk functional R with the much simpler risk neutral expectation.
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4.4.2. Multistage regularity and the nested distance. The nested distance
builds on the Wasserstein distance, but respects the evolution of the process in addi-
tion. For the corresponding robustification in the multistage situation let P ∈ P be
the law of a reference process with disintegration

EP [Z] =

∫

A1

∫

A2

· · ·

∫

AT

Z(ξ1, . . . , ξT )P
ξ[T−1]

T (dξT ) . . . P
ξ1
2 (dξ2)P1(dξ1).

Definition 4.11 (Nested distance, cf. Definition 4.9 (Wasserstein distance)). For
P and Q probability laws on a Polish space (Ξ, d) with Ξ := Ξ1 × · · ·×ΞT , the nested
distance of order r ≥ 1 is

ndr(P,Q)r := inf

∫∫

Ξ×Ξ

d(ξ, ξ̃)r π(dξ, dξ̃),

where the infimum is among all bivariate measures π on Ξ × Ξ with conditional
marginals

πξ[t],η[t](A× Ξ) = P ξ[t](A) a.s. and

πξ[t],η[t](Ξ×B) = Qη[t](B) a.s.

for all Borel sets A,B ∈ B(Ξ) and times t = 1, . . . , T .

Given some history ξ[t−1] consider now the specific ambiguity set M
ξ[t−1]

t with

Q
ξ[t−1]

t ∈ M
ξ[t−1]

t(4.37)

iff d1
(
Q

ξ[t−1]

t , P
ξ̃[t−1]

t

)
≤ ǫt + κt d(ξ[t−1], ξ̃[t−1]) for all ξ̃[t−1].

The ambiguity set (4.37) is constructed in the same way as (4.35) and contains all
transitions which are close, in the sense specified, to the corresponding transitions
of P .

We consider the risk functional

(4.38) R(Z) = sup
Q1∈M1

EQ1 [Z1(ξ1)] ,

with conditional measures

(4.39) Zt−1(ξ[t−1]) = sup

Qt∈M
ξ[t−1]
t

{
EQt|ξ[t−1]

[Zt] =

∫

Ξt

Zt(ξ[t−1], ξt)Qt(dξt)

}

on the nodes ξ[t−1]. The risk measure (4.38) is the risk measure defined in (4.10)–
(4.11) above with transitions specified in (4.37).

Based on [9, Proposition 4.26] we have the following result which allows comparing
the risk measure with the simple expectation with respect to the reference probability
measure.

Proposition 4.12. It holds that

|R(Z)− EP [Z]|≤ nd1(P,Q) ≤LZ

T∑

t=1

ǫtwt

T∏

s=t+1

(1 + wsκs)
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for every Q with conditional marginals in M
ξ[t−1]

t , t = 1, . . . , T and provided that the
objective Z is Lipschitz with

|Z(ξ1, . . . , ξT )− Z(ξ̃1, . . . , ξ̃T )| ≤
T∑

t=1

wt dt(ξt, ξ̃t).

A notable situation arises for the stagewise independent measure P = P1 × · · · × PT

in the rectangular case.

Corollary 4.13. Suppose that

(4.40) Qt ∈ Mt iff d1(Pt, Qt) ≤ ǫt.

Then

|R(Z)− EP [Z]| ≤ LZ

T∑

t=1

ǫt wt.

Similarly to (4.30), the interpretation of (4.37) and (4.40) in the multistage setting
is based on ambiguity sets of conditional transitions. The results in Proposition 4.12
and the corollary compare the ambiguous approach with the risk neutral approach
and measure the impact of considering risk.

5. Distributionally robust multistage optimization. Following the general
paradigm of this paper we consider in this section different approaches to formulation
of distributionally robust multistage stochastic optimization problems. Again, we
observe conceptual differences which we highlight here.

Consider the Lp setting and a composite functional R of the form (4.6). The
involved R|Ft

can be the respective conditional distributionally robust functionals or
the nested risk measures associated with a law invariant coherent risk measure. In
both cases there is a set M̂ of probability measures such that R can be represented
in the form (4.8) provided that R : Z → R is finite valued.

Consider the multistage stochastic program

(5.1) min
π∈Π

R(Zπ),

where Π denotes the set of policies π =
(
x1, x2(ξ[2]), . . . , xT (ξ[T ])

)
satisfying the fea-

sibility constraints

(5.2) x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T − 1,

and such that the total cost

(5.3) Zπ :=
∑T

t=1 ft(x
π
t , ξt)

belongs to the space Z on which the functional R is defined. Here xt ∈ R
nt , t =

1, . . ., T , ft : R
nt × R

dt → R are continuous functions and Xt : Rnt−1 × R
dt ⇒ R

nt ,
t = 2, . . ., T , are measurable multifunctions. The first stage data, i.e., the vector ξ1,
the function f1 : R

n1 → R, and the set X1 ⊂ R
n1 are deterministic. The feasibility

constraints in (5.2) should be satisfied almost surely with respect to the reference
measure P .

Consider the nested risk functional R discussed in section 4.1. We can view
the corresponding risk averse stochastic program (5.1) as a stochastic game. In the
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framework of Markov decision processes (MDP), stochastic games were introduced
in Shapley [20] and were studied extensively (see, e.g., the survey [7]). For a policy
π ∈ Π, we can think about the opponent who chooses at every stage t a distribution

Qπ
t ∈ M

ξ[t−1]

t for given realization ξ[t−1] of the data process and decision xt = xπ
t .

A choice of such probability distributions defines the corresponding policy of the
opponent. For π ∈ Π, denote by Γπ the set of such policies of the opponent. Then
the risk averse program (5.1) can be written in the following minimax form

(5.4) min
π∈Π

sup
γ∈Γπ

E
π,γ [Zπ],

where Zπ is the total cost (5.3), γ ∈ Γπ is policy of the opponent with the respective

distributions Qπ
t ∈ M

ξ[t−1]

t , and

(5.5) E
π,γ [ · ] := EQπ

1

[
EQπ

2 |ξ[1]

[
· · ·EQπ

T
|ξ[T−1]

[ · ]
]]

,

is the corresponding expectation written in the nested (composite) form. Therefore
for π ∈ Π we have that

(5.6) sup
γ∈Γπ

E
π,γ [Zπ] = R(Zπ).

Consider the rectangular case, i.e., assume that the setM is given in the form (4.12).
Then the nested and the conditional distributionally robust approaches are equivalent,
and the respective dynamic programming equations for value (cost-to-go) functions
can be written as

Vt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{ft(xt, ξt) + Vt+1 (xt)} ,(5.7)

Vt+1 (xt) = sup
Qt+1∈Mt+1

EQt+1 [Vt+1 (xt, ξt+1)] ,(5.8)

t = 1, . . . , T , with VT+1(·) ≡ 0 and X1(x0, ξ1) ≡ X1. A sufficient condition for
x̄t = πt(x̄t−1, ξt) to be an optimal policy is

(5.9) x̄t ∈ argmin
xt∈Xt(x̄t−1,ξt)

{ft(xt, ξt) + Vt+1 (xt)} .

This condition is also necessary if the corresponding functional is strictly monotone.
Here policy of the opponent is defined by a choice of distribution Qπ

t ∈ Mt, at every
stage of the process, which depends on decision xt = xπ

t but not on ξ[t−1]. Again the
corresponding distributionally robust/risk averse problem (5.1) can be written in the
minimax form (5.4).

In order to derive a dual of the risk averse multistage problem (5.1) the ‘min’
and ‘max’ operators in the representation (5.4) cannot be interchanged, even in the
rectangular case, since the set Γπ depends on π ∈ Π. On the other hand by (4.8) we
can write problem (5.1) in the form

(5.10) min
π∈Π

sup
Q∈M̂

EQ[Z
π].

The dual of the minimax problem (5.10) is obtained by interchanging the ‘min’ and
‘max’ operators, that is

(5.11) max
Q∈M̂

inf
π∈Π

EQ[Z
π].
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The optimal value of dual problem (5.11) is always less than or equal to the optimal
value of the primal problem. If the problem (5.1) is convex, e.g., the objective func-
tions ft(·, ξt) are convex and the constraints are linear, then under certain regularity
conditions the optimal values of problems (5.10) and (5.11) are equal to each other.

Remark 5.1 (Strong duality). Consider the Lp setting with Z = Lp(Ω,F , P ).
Suppose that the problem is convex and the cost functions ft(xt, ξt) are continuous
in ξt, and the composite functional R is finite valued and can be represented in the
form (4.8) (see Proposition 4.2). The corresponding set Â is bounded, weakly∗ closed
and hence is compact in the weak∗ topology of the dual space Z∗. Consequently, it is
possible to apply Sion’s minimax theorem [21] to establish the required no duality gap
property. To this end note that the bilinear form Eζ [Z] = 〈Z, ζ〉 is weakly∗ continuous
in ζ ∈ Z∗, and the required lower semi-continuity with respect to Z ∈ Z follows by
Fatou’s lemma.

As it was discussed before, even in the rectangular case the set M, defined

in (4.12), in general is different (smaller) than the corresponding set M̂. By replacing

the set M̂ in (5.10) with the set M we obtain the problem

(5.12) min
π∈Π

{
R(Zπ) = sup

Q∈M

EQ[Z
π]

}
,

and thus, comparing with (5.10), that

(5.13) min
π∈Π

R(Zπ) ≤ min
π∈Π

R(Zπ).

The Formulation (5.12) of multistage stochastic optimization problems was inves-
tigated by various authors. Note, however, that such a formulation is not adjusted
to the dynamics of the decision process even in the rectangular setting. Suppose that
the maximum in the right-hand side of (5.8) is attained at a probability measure
of the set Mt+1. This probability measure depends on xt. Since for a considered
policy π, the decision xπ

t = xt(ξ[t]) is a function of the history of the data process,

the probability measure Q
ξ[t]
t+1 maximizing the right-hand side of (5.8) also depends

on the history of the data process (compare with the discussion of Example 4.7). On
the other hand for the problem (5.12), of minimizing R(Zπ) over π ∈ Π, the corre-
sponding marginal probability measures Qt should not depend on realizations of the
data process. As a consequence, problem (5.12) cannot be decomposed into dynamic
programming equations of the form (5.7)–(5.8).

6. Summary. The literature suggests various approaches towards constructing
multistage counterparts of distributionally robust functionals. One approach is to use
the “static” functionalR which is not adjusted to the dynamics of the decision process.
The other approach, now routinely used in the risk averse stochastic optimization, is to
employ nested formulations of the corresponding risk measures. In such an approach
the risk is controlled at every stage of the decision process while the total value of
the corresponding objective function is irrelevant. Although natural in some sense,
this paper exposes that the respective nested distributionally robust approach could
be very different. It is demonstrated that in the case of the rectangular setting, which
is important from an application perspective, both approaches are equivalent.

We investigate the foundations by addressing the individual features, the major
differences and particularly the relevance of conditioned risk functionals for multistage
stochastic optimization.
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