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Abstract

In our recent work [8], we have studied the homogenization of the Poisson equation in a class of
non periodically perforated domains. In this paper, we examine the case of the Stokes system. We
consider a porous medium in which the characteristic distance between two holes, denoted by ¢,
is proportional to the characteristic size of the holes. It is well known (see [I],[I7] and [19]) that,
when the holes are periodically distributed in space, the velocity converges to a limit given by the
Darcy’s law when the size of the holes tends to zero. We generalize these results to the setting
of [§]. The non-periodic domains are defined as a local perturbation of a periodic distribution of
holes. We obtain classical results of the homogenization theory in perforated domains (existence
of correctors and regularity estimates uniform in ¢) and we prove H?—convergence estimates for
particular force fields.
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1 Introduction

In this paper, we study the three dimensional Stokes system in a perforated domain for an incompress-
ible fluid with Dirichlet boundary conditions:

—Auc+Vp.=f in Q.
div u, =0 (1.1)
u=0 on 0f..

In Equation (), 2. C R? denotes the perforated domain, the vector valued function f is the force
field, the unknowns u. and p. refer respectively to the velocity and the pressure of the fluid. The
distance between two neighbouring holes is denoted by €. We assume that the charasteristic size of the
holes is €. Our purpose is to understand the limit of (u, p-) when ¢ — 0. We construct classical objects
of the homogenization theory such as correctors (Theorem [2.1]) and we give new rates of convergence
of ue to its limit when f is smooth, compactly supported and div(Af) = 0 where A is the so-called
permeability tensor (see Theorem [23]).

To our knowledge, the first paper on the homogenization of the Stokes system in perforated domains
is [19]. In this work, Equation (L)) is studied for a periodic distribution of perforations in the
macroscopic domain €2 (that is, each cell of a periodic array of size £ contains a perforation). It is in
particular proved that (u./e?,p.) converges in some sense to a couple (ug,pg) given by the Darcy’s
law. This result can be guessed by performing a standard two scale expansion of (ue,pe), see [17].
Error estimates between u. and its first order term in ¢ are proved in [I4] [15] for particular situations
namely the two-dimensional case in [I5] and the case of a periodic macroscopic domain in [I4]. Sharp
error estimates under general assumptions on f have been obtained in [I8]. The case of boundary
layers in an infinite two-dimensional rectangular has been addressed in [I3]. The results of [19] have
been extended in [I] to porous medium in which both solid and fluid parts are connected. The case of
holes that scale differently as € is examined in [3]. Recently, the homogenization of the Stokes system
at higher order has been adressed in [10].

In this paper, we adapt the results of [I9] to the setting of [8], that is to perforated domains that
are defined as a local perturbation of the periodically perforated domain considered in [19]. This
framework is inspired by the papers [5l [6] [7] (see [8, Remark 1.5]). The purpose of these works is
to study the homogenization of ellitptic PDEs with coeflicients that are periodic and perturbed by a
defect which belongs to L™, 1 < r < 4o0.

The paper is organized as follows. We recall in subsection[[.2lthe main results of the homogenization
of the Stokes system in the periodic case. We introduce in subsection [[.3] the non-periodic setting. We
state in Section [2] the main results of this paper and we make some remarks. These results are proved
in Section Bl Some technical Lemmas are given in Appendix [Al In Appendix [B] we give more specific
geometric assumptions on the non-periodic perforations that allow to obtain the results of Section

1.1 General notations

The canonical basis of R? is denoted e, es, e3. We denote the euclidian scalar product between two
vectors w and v by u - v. The euclidian distance to a subset A C R3 will be written d(-, A). The
diameter of A will be denoted by diam(A). If A is a Lipschitz domain, we denote by n the outward
normal vector. |- | will be the Lebesgue measure on R3.

If A, B are two real matrices, we write A : B := Zij:l A; ;B; ;. If X is a vector or a matrix, its

transpose will be denoted by X7. If A C R?, the complementary set of A will be written A°¢. We
define Q =] — %,%[3 and, for k € Z3, Qy, := H?Zl}_%+kj,%+kj|:3 =Q+k IfzeR3andr >0,
we denote by B(z,r) the open ball centered in x of radius r.

The gradient operator of a real or vector valued function will be denoted V- and the second order
derivative of a real or vector valued function will be written D?.. The divergence operator will be
denoted div - and the scalar or vectorial Laplacian A-.



Functional spaces. If w is an open subset of R* and 1 < p < 400, we denote by LP(w) the standard
Lebesgue spaces and H*®(w), W™P(w) the standard Sobolev spaces. For s € R and m € N*, we
denote by [LP(w)]?, [H*(w)]® and [W™P(w)]* the spaces of vector valued functions whose components
are respectively elements of LP(w), H*(w) and W™P(w). The space LP(w)/R corresponds to the
equivalence classes for the relation ~ defined by: for all f,g € LP(w), f ~ ¢ if and only if f — g is a.e
constant in w. D(w) will be the set of smooth and compactly supported functions in w. We denote by
C>(w) (resp. C*°(w)) the set of smooth functions defined on w (resp. ).

1.2 Review of the periodic case

In this subsection, we recall the results of the homogenization of the Stokes system in periodically
perforated domains with large holes. For more details, see [19] 17, ].

Notations. We fix a locally Lipschitz bounded domain  C R? and a subset Of" such that O5*" cC

Q, OF" is of class C** and Q\OF" is connected. We define for k € Z3, OF*" := OF" + k. OP*" will
be the set of perforations, that is, OP®" 1= J, .5 O

We define some periodic functional spaces that will be used in the sequel. Using the notations of
our problem, we set for 1 < p < +o0,

Lpper (Q\W) = {u € [P, (R}\OPT) s.t. u is Q — periodic}

loc
and

Hper (Q\Ogcr) = {u € H (R*\OP®) s.t. u is Q — periodic and d;u are Q — periodic,i = 1,2,3}.

___\13
The space of H'—periodic vector valued functions will be {Hl’per (Q\(’)gcr)} . The space of H! —periodic

functions that vanish on the perforations is

Hé"pcr (Q\W) = {u e glper (Q\W) s.t. w =0 on 8(98“} )

—\13
Similarly, we define [Hé per (Q\Ogcr)} . In the sequel, we use the summation convention on repeated

indices.

For ¢ > 0, we denote YP' := {k € Z3, eQr C Q}. We define the periodically perforated do-
main QP by (see Figure [I])
o=\ |J o
keyrer
It is easily seen that Q2" is open and connected.

For f € [LQ(Q)}B, there exists a unique couple (uc,p:) € [H&(Q}gcr)]g x L2(P°) /R solution of
System (IIJ). The Poincaré inequality in perforated domains (see e.g. [19, Lemma 1]) and standard
energy estimates yield the bound

el g2 (qperye < Ce?

where C' is a constant independent of €. Thus, after extraction of a subsequence, u./c? converges
L?—weakly to some limit velocity u*. Besides, it can be proved (see [19, Theorem 1]) that the pressure
pe converges L2(2)/R—strongly to the macroscopic pressure pg which is defined up to the addition of
a constant. The couple (u*, pg) is determined by the Darcy’s law which we recall here

div(u*) =0 in Q
u* = A(f — Vpo) (1.2)
v -n=0 on ON.
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Figure 1: Periodic domain QP

In (T2), the symmetric and positive definite matrix A is the so-called permeability tensor. Its coeffi-
cients are defined by

Ag:/ _w;?Cf.ei:/ VP veb”, 1<, <3, (1.3)
Q\0F” Q\0F”

where the functions wfcr

problems:

,j = 1,2, 3 are the cell periodic first correctors and solve the following Stokes

AW +VpiT =e; in Q\Op”
div wi® =0 (1.4)

w?cr:O on QO0§”.

13
We note that for fixed j € {1,2,3}, Problem (L4) is well-posed in the space [H&(Q \ Ogcr)} X

L2Pr(Q \ OF")/R (see [IT]). A central point in the proof of the convergence of p. to py is the
construction of an extension of the pressure p. in the periodic holes. This extension is constructed in
[19] by a duality argument.

The corrector equations (4] can be guessed by a standard two-scale expansion of u. and p. of the

form
X X 2 x 3 X
uszuo(x,—)+su1 (x,—)+5 U2 (x,—)+a U3 (x,—)+~--,
€ € € €

x x 9 x 3 x
pe=po (2,2 ) +epr (2, 2) +%s (2. 2) + %y (0, D) + -
€ € € €
where the functions w;(z,-) and p;(z,-) are Q—periodic for fixed z € Q (see [I7} Section 7.2]). It can
be proved that the function po is independent of the microscopic variable, that is po(z, £) = po(x)
for all z € Q (which is coherent with (I.2)). Besides, the functions ug and u; vanish and (we use, as
indicated above, the summation convention over repeated indices)

U2 (33, g) = wj (g) (fj - 3;‘1?0)(33) and p; (l’, g) =DPj (g) (fj - 3;‘1’0)(1’)-
We define the remainders
R. = u. — 2w (g) (f; —0jpo) and . :=pe —po — EP; (g) (fi — 9jpo)-

The strong convergence R, /e? — 0 in L?(P°")—norm is proved in [2 Theorem 1.3]. An H!—quantitative
estimate of this convergence is given in [I8], provided that Q is of class C*>®. We will provide a new
H?—convergence estimate when div(Af) = 0 and f is compactly supported in Q (see Theorem 23] and
Remark 25 below).

In what follows, we extend w}®" by zero in the periodic perforations. The pressure p.* is extended
by a constant A; (for example zero) in the perforations.



1.3 The non-periodic setting
We fix a periodic set of perforations as described in the previous subsection. We describe the non-
periodic setting (see [8] for more details). For k € Z* and a > 0, we define (see figure [3al)

Ot (a) = {z € Qx, d(z,0) < a},

and
Ogcr’f(oz) ={x € OZCY, d(z, 8(92“) > al.

For all k € Z3, we fix an open subset O of Q. We suppose that the sequence (Of)peczs satisfies
Assumptions (A1)-(A5) below. We define the non periodic set of perforations by

0:= ] O
keZ3
(A1) For all k € Z3, we have Oy CC Q and Qy, \ O}, is connected.

(A2) For all k € Z?, the perforation Oy is Lipschitz continuous.

A3) There exists a sequence (ag)rezs € £1(Z3) such that for all k € Z3, o > 0 and we have the
€

following chain inclusion:
Oger’_(ak) c O C Oger’-‘r(ak).

We refer to figure Bal for an illustration of (A3).

The assumptions (A1)-(A2) are analogous to the one made on OP°" and guarantee connectedness
and some regularity on the perforated domain. Assumption (A3) is the geometric assumption that
makes precise that (O ) ez is a perturbation of (OF*)ezz. We recall (see [8, Lemma A.1 and Lemma
A.3]) that Assumptions (A1)-(A3) imply the following facts:

e There exists § > 0 such that for all k& € Z3, d(Ok,0Qk) > 6. In other words, Oy is strictly
included in @, uniformly with respect to k.

e We have
> |0kAOET| < 400 (1.5)

keZ3

where A stands for the sets symmetric difference operator.

Using the first point above, we can introduce two smooth open sets @’ and Q" such that (see Figure [2)
Q' ccQccQ"andforall k€ Z3 (Q'+k)NO = (Q" + k)N O = Of. We define, for k € Z3,

Q. =Q +k and Q}:=Q"+k. (1.6)
The sets Q). and QY, k € Z* will be used several times in the sequel.

(A4) This assumption is divided into two sub-assumptions (A4)o and (A4);.
(A4) For all 1 < g < 400, there exists a constant C’g > 0 such that for all k¥ € Z3, the problem

{divv—f in Qp\ Oy ()

v=0 on 8[@]@\0_16}

with f € L9(Qy \ Ok) completed with the compatibility condition

/Q\O F=0 (1.8)
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Figure 2: A cell Qy, k € Z3

admits a solution v such that v € [Wl’q(Qk\O_k)]3 and

[olwra@uany < Callflisuon (1.9)

(A4); For all 1 < g < +o0, there exists a constant C; > 0 such that for all & € Z*, Problem (L7)
with f € Wy 9(Qx \ Ok) completed with the compatibility condition (L8) admits a solution v such
3

that v € |Wy%(Qr \ Ox)| and
||v||[W2’q(Qk\O_k)]3 < O;”f”WLQ(Qk\O_k)' (1.10)

(A5) For all 1 < g < oo, there exists a constant C;, > 0 such that for all k € Z3, if (v,p) €
[Wl’q(Qk\O_k)]g x L9(Q1\Oy) is solution to the Stokes problem

—Av+Vp=f in Qy\Ox
dive=0 (1.11)
v=0 on 00

with f € LY(Q\Dy), then (v,p) € [W24(Q:\Dy)]” x W4(Q)\Of) and
HU”[W?&(Q,C\O_,C)]?’ + ||p||W1,q(Qk\oTC) <Cq [Hf”Lq(Q;cf\(Tk)s + ||U||[W1,q(Qg\o—k)]3 + ||p||LQ(QZ\@)]' (1.12)

Remark 1.1. For each fived k € Z°, the estimates (LY) and (LI0) are satisfied with constants C}, .,
i = 0,1, depending on k, see [11, Theorem II1.8.3]. Similarly, as long as Oy is of class C?, (LI12)
is satisfied when k is fived (see [11, Theorem IV.5.1]). Assumptions (A4)-(A5) require that the
constants appearing in (L9), (LI0) and (LI2) are uniform with respect to k € Z3.

Assumptions (A4)-(A5) are the weakest possible given our method of proof. However, they are
associated to PDEs and we would like a somewhat more geometric interpretation of these assumptions,
in the spirit of (A3). In fact, we may replace (A4)-(A5) by the likely stronger (but geometric)
Assumptions (A4)’-(A5)’ below.

We suppose that there exist » > 0 and M > 0 such that for all k& € Z* and for all x € 9O, there
exists ¢, : Uy — R where U, C R?, 0 € U, and r, > r such that, after eventually rotating and/or
translating the local coordinate system, we have that (,(0) = 0 and

(Qx\ Ok) N B(z,72) = {(y1,92,43) € R®,y3 > G (y1,92) and  (y1,y2) € Us}. (1.13)
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(a) Mlustration of (A3) (b) A non periodically perforated grid

Figure 3: The non-periodic setting

We assume the following uniform regularity properties:

(A4)’ The functions (;,z € O}, are Lipschitz functions with Lipschitz constant [|(||Lip(,) satisfying
¢ llLip,) < M.

(A5)’ The functions ¢, z € OOy are of class C? and satisfy V(,(0) = 0 with the estimate ||Cz|[ 2.0 (v,) <
M.

In Assumptions (A4)’-(A5)’ above, we emphasize that M is independent of k and x.
We prove in Appendix [B] that Assumptions (A3) and (A4)’ imply Assumption (A4) and that

Assumptions (A3) and (A5)’ imply Assumption (A5). We also note that (A5)’ implies (A4)’.
Example 1.2. We give some examples of perforations satisfying (A1)-(AS5):
o Compactly supported perturbations, that is, we change Oy in a finite number of cells Qy;
o We remove a finite number of perforations;

o We make (*—translations of the periodic perforations that is we choose a sequence (8x)pezs such
that 6, € R3, > kezs [0k < 400 and for all k € Z3, O CC Qg and O = OF" + §y,.

e We give on Figureld in Appendiz[B some counter-ezamples to Assumptions (A3)-(A4)’-(AS5)’.

Remark 1.3. The assumption O CC Qy, is automatically implied by (A3) except for a finite number
of cells. Dropping it would change some technical details but not the results of the paper.

The perforated domain. We recall that €2 is a smooth bounded domain of R?. We denote

Y. :={k € Z*,e0 C Qi} (1.14)
and define (see Figure Bh)
Q. =0\ | <Ox. (1.15)
keY.

We notice that €2, is a bounded, locally Lipschitz and connected open subset of R3.



For f € [L*()] 3, there is a unique solution (ue,p.) € [H} (Qs)]3 x L*(Q.)/R to the Stokes system
—Auc+Vp.=f in Q.
div ue =0 (1.16)
u=0 on 0f..

In the sequel, we study the homogenization of (uc,pe).

2 Results

The first result concerns the existence of the first order correctors. We can perform a two scale
expansion of the form

ue(z) = &2 {uQ (a:, g) + cus (3:, g) +- ] , Pe(T) = po(x) +ep (a:, g) + e (2.1)

to (LI6) and find that

ij i —0jpo)(x) and pi(z,y) ij i — 0jpo)(x) (2:2)

where f1, fa, f3 denote the components of the vector field f, (w;,p;) is solution to the following Stokes
system for j = 1,2, 3:
—Aw; +Vpj=e¢; in R*\O
divw; =0 (2.3)
wj =0 on 00.
and pg is given by the Darcy’s law (2.

Theorem 2.1 (Existence of correctors). Suppose that Assumptions (A1)-(A3) and (A4)y are sat-
isfied. For all j € {1,2,3}, System [Z3) admits a solution (w;,p;) of the form
per

wj = pcr—|—wJ and p; =pi” +p;

where (w;,p;) € [H'(R3 \6)} x L2

loc

(R?\ O). Moreover, we have the following estimate
1P; — PiMllz2ra) < Ce
where C' is a constant independent of € and (p;) denotes the mean value of p; on %Qa.

We define
= _52211)]( ) i —0jpo) and o :=p. — O—EZpJ( ) i — 0;po).

Following the ideas of the proof of [2 Theorem 1.3], we can prove under the assumption f € [WBOO(Q)] ’

that R./e? — 0 in the non-periodic setting for the [L?(Q)] ® _norm (where it is understood that u.
e—

and wj,j = 1,2,3 are extended by zero in the perforations). This fact, though relevant because it

makes (2.1 rigorous, is not strong enough to justify the construction of the non-periodic correctors
(wj,pj),J =1,2,3. Indeed, if we set

3

RP®™ =y, — &2 Zw?cr (g) (f; — 9jpo),
j=1



we notice that

3
Re = B2 =2y (<) (£ — 9ymo).
j=1

Since w; € [L*(R3 \5)]3, one has for j = 1,2, 3:

w; (g) (fj — ajPO)H[LZ(QE)]S =e? [lw;(f; - 3jpo)(€')||[m(éga)]3

3~ 3
< e2||wjl(p2(mayz | fi — Oipoll Lo () = Ce?.
Thus RP*" /e? = R./e? + O(¢/?). This proves that RP"/c? — 0 for the [L2(Q)]3 —norm. So, using
e—

w;»m instead of w; does not change the convergence of u. to its first order asymptotic expansion.

Yet, since w; and p;,j = 1,2,3 are the ad hoc correctors for the non-periodic setting, there must
be situations highlighting that the approximation of u. (resp. p.) by &*w; (-/¢) (f; — 9jpo) (resp.
po +ep; (-/€) (f; — 9jpo)) is improved in some sense when we use w; instead of w;". We exhibit in
Theorem [Z3] such a situation (see Remark [2.0]).

Before stating Theorem 23] we obtain in Theorem H?—estimates for the solution of a Stokes
system posed in 2. (see [I6, Theorem 4.1] for the periodic case).

Theorem 2.2 (Estimates for a Stokes problem). Suppose that Assumptions (A4)o and (A5) are
satisfied. Let f € [LQ(QEH3 and (u,p) € [H&(QE)]B x L%(Q:)/R be solution of
—Au.+Vp.=f in Q
div(us) = 0 (2.4)
u. =0 on 09..

Then (ue,pe) € [HQ(QE)]3 x HY(Q.)/R and there exists a constant C > 0 such that for any domain
Q" CcC Q and all € < g9(Q"),

ID?ucllirzrnoop +&  I1Vuellipz s + & 2lluellizao.)p

+ IVPelrzrna.)s + IPellL2 @y m < Cllfllin2 0.2

Furthermore, the couple (u.,p:) s unique in [Hl(Qaﬂ3 x L*(Q:)/R.

Theorem 2.3 (Convergence Theorem). Suppose that assumptions (A1)-(A5) are satisfied. Let f €

[W?”OO(Q)]B be such that div(Af) = 0 and f is compactly supported in Q. There exists a constant
C > 0 such that for all € > 0 small enough and all domain Q" CC Q,

HD2 [us —twj (g) fj} H[L2(Q”QQE)]3 e HV [us — et (g) fj} H[LZ(QE)P

. (2.5)
2
— il — i <
Ue e Wy (E) fJH[Lz(QE)P =~ Ce

+5*2’

and

[vlpe == e (2) 223 1)

+|

< Ce, (2.6)
L2(Q.)/R

L2(27nQ.) ps—s{pj (E) _/\g}fj’

ey )

where



Remark 2.4. We note that Theorem [2.2 and Theorem [Z.3 are valid in the periodic case (that is in
the framework of subsection[I.2). This provides a new situation in which quantitative error estimates
can be obtained, besides th ones of [T, [18].

Remark 2.5. The assumptions div(Af) = 0 and [ compactly supported in  make boundary effects
disappear. Indeed, it is straightforward to see that in this case Vpy = 0 in Q (see (L2))). Since f is
compactly supported, we have e*w;(-/e)f; =0 on OQ, so u. and its first order expansion coincide on
99Q. This explains why the O(e?) H'—convergence rate of R obtained in Theorem[Z.3 is sharper than
the O(3/?) H'—convergence rate obtained in [18, Theorem 1.1].

Remark 2.6. By applying Theorem[2.3, we get that R. € H?(Q.). We now note that, in general, one
has RP* ¢ H?().). This follows from the fact that w}*" (£) ¢ H?(€%) (unless of course Q. = QP°)
for j =1,2,3. This is due to the normal derivative jumps of wi (-/¢) along the parts of edOP*" that
are included in Q.. This shows that, in the non-periodic case, using the periodic corrector in ([2.2]) does
not give the expected convergence rate, contrary to the non-periodic corrector.

Remark 2.7. Theorem 2.9 and Theorem [2.3 can be proved up to the boundary of Q with the same
convergence rates when §) is of class C2. The proof is rather technical and will be omitted here.

Remark 2.8. Theorem can be proved for the H™—norm, m > 0 in the periodic domain Q"
(see [16, Theorem 4.2]) and in the non-periodic domain Q., provided that we require higher regularity
of Ok in (A5)’° (typically that Oy is uniformly with respect to k of class C™2, see [11, Theorem
IV.5.1]): if f € [H™(Q.)]?, then (ue,p.) € [Hm”(ﬂg)}s x H™1(Q.)/R and there exists a constant
C independent of € such that

m m = 1 m—1
ID™ 2 ucl|p2(0rnauye + 1D pell2@rna.) < CZ QHD Fllizzoye-
1=0

Remark 2.9. This paper presents only the three dimensional case. All that follows is true in dimension
greater than 3. As for the two dimensional case, Theorem [2.1] and Theorem [2.2 are valid.

The rest of the paper is devoted to proofs. In Section Bl we give the proof of Theorem [Z.2] in
both periodic and non periodic perforated domains. We next prove in Section the existence of the
non-periodic correctors. Finally, Section is devoted to the proof of the convergence Theorem [2.31
Some technical Lemmas, especially concerning divergence problems, are postponed to Appendix [Al

3 Proofs

3.1 Proof of Theorem
We first state the following Poincaré-Friedrichs inequality:

Lemma 3.1. Suppose that Assumptions (A1) and (A3) are satisfied. There exists a constant C > 0
independent of € such that for all u € [Hg (Qs)f’, one has

/ |u|2§052/ Vul?.
Q QE

€

Proof. We recall that Y. is defined by ([14)) and we define Z. := {k € Z¢, Q) NN # 0}. We have

the decomposition
Qe = < U 6(@\@)) u < U [(c@x) mQ}) . (3.1)

keYe keZ.

10



Thanks to Assumption (A3) and the proof of [§, Lemma 3.2], we know that there exists a constant
C > 0 independent of k and e such that for all k € Y, we have the inequality

/ u? < 052/ |Vul?. (3.2)
€(Qx\Ok) £(Qr\Or)

We now fix k € Z.. Thanks to the proof of [I9, Lemma 1], there exists a constant C' > 0 which is
independent of k& and e such that

/ u? < 052/ |Vul?. (3.3)
(EQk)ﬁQ (EQk)ﬂQ

Summing the estimate [B.2)) over k € Yz, the estimate [B3) over k € Z. and using (B.I)) concludes the
proof of Lemma [3.1] O

Let (ue,pe) be the solution of (LIG). We have by classical energy estimates the following inequal-

ities: ) X

(f k) <ol ([ wk) <C2Ulpony G4
which will be useful in the proof of Theorem
Proof of Theorem [2.2, In this proof, C' will denote various constants independent of ¢ that can change

from one line to another. We fix Q" CcC Q. We first show the following estimate:

1D%ue {12 na. 253 I VPell L2 @rnanp < C e Vel 2 yxs + e lucllpaue + 11l zz@oy2 | -
(3.5)
Proof of (BX): we study Problem () on each periodic cell Q \ Of. Let k € Y., where Y. is defined

in (LI4). We recall that @} is introduced in (L) and we define in @} \ O, the functions

UF = e 2u.(e)
ng = 5711)5(6') — Ak
Fsk = f(E)

/ PF=0.
QU\Ox

Then (UF,PF) € [H' ( Z\O_k)]g x L* (Q} \ Ok) and (UF, PF) is solution to the following Stokes
system

where A\ € R is chosen such that

~AUF +VPF=FF in Q}\Ox
div(UF) =0 (3.6)
UF=0 on 00.
By applying Assumption (A5) to System (B.6]), we get the estimate

(LeA cllwt,

¢ H[H2(Qk\0_k)]3 + HPE]CHHI(Qk\@) PEICHL2

k
1 aopomy] -
L (3.7)
Assumption (A4)¢ and |11, Lemma II1.3.2] applied with Q1 := Qi \ O and Qs := Q] \ Qx give a

function v € [H(Q} \ Ok)]B such that div(v) = P¥ and

H HY(Q\OW)]* + H (QY\O%)

ol @pop < CIPE s @00 (3.8)
where C' is independent of k. Thus,

||Pk||L2 Q//\() <VP;€7U>H*1><H5(Q;C’\(’) < HVPkH[ Q”\O ] ||U||[H1 QY\Oy, )] (39)

11



Gathering together (B.8) and (3.9) yields

1PEN L2 oimon) < CIIVP’“H[ (3.10)

H-1 Q”\Ok)]
The triangle inequality applied to the first equation of (3.6 then provides the inequality

k k k
||VP5 ||[H—1(Q;c/\(97k)]3 < ||AU€ H[H—l(Q;c/\o )]3 + ||F ||[

oo + | FE|

HQnoR)” (3.11)
< |IvUE,

L2(Qy\Ow)] L2(Q\OW)]*

Collecting B.7)), 3I0) and BIII), we get

102 | 522 uvomp® + 1 a1 @uvomy < € {HU?H[Hl(Qg\o_k)P + HFEkH[LQ(QZ\O_k)H :
In particular, we deduce

10202 |2 gummpp= + IV Pl gaamony < € 1081l pomy + 1EE lizaapony] - (312)

Scaling back (B12]) gives

| D? Ua||[ 8x3 + ||Vpa||[ I? < C[E_IHVUaH[

)]3><3

L2(eQk\Ok)?] L2(eQx\Ok) L2(Q\Oy, (3.13)

-2
e el copiom + M paapiony)
Thus,

||D2Ua|| 1 + ||Vp5||[ s < C[ _2||Vu5||

[L2(cQi\Or)? L2(cQx\Oy)] [L2(c@i\Om)]>*?

(3.14)

—4
+e ||u5||[L2(5Q"\0 ]3 + ||f||[L2(5Q”\Ok)] }

We next sum (B.14) over k € Y. where
Yo=Y\ {keZ? d(eQy, Q%) > ¢}
We note that for £ < £9(Q"), we have the inclusion
Q'NQ C | QO C Q.
keY:

We get
||D2u5||[L2 Q”ﬂQ ) 3><3 + ||Vp5||[2L2(Q,,mQE)]3 < 0[5_2||vu€||[2L2(95)]3X3
+ 8_4””8” [L2(Q.)]3 + ||f||%2(95)]

Estimate (33)) is proved. We now conclude the proof of Theorem We have, inserting (34 in the
right hand side of B3,

(3.15)

||D2u€||[L2(Q”ﬁQE)3]3X3 + 5_1||V“8||[L2(QE)]3X3 + 5_2||u8||[L2(Q€)]3 + ”vPEH{L?(Q”ﬂQE)]B < CHfH[L?(QE)]S

It remains to show that
[Pellz20.)/r < Cllf lliz2 (o) (3.16)

By Lemma [A.3] stated in the appendix and the first line of (B.6]), we get

IPelzon/m < C™ [IVuelzagqypes + Ol -1

12



‘We now show that
[l zr-1 0oy < Cellfllpzaye- (3.17)

Indeed, for any ¢ € [H& (Qa)}s, we write that, using successively Cauchy-Schwarz inequality and
Poincaré inequality (see Lemma

(fi¢) = /Q o < flliz@opldlizzope < Cellfllizap IVl . yzxe
< CE||f||[L2(QE)]3||¢||[Hé(525)]3
Thus BIT). Finally, we conclude with the use of (84) that

Il 22y m < Ce Vel pzauysxs + Cllif ey < ClFllizzouys-
This proves ([B16) and concludes the proof of Theorem O

3.2 Proof of Theorem 2.1

We use the periodic correctors (Wi, pi") defined in (L) and we search w; and p; in the form

wj = w4+ wj and p; = pi” 4+ p;. We recall (see the last paragraph of Subsection [L3) that w}®
is extended by zero in OP°" and that pi* is extended by a constant A;. The Stokes system deﬁmng
(wj,p;) is -
—Aw; + Vp; = e + Awh —Vpi* in R*\ O
div @; =0 (3.18)
w; = —wi” on  90O.

The proof consists in applying Lax-Milgram’s Lemma to ([B.I8]). We first need to prove some prepara-
tory Lemmas. In the sequel, we will use the notation

T, :=e;+ Aw;’er Vpper
for j € {1,2,3}.
Lemma 3.2. Suppose that Assumption (A8) is satisfied. For all 1 < q¢ < 400, we have that T; €
W-Ld' (R3 \5)} 3, where ¢ = q/(q—1).

Proof. Let ¢ € [D(R? \@)}3. We extend ¢ by 0 in the perforations. We estimate (T}, ¢) by an
integration by parts:

(T}, ¢) = (ej + Awj™ — Vpi™, ¢)

/R IR /R ST Aivto)
/R 6 - / Vwi™ Ve + / (P2 = A;) div(e)

=/R3 ej-¢—/w\mv Wb V¢+/Rg\ow(p§er—)\j)div(¢).

R3\O

Since wj*" (resp. pj™ — \;) is of class C** (vesp. of class C1*) in R*\ OP*" (see [I1}, Theorem IV.7.1]),
we may integrate by parts and find that

pcr

/ V Per V¢ / (b_/ Aw?er .¢,
R%\Opgr oOper 371 R3\W

[ xawve) = [ @ eagen- [ v
R3\Opcr oOper R3\Opcr
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where we use the notations

j
on ' Oon = On J

R [ DwhPT uPT guer
— j j j
on

T
> and wl P — P ey,
for i,5 € {1,2,3}. Thus,

owrb"
@)= [ oo [ [mermovg)on [ @t [ S0
R3 R3\Oper dOper dOper n

awl?er

= ej-¢— e»-¢+/ (pper_)\‘w.n_/ —L .9
~/1R3 J RS\W J oOper J 7 HOper 371

/ o [ wrmeagen- [P0,
Oper\@ J oOper J J oQOper 677/

=(4)+(B)+(C)

We treat each term separetely.

Term (A). By Holder inequality and Assumption (A3) (more precisely (IH])), we obtain that

/ _ €9
orer\O

Term (B). We have by standard regularity results (see [T, Theorem IV.7.1]) that pi** € L>(005").
We apply a Trace Theorem W11(OF®") — LY(OOF) (see e.g. [9, Theorem 1, p. 258]) that yields a
constant C, which is by translation invariance independent of k, such that for all k € Z2,

S ‘ oper

s <Cldl

q ||¢||[Lq Rs\o)] Wl,Q(Rf*\@)]S ’

s <Cllell (3.19)

H(ZS”[Ll(aOger)] Wl,l(oier)]3~

By applying (319) in the second inequality, we get

[ o =xpeenl <15 =Ml gou [ 16

ey [ wsey [ weme=c [ i+ivel

kez3 kez3

Oper

where we used in the last equality that ¢ = 0 in O. Using (LI, we conclude thanks to Holder
inequality that

| wrmapsen
dOPer

Term (C). The argument is similar to Term (B). This gives the existence of a constant C' > 0
such that:

\IH

n| < C|oP\ Ol

|:||¢||[Lq(0p0r\6)]3 + ||v¢||[Lq(Oper\6)]3X3:| < C”¢H[W1,q(R3\5)]3-

per

/ 8w
HOper an

where C' is independent of ¢. We conclude that there exists a constant C' = C(g) > 0 such that

< C”¢H[W1 q ]R3\O)]

v6 € [D®N\O)]", T}, )] < Clél e

This proves the Lemma. O
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Lemma 3.3. Suppose that Assumptions (A1) and (A3) are satisfied. For all 1 < q < +00, there
exists a function ¢; € [Wl’q(Rg)]g such that ¢; = wi™ on 9O.

Proof. By Assumption (A3), there exists a sequence (ay)rezs € ¢1(Z*) such that for all k € Z3,
ay > 0 and
{z € OFF, d(z,007) > ai} C Op C {z € Q, d(z,0}") < ax}.
Let k € Z3.
If O = OF, then we define the function xj by xx(z) = 0 for all z € Q.
If O # OF, there are two cases (see Figure H).

Qr —
per
0,7 —

Or —

(a) First case (b) Second case

Figure 4: Illustration of the proof of Lemma

First case. We have {z € R?, d(z,O") < 2ai} C Qk. We consider a function xj which is
smooth and compactly supported such that

xe=1 in {ze€Qy dz O)) < ay}
xe =0 in {zeQ dz, OF) < 2a4}°.

We can choose xj such that the following estimates are satisfied:
C ~ADEr
bl €15 [Vl < == and - [supp(u) 1 (QDFT))| < O, (3.20)

where the constants C' are independent of k.

Second case. We have {z € R3, d(z,O}"") < 2} ¢ Q. We consider a smooth and compactly
supported function yj such that

Xk = 1 in Ok
xx =0 outside of Q.

Because a, —— 0 and because there exists § > 0 such that
|k|—+o00

Vk € Z3, d(@k, 3Qk) >0,

there are only a finite number of such configurations. After possible changes of the constant C, we can
suppose that (3.20) is valid for all k € Z3.

Conclusion. We define

o ()

kez3
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We study the W19—local norm of ¢;. We fix k € Z3 ; one has in Qy:
Vsl = |V (xrew;™) | < [Vxl [wf ] + [Vl | [xxl -
We now use that Vw}®" is bounded and the inequalities (3.20):
V5] < Cagtwh™| + C.
To obtain that |V¢;| is bounded on its support, it suffices to show a bound of the type
Wi < Cay  in {z€Qf, d(z,0p) < 2y}

Since w}”" = 0 on O and Vwi*" € L>(Q), this estimate follows from a classical Taylor inequality.
We conclude that
3C >0, Vk € Z*, Vx € Qy, |Vo,(z)| < C.

Because
Vk € Z°, |supp(¢;) N Qx| = ’SUPP(Xk) n (Qk \ O,‘i‘“) = O(aw),
and because of Assumption (A3), we conclude that |supp(¢;)| < +oo and so V¢, € [Lq(R?’)}sX?’.
Similarly, ¢; € [L4 (Rg)}g. This concludes the Lemma. O
We define, when R > 0,
of:=ro\ |J O
k s.t. QuCRQ
If R =1/e, one has QF = 10,
Lemma 3.4. Let T € [H }(R3 \5)]3. The Stokes problem
~Aw+Vp=T in R*\O
div(w) =0 (3.21)

w=0 on 090

admits a solution (w,p) such that (w,p) € [H}(R? \5)}3 x L2 (R*\ O) and Vp € [H_l(R?’\@)]g.
Moreover, for all R > 0, we have the estimate

1
R R _
Hp A HL2(QR) <CR {HVMH[Lz(RS\@)P“ + HTH[H—l(Rs\@)]?’} , AT = m - b, (3'22)
where C' is a constant independent of T and R.

Proof. We consider the space H := {v € [H{(R?\ O)] ° , div(v) = 0}. This a Hilbert space as a closed
subspace of [Hg(R3\ O)] ®. We formulate the following variational problem: find w € H such that

Yv € H, Vw : Vo = (T, v). (3.23)
R3\O

We recall (see [8, Proof of Lemma 3.2]) that we dispose of a Poincaré inequality on [H(R®\ O)] ® and
thus of a Poincaré inequality on H. We can apply Lax Milgram’s Lemma and find a solution w € H

of B23). In particular, for each vector valued function v € [D(R? \5)}3 such that div(v) = 0, we
have
(Aw + T,v) = 0.

Using [4, Theorem 2.1], this implies that there exists a distribution p € D’(R3\ O) such that Aw+T =
Vp. In particular, Vp € [H~H(R3\ O)] °,
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Now, we fix R > 0. Since Vp € [H'(R? \@)]3, we have Vp € [I{*l((ZR)}3 and
HVPH[H*(QR)]3 < HVPH[H—l(Ra\@)]?’ < ||vw||[L2(R3\6)]3X3 + ”TH[H*l(Rf*\@)]S

thanks to the triangle inequality. Lemma [A2] for ¢ = 2 furnishes the estimate (3:22)).
o

Proof of Theorem[2.1. We fix j € {1,2,3}. Lemma [3.3 gives a function ¢; € [Hl(Rg’\@)}g such that
$j = wi™ on O. The problem

div(v;) = div(¢;) in R*\ O
v;=0 on 00

admits a solution v; € [H'(R*\ O)] ® thanks to Lemma A4 Indeed, we just have to check that

Vk € Z°, ¢j-n= / Wi -n = / div(w)*) = 0.

Defining v; := 0; — ¢; yields a solution to the problem

per

div(v;) =0 in R*\O
vj=—w; on 00.

By Lemmal34] since Av; € [HH(R?\ 0)] ? there exists a pair (0;,p;) € [H§(R3\ O)] *x L2

loc (R3 \6)
solution of the Problem

—Ai)\j + Vf)\j =T, + Avj in R3 \6
div(v;) =0 (3.24)
v; =0 on 0O.
We set w; := 0; +v; and p; = p; and we finish the proof of Theorem 211 O

3.3 Proof of Theorem 2.3
3.3.1 Strategy of the proof

We introduce . .
Re = ’UJE—EQZl’LUj (g) fj and P ::ps_szlpj (g) fj'
j= j=

The strategy of the proof is to find a Stokes system satisfied by (R, ) and then to apply Theorem [2.2]
We need to compute the quantities

—AR.+VP. and div(R.). (3.25)

The construction of auxiliary functions is necessary to correct the divergence equation satisfied by R.,
which doesn’t have a suitable order in . This is done in subsection B:3.2] below (Lemma BH). The
proof of Theorem is completed in subsection B33] in particular the computations (3:23]).

3.3.2 Some auxiliary functions

We recall that the correctors wj, j € {1,2,3} constructed in Theorem [2Z1] are extended by zero in the
non-periodic perforations. If ¢ € {1, 2,3}, we denote wj 1= wj - €; the ith—component of w;. Similarly,
1,per i —
wj

(resp. w!) will be the i*" —component of w}*" (resp. w?). We recall that the definition of the
matrix A is given in Equation (L3]).

J

17



Lemma 3.5. Suppose that Assumption (A4) is satisfied. Let i,j € {1,2,3} and x be a function of
class C> with support in Q \ @l such that fQ X = 1 where Q' is defined in ([L6) (see also Figure[d).
We extend x by periodicity to R*\ O. The problem

i i 3\ ?
{—dwzw—wj—xAj in R°\O (3.26)

=0 on 00

) .13 ) )
admits a solution z; € [HSJOC(RB \ (9)} - If we still denote 2} the extension of z; by 0 in the perfora-

tions, we have the estimate
i _3 i,per — /—7
||Zj||[H2(Q/a)]3 <Ce > ||wjp ||[H1(Q)]3 + Ce 1||wj||[H1(R3)]3 (3.27)
for all e > 0 where C is a constant independent of €.
Proof. We fix i,j € {1,2,3}. We search 2} under the form 2} = V¥ 4 gt
Step 1. We build a function ¥} such that V¥’ e [H2’per(Q)}3 + [HE

loc

(R3)]® and
i i i 3
—AV; =w; —xA; on R

The periodic part of \IJ; is defined by solving the problem

AW Ar o
{ 7 ;T XA @ (3.28)

i,per 1,per
WPt e HH P (Q).

Since [, (-u)-]",pcr —xA4) =0, Problem (B:ZE) is well posed in H'**"(Q)/R. We choose WP such
that_ fQ WP = 0. Because w; """ — xy A} € H'"**(Q), standard elliptic regularity results state that
VT e [H 2*"“(@)]3. Besides, there exists a constant C' such that

IV a2 @y < Cllwi™ = x5l gy < Cllwy™ s @pe- (3.29)

We now build the non-periodic part of ¥%. We extend w’ by —wj’per in @. We note that, with this
extension, w} € [H 1(R3)]3. We consider the problem

—AVi =wl on R® W — 0.
J J |z|—+o0

The solution is given by the Green function:

Thanks to the remarks after the proof of [I2| Theorem 9.9] (see [12] p.235]), we have that D2@§ €

[ (R*)]** and

ID*Wi|l araypxs = lwhllL2@sy and || D*Wi[|p2gaysexs = Vs [lpaggsys- (3.30)
Using the Sobolev injection H'(R?) — LS(R?) for V\IT;, we deduce that V@? € [LS(R3)] ® and, using

B30), that the estimate
[Vl Lo®eye < Cllwh]| L2 (gs)
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(R3>]3 and, thanks to Holder inequality, we have

loc

holds true. In particular, V\E/z € [L}

—~ C —~
IV L2 (. e < ;HV‘I’}H[LS(RB)]S-

We deduce that o o
IV 20 o) < ;||V‘I’§||[L6(R3)]3 < ;||w§||[L2(R3)]3. (3.31)

Finally, collecting (330) and B.31]), we get
v C i
IV 2. e < ;H%H[Hl(RB)]S- (3.32)
We define ¥ := \If;’per + @g and verify that
i, iper I I i 3
—A‘Ilj —wjp —XAj+wj = w; _XAj on R°.
We use the periodicity of V\I/;’per and write that

IV 200, e < IV im0, e + IV 5 a2 (0. e

7 o (3.33)
-2 i,per 4
S Ce 2 VU 2 g + IVl 2 (0. e
where the constant C' is independent of €. We make use of (832) and (3:29) and deduce that
i — 3|, iper 1,7
||V\I/j||[H2(QE/E)]3 <Cez ||wjp ||[H1(Q)]3 + Ce 1||wj||[H1(R3)]3' (3.34)

Step 2. We introduce a cut-off function x; such that y;1 = 1 in Q" and x; = 0 out of Q (see
Figure @). We fix k € Z* and define x¥ := x1(- + k). The goal of this step is to solve the following
problem:

div(gi*) =0 in Qx\ Oy
g;k = —V\IJE on 00 (3.35)
g;k =0 on 0Qk.
We first solve

{div(hj:’“)—div(x’fv‘l’?) on Qi\Ok (3.36)

i —~\73
hj’k (S [Hg(Qk\Okﬂ .
The compatibility condition (L8] is satisfied:

/ div(x’fV\Ifj-)z/ x’fvw;ﬂ-n+/ XAV n= [ AW =0.
Qr\Oy 0 aQx Ok

Since div(x}V¥i) € Hj(Qy \ Ok), we obtain by Assumption (A4); a solution h;k € [H3(Qr \ Ok)] °
to (B36) which satisfies the estimate

i,k %
I < IV e oy

8 < OHdiV(XIlCV‘IJ;‘)HHl(Qk\O_k) < OHV‘I/;H[

| [H2(Qx\Ow)] H2(Q1\O)]

We extend h;’k by 0 to R?\ O. We then define g;fk = h;’k — X1V, We note that g;fk = 0 out of Q,
and that g;-’k € [H*(R? \5)]3. Besides, g;-’k solves Problem (3:35)) and satisfies the estimate

i,k i
llg; ||[H2(Qk\@—k)]3 < OV a2 (3.37)

Step 3. We set _ _
g;(z) == g;k(x) if x€ Q.
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Then we have

div(g)) =0 in R*\O
g;-z—V\If; on 00.

Besides, g € [H (R? \5)]3 and summing [B37) over k € Y. yields the estimate

loc

1951l m2(0. ey < CIVE N 120, oy (3.38)

We define z! := VU + gi. We have 2z} € [HI%C(R3\5)]3. Besides, 2} is a solution of ([B.26) and,
collecting (B.34) and (B3])), we prove the estimate (327):

i i —31,, i,per —1y i
121l 1#r2 0. sy < CIVESllim2a. o < Ce™ 2 [0y g gy + Ce™ Wil mays- (3.39)

It remains to prove that z! € [Hg(R?’\O)}B. For that, we fix k € Z3 and we notice that in a
neighbourhood of the perforation 90y, the equality zf = h;k +(1- x’f)V\I/;'- = h;k is satsified. Since

. _ , 3
h;’k € [Hg(Qk\Ok)}g, it proves that z; € [H&IOC(H@\O)] . This ends the proof. O

3.3.3 Proof of convergence Theorem

T ials
0% / (. S0 \? \ Ukev. €@k
\ |20 e®® o) 5
o ve o oo
;s

Figure 5: Proof of Theorem

Proof. We choose € > 0 small enough such that

supp(f) € | Qs

keYe

We define (see Figure[Hl) ' := {x € Q s.t. f(z) # 0}. We now set
Lo 2200 (2) £ 8320 (2) 8, 7
Uz 1= €W (5) fi+e’z (5) 0i f;

and

. ; . 1
1. (Y 2 s J.— .
pE ) € |:pJ (E) AE:| fJ’ As ' |%Q€| /;st pj.
We have u! € [H} (Qaﬂ3 and p! € L?(.) and thus

—Aul+Vpl e [H Q)]
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Since (see Figure[) f = 0in Q\ €, we have that u} and p! are compactly supported in €. Tt is thus
sufficient to compute —Aul + Vpl in Q. N Q/. We notice that Q. N Q' = Q' \ 0. Besides, thanks to

LemmaB.5, we have zi(-/e) € [H*(Q'\ 56)}3. We compute in '\ €O :

Aul = Aw; ( ) fi + 2e0kw; ( ) 8kfj—|—62wj ( ) Af; + 6AZ§- ( ) 0ifj

9 9 9 9

+ 2620, (E) On0if; + 2 (g) AD:f;.
and
Vi = Vp; (g) fi+e {Pj (g) - )\é} V.
Thus,

Aul — Vpl = Aw; (E) fi + 2e0,w; (g) Onfj + e w; (E) Afj+eAz] (E) 0 f;
+ 26202 (g) OROLf; + €52 (g) A f; — Vp; (g) fi = {ps (g) —X}vg o (340
= —fes tefe=—f +efe,
where
fe = 204w (E) Onf; + ew (g) Af; + Az (g) 0, f; + 2602 (g) On0; f
25 () 80 (o (3) -4},
Equation ([3.40Q) is still valid in .\ @’ (the LHS and RHS vanish). We define

o 1 o 1
R.:=u,—u; and m;:=p.—p;.

Thus (Re,m.) € [HY(Q)] x L2(.) and
AR +Vm =cf. in Q. fe[L*Q)]).

Using that f € [W?”OO(Q)}B, we infer

I fellip2 (. < vaj (— IV £illipoe 2 + 5‘

) H[wﬂ'\s@]“ v (2) H[mm/\s@]‘* 185500

+ HAZJ' (E> H [12(0N\e0)]° 19:flle=@) + Hvzﬂ' (E) H [£2(0\:0)]>° IVOifillizes e

a|Ex (é)”[m(ﬂ'\a@)r |A0; il Lo (o) + Hpj (Z) - X

+e€

LQ(Ql\EE) ||Vf]|| [Lw(ﬂ)]s'

3 i ,
< Cez |:||w]||[H1(%Q/\€6)]3 + ||ZJ||[H2(%Q’\€6)]3 + ||p] - )\§||L2(éﬂ’\€6):|
= Ce* [(4) +(B) + ().
(3.41)
We treat each term separetely. For (A), we have
loillpn ancon® < 1057 M m aanzopp + 105l aancoy? (3.42)
_3 . _ .
<Ce > ||vw§')e ||H1(Q) + ||wj||[H1(R3\5)]3'
For (B), we apply Lemma (and especially [3:27)):
i —3 i,per — /—7
||Zj||[H2(§Q’\55)]3 < (Ce™ 2 ng pe ||[H1(Q)]3 + Ce 1||wj||[H1(R3)]3 (3.43)
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For (C), Theorem 2.1l gives

lpj — AL ||L2 (10\eO) < prer )‘gypcrHL?@Q’\s@) +11p; = )‘g”Lz(éQ’\E@)
< Cem 3 |pP | p2(g) + Ce ™t

(3.44)

Collecting (3.42)),3.43) and ([B:44), we conclude that there exists a constant C' > 0 independent of €
such that

”fs”[L?(QE)]g <C.
We now study div(R,.). Using Lemma [B.5 we have in Q.:

div(R)—_aX( ) Ai0f; - ° ;( ) - Vi
We recall that div(Af) = A50;f; = 0. Thus,
. _ 3
—div(R:) = €°2; (g) -V, fj.
We have that €22} (£) - Vi f; € [H&(Q )]3 and fﬂa %2} (£) - VOifj = 0. By Lemma [A5 stated in the
appendix, there exists S, € [Hg(Qs)] such that
5(6) s

div(S.) = 2 (é).vaifj and S| 20, < O

HY(9:)
Using that f € [W2>°°(Q)}3 and Lemma [35] we get
. C
=) -Voif; < =,
K (5) T HY(Q))P ~ €
Thus
1Sell 2.y < Ce. (3.45)

We now define R. := R. + S.. The pair (R\a,wa) € [H&(Qa)}s x L2(€) is solution to the following
Stokes sytem:
—AR. +Vm. =cf. — AS:

div(R.) =0 (3.46)
R\EWQE =0.

We notice that e f. — AS. € [L? (QS)]B thus we may apply Theorem for all Q" C Q, we have for
e < eo(Q),

ID?R. || L2(nay) < Cllefe = AScllrzany < Cellfellizny + 12 a2(a.) < Cé,

and
V7ell L2 (rna.y < Ce.

By the triangle inequality and ([B:45]), we conclude that

|2 [ve =<t Q) 5|, 5 €2 nt (9 e s (B) 23 2,

< Ce.
(QNQ.)
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A Technical Lemmas
We recall that if R > 0, we define

of:=r\ |J O (A1)
k, QxCRQ

Lemma A.1 (Divergence Lemma on Q7). Suppose that Assumption (A4)o is satisfied. Let 1 < q <
+00 and R > 0. Let f € LY(QF) be such that

F=0.

QR

The problem

—diviv) = f in Qg
v=0 on OJ0QNgr

admits a solution v € [Wl’q(QR)]B such that

[vllra@pye < CRIfllLa@n) (A.3)

where C' > 0 is a constant independent of f and R.

Proof. We first extend f by 0 in the perforations. We then solve the problem
—div(vy) = f in RQ

v € [W&*"(RQ)F. (A-4)

By Lemma [11, Theorem III.3.1] and a simple scaling argument, Problem (A4)) admits a solution vy
such that

||U1HW1"1(RQ) < CRHfHLq(RQ)
with the constant C' being independent of R. For k € Z3 such that Q C RS2, we consider the problem

div(vh) =0 in Qp\ O
v =0 on OQy (A.5)

vé:—vl on 00.

The compatibility condition for (A.5) is satisfied:

—/ ’U1-7’L=—/ div(vy) = f=0.
00y Oy Oy

Arguing as for Problem (B38), we show that Problem (AJ) admits a solution v§ € [W14(Qy \ O)] ’
such that (the constant C is independent of k& thanks to Assumption (A4)g):

s < C||U1||[ (A.6)

k
o2l .o @vom] Wha(Q\on]*

We extend v§ by zero to R? \ O. We define the function

_ Ky
= Y Wlgaon
k,QrCRQ

Summing (A.6) over k such that Qr C R yields

||U2HW1«1(QR) < C”vl”leq(RQ) < CR“f”Lq(QR)'

We set v = v; + v and notice that v satisfies the conclusion of Lemma [A ] O
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Lemma A.2. Suppose that Assumption (A4)o is satisfied. Let 1 < q¢ < 400 and R > 0. Let
f € D'(QF) be such that Vf € [W-19(QR)]°. Then f € LI(QF)/R and

[ fllLarye < ORIV fllw—1.0m)2 (A7)
where C' is a constant independent of f and R.

Proof. The fact that f € L1(Qg)/R follows from [4, Lemma 2.7]. We now show the estimate (A.7).
For u € LY(Q%), we denote )\, = ﬁ Jor u- We prove that there exists a constant C' independent of
R such that

If = Asllan) < CRIVfllw-1.amy- (A.8)
We argue by duality. We set ¢/ = ¢/(q— 1). We fix a function g € L9 (QF) and we define g := g — Ag-

, 3
We apply Lemma [A] to g: there exists a function v, € {Wol’q (QR)} such that
—div(vg) =7
||Ug||[W1,q/(QR)]3 < CRH?”LQ'((W)'

Since [[9]| Lo (o) < 2019/l o' (2) We have HUHH[WW’ @)’ < CR||g]l v (,)- We now write :

L) st = = o =it == [ (r=ag =2 == [ (7=

Qr

Thus

/QR(f - /\f)g‘ < ||Vf||[wfl,q(szR)]3||Ug||[Wol,q/(QR)]3 < CR|IV fllw-ranyellgll Lo @r)-

Taking the supremum over g, we conclude the proof of the Lemma. O

Lemma A.3 (Scaling). Suppose that Assumption (A4)o is satisfied. Let 1 < ¢ < +oo. Let e > 0 and
Q. be defined by (LID). There exists a constant C > 0 independent of € such that for all f € D'(Q)
such that Vf € W=14(Q,), we have f € L1(Q.)/R and the estimate

1fllzeqesy/r < Ce IVl pr-1aga.ye-

Proof. We apply Lemma with R = 1/e and use a scaling argument O

Lemma A.4. Suppose that Assumption (A4)o is satisfied. Let 1 < q < 400 and F € [Wl’q(Rg)]g.
Suppose that for all k € 73,

/ F-n=0. (A.9)
a0y
The problem
—div(v) = div(F) in R*\O (A.10)
v=0 on 00

admits a solution v € [W(R? \5)}3 such that

3 SCHFH[

||U||[W1,q(R3\6)] Wlwq(RS\@)]"g

where C' is a constant independent of F'.
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Proof. As in the proof of Lemma [3.3] we search the function v under the form v = V¥ + v; where

F(y)'(:v—y)dy_

—AVU =div(F) on R3 thatis ¥(z)=C -
R3 lz -yl

and

div(v;) =0 in R*\O
U1 =-VV¥ on 90.

Since F € [L4(R?)] 3, we know that VU € [LQ(R?’)]B and that there exists a constant C' > 0 such that
IVl zasys < ClF||asys (see e.g. [1I, Exercice I1.11.9]). Besides, since div(F) € LY(R?), the
estimate ||D2\I/||[LQ(R3)]3X3 < Cf|div(F)||Lars) holds true (see e.g. [12, Theorem 9.9 & p. 235]). Thus,

3
V\I’ S [Wl’q(Rg)} and HV\I]H[WLQ(RS)]S S C||F||[W1~Q(R3)]3'

We define the function v; on each cell Qy \(9_;C as a solution of

—div(vf) =0 in Qp\ Op
¥ =0 on OQ (A.11)
v = -V¥ on 90.

Assumption (A4), together with (A9) guarantee that Problem (A-T1)) admits a solution that satisfies
the estimate ||vf||[W1yq(Qk\O—k)]3 < CV¥|w1.a(g,y2- This proves the Lemma.

O
Lemma A.5. Suppose that Assumption (A4)1 is satisfied. Let g € H} () be such that
/ g=0.
Q.
The problem
—div(u) =g in Q. (A12)
u=0 on O,
admits a solution u € [HS(QE)}B such that
C
[ullg2(0.) < g||9||H1(QE)7 (A.13)

where the constant C' is independent of e.

Proof. The proof is very similar to the proof of Lemma We explain here only the main lines and
refer to Subsection B.3.2] for details. We first extend g by 0 in the perforations. We notice that

g€ HLQ) and /gzO.
Q

We consider the problem

—diviv) =¢g in Q
(A.14)
v=0 on O09Q.
Thanks to [T, Theorem I11.3.3], Problem (A.14]) admits a solution v € [Hg(Q)f’ such that
Vol < CQglla @) and v]lgi ) < C)gllr2(o)- (A.15)
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We fix a cell Q. such that Q) C Q. We build a function v¥ € [H2 (e [Qk \O_k} )]3 such that

div(vf) =0 in e [Qk\ O]
of = —v on €90 (A.16)
Voy = —=Vu on £d0y.
For that, we use a cut-off function x* := x (¢[- + &]) as in Step 2 of the proof of Lemma 35 We solve

div(w*) = div(xyv) in e [Qx\ O] (A.17)
w¥ =0 on €0 [Qx \ O] '

and then set vf := w® — y¥v. [I1} Theorem III.3.3] together with Assumption (A4); and a standard
scaling argument show that Problem (A.16) admits a solution such that

k k k
52||D201 ||L2(€Qk\(9_k) + e[| Vg ”L?(an\O_k) + [|oy ||L2(€Qk\0_k)

o (A.18)
S CEND 2 cqu) +EllVVllzzcqu) + IVl L21));
where the constant C' is independent of k and e. We extend vf by zero to Q.. We define
v = Z ’Ulf.
keYe
Then, after summation of ([AI])) over k, the estimate
52||D2U1||[L?(sz€)3]3x3+5||vvl||[L2(Q€)]3x3 + vl 2oy
(A.19)

< C 2Dl gaqayppsns + el Vollpaayses + I0lpacaye]

holds true. We note that the function u := v +v; satisfies the conclusion of Lemma [A5l Furthermore,

using (AT5) and (A19), we get
52”D2u”[L2(QE)3]3X3 + el Vaullipz(q.yzxe + lullr2q. )2

< C |10 llizayeps<s + el Vllpagays<s + [ lzaqyp]

(A.20)
< C [2llglln @) + ol @] < C [Plglm o + lgllza.)]
< C[Ellglmo) +ellgllmon] < Cellgllm)-
where we used Lemma 3] on g in the last inequality. Thus (A3]) is proved. O

B Geometric assumptions

We prove in this section that Assumptions (A3) and (A4)’ imply Assumption (A4) and that As-
sumptions (A3) and (A5)’ imply Assumption (A5). Appendix [Bl follows the proofs of [11, Theorem
I11.3.1] and [I1} Theorem IV.5.1] and makes precise the dependance of the constants appearing in these
arguments. We begin by a covering Lemma.

Lemma B.1. Suppose that Assumption (A8) is satisfied. Let 0 < p < d(OOF*,0Q). There exists
N € N* such that for all k € Z3, there exist 2N balls Bf,i =1,...,2N such that

(i) for all i = 1,...,N, we have that BF = B(¢F,p), €& € 00y and {z € Qi \ Ok, d(z,00}) <
3p/16} € Uity BY

(i) for alli= N +1,...,2N, we have that BF = B(¢F,p/32), &8 € {x € Q1. \ Ok, d(z,00}) > p/16}
and {x € Q1. \ Oy, d(z,00%) > 3p/16} < Uy, B
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Moreover, there exist 2N balls B?’per, i=1,..,2N and n =n(p) > 0 such that
(ii) for alli=1,..,2N, BY** C Q and {;v s.t. d (:E,Q \ (’)gcr) < 77} C Ufivl BYPer,

(iv) there exists a bijection o : {1,...,2N} — {1,...,2N} such that for alli € {1,...,2N — 1}, we have
that

2N
otz U otgr) 40 wa e s (o108
s=1i+1
(v) for all but a finite number of k € 7>, we have that Bf’pcr C BF for all i = 1,..,2N and
{w st d(2,Qi\Ox) <n/2} € UL, Bi™, where Bj™™ := B + k.

Remark B.2. Lemma m means that we can relabel the family B?’pcr,i =1,..,2N such that for
alli e {1,..,2N — 1}, we have that Q)P N (Q?fler U---u Qg’ﬁer) £ 0.

Proof. The proof of Lemma [B.]] relies on the periodic structure and on Assumption (A3). We first
fix by compactness Ny balls B?’per = B(x,p/2),i=1,..., Ny such that

No
{x €eQ, d(z,005") <p/4}C U BYP" and  x; € HOP. (B.1)
i=1

We note that there exists 5 > 0 such that for all i € {1, ..., Ny}, there exist two points y; € By P NOF
and z; € BYP"\ OF" satisfying d(y;, 0OP") > p and d(z;, 0O8) > p. We define for each k € Z3,
o¥ = ai+k, yF = yitk, 25 = zi+k and B¥PT .= BYP Lk — B(z¥, p/2). By translation invariance,
we obviously have (B.]) with 0 replaced by any k € Z3.

We consider k € Z3 such that a; < min(p/16,p) (where we recall that «y, is introduced in (A3)).
Then, by Assumption (A3) and (B.I)), we have that

No
{z€Qk d(z,00;) <3p/16} C {z € Qr, d(z,008%) < p/a} C | J BI ™. (B.2)
=1

We next claim that each ball Bf’per, i = 1,..., Ny intersects 0. By definition, we have that y* €
Bf’perﬂoger and that d(y¥, 00") > p > ay. Thus, by (A3), we get that yF € BFPN O, Similarly,
we have that z¥ € BPP\ 0. Thus, there exists & € [y¥, 25] N OO}, proving that dO, N BFPe £ ¢,
We fix an arbitrary point £ € 90, N BIP" and we notice that BI'*® ¢ B(¢F,p). By (B2), we
conclude that

Ny
{z€Qn, dx,00:) <3p/16} C | J BY. (B.3)
i=1

It remains to cover {z € Qi \ Ok, d(z,00%) > 3p/16}. By (A3), we have that
{z € Qr\ O, d(x,001) > 3p/16} C {z € Qi \ O}, d(x,00;7) > p/8}. (B.4)

By compactness and translation invariance, we can cover the right hand side of (B.l) by N; balls
Bf’per = B(2F,p/32),i = No + 1,..., No + N1 where 2% is of the form z¥ = 2z; + k and z; € {z €

S

Q\ O, d(x,008) > p/8}. We set BF := BFP and ¢F .= zF. By (A3), we get that &F €

i

{Qr\ O, d(z,00k) > p/16}. With N to be fixed later, we have proved [1)}f(ii)| for k£ € Z3 such that

o < min(p/16, p)

We fix k& € Z3 such that ap > min(p/16,p). We take any covering of {zx € Qy, d(x,00;) <
3p/16} with balls BY = B(¢F,p), ¢€F € 00y and i € {1,...,N§}. We then take any covering of
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{x € Qi \Ok, d(x,004) > 3p/16} with balls Bf = B(ff,p/32), 5;“ € {z € Qi\Og, d(x,00;) > 3p/16}
and i € {N} +1,..., Nt + NF}.

We set N := maxyczs {NF, NF} where N} = Ny and Nf = N; if a; < min(p/16,5). Note that
because of (A3), we have that N < +o0. If N¥ < N or N¥ < N, we duplicate one of the balls in order
to define 2N balls BF i = 1,...,2N. We proceed similarly for B?’pcr, i=1,...,No+ Ni. Assertions|(i)|

and are proved. We prove easily by connectedness of Q \ OF". O

Assumptions (A3) and (A4)’ imply (A4)
Proof that (A4), is satisfied

Let k € Z3. We formulate [IT, Theorem III.3.1] in our particular setting: suppose that there exists
Qf,i =1,..., N such that

Ny
Qr \ Ok = UQf, (B.5)
i=1

where QF is star-shaped with respect to a ball B of radius p¥ such that BF cC QF. We define for

i=1,..,NF -1
Ny
FF.=QkFn ( U Qk>

s=i+1

and we assume that FF # () for all 4 € {1,..., Ny — 1}. Then Problem (L7) with f € L9(Qy \ Ok)
admits a solution v satisfying (L9]) with

COk) < C(q) (—diam(@k\o_’“)>3 (1+—diam@’“\0_’“)> <1+ Qi \ OV )Nk. (B.6)

inVe ok inVE ok inNe—1 -1
min; -y p; mn, — f; ing 2 | Fyf 1t

To bound C?(k) uniformly in k, it is sufficient to show that @z \ O admits a decomposition of the
form (B.5) where Ny is independent of k, p¥ and |F}| are uniformly bounded from below in &k and i.
We first explain how to find such a decomposition with Ny and p¥ independent of k and i. By making
precise the dependance on the geometry of 9Oy, at each step of the proof of [I1, Lemma II.1.3], we can
show that (A4)’ implies that there exists p > 0 such that for all k& € Z3 and ¢* € 90Oy, there exists
an open set Ggr such that Qg := Ger N (Qk \O_k) is star-shaped with respect to a ball of radius p
strictly included in Qgr and B(€¥, p) C Ger.

We next apply Lemma [B.I] with p given before and we denote by BF, i = 1,...,2N the family of

70

balls that we obtain. For i = 1, ..., N, we define Gf = G¢r and Qf = Q. Fori =N +1,...,2N, we
define QF := B¥. Since B¥ C G¥ for i = 1,..., N and because B¥,i = 1,...,2N covers Q}, \ Oy, we have
that (B.5) is satisfied with p¥ > p/32 and Nj, = N.

It remains to check that there exists a relabeling of the Q¥’s such that we have that min?~ ! |FF| >
C where C' > 0 is independent of k. We use Lemma [B.T|(iii) According to Remark [B.2], we relabel
the QFP" (note that this also implies a relabeling of the QF’s) such that

Vie{l,...,2N — 1}, Fik,pcr — Qfﬁpcr A (Qﬁplcr U---U Qgﬁcr) 4.

/
We then fix p’ > 0 such that for all i € {1,...,2N — 1}, we have that Ff’per contains a ball (Bf’per)

! J—
of radius p’ such that (Bf’pcr) CC Qr \ OF. We fix k € Z* such that Lemma [BIJ[(v)] is satisfied
and such that

2N—-1 k ’
ap < min d ((Bi P) ,aog”) . (B.7)

28



Then, for all i € {1,...,2N — 1}, we have that

! R
(vapef) cC Qr\ Oy (B.8)
‘We then recall that
2N 2N
Fszfﬂ( U Qf) = Gfm( U Gf) N (Qr\ Ok) .
s=i+1 s=i+1

By Lemma [B.IJ|(v)] we have that Bf’per C G¥for all j € {1,...,2N}. Together with (B.8), this yields
!/
that (Bf’per) C Ff foralli € {1,...,2N — 1}. Thus, min?""" |[F¥| > 47p"%. Since by (A3) there are

only a finite number of indices k such that (B.) is not satisfied, we conclude that, after eventually
relabeling the F}*’s, we have that min?Y " |FF| > C > 0.

Proof that (A4); is satisfied

We briefly sketch the proof of (A4); and we refer to the proof of (A4), for some ingredients. Let
ke 7 and f € Wy '(Qx \ Ok). To solve Problem (I7), we use a decomposition of the form (B
with Nj uniform in k (= N) and QF that is star-shaped with respect to a ball of radius p uniformly
bounded from below in k and i, as constructed in the proof of (A4)y. We then write f = f1+---+ fn
where fi € W), Ja, fi=0, [ fillwragar) < Cf|\f|\w1,q(Qk\@) and we solve the Problem:

divv; = f; in Qf
v; € {Wé’q(ﬂf)r .
Thanks to the estimate (I11.3.23) of [11, p. 168], we have that
[villjw2.aap < C@ P fillwra@ry < Ca PCEN fllwraomon-

Extending v; by zero to Qy \ Ok and setting v := v1 + - -+ + vx, we have that v solves Problem (7))
with the estimate

1ol fzauom® < C@PANCEIf lwia@non-

We can conclude that (A4); is satisfied if C¥ is uniformly bounded in i and k. To prove that, we
make precise the dependance of the constant controlling [|f;[[y1.q(qr) in the proof of [II, Lemma
I11.3.4.(vii)-(viii)]. This constant depends on N and on the maximum of the W° —norms of the
functions ¥¥ i = 1,..,2N and x¥, i = 1,...,2N — 1 where {¥¥ .., Wk } is a partition of unity
associated to {G¥,...,G5y} and x¥ € D(FF) satisfies [, x¥ = 1. Because of Lemma the
family {¥}, ..., U5} may be chosen independently of k (by using the periodic balls), except for a finite
number of indices k. Besides, still after the exclusion of a finite number of indices k, we have shown
in the proof of (A4)y that F¥ contains a ball of radius p’ which is uniformly bounded in i and k.
Thus, x¥ may be chosen as the translation of a reference function x satisfying x € D(B(0,p’)) and
fB(pr,) x = 1. This proves that max?Y, C¥ < C for all but a finite number of k € Z*. Applying [11]

Lemma I11.3.4] for the remaining indices k, we conclude that max?Y, C¥ < C for all k € Z3. This
concludes the proof of (A4);.

Assumptions (A3) and (A5)’ imply (A5)

We fix f e [L9( %\O_k)}g and we consider the pair (v, p) solution to (LII). We want to prove the
regularity estimate (II2). The interior regularity property is given by the following result (see [I1]
Theorem IV.4.1]):

1D?0]| Lagayysxaxs + IVl Lagans < Cllvllwrayys + IpllLoay) + [1F1lLay)s], (B.9)
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where ), CC Q) CC Q}\ Oy, and C depends only on g and on the distance between €2, and (£2},)°. The
regularity up to the boundary follows from the discussion [I1} pp.271-274]. By tracing the dependance
of the constants in these arguments, we can show that, under Assumption (A5)’, there exist a radius
p > 0, a constant d > 1 and a constant C > 0 such that dp < d(Q,0Q") and for all k € Z3 and
x € 00, we have that
2

1D%00 o((@uv00)rBw) ¢ T IVPIa((@uam)nsem) < ClIVIwra((@nam)nB@an) (B.10)

+ ||p||Lq((Qk\@)mB(m,dp)) + HfHLLI((Qk\Oik)ﬁB(m,dp))S}

We combine estimates (B9) and (BI0). We fix k € Z%. Let (Bf),_  be the family of balls given
by Lemma [B.] (applied with p defined by (BI0)). Thanks to (BIQ) and the inequality

Vai,...a, >0, af +---+al <(a1+--+a,)! <Cpgla] +---+al), (B.11)

we have for all i € {1,..., N},

D?y||? . V|| _ Cll|v||? _
” UHL‘?((Qk\Ok)ﬁB(ff,p))SXSXS + ” pHLq((Qk\Ok)ﬁB(ﬁ“ p))3 — [HUHW1 q((Qk\Ok)mB(gf,dp)):i
+ 1ol e . B
PlLe((@uon)nBer.ap) L9((Q\OK)NB(Erdp))*
Summing (B.I2) over ¢ € {1,..., N} and using that
—_ N _ —_
Uy = {z € Q \ Ok, d(z,00:) < 3p/16} C | JB(&F,p) and (Qx\ Ox) NB(&F,dp) C QY \ O
=1
yield
2 q q q q
D20 s 1B < ON (190 iy + 1y * 1oyt - (B-19)

We now apply (B.9) to Qi = {z € Q \ Ok, d(z,00%) > p/8} and Q) = QY \ Ox. We have that
d(Qu, (2},)¢) = min (d(Q,0Q"), p/8) is independent of k. Thus, using (B.9) and (BII) yield

ID20]14 g, o535 + VBl < C | (B.14)

q q
190 gpmmys * 1P acapom *+ 171 apams)

where C' is independent of k. Summing (B.I12) and (B14) and using that U, U Qi = Qy. \ Oy, together
with (BII]) proves (A5).

Counter-examples to the geometric assumptions

References

[1] Grégoire Allaire. Homogenization of the Stokes flow in a connected porous medium. Asymptotic
Analysis, 2(3):203-222, 1989.

[2] Grégoire Allaire. Continuity of the Darcy’s law in the low-volume fraction limit. Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze, 18(4):475-499, 1991.

[3] Grégoire Allaire. Homogenization of the Navier-Stokes equations in open sets perforated with tiny
holes 1. Abstract framework, a volume distribution of holes. Archive for Rational Mechanics and
Analysis, 113(3):209-259, 1991.

[4] Chérif Amrouche and Vivette Girault. Decomposition of vector spaces and application to the
Stokes problem in arbitrary dimension. Czechoslovak Mathematical Journal, 44(1):109-140, 1994.

30



k| ~1 k| ~ 1 |k ~ 1

(a) Counter-example to (A3), (b) Counter-example to (A4)’, (c) Counter-example to (A5)’,
close to the origin and at infinity  close to the origin and at infinity  close to the origin and at infinity

Figure 6: Counter-examples to Assumptions (A3)-(A4)’-(A5)’. For each assumption, the picture
above expresses the fact that there is no restriction on the perforation O when k remains bounded.
The picture below shows a perforation Oy that is not allowed by Assumption (A3), (A4)’ or (A5)’
when |k| = +o0.

[5]

Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions. A possible homogenization approach for
the numerical simulation of periodic microstructures with defects. Milan J. Math., 80(2):351-367,
2012.

Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions. Local profiles for elliptic problems at
different scales: defects in, and interfaces between periodic structures. Comm. Partial Differential

Equations, 40(12):2173-2236, 2015.

Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions. On correctors for linear elliptic homoge-
nization in the presence of local defects. Comm. Partial Differential Equations, 2018. To appear.

Xavier Blanc and Sylvain Wolf. Homogenization of the Poisson equation in a non periodically
perforated domain. Accepted for publication in Asymptotic Analysis, 2020.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

Florian Feppon. High order homogenization of the Stokes system in a periodic porous medium.

Preprint Arxiv, 2020.

Giovanni Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:

Steady-state problems. Springer Science & Business Media, 2011.

David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order.
Springer, 2015.

31



[13]

[14]

[15]

Willi Jéager and Andro Mikelic. On the flow conditions at the boundary between a porous medium
and an impervious solid. 1994.

Eduard Marusi¢-Paloka. Asymptotic expansion for a flow in a periodic porous medium.
Comptes Rendus de I’Academie des Sciences-Series [IB-Mechanics-Physics-Chemistry-Astronomy,
325(7):369-374, 1997.

Eduard Marusic-Paloka and Andro Mikelic. An error estimate for correctors in the homogenization
of the Stokes and Navier-Stokes equations in a porous medium. Boll. Unione Mat. Ital, 10(3):661-
671, 1996.

Nader Masmoudi. Some uniform elliptic estimates in a porous medium. Comptes Rendus
Mathematiques, 339(12):849-854, 2004.

Enrique Sanchez-Palencia. Fluid flow in porous media. Non-homogeneous media and vibration
theory, pages 129-157, 1980.

Zhongwei Shen. Sharp convergence rates for Darcy’s law. Preprint Arxiv, 2011.

Luc Tartar. Incompressible fluid flow in a porous medium. Convergence of the homogenization
process. Appendix in E. Sanchez-Palencia, Nonhomogeneous media and vibration theory. Lecture
Notes in Phys., 127, 1980.

32



	1 Introduction
	1.1 General notations
	1.2 Review of the periodic case
	1.3 The non-periodic setting

	2 Results
	3 Proofs
	3.1 Proof of Theorem 2.2
	3.2 Proof of Theorem 2.1
	3.3 Proof of Theorem 2.3 
	3.3.1 Strategy of the proof
	3.3.2 Some auxiliary functions
	3.3.3 Proof of convergence Theorem 2.3


	A Technical Lemmas
	B Geometric assumptions

