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Abstract

It has recently been demonstrated that dynamical low-rank algorithms can provide robust and

efficient approximation to a range of kinetic equations. This is true especially if the solution is close

to some asymptotic limit where it is known that the solution is low-rank. A particularly interesting

case is the fluid dynamic limit that is commonly obtained in the limit of small Knudsen number.

However, in this case the Maxwellian which describes the corresponding equilibrium distribution is

not necessarily low-rank; because of this, the methods known in the literature are only applicable to

the weakly compressible case. In this paper, we propose an efficient dynamical low-rank integrator

that can capture the fluid limit – the Navier-Stokes equations – of the Boltzmann-BGK model even

in the compressible regime. This is accomplished by writing the solution as f = Mg, where M is

the Maxwellian and the low-rank approximation is only applied to g. To efficiently implement this

decomposition within a low-rank framework requires, in the isothermal case, that certain coefficients

are evaluated using convolutions, for which fast algorithms are known. Using the proposed decompo-

sition also has the advantage that the rank required to obtain accurate results is significantly reduced

compared to the previous state of the art. We demonstrate this by performing a number of numerical

experiments and also show that our method is able to capture sharp gradients/shock waves.

Key words. dynamical low-rank integrator, Boltzmann-BGK model, compressible Navier-Stokes equations,

Chapman-Enskog expansion, convolution, Fourier spectral methods.
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1 Introduction

The Navier-Stokes (NS) equations are widely used in many scientific and engineering disciplines and

its fundamental importance cannot be underestimated. Nevertheless, it is increasingly realized that the

NS equations may not provide an accurate description when the underlying system is not dense enough

to be in thermodynamic equilibrium (i.e., when there is a significant deviation from the Maxwellian

distribution). This is especially true when the mean free path is comparable to the characteristic length,

∗JH’s research was supported in part by NSF CAREER grant DMS-1654152 and NSF CDS&E grant CBET-1854829.

LY’s research was supported in part by NSF DMS grant DMS-1818449.
†Department of Mathematics, University of Innsbruck, Innsbruck, A-6020, Austria (lukas.einkemmer@uibk.ac.at).
‡Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (jingweihu@purdue.edu).
§Department of Mathematics, Stanford University, Stanford, CA 94305, USA (lexing@stanford.edu).

1

ar
X

iv
:2

10
1.

07
10

4v
2 

 [
m

at
h.

N
A

] 
 1

2 
M

ay
 2

02
1



a situation that occurs, e.g., in the atmosphere at high altitude or in micro-devices. To accurately describe

such rarefied or transitional flows, the kinetic Boltzmann equation should be used [6]. However, this comes

at the price of solving a six-dimensional equation in phase space. Although significant progress has been

made in the past decades to solve Boltzmann type kinetic equations more accurately and efficiently

(see for instance [9]), the high-dimensional nature of such equations still poses a challenging problem in

scientific computing. It is therefore the goal of this paper to introduce an efficient method for the kinetic

BGK equation in a wide range of flow regimes whose computational cost is comparable to solving the

macroscopic fluid equations.

The BGK equation, initially proposed by Bhatnagar, Gross, and Krook [5], is one of the widely used

kinetic models as it is much simpler than the full Boltzmann equation yet possesses most of its key

properties. In dimensionless form, the equation reads

∂tf + v · ∇xf =
ν

ε
(M − f), t > 0, x ∈ Ω ⊂ Rdx , v ∈ Rdv , (1.1)

where f = f(t, x, v) is the one-particle probability density function depending on time t, position x, and

velocity v. The so-called Maxwellian M is defined as

M(t, x, v) =
ρ(t, x)

(2πT (t, x))dv/2
exp

(
−|v − u(t, x)|2

2T (t, x)

)
(1.2)

with the density ρ, bulk velocity u, and temperature T given by the moments of f :

ρ =

∫
Rdv

f dv, u =
1

ρ

∫
Rdv

vf dv, T =
1

dvρ

∫
Rdv

|v − u|2f dv. (1.3)

The viscosity ν is a function of ρ and T ; typically, one assumes ν = ρT 1−ω with 0.5 ≤ ω ≤ 1. Finally, ε

is the Knudsen number, defined as the ratio of the mean free path and the chosen characteristic length

scale. The value of ε indicates the flow regime [37] (see Section 2 for more details): 1) ε → 0, Euler

regime (the flow is well described by the compressible Euler equations; 2) 0 < ε . 0.01, NS regime (the

flow is well described by the compressible NS equations); and 3) 0.01 . ε . 1, transition regime (the

NS equations fail, and one has to resort to extended macroscopic models or the original kinetic equation

(1.1)).

In practical applications we often have dx = dv = 3, hence the computational cost of solving (1.1)

would be at least O(N6), where N is the number of mesh points in each dimension of the physical and

velocity space. To reduce this cost, we are going to adopt the basic framework of so-called dynamical

low-rank projection, which has a long history in quantum dynamics; see, for example, [33, 32] for the

MCTDH approach to molecular quantum dynamics in the chemical physics literature and [27, 28, 7] for

a mathematical point of view. In a general mathematical setting, the dynamical low-rank approximation

has been studied in [21, 22, 30, 2]. A major algorithmic advance for the time integration was achieved

with the projector-splitting method first proposed in [29]. In contrast to standard time-stepping meth-

ods, the projector-splitting method is robust to the presence of small singular values in the low-rank

approximation [20]. Recently, this method has been applied to several kinetic equations including the

Vlasov equation [13, 14, 15], the BGK equation (in the weakly compressible regime) [11], and radiative

transport equations [35, 10, 12].

Though the details vary for each of the aforementioned equations, the common idea is to seek a

low-rank approximation of the unknown function f as

f(t, x, v) ≈
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, v), (1.4)
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where r is the rank, {Xi} and {Vj} are the orthonormal bases in the physical space and velocity space,

respectively. The dynamics of Xi, Sij and Vj are determined by projecting the equation onto the tangent

space of the low-rank solution manifold. Upon a further operator splitting, the original six-dimensional

problem can be reduced to a few three-dimensional problems. It is also clear that the efficiency of this

low-rank method depends on the intrinsic rank of the underlying problem. If the solution f has no

low-rank structure, a large value of r would be needed in (1.4) and hence the gain of the method would

be marginal. For a number of linear and weakly nonlinear problems it is known that the solution is low-

rank in some asymptotic limit. This is the case, for instance, in the radiative transfer/linear transport

equations wherein one obtains a rank-1 solution in the diffusion limit. The asymptotic-preserving (AP)

dynamical low-rank methods that can capture this behavior have been considered in [10, 12]. A similar

approach was undertaken in [11] for the BGK equation, where the method is limited to the weakly

compressible flows since the Maxwellian (1.2) is not necessarily low-rank.

In this work we introduce a robust dynamical low-rank integrator for the BGK equation (1.1) that is

able to capture the fluid limit – the NS equations – in the compressible (isothermal) case. We do this by

writing the solution as f = Mg, where only g is subjected to a low-rank approximation. Note that this

is a drastically different decomposition compared to (1.4) due to the nonlinearity of M . To efficiently

implement this decomposition within the low-rank framework requires the evaluation of certain integrals

involving the Maxwellian. If this is done naively the numerical method would suffer from excessive

computational cost that scales as O(N6). We demonstrate that, in the isothermal case, this difficulty

can be overcome by interpreting the corresponding integrals as convolutions and using a FFT based fast

convolution algorithm.

The proposed approach has several advantages. First, from the Chapman-Enskog expansion [3] we

can guarantee that g is low-rank for small values of ε (in both the Euler and NS regimes) for compressible

problems. Second, for weakly compressible problems, the rank r needed to obtain an accurate approxima-

tion is much smaller than that in [11] (because we only assume that g = f/M is low-rank and do not need

to perform the expansion of M in small velocities as was done in [11]). Third, the fluid moments, such as

density ρ and momentum ρu, are integrated as part of the numerical scheme. Thus, using an appropriate

discretization, as will be done here, conservation of mass and momentum is ensured. The algorithm is

also able to handle problems with sharp gradients/shock waves. In addition, since the proposed low-rank

algorithm automatically takes care of regions close to the fluid regime (the scheme becomes a consistent

discretization to the NS equations when ε is small), it can be used to perform simulations in a wide range

of flow regimes without the need to explicitly couple a kinetic solver with a fluid one (which is potentially

complicated in a hybrid approach; see, e.g., [17, 8]). In that context the present scheme would be used

in a similar way as the Hermite expansion in [38], with the added advantage that the computational cost

of the kinetic solver is reduced dramatically.

The rest of this paper is organized as follows. In Section 2 we describe the fluid dynamic limits of

the BGK equation. We then motivate the low-rank approximation used (Section 3) and derive the corre-

sponding numerical algorithm in a semi-discrete setting (Section 4). The full discretization is discussed

in Section 5. A formal analysis is performed in Section 6 to show that our numerical scheme can indeed

capture the NS limit when ε is small. Finally we present the results of a range of numerical experiments

in Section 7.
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2 Fluid limits of the BGK equation

In this section, we derive the fluid dynamic limits of the BGK equation (1.1) using the Chapman-

Enskog expansion [3]. We will see that the compressible Euler equations can be obtained when ε → 0,

while the compressible NS equations can be obtained when retaining O(ε) information. Although the

procedure is quite standard in the kinetic literature, we have decided to include it here because our

following low-rank approximation is strongly motivated by this analysis.

When ε is small, from (1.1), formally one has

f = M +O(ε). (2.1)

Hence it makes sense to assume that

f = M + εf1, (2.2)

where f1 is an O(1) function. We then substitute (2.2) into (1.1) to obtain

f1 = −1

ν
(∂tf + v · ∇xf) = −1

ν
(∂tM + v · ∇xM) +O(ε). (2.3)

On the other hand, taking the first dv + 2 moments of (1.1), i.e. multiplying (1.1) by φ(v) :=

(1, v, |v|2/2)T and integrating in v, yields

∂t〈fφ〉v +∇x · 〈vφf〉v = 0, 〈 · 〉v :=

∫
Rdv

· dv. (2.4)

By substituting (2.2) into (2.4) we obtain

∂t〈fφ〉v +∇x · 〈vφM〉v = −ε∇x · 〈vφf1〉v. (2.5)

Using the macroscopic quantities defined in (1.3) and

P1 := −
∫
Rdv

(v − u)⊗ (v − u)f1 dv, q1 := −1

2

∫
Rdv

(v − u)|v − u|2f1 dv, (2.6)

we can write (2.5) as 
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ pId) = ε∇x · P1,

∂tE +∇x · ((E + p)u) = ε∇x · (P1u+ q1),

(2.7)

where p = ρT is the pressure, Id is the identity matrix, and E = dv
2 ρT + 1

2ρu
2 is the total energy.

Neglecting the O(ε) terms, (2.7) become the compressible Euler equations.

To further derive the right hand side of (2.7), we first note that for the Maxwellian function defined

in (1.2) one has

1

M
(∂tM+v ·∇xM) =

1

ρ
(∂tρ+v ·∇xρ)+

(v − u)

T
·(∂tu+v ·∇xu)+

(
|v − u|2

2T 2
− dv

2T

)
(∂tT+v ·∇xT ). (2.8)

Since we already knew that ρ, u and T satisfy the compressible Euler equations to the leading order, we

can use the spatial derivatives of these functions to replace the time derivatives. This yields

1

M
(∂tM+v·∇xM) =

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T
+

(
(v − u)⊗ (v − u)

T
− |v − u|

2

dvT
Id

)
: ∇xu+O(ε),

(2.9)
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where

σ(u) := ∇xu+ (∇xu)T − 2

dv
(∇x · u) Id. (2.10)

Note that ∇xu is a matrix with ij-th component given by ∂xj
ui and the operation : between two matrices

is defined as A : B =
∑
ij aijbij .

Plugging (2.9) into (2.3) gives

f1 = −M
ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T
+

(
(v − u)⊗ (v − u)

T
− |v − u|

2

dvT
Id

)
: ∇xu

]
+O(ε).

(2.11)

One can verify by direct integration that

P1 =
1

ν
ρTσ(u) +O(ε) = Tωσ(u) +O(ε),

q1 =
1

ν

dv + 2

2
ρT∇xT +O(ε) =

dv + 2

2
Tω∇xT +O(ε).

(2.12)

Substituting the above P1 and q1 into (2.7), we finally obtain
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ pId) = ε∇x · (µσ(u)) +O(ε2),

∂tE +∇x · ((E + p)u) = ε∇x · (µσ(u)u+ κ∇xT ) +O(ε2),

(2.13)

where µ := Tω and κ := dv+2
2 µ are, respectively, the coefficients of viscosity and heat conductivity.

Ignoring O(ε2) terms, (2.13) are the compressible Navier-Stokes equations.

Remark 2.1. It is well-known that the BGK model (1.1) cannot produce the correct Prandtl number

(Pr := dv+2
2

µ
κ ≡ 1 in the BGK model while for most gases Pr < 1). To correct this defect, various models

have been proposed such as the ES-BGK model [1] or the Shakhov model [36]. Since our main focus in

this paper are isothermal flows, this defect is irrelevant.

3 The low-rank approximation

From the previous section we can see that when ε is small, f can be expanded as (see (2.2) and (2.11)):

f = M − εM
ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T
+

(
(v − u)⊗ (v − u)

T
− |v − u|

2

dvT
Id

)
: ∇xu

]
+O(ε2).

(3.1)

Note that the Maxwellian M is a normal distribution with (time and spatially dependent) mean u(t, x)

and variance T (t, x), so M is generally not a low-rank or separable function in x and v. Because of this,

we do not directly use the low-rank approximation (1.4) for f . Instead, we consider

f = Mg, (3.2)

then

g = 1− ε1

ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T
+

(
(v − u)⊗ (v − u)

T
− |v − u|

2

dvT
Id

)
: ∇xu

]
+O(ε2),

(3.3)

which is a low-rank function in x and v even at O(ε). This can be most easily seen by recognizing that

the O(ε) term can be written as a sum of products of functions that depend only on x (such as u, 1/T ,

and ∇xu) and functions that only depend on v (such as v, v2 and v ⊗ v).
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This motivates us to seek an expansion of g in the following form:

g =

r∑
i,j=1

Xi(t, x)Sij(t)Vj(t, v), (3.4)

where {Xi} and {Vj} are the orthonormal bases in x and v, respectively. Before proceeding, let us note

that a multiplicative deviation from equilibrium to improve compression has been used in the context of

sparse grids and the Vlasov equation [24], albeit in the somewhat simpler setting where u = 0.

To track the evolution of M , one can consider the moment equation (2.4) which we rewrite using a

slightly different notation:

∂tU +∇x · 〈vφMg〉v = 0, (3.5)

where U := (ρ, ρu,E)T and φ(v) := (1, v, |v|2/2)T .

To track the dynamics of Xi, Sij and Vj , we proceed as follows. Substituting f = Mg into equation

(1.1) yields

∂tg = −v · ∇xg −
1

M
(∂tM + v · ∇xM)g +

ν

ε
(1− g) := h. (3.6)

We now apply the projector-splitting based dynamical low-rank algorithm [29] to (3.6). That is, con-

straining g to lie on the low-rank manifold:

∂tg =
∑
j

〈Vj , h〉vVj −
∑
i,j

Xi〈XiVj , h〉x,vVj +
∑
i

Xi〈Xi, h〉x (3.7)

and then performing the operator splitting yields the following numerical algorithm:

– Let Kj =
∑
iXiSij , then g =

∑
j KjVj . Update Kj by solving

∂tKj = 〈Vj , h〉v, (3.8)

then perform an orthonormalization of Kj to generate new Xi and Sij (using a QR decomposition).

– Update Sij by solving

∂tSij = −〈XiVj , h〉x,v. (3.9)

– Let Li =
∑
j SijVj , then g =

∑
iXiLi. Update Li by solving

∂tLi = 〈Xi, h〉x, (3.10)

then perform an orthonormalization on Li to generate new Sij and Vj (using a QR decomposition).

For the derivation of the above algorithm we refer the readers to [13] and the references contained

therein. The algorithm described is robust in the sense that over approximation, i.e. small singular values

in S, do not cause any numerical issues. Furthermore, the order of the subflows (3.8)-(3.10) can be chosen

freely. Any order results in a numerical method that is first order accurate (in time). For higher order

methods this can be exploited to lower the overall computational cost (see, e.g., [13]).

4 The dynamical low-rank algorithm

In this section we present the proposed algorithm in detail. This includes the low-rank integrator

for g as well as the necessary numerical scheme to advance the moments in time. The present section

describes a semi-discrete version where time is discretized but space is left continuous. We will consider

possible spatial discretizations in more details in Section 5.
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From this point onward, we will assume that the temperature is constant in order to simplify the

presentation. Without loss of generality we can then choose T ≡ 1. Assuming that the ideal gas law

holds true, this simply means that we measure the velocity u in fractions of the speed of sound. The

rationale for this assumption lies in the fact that isothermal flows represent an interesting nontrivial

compressible case that we propose to efficiently treat using fast convolution algorithms. We will discuss

the non-constant temperature case in more detail in Remark 4.3 given at the end of this section.

First, if T = 1 in (1.1), we have ν = ρ and the Maxwellian becomes

M =
ρ

(2π)dv/2
exp

(
−|v − u|

2

2

)
. (4.1)

The equations of motions for the moments (3.5) can then be written as

∂tρ = −∇x ·

∑
i,j

XiSij〈vVjM〉v

 := I1, (4.2)

∂t(ρu) = −∇x ·

∑
i,j

XiSij〈v ⊗ vVjM〉v

 := I2, (4.3)

from which we can easily derive the following expression

∂tu =
1

ρ
(I2 − I1u). (4.4)

Furthermore, h in (3.6) becomes

h = −v · ∇xg −Mg +
ρ

ε
(1− g), (4.5)

where

M : =
1

M
(∂tM + v · ∇xM) =

1

ρ
(∂tρ+ v · ∇xρ) + (v − u) · (∂tu+ v · ∇xu)

=
1

ρ
(I1 − u · (I2 − I1u)) + v ·

(
1

ρ
(∇xρ+ I2 − I1u)− 1

2
∇x(u2)

)
+ (v ⊗ v) : ∇xu

: =M1 + v · M2 + (v ⊗ v) :M3,

(4.6)

where

M1 =
1

ρ
(I1 − u · (I2 − I1u)), M2 =

1

ρ
(∇xρ+ I2 − I1u)− 1

2
∇x(u2), M3 = ∇xu. (4.7)

We now plug (4.5) into (3.8) to obtain

∂tKj = 〈Vj , h〉v

= −
∑
kl

〈Vj , v · (∇xXk)SklVl〉v −
∑
kl

XkSkl〈Vj , VlM〉v +
ρ

ε

(
〈Vj〉v −

∑
kl

XkSkl〈Vj , Vl〉v

)
= −

∑
l

(∇xKl) · 〈vVjVl〉v −
∑
l

Kl〈VjVlM〉v +
ρ

ε
(〈Vj〉v −Kj) ,

(4.8)

where

〈VjVlM〉v = δjlM1 + 〈vVjVl〉v · M2 + 〈v ⊗ vVjVl〉v :M3. (4.9)
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Plugging (4.5) into (3.9) gives

∂tSij = −〈XiVj , h〉xv

=
∑
kl

(〈Xi∇xXk〉x · 〈vVjVl〉v)Skl +
∑
kl

Skl〈XiXkVjVlM〉xv −
1

ε

(
〈ρXi〉x〈Vj〉v −

∑
k

〈ρXkXi〉xSkj

)
,

(4.10)

where

〈XiXkVjVlM〉xv = 〈Xi, Xk〈VjVlM〉v〉x
= δjl〈XiXkM1〉x + 〈vVjVl〉v · 〈XiXkM2〉x + 〈v ⊗ vVjVl〉v : 〈XiXkM3〉x.

(4.11)

Finally plugging (4.5) into (3.10) gives

∂tLi = 〈Xi, h〉x

= −
∑
kl

〈Xi,∇xXk〉x · vSklVl −
∑
kl

〈Xi, XkM〉xSklVl +
1

ε

(
〈ρXi〉x −

∑
k

〈ρXkXi〉Lk

)

= −
∑
k

(〈Xi∇xXk〉x · v)Lk −
∑
k

〈XiXkM〉xLk +
1

ε

(
〈ρXi〉x −

∑
k

〈ρXkXi〉Lk

)
,

(4.12)

where

〈XiXkM〉x = 〈XiXkM1〉x + v · 〈XiXkM2〉x + (v ⊗ v) : 〈XiXkM3〉x. (4.13)

4.1 Time discretization

We are now ready to present the semi-discrete (discrete in time and continuous in space) dynamical

low-rank integrator. The main ingredients of this scheme are the low-rank approximation described in

the previous section (i.e. f = Mg and the low-rank expansion is applied to g), using fast convolution

algorithms to evaluate the integrals in (4.14)-(4.15) below, and using an IMEX scheme to capture the

fluid limit. We will also provide the computational cost for each substep to highlight the efficiency of the

proposed algorithm compared to full grid simulation that scale as O(Ndx+dv ).

Suppose that at time step tn, (ρn, un, Xn
i , V

n
j , S

n
ij) are available. In order to obtain the solution

(ρn+1, un+1, Xn+1
i , V n+1

j , Sn+1
ij ) at tn+1, we proceed as follows:

Step 1: Update ρn+1 and un+1.

1. Compute the terms

〈vV nj Mn〉v =
ρn(x)

(2π)dv/2

〈
vV nj (v) exp

(
−|v − u

n(x)|2

2

)〉
v

, (4.14)

〈v ⊗ vV nj Mn〉v =
ρn(x)

(2π)dv/2

〈
v ⊗ vV nj (v) exp

(
−|v − u

n(x)|2

2

)〉
v

. (4.15)

Note that these two quantities can be written as convolutions and hence are computed as follows:

– Compute the convolutions

g1
j = (v 7→ vV nj ) ∗ (v 7→ exp(−v2/2)),

g2
j = (v 7→ (v ⊗ v)V nj ) ∗ (v 7→ exp(−v2/2)),

8



using an FFT. Cost: O(rNdv logNdv ).

– Evaluate

〈vV nj Mn〉v(x) =
ρn(x)

(2π)dv/2
g1
j (un(x)),

〈(v ⊗ v)V nj M
n〉v(x) =

ρn(x)

(2π)dv/2
g2
j (un(x)),

using cubic splines (or any other interpolation). This is done by taking the equidistant output

obtained from the FFT and constructing the corresponding interpolant. Cost: O(rNdx).

Let us emphasize that using the described procedure is essential as computing (4.14)-(4.15) in a

naive way would incur a computational cost of O(rNdx+dv ), which is clearly prohibitive.

2. Compute

In1 = −∇x ·

∑
ij

Xn
i S

n
ij〈vV nj Mn〉v

 , (4.16)

In2 = −∇x ·

∑
ij

Xn
i S

n
ij〈v ⊗ vV nj Mn〉v

 . (4.17)

Cost: O(r2Ndx).

3. Perform a forward Euler step to solve (4.2) and (4.4):

ρn+1 = ρn + ∆tIn1 , (4.18)

un+1 = un +
1

ρn
(In2 − In1 un). (4.19)

Cost: O(Ndx).

Step 2: Update Xn+1
i , V n+1

j , and Sn+1
ij .

K step

1. Compute

c1jl = 〈vV nj V nl 〉v, c?jl = 〈v ⊗ vV nj V nl 〉v, V j = 〈V nj 〉v.

Cost: O(r2Ndv ).

2. Compute M1, M2, and M3 defined in (4.7) using ρn, un, In1 , and In2 . Cost: O(Ndx).

3. Compute

c2jl = δjlM1 + c1jl · M2 + c?jl :M3.

Cost: O(r2Ndx).

4. Perform a first order IMEX step to solve (4.8):

Kn
j =

∑
i

Xn
i S

n
ij ,

Kn+1
j =

1

1 + ∆tρn/ε
Kn
j −

∆t

1 + ∆tρn/ε

[∑
l

c1jl · (∇xKn
l ) +

∑
l

c2jlK
n
l

]
+

∆tρn

ε+ ∆tρn
V j . (4.20)
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Cost: O(r2Ndx). Note: The IMEX scheme is necessary to treat the stiff term and capture the

asymptotic limit. Nevertheless, as can be seen, the update is completely explicit. For more details

we refer the readers to [12].

5. Compute a QR decomposition of Kn+1
j to obtain Xn+1

i and S1
ij . Cost: O(r2Ndx).

S step

1. Compute

d1
ik = 〈Xn+1

i ∇xXn+1
k 〉x, d?ik = 〈Xn+1

i Xn+1
k M1〉x, d??ik = 〈Xn+1

i Xn+1
k M2〉x, (4.21)

d???ik = 〈Xn+1
i Xn+1

k M3〉x, Xi = 〈ρnXn+1
i 〉x, Rik = 〈ρnXn+1

i Xn+1
k 〉.

Cost: O(r2Ndx).

2. Compute

d2
ik;jl = δjld

?
ik + c1jl · d??ik + c?jl : d

???
ik .

Cost: O(r4). Note: We could also compute d2
ik;jl = 〈XiXkc

2
jl〉x but the cost would be O(r4Ndx).

3. Perform a first order IMEX step to solve (4.10):

∑
k

(
I − ∆t

ε
R

)
ik

S2
kj = S1

ij + ∆t

[∑
kl

(d1
ik · c1jl)S1

kl +
∑
kl

d2
ik;jlS

1
kl

]
− ∆t

ε
XiV j .

Cost: O(r4).

L step

1. Perform a first order IMEX step to solve (4.12):

Lni =
∑
j

S2
ijV

n
j ,

∑
j

(
I +

∆t

ε
R

)
ij

Ln+1
j = Lni −∆t

[∑
k

(d1
ik · v)Lnk +

∑
k

(d?ik + v · d??ik + (v ⊗ v) : d???ik )Lnk

]
+

∆t

ε
Xi.

Cost: O(r2Ndv ).

2. Compute a QR decomposition of Ln+1
i to obtain V n+1

i and Sn+1
ij . Cost: O(r2Ndv ).

Remark 4.1. The scheme described is first order in time. It can be generalized to second (or higher)

order as described in [12]. For simplicity we only consider the first order method in this paper.

Remark 4.2. It is worth mentioning that when T = 1, the limiting system (2.13) become the isothermal

NS equations:  ∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ ρId) = ε∇x · σ(u),
(4.22)

where σ(u) is the same as before and 1/ε plays the same role as the Reynolds number.
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Remark 4.3. We have made the simplifying assumption T = 1. The algorithm can be extended easily to

the case of piecewise constant temperature Tn(x) with two changes. First, besides the equations of motions

(4.2) and (4.3), there will be an additional equation of motion for E(t, x). Second, the computation of

(4.14) or (4.15) can still be accelerated by computing an FFT for each of the constant values of Tn(x),

followed by interpolating at un(x) for each x with that constant temperature value. For more general

temperature distribution Tn(x), the situation is less clear and we leave this as future work.

Remark 4.4. The proposed dynamical low-rank integrator is currently the only such scheme that can be

efficiently used in the compressible case. Nevertheless, it is instructive to compare its performance in the

weakly compressible case with the method developed in [11]. The computational and memory complexity

for both methods is, up to a logarithm, the same; namely, O(r2(Ndx + Ndv )) and O(r(Ndx + Ndv )),

respectively. The proposed method for a fixed rank has a somewhat larger overhead as the 3 (in two

dimensions) and 4 (in three dimensions) moments have be integrated and stored as well. However, since

for the proposed scheme in the ε→ 0 limit rank 1 is sufficient, compared to a requirement for at least rank

6/10 in two/three dimensions for the scheme in [11], the proposed scheme is clearly more efficient. Note

that computing a direct solution of the Boltzmann-BGK equation has at least a computational complexity

of O(NdxNdv ), which is significantly more expensive.

5 The fully discrete scheme

The scheme described in the previous section is still continuous in space. To provide an appropriate

spatial discretization is the content of this section. Replacing spatial derivatives with their discrete

counterpart has to be done in multiple places; namely, when computing In1 and In2 in equations (4.16)-

(4.17), when computing Kn+1
j in equation (4.20), and when computing the coefficient d1

ik in equation

(4.21).

In this work we consider two approaches to spatial discretization. First, a method that uses FFT

techniques (i.e., the Fourier spectral method) to approximate the derivatives is described in Section 5.1.

It has the advantage that it is very accurate for smooth solutions and simple to implement. The second

method, described in Section 5.2, is designed to handle solutions with sharp gradients/shock waves. This

allows us to treat problems with small ε where such features are common. This scheme is, at most, second

order accurate.

5.1 The Fourier spectral method

For the Fourier spectral method we simply compute the spatial derivatives in equations (4.16), (4.17),

(4.20), and (4.21) by an FFT. Let us emphasize that in place of the FFT a number of other spatial

discretizations could be used. The choice of FFT here is mainly because for smooth solutions this results

in a very accurate scheme and we further demonstrate that the dynamical low-rank approximation can

be easily combined with a spectral discretization (which is not possible for the low-rank scheme described

in [23], for instance).

5.2 The shock capturing finite difference method

It is well-known that sharp gradients (for finite viscosity) and discontinuous solutions (for vanishing

viscosity), so-called shock waves, are commonly encountered in fluid problems. Since our goal is to obtain

a numerical scheme that can capture the fluid limit, we need an appropriate shock-capturing scheme. Such
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a chock-capturing scheme has to be applied to both the Ki in the low-rank approximation, see equation

(4.20), and the moment equations given in (4.2)-(4.3). In the former the structure of the dynamical low-

rank approximation allows us to relatively easily obtain the direction of flow and thus standard upwind or

high resolution schemes can be employed. The latter is more delicate as the flux depends on the low-rank

approximation and solving the corresponding Riemann problem would be rather challenging. We use the

central scheme by Nessyahu and Tadmor to avoid having to obtain the direction of flow from the low-rank

approximation. For simplicity, in this section we only consider the two-dimensional case (i.e. dx = 2).

The extension to dx = 3 is immediate, with the only major difference that the Ki and the moments are

three-dimensional.

To discretize (4.20) which is a symmetric hyperbolic system, we adopt the following approach. In

the two dimensional setting, we have c1jl = [c1;1
jl c

1;2
jl ]T and the matrices c1;m

jl , for m ∈ {1, 2}, are sym-

metric. Thus, there exist orthogonal matrices Tm such that
∑
jl T

m
ij c

1;m
jl Tmkl = λmi δik. We apply the

transformation K̂n
i =

∑
j T

1
ijK

n
j and obtain from equation (4.20)

K̂n+1
i =

1

1 + ∆tρn/ε
K̂n
i −

∆t

1 + ∆tρn/ε

λ1
i ∂xK̂

n
i +

∑
jl

T 1
ijc

1;2
jl ∂yK

n
l +

∑
lj

T 1
ijc

2
jlK

n
l

+
∆tρn

ε+ ∆tρn

∑
j

T 1
ijV j .

Now, the direction of the flow regarding the advection in the x-direction is obvious and we can replace

λ1
i ∂xK̂

n
i by an appropriate discrete approximation, which we denote by δx(Kn

· , λ
1
i )i. The simplest choice

is to use upwinding for δx. To obtain second order for smooth parts of the solution, we can use the

Lax–Wendroff flux with the van Leer limiter as described in [25, Chap. 16]. Using an appropriate limiter

is obviously important for problems that have sharp gradients/shocks. Finally transforming the system

back to the original variables yields

Kn+1
j =

1

1 + ∆tρn/ε
Kn
j −

∆t

1 + ∆tρn/ε

[∑
i

T 1
ijδx(K̂n

· , λ
1
i )i +

∑
l

c1;2
jl ∂yK

n
l +

∑
l

c2jlK
n
l

]
+

∆tρn

ε+ ∆tρn
V j .

(5.1)

The discretization in the y-direction is treated similarly.

We now consider the update of ρ and u according to the system of conservation laws in equations (4.2)-

(4.3). However, the flux depends on the Maxwellian M and is thus a nonlinear (and rather complicated)

function of ρ and u. Obtaining the corresponding Riemann solver is, at best, a rather complicated

undertaking. Another possible approach is to write down a scheme (which is typically nonlinear and

involves a limiter for the shock-capturing purpose) at the level of the kinetic equation, i.e. for equation

(1.1), and only after performing this spatial discretization the dynamical low-rank projection is applied.

Such an approach has been used before, for example, to design AP kinetic schemes [18]. However, this

does not work in the present setting as applying a nonlinear scheme at the kinetic level will result in a

function which we can not compute using a convolution, as has to be done in Step 1 of the algorithm

(see Section 4.1) in order to obtain an efficient numerical method.

To avoid the above issues, we choose to discretize (4.16) and (4.17), which are the fluxes of the

nonlinear conservation laws (4.2)-(4.3), using the central difference scheme by Nessyahu and Tadmor

[34]. This scheme avoids solving a Riemann problem and can be combined with a limiter to resolve sharp

gradients without oscillations. In the following we will describe this method and how it can be applied

to the present situation. For a one-dimensional conservation law

∂tU(t, x) + ∂xF (U(t, x)) = 0,

where U is the vector of moments, the Nessyahu–Tadmor scheme can be written in predictor-corrector
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form

U?j = Unj − ∆t
2∆xF

′
j ,

Un+1
j+1/2 = 1

2 (Unj + Unj+1) + 1
8 (U ′j − U ′j+1)− ∆t

∆x (F (U?j+1)− F (U?j )).

The choice of F ′j and U ′j is free as long as they satisfy F ′j/∆x = ∂xF (U(tn, xj)) +O(∆x) and U ′j/∆x =

∂xU(tn, xj) + O(∆x). We have to approximate these quantities in such a way that we obtain non-

oscillatory solutions that preserve sharp gradients. As suggested in [34] we use

U ′j = MM(Unj+1 − Unj , Unj − Unj−1), F ′j = MM(F (Unj+1)− F (Unj ), F (Unj )− F (Unj−1)),

where MM(x, y) is the commonly used minmod limiter. We note that this is a staggered scheme. That is,

the output values Un+1
j+1/2, are offset by half a grid point compared to the input values Unj . In the present

setting we use a two-dimensional generalization of this method given by (see, e.g., [19])

U?ij = Unij −
∆t

2∆x
F ′xij −

∆t

2∆y
G′yij ,

Un+1
i+1/2,j+1/2 =

1

4
(Unij + Uni+1,j + Uni,j+1 + Uni+1,j+1)

+
1

16
(U ′xij − U ′xi+1,j + U ′xi,j+1 − U ′xi+1,j+1)

+
1

16
(U ′yij − U

′y
i,j+1 + U ′yi+1,j − U

′y
i+1,j+1)

+
∆t

∆x
(F (U?i+1,j)− F (U?ij)) +

∆t

∆y
(F (U?i,j+1)− F (U?ij)),

where

U ′xij = MM(Uni+1,j − Uni,j , Unij − Uni−1,j), U ′yij = MM(Uni,j+1 − Unij , Unij − Uni,j−1),

and

F ′xij = MM(F (Uni+1,j)−F (Uni,j), F (Unij)−F (Uni−1,j)), F ′yij = MM(F (Uni,j+1)−F (Unij), F (Unij)−F (Uni,j−1)).

We apply this scheme to (4.2)-(4.3) which implies

U =

[
ρ

ρu

]
, F (U) =

[ ∑
ij X

n
i S

n
ij〈vV nj Mn〉v∑

ij X
n
i S

n
ij〈v ⊗ vV nj Mn〉v

]
.

The flux F is computed using convolutions as described above.

While the Nessyahu–Tadmor scheme is also available in a non-staggered variant, we have used the

staggered version here as we observed it to be more accurate in numerical simulations. Using a staggered

scheme adds a small complication as we need the values at the original grid points to continue with the

low-rank integrator. To accomplish this we do the following

1. Apply the Nessyahu–Tadmor scheme with time step size ∆t/2 and initial value Unij to obtain

U
n+1/2
i+1/2,j+1/2.

2. Obtain Xn at the half grid points (i + 1/2, j + 1/2) by computing averages between neighboring

grid points.

3. Apply the Nessyahu–Tadmor scheme with time step size ∆t/2 and initial value U
n+1/2
i+1/2,j+1/2 and

the Xn at the half grid points to obtain Un+1
i,j .
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This procedure takes the place of Step 1 in the algorithm described in Section 4.1.

The only ingredient that remains is the computation of the derivative in d1
ik, for which we simply

apply the one-sided first order finite difference. Since only the integral over such quantities enters in the

computation, this was found to be sufficiently accurate. As an alternative a higher order stencil, which

then would need to be limited in an appropriate way, could also be used here.

6 Asymptotic analysis of the fully discrete scheme

In this section, we carry out a formal asymptotic analysis for the fully discretized scheme introduced

above and show that for small values of ε, the scheme reduces to a consistent discretization of the NS

equations.

First, our numerical scheme for the moment variables (updating ρn+1 and un+1) is equivalent to

discretizing the equation (3.5) as follows

Un+1 − Un

∆t
+∇x · 〈vφMngn〉v = O(∆xp), (6.1)

where p is the order of the spatial discretization for ∇x · 〈vφMngn〉v.
Second, our numerical scheme for the low-rank variable (updating gn+1 or Xn+1

i , V n+1
j and Sn+1

ij ) is

equivalent to discretizing the equation (3.6) as

gn+1 − gn

∆t
= −v · ∇xgn −M(Un)gn +

ν

ε
(1− gn+1) +O(∆t+ ∆xp), (6.2)

provided the same order of spatial discretization is used for v · ∇xgn. Note that M(U) in the case of

T = 1 is given in (4.6). The O(∆t) term is due to the fact that the projector splitting integrator has an

additional first order time error.

Rearranging (6.2), we have

gn+1 = 1− ε

ν

[
gn+1 − gn

∆t
+ v · ∇xgn +M(Un)gn

]
+O(ε∆t+ ε∆xp)

= 1− ε

ν
M(Un) +O(ε2 + ε∆t+ ε∆xp)

= 1− ε

ν
M(Un+1) +O(ε2 + ε∆t+ ε∆xp), (6.3)

where we used g = 1 +O(ε) (the first equality implies so) to derive the second line. Finally, substituting

(6.3) into (6.1) yields

Un+1 − Un

∆t
+∇x · 〈vφMn〉v =

ε

ν
∇x · 〈vφMnM(Un)〉v +O(∆xp + ε∆t+ ε∆xp + ε2), (6.4)

which is a consistent first order in time and p-th order in space discretization to the NS equations (2.13).

7 Numerical results

In this section we will consider three test problems. Namely, a shear flow, an explosion, and the

relaxation of a plasma beam. The first two examples operate close to the fluid regime and thus show

that our numerical method can capture that limit. The explosion, in particular, demonstrates that using

the Nessyahu–Tadmor central scheme we can handle shock waves. The beam relaxation problem, on the

other hand, is run for larger ε and is thus fully kinetic. In this context we will also demonstrate that
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our dynamical low-rank scheme works well for spatially varying ε; i.e. in situations where ε can become

extremely small in some regions and large in others.

All simulations in this section are conducted in 2 + 2 dimensions (i.e. dx = 2 and dv = 2) and periodic

boundary conditions are imposed in all spatial and velocity directions. For the spatial discretization,

we will, depending on the flow regime, use either the Fourier spectral method (see Section 5.1) or the

finite difference method (see Section 5.2). The latter will be referred to as SCFD (shock-capturing finite

differences) in the following.

7.1 Shear flow

Shear flow is a classical example in computational fluid dynamics. A common setup (see, e.g., [4, 26,

16]) is

ρ(0, x, y) = 1,

u1(0, x, y) = v0


tanh

(
y− 1

4
∆

)
, y ≤ 1

2 ,

tanh

(
3
4−y
∆

)
, y > 1

2 ,

u2(0, x, y) = δ sin(2πx),

(7.1)

where (x, y) ∈ [0, 1]2, v0 = 0.1, ∆ = 1/30, and δ = 5 · 10−3. Physically the problem models a fluid that

moves to the left at the top and bottom of the domain and to the right in the middle of the domain.

The small perturbation in the velocity then grows in time and creates a dynamics dominated by vortex

structures.

For our dynamical low-rank integrator the moments ρ, u1, and u2, as specified above, are used to

initialize a Maxwellian according to equation (1.2) in the domain (v1, v2) ∈ [−6, 6]2. The Reynolds

number Re is prescribed and then ε is chosen according to ε = v0/Re. That is, we use the flow velocity

v0 as the characteristic velocity to define the Reynolds number. Note that this is not entirely consistent

with Remark 4.2, where the speed of sound is used instead. However, since the former is the usual choice

in the weakly compressible regime, this makes comparison with the literature (e.g. [4, 26, 16]) easier.

In Figure 1 a comparison at Re = 1000 between a fluid solver based on the MacCormack method

[31] and the proposed dynamical low-rank integrator is conducted. We compare density ρ, velocity u1,

u2, and vorticity ω = ∂xu2 − ∂yu1 and observe excellent agreement with the fluid solver, as expected. A

more quantitative comparison is conducted in Figure 2.

Next, we demonstrate that increasing the Reynolds number (i.e. decreasing ε) presents no difficulty for

our approach. In this case we have to use the SCFD implementation as the Fourier spectral method, as one

would expect, produces spurious oscillations and shows stability issues in this regime. The corresponding

results are shown in Figure 3 and agree well with the results that have been reported in the literature.

We also remark that choosing a small rank (r = 2) is sufficient to obtain very accurate results. Let us

emphasize that this is in contrast to earlier work [11], where the expansion of the equilibrium mandates

that we use a certain rank (at least 6 in 2D and 10 in 3D). In the method proposed here no assumption on

the low-rank structure of the equilibrium needs to be made and thus even a very small rank is sufficient

to accurately represent problems which are well described by the fluid limit. We also note that in this

limit, as has already been observed in [11], a coarse resolution in the velocity directions is sufficient. This

is precisely what we observe in Figure 3.

Finally, we investigate the convergence of the stress tensor computed by the kinetic integrator (i.e. the

proposed dynamical low-rank algorithm) with the corresponding term in the NS equation. That is, we
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Fluid solver

Dynamical low-rank (Fourier spectral method)

Figure 1: Numerical simulation of the shear flow (7.1) at time t = 6 (left) and t = 12 (right) with

Re = 103 is shown. The fluid solver (top) uses a MacCormack method, 512 grid points in each direction,

and is run using a CFL number of 0.9 (∆t ≈ 1.5 · 10−3). The dynamical low-rank integrator (bottom)

uses rank r = 3 and 256 grid points in each spatial direction and 32 grid points in each velocity direction

and time step size ∆t = 2 · 10−4.

compare

P(1) = −1

ε

∫
(v−u)⊗(v−u)(f−M) dv =

1

ε

[
− ρ

(2π)dv/2

∑
ij

XiSij

∫
(v−u)⊗(v−u)e−|v−u|

2/2Vj(v) dv+ρId

]
,

(7.2)

obtained by the dynamical low-rank integrator, with σ(u) (defined in (2.10)) obtained from the fluid

solver (here dv = 2). To evaluate equation (7.2), without incurring the cost of forming the entire density

function, we once again write the integral as a convolution (as described in Section 4.1). We know from

theory that P(1) converges to σ(u) as ε→ 0 (see Section 2). This is also observed in the numerical results

shown in Figure 4 and Figure 5. In Figure 5 we have plotted the difference between these two quantities

as a function of the Reynolds number.
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Figure 2: The error in the moments, i.e. max{‖ρ − ρref‖∞, ‖ρu − ρuref‖∞}, at time t = 2 is shown as a

function of the number of grid points in the x and y directions (denoted by Ns in the plot) and the rank

r. In all cases 32 grid points in the velocity direction, a time step size of ∆t = 2 · 10−5, and Re = 1000

is used. Results are shown both for the SCFD and the FFT based method. We note that the error due

to the low-rank approximation is below 10−2 for r = 1 and below 10−4 for r = 3. The reference solution

(ρref, ρuref) is computed using a MacCormack based fluid solver with 2048× 2048 grid points.

Figure 3: Numerical simulation of the shear flow (7.1) at time t = 12, Re = 105, and with rank r = 2

(left) and r = 10 (right) is shown. The SCFD implementation with 512 grid points in each spatial and

32 grid points in each velocity direction and a time step size of ∆t = 10−3 is used.

7.2 Explosion

In this section we consider an initial overpressure in a small region that expands and results in a

propagating shock wave, i.e. an explosion. We will use the following initial value

ρ(0, x, y) =

1, x2 + y2 ≤ R2,

1
10 , otherwise,

u1(0, x, y) = 0, u2(0, x, y) = 0,

(7.3)

with (x, y) ∈ [−1.5, 1.5]2 and R = 10−2. As before, the specified moments are used to initialize a

Maxwellian according to equation (1.2) in the domain (v1, v2) ∈ [−6, 6]2. This is a good example to

demonstrate that our scheme is able to resolve sharp gradients/shocks in a compressible flow.
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Re = 500

Re = 4000

Figure 4: Comparison of σ(u), computed with the MacCormack based fluid solver, with the stress tensor

P(1), computed with the dynamical low-rank approximation, for Re = 500 and Re = 4000. All simulations

are conducted with rank r = 5, 512 grid points in each spatial direction, 64 grid points in each velocity

direction, and a time step size of ∆t = 5 · 10−5.

125 250 500 1000 2000 4000
Reynolds number (Re)

0.16

0.125

0.1

0.08

0.063

m
ax

ij
(1

)
ij

ij

Figure 5: Difference between σ(u), computed with the fluid solver, and the stress tensor P(1), computed

with the dynamical low-rank approximation, in the maximum norm and as a function of the Reynolds

number is shown. All simulations are conducted until t = 2 and with r = 5, 512 grid points in each

spatial direction, 64 grid points in each velocity direction, and a time step size of ∆t = 5 · 10−5.
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The numerical results are shown in Figure 6. We clearly observe the shock front that radially propa-

gates outward starting from the center. Let us also emphasize that, for ε = 10−5, a small rank is sufficient

to resolve the dynamics; in fact, starting from r = 3 the solutions produced by the low-rank integrator

are indistinguishable in the plot.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.08

0.09

0.10

0.11

0.12

0.13
(t = 0.8, : , y = 0), r = 1
(t = 0.8, : , y = 0), r = 3
(t = 0.8, : , y = 0), r = 6

Figure 6: Numerical simulation of the explosion (7.3) at time t = 0.8, ε = 10−5, and with rank r = 6

is shown on the left. The SCFD implementation with 512 grid points in each spatial and 32 grid points

in each velocity direction and a time step size of ∆t = 5 · 10−5 is used. On the right a slice through the

solution, at y = 0, is shown for r = 1, r = 3, and r = 6.

7.3 Beam relaxation

In this section we consider a fully kinetic problem, i.e. a problem where the dynamics is not well

represented by the fluid limit. A beam with a constant velocity and Maxwellian distribution propagates

into a stationary gas. The initial value is given by [8]

f(0, x, y, v, w) =
1√
2π

(
e−(v2+w2)/2 + nbe

−((v−vb)2+(w−wb)2)/(2Tb)
)
, (7.4)

where (x, y, v, w) ∈ [0, 1]2 × [−8, 8]2, nb = 10−3, vb = 4 , wb = 2, Tb = 0.1. This is a rank 1 initial value

that in our framework, i.e. with f = Mg, is represented as follows

ρ = 1, u1 = u2 = 0,

and

g = 1 + nbe
−((v−vb)2+(w−wb)2)/(2Tb)+(v2+w2)/2.

The expected behavior is that the perturbation (the beam) in velocity space diminishes over time

according to exp(−t/ε). That is, the collisions thermalize the beam until it is indistinguishable from the

background gas. This problem has been considered in the context of hybrid kinetic-fluid models in [8].

The hybrid method proposed there, which treats fast particles kinetically and the slow particles by a

fluid model, has difficulties in capturing the physical behavior.

The numerical results using the low-rank integrator are presented in Figure 7. Note that because

the initial value is homogeneous in the x directions we can use a relatively coarse resolution in space.

For ε = 0.1/ε = 0.5 the deviation from equilibrium reduces by approximately 10−9/10−2, which clearly

demonstrates that the low-rank algorithm accurately reproduce the expected decay rates.
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Figure 7: We plot g(0, 0, :, :) for the beam relaxation problem (7.4) at time t = 0, t = 1, and t = 2 and for

ε = 0.1 (left) and ε = 0.5 (right). The SCFD implementation with r = 10, 32 grid points in each spatial

and 256 grid points in each velocity direction, and a time step size of ∆t = 10−4 is used. On the bottom

right the maximal deviation from equilibrium, i.e. the deviation in the maximum norm (normalized to

the initial value), is shown as a function of time.

7.4 Beam relaxation with spatially varying ε

One interesting application of the proposed dynamical low-rank integrator is in applications where

the Knudsen number ε varies over several orders of magnitude (see the discussion on hybrid kinetic/fluid

schemes in the Introduction). We explore this here in the context of the beam relaxation problem

introduced in the previous section with a spatially varying ε given by

ε(x, y) = ε0 + tanh(1− 11x) + tanh(1 + 11x), (7.5)

with ε0 = 10−4 in the spatial domain (x, y) ∈ [−1, 1] × [0, 1]. Thus, we have ε ≈ 1 in the middle of the

domain (kinetic regime) and ε ≈ 10−4 (fluid regime) as we get closer to the boundary.

The numerical results obtained are shown in Figure 8. We investigate here the deviation from equi-

librium as a function of velocity. We observe that the thermalization proceeds with different speeds

depending on the value of ε on that part of the domain, as we would expected. We have also compared

numerical simulations obtained with different ranks. For r = 3 a significant deviation from the reference

solution (computed with r = 60) can be observed. However, starting with rank r = 10 the low-rank error

is small and we observe excellent agreement with the reference solution.
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