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A NEW BOUND FOR THE WARING RANK OF MONOMIALS ∗

KANGJIN HAN † AND HYUNSUK MOON‡

Abstract. In this paper we consider the Waring rank of monomials over the real and the rational numbers. We give a new
upper bound for it by establishing a way in which one can take a structured apolar set for any given monomial Xa0

0 X
a1
1 · · ·X

an
n

(ai > 0). This bound coincides with the real Waring rank in the case n = 1 and in the case min(ai) = 1, which are all the
known cases for the real rank of monomials. Our bound is also lower than any other known general bounds for the real Waring
rank. Since all of the constructions are still valid over the rational numbers, this provides a new result for the rational Waring
rank of any monomial as well. Some examples and computational implementation for potential use are presented in the end.
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1. Introduction. A Waring decomposition of a polynomial is an expression of the polynomial as a sum
of powers of linear forms. We study the rank of monomials over the reals and the rationals and we give an
improved upper bound for it.

Let k be a field, S = k[X0, . . . , Xn] =
⊕

d≥0 Sd be the ring of polynomials over k and Sd be the k-
vector space of homogeneous polynomials (or forms) of degree d. For a given F ∈ Sd, we define a Waring
decomposition of F over k as a sum

(1.1) F =

r∑

i=1

λiL
d
i ,

where λi ∈ k and Li is a linear form over k. The smallest number r for which such a decomposition exists
is called Waring rank of F over k and we denote it by rankk(F ).

Earlier studies of Waring decomposition and Waring rank, initiated by works of Sylvester and others, go
back to the 19th century (see [IK99] for a historical background). But, despite their long history, the Waring
ranks for general forms over the complex numbers, a long-standing conjecture in this field, were determined
only in the 1990s by [AH95] and the complex Waring rank of monomials, a specific type of polynomial, has
been found in recently [BBT13, CCG12].

In general, it is known that it is very difficult to compute the rank of a form except some known cases,
even though some algorithms have been proposed (see e.g. [BGI11] and references therein).

The Waring rank over the real numbers is even more difficult to compute. For instance, the real Waring
rank of a monomial Xa0

0 Xa1

1 · · ·Xan
n with ai > 0 is its degree when n = 1 [BCG11] and 1

2

∏n
i=0(ai + 1)

when min(ai) = 1 [CKOV17]. In [CKOV17], there is also an upper bound for the real rank of any monomial
1

2aj

∏n
i=0(ai + aj) where aj is min(ai), but it is not tight in general.

We give a new upper bound for the real Waring rank of any monomial as follows:

Theorem 1.1. The real Waring rank of a monomial Xa0

0 Xa1

1 . . . Xan
n with each ai > 0 is at most

1

2

{ n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

}
.

We would like to note that this bound contains the two known cases of real rank, when n = 1 and one
ai is 1, and is lower than the general bounds of [CKOV17] and of [BT15] (see the discussion in Remark 3.21
and Table 3.1). Moreover, the same bound still holds for the rank over Q, the field of rational numbers (see
Remark 3.22).
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The paper is structured as follows. In Section 2, we recall some preliminaries on the subject and introduce
our notation. Our basic strategy to obtain the upper bound is to use the Apolarity Lemma. But, to invoke
the Apolarity Lemma, one should show that a given set of equations vanishing on the desired set of points
indeed defines the points ideal-theoretically. This is in general quite difficult except in some immediate cases
such as complete intersection. That is the reason why we have a rather lengthy Section 3. In that section, we
prove our main result by introducing a family of real hyperbolic polynomials and investigating structures of
the ideal generated by those polynomials step by step. Finally, we provide a Macaulay2 code for computing
a real apolar set and a real Waring decomposition of any given monomial via the method developed in this
article as a supplementary file.

Acknowledgements. The first author is grateful to J. Buczyński and the Institute of Mathematics
Polish Academy of Sciences in Warsaw for inviting him to the workshop ‘Varieties and Group actions’ in
2018 where this project was initiated. He would also like to thank Bernd Sturmfels for his stimulating
question at tea time. Both authors are grateful to referees and editors for comments and suggestions to
improve the exposition.

2. Preliminaries and notations. From now on, let k be the field of real numbers R and S =
R[X0, . . . , Xn]. Let T = R[x0, . . . , xn] be the dual ring of S which acts on S by the differentiation
xi ◦ Xj := ∂i(Xj). For any F ∈ Sd (the degree d piece of S), F⊥ = {Ψ ∈ T : Ψ ◦ F = 0} is a homo-
geneous ideal in T . We call this F⊥ the apolar ideal (or annihilating ideal) of F . The quotient ring T/F⊥

is called the apolar algebra of F .
A set of reduced points X ⊂ P(S1) = Pn is called an apolar set of F (or apolar to F ) if the (saturated and

radical) defining ideal IX of X is contained in F⊥. A key ingredient to study Waring rank and decomposition
of F is the Apolarity Lemma (see e.g. [IK99, section 1.1] for proof). We state the lemma here over the reals.

Lemma 2.1 (Apolarity Lemma). Let F be any form of degree d in S. Then, there exist scalars λ1, . . . , λr

in R such that F =
∑r

i=1 λiL
d
i with Li = ci0X0 + · · · + cinXn (cij ∈ R) if and only if IX ⊂ F⊥ (i.e. X is

apolar to F ), where X = {[c10 : · · · : c1n], · · · , [cr0 : · · · : crn]} is a set of reduced real points in P(S1).

Remark 2.2. In [IK99], The Apolarity Lemma is originally stated over an algebraically closed field. Let
k be any subfield of C. We can always find the coefficients λi in k, once the given F is a form with coefficients
in k and we restrict ourselves to a set X of k-points, because a system of linear equations Ax = b in which
the scalars bk and the entries Aij are in k has a solution indeed in k whenever it has a solution in C. The
existence of λi among the complex numbers is given by the classical Apolarity Lemma.

For any graded k-algebra R =
⊕

d∈Z≥0
Rd, Hilbert function HF(R, d) is defined as dimk Rd. Throughout

the paper, for any homogeneous ideal I ⊂ T we use definitions for (co)dimension and degree of I ⊂ T by the
notions coming from the associated Hilbert polynomial of a R-algebra T/I.

For later use, we state

Proposition 2.3. Suppose that J is a saturated ideal in T and X := V (J) are distinct R-points in
P(S1). If HF(T/J, d) = |X| for all d ≫ 0, then J = IX (in particular, J is a radical ideal in T ).

Proof. Obviously, J ⊆ IV (J)(= IX). For all d ≫ 0, HF(J, d) = HF(IX, d) = dim Td − |X|, so there exists
d0 such that (J)d = (IX)d for all d ≥ d0. Let m = (x0, x1, . . . , xn), the irrelevant maximal ideal in T . For
any g ∈ (IX)d for d < d0, m

k · g ∈ (IX)≥d+k = (J)≥d+k for a sufficiently large k. Since J is saturated,
g ∈ (J)d, which implies (IX)d ⊆ (J)d. Thus, we have J = IX.

Remark 2.4. Over R, under the assumption that J is saturated and V (J) consists of distinct points in Pn
R,

we need the condition ‘HF(T/J, d) = |X| for all d ≫ 0’ in Proposition 2.3 to guarantee that J is the (vanishing)
ideal of the real points which J defines. Indeed, consider an ideal J = 〈(x−2y)(2x+y)(x2+y2)〉 in T = R[x, y].
J is saturated (and radical) in T and defines X = {[2 : 1], [1 : −2]} over R, but J 6= IX = 〈(x− 2y)(2x+ y)〉.

Note also that Hilbert function of any T -module M does not change under the base extension R →֒ C.
In other words, it holds that HF(M,d) = HF(M ⊗R C, d) for every d (see e.g. [KR, corollary 5.1.20]). Being
saturated (or radical) also does not change under the extension.

We also recall the notion of Stanley decomposition of an R-algebra T/I and some basic results on it (see
e.g. [SW91] for more details).
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Definition 2.5. Let I be an ideal in T and R = T/I. A Stanley decomposition of R is a representation
of R as the (internal) direct sum of R-vector spaces R =

⊕
α∈A xα R[σα], where A is a finite subset of Zn+1

≥0 ,
xα denotes, by abuse of notation, the image in R of monomial xα0

0 xα1

1 · · ·xαn
n for α = (α0, α1, . . . , αn), and

σα is a (possibly empty) subset of the variables {x0, x1, . . . , xn}.

Proposition 2.6. For any homogeneous ideal I ⊂ T , T/I admits a Stanley decomposition. Further, for
a given Stanley decomposition T/I =

⊕
α∈A xα R[σα], Hilbert function of T/I is given by

(2.1) HF(T/I, t) =
∑

α∈A

HF(R[σα], t− |α|) where |α| =
∑

i

αi.

Finally, for any t > maxα∈A{|α|}, HF(T/I, t) agrees with a polynomial function, which is Hilbert polynomial
of T/I.

In the proof of Theorem 1.1, we need to calculate the initial ideal. For this aim, we recall a lemma about
subresultants and polynomial remainder sequences (basic ideas on this topic can be found in [Col67]). The
following lemma is a simple version of it for our purposes and we provide a proof for completeness.

Lemma 2.7. Let f = anx
n + an−1x

n−1 + · · · + a0 and g = bmxm + bm−1x
m−1 + · · · + b0 be two real

univariate polynomials with degrees n,m (n ≥ m). Then, for any 1 ≤ i ≤ m, there exist polynomials ui, vi
with degrees at most m − i, n − i, respectively, such that uif + vig has degree less than or equal to i − 1.
Moreover, each coefficient of ui, vi and of uif + vig can be expressed by the determinant of a submatrix of
the Sylvester matrix of f and g.

Proof. For 1 ≤ i ≤ m, consider the map φi : R[x]≤m−i × R[x]≤n−i → R[x]≤n+m−i, which is given by
φi(A,B) = Af +Bg. Actually, this map can be understood by the linear transformation

φ̃i : R
m−i+1 × Rn−i+1 ≃ Rn+m−2i+2 → Rn+m−i+1

with a (n+m− i+ 1)× (n+m− 2i+ 2)-matrix presentation

M =




an bm

an−1

. . . bm−1

. . .
...

. . . an

...
. . . bm

a0

. . . an−1 b0
. . . bm−1

. . .
...

. . .
...

a0 b0




which is a submatrix of the Sylvester matrix of f and g. Now, we want to find a solution x ∈ Rn+m−2i+2 to
the equation

Mx =




0

.

.

.

0

∗

.

.

.

∗




with the top n+m−2i+1 entries being zeros. For the part of top n+m−2i+1 rows, the equation becomes

M̃x = 0

where M̃ is a (n+m−2i+1)× (n+m−2i+2) submatrix of M . Since the difference between the number of

rows and the number of columns in M̃ is 1, a solution x can be given by determinants of maximal submatrices
of M̃ . In other words, for 0 ≤ j ≤ n + m − 2i + 1, if M̃ j is the submatrix of M̃ by removing (j + 1)-th
column, then

x =
[
(−1)j det(M̃ j)

]n+m−2i+1

j=0
.
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Accordingly, the coefficients of polynomials ui and vi are given by the vector x as follows:

(2.2) ui =
m−i∑

j=0

(−1)j det(M̃ j)xm−i−j , vi =
n−i∑

j=0

(−1)m−i+1+j det(M̃m−i+1+j)xn−i−j .

Further, the bottom ∗-part of the equation Mx =




0

∗

.

.

.

∗


 can be decided up to sign by determinants of M̃k’s

which are (n+m− 2i+2)× (n+m− 2i+2) submatrices of M and the submatrix M̃k is obtained by adding

the (n + m − 2i + 2 + k)-th row of M to M̃ for 0 ≤ k ≤ i − 1. Then, the resulting polynomial uif + vig,
which has degree at most (i− 1), can be written in the form

(2.3) (−1)n+m−2i+1 ·
i−1∑

k=0

det(M̃k)x
i−1−k .

3. Proof of the main result.

3.1. The ideal Ja. Recall that S = R[X0, . . . , Xn] is a polynomial ring over the reals and T =
R[x0, . . . , xn] is the dual ring of S. For a sequence of positive integers a = (a0, a1, . . . , an) with each
ai > 0, consider a monomial Xa = Xa0

0 Xa1

1 · · ·Xan
n in S. Then the apolar ideal (Xa)⊥ in T is given by

(xa0+1
0 , xa1+1

1 , . . . , xan+1
n ). We would like to find an appropriate ideal of R-points J ⊂ (Xa)⊥ which computes

our upper bound in Theorem 1.1. To do this, we first need to introduce the following families of polynomials
with a real parameter.

Definition 3.1. Let t be any nonzero real number. For a given sequence a = (a0, a1, . . . , an) of odd
numbers, define the polynomials of T , F a

i,j(t) by

F a
i,j(t) :=

⌊
ai+2

4
⌋+⌊

aj
4
⌋∏

k=−⌊
ai
4
⌋−⌊

aj+2

4
⌋

(xi − tkxj)(xi + tkxj) for any i, j with 0 ≤ i < j ≤ n.

Definition 3.2. Consider the function ǫ : Z → {0, 1} with

ǫ(p) :=

{
0 p is odd

1 p is even
.

For any sequence a of positive integers with length n + 1, let a′ be the associated sequence of odd numbers
given by

(3.1) a′i = ai − ǫ(ai) , i = 0, . . . , n .

For i, j with 0 ≤ i < j ≤ n, define Ga
i,j(t) as

Ga
i,j(t) := x

ǫ(ai)
i x

ǫ(aj)
j F a′

i,j(t) .

In other words,

Ga
i,j(t) =





F a′

i,j(t) ai is odd, aj is odd

xiF
a′

i,j(t) ai is even, aj is odd

xjF
a′

i,j(t) ai is odd, aj is even

xixjF
a′

i,j(t) ai is even, aj is even .

From now on, instead of F a
i,j(t) and Ga

i,j(t) we often use the notations of F a
i,j and Ga

i,j without t (or even
simpler F and G) where everything is clear.
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Remark 3.3. We have some remarks on the forms F a
i,j(t) and Ga

i,j(t).
1. (Hyperbolicity of F and G) First of all, we would like to note that for any t ∈ R the binary forms

F a
i,j(t) and Ga

i,j(t) are real hyperbolic polynomials in that all their roots are real (see e.g. [BS16,
section 2] for more on this). In particular, if t 6= ±1, the forms F a

i,j(t) and Ga
i,j(t) have distinct real

roots.
2. For any sequence of odd numbers a, F a

i,j(t) has degree

2 ·

(
⌊
ai + 2

4
⌋+ ⌊

aj
4
⌋+ ⌊

ai
4
⌋+ ⌊

aj + 2

4
⌋+ 1

)
= ai + aj .

Similarly, we have deg(Ga
i,j(t)) = ǫ(ai) + ǫ(aj) + deg(F a′

i,j) = ǫ(ai) + ǫ(aj) + a′i + a′j = ai + aj for any
sequence of positive integers a. Furthermore, from the definition, it also holds that F a

i,j(t) = F a
i,j(−t)

and Ga
i,j(t) = Ga

i,j(−t) for all t ∈ R (i.e. the F a
i,j and Ga

i,j are even functions).
3. (Expansions of F and G) For a sequence of odd numbers a = (a0, a1, . . . , an), F

a
i,j(t) can be expanded

as

(3.2) F a
i,j(t) =

ai+aj
2∑

d=0

Ca
i,j,d(t)x

ai+aj−2d
i x2d

j

where each coefficient is given by

(3.3) Ca
i,j,d(t) = (−1)d

∑

I⊂J
|I|=d

∏

k∈I

t2k

for J = {−⌊ai

4 ⌋ − ⌊aj+2
4 ⌋, . . . , ⌊ai+2

4 ⌋+ ⌊aj

4 ⌋}. Note that Ca
i,j,0(t) = 1 and in general each coeffient

Ca
i,j,d(t) can be viewed formally as a Laurent polynomial in R[t, t−1]. Its top degree term has degree

equal to twice the sum of d greatest elements in J . Let us denote this top degree by Qa
i,j(d), which

is given by the quadratic polynomial of d as the following form

Qa
i,j(d) : = top degree(Ca

i,j,d(t)) =

d−1∑

s=0

(
2(⌊

ai + 2

4
⌋+ ⌊

aj
4
⌋)− 2s

)
(3.4)

= 2d

(
⌊
ai + 2

4
⌋+ ⌊

aj
4
⌋

)
− (d− 1)d

= −d2 + d

(
1 + 2⌊

ai + 2

4
⌋+ 2⌊

aj
4
⌋

)
.

For a sequence of positive integers a, let a′ be the associated sequence of odd numbers as in Definition
3.2. Then Ga

i,j(t) can be also rewritten as the following form

(3.5) Ga
i,j(t) =

a′
i
+a′

j
2∑

d=0

Ca′

i,j,d(t)x
ai+a′

j−2d

i x
2d+ǫ(aj)
j .

4. (F a
i,j(t) and Ga

i,j(t) are in (Xa)⊥ for any nonzero real t) Using the above expansions, we observe

that for any sequence of odd numbers a, F a
i,j(t) ∈ (Xa)⊥ because for any t 6= 0 ∈ R

F a
i,j(t) = x

ai+aj

i + · · ·+ Ca

i,j,
aj−1

2

(t)xai+1
i x

aj−1
j + Ca

i,j,
aj+1

2

(t)xai−1
i x

aj+1
j + · · ·

∈ (xai+1
i , x

aj+1
j ).

Similarly, we can see that Ga
i,j(t) ∈ (Xa)⊥ for any sequence of positive integers a, since

Ga
i,j(t) = x

ai+a′
j

i x
ǫ(aj)
j + · · ·+ Ca′

i,j,
a′
j
−1

2

(t)xai+1
i x

aj−1
j + Ca′

i,j,
a′
j
+1

2

(t)xai−1
i x

aj+1
j + · · ·

∈ (xai+1
i , x

aj+1
j ) .

5



Definition 3.4. Now, we define an ideal

Ja(t) :=
(
{Ga

i,j(t) : 0 ≤ i < j ≤ n}
)

Note that Ja(t) becomes a homogeneous ideal in T by evaluation at any nonzero parameter t ∈ R.

Remark 3.5. An example which shows a motive for the choice in the definition of F , G and Ja is the ideal
(x3

0x1 − x0x
3
1, x

3
0x2 − x0x

3
2, x

3
1x2 − x1x

3
2) which is contained in the apolar ideal (X2

0X
2
1X

2
2 )

⊥ = (x3
0, x

3
1, x

3
2)

and defines 13 points on the real projective plane. This gives rankR(X
2
0X

2
1X

2
2 ) ≤ 13. In fact, there are other

similar ways to take a generating set of binary forms inside the apolar ideal which cuts distinct real points
on the plane.

But if we do not choose the symmetry of roots of generators carefully, the saturatedness of that ideal
is easily fails. For instance, the ideal (x3

0x1 − x0x
3
1, 4x

3
0x2 − x0x

3
2, x

3
1x2 − 9x1x

3
2) defines 9 points and is also

contained in the apolar ideal
(x3

0, x
3
1, x

3
2). But this ideal is not saturated and x0x1x2 is added under the saturation. Then the resulting

ideal does not belong to the apolar ideal, hence we can no longer use the Apolarity Lemma.

By abuse of notation, we often use Ja to denote Ja(t) whenever the parameter t is not necessary for
arguments.

Proposition 3.6. For a monomial Xa = Xa0

0 Xa1

1 · · ·Xan
n with each ai > 0, the ideal Ja(t) is contained

in (Xa)⊥ = (xa0+1
0 , xa1+1

1 , . . . , xan+1
n ) for any nonzero t ∈ R. The zero set V (Ja(t)) consists of

1
2 (
∏n

i=0(ai +
1)−

∏n
i=0(ai − 1)) real points for any nonzero real t 6= ±1.

Proof. It is obvious that Ja(t) ⊂ (Xa)⊥ by Remark 3.3 (4). For the common zero set, first of all, let
us treat the case where all ai are odd. In this case, Ga

i,j(t) = F a
i,j(t) and it is easy to see that V (Ja(t)) has

no zero on the coordinate planes. Let us denote the points of V (Ja(t)) in the positive orthant by V (Ja)
+.

All other points of V (Ja(t)) can be obtained by all reflections of V (Ja)
+ with respect to every axis. Since

Ga
i,j(t) = Ga

i,j(−t), from now on, assuming t > 0.

We claim that V (Ja)
+ is the set Γ = {[tb0 : tb1 : . . . : tbn ] | − ⌊ai

4 ⌋ ≤ bi ≤ ⌊ai+2
4 ⌋, bi ∈ Z}. To see that

Γ ⊂ V (Ja)
+, we need to show that every generator Gi,j of J vanishes at the point [tb0 : tb1 : . . . : tbn ]. Since

−⌊ai

4 ⌋ ≤ bi ≤ ⌊ai+2
4 ⌋ and −⌊aj

4 ⌋ ≤ bj ≤ ⌊aj+2
4 ⌋, we get −⌊ai

4 ⌋ − ⌊aj+2
4 ⌋ ≤ bi − bj ≤ ⌊ai+2

4 ⌋ + ⌊aj

4 ⌋. Hence,
Ga

i,j(t)([t
b0 : tb1 : . . . : tbn ]) = 0 for all 0 ≤ i < j ≤ n.

To prove the opposite direction, V (Ja)
+ ⊂ Γ, let p be any point [α0 : α1 : . . . : αn] of V (Ja)

+. First we
see that p can be written in the form [tc0 : tc1 : . . . : tcn ] for some integers ci. For any i with 0 ≤ i < n,
αi = tdiαn for some di ∈ Z, because Ga

i,n(t)(p) = 0 and αi, αn > 0. So, p = [td0αn : td1αn : . . . : αn] and if

we set αn = tdn for some dn ∈ Z (by scaling αi if necessary), then p is of the form [tc0 : tc1 : . . . : tcn ] and

−⌊ai

4 ⌋ − ⌊aj+2
4 ⌋ ≤ ci − cj ≤ ⌊ai+2

4 ⌋+ ⌊aj

4 ⌋ from the definition of Ga
i,j .

Let ki = ci + ⌊ai

4 ⌋ and kl = min{k0, . . . , kn}. Then 0 ≤ ki − kl = ci + ⌊ai

4 ⌋ − kl. So −⌊ai

4 ⌋ ≤

ci − kl = (ci − cl)− ⌊al

4 ⌋ ≤ (⌊ai+2
4 ⌋+ ⌊al

4 ⌋)− ⌊al

4 ⌋ = ⌊ai+2
4 ⌋ for all i = 0, . . . , n. Thus, we can conclude that

p = t−kl · [tc0 : tc1 : . . . : tcn ] ∈ Γ.
Next, for any real t 6= ±1, let us count the number of points of Γ. Since [tb0 : tb1 : . . . : tbn ] = [tb0+1 :

tb1+1 : . . . : tbn+1], we need to consider the equivalence among points in the description of Γ. Note that a
representative in each equivalence can be chosen as [tb0 : tb1 : . . . : tbn ] with at least one index i such that
−⌊ai

4 ⌋ = bi. Hence the number of elements in Γ is given by

n∏

i=0

(⌊
ai
4
⌋+ ⌊

ai + 2

4
⌋+ 1)−

n∏

i=0

(⌊
ai
4
⌋+ ⌊

ai + 2

4
⌋) .

Since each ai is odd and ⌊ai

4 ⌋+ ⌊ai+2
4 ⌋+1 = ai+1

2 , ⌊ai

4 ⌋+ ⌊ai+2
4 ⌋ = ai−1

2 regardless of ai = 4k+1 or 4k+3,
we obtain

|V (Ja)
+| = |Γ| =

n∏

i=0

ai + 1

2
−

n∏

i=0

ai − 1

2
.
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Moreover, by considering all the n coordinate reflections, we find

|V (Ja)| = 2n · (
n∏

i=0

ai + 1

2
−

n∏

i=0

ai − 1

2
) =

1

2

(
n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

)
.

Now, let us prove the statement for any sequence a = (a0, a1, · · · , an). Let E be the set of indices i for
which ai is even. We will use a double induction on n, the length of a, and on |E|, the size of E. One initial
condition |E| = 0 (i.e. the case of all ai being odd) is checked above. Another initial case n = 1 follows as
Ga

0,1(t) has a0 + a1 distinct real roots when t 6= ±1.
Consider any sequence a = (a0, a1, . . . , an) with |E| = k and assume that the statement does hold if the

number of even indices is less than k for any sequence of the same length or if the length of a sequence is
shorter than a. Take an index l ∈ E, consider a′ = a − el, where el is the l-th coordinate vector. Since
al is even, all polynomials Ga

i,l and Ga
l,j have the factor xl. This property implies that V (Ja) is a union of

two disjoint subsets - one subset from xl = 0 and the other xl 6= 0. If xl is nonzero, computing zeros of this
subset is reduced to the case a′. On the other hand, if xl is zero, the common zeros are same as the case
a′′ := (a0, a1, . . . , al−1, al+1, . . . , an). By the induction hypothesis, we have

|V (Ja)| = |V (Ja′)|+ |V (Ja′′)|

=
1

2

(
(al − 1 + 1)

n∏

i6=l

(ai + 1)− (al − 1− 1)

n∏

i6=l

(ai − 1)

)
+

1

2

( n∏

i6=l

(ai + 1)−
n∏

i6=l

(ai − 1)

)

=
1

2

(
n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

)
.

Example 3.7. As an illustration of our method, we present an apolar set for X5
0X

4
1X

3
2 and X4

0X
4
1X

4
2 .

First, let a = {5, 4, 3}. Then Ja(t) = (Ga
0,1, G

a
0,2, G

a
1,2) and

Ga
0,1 = x1(x

2
0 −

1

t4
x2
1)(x

2
0 −

1

t2
x2
1)(x

2
0 − x2

1)(x
2
0 − t2x2

1) ∈ (x6
0, x

5
1),

Ga
0,2 = (x2

0 −
1

t4
x2
2)(x

2
0 −

1

t2
x2
2)(x

2
0 − x2

2)(x
2
0 − t2x2

2) ∈ (x6
0, x

4
2),

Ga
1,2 = x1(x

2
1 −

1

t2
x2
2)(x

2
1 − x2

2)(x
2
1 − t2x2

2) ∈ (x5
1, x

4
2) ,

where we can check that (Ga
0,1, G

a
0,2, G

a
1,2) ⊂ (x6

0, x
5
1, x

4
2), the apolar ideal. Since E, the set in the proof of

Proposition 3.6, is just {1}, V (Ja) consists of a union of two disjoint parts, i.e. {x1 = 0} and {x1 6= 0}. Note
that the zeros in {x1 6= 0} are given by the points in V (Ja′) where a′ = {5, 3, 3}. The points in V (Ja′) can
be represented by [tk0 ; tk1 ; tk2 ] with −⌊ai

4 ⌋ ≤ ki ≤ ⌊ai+2
4 ⌋ and at least one ki is equal to the lower bound. To

simplify the situation, let k′i = ki+⌊ai

4 ⌋ and replace all xi by t−⌊
ai
4
⌋xi. Then 0 ≤ k′i ≤ ⌊ai+2

4 ⌋+⌊ai

4 ⌋ = ⌊ai−1
2 ⌋

and at least one of k′i is zero. In this case, 0 ≤ k′0 ≤ 2, 0 ≤ k′1 ≤ 1, 0 ≤ k′2 ≤ 1 and at least one of k′i is zero.
Among the 3 · 2 · 2 = 12 possible choices, the two caes (k′0, k

′
1, k

′
2) = (1, 1, 1) and (2, 1, 1) do not satisfy the

condition that at least one of k′i is zero.
Hence, considering axis-reflections on x1, x2, there are 10 · 22 = 40 nonzero points

{[1;±1;±1], [1;±1;±t], [1;±t;±1], [1;±t;±t], [t;±1;±1],

[t;±1;±t], [t;±t;±1], [t2;±1;±1], [t2;±1;±t], [t2;±t;±1]}

for any real t 6= 0,±1. In V (Ja), there are another points in {x1 = 0}. These points have the form [tk
′
0 , 0, tk

′
2 ]

where 0 ≤ k′0 ≤ 2 and 0 ≤ k′2 ≤ 1. Among 3 · 2 = 6 possible choices, (k′0, k
′
2) = (1, 1) and (2, 1) do not satisfy

the condition that at least one of k′i is zero. Hence, considering axis-reflections there are 4 ·2 = 8 points such
as

{[1; 0;±1], [1; 0;±t], [t; 0;±1], [t2; 0;±1]}.
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They give a total of 48 points and we have 1
2 (4 · 5 · 6− 2 · 3 · 4) = 48.

Now, let us take a = {4, 4, 4}. Then Ja = (Ga
0,1, G

a
0,2, G

a
1,2)

Ga
0,1 = x0x1(x

2
0 −

1

t2
x2
1)(x

2
0 − x2

1)(x
2
0 − t2x2

1) ∈ (x5
0, x

5
1),

Ga
0,2 = x0x2(x

2
0 −

1

t2
x2
2)(x

2
0 − x2

2)(x
2
0 − t2x2

2) ∈ (x5
0, x

5
2),

Ga
1,2 = x1x2(x

2
1 −

1

t2
x2
2)(x

2
1 − x2

2)(x
2
1 − t2x2

2) ∈ (x5
1, x

5
2) ,

In this case, E = {0, 1, 2} and 0 ≤ k′0 ≤ 1, 0 ≤ k′1 ≤ 1, 0 ≤ k′2 ≤ 1. There are 7 disjoint subsets of V (Ja)
which are

x0 6= 0, x1 6= 0, x2 6= 0, x0 6= 0, x1 6= 0, x2 = 0, x0 6= 0, x1 = 0, x2 6= 0,

x0 = 0, x1 6= 0, x2 6= 0, x0 6= 0, x1 = 0, x2 = 0, x0 = 0, x1 6= 0, x2 = 0,

x0 = 0, x1 = 0, x2 6= 0 .

Accordingly, the points from these 7 subsets are given by

{[1;±1;±1], [1;±1;±t], [1;±t;±1], [t;±1;±1], [1;±t;±t], [t;±1;±t], [t;±t;±1]} ,

{[1;±1; 0], [1;±t; 0], [t;±1; 0]} , {[1; 0;±1], [1; 0;±t], [t; 0;±1]}, {[0; 1;±1], [0; 1;±t], [0; t;±1]} ,

{[1; 0; 0]} , {[0; 1; 0]} , {[0; 0; 1]}

for any nonzero real t 6= ±1. Hence we have 7 · 22 + 3 · 21 + 3 · 21 + 3 · 21 + 1 · 20 + 1 · 20 + 1 · 20 = 49 points.
This is same as the number 1

2 (5 · 5 · 5− 3 · 3 · 3) = 49.
Further, we can check that points of V (J{4,4,4}) with x0 6= 0 and x2 6= 0 is included in V (J{5,4,3}). This

fact is also true in general : If ak ≥ al are nonzero even numbers, then the points in V (Ja) with xk 6= 0 and
xl 6= 0 is included in the set V (J ′

a) with xk 6= 0 and xl 6= 0, where a′ = {a0, . . . , ak + 1, . . . , al − 1, . . . , an}.

3.2. Initial ideal of Ja with respect to the graded reverse lexicographic order. In what follows,
we consider the initial ideal of Ja with respect to the graded reverse lexicographic order. With the help of
information on the structure of in(Ja(t)), in subsection 3.3 we show that at least for all but finitely many real
t, Ja(t) defines some apolar set ideal-theorectically, by which one can compute the upper bound in Theorem
1.1.

We proceed in the following steps :
1. Begin with the case that the last index an of the exponent sequence a is an odd number.
2. Define a monomial ideal Ma which is a candidate for the initial ideal of Ja. Check that the degree

of this ideal Ma is equal to the cardinality of V (Ja) (Lemma 3.11).
3. Prove that Ma ⊂ in(Ja) by finding a family of polynomials in Ja whose leading terms are in Ma

(Proposition 3.13).
4. Using Lemma 3.12, a structural property of Ma, we settle Ma = in(Ja) for the case of an odd in

Proposition 3.16.
5. Generalize this result to the case of any sequence a with an even in Proposition 3.17.

Definition 3.8. Let a be a sequence of positive integers (a0, a1, . . . , an), a0 ≥ a1 ≥ · · · ≥ an with an
odd and i = (i0, i1, . . . , in−1) be a lattice point in the simplex

∆n−1(λa) := {(i0, i1, . . . , in−1) | i0 + i1 + . . .+ in−1 = λa, for all ik ≥ 0}

(let λa :=
an + 1

2
).

Then we define an 1-1 mapping β(a,−) : ∆n−1(λa) → Zn
≥0 and xβ(a,i) as follows :

xβ(a,i) := x
β0(a,i)
0 x

β1(a,i)
1 · · ·x

βn−1(a,i)
n−1 , for all i ∈ ∆n−1(λa)
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where

βk(a, i) =

{
0, if ik = 0

ak − 1− 2(i0 + i1 + · · ·+ ik−1) + 2ik, otherwise
for 0 ≤ k ≤ n− 1.

In other words,




β0

β1

β2

...
βn−1



= δ(i) ·







a0 − 1
a1 − 1
a2 − 1

...
an−1 − 1



+




2 0 0 · · · 0
−2 2 0 · · · 0

−2 −2
. . .

. . . 0
...

...
. . .

. . .
...

−2 −2 · · · −2 2







i0
i1
i2
...

in−1







where δ(i) be the diagonal matrix diag(δ(i0), δ(i1), . . . , δ(in−1)), where δ is a function with δ(k) = 0 for k = 0
and δ(k) = 1 for others.

Remark 3.9. For two lattice points i, j ∈ ∆n−1(λa), if i0 + i1 + · · ·+ is = j0 + j1 + · · ·+ js and is′ = js′

for all s′ > s, then by the definition xβ(a,i) and xβ(a,j) have same exponents for xs′ , ∀s′ > s.

Using this definition, we have a candidate for in(Ja) whose monomial generators are indexed by the
lattice points in the simplex ∆n−1(λa).

Definition 3.10. For a sequence of positive integers a = (a0, . . . , an), a0 ≥ a1 ≥ . . . ≥ an with an odd,
the monomial ideal Ma is defined by

Ma :=
(
{xβ(a,i); i ∈ ∆n−1(λa)}

)
.

Note that there is no xn in the generators of Ma from Definition 3.8.

First, we calculate the degree of this monomial ideal and check some special structural property.

Lemma 3.11. The degree of the monomial ideal Ma is given by 1
2 (
∏n

i=0(ai + 1)−
∏n

i=0(ai − 1)).

Proof. We use induction on the number of variables. For n = 1, Ma = (xa0+a1

0 ). Hence deg(Ma)
is a0 + a1 = 1

2 ((a0 + 1)(a1 + 1) − (a0 − 1)(a1 − 1)), which satisfies the formula. Now, suppose that for
fewer variables, the statement is true. We first recall that one can have a generating set of Ma in which
there is no generator having xn as mentioned above. Further, xak+an

k = xβ(a,λaek) belongs to Ma for each
k = 0, . . . , n− 1. So, T/Ma admits a Stanley decomposition as

T/Ma =
⊕

xα∈Na

xα R[xn] ,

where Na := {xα ∈ R[x0, . . . , xn−1] : x
α /∈ Ma} which is a finite set. By Proposition 2.6, the Hilbert function

of T/Ma can be calculated by

HF(T/Ma, t) =
∑

α

HF(R[xn], t− |α|)

and for ∀ t ≫ 0 Hilbert polynomial of T/Ma can be calculated as the constant |Na|. So the number of
elements of Na gives the degree of Ma. Now we divide the elements of Na into pieces by exponent of x0 and
count the number of elements. Let

Ma,d := {m ∈ R[x1, . . . , xn] : x
d
0m ∈ Ma} and Na,d := {n ∈ R[x1, . . . , xn−1] : n /∈ Ma,d} .

Then Ma,d is a monomial ideal in R[x1, . . . , xn] and Na is a disjoint union⋃a0+an−1
d=0 Na,d · xd

0, for x
β(a,λae0) = xa0+an

0 ∈ Ma (i.e. Ma,a0+an
= R[x1, . . . , xn]). So, we have

(3.6) |Na,d| = deg
(
R[x1, . . . , xn]/Ma,d

)
and |Na| =

a0+an−1∑

d=0

deg
(
R[x1, . . . , xn]/Ma,d

)
.
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When i0 = 0, the monomial generator xβ(a,i) has β0 = 0 (i.e. the monomial contains no x0), while
β0 = a0 − 1 + 2i0 ≥ a0 + 1 if i0 ≥ 1. For other βk, if i0 = 0, then it is given by

βk(a, i) =

{
0 , ik = 0

ak − 1− 2(i1 + · · ·+ ik−1) + 2ik, otherwise .

Hence, we see that Ma,d = M(a1,a2,...,an) for d = 0, . . . , a0. Similarly, if i0 = j (j = 1, . . . , λa), the generators

of Ma is given by xβ(a,i) with

βk(a, i) =

{
0 , ik = 0

(ak − 2j)− 1− 2(i1 + · · ·+ ik−1) + 2ik, otherwise
,

which implies that Ma,d = M(a1−2j,a2−2j,...,an−2j) for a0 + 2j − 1 ≤ d ≤ a0 + 2j. Therefore, by (3.6) and
induction hypothesis, we compute the degree of Ma as

|Na| =

a0
∑

d=0

deg(M(a1,a2,...,an)) +

a0+2
∑

d=a0+1

deg(M(a1−2,a2−2,...,an−2)) + · · ·+

a0+an−1
∑

d=a0+an−2

deg(M(a1−2λa,a2−2λa,...,an−λa))

= (a0 + 1) deg(M(a1,a2,...,an)) + 2 deg(M(a1−2,a2−2,...,an−2)) + · · ·+ 2deg(M(a1−an+1,a2−an+1,...,1))

= (a0 + 1)
1

2

(

n
∏

i=1

(ai + 1) −
n
∏

i=1

(ai − 1)
)

+ 2 ·
1

2

(

n
∏

i=1

(ai − 1)−
n
∏

i=1

(ai − 3)
)

+ · · ·+ 2 ·
1

2
(

n
∏

i=1

(ai − an + 3)− 0)

=
a0 + 1

2

n
∏

i=1

(ai + 1)−
a0 + 1

2

n
∏

i=1

(ai − 1) +
n
∏

i=1

(ai − 1) =
1

2

n
∏

i=0

(ai + 1)−
1

2

n
∏

i=0

(ai − 1) ,

as claimed.

Lemma 3.12. For any monomial n /∈ Ma, deg(Ma) > deg(Ma + (n)).

Proof. Let n be a monomial which is not contained in Ma. It can be written as n = xγ0xk
n for some

xγ0 ∈ Na and k ≥ 0. Set Γ0 = R[x0, . . . , xn−1] · xγ0 and M ′ = Ma + (n). Then, a Stanley decomposition of
T/M ′ can be given as

T/M ′ =
⊕

xα∈Na\Γ0

xα R[xn] ⊕
⊕

xγ∈Na∩Γ0

(
k−1⊕

i=0

xγxi
n R[∅]

)
,

which shows that the degree deg(M ′) is strictly less than deg(M
a
).

Proposition 3.13. For a sequence of positive integers a = (a0, a1, . . . , an), a0 ≥ a1 ≥ · · · ≥ an with an
odd, Ma ⊂ in(Ja(t)) for all but finitely many real numbers t.

Proof. Let Supp(i) be the support of i ∈ ∆n−1(λa) and Supp#(i) := Supp(i) ∪ {n} ⊂ {0, 1, . . . , n}.
We prove the statement by finding a polynomial H(a, i) ∈ Ja with the following three properties for any
i ∈ ∆n−1(λa) in an inductive way.

1. LT(H(a, i)) = A(a, i)xβ(a,i), where A(a, i) ∈ R[t, t−1] is a nonzero leading coefficient.
2. Let k ∈ Supp#(i) be the smallest element. Then H(a, i) ∈

(
{F a

k,k′ : k′ ∈ Supp#(i), k′ 6= k}
)
⊂ Ja.

3. Moreover, H(a, i) ∈ R[t, t−1][xi, i ∈ Supp#(i)]
To define H(a, i), we use an induction on the size of Supp#(i) whose minimum is 2. From now on, H(i)

stands for H(a, i). We note that a nonzero element in R[t, t−1] becomes nonzero by evaluating it at all but
finitely many real numbers t. We also recall notations in Definition 3.2, 3.8 and Remark 3.3.

Step 1 [Initial case I with | Supp#(i)| = 2]
Suppose that | Supp#(i)| = 2. Then Supp(i) = {k} for some 0 ≤ k ≤ n− 1 and i = λaek. For this case,

we find

H(i) := Ga
k,n = x

ak+a′
n

k xǫ(an)
n + Ca′

k,n,1x
ak+a′

n−2
k x2+ǫ(an)

n + · · · = xak+an

k + Ca′

k,n,1x
ak+an−2
k x2

n + · · ·
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because an is odd (here we briefly use notation Ca′

k,n,d instead of Ca′

k,n,d(t)). Since xβ(i) = xak+an

k , H(i)
satisfies the properties (1) - (3). In case of an = 1, everything is done in Step 1. So, in what follows, let us
assume an ≥ 3.

Step 2 [Initial case II with | Supp#(i)| = 3 and i = (λa − 1)ek + el]
Consider the another initial case i = (λa − 1)ek + el for any k < l. Consider the division of Ga

k,l by

xak+an

k . Since they are homogeneous binary forms in R[t, t−1][xk, xl], the division is same as the univariate
case and the quotient is uniquely given. In particular, the quotient q is given by

q =

a′
l
−an

2∑

d=0

Ca′

k,l,d x
a′
l−an−2d

k x
2d+ǫ(al)
l .

Define H(i) := Ga
k,l − q ·Ga

k,n. Then, we see that

H(i) =

a′
k
+a′

l
2∑

d=
a′
l
−an

2
+1

Ca′

k,l,d x
ak+a′

l−2d
k x

2d+ǫ(al)
l − q · (Ga

k,n − xak+an

k ) .

Since all the terms of the rear part involve xn, the leading term should appear in the front. Hence LT(H(i)) =
A(i)xak+an−2

k xal−an+2
l where A(i) = Ca′

k,l,
a′
l
−an

2
+1

, which is nonzero. Note that xβ(i) = xak+an−2
k xal−an+2

l .

So, H(i) satisfies the properties (1) - (3) of the polynomial H .

Step 3 [Induction hypothesis and τ-projection]
Assume that | Supp#(i)| = m and all the polynomials H(j) are already determined for all j with

| Supp#(j)| < m. Now, let us define a projection map τ on points in the simplex except vertices by
τ(i) = i + ilek − ilel where k, l are the smallest index and the second smallest one in Supp#(i) respec-
tively. Since | Supp#(τ(i))| = | Supp#(i)\{l}| = m−1, we already have H(τ(i)) by the induction hypothesis.
H(τ(i)) is a polynomial in R[t, t−1][xi, i ∈ Supp#(τ(i))] where its leading term is

LT(H(τ(i))) = A(τ(i))xβ(τ(i)) = A(τ(i))x
ak+2(ik+il)−1
k m

where m is the remaining monomial part in R[xi, i ∈ Supp#(i)\{k, l}]. Note that

xβ(i) = xak+2ik−1
k xal−2ik+2il−1

l m

for the same monomial m by Remark 3.9.

Step 4 [Move I - using two polynomials from Step 2 and 3]
In this step, using two polynomials H ((λa − 1)ek + el) and H(τ(i)), we define

H(τ ′(i)) := H(τ(i)− ek + el) .

For the extreme case ik + il = λa, τ(i) is equal to λaek so that H(τ ′(i)) = H((λa − 1)ek + el) which was
already done in Step 2. Hence, suppose that 2 ≤ ik + il ≤ λa − 1. Write

H ((λa − 1)ek + el) =

a′
k
+a′

l
2∑

d=
a′
l
−an

2
+1

Ca′

k,l,d x
ak+a′

l−2d
k x

2d+ǫ(al)
l +R1(3.7)

where all terms in R1 involving xn as in Step 2 and H(τ(i)) = A(τ(i))x
ak+2(ik+il)−1
k m + R2 where R2 is

the remaining part except the leading term. Consider the division of the front part of H ((λa − 1)ek + el) ∈

R[t, t−1][xk, xl] (i.e. terms except R1 in (3.7)) by x
ak+2(ik+il)−1
k when regarding both dividend and divisor as

11



a univariate polynomial in xk. Then, the quotient q′ is given by q′ =

dmax∑

d=dmin

Ca′

k,l,d x2dmax−2d
k x

2d+ǫ(al)
l , where

dmin =
a′
l−an

2 + 1, dmax =
(ak+a′

l)−(ak+2(ik+il)−1)
2 =

a′
l−2(ik+il)+1

2 . Using this quotient, define

H(τ ′(i)) : = A(τ(i))m ·H ((λa − 1)ek + el)− q′ ·H(τ(i))

= A(τ(i))m ·




a′
k
+a′

l
2∑

d=dmax+1

Ca′

k,l,d x
ak+a′

l−2d
k x

2d+ǫ(al)
l +R1


− q′ ·R2 .(3.8)

Since x
ak+2(ik+il)−1
k m ≻grevlex any term in R2, x

a
kx

b
lm is always larger than any term in q′ · R2 whenever

both have the same total degree. Thus, the leading term of H(τ ′(i)) should appear in the front part of (3.8)

and LT(H(τ ′(i))) = A(τ(i))m · Ca′

k,l,dmax+1 x
ak+2(ik+il)−3
k x

al−2(ik+il)+3
l . Since the leading coefficient

A(τ ′(i)) = A(τ(i))Ca′

k,l,dmax+1 is nonzero in R[t, t−1] and

xβ(τ ′(i)) = x
ak+2(ik+il−1)−1
k x

al−2(ik+il−1)+2−1
l m

with the same monomial m as above by Remark 3.9, H(τ ′(i)) satisfies property (1). It is easy to check that
it also has the other properties (2) - (3) as well.

Step 5 [Move II - using two polynomials from Step 3 and 4]
In the final step, using H(τ(i)) and H(τ ′(i)), we define H(τ(i)− sek + sel) for any s = 2, . . . , ik + il− 1.

In particular, if we put s = il, then H(τ(i) − ilek + ilel) = H(i) and the proof can be completed by the
induction.

Recall that from Step 3 and 4 we can write H(τ(i)) = A(τ(i))x
ak+2(ik+il)−1
k m+R2 and

H(τ ′(i)) = A(τ(i))

a′
k
+a′

l
2∑

d=dmax+1

Ca′

k,l,d x
ak+a′

l−2d
k x

2d+ǫ(al)
l m+R3 .

Consider two homogeneous binary forms

f = x
ak+2(ik+il)−1
k and g =

a′
k
+a′

l
2∑

d=dmax+1

Ca′

k,l,d x
ak+a′

l−2d
k x

2d+ǫ(al)
l .

To simplify the situation, divide them by x
ǫ(ak)
k , substitute x2

k = X and dehomogenize them by putting

xl = 1. Then we have f̃ = Xα, g̃ =

α−1∑

i=0

DiX
i where Di = Ca′

k,l,
a′
k
+a′

l
2

−i
if we put α :=

a′
k+2(ik+il)−1

2 .

Now, since f̃ and g̃ are univariate polynomials with degree α and α − 1 respectively, we can apply Lemma
2.7. Then, for i = α − s + 1 (2 ≤ s ≤ ik + il − 1), there exist two polynomials ũα−s+1, ṽα−s+1 such that
h̃ = ũα−s+1f̃ + ṽα−s+1g̃ have degree less then or equal to α − s. Further, each coefficient of h̃ is given by
the determinant of a corresponding submatrix of the Sylvester matrix of f̃ and g̃ as in (2.3). In this case,
the corresponding submatrix is given by the (α+ s− 1)× (2s− 1) matrix

M =




1 0 · · · 0 Dα−1 0 · · · 0
0 1 · · · 0 Dα−2 Dα−1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 Dα−s+1 Dα−s+2 · · · 0
0 0 · · · 0 Dα−s Dα−s+1 · · · Dα−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · D0




.
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In particular, the leading coefficient of h̃ is equal to the determinant of M̃0, the top (2s − 1) × (2s − 1)

submatrix of M , by (2.3). Now, we show that deg h̃ = α− s (i.e. det(M̃0) is nonzero in R[t, t−1]). Since the

top left (s− 1)× (s− 1) submatrix of M̃0 is the identity matrix and only zero entries in below, it is enough
to calculate the determinant of the bottom right s× s submatrix such as

N :=




Dα−s Dα−s+1 · · · Dα−1

Dα−s−1 Dα−s · · · Dα−2

...
...

. . .
...

Dα−2s+1 Dα−2s+2 · · · Dα−s


 .

We know that the top degree part of Di ∈ R[t, t−1] has degree Qa′

k,l(
a′
k+a′

l

2 −i), which is −i2+γ1i+γ2 for some
constant γ1, γ2 (see Remark 3.3 (3)). And each term of the determinant of N is of the form Di1Di2 · · ·Dis

with i1 + i2 + · · ·+ is = s(α− s). The top degree of this term is given by

(3.9)
∑

i=i1,...,is

(−i2 + γ1i+ γ2) =
∑

i=i1,...,is

(−i2) + γ1s(α− s) + γ2s .

Since the sum i1+i2+· · ·+is is fixed, the maximum of (3.9) is achieved only when all i1 = i2 = · · · = is = α−s.
Hence the top degree part of det(N) comes only from the diagonal term Ds

α−s which is not identically zero

in R[t, t−1]. Therefore, the leading coefficient of h̃, det(N) is non-zero and deg h̃ = α − s. Further, by the
proof of Lemma 2.7 the leading coefficients of ũα−s+1 and ṽα−s+1 are given up to sign by Dα−1 · det(N)
and det(N) respectively, where det(N) is determinant of the top right (s − 1) × (s − 1) submatrix of N
which is nonzero in R[t, t−1] in a similar manner as for det(N). So, we also have deg ũα−s+1 = s − 2 and
deg ṽα−s+1 = s− 1.

Let u, v, h be the homogenization of ũα−s+1, ṽα−s+1, h̃ by xl and substitute X by x2
k, respectively. Then

we have ufx
al−2(ik+il)+3
l + vg = hx

ǫ(ak)
k x

al−2(ik+il)+4s−1
l and h is a degree 2(α − s) homogeneous binary

form in R[t, t−1][xk, xl] with LT(hx
ǫ(ak)
k ) = det(N)x2α−2s

k x
ǫ(ak)
k = det(N)x

ak+2(ik+il−s)−1
k . Now let us set

H(τ(i)− sek + sel) := u · x
al−2(ik+il)+3
l ·H(τ(i)) + v ·H(τ ′(i))

= u · x
al−2(ik+il)+3
l (A(τ(i))fm +R2) + v · (A(τ(i))gm +R3)

= A(τ(i))(ufx
al−2(ik+il)+3
l + vg)m+ ux

al−2(ik+il)+3
l R2 + vR3

= A(τ(i))hx
ǫ(ak)
k x

al−2(ik+il)+4s−1
l m+R4 .

Similarly, the leading term appears in the front part and it is given by

LT(H(τ(i) − sek + sel)) = A(τ(i)) det(N) · x
ak+2(ik+il−s)−1
k x

al−2(ik+il−s)+2s−1
l m

while xβ(τ(i)−sek+sel) is x
ak+2(ik+il−s)−1
k x

al−2(ik+il−s)+2s−1
l m by Remark 3.9. So, H(τ(i)−sek+sel) satisfies

property (1) and (2)-(3) is also immediate from the construction.

We present some examples illustrating the process in the proof of Proposition 3.13 concretely.

Example 3.14. Let n = 3 and a = (5, 5, 5, 5), λa = 5+1
2 = 3. Take t = 2.

Then the simplex ∆3−1(λa) = ∆2(3) consists of the following 10 integer lattice points

(3, 0, 0), (2, 1, 0), (1, 2, 0), (0, 3, 0), (2, 0, 1), (1, 1, 1), (0, 2, 1), (1, 0, 2), (0, 1, 2), (0, 0, 3).

From these points, the monomial ideal Ma is generated by 10 monomials

(x10
0 , x8

0x
2
1, x

6
0x

6
1, x

10
1 , x8

0x
2
2, x

6
0x

4
1x

2
2, x

8
1x

2
2, x

6
0x

6
2, x

6
1x

6
2, x

10
2 )

To follow the proof of Proposition 3.13, we assign a polynomial H(i) ∈ Ja(t) for each lattice point i such
that the leading monomial of H(i) is xβ(a,i), a generator of Ma.
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First, H(3, 0, 0), H(2, 1, 0), H(0, 3, 0), H(2, 0, 1), H(0, 2, 1) and H(0, 0, 3) can be obtained by the Step
1 and Step 2. To get H(1, 1, 1), we need to apply Move I in Step 4 on the polynomials H(2, 1, 0) and
H(2, 0, 1). They are given by the following form

H(2, 1, 0) = F a
0,1 − F a

0,3 = −
341

16
x8
0x

2
1 +

5797

64
x6
0x

4
1 + · · · − x10

1 +R1

H(2, 0, 1) = F a
0,2 − F a

0,3 = −
341

16
x8
0x

2
2 +

5797

64
x6
0x

4
2 + · · · − x10

2 +R2

by the Step 2 (note that β((2, 1, 0)) = (5 + 2 · 2 − 1, 5 − 2 · 2 + 2 · 1 − 1, 0) = (8, 2, 0) and β((2, 0, 1)) =
(5 + 2 · 2− 1, 0, 5− 2 · 2 + 2 · 1− 1) = (8, 0, 2), as desired). To apply Move I in Step 4, we need to calculate
q′ = −341/16x2

1. Using this, we obtain

H(1, 1, 1) = A(2, 0, 1)m ·H(2, 1, 0)− q′H(2, 0, 1)

= −
341

16
x2
2H(2, 1, 0) +

341

16
x2
1H(2, 0, 1) = A(1, 1, 1)x6

0x
4
1x

2
2 +

1976777

1024
x4
0x

6
1x

2
2 + · · ·

Since β((1, 1, 1)) = (5 + 2 · 1 − 1, 5 − 2 · 1 + 2 · 1 − 1, 5 − 2 · (1 + 1) + 2 · 1 − 1) = (6, 4, 2), it satisfies the
properties of the polynomial H .

Finally, to construct H(1, 2, 0), we’re going to apply Move II with s = 2 on the polynomials H(3, 0, 0)
and H(2, 1, 0). H(3, 0, 0) = F a

0,3 = x10
0 + · · · and H(2, 1, 0) is given as above. Then, from these polynomials

Move II with s = 2 produces H(1, 2, 0) as follows

H(1, 2, 0) = (−
341

16
)2x2

1 ·H(3, 0, 0) + (
341

16
x2
0 +

5797

64
x2
1) ·H(2, 1, 0)

=
25698101

4096
x6
0x

6
1 −

31744713

4096
x4
0x

8
1 + · · · .

Note that β((1, 2, 0)) = (5 + 2 · 1− 1, 5− 2 · 1 + 2 · 2− 1, 0) = (6, 6, 0) with the properties for H .

Example 3.15. We sketch a general scheme for H polynomials as exemplifying more complicate cases.
For brevity, we denote the Move I in Step 4 by A1 and Move II in Step 5 with s by A2(s).

(a) Let n = 3 and a = (17, 15, 11, 9). The simplex ∆3−1(9+1
2 ) = ∆2(5) is consists of 21 lattice points. If

we want to obtain the polynomial H(2, 2, 1), we can follow steps as below.
(i) Calculate H(4, 0, 1) and H(4, 1, 0) by Step 2.
(ii) Applying the Move I in Step 4 with H(4, 0, 1) and H(4, 1, 0), we obtain H(3, 1, 1).

H(4, 0, 1) +H(4, 1, 0)
A1−−→ H(3, 1, 1)

(iii) Applying the Move II in Step 5 with H(4, 0, 1) and H(3, 1, 1), we obtain H(2, 2, 1).

H(4, 0, 1) +H(3, 1, 1)
A2(2)
−−−→ H(2, 2, 1)

(b) Let n = 4 and a = (74, 68, 64, 55, 49). In case of finding the polynomial H(3, 9, 6, 7), one can do that
as the following steps.

H(25, 0, 0, 0) +H(24, 0, 0, 1)
A2(7)
−−−→ H(18, 0, 0, 7) , H(18, 0, 0, 7) +H(24, 0, 1, 0)

A1−−→ H(17, 0, 1, 7) ,

H(18, 0, 0, 7) +H(17, 0, 1, 7)
A2(6)
−−−→ H(12, 0, 6, 7) , H(12, 0, 6, 7) +H(24, 1, 0, 0)

A1−−→ H(11, 1, 6, 7) ,

H(12, 0, 6, 7) +H(11, 1, 6, 7)
A2(9)
−−−→ H(3, 9, 6, 7) .

As mentioned at the beginning of the subsection, now we show that Ma coincides with in(Ja) for the
case of an odd.

Proposition 3.16. For a sequence of positive integers a = (a0, a1, . . . , an), a0 ≥ . . . ≥ an with an odd,
the initial ideal in(Ja(t)) is same as Ma for all but finitely many real number t.
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Proof. First of all, we know in(Ja(t)) ⊃ Ma for all real t with finite exceptions by Proposition 3.13.
Also, by Proposition 3.6 and Lemma 3.11 we have

deg(Ja) ≥ |V (Ja)| =
1

2

(
n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

)
= deg(Ma) .

Suppose that in(Ja) 6= Ma. Then there exists a polynomial f ∈ Ja with n := LT(f) /∈ Ma so that
in(Ja) ⊃ Ma + (n) ⊃ Ma. Since both in(Ja) and Ma are 0-dimensional ideals, by Lemma 3.12, we derive

deg(Ja) = deg(in(Ja)) ≤ deg(Ma + (n)) < deg(Ma) ,

which is a contradiction. Therefore, in(Ja) = Ma.

Next, we describe in(Ja) for a sequence a with even an.

Proposition 3.17. Let a be a sequence a = (a0, a1, . . . , an), a0 ≥ . . . ≥ an as above. If an is even, then
for all but finitely many real number t the initial ideal in(Ja(t)) can be generated by

in(J(a0,a1,...,an−1)) ∪ xn · in(Ja−en
) .

Proof. First, we show that in(Ja) ⊃ in(J(a0,a1,...,an−1)) ∪ xn · in(Ja−en
). It is easy to see that in(Ja) ⊃

in(J(a0,a1,...,an−1)) since Ja ⊃ J(a0,a1,...,an−1). Also, for any f ∈ Ja−en
, it can be written as

f =
∑

0≤i<j≤n

hi,jG
a−en

i,j

for some hi,j in T . Since Ga
i,j = Ga−en

i,j for any 0 ≤ i < j < n and Ga
i,n = xnG

a−en

i,n (recall Definition 3.2),
we see xnf ∈ Ja so that xn · Ja−en

⊂ Ja. Hence, we verify that xn · in(Ja−en
) ⊂ in(Ja).

For the other inclusion in(Ja) ⊂ 〈in(J(a0,a1,...,an−1)) ∪ xn · in(Ja−en
)〉, we need to prove that for any

element f ∈ Ja, LT (f) ∈ in(J(a0,a1,...,an−1)) or LT (f) ∈ xn · in(Ja−en
). In a similar manner as above, we

note that one can write f as

(3.10) f =
∑

0≤i<j≤n

gi,jG
a
i,j =

∑

0≤i<j<n

gi,jG
a
i,j+

∑

0≤i≤n−1

gi,nG
a
i,n =

∑

0≤i<j<n

gi,jG
a
i,j+xn ·

∑

0≤i≤n−1

gi,nG
a−en

i,n

for some gi,j in T . Since we use the graded reverse lexicographic order, if the front part of (3.10) (i.e. the
sum over 0 ≤ i < j < n) is nonzero, the leading term of f is determined only by the front, which corresponds
to LT (f) ∈ in(J(a0,a1,...,an−1)). On the other hand, if the front is zero, the leading term of f should be come
from the rear of (3.10). In the latter case, LT (f) ∈ xn · in(Ja−en

).

Proposition 3.18. For a sequence of positive integers a = (a0, . . . , an) with a0 ≥ a1 ≥ · · · ≥ an, the
degree of Ja is given by

deg(Ja) =
1

2
(

n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)) .

Proof. We will use induction on n+1, the number of variables. For the initial case, n = 1, in(J(a0,a1)) =

(xa0+a1

0 ) or in(Ja) = (xa0+a1−1
0 x1) depending on the parity of a1. For both cases, deg(J(a0,a1)) = a0 + a1

and it satisfies the assertion. Now, suppose that for fewer number of variables the claim does hold. If an is
odd, by Proposition 3.16,

deg(Ja) = deg(in(Ja)) = deg(Ma) =
1

2
(

n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)) .

In case of an even, by Proposition 3.17, we have

in(Ja) = 〈in(J(a0,a1,...,an−1)) ∪ (xn) ∩ in(J(a0,a1,...,an−1))〉

= in(J(a0,a1,...,an−1)) + (xn) ∩ in(J(a0,a1,...,an−1)) =
(
in(J(a0,a1,...,an−1)) + (xn)

)
∩ in(J(a0,a1,...,an−1))
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since in(J(a0,a1,...,an−1)) ⊂ in(J(a0,a1,...,an−1)) = M(a0,a1,...,an−1).
Put A = in(J(a0,a1,...,an−1))+(xn) and B = in(J(a0,a1,...,an−1)) = M(a0,a1,...,an−1). Then, in(Ja) = A∩B.

For A+B ⊃ (xn) +M(a0,a1,...,an−1) and xai+an−1
i ∈ M(a0,a1,...,an−1) for all i = 0, . . . , n− 1, we can observe

that V (A+B) = ∅. So, from the exact sequence

0 → T/(A ∩B) → T/A⊕ T/B → T/(A+B) → 0

we derive that for any t ≫ 0

HF(T/(A ∩B), t) = HF(T/A, t) + HF(T/B, t)

= HF(T/(in(J(a0,a1,...,an−1)) + (xn)), t) + HF(T/M(a0,a1,...,an−1), t)

= HF(R[x0, x1, . . . , xn−1]/in(J(a0,a1,...,an−1)), t) + HF(T/M(a0,a1,...,an−1), t) · · · (∗).

By the induction hypothesis, we have

HF(R[x0, x1, . . . , xn−1]/in(J(a0,a1,...,an−1)), t) = deg(J(a0,a1,...,an−1)) =
1

2
(

n−1∏

i=0

(ai + 1)−
n−1∏

i=0

(ai − 1))

and since an − 1 is odd, we also obtain

HF(T/M(a0,a1,...,an−1), t) = deg(J(a0,a1,...,an−1)) =
1

2
((an)

n−1∏

i=0

(ai + 1)− (an − 2)

n−1∏

i=0

(ai − 1)) .

Using (∗) and two equalities above, we conclude

deg(Ja) = deg(in(Ja)) = deg(A ∩B) = HF(T/(A ∩B), t) for any t ≫ 0

=
1

2
(

n−1∏

i=0

(ai + 1)−
n−1∏

i=0

(ai − 1)) +
1

2
((an)

n−1∏

i=0

(ai + 1)− (an − 2)

n−1∏

i=0

(ai − 1))

=
1

2
((an + 1)

n−1∏

i=0

(ai + 1) + (an − 1)

n−1∏

i=0

(ai − 1)) =
1

2
(

n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)) .

Remark 3.19. We make some remarks on the initial ideal in(Ja).
1. By Proposition 3.17 and a typical induction argument, we obtain a fact that in(J(a0,a1,...,ak)) can be

generated by monomials concerning only the variables x0, . . . , xk no matter how ak is odd or even.

Note that the fact is true both for k = 1 because in(J(a0,a1)) = (x
a0+a′

1

0 x
ǫ(a1)
1 ) and for any odd ak

by Definition 3.10.
2. If there is an odd index ai for some i ≥ 1 in a given a = (a0, a1, . . . , an), let ak be the first odd index

from the last. Then, as applying Proposition 3.17 recursively, we have

in(Ja) = 〈in(J(a0,a1,...,an−1)) ∪ xn · in(J(a0,a1,...,an−1))〉

= 〈in(J(a0,...,an−2)) ∪ xn−1 · in(J(a0,...,an−1−1)) ∪ xn · in(J(a0,...,an−1))〉

· · ·

= 〈in(J(a0,...,ak)) ∪ xk+1 · in(J(a0,...,ak+1−1)) ∪ · · · ∪ xn · in(J(a0,...,an−1))〉

=

〈
M(a0,...,ak) ∪

n⋃

i=k+1

xi ·M(a0,...,ai−1)

〉
.

Similarly, in case of all ai being even for i ≥ 1, we also obtain

in(Ja) = 〈in(J(a0,a1)) ∪
n⋃

i=2

xi ·M(a0,...,ai−1)〉 =

〈
(xa0+a1−1

0 x1) ∪
n⋃

i=2

xi ·M(a0,...,ai−1)

〉
.
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3.3. Proof for the upper bound. Using structures of the initial ideal in(Ja), we first show that the
ideal Ja is saturated.

Proposition 3.20. Let a be a sequence of positive integers (a0, a1, . . . , an), a0 ≥ a1 ≥ · · · ≥ an. For all
but finitely many real number t, the ideal Ja(t) is saturated in T .

Proof. Denote Ja(t) just by Ja. Recall that Ja is saturated in T if and only if for any polynomial g with
gxm0

0 , gxm1

1 , . . . , gxmn
n ∈ Ja for some mi in Z>0, g belongs to Ja. We prove the statement by contradiction.

Suppose that g is not contained in Ja. Let r be the remainder in the division of g by the ideal Ja with
respect to the graded reverse lexicographic order. Then it holds that LT(r) /∈ in(Ja) and LT(r)xmi

i ∈ in(Ja)
for i = 0, 1, . . . , n. Let us begin with the condition LT(r)xmn

n ∈ in(Ja).
First, if an is odd, by Proposition 3.16 in(Ja) = Ma and as in Definition 3.10 there is a generating

set for Ma which does not have any generator with xn in it. It means that LT(r)xmn
n ∈ Ma implies

LT(r) ∈ Ma = in(Ja), which is a contradiction. On the other hand, if an is even, by Proposition 3.17
we have in(Ja) = 〈in(J(a0,a1,...,an−1)) ∪ xn · in(J(a0,a1,...,an−1))〉. Thus, LT(r)xmn

n ∈ in(J(a0,a1,...,an−1)) or
LT(r)xmn

n ∈ xn · in(J(a0,a1,...,an−1)). For the former case, because of generators of in(J(a0,a1,...,an−1)) with
no xn (see Remark 3.19 (1)), similarly we get

LT(r) ∈ in(J(a0,a1,...,an−1)) ⊂ in(Ja)

which is a contradiction. For the latter case, since an − 1 is odd, we have
in(J(a0,a1,...,an−1)) = M(a0,a1,...,an−1) and know that the generators of M(a0,a1,...,an−1) do not involve xn.
Thus, LT(r)xmn

n ∈ xn · in(J(a0,a1,...,an−1)) means that LT(r) ∈ M(a0,a1,...,an−1). Let LT(r) := xγ0

0 xγ1

1 · · ·xγn
n .

Then, we claim that γn = 0. If γn > 0, then LT(r) ∈ xnM(a0,a1,...,an−1) and xnM(a0,a1,...,an−1) ⊂ in(Ja) by
Remark 3.19 (2). So, this is also a contradiction.

Now, consider another condition LT(r)x
mn−1

n−1 ∈ in(Ja) = 〈in(J(a0,a1,...,an−1))∪xnM(a0,a1,...,an−1)〉. Since
LT(r)x

mn−1

n−1 does not concern any xn in it, we have
LT(r)x

mn−1

n−1 ∈ in(J(a0,a1,...,an−1)). Note that this is exactly the same situation as the initial condition above
just with less number of variables. If an−1 is odd, then LT(r) ∈ in(J(a0,a1,...,an−1)) ⊂ in(Ja), a contradiction.
And if an−1 is even, then LT(r)x

mn−1

n−1 ∈ in(J(a0,a1,...,an−2)) or LT(r)x
mn−1

n−1 ∈ xn−1 · in(J(a0,a1,...,an−1−1)).
Then, similarly we can see that the former leads to a contradiction and the latter implies γn−1 = 0. So,
using a condition LT(r)x

mn−2

n−2 ∈ in(Ja) = 〈in(J(a0,a1,...,an−2)) ∪ xn−1M(a0,a1,...,an−1−1) ∪ xnM(a0,a1,...,an−1)〉,
we reach LT(r)x

mn−2

n−2 ∈ in(J(a0,a1,...,an−2)), and so on. Thus, one can repeat the same arguments until the
moment that we first meet an odd ai at some index i > 0, where the proof can be done by contradiction.

Hence, the only remaining case is that ai are all even for i > 0. Then by repeating the process above,
we get LT(r)xm1

1 ∈ (xa0+a1−1
0 x1) = x1M(a0,a1−1), which implies LT(r) ∈ M(a0,a1−1) since a1 − 1 is odd.

Similarly we have γ1 = 0 (otherwise LT(r) ∈ x1M(a0,a1−1) ⊂ in(Ja) which is a contradiction). But, this
situation contradicts to the last condition LT(r)xm0

0 ∈ in(Ja) because LT(r)xm0

0 is just a power of x0 and
in(Ja) = 〈(xa0+a1−1

0 x1) ∪
⋃n

i=2 xi ·M(a0,...,ai−1)〉 in this case by Remark 3.19 (2).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let us denote the given monomial Xa0

0 Xa1

1 . . . Xan
n by Xa for a sequence of positive

integers a = (a0, . . . , an). Since Waring rank of a monomial does not change by relabeling the variables, we
may assume that a0 ≥ . . . ≥ an.

Then, by Proposition 3.20, Ja(t) is saturated for all but finitely many real number t. Take such a nonzero
real number t0. By Proposition 3.6 we know that Ja(t0) is contained in (Xa)⊥ and defines 1

2 (
∏n

i=0(ai+1)−∏n
i=0(ai − 1))-many distinct real points as a set (let us call this set X).
Since Ja(t0) is a 0-dimensional ideal and deg(Ja(t0)) = deg(in(Ja(t0))) is same as |X| by Lemma 3.11

and Proposition 3.18, we have HF(T/Ja(t0), d) = |X| for all d ≫ 0, which by Proposition 2.3 implies that
Ja(t0) is equal to the defining ideal IX (in other words, X is an real apolar set for the monomial Xa).

Thus, by the Apolarity Lemma (Lemma 2.1) we can conclude that

rankR(X
a) ≤ |X| =

1

2

{
n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

}
.
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3.4. Remarks and Computations.

Remark 3.21. There are some remarks on Theorem 1.1.
1. First of all, we would like to mention that the upper bound in Theorem 1.1 is sharp in some cases.

For the binary case, a = (a0, a1), the real rank of Xa0

0 Xa1

1 is a0 + a1 in [BCG11]. Our bound also
shows that

rankR(X
a0

0 Xa1

1 ) ≤
1

2
((a0 + 1)(a1 + 1)− (a0 − 1)(a1 − 1)) = a0 + a1 ,

which is tight. Further, by [CKOV17, theorem 3.5] it is known that rankR(X
a) = rankC(X

a) =
1
2

∏n
i=0(ai + 1) whenever min(ai) = 1. In this case, the bound in Theorem 1.1 also coincides with

this real rank as
∏n

i=0(ai − 1) = 0,

rankR(X
a0

0 · · ·X
an−1

n−1 Xn) ≤
1

2

( n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)

)
=

1

2

n∏

i=0

(ai + 1) .

Finally, we would like to point out that the upper bound in Theorem 1.1 for a special monomial
(x0 · · ·xn)

2 is 1
2 (3

n+1 − 1), which is same as the bound for this monomial given in [CKOV17,
proposition 3.6].

2. In general, for a sequence a = (a0, a1, . . . , an) with minimum an, the upper bound in Theo-

rem 1.1 (call this UBHM) is better than the bound
∏n−1

i=0 (ai + an) in [CKOV17, theorem 3.1]
(denote by UBCKOV). For, using the elementary symmetric polynomials ek(a0, a1, . . . , an−1) :=∑

0≤j0≤···≤jk≤n−1 aj0 · · · ajk , we see that

UBCKOV = (a0 + an)(a1 + an) · · · (an−1 + an)

= en(a0, a1, . . . , an−1) + en−1(a0, a1, . . . , an−1)an + en−2(a0, a1, . . . , an−1)a
2
n + · · ·

=

n∑

i=0

en−i(a0, a1, . . . , an−1)a
i
n ,

while UBHM can be represented as

n∑

i=0

en−i(a0, a1, . . . , an−1)a
i%2
n (i%2 is the remainder in the divi-

sion of i by 2).
3. Another bound for the real rank can be obtained from the result [BT15, corollary 9] which says

that the maximum rank is bounded above by the twice of the minimum typical rank. For the given
sequence a, let d =

∑n
i=0 ai. Then the bound is given by 2 ·⌈ 1

n+1

(
n+d
n

)
⌉ (say UBBT). Let us compare

UBHM and UBBT for the case that all the exponents ai are equal in a fixed total degree d. Since
a0 = a1 = · · · = an = k and d = (n+ 1)k, UBHM can estimated by

1

2
((k + 1)n+1 − (k − 1)n+1) = (n+ 1) · kn +

(
n+ 1

n− 2

)
kn−2 + · · · ≈ (n+ 1) · kn .

On the other hand, UBBT is given by

2 · ⌈
1

n+ 1

(
(n+ 1)k + n

n

)
⌉ = 2 · ⌈

1

n+ 1

((n+ 1)k + n)((n+ 1)k + n− 1) · · · ((n+ 1)k + 1)

n!
⌉ ,

which can be approximated to 2 (n+1)n

(n+1)! k
n. Hence, UBHM is asymptotically much better than UBBT

for this case.

Remark 3.22 (Waring rank and decomposition over Q). We would like to mention that the bound in
Theorem 1.1 and the procedure for finding a suitable apolar set also hold for the Waring problem over the
rational numbers. In fact, all the results on the ideal Ja(t) in the paper, which are devised for producing
an apolar set for the upper bound, do hold at least for all but finitely many real number t. Thus, for some
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a = (3, 3, 3) (4,3,3) (4,4,3) (4,4,4) (5,5,5,5) (7,7,7,7,7) (10,9,8,7,6,5,4) (7,7,7,7,7,7,7)

UBBT 38 44 52 62 886 32902 8282766 8282766

UBCKOV 36 42 49 64 1000 38416 2162160 7529536

UBHM 28 34 41 49 520 12496 740880 908608

Table 3.1
Comparison of upper bounds for real rank of monomials

rational choice of t, every necessary statement still remains true (for instance, we can find an apolar set of
rational points by taking an appropriate t ∈ Q in Proposition 3.6 as in Example 3.23 below). Therefore, we
also have for any monomial Xa = Xa0

0 Xa1

1 . . .Xan
n with each ai > 0,

(3.11) rankQ(X
a) ≤

1

2
(

n∏

i=0

(ai + 1)−
n∏

i=0

(ai − 1)) .

Example 3.23. For the degree 9 ternary monomial F = X3Y 3Z3 (i.e. the case of a = (3, 3, 3)), as looking
at the zeros of Ja(t) when t = 2, we have the following real (in fact, rational) Waring decomposition of F
with 28 linear forms.

−725760X3Y 3Z3 = 252[(X − Y + Z)9 + (X + Y − Z)9 − (X − Y − Z)9 − (X + Y + Z)9]

+2[(X − Y + 2Z)9 + (X + Y − 2Z)9 − (X − Y − 2Z)9 − (X + Y + 2Z)9]

+2[(X − 2Y + Z)9 + (X + 2Y − Z)9 − (X − 2Y − Z)9 − (X + 2Y + Z)9]

+2[(2X − Y + Z)9 + (2X + Y − Z)9 − (2X − Y − Z)9 − (2X + Y + Z)9]

−(X − 2Y + 2Z)9 − (X + 2Y − 2Z)9 + (X − 2Y − 2Z)9 + (X + 2Y + 2Z)9

−(2X − Y + 2Z)9 − (2X + Y − 2Z)9 + (2X − Y − 2Z)9 + (2X + Y + 2Z)9

−(2X − 2Y + Z)9 − (2X + 2Y − Z)9 + (2X − 2Y − Z)9 + (2X + 2Y + Z)9 ,

which shows rankR(X
3Y 3Z3) ≤ 1

2 (4
3 − 23) = 28 (and also rankQ(X

3Y 3Z3) ≤ 28).

When the least exponent is equal to 1, we determine the rational Waring rank of a monomial.

Corollary 3.24. Let Xa = Xa0

0 Xa1

1 . . . Xan
n with each ai > 0 be any monomial in Q[X0, X1, . . . , Xn].

If min(ai) = 1, then rankQ(X
a) = 1

2

∏n
i=0(ai + 1).

Proof. First, note that, when min(ai) = 1,

rankQ(X
a) ≥ rankR(X

a) =
1

2

n∏

i=0

(ai + 1),

where the real rank is determined by [CKOV17, theorem 3.5]. So, the assertion comes by establishing
rankQ(X

a) ≤ 1
2

∏n
i=0(ai + 1) by (3.11).

We present an implementation for computing a real apolar set and a real Waring decomposition of any
given monomial via the method developed in this article as Macaulay2 code and we execute it for some cases.

Macaulay2, version 1.16

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

-- define functions to generate the polynomials F and G, the ideal J, and the points of V(J)

i1 : fun:=(R,knd,ind,jnd,t)->(R_ind^2-t^(2*knd)*R_jnd^2);

i2 : F:=(R,a,ind,jnd,t)->(

product for l from -floor(a_ind/4)-floor(a_jnd/4+1/2)
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to floor(a_ind/4+1/2)+floor(a_jnd/4) list fun(R,l,ind,jnd,t));

i3 : G:=(R,a,ind,jnd,t)->(

a’:=for i from 0 to #a-1 list 2*floor((a_i-1)/2)+1;

R_ind^((a_ind+1)%2)*R_jnd^((a_jnd+1)%2)*F(R,a’,ind,jnd,t));

i4 : genJ:=(R,a,t)->(

ideal flatten for i from 0 to #a-1 list for j from i+1 to #a-1 list G(R,a,i,j,t));

i5 : ptsgen:=(R,a,epos,t)->(

emems:=positions(a,even);

if(#emems==0) then (

bound:=for i from 0 to #a-1 list for j from -floor(a_i/4) to floor((a_i+2)/4) list j;

ilist:=(for i from 0 to #bound-1 list 0)..(for i from 0 to #bound-1 list #bound_i-1);

pospts:=for i from 0 to #ilist-1 list if(product (ilist_i)==0) then

for j from 0 to #bound-1 list t^(bound_j_(ilist_i_j)) else continue;

pm:=(for i from 0 to #a-2 list 0)..(for i from 0 to #a-2 list 1);

pmlist:=for i from 0 to #pm-1 list for j from 0 to #pm_i-1 list (-1)^(pm_i_j);

pts:=flatten for k from 0 to #pospts-1 list for i from 0 to #pmlist-1 list(

point:=(for j from 0 to #pospts_k-1 list

if(not j==#pospts_k-1) then pospts_k_j*pmlist_i_j else pospts_k_j);

if(not #epos==0) then for i from 0 to #epos-1 do point=insert(epos_i,0,point);

point

)

)

else(

temp:=emems_(#emems-1);

a’:=drop(a,{temp,temp});

a’’:=for i from 0 to #a-1 list if(i==temp) then a_i-1 else a_i;

ptsgen(R,a’,{temp}|epos,t)|ptsgen(R,a’’,epos,t)

));

-- the case of (3,3,3), take t=2 --

i6 : a={3,3,3},t=2, n=#a-1;

i7 : R = QQ[x_0..x_n];

i8 : J=genJ(R,a,t)

o8 = ideal(x_0^6-(21/4)*x_0^4*x_1^2+(21/4)*x_0^2*x_1^4-x_1^6,x_0^6-(21/4)*x_0^

4*x_2^2+(21/4)*x_0^2*x_2^4-x_2^6,x_1^6-(21/4)*x_1^4*x_2^2+(21/4)*x_1^2*x_

2^4-x_2^6)

o8 : Ideal of R

-- list the points of our apolar set from the ideal J

i9 : ptlist=ptsgen(R,a,{},t)

o9 = {{1, 1, 1}, {1, -1, 1}, {-1, 1, 1}, {-1, -1, 1}, {1, 1, 2}, {1, -1, 2},

{-1, 1, 2}, {-1, -1, 2}, {1, 2, 1}, {1, -2, 1}, {-1, 2, 1}, {-1, -2, 1},

{1, 2, 2}, {1, -2, 2}, {-1, 2, 2}, {-1, -2, 2}, {2, 1, 1}, {2, -1, 1},

{-2, 1, 1}, {-2, -1, 1}, {2, 1, 2}, {2, -1, 2}, {-2, 1, 2}, {-2, -1, 2},

{2, 2, 1}, {2, -2, 1}, {-2, 2, 1}, {-2, -2, 1}}

o9 : List

i10 : r=#ptlist

o10 = 28

i11 : C=QQ[c_0..c_(r-1)];

i12 : S=C[X_0..X_n];

-- produce the linear forms L_i in the Waring decomposition \sum_i \lambda_i*L_i

i13 : linlist=for i from 0 to r-1 list sum for j from 0 to n list ptlist_i_j*S_j;

i14 : eq=sum for i from 0 to r-1 list c_i*linlist_i^(sum a);

i15 : L=sub(ideal((coefficients(eq-product for i from 0 to n list S_i^(a_i)))_1),C);

o15 : Ideal of C

i16 : gL=gens gb L;

o16 : Matrix

-- compute the coefficients \lambda_i in the Waring decomposition \sum_i \lambda_i*L_i

i17 : clist=reverse for i from 0 to r-1 list -coefficient(c_0^0,gL_i_0)/leadCoefficient(gL_i_0)

o17 = {1/2880, -1/2880, -1/2880, 1/2880, 1/362880, -1/362880, -1/362880,

1/362880, 1/362880, -1/362880, -1/362880, 1/362880, -1/725760, 1/725760,

1/725760, -1/725760, 1/362880, -1/362880, -1/362880, 1/362880, -1/725760,

1/725760, 1/725760, -1/725760, -1/725760, 1/725760, 1/725760, -1/725760}

o17 : List

-- verify the monomial by retrieving it from the Waring decomposition \sum_i \lambda_i*L_i

i18 : sum for i from 0 to r-1 list clist_i*linlist_i^(sum a)

o18 = X_0^3*X_1^3*X_2^3

o18 : S
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-- the case of (4,4,4,4), take t=3 in this time--

i19 : a={4,4,4,4},t=3, n=#a-1;

i20 : R = QQ[x_0..x_n];

i21 : J=genJ(R,a,t);

i22 : ptlist=ptsgen(R,a,{},t);

i23 : r=#ptlist

o23 = 272

i24 : C=QQ[c_0..c_(r-1)];

i25 : S=C[X_0..X_n];

i26 : linlist=for i from 0 to r-1 list sum for j from 0 to n list ptlist_i_j*S_j;

i27 : eq=sum for i from 0 to r-1 list c_i*linlist_i^(sum a);

i28 : L=sub(ideal((coefficients(eq-product for i from 0 to n list S_i^(a_i)))_1),C);

o28 : Ideal of C

i29 : gL=gens gb L;

o29 : Matrix

i30 : clist=reverse for i from 0 to r-1 list -coefficient(c_0^0,gL_i_0)/leadCoefficient(gL_i_0);

i31 : sum for i from 0 to r-1 list clist_i*linlist_i^(sum a)

o32 = X_0^4*X_1^4*X_2^4*X_3^4

o18 : S
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