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Abstract

We derive generalizations of Dupire formula to the cases of general stochastic drift
and/or stochastic local volatility. First, we handle a case in which the drift is given as
difference of two stochastic short rates. Such a setting is natural in foreign exchange
context where the short rates correspond to the short rates of the two currencies, eq-
uity single-currency context with stochastic dividend yield, or commodity context with
stochastic convenience yield. We present the formula both in a call surface formulation
as well as total implied variance formulation where the latter avoids calendar spread
arbitrage by construction. We provide derivations for the case where both short rates
are given as single factor processes and present the limits for a single stochastic rate or
all deterministic short rates. The limits agree with published results. Then we derive
a formulation that allows a more general stochastic drift and diffusion including one or
more stochastic local volatility terms. In the general setting, our derivation allows the
computation and calibration of the leverage function for stochastic local volatility mod-
els. Despite being implicit, the generalized Dupire formulae can be used numerically in
a fixed-point iterative scheme.

Keywords Dupire Equation, Local Volatility, Stochastic Rates, Stochastic Local Volatil-
ity

AMS 91G20, 91G30

1 Introduction

Risk neutral pricing frameworks aim to establish methodologies for producing prices consis-
tent with market data available as of valuation time. As a standard approach, practitioners
consider parametric models to map market quotes to time and space dependent model pa-
rameters. The single parameter Black-Scholes model, for instance, gives European vanilla
option prices as a function of implied volatility. In a sense, having an implied volatility
surface spanning a range of strikes and maturities is equivalent to knowing the prices of
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European vanilla options, whose payoffs depend on the value of the underlier solely at matu-
rity, for the same strikes and maturities. This in turn amounts to knowing the risk-neutral
probability density of the underlier at given future times conditioned on its present value. In
this paradigm, the bulk of the work in developing a methodology to price European vanilla
option instruments written on the same underlier lies in the construction of the implied
volatility surface.

The benefits of formulating the risk-neutral probability density as a function of time and
underlying spot value, however, go beyond the ability to price European vanilla options.
To price more complex options, whose payoffs depend not only on the terminal value of the
underlier, but also on its intermediate values, one can make use of the risk neutral densities
implied by the market prices of European vanilla options at the intermediate times. Dupire
[1], and Derman and Kani [2] showed that there is a unique diffusion process that implies risk
neutral probabilities consistent with the European vanilla option market quotes. Dupire’s
formula provides a map in a non-parametric way between European vanilla option market
prices and the diffusion coefficient under the assumption of deterministic interest rates.

Various authors considered extensions of the local volatility formulation, or embedding
local volatility into more complex hybrid models. These efforts include incorporating jump-
diffusion processes [3], representing the effect of one stochastic interest rate as a bias to
the fully deterministic rate model [4], local volatility with single interest rate following a
Vasicek model [5], introducing stochasticity to local volatility [6, 7, 8, 9], and embedding
local volatility into a nonlinear McKean SDE [10]. We refer to these papers for historical
background on the development of local volatility based models.

The primary goal of this paper is to provide a self-contained, detailed derivation for the
case of a drift given as the difference of two short rates driven by single factor processes,
and to provide a new generalization to a case with very general stochastic drift and diffusion
terms. In Section 2, we construct the direct extension of the standard local volatility model
to cover stochastic domestic and foreign interest rates in a foreign exchange (FX) derivatives
setting. The result is presented in both vanilla call option price (2.18) and total Black-
Scholes implied variance (A.10) formulations. We also consider the limiting cases, with one
or both rates being deterministic, to recover results that can be found in literature ((2.20),
(2.21), (A.11), and (A.12), respectively). Section 3 further extends the model to allow drift
and diffusion functions of general form with arbitrary number of stochastic factors. The
general setting is given by (3.1) and the corresponding Dupire formula in (3.6). This general
setup has greater coverage than the examples found in literature as the interest rates are not
assumed to follow particular processes, such as short rate models; the assumption we have
is that the discount factor and the asset volatility are adapted functions of the Itô processes
in the SDE system. An outline of the derivation for the vanilla call option formulation with
Hull-White short rates is presented in [11]. In contrast, we endeavor to present a complete
and thorough derivation for the general case. The rest of the section discusses specific
examples and implications for the leverage function in the stochastic local volatility models
as well as connections to Gyöngy’s lemma. We chose to present self-contained details of
the derivations in the flow of the derivations since that gives more insight into the actual
foundation and possible extensions. In Section 4, we demonstrate a calibration scheme
with fixed-point iteration for the local volatility model subject to stochastic rates, following
Linear Gaussian Model (LGM) processes; and study the convergence of the iterations, and
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accuracy of the pricing with the calibrated local volatility surface.

2 Local Volatility Model with Two Stochastic Interest Rates

2.1 Model Setup

We assume the existence of a domestic risk neutral measure QDRN that has the money
market account Bd

t as the numéraire, which accrues at some computable short rate rdt as
dBd

t = rdtB
d
t dt. Dupire introduces a state dependent diffusion coefficient σLV(St, t) that

uniquely describes the distribution of the state variable St for each time t, conditioned on
the initial value S0. Accordingly, there is a risk-neutral spot process that is compatible
with observed market skew and allows a complete model. This is commonly referred to as

local volatility process [1], driven by the Brownian motion W
S(DRN)
t under the domestic risk

neutral measure QDRN,

dSt = µtStdt+ σLV(St, t)StdW
S(DRN)
t . (2.1)

Dupire’s formula gives the function σLV(·, ·) in terms of call and/or put option prices, or
equivalently, implied volatility or total implied variance.

The original work of Dupire [1] assumes zero interest rates (µt = 0), while the indepen-
dent study of Derman and Kani [2] introduces deterministic interest rates (µt = µ(t)). In
the latter setup, the drift term µt is assumed to be the instantaneous forward rate of matu-
rity t implied from the yield curve, which is a deterministic function of time. In this paper
we relax this constraint and let this term be stochastic. In particular, we are interested in
a model with two stochastic terms that comprise a drift of the form µt = µ1

t − µ2
t . One

can consider the pair µ1
t , µ

2
t as interest rate/dividend rate in equities setup, or domestic

rate/foreign rate in foreign exchange setup. In this section, without loss of generality, we

will use the conventions of the latter. In particular, µ1
t = rdt and µ2

t = r
f
t denote the domes-

tic and foreign short rates, respectively. Under the domestic risk neutral measure QDRN,
these rates follow single factor processes of the generic form

drdt = αd(ω, t)dt+ σd(ω, t)dW
d(DRN)
t ,

dr
f
t = αf (ω, t)dt+ σf (ω, t)dW

f(DRN)
t ,

(2.2)

where αd, σd, αf , and σf are bounded functions of a general set of stochastic factors ω.
Our model admits three Brownian motions and we set the three pairs of correlations1 as
d
〈

W S ,W d
〉

t
= ρSddt, d

〈

W S,W f
〉

t
= ρSfdt, and d

〈

W d,W f
〉

t
= ρdfdt. Note that the

short rate stochastic differential equations (SDEs) are typically written in the risk neutral
measure of their own currency. Here, drift adjustment in the foreign short rate process
due to the change from foreign risk neutral measure to domestic risk neutral measure is
absorbed into the term αf . When required by our computations below, we assume that the
functions σLV, αd, σd, αf , and σf are twice differentiable with respect to the arguments
over their entire ranges.

1In general, the correlations can be time-dependent; or they can even be generalized to stochastic processes

as we shall see in Section 3. The nature of the correlations does not have any impact on our result, thus we

keep their notation simple.
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2.2 Fokker-Planck equation

Let VT ≡ V (ST , r
d
T , r

f
T ) be a twice differentiable R3 → R test function. For each given T ,

the discounted value of a European option maturing at T with the payoff equal to that of
the test function VT is a martingale under the domestic risk neutral measure QDRN,

V0

Bd
0

= V0 = EQDRN

[

VT

Bd
T

]

, (2.3)

where Bd
T = exp

[

∫ T

0 rdudu
]

is the domestic money market account, by means of which we

can define DT ≡ 1
Bd

T

as the corresponding discount factor. In the (domestic) T -forward

measure QT, the zero coupon bond P d(0, T ) maturing at time T is taken as the numéraire

P d(t, T ) = EQDRN

[

DT

Dt

∣

∣

∣

∣

Ft

]

, and
dQT

dQDRN
=

DT

EQDRN [DT ]
=

DT

P d(0, T )
(2.4)

where the filtration {Ft, t ≥ 0} governs information arrival. Thus

EQDRN

[DTVT ] = P d(0, T )EQT

[VT ]

= P d(0, T )

∫ ∫ ∫

V (ST , r
d
T , r

f
T )Φ

T (ST , r
d
T , r

f
T , T )dST dr

d
Tdr

f
T ,

(2.5)

where ΦT (ST , r
d
T , r

f
T , T ) denotes the T -forward measure probability density. We assume the

probability density function to be sufficiently tractable; in particular, it is bounded; and
it is differentiable with respect to time and twice differentiable with respect to its spatial
arguments. Notationwise, here and in what is below, the integrals written without explicit
limits are meant to be taken over the entire domain, which is (−∞,∞) in most cases.

One can integrate the full T -forward probability density ΦT over the entire ranges of rdT
and r

f
T to get the marginal T -forward probability density qT of ST over time,

qT (ST , T ) =

∫ ∫

ΦT (ST , r
d
T , r

f
T , T )dr

d
T dr

f
T . (2.6)

The marginal T -forward distribution has the time derivative

∂qT (ST , T )

∂T
=

∫ ∫

∂ΦT (ST , r
d
T , r

f
T , T )

∂T
drdTdr

f
T . (2.7)

Next, we apply Itô’s lemma to the discounted test function,

d(DTVT )

DT
=

[

−rdTVT +
1

2
(σLV

T )2S2
T

∂2VT

∂S2
T

+ (rdT − r
f
T )ST

∂VT

∂ST

+
1

2
(σd

T )
2 ∂2VT

∂(rdu)
2
+ αd

T

∂VT

∂rdu
+

1

2
(σf

T )
2 ∂2VT

∂(rfT )
2
+ α

f
T

∂VT

∂r
f
T

+ρSdSTσ
LV
T σd

T

∂2VT

∂ST∂r
d
T

+ ρSfSTσ
LV
T σ

f
T

∂2VT

∂ST∂r
f
T

+ ρdfσd
Tσ

f
T

∂2VT

∂rdT∂r
f
T

]

dT

+ σLV
T ST

∂VT

∂ST
dW

S(DRN)
T + σd

T

∂VT

∂rdT
dW

d(DRN)
T + σ

f
T

∂VT

∂r
f
T

dW
f(DRN)
T .
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Here and below we use the convention σLV
T ≡ σLV(ST , T ), α

d
T ≡ αd(ω, T ), σd

T ≡ σd(ω, T ),

α
f
T ≡ αf (ω, T ), and σ

f
T ≡ σf (ω, T ) for notational brevity. By taking the expectation in

QDRN, we find

∂EQDRN

[DTVT ]

∂T
= EQDRN

[

DT

(

− rdTVT +
1

2
(σLV

T )2S2
T

∂2VT

∂S2
T

+ (rdT − r
f
T )ST

∂VT

∂ST

+
1

2
(σd

T )
2 ∂2VT

∂(rdT )
2
+ αd

T

∂VT

∂rdT
+

1

2
(σf

T )
2 ∂2VT

∂(rfT )
2
+ α

f
T

∂VT

∂r
f
T

+ ρSdSTσ
LV
T σd

T

∂2VT

∂ST∂r
d
T

+ ρSfSTσ
LV
T σ

f
T

∂2VT

∂ST∂r
f
T

+ ρdfσd
Tσ

f
T

∂2VT

∂rdT ∂r
f
T

)]

(2.8)

On the other hand, we differentiate (2.5) with respect to T to get

∂
(

P d(0, T )EQT

[VT ]
)

∂T
=
∂P d(0, T )

∂T

∫ ∫ ∫

VTΦ
TdSTdr

d
T dr

f
T

+ P d(0, T )

∫ ∫ ∫

VT
∂ΦT

∂T
dSTdr

d
T dr

f
T ,

(2.9)

By combining (2.8) and (2.9) we arrive at

r0 =
∂P d(0, T )

∂T

∫ ∫ ∫

VTΦ
TdSTdr

d
T dr

f
T + P d(0, T )

∫ ∫ ∫

VT
∂ΦT

∂T
dSTdr

d
T dr

f
T

+P d(0, T )

∫ ∫ ∫

ΦT

[

rdTVT − 1

2
(σLV

T )2S2
T

∂2VT

∂S2
T

− (rdT − r
f
T )ST

∂VT

∂ST

−1

2
(σd

T )
2 ∂2VT

∂(rdT )
2
− αd

T

∂VT

∂rdT
− 1

2
(σf

T )
2 ∂2VT

∂(rfT )
2
− α

f
T

∂VT

∂r
f
T

−ρSdSTσ
LV
T σd

T

∂2VT

∂ST∂r
d
T

− ρSfSTσ
LV
T σ

f
T

∂2VT

∂ST∂r
f
T

−ρdfσd
Tσ

f
T

∂2VT

∂rdT ∂r
f
T

]

dSTdr
d
T dr

f
T .

Using the definition of the instantaneous forward rate

f i(0, T ) ≡ −∂ logP i(0, T )

∂T
= − 1

P i(0, T )

∂P i(0, T )

∂T
, (2.10)
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with i = d, f , we can reformulate this as

0 =

∫ ∫ ∫

[

VT
∂ΦT

∂T
+ΦT

{

(

rdT − fd(0, T )
)

VT

− 1

2
(σLV

T )2S2
T

∂2VT

∂S2
T

− (rdT − r
f
T )ST

∂VT

∂ST

− 1

2
(σd

T )
2 ∂2VT

∂(rdT )
2
− αd

T

∂VT

∂rdT
− 1

2
(σf

T )
2 ∂2VT

∂(rfT )
2
− α

f
T

∂VT

∂r
f
T

− ρSdSTσ
LV
T σd

T

∂2VT

∂ST∂r
d
T

− ρSfSTσ
LV
T σ

f
T

∂2VT

∂ST∂r
f
T

− ρdfσd
Tσ

f
T

∂2VT

∂rdT∂r
f
T

}]

dSTdr
d
Tdr

f
T .

(2.11)

The collection of zero coupon bond prices P i with maturities sequenced over a time grid
is called a discount curve. The instantaneous forward rates f i can be evaluated along given
discount curves which are used as standard input data in various pricing and other financial
models.

We integrate by parts the terms that have the partial derivatives of VT appearing in
(2.11). Noting that the boundary terms vanish as we assume ΦT and its derivatives tend
to zero fast enough as its arguments approach the integration limits, we can derive the
following identities by integrating by parts

∫

ΦT f(·)∂
2VT

∂u2
du =

∫

∂2(ΦT f(·))
∂u2

VTdu,

∫

ΦT f(·)∂VT

∂u
du =−

∫

∂(ΦT f(·))
∂u

VTdu,

∫

ΦT f(·)∂
2VT

∂u∂v
dudv =

∫

∂2(ΦT f(·))
∂u∂v

VTdudv,

for a sufficiently well behaved (bounded, continuous, differentiable) function f of spatial

coordinates u and v, e.g. representing ST , r
d
T , r

f
T in our setup. Thus (2.11) can be written

as

0 =

∫ ∫ ∫

VT

{

∂ΦT

∂T
+ΦT

(

rdT − fd(0, T )
)

− 1

2

∂2(ΦT (σLV
T )2S2

T )

∂S2
T

+ (rdT − r
f
T )

∂(ΦTST )

∂ST

− 1

2

∂2(Φ(σd
T )

2)

∂(rdT )
2

+
∂(ΦTαd

T )

∂rdT
− 1

2

∂2(ΦT (σf
T )

2)

∂(rfT )
2

+
∂(ΦTα

f
T )

∂r
f
T

− ∂2(ΦTρSdSTσ
LV
T σd

T )

∂ST∂r
d
T

− ∂2(ΦTρSfSTσ
LV
T σ

f
T )

∂ST∂r
f
T

− ∂2(ΦTρdfσd
Tσ

f
T )

∂rdT∂r
f
T

}

dSTdr
d
Tdr

f
T .

Since the above equation holds for any VT , the term inside the braces must vanish. This
leads us to the Fokker-Planck (forward Kolmogorov) equation [12], which describes the
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evolution of the probability density function ΦT (ST , r
d
T , r

f
T , T ) of the underlying factors

over time,

0 =
∂ΦT

∂T
+ΦT

(

rdT − fd(0, T )
)

− 1

2

∂2(ΦT (σLV
T )2S2

T )

∂S2
T

+ (rdT − r
f
T )

∂(ΦTST )

∂ST

− 1

2

∂2(Φ(σd
T )

2)

∂(rdT )
2

+
∂(ΦTαd

T )

∂rdT
− 1

2

∂2(ΦT (σf
T )

2)

∂(rfT )
2

+
∂(ΦTα

f
T )

∂r
f
T

− ∂2(ΦTρSdSTσ
LV
T σd

T )

∂ST∂r
d
T

− ∂2(ΦTρSfSTσ
LV
T σ

f
T )

∂ST∂r
f
T

− ∂2(ΦTρdfσd
Tσ

f
T )

∂rdT∂r
f
T

.

(2.12)

2.3 Extended Dupire formula

2.3.1 Call price surface formulation

We integrate (2.12) over the entire ranges of rdT and r
f
T . As before, as its arguments

approach their limits the probability distribution function ΦT and its derivatives go to zero
fast enough to make the boundary terms vanish, and we obtain,

0 =
∂qT

∂T
+

∫ ∫

ΦT
(

rdT − fd(0, T )
)

drdTdr
f
T − 1

2

∂2(qT (σLV
T )2S2

T )

∂S2
T

+
∂

∂ST

(∫ ∫

(rdT − r
f
T )Φ

TSTdr
d
T dr

f
T

)

.

(2.13)

The time zero value of a European vanilla call option C with strike K, which pays off
max(ST −K, 0) at time T is given by

C = P d(0, T )EQT

[(ST −K)1ST>K ] = P d(0, T )

∫ ∫ ∫ ∞

K

(ST −K)ΦTdSTdr
d
T dr

f
T . (2.14)

We compute the first two derivatives of the call price with respect to strike K,

∂C

∂K
=P d(0, T )

∫ ∫

[

−(ST −K)ΦT

∣

∣

∣

∣

∞

ST=K

−
∫ ∞

K

ΦTdST

]

drdTdr
f
T

=− P d(0, T )

∫ ∫ ∫ ∞

K

ΦTdSTdr
d
Tdr

f
T = −P d(0, T )EQT

[1ST>K ],

(2.15)

∂2C

∂K2
=P d(0, T )

∫ ∫

ΦT (K, rdT , r
f
T , T )dr

d
Tdr

f
T = P d(0, T )qT (K,T ). (2.16)

Next, we differentiate the call price with respect to time. Here we make use of (2.13) and
integration by parts,

∂C

∂T
=
∂P d(0, T )

∂T

∫ ∫ ∫ ∞

K

(ST −K)ΦTdSTdr
d
T dr

f
T

+ P d(0, T )

∫ ∫ ∫ ∞

K

(ST −K)
∂ΦT

∂T
dSTdr

d
T dr

f
T

7



=− fd(0, T )C + P d(0, T )

∫ ∞

K

(ST −K)
∂qT

∂T
dST

=−fd(0, T )C + P d(0, T )

∫ ∞

K

(ST −K)

{

−
∫ ∫

ΦT
(

rdT − fd(0, T )
)

drdTdr
f
T

+
1

2

∂2(qT (σLV
T )2S2

T )

∂S2
T

− ∂

∂ST

(∫ ∫

(rdT − r
f
T )Φ

TSTdr
d
T dr

f
T

)}

dST

=P d(0, T )

∫ ∫ ∫ ∞

K

ΦT (KrdT − ST r
f
T )dSTdr

d
T dr

f
T − 1

2
P d(0, T )qTS2

T (σ
LV
T )2

∣

∣

∣

∣

∞

ST=K

.

Plugging (2.16) into this expression yields

∂C

∂T
= P d(0, T )EQT

[

(KrdT − ST r
f
T )1ST>K

]

+
1

2
K2 ∂

2C

∂K2
(σLV

T )2. (2.17)

Thus we arrive at the extended Dupire formula under stochastic rates

σLV(K,T )2 =

∂C
∂T

− P d(0, T )EQT
[

(KrdT − ST r
f
T )1ST>K

]

1
2K

2 ∂2C
∂K2

. (2.18)

This is an implicit formula, where the expectation on the right hand side depends on the
local volatility σLV(K,T ), and it can be evaluated through a fixed-point iteration scheme.
There is no known method to compute the expectation above analytically, yet it can be
evaluated by numerical methods such as Monte Carlo or finite differences. Note also that
the term with the expectation corresponds to the price of an option with maturity T and
payoff (KrdT − ST r

f
T )1ST>K .

Single stochastic rate limit In the limit where the foreign rates r
f
T are deterministic,

this equation becomes (see [5] for an alternative derivation)

σLV(K,T )2 =
∂C
∂T

− P d(0, T )KEQT [

rdT1ST>K

]

+ P d(0, T )rfTE
QT

[ST1ST>K ]
1
2K

2 ∂2C
∂K2

. (2.19)

The second expectation in the numerator can be evaluated using (2.14) and (2.15)

P d(0, T )rfTE
QT

[ST1ST>K ] = r
f
T

[

C + P d(0, T )KEQT

[1ST>K ]
]

= r
f
T

[

C −K
∂C

∂K

]

,

which reduces (2.19) to

σLV(K,T )2 =
∂C
∂T

− P d(0, T )KEQT [

rdT1ST>K

]

+ r
f
T

[

C −K ∂C
∂K

]

1
2K

2 ∂2C
∂K2

. (2.20)
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Deterministic rates limit In the limit where both the domestic rates rdT and the foreign

rates r
f
T are deterministic, one can evaluate the expectation in the above numerator using

(2.15)

−P d(0, T )EQT

[1ST>K ] =
∂C

∂K
.

This allows us to reproduce the standard Dupire formula,

σLV(K,T )2 =
∂C
∂T

+ (rdT − r
f
T )K

∂C
∂K

+ r
f
TC

1
2K

2 ∂2C
∂K2

. (2.21)

3 Generalized Local Volatility Model

3.1 Model Setup

In (2.1) we considered a standard local volatility process of a particular form. Namely it is
geometric and the drift term is a linear combination of two stochastic rates, each modeled
by a single factor process. Here we relax these constraints and study the following general
model with drift and diffusion functions that allow arbitrary number of stochastic factors.

It is constructive to write down this SDE system in terms of N independent Brownian
motions under the domestic risk neutral measure EQDRN

,

dSt =µ(ω, t)dt+ L(St, t)

N
∑

k=1

σ̂S
k (ω, t)dŴ

k
t ,

dy
j
t =µj(ω, t)dt+

N
∑

k=1

σ̂
j
k(ω, t)dŴ

k
t ,

d
〈

Ŵ k, Ŵ l
〉

t
=δkldt,

where µ, σ̂S
k , µ

j , and σ̂
j
k are bounded functions of a general set of stochastic factors ω.

Yt ≡ (y1t , . . . , y
M
t ) is the set of additional Itô processes in the SDE system for which we do

not assume any special form other than the above. L(St, t) is the local volatility or leverage
function we want to compute. In this setup, we observe that the correlation structure of the
underlying assets is absorbed into the functions σ̂S

k and σ̂
j
k. The correlations themselves can

be Itô processes, in which case they are assigned to particular yjt s. The (domestic) discount
factor Dt is an adapted function of Yt; yet in general we do not assume a particular mapping
2.

The SDE system can also be written in terms of correlated Brownian motions split into

2In the foreign exchange setting of Section 2, rdt and r
f
t are each direct components of Yt. We will return

to this particular case in Section 3.4. As another example, in case r
d
t follows a multi-factor short rate model,

it can be written as a function of the factors that are a subset of Yt.
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those driving the processes of St and Yt separately, with N = NS +NY , as

dSt =µ(ω, t)dt+ L(St, t)

NS
∑

k=1

σS
k (ω, t)dW

Sk
t ,

dy
j
t =µj(ω, t)dt+

NY
∑

k=1

σ
j
k(ω, t)dW

Y k
t .

(3.1)

3.2 Fokker-Planck Equation

Following the same methodology from Section 2.2, omitting repetitive parts of the computa-
tion, we derive the corresponding Fokker-Planck equation. We compute the time derivative
of the discounted value of a twice differentiable test function VT = V (ST , YT ) as

∂EQDRN

[DTVT ]

∂T
= EQDRN

[

DT

(

− rdTVT +
1

2
L2
T σ̄

2
T

∂2VT

∂S2
T

+ µT
∂VT

∂ST

+ terms involving YT derivatives of VT

)]

,

(3.2)

where rdT ≡ − 1
DT

∂DT

∂T
is not assumed to follow a particular stochastic process, we defined

σ̄2
T ≡

NS
∑

l,m=1

(

σS
l ρ

S
lmσS

m

)

=

N
∑

k=1

(

σ̂S
k

)2
,

and to keep the notation compact we denoted µT = µ(ω, T ) and LT = L(ST , T ). Here ρSlm
denotes the correlation function between the Brownian motions W Sl

t , i.e. d
〈

W Sl,W Sm
〉

t
=

ρSlmdt. Combining this with the expression for the time derivative of the discounted value
of the test function in T -forward measure QT yields

0 =
∂P d(0, T )

∂T

∫ ∫

VTΦ
TdST dYT + P d(0, T )

∫ ∫

VT
∂ΦT

∂T
dSTdYT

+P d(0, T )

∫ ∫

ΦT
[

rdTVT − 1

2
L2
T σ̄

2
T

∂2VT

∂S2
T

− µT
∂VT

∂ST

+ terms involving YT derivatives of VT

]

dSTdYT ,

(3.3)

where ΦT (ST , YT , T ) is the T -forward measure probability density, with the corresponding
marginal density qT (ST , T ) =

∫

ΦT (ST , YT , T )dYT , which can be used to formulate the
derivatives of the call option price with respect to strike, analogous to (2.15) and (2.16) as

∂C

∂K
=− P d(0, T )EQT

[1ST>K ],

∂2C

∂K2
=P d(0, T )qT (K,T ).

Moreover, to elucidate the notation, we make a note that the integrals along the stochastic
factors YT

∫

f(·)dYT ≡
∫

. . .

∫

f(·)dy1Tdy2T . . .

10



are taken over their entire domains.
Since ∂P d(0,T )

∂T
= −fd(0, T )P d(0, T ), (3.3) becomes

0 =

∫ ∫

[

VT
∂ΦT

∂T
+ΦT

{(

rdT − fd(0, T )
)

VT − 1

2
L2
T σ̄

2
T

∂2VT

∂S2
T

− µT
∂VT

∂ST

+ terms involving YT derivatives of VT

}]

dSTdYT .

As before, we integrate by parts the above integrals to factor out VT . This leads to the
following Fokker-Planck equation,

0 =
∂ΦT

∂T
+ΦT

(

rdT − fd(0, T )
)

− 1

2

∂2(ΦTL2
T σ̄

2
T )

∂S2
T

+
∂(ΦTµT )

∂ST

+ terms involving YT derivatives of ΦT .

(3.4)

3.3 Generalized Dupire formula

As in Section 2.3.1, we integrate the Fokker-Planck equation (3.4) over the entire ranges
of YT . The probability distribution function ΦT goes to zero fast enough as its arguments
approach their limits, making the boundary terms that involve the YT derivatives vanish,

0 =
∂qT

∂T
+

∫

ΦT
(

rdT − fd(0, T )
)

dYT − 1

2

∂2

∂S2
T

(

L2
T

∫

ΦT σ̄2
TdYT

)

+
∂

∂ST

(
∫

ΦTµTdYT

)

.

(3.5)

At this point we note that the terms involving the correlation coefficients are all integrated
out, therefore we conclude that the nature of the correlations will not have any impact on
our result. Next we compute the time derivative of the price of a European vanilla call
option C with strike K. Here we make use of the definition of conditional expectation,

ΦT (Y, T |ST = X) ≡ ΦT (X,Y,T )
qT (X,T )

, as well as (3.5) and integration by parts,

∂C

∂T
=
∂P d(0, T )

∂T

∫ ∫ ∞

K

(ST −K)ΦTdSTdYT + P d(0, T )

∫ ∫ ∞

K

(ST −K)
∂ΦT

∂T
dSTdYT

=− fd(0, T )C + P d(0, T )

∫ ∞

K

(ST −K)
∂qT

∂T
dST

=−fd(0, T )C + P d(0, T )

∫ ∞

K

(ST −K)

{

−
∫

ΦT
(

rdT − fd(0, T )
)

dYT

+
1

2

∂2

∂S2
T

(

L2
T

∫

ΦT σ̄2
TdYT

)

− ∂

∂ST

(
∫

ΦTµTdYT

)}

dST

=P d(0, T )

∫ ∫ ∞

K

ΦT
[

µT − (ST −K)rdT

]

dSTdYT

+
1

2
P d(0, T )qT (K,T )L(K,T )2

∫ ∫

ΦT (YT , T |ST = K)σ̄2
T dYT
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=P d(0, T )EQT
[{

µT − (ST −K)rdT

}

1ST>K

]

+
1

2
L(K,T )2

∂2C

∂K2
EQT [

σ̄2
T |ST = K

]

.

This gives us the generalized form of the Dupire formula,

L(K,T )2 =
∂C
∂T

− P d(0, T )EQT [{

µT − (ST −K)rdT
}

1ST>K

]

1
2
∂2C
∂K2EQT

[

σ̄2
T |ST = K

] . (3.6)

As was the case with the extended Dupire formula (2.18), this is an implicit equation, where
the expectations on the right hand side depend on the leverage function L(K,T ), and it
can be evaluated through a fixed-point iteration scheme.

3.4 Examples

The generalized Dupire formula (3.6) applies to a wide range of models.

3.4.1 Simple Models

For simplicity, we consider the underlier St to be driven by a single Brownian motion
(NS = 1) in this section,

dSt = µ(ω, t)dt+ Ls(St, t)σ̄(ω, t)dW
S
t ,

where Ls denotes the leverage function of the simplified model, to distinguish it from the
generalized model.

The special case of this model with σ̄ = St is of special interest where the SDE becomes
a simple local volatility model. In this case (3.6) becomes

σLV(K,T )2 =
∂C
∂T

− P d(0, T )EQT [{

µT − (ST −K)rdT
}

1ST>K

]

1
2K

2 ∂2C
∂K2

. (3.7)

Comparison of (3.6) with (3.7) gives us the following relationship between the generalized
model and its corresponding simple local volatility simplification,

σLV(K,T )2K2 = L(K,T )2EQT [

σ̄2|ST = K
]

. (3.8)

To recover the simpler FX local volatility model with two stochastic rates (Yt = rdt , r
f
t )

from Section 2.1, one can set µt = (rdt − r
f
t )St and σ̄ = St. In this case it is straightforward

to show that (3.6) reduces to (2.18).

3.4.2 Stochastic Local Volatility

An extension of the simple model is the stochastic local volatility (SLV) model with σ̄ =
St

√
Ut where Ut is the variance process,

dUt = µU (Ut, t)dt+ σU (Ut, t)dW
U
t ,

which is typically chosen to fit certain options or ranges or aspects of the price, and the
leverage function L(St, T ) serves as a correction that ensures that all vanilla options are

12



repriced over the full calibration range. A common choice is to use a Cox-Ingersoll-Ross
(CIR) process [13] in which case in the context of FX derivatives the SDE system becomes
[8, 14],

dSt =(rdt − r
f
t )Stdt+ Ls(St, t)St

√

UtdW
S(DRN)
t

dUt =κ(θ − Ut)dt+ ξ
√

UtdW
U(DRN)
t ,

(3.9)

where mean reversion speed κ, long term mean θ, and vol-of-vol ξ are possibly time-
dependent CIR parameters.

For this model, the generalized Dupire formula (3.6) simplifies to

Ls(K,T )2 =

∂C
∂T

− P d(0, T )EQT
[

(KrdT − ST r
f
T )1ST>K

]

1
2K

2 ∂2C
∂K2EQT [UT |ST = K]

. (3.10)

Here we emphasize that the above equation assumes only the particular form of the SDE
for the underlier St, and is not restricted to the case where the SDE for the variance Ut is
of type CIR.

Comparing (2.18) to (3.10) allows us to write the relationship between the local volatility
function of the simple local volatility model (2.1) and the leverage function of the stochastic
local volatility model (3.9) as

σLV(K,T )2 = Ls(K,T )2EQT

[UT |ST = K] . (3.11)

This relationship is reached independently from but is consistent with Gyöngy’s finding
[15] that links the set of stochastic processes Xt ≡ {Xi

t} with Itô differentials

dXm
t = αm(t, ω)dt+

N
∑

n=1

βmn(t, ω)dW̃ n
t ,

where αm and βmn are bounded functions of a general set of stochastic factors ω, which may
include factors not contained in or related to Xt, and {W̃ i

t } are Brownian motions under
measure P; to another set of stochastic processes Zt ≡ {Zi

t} with deterministic coefficients
am and bmn,

dZm
t = am(t, Zt)dt+

N
∑

n=1

bmn(t, Zt)dŴ
n
t ,

where {Ŵ i
t } are Brownian motions under measure Q, in that the two sets of processes have

the same marginal probability distribution, Xt under P and of Zt under Q, for every t if

am(t, z) =EP [αm(t, ω)|Xt = z] ,

N
∑

p=1

bmp(t, z)bnp(t, z) =EP





N
∑

p=1

βmp(t, ω)βnp(t, ω)|Xt = z



 ,

for all m,n = 1, . . . , N .

13



Applying this to our example, the marginal distribution of the stochastic local volatility
model (3.9) must be the same as the distribution of the simple local volatility model (2.1)
if (3.11) holds. This implies that having computed the function σLV(K,T ) for the simple
local volatility model using (2.18), one can obtain the leverage function Ls(K,T ) of the

stochastic local volatility model by evaluating the conditional expectation EQT

[UT |ST = K].
One utilizes a numerical method such as multi-dimensional finite difference or Monte Carlo
simulation to estimate this conditional expectation as there is no straightforward way to
evaluate it analytically.

4 Case study

In this section we study FX local volatility model where the domestic and foreign rates are
governed by stochastic processes. For the rates evolution we consider the Linear Gaussian
Model, which we first briefly introduce.

4.1 Linear Gaussian Model

In the Linear Gaussian Model (LGM), as proposed by [16], the rate is driven by a single
Markovian factor

dxt = σtdW
N
t , x0 = 0,

in the measure QN defined by the numéraire

N(t, xt) =
1

P (0, t)
exp

[

Htxt +
1

2
H2

t ζt

]

,

where

ζt =
∫ t

0 σ
2
sds,

Ht =
∫ t

0 hsds,

and the model parameters σt and ht are calibrated to the market quotes. The short rate is
given by [17]

r(t, xt) = f(0, t) + htxt + htHtζt,

where the instantaneous forward rate f(0, t) is computed from the zero coupon bond curve
P (0, t) as in (2.10).

The change to the risk neutral measure QRN, where the money market account is the
numéraire, is derived as [16],

dW
(RN)
t = dWN

t + σtHtdt,

so that the Markovian factor evolves in this measure as

dxt = −σ2
tHtdt+ σtdW

(RN)
t .
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4.2 Local Volatility with LGM rates

We consider a three-factor local volatility model for the FX rate S, where the domestic rate
rd and foreign rate rf are governed by LGM processes, with time dependent parameters
σd, hd and σf , hf respectively. The joint evolution of the three factors is given by

dSt =
[

rdt − r
f
t

]

Stdt+ σLV(St, t)StdW
S(DRN)
t ,

dxdt =− (σd
t )

2Hd
t dt+ σd

t dW
d(DRN)
t ,

dx
f
t =−

[

(σf
t )

2H
f
t + ρSfσ

f
t σ

LV(St, t)
]

dt+ σ
f
t dW

f(DRN)
t .

(4.1)

The coefficients of correlation between the Brownian motions W
S(DRN)
t , W

d(DRN)
t , W

f(DRN)
t ,

evolving under the domestic risk neutral measure EQDRN

, are given by the quadratic covari-
ances

d
〈

W S(DRN),W d(DRN)
〉

t
=ρSddt,

d
〈

W S(DRN),W f(DRN)
〉

t
=ρSfdt,

d
〈

W d(DRN),W f(DRN)
〉

t
=ρdfdt.

4.3 Calibrating the local volatility surface

The Radon-Nikodym derivative (2.4) allows us to transform the extended Dupire formula
(2.18) to

σLV(K,T )2 =

∂C
∂T

−EQDRN
[

DT (KrdT − ST r
f
T )1ST>K

]

1
2K

2 ∂2C
∂K2

. (4.2)

The expectation in the above expression can be estimated by Monte Carlo simulation.
We propose the following algorithm to calibrate the local volatility surface at time slices

tj, j = 1, . . . ,M , by solving (4.2) in a fixed point iteration scheme:

1. Using the market implied volatility Σ(K, t), generate a vanilla call option price surface
C(K, t) interpolator (or a total implied variance surface w(y, t) interpolator).

2. For the first time slice T = t1 > 0, (a) in the first iteration evaluate the deter-
ministic equation (2.21) to compute the FX local volatilities for a predetermined
range of strikes. This step requires no Monte Carlo simulation. (b) in the subse-
quent iterations, simulate the SDE system (4.1) up to time t1 using the local vol
values from previous iteration. Compute the Monte Carlo estimate for the expecta-

tion EQDRN
[

DT (KrdT − ST r
f
T )1ST>K

]

appearing in (4.2) for the same set of strikes.

Update local vol values with this equation.

3. For each of the subsequent time slices T = tj , j > 1, simulate the SDE system (4.1) up
to time tj, where (a) in the first iteration use the local vol values from time slice tj−1

for time slice tj, (b) in the subsequent iterations use local vol values from previous
iteration for time slice tj ; and linearly interpolate the local volatility values between
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tj−1 and tj slices for simulation times between the slices. Compute the Monte Carlo

estimate for the expectation EQDRN
[

DT (KrdT − ST r
f
T )1ST>K

]

for a predetermined

range of strikes. Update local vol values with the extended Dupire equation (4.2).

4.4 Implementation and Results

The EUR-USD market data as of 2021-09-30 we use in our analysis contains the EUR-
USD spot FX rate S0, the EUR-USD implied volatility surface representing market quotes
of vanilla option instruments on FX rate St, the discount curves P d(0, t), P f (0, t) for the

domestic rate rdt and the foreign rate r
f
t , respectively. The coefficients of correlation are

given by ρSd = 0.059, ρSf = 0.031, ρdf = 0.255. For LGM model parameters, we use
σd
t = σ

f
t = 0.01, and hdt = h

f
t = 1.

Strike
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Time

0.0
0.5

1.0
1.5
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0.06
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0.08
0.09
0.10
0.11

Local Vol Surface

Figure 4.1: Calibrated EUR-USD local volatility

We calibrate the local volatility at time slices tj = 0.05, 0.1, . . . , 3.0. At each time slice,

we select the strike grid K l
j to span the strike range [Ftje

−3Σ(Ftj
,tj)

√
tj , Ftje

3Σ(Ftj
,tj)

√
tj ]

uniformly spaced in log-moneyness, where Ftj = S0
P f (0,tj)

P d(0,tj)
is the forward asset price, and

Σ(Ftj , tj) is the at-the-money-forward implied volatility.
The setup for simulation is as follows. The simulation time step size is set to 0.004 years,

so that the simulation times are ti = 0.004, 0.008, . . .. The SDE system (4.1) is simulated
up to calibration time tj in forward Euler scheme,

∆Si+1 =
[

rdi − r
f
i

]

Si∆ti + σLV(Si, ti)Si

√

∆tiZ
S
i ,

∆xdi+1 =− (σd
ti
)2Hd

ti
∆ti + σd

ti

√

∆tiZ
d
i ,

∆x
f
i+1 =−

[

(σf
ti
)2Hf

ti
+ ρSfσ

f
ti
σLV(Si, ti)

]

∆ti + σ
f
ti

√

∆tiZ
f
i ,

(4.3)
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Figure 4.2: Calibrated local volatility values at several time slices after each iteration

where ∆ti = ti+1 − ti. The random numbers (ZS
i , Z

d
i , Z

f
i ) are drawn from the normal

distribution N(0,Σ), where

Σ =





1 ρSd ρSf

ρSd 1 ρdf

ρSf ρdf 1



 ,

using Cholesky decomposition.
We simulate 1000 paths and their antithetic conjugate to compute the Monte Carlo

average of

[

Dtj (K
l
tj
rdtj − Stjr

f
tj
)1Stj

>Kl
tj

]

for all K l
tj
in the strike grid at time slice tj, which

we plug in to the expectation in (4.2) to compute σLV(K l
tj
, tj). The number of iterations

at each time slice is set to 4.
In Figure 4.1 the surface plot can be seen as a visual evidence that the local volatility

calibration completed smoothly. To see the impact of successive iterations, we plot the
local volatility curve after each iteration at time slices tj = 0.2, 0.5, 1.0, 2.5 in Figure 4.2.
As can be seen in the plots, the successive iterations do not result in a visual change in
the calibrated local volatility values. In Figure 4.3 we see that the relative differences in
local volatility between successive iterations shrinks fast, which shows that the impact of
each additional iteration is relatively low. As the computational time scales linearly with
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Figure 4.3: The local volatility update
|σLV

I+1
−σLV

I
|

σLV
I

after iterations I = 1, 2, 3, at several time

slices

the number of iterations, we conclude that convergence is achieved by as low as a single
iteration.

Finally, to validate the quality of the calibrated volatility surface, we run a successive
simulation of (4.3), with the same setup we used for calibration, to price a range of vanilla
call options with expiries T = 0.2, 0.5, 1.0, 2.5. Figure 4.4 shows that the Monte Carlo prices
match well with the market prices computed from the input implied volatility surface. The
differences seem to be within two Monte Carlo errors.

5 Discussion

We derived the extension of the Dupire formula where the drift of the local volatility model
is given as a difference of two stochastic processes of general form. The extended formula
(2.18) can be used to calibrate local volatility models with stochastic rates of this structure.
We further studied a general local volatility model where drift and diffusion are functions
of arbitrary number of stochastic factors, with the simple assumption that the discount
factor and the asset volatility are adapted functions of the Itô processes in the SDE system.
The resulting generalized Dupire formula (3.6) can be used to calibrate a range of models,
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Figure 4.4: Comparing Monte Carlo prices to market prices of vanilla call options at several
time slices. The differences are within two Monte Carlo error bounds.

including stochastic local volatility models with stochastic interest rates. Both of these
equations are given in implicit form, where the expectations on the right hand side depend
on the local volatility (leverage) function. Such equations can be solved numerically by
fixed-point iteration schemes. The expectations appearing in these equations have no known
analytical solutions, yet they can be evaluated by numerical methods such as Monte Carlo or
finite differences. We presented a case study to demonstrate a calibration scheme by Monte
Carlo simulation. In the study we iteratively calibrated a local volatility model subject to
stochastic dometic and foreign interest rates, which were chosen to follow an LGM process.
The results show that the calibration is achieved after a single iteration by a relatively low
number of simulation paths, and that the calibrated local volatility surface recovers market
prices accurately.

A Total implied variance surface formulation

Quotes for various European call options with a range of strikes and maturities are required
for the evaluation of the Dupire formula (2.21) or the extended Dupire formula (2.18) to
create a local volatility surface. In practice, one can create a call price surface interpolator
to evaluate the call price and its derivatives in these equations along the grid where the
local volatility surface is being constructed. However the method for interpolation while
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evaluating the Dupire formula is a concern as the interpolated values might introduce arbi-
trage to the model. One way to address this problem is to construct a Black-Scholes total
implied variance surface and interpolate that instead. As a matter of fact, practitioners typ-
ically work with market data that is in the form of parametrized or dense implied volatility
surfaces that are calibrated with such penalty functions that aim to avoid or at least to
minimize arbitrage. The absence of calendar spread arbitrage implies that the total implied
variance surface is a monotonically increasing function of time [18, 19]. By construction,
interpolating the total implied variance surface and using these values in the Dupire for-
mula avoids calendar spread arbitrage. In this section we derive the total implied variance
parametrization of the extended Dupire formula.

The Black-Scholes European call option price function CBS can be parametrized in terms
of log-moneyness

y(K,T ) = log
K

FT

,

where FT ≡ S0
P f (0,T )
P d(0,T )

is the forward price at time T , and the total implied variance

w(y(K,T ), T ) = Σ(K,T )2T

as [20]
CBS(P

d(0, T )FT , y, w) = P d(0, T )FT (N(d1)− eyN(d2)) (A.1)

with

d1 =− yw− 1

2 +
1

2
w

1

2 ,

d2 =d1 − w
1

2 .

Here Σ(K,T ) is the market implied volatility at strike K and maturity T , and N(·) is the
standard Gaussian cumulative distribution function. Noting that both CBS and w depend on
the strikeK indirectly through y(K,T ), that is CBS = CBS(P

d(0, T )FT , y(K,T ), w(y(K,T ), T )),
the first two derivatives of the call price with respect to the strike can be computed as

∂CBS

∂K
=

(

∂CBS

∂y
+

∂CBS

∂w

∂w

∂y

)

∂y

∂K
,

∂2CBS

∂K2
=

[

∂2CBS

∂y2
+

(

2
∂2CBS

∂w∂y
+

∂2CBS

∂w2

∂w

∂y

)

∂w

∂y
+

∂CBS

∂w

∂2w

∂y2

](

∂y

∂K

)2

+

(

∂CBS

∂y
+

∂CBS

∂w

∂w

∂y

)

∂2y

∂K2
.

Since ∂y
∂K

= 1
K

and ∂2y
∂K2 = − 1

K2 the second expression can be written as

K2∂
2CBS

∂K2
=

∂2CBS

∂y2
+

(

2
∂2CBS

∂w∂y
+

∂2CBS

∂w2

∂w

∂y
− ∂CBS

∂w

)

∂w

∂y
+

∂CBS

∂w

∂2w

∂y2
− ∂CBS

∂y
. (A.2)

The right hand side of this equation demands evaluation of the derivatives of the call
price with respect to the log-moneyness and the total implied variance. Using the identity
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N ′(d1) = eyN ′(d2) we compute the first w-derivative as

∂CBS

∂w
=P d(0, T )FT

[

N ′(d1)
∂d1

∂w
− eyN ′(d2)

∂d2

∂w

]

=
1

2
P d(0, T )FT e

yN ′(d2)w
− 1

2 ;

(A.3)

and, since N ′′(x) = −xN ′(x), the second w-derivative evaluates as

∂2CBS

∂w2
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1

2
P d(0, T )FT e

y

[

−N ′(d2)d2
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(A.4)

Furthermore, the remaining derivatives are

∂2CBS

∂w∂y
=
1

2
P d(0, T )FT e

yN ′(d2)w
− 1

2

[

−d2
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(A.5)

∂CBS
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=P d(0, T )FT
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yN(d2),

(A.6)
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(A.7)

Plugging in equations (A.3), (A.4), (A.5), (A.6), and (A.7) into (A.2) we arrive at
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Finally, we use the identities

∂y

∂T
=− S0

FT

∂
P f (0,T )
P d(0,T )

∂T
= f f (0, T ) − fd(0, T ),

∂(P d(0, T )FT )

∂T
=S0

∂(P f (0, T ))

∂T
= −f f (0, T )P d(0, T )FT ,

to formulate the time derivative of the call price as

∂CBS
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= −f f(0, T )CBS +

∂CBS
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+
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Plugging in equations (A.8) and (A.9) into (2.18) gives us the extended Dupire formula in
the log-moneyness/total implied variance parametrization.

σLV(K,T )2 =

∂CBS

∂T
− P d(0, T )EQT

[

(KrdT − ST r
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T )1ST>K

]
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] , (A.10)

where the explicit forms of CBS,
∂CBS

∂w
, ∂CBS

∂y
, and ∂CBS

∂T
are given by (A.1), (A.3), (A.6), and

(A.9) respectively.
Equation (3.11) allows us to write the extended Dupire formula for the two stochastic

rates and stochastic local volatility model (3.9) in the total implied variance surface formu-
lation as well. Since the deterministic local volatility limiting case was already computed
in this formulation as in (A.10), we can write the leverage function for the stochastic local
volatility generalization as
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.

Single stochastic rate limit In the limit where the foreign rates r
f
T are deterministic,

this equation becomes

σLV(K,T )2 =
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Deterministic rates limit In the limit where both the domestic rates rdT and the foreign

rates rfT are deterministic, the equation further simplifies to the form given in [20]

σLV(K,T )2 =
∂w
∂T

1− y
w
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+ 1
2
∂2w
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. (A.12)
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