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Abstract. This paper analyzes Floquet topological insulators resulting from the time-
harmonic irradiation of electromagnetic waves on two dimensional materials such as
graphene. We analyze the bulk and edge topologies of approximations to the evolu-
tion of the light-matter interaction. Topologically protected interface states are created
by spatial modulations of the drive polarization across an interface. In the high-frequency
modulation regime, we obtain a sequence of topologies that apply to different time scales.
Bulk-difference invariants are computed in detail and a bulk-interface correspondence is
shown to apply. We also analyze a high-frequency high-amplitude modulation resulting
in a large-gap effective topology topologically that remains valid only for moderately long
times.

1. Introduction

The field of topological insulators finds important applications in two-dimensional mate-
rials as they display transport properties that are in some sense immune to perturbations
and imperfections. In particular, conductivity at the interface between two insulators in
different topologies takes quantized and non-vanishing values directly related to the topol-
ogy of the insulators. We refer to, e.g., [4, 28, 11] as well as their large literature on this
well-studied phenomenon.

The simplest partial differential model allowing us to analyze such a phenomenon is the
following Dirac Hamiltonian in two space dimensions

(1.1) H = D · σ +m(y)σ3

with σ = (σ1, σ2)t and σ1,2,3 the standard Pauli matices and D = 1
i (∂x, ∂y)

t. These oper-
ators are used for example in two-band models as an approximation near a gap transition
point, or in graphene [4]. The mass term m(y) is a smooth function with prescribed signs
as y → ±∞ and such that |m(y)| = m0 > 0 for |y| ≥ y0 > 0, say. The Hamiltonian H is
an unbounded self-adjoint operator on L2(R2;C2) for an appropriate domain of definition
[1].
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The main quantity describing quantized transport along the edge (y close to 0) is given
by the following interface conductivity

(1.2) σI = Tr i[H,P ]ϕ′(H).

The function 0 ≤ ϕ(h) ≤ 1 is defined such that ϕ(−m0) = 0, ϕ(m0) = 1 and 0 ≤ ϕ′(h) ∈
C∞0 (−m0,m0). The term ϕ′(H) thus corresponds to a density of states that are defined
within the bulk gap (−m0,m0). The spatial function 0 ≤ P (x) ≤ 1 is a smooth function
with P (x) = 0 for x ≤ x0 − 1 and P (x) = 1 for x ≥ x0 + 1 for some x0 ∈ R. In the
limit P (x) = H(x − x0), equal to 1 for x > x0 and 0 for x < x0, this corresponds to
an observable counting the energy density in the interval x > x0. The evolution of this
observable is given by i[H,P ] in the Heisenberg formalism so that σI may be interpreted
as the rate of charge passing from x < x0 to x > x0 and hence as an interface conductivity.
The (operator) trace of that observable against the density of states ϕ′(H) gives the above
formula. That the σI is indeed defined as a trace for H defined in (1.1) is justified in [1].
Calculations in that reference show that

(1.3) 2πσI = −1

2

(
sign(m(y0))− sign(m(−y0))

)
.

This is a non-negative integer (equal to ±1) when m(y) changes sign across the interface
while it vanishes (topologically trivial case) when m has a constant sign at infinity.

The calculations for the above model are given in [1] while [3] relates this invariant to
a general Fedosov-Hörmander index that may be computed from the symbol of the above
Hamiltonian H. This relation also helps us to prove the bulk-interface correspondence and
show that the above conductivity may be written as a bulk-difference index constructed
from Hamiltonians of the form of H above with m constant [3].

The main feature of the above index (or the above conductivity) is that it is invariant
with respect to a large class of perturbations. For instance, HV = H+V with V a compactly
supported local multiplication operator has the same conductivity as H: σI [H] = σI [H +
V ]. It is this stability with respect to perturbations and heterogeneities that makes two-
dimensional topological insulators potentially useful practically.

What drives the above non-trivial topology is the presence of a gap-opening mechanism
resulting in m 6= 0. Indeed, when m is constant, we observe that H2 = (−∆ + m2)I so
that H has (an absolutely continuous) spectrum given by R\(−m,m). It is difficult to
find materials with sufficiently large gaps in practice. One possible method to generate
such gaps is to perturb a gapless material by electromagnetic modulation. Starting from
a model for graphene (m = 0 above) and modeling the electromagnetic influence linearly,
we obtain the following time-dependent Hamiltonian

(1.4) H(t) = (D +A(t)) · σ + V (t)

with A(t) a magnetic potential and V (t) a scalar electric potential.
The above Hamiltonian models the light-matter interaction in the vicinity of a given

Dirac point. In the presence of several such points (there are two in standard descriptions
of graphene), then a separate analysis needs to be performed at each one of them. The
global topological invariants of the problem are then given as the respective sums over
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all such points. In the case of graphene with a similar influence of the electromagnetic
modulation on each Dirac point, the topologies obtained in this paper need to be multiplied
by a factor 2 as in [19].

We consider A(t) and V (t) time-periodic with large frequency Ω. Note that at any
time t, H(t) is topologically trivial as no term (in front of σ3) is present to open a gap.
However, in the regime of fast temporal fluctuations, we expect an effective medium to
adequately represent the evolution associated to H(t), hopefully with a gap opening. When
the potentials are allowed to depend on y, we also expect the corresponding mass term to
display sign changes and result in a non-vanishing interface conductivity.

The main objective of this paper is to show that this favorable picture holds only in a
restricted sense. What we show instead is that approximations to H(t) with different levels
of accuracy give rise to different topologies. Moreover, the above topological picture, with a
Hamiltonian on C2 with a sign-changing mass term m(y), only appears as an approximation
over not-too-large times and for sufficiently smooth initial conditions.

Topological insulators involving Hamiltonians with time-periodic coefficients are broadly
referred to as Floquet topological insulator (FTI) [9, 22, 15]. Floquet theory is a general
framework applying to differential equations with periodic coefficient. The terminology
of FTI is used in two fairly different situations. A large class of theoretical results ex-
ist in what we will call an ”adiabatic” regime. Hamiltonians in the Fourier domain are
parametrized by a three-dimensional domain (kx, ky, t), for instance a three-dimensional
torus on which the topological invariants are defined, typically as a three-dimensional
winding number [9, 23, 24, 26]. Such invariants are invariant under rescaling t → λt and
hence the terminology of an adiabatic regime. As we mentioned above, we are interested
in the non-adiabatic regime of very rapid temporal oscillations with Hamiltonians H(t)
at each t displaying no gap opening and hence no adiabatic (non-trivial) topology. In
fact, different levels of approximation give rise to different topologies and we cannot as-
sign any three dimensional topology. Rather, we try and understand how the evolution of
our time-dependent Hamiltonian is approximated by systems that do display non-trivial
topologies.

In most of the paper, and following [27, 19], we analyze a specific model with A(t) =
(cos(Ωt),m(y) sin(Ωt)) and V = 0. In section 2, we approximate the evolution of such a
Hamiltonian by means of replica models of arbitrary accuracy (over times small compared
to Ω in appropriately rescaled units). These n-replica models take the form of 2(2n+ 1)×
2(2n+ 1) systems of equations. A further approximation to the 1-replica model gives rise
to a Hamiltonian of the form H above, but only under the assumption that the initial
condition is sufficiently smooth.

The analysis of the topological properties of the n-replica models is given in section 3.
We use the bulk-interface correspondence derived in [3] to relate the interface conductivities
to bulk-difference invariants. The long and somewhat intricate computation of the bulk-
difference invariants is also presented in detail.

We conclude the paper in section 4 with a different method of approximation based
on an averaging theory. We assume there that the potentials (A1(t), V (t, y)) are highly
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oscillatory and large while A2 ≡ 0. The resulting effect of their combination is the opening
of a gap of order O(1), unlike the small O(Ω−1) gap observed in the previous sections.
We then show that the evolution of the full operator is well approximated by that of the
topologically non-trivial effective Hamiltonian over times short compared to Ω and, as for
the preceding model, for initial conditions that are sufficiently regular.

2. High-frequency approximation theory

This section considers a simple model of a high frequency laser driven graphene system.
We discuss the Floquet formalism using the replica system, and demonstrate that there is
a sequence of simpler Hamiltonians that well describe the electronic structure at varying
time scales. We do this by constructing approximations to the evolution operator, and
show they well approximate the original evolution operator.

We will introduce two different approximations for evolution. The first one is based on
a Duhamel (Dyson) expansion and generic for all states. The second approximation only
applies to states that are either sufficiently smooth or that live in a small energy window of
an approximation’s spectrum. With the evolution approximation, we will formally justify
the current models used in Section 3.

Following models considered in the physical literature [16, 19], we define the laser driven
graphene system with an edge as follows:

i∂tψ = H̃(t)ψ(2.1)

H̃(t) = (D +A(t)) · σ(2.2)

A(t) = (cos(Ωt),m(y) sin(Ωt)).(2.3)

Here, m(y) is a smooth function such that m(y) = sign(y) for |y| ≥ y0 > 0, say. We are
interested in Ω large in this paper in the sense that the laser period is small compared to
durations of interest. We produce an interface between insulators in two different topologies
by assuming the laser is circularly polarized for y > 0 and oppositely polarized for y < 0
producing a direction of current flow along the edge (in the vicinity of y = 0). We find

A(t) · σ = B̃(y)e−iΩt + B̃∗(y)eiΩt

for B̃(y) = 1
2(1 +m(y))B0 + 1

2(1−m(y))B∗0 , B0 =

(
0 1
0 0

)
. Then (2.2) is rewritten as

(2.4) H̃(t) = D · σ + B̃(y)e−iΩt + B̃∗(y)eiΩt.

In the high frequency regime ε = 1/Ω � 1, we find it convenient to rescale the above
problem as follows. We let

τ = tΩ =
1

ε
t, (x, y)→ ε(x, y) =

1

Ω
(x, y), B(y) := B̃(εy).(2.5)
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We then have the rescaled system:

i∂τψ = H(τ)ψ(2.6)

H(τ) = D · σ + ε

(
B(y)e−iτ +B∗(y)eiτ

)
.(2.7)

Note that m(y) is independent of frequency Ω = ε−1 so that B(y) = Bε(y) = B̃(εy)
depends on ε in the rescaled Hamiltonian.

By studying the evolution operator, we show that we can write an approximation for
the evolution operator out of a Hamiltonian corresponding to one of these sequential ap-
proximations via the Fourier replica model [19] that controls the evolution at different time
scales.

This section does not use the edge structure (change of sign of m(y)) or even the inde-
pendence of the coefficients in x. All results in the section apply with B a general bounded
operator defined over R2 for the replica model approximation in section 2.2 and for B with
sufficiently smooth coefficients in the approximation by a 2× 2 system in section 2.3.

2.1. Time evolution. We start by defining the replica model and the corresponding evo-
lution operator of H(τ). We define our Hilbert space of electronic states H := L2(R2;C2)
with the standard L2 norm ‖·‖. The time evolution operator is the operator U(τ) satisfying

i∂τU(τ) = H(τ)U(τ)(2.8)

U(0) = I.

A useful formalism to analyze such problems consists in doubling the number of time
variables and introducing [14, 20, 25]

He(t) = H(t)− i∂t
with an extended solution given by

ψ̃(x, t, τ) = e−iHe(t)τ ψ̃(x, t, 0).

The solution to the original problem is then given by ψ(x, τ) = ψ̃(x, t, τ)|t=τ . We also

observe that for Heϕ = λϕ, then ψ̃(x, t, τ) = e−iλτϕ(x, t) gives us a solution, ψ(x, τ) =
e−iλτϕ(x, τ). ϕ is 2π periodic in time, as can be seen by a simple Fourier transform of the
eigenproblem. We will then take advantage of the periodicity of the driving laser to write
a Fourier representation of H(τ) over the Hilbert space

Ĥ := L2(R2;Z⊗ C2),

which we call Ĥ [23]. We define Ĥ over Ĥ by

(2.9) [Ĥϕ̂]n = (n+D · σ)ϕn + εB(y)ϕn+1 + εB∗(y)ϕn−1,

where we used ϕ̂ = (· · · , ϕ1, ϕ0, ϕ−1, · · · )t ∈ Ĥ as a representation of the Fourier modes,
ϕ(x, t) =

∑
` ϕ`(x)eit`. We then verify that

Ĥm,n =
1

2π

∫ 2π

0
e−imtHe(t)e

intdt
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and that

He(t)ϕ(x, t) =
∑
`

eimtĤm,m+`ϕ`(x) ∀m ∈ Z.

In other words, Ĥ is the Fourier transform of the extended operator He restricted to

periodic functions. When H(τ) is independent of time, then the spectrum of He or Ĥ is

nothing but the union of the shifted copies of that of H by any integer. When Ĥ is not
block diagonal (for us, when ε 6= 0), then these shifted copies interact and develop a more
complex spectrum.

For O an arbitrary operator over Ĥ, we denote the operator [O]nm : H → H by [O]nmψ =
[O(em ⊗ ψ)]n for [em]n = δnm for n,m ∈ Z (the standard basis). We find the evolution
operator is:

U(τ) :=
∑
k

[e−iτĤ ]0k.

Observe that [e−iτĤ ]mk = ei`τ [e−iτĤ ]m+`,k+`. We can then quite easily see this is the
evolution operator:

i∂τU(τ) =
∑
k

[Ĥe−iτĤ ]0k =
∑
k,`

Ĥ0`[e
−iτĤ ]`k =

(∑
`

Ĥ0`e
−i`τ

)
U(τ) = H(τ)U(τ).

This is thus the evolution operator on the domain of H(τ).

2.2. Replica Model Approximations. Because the Fourier couplings εB(y) are small,

Fourier modes interact weakly with each other. We thus truncate Ĥ in Fourier modes to
help us build an approximate evolution operator. If S ⊂ Z, we define

ĤS = L2(R2;S ⊗ C2)

and the embedding map ES : ĤS → Ĥ by [ESψ]` = ψ`δ`∈S . Then we define ĤS =

E∗SĤES . In the physics literature, each of the matrix blocks is called a replica. The Fourier

representation ĤS is called a replica model [19]. Typically we will be interested in sets of
the form

Sn := {−n, · · · , n},
corresponding to the (2n+1)− replica model, though for the gap at 1/2 in the quasi-energy
spectrum, we would use the following replicas:

S(1/2)
n := {−n+ 1, · · · , n}.

For brevity, we will denote Ĥn = ĤSn . For n = 1 for example, we have the edge Hamiltonian

(2.10) Ĥ1 =

1 +D · σ εB∗(y) O
εB(y) D · σ εB∗(y)
O εB(y) −1 +D · σ

 .
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Note that there are 3 × 3 blocks, and so this is called the 3-replica model. For n = 0, we

simply have Ĥ0 = D · σ, which corresponds to the ungapped bulk graphene Dirac point.
We write the approximate evolution operator:

(2.11) Un(τ) =
∑
k∈Sn

[e−iτĤn ]0k.

We wish to emphasize this approximate evolution is for arbitrary states

ψ ∈ Dom(H(τ)).

Theorem 2.1. We have for n ≥ 0,

(2.12) ‖U(τ)− Un(τ)‖op ≤
2

(n+ 1)!
(2‖B‖opετ)n+1.

Proof. This is a standard application of the Duhamel principle. We define the linear map
(or infinite matrix) N : CZ → CZ by Nij = jδij , and I be the identity matrix. We define
the coupling matrix and the block diagonal components as follows:

Ĥ ′ := N ⊗ I2 + I ⊗D · σ, B̂ := ε−1(Ĥ − Ĥ ′).
I2 is the 2 × 2 identity matrix. Let Pn = ESnE∗Sn be the projection onto Sn replicas over

the space Ĥ. We rewrite our replica approximation slightly:

Ĥ[n] := Ĥ ′ + εPnB̂Pn.

This corresponds to Ĥn, simply extended to leave the diagonal block entries unchanged.
Note that this does not modify the evolution operator:

Un(τ) =
∑
k∈Sn

[e−iτĤ[n]]0k.

We define

Vn = B̂ − PnB̂Pn.
Duhamel’s principle then gives us:

U(τ) =
∑
k

[
e−iτĤ[n] +

ε

i

∫ τ

0
e−i(τ−τn)Ĥ[n]Vne

−iτnĤdτn

]
0k

.

We thus have

(2.13) U(τ)− Un(τ) =
∑
k

ε

i

∫ τ

0

[
e−i(τ−τn)Ĥ[n]Vne

−iτnĤ
]

0k

dτn.

Using Duhamel’s principle yet again, we notice we have the general formula (` > 0):

e−isĤ[`] = e−isĤ[`−1] +
ε

i

∫ s

0
e−i(s−s

′)Ĥ[`−1]V`−1e
−is′Ĥds′.
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We will wish to apply this sequentially. To do this, we notice that

P0e
−isĤ[`]V` = P0

(
e−isĤ[`−1] +

ε

i

∫ s

0
e−i(s−s

′)Ĥ[`−1]V`−1e
−is′Ĥ[`]ds′

)
V`

= P0
ε

i

∫ s

0
e−i(s−s

′)Ĥ[`−1]V`−1e
−is′Ĥ[`]ds′V`,

(2.14)

since P0e
−isĤ[`−1]V` = 0. Applying (2.14) in (2.13), we obtain:

U(τ)− Un(τ) = (−iε)n+1
∑
k

∫ τ

0

∫ τ0

0

∫ τ1

0
· · ·
∫ τn−1

0

×
[
e−i(τ−

∑n
j=0 τj)Ĥ0V0

n∏
`=1

(
e−iτ`−1Ĥ[`]V`

)
e−iτnĤ

]
0k

dτ1 · · · dτn.
(2.15)

Here we use the (ordered) product notation for matrices A`:
∏n
`=1A` = A1A2 · · ·An. We

let

Γ(n) := e−i(τ−
∑n
j=0 τj)Ĥ0V0

n∏
`=1

(
e−iτ`−1Ĥ[`]V`

)
.

Then Γ
(n)
0` terms only are non-zero for ` ∈ ±(n+ 1), and hence∑

k

[Γ(n)e−iτnĤ ]0k =
∑
k

∑
`∈±(n+1)

[Γ(n)]0`[e
−iτnĤ ]`k

=
∑
k

∑
`∈±(n+1)

[Γ(n)]0`[e
−iτnĤ ]0,k−`e

−i`τn =
∑

`∈±(n+1)

[Γ(n)]0`e
−i`τnU(τ).

Now ‖Γ(n)‖op ≤ (2‖B‖op)n+1, and hence

‖U(τ)−Un(τ)‖op ≤ 2(2‖B‖opε)
n+1

∫ τ

0

∫ τ0

0
· · ·
∫ τn−1

0
dτ0 · · · dτn =

2

(n+ 1)!
(2‖B‖opετ)n+1.

The theorem statement follows. �

The replica model Ĥn may in fact be used to describe the evolution up to a timescale
τ ∼ ε−(n+1) since H(τ) is periodic. To see this, we let τ = 2πN + τ ′ for 0 ≤ τ ′ < 2π and
N ∈ N, and define

U ′n(τ) = Un(τ ′)[Un(2π)]N .

Note that Un defined in (2.11) is not a unitary operator so that U ′n(τ) is not quite Un(τ).
Likewise, by unitarity of U(τ) and periodicity of H(τ),

U(τ) = U(τ ′)[U(2π)]N .

Then we find:

Theorem 2.2. Let cn =
2(4π‖B‖op)n+1

2π(n+1)! . For the system defined as above,

(2.16) ‖U(τ)− U ′n(τ)‖op ≤ cn(τ + 1)εn+1 · ecnτεn+1
.
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Proof. We compute

U(τ)− U ′n(τ) = (U(τ ′)− Un(τ ′))UN (2π) + Un(τ ′)(UN (2π)− UNn (2π)).

The first term is bounded in operator norm by 2πcnε
n+1 by the previous theorem and

unitarity of U . From the above theorem, we find that ‖Un(2π)‖ ≤ 1 + (2πcn)n+1. The
second term is Un(τ ′) times

xN − yN =

N∑
`=1

xN−`(x− y)y`−1, for x = U(2π) and y = Un(2π).

Thus, still using the previous theorem and the bound on ‖Un(2π)‖, U(τ)−Un(τ) is bounded

in operator norm by N2πcnε
n+1eN2πcnεn+1

, which concludes the proof. �

Both Un and U ′n are built only out of the n-replica model. The above approximation
result on U ′n captures the evolution U(τ) up to the time scale τ ∼ ε−(n+1).

Let us now consider the approximation of observations such as the conductivity in (1.2).
The derivation is entirely formal as it involve traces that may not be defined at this level
of generality (see the next section).

Let us construct a functional g(Ĥn) and consider ψ ∈ H such that

(2.17) ψ =
∑
j

[g(Ĥn)ψ̂]j

for ψ̂ ∈ Ĥn. Since Ĥn will be shown to have a spectral gap in some cases, g(Ĥn) plays the
role of ϕ′(H) in (1.2). The evolution of such a wavefield is then given by

U(τ)ψ =
∑
k

[e−iτĤ ]0k
∑
j

[g(Ĥn)ψ̂]j =
∑
`,j

ei`τ [e−iτĤ ]`j [g(Ĥn)ψ̂]j

=
∑
`

ei`τ [e−iτĤESng(Ĥn)ψ̂]`.

A natural approximation of the evolution is then given in the extended space by

Ũn(τ)ψ̂ :=
∑
`

ei`τ [e−iτĤng(Ĥn)ψ̂]`.

By a Duhamel argument similar to those above, we find that

‖U(τ)ψ − Ũn(τ)ψ̂‖op . ετ

where ψ̂, ψ are related by (2.17). If we considered the density of states adapted to the

low-energy range of Ĥn and given by

ρ =
∑
`,k

[g(Ĥn)]`,k,
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then to leading order we have its evolution ρ(τ) = U(τ)ρU∗(τ) in the Heisenberg formalism
approximated by

ρ(τ) ∼
∑
`,k

[Ũn(τ)g(Ĥn)Ũ∗n(τ)]`k =
∑
`,k

[g(Ĥn)]`,ke
iτ(`−k).

Then the time average of the observable i[H(τ), P ] would be presented by

σI = −
∫ 2π

0
Tr i[H(τ), P ]ρ(τ)dτ = Tr i[Ĥn, P ]g(Ĥn).

The above results justify replacing the extended operator Ĥ by its approximation Ĥn in
the analysis of the evolution operator U(τ) (justified rigorously) as well as in the evolution
of observations of interest such as interface conductivities (justified heuristically).

It turns out that yet a simpler (effective) 2× 2 system also provides good accuracy. We
now consider its properties.

2.3. Approximate 2 × 2 system. The replica model with n = 1 offers an accuracy of
order ε2 on the unitary evolution. However, it involves a 6× 6 system whose off-diagonal
components are small (themselves of order ε2). In this section, we approximate the n = 1
replica model by a 2× 2 system of a form similar to (1.1) and with a (small) energy gap.

We define an approximate 2× 2 system by:

h = D · σ + ε2h1, h1 := B∗B −BB∗.(2.18)

We also need to assume B(y) is smooth to obtain a meaningful approximation. In partic-
ular, if χ and χd have supports a distance d apart, then we assume that

(2.19) ‖χ(D · σ)Bχd(D · σ)‖op ≤ ‖B‖ope
−cε−1d.

To make sense of this estimate, we recall the rescaling (2.5). In the original units, the
requirement is that m(y) be sufficiently regular. For instance, we verify that the above
relation holds when m(y) = −1(−∞,0] ∗ φ(x) + 1[0,∞) ∗ φ(x) for some Gaussian φ.

We define the 2× 2 evolution:

Uh(τ) := e−iτh.

Note that h is the effective Hamiltonian obtained (formally) in high-frequency analyses of
periodically driven system; see, e.g. [12] or [5, Section 6].

We no longer expect U(τ) − Uh(τ) to be small in operator norm. Mathematically, the
unbounded operators ±1 +D · σ need to be applied during the elimination procedure and
this requires regularity. We first consider the evolution of density observables of the form
gα(h) for g a smooth function supported on [−c0, c0] for some c0 > 0 while gα(x) = g(xε−α)
with α > 0. A periodic ε scaled fluctuation remains on top of this, which we define by

uh(τ) = (e−iτ − 1)B∗ + (eiτ − 1)B.

We then obtain the following theorem:
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Theorem 2.3. Assume (2.19) and let h and gα be defined as above. Let β = α if α < 1,
and β < 1 if α ≥ 1. Then if we chose ε > 0 sufficiently small, we obtain

‖
(
U(τ)− Uh(τ)− εuh(τ)

)
gα(h)‖op ≤ Cβ(τ + 1)ε1+β,

for τ < cβε
−(1+β). cβ and Cβ depend on ‖B‖op, c, g, and β. Cβ → ∞ and cβ → 0 as

β → 1.

Remark 2.1. Observe that as α→ 0, then gα has support of order 1, and thus is coupling
to higher order frequencies. The 2 × 2 system breaks down in this case. Note also that
(U(τ)− Uh(τ)− εuh(τ))ψ is small for ψ in the range of gα(h). This will be generalized in
a corollary below.

Proof. We can restrict our attention to the case τ < 2π. consider

δ := sup
0≤τ<2π

‖[U(τ)− Uh(τ)− εuh(τ)]gα(h)‖op.

It is easy to see δ = O(ετ) by a Duhamel argument on the first term. Then we let
τ = 2πN + τ ′, 0 ≤ τ ′ < 2π.

‖[U(τ)− Uh(τ)− εuh(τ)]gα(h)‖ ≤ ‖U(2π)N (U(τ ′)− Uh(τ
′)− εuh(τ))gα(h)‖op

+
N−1∑
k=0

‖U(2π)k(U(2π)− Uh(2π))Uh(τ − 2π(1 + k))gα(h)‖op

≤ δ + sup
τ̃
N‖(U(2π)− Uh(2π))gα,τ̃ (h)‖op,

where gα,τ (x) = e−iτxgα(h). It becomes clear from the arguments in the proof that the
e−iτx factor makes no difference, so we ignore it and focus on bounding for τ ≤ 2π

‖
(
U(τ)− Uh(τ)− εuh(τ)

)
gα(h)‖op.

We choose to use the approximation of the evolution:

Ũ1(τ) :=
∑
k

eikτ [e−iτĤ1 ]k0.

We have

‖Ũ1(τ)− U(τ)‖op . ε
2

as in the previous theorem. It therefore suffices to bound ‖(Ũ1(τ)−Uh(τ)−εuh(τ))gα(h)‖op.
We first show

Lemma 2.1. For f ∈ C3
0 (R), β < 2, and fβ(x) := f(xε−β), we have the regularity result

(2.20) ‖fβ(h)− fβ(D · σ)‖op . ε2−β.

Proof. For this, we briefly recall the tools to apply the Helffer-Sjöstrand formula [6]; see
also [1, 3] for similar contexts. We let

∂̄ =
1

2
(∂x + i∂y).
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We define the almost analytic extension with z = x+ iy

f̃(z) = (f(x) + iyf ′(x)− 1

2
y2f ′′(x))λ(y)

where λ(y) is smooth in y supported on [−2, 2], and λ(y) = 1 on [−1, 1]. Then the Helffer-
Sjöstrand formula gives for self-adjoint operator A:

f(A) = − 1

π

∫
C
∂̄f̃(z)(z −A)−1dz,

with here dz = dxdy. Observe that

∂̄f̃(z) = −1

4
y2f (3)(x)λ(y)+

1

2
(f(x)+iyf ′(x)−1

2
y2f ′′(x))λ′(y) and

∫
C
|∂̄f̃(z)|·|y|−2dz . 1.

We find

fβ(h)− fβ(D · σ) =

∫
C
∂̄f̃(z)

[
(z − ε−βh)−1 − (z − ε−βD · σ)−1

]
dz

= −ε2−β
∫
C
∂̄f̃(z)

[
(z − ε−βh)−1h1(z − ε−βD · σ)−1

]
dz,

and hence

‖fβ(h)− fβ(D · σ)‖op . ε
2−β.

�

Lemma 2.2. Let β be defined as in the theorem statement. Then

(2.21) ‖Uh(τ)gα(h)− [e−iτĤ1χβ(Ĥ1)]00gα(h)‖op . ε2.

Proof. We begin by taking χβ(x) = χ(xε−β) where χ is smooth, supported on [−2c0, 2c0],
and χ(x) = 1 on the support of g. We further define θ such that it is supported on
[−3c0, 3c0] and θ(x) = 1 on the support of χ. Likewise we have θβ(x) = θ(xε−β). We
observe

gα(h) = χβ(h)gα(h), χβ(h) = θβ(h)χβ(h).

We define

h̃1(z) := B(zεβ − [1 +D · σ])−1B∗ +B∗(zεβ + [1−D · σ])−1B.

We define uτ (x) = e−iτx and G = {z : |y| > ε2}, as we wish to remove the strip |y| < ε2 so
that we can apply the regularity result in Lemma 2.1. We then have

uτ ◦χβ(h)− [uτ ◦χβ(Ĥ1)]00 =

∫
G
uτ (z)∂̄χ̃(z)

[
(z−ε−βh)−1− [(z−ε−βĤ1)−1]00

]
dz+O(ε2).
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By Schur complements, we obtain∫
G
uτ (z)∂̄χ̃(z)

[
(z − ε−βh)−1 − [(z − ε−βĤ1)−1]00

]
dz

=

∫
G
uτ (z)∂̄χ̃(z)

[
(z − ε−βD · σ − ε2−βh1)−1 − (z − ε−βD · σ − ε2−β h̃1(z))−1

]
dz

= ε2−β
∫
G
uτ (z)∂̄χ̃(z)

[
(z − ε−βD · σ − ε2−β h̃1(z))−1[h̃1(z)− h1](z − ε−βh)−1

]
dz.

We thus have:

([uτ ◦ χβ(h)− [uτ ◦ χβ(Ĥ1)]00)gα(h)

= ε2−β
∫
G
uτ (z)∂̄χ̃(z)

[
(z − ε−βD · σ − ε2−β h̃1(z))−1[h̃1(z)− h1]χβ(h)(z − ε−βh)−1

]
gα(h)dz

+O(ε2).

Using (2.19), we obtain

‖(uτ ◦ χβ(h)− [uτ ◦ χβ(H1)]00)gα(h)‖op . ε
2

+ ε2−β sup
z∈G
‖(h̃1(z)− h1)χβ(D · σ)‖op.

(2.22)

We have

(h̃1(z)− h1)χβ(D · σ) = B
(
I + (zεβ − [1 +D · σ])−1

)
B∗χβ(D · σ)

+B∗
(
−I + (zεβ − [−1 +D · σ])−1

)
Bχβ(D · σ).

We show the bound on one of these terms as the argument is identical. Let d be the
distance between {x : χ(x) = 1} and {x : θ(x) = 1}c, which by definition is non-zero. We
let

(2.23) ω(x) = [1 + (zεβ − 1− x)−1]θβ(x).

Considering x bounded away from −1, we observe that |ω(x)| . εβ. Then by (2.19):

B
(
I + (zεβ−[1 +D · σ])−1

)
B∗χβ(D · σ)

= Bω(D · σ)B∗χβ(D · σ) +O(e−cdε
β−1 log(ε−1)).

Therefore, by (2.23),

‖(h̃1(z)− h1)χβ(D · σ)‖op . ε
β.

Putting this bound back into (2.22) we obtain

‖(uτ ◦ χβ(h)− [uτ ◦ χβ(Ĥ1)]00)gα(h)‖op . ε
2.

This concludes our proof. �
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We therefore have by the above two lemmas with τ ≤ 2π:

(Ũ1(τ)− Uh(τ))gα(h) =

(
[e−iτĤ1 ]00[χβ(Ĥ1)]00 − [uτ ◦ χβ(Ĥ1)]00

)
gα(h)

+
∑
k∈±1

eikτ [e−iτĤ1 ]k0χβ(D · σ)gα(h) +O(ε2)

= −
∑
k∈±1

[e−iτĤ1 ]0k[χβ(Ĥ1)]k0gα(h) +
∑
k∈±1

eikτ [e−iτĤ1 ]k0χβ(D · σ)gα(h) +O(ε2).

(2.24)

By a simple Duhamel argument, the second term can be bounded using

[e−iτĤ1 ]k0χβ(D · σ) =

[
ε

i

∫ τ

0
e−i(τ−s)(D·σ+k)B̂e−isD·σds

]
k0

χβ(D · σ) +O(ε2).

By the same regularity arguments as before, letting B1 = B∗ and B−1 = B, we obtain∑
k∈±1

eikτ [e−iτH1 ]k0χβ(D · σ) = ε
∑
k∈±1

(e−iτk − 1)θβ(D · σ)Bkχβ(D · σ) +O(ε1+β).

We observe

εθβ(D · σ)Bkχβ(D · σ)gα(h) = εBkgα(h) +O(ε3−β).

Therefore our fluctuation term is given by

uh(τ) =
∑
k∈±1

(1− e−iτk)Bk.

For the first term on the right-hand side of (2.24), [e−iτH1 ]k0 = O(ε) by a simple application
of Dumahel’s principle. We have by Schur complements

[χβ(H1)]k0 = ε2−β
∫
C
∂̄χ̃(z)(z − ε−β(k +D · σ))−1Bk(z − ε−βD · σ − ε2−β h̃1(z))−1dz.

We therefore have ∑
k∈±1

[e−iτĤ1 ]0k[χβ(Ĥ1)]k0gα(h) = O(ε3−β).

Putting all the collected error bounds together, we obtain for τ ∈ [0, 2π) the result:

‖
(
U(τ)− Uh(τ)− εuh(τ)

)
gα(h)‖op . ε

β+1.

The theorem result follows. �

Given the rescaling 2.5, an original wave function of the form ψ(x̃) in the rescaled units
will be εψ(εx). This motivates the following corollary when we are interested in considering
wave packets:

Corollary 2.1. Suppose we have a wave function ψ ∈ C∞c (R2;C2). Denote

ψα(x) = εαψ(xεα)
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for α > 0. Then for any β < min{α, 1} and s = 2β−α
α−β , we have

‖(U(τ)− Uh(τ)− εuh(τ))ψα‖L2 ≤ Cβ,α(τ + 1)ε1+β‖ψ‖Hs .

This holds for τ < cβ,αε
−(1+β), where cβ,α → 0 and Cβ,α →∞ as β → 1.

Note that in dimension d = 2, ‖ψα‖L2(R2;C2) = ‖ψ‖L2(R2;C2) independently of α and ε.

Proof. We note that ψ̂α(ξ) = ε−αψ̂(ξε−α). Let β < α and consider χ supported on [−c0, c0]
for some c0 > 0 and χ(x) = 1 on 1

2 [−c0, c0], χ ≥ 0. Then we have a partition of unity using
χβ and 1− χβ. We observe

‖(1− χβ)(D · σ)ψα‖L2 ≤
(∫
|ξ|>εβc0/2

|ψ̂α(ξ)|2dξ
)1/2

≤ εα−β
(∫
|ξ|>ε(β−α)c0/2

|ψ̂(ξ)|2dξ
)1/2

. ε(α−β)(1+s)‖ψ‖Hs .

Using Lemma 2.1 and a basic Duhamel argument, we have

‖(U(τ)− Uh(τ)− εuh(τ))(χβ(D · σ)− χβ(h))‖op . ε
3−β.

If we write

(U(τ)−Uh(τ)−εuh(τ))ψα =

(
U(τ)−Uh(τ)−εuh(τ)

)
·
(

(1−χβ)(D·σ)+χβ(h)+[χβ(D·σ)−χβ(h)]

)
ψα,

the theorem statement instantly follows from the above estimates and Theorem 2.3. �

As before, we use a heuristic argument based on the evolution bounds to justify the
current formula for densities corresponding to h. Let

ρ = gα(h).

Then we have up to O(ε1+β)

ρ(τ) = (Uh(τ) + εuh(τ))ρ(U∗h (τ) + εu∗h(τ))

= ρ+ ε(uh(τ)ρ+ ρu∗h(τ)) +O(ε2).

Time averaged over a period of the driving force, we then obtain the current

σI = Tr i[h, P ]gα(h).

This corresponds to a current of the Dirac model with mass at an interface, which is
analyzed in [1]. This shall be considered more in the next section.
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3. Replica Topologies

The evolution operator U(τ) is well-approximated for large but not-too-large times ei-
ther by (2n+ 1)−replica models or by the central 2× 2 system considered in the preceding
section. In this section, we show that all these levels of approximations involve Hamiltoni-
ans with precise topological invariants of the form of bulk-difference invariants or interface
conductivities. Moreover, the invariants strongly depend on n with values that diverge as
n → ∞. This gives an example of different levels of approximation of the unitary U(τ)
displaying different values of the topological invariant.

Following [3], we first compute the bulk-difference invariants of the different approxima-
tions in section 3.1 and then show that the bulk-interface correspondence in [3] applies to
such approximations in section 3.2.

3.1. Bulk calculations. We first focus on calculating the bulk invariants corresponding

to Ĥn from the previous section. We define the bulk infinite matrix for the Bloch wave ξ:

(Ĥψ)n = (n+ ξσ)ψn + ε(Bψn−1 +B∗ψn+1).

Here, ξσ ≡ ξ · σ = ξ1σ1 + ξ2σ2 and Ĥ = Ĥ(ξ).

The truncated Hamiltonians are simply projecting Ĥ onto Sn replicas, i.e. Ĥn = E∗nĤEn,
where here we define the embedding En : `2(Sn⊗C2)→ `2(Z⊗C2) in parallel to before by

(Enψ)k = δ|k|≤nψk,

where ψ = (ψn, · · · , ψ−n), ψj ∈ C2. For n = 1, we have the 3 = (2n + 1)−replica 6 × 6
model 1 + ξσ εB∗ 0

εB ξσ εB∗

0 εB −1 + ξσ

ψ = Eψ.

We consider

Bm :=
1

2
(1 +m)

(
0 1
0 0

)
+

1

2
(1−m)

(
0 0
1 0

)
,

with m a constant mass term. We will also use B = Bm. We will focus on m sufficiently
close to ±1 as analyzing general m 6= 0 makes it difficult to prove the existence of a gap for

Ĥn. In more physical terms, we assume the laser is close to circularly polarized, and only
allow slight ellipticity. We shall show that a gap opens at E = 0 (See Figure 1 below).

As a consequence, we will be able to define a bulk-difference invariant. To do this, we

define the eigenpairs of Ĥn(ξ) by (h(i), ψ(i)), 1 ≤ i ≤ 2(2n+ 1). We have 2n+ 1 branches

h(i) > 0 for i > 2n+ 1 and h(i) < 0 for i ≤ 2n+ 1. The calculation of the invariant under
the assumption there is a gap in the vicinity of E = 0 is given by [3, Equ. (23)]

(3.1) Wn =
i

8π2

∫
Tn(ξ)d2ξ
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(a) Here we plot the bulk band structure of

Ĥ2 on a line-cut through ξ2 = 0. We see a
sequence of shrinking gaps at E = 0.

(b) Band structure of Ĥ1.

Figure 1. Cross-section for Ĥ2 and two-dimensional band structure for
Ĥ1.

with

(3.2) Tn(ξ) = 4πi
∑
i<j

signh(i) − signh(j)

(h(i) − h(j))2
=(〈ψ(i), ∂1Ĥn(ξ)ψ(j)〉〈ψ(j), ∂2Ĥn(ξ)ψ(i)〉).

This Kubo-type formula is arguably one of the simplest to use in the computation of the
invariant. We will however also need to use the form

Wn = i
∑

j>2n+1

∫
R2

d(ψ(j), dψ(j)),

see [4, 11].
This invariant is not guaranteed to be integer valued as it is defined with an integration

over a non-compact cycle R2. One way to remedy this situation is to construct a bulk-
difference invariant [3].

We consider a value m0 near 1, and denote W+
n = Wn for m = m0 while we denote

W−n = Wn when m = −m0. We now follow the gluing procedure in [3], to which we
refer for details, to define the bulk-difference invariant. The projections onto the negative

spectrum Π±(ξ) of the corresponding Hamiltonians Ĥn(ξ) with mass term m = ±m0 are
easily seen to be independent of ε and m as |ξ| → ∞. Gluing the two planes ξ ∈ R2, each
projected on half of a two-dimensional sphere S2, along the circle at infinity, we thus obtain
a projector defined on a compact manifold (a sphere). This shows that

W d
n = W−n −W+

n

is well-defined as an integer-valued bulk-difference invariant on the sphere. Since Ĥn’s gap
does not change as m varies near ±1 (the existence of which has yet to be shown), the
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invariant does not change as m0 varies continuously near 1 and ε varies continuously in
(0, ε0) for ε0 sufficiently small.

Theorem 3.1. For m0 sufficiently close to 1 and 0 < ε sufficiently small, the bulk-
difference invariant is well defined (i.e. there is a bulk gap at E = 0), and is given
by

(3.3) W d
n = 1− 2n(n+ 1).

Proof. At ε = 0, we observe for the unperturbed problem that

〈ψ(i), ∂kĤn(ξ)ψ(j)〉
are purely imaginary so that the product of two such terms is purely real and the imaginary
part in (3.2) vanishes. The terms involving the imaginary parts are therefore vanishingly

small with ε. The only way to get a non-vanishing invariant is therefore when h(i)−h(j) is
small (with one positive and the other one negative). This occurs only for the two closest
eigenvalue sheets about 0, and only when |ξ| is close to ` for 0 ≤ ` ≤ n (see Fig. 1). Since
the invariant does not change under continuous deformations that leave the gap open, we
will consider the limit ε→ 0 to compute the invariants. In particular, each ring ` (or ball
when ` = 0) in the limit have a bulk-difference invariant ω` of their own that contributes
to the total bulk-difference invariant W d

n . We will show that ω0 = 1, ω` = −4` when l ≥ 1,
and

W d
n =

n∑
`=0

ω`.

We break the proof into three steps, which we outline as follows:

(1) For each ring (or ball) 0 ≤ ` ≤ n, we find a 2× 2 Hamiltonian H2×2 that controls
the spectra to leading order in the gap size near |ξ| ∼ `. When ` 6= 0, we first
introduce a 4× 4 Hamiltonian H4×4.

(2) For the m range of interest, we verify a gap opening which scales as ε2` near
|ξ| ∼ ` 6= 0, and as ε2 near |ξ| ∼ 0.

(3) We then compute the bulk-difference invariant for H2×2 in the small ε limit ω`, and
show it corresponds to the contribution to W d

n from the ring in the small ε limit,
W d
n =

∑n
`=0 ω`. For ` 6= 0, this is done via H4×4.

We will focus primarily on the computations for ` 6= 0 as they are the most intricate, and
mention briefly at the end how to compute the contribution ` = 0. We also emphasize again
that the term replica refers to the degrees of freedom of the vector space corresponding
to a specific Fourier mode ` ∈ Sn. In particular, a single replica ` corresponds to vectors
e` ⊗ ψ` ∈ CSn⊗{1,2}, e` a standard basis vector in CSn and ψ` ∈ C2.

Step 1: Constructing H2×2 and H4×4.
We consider |ξ| ∼ ` 6= 0. When building our leading order Hamiltonian approximations,

we use that the spectrum is symmetric across E = 0 and eigenvalues come in pairs ±E.
To verify this, we let Θ be the matrix mapping CSn to itself defined by Θij = δi+j . Then
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we let Θ′ = Θ⊗ σ2. We can then compute

Θ′Ĥn(ξ)Θ′ = −Ĥn(ξ̄).

However, these two operators have the same spectrum by simple conjugation so that the
spectrum is symmetric across E = 0.

We next wish to verify that there is a gap locally and we will verify the gap scales as
ε2`. To do this, we consider the eigenvalues ±E near 0. When perturbation is turned off,
the eigenstates correspond to replica ` and −`. When the perturbation is turned on, we
will see the gap is opened by coupling between these two replicas via interaction through
all the replicas in between (i.e. −` + 1, · · · ` − 1). To build H4×4, we construct a leading
order coupling of the ±` replicas. We use the following expression:

ψk = ε(k − E + ξ · σ)−1(δk<nBψk+1 + δk>−nB
∗ψk−1), |k| 6= `(3.4)

to find the leading order coupling between blocks ±`:
ψ`−1 = −ε2`−1(`− 1− E + ξσ)−1B∗ . . . (−`+ 1− E + ξσ)−1B∗ψ−` +O(ε2`).

Using a similar equation for ψ1−`, we apply (3.4) until only ψ` and ψ−` terms remain, and
get the approximate eigenvalue problem up to O(ε2`+1) given by

Eψ−`,` = H4×4ψ`,−`

H4×4 =

(
H`,` H∗−`,`
H−`,` H−`,−`

)
H±`,±` = ±`+ ξσ +K±`

H−`,` = −ε2`
( `−1∏
k=1−`

B(k + ξσ)−1
)
B.

Here K±` = K±`(ξ) include all terms in the expansion of order εj for 1 ≤ j ≤ 2`. H−`,`
is the leading order coupling term between replicas −` and `. We keep in mind that the
point of this Hamiltonian is to approximate the two eigenvalues nearest 0; the other two
are not of interest for computing invariants as their contribution to Tn(ξ) is negligible. As
a consequence, we build a second Hamiltonian by projecting onto the two eigenstates with
energies near 0. Let

(3.5) ṽ1 =
1√
2

(
ξ̂
1

)
, ṽ2 =

1√
2

(
−ξ̂
1

)
, v1 =

(
0
1

)
⊗ ṽ1, and v2 =

(
1
0

)
⊗ ṽ2.

Then our reduced matrix to leading orders using η = ε−2`ṽ∗1H−`,`ṽ2 is given by

H2×2 = {v∗iH4×4vj}ij =

(
`− |ξ|+ κ(ξ) ε2`η̄

ε2`η −(`− |ξ|)− κ(ξ)

)
= (`− |ξ|+ κ(ξ))σ3 + ε2`η · σ.

Here, κ(ξ) = ṽ∗1K`(ξ)ṽ1 = −ṽ∗2K−`(ξ)ṽ2. The latter values are the same by symmetry of
the spectrum about E = 0. We observe here that the term κ(ξ)σ3 cannot open a gap
without the σ1, σ2 terms as (`− |ξ|)σ3 moves across the gap in the first diagonal entry and
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the second, and dominates the influence of κ(ξ), which scales as O(ε). We note that these
terms shift the minimal gap location perturbatively away from |ξ| = `.

Step 2: Verifying local gap near |ξ| ∼ ` 6= 0 scaling as O(ε2`). We show η 6= 0 for
m = ±1, which by perturbation theory is sufficient to show that there is a local gap scaling
as O(ε2`) near the ring with radius ` for m sufficiently close to ±1. Since the result holds
for all values of l, this shows a gap opening for m sufficiently close to ±1 and 0 < ε ≤ ε0

sufficiently small. Simultaneously we will explicitly calculate η for use in Step 3.

Proposition 3.1. For any wavenumber ξ with |ξ| close to l and m = ±1, we obtain that

η = −mc(ξ)ξ̂2m` with c(ξ) =

( `−1∏
k=−`+1

|ξ|
|ξ|2 − k2

)
.

Proof. We recall and define the following notation to keep track of our choice of m:

B1 =

(
0 1
0 0

)
, B−1 =

(
0 0
1 0

)
, Λ1 =

(
0 0
0 1

)
, Λ−1 =

(
1 0
0 0

)
.

Observe that for m ∈ {±1}, BmΛm = Bm, ΛmBm = 0, and (Bm)2 = 0. We also observe

ξ · σBm = ξmΛm ξ · σΛm = ξ̄mBm

where ξ1 = ξ and ξ−1 = ξ̄. Then for γ any scalar

(γ + ξ · σ)
|ξ|

γ2 − |ξ|2
(
γ

|ξ|Bm − ξ̂mΛm

)
=

1

γ2 − |ξ|2
(
γ2Bm + γξmΛm − γξmΛm − |ξ|2Bm

)
,

and hence

(γ + ξ · σ)−1Bm =
−|ξ|
|ξ|2 − k2

(
γ

|ξ|Bm − ξ̂mΛm

)
.

Now we observe

(3.6) Bm(
γ

|ξ|Bm − ξ̂mΛm) = −ξ̂mBm.

This gives us:

Bm

`−1∏
k=−`+1

Bm(k + ξ · σ)−1Bm = cBm

`−1∏
k=−`+1

(
k

|ξ|Bm − ξ̂mΛm

)
= (−ξ̂m)2`−1cBm.(3.7)

Applying ṽ∗1 to the left and ṽ2 on the right picks up an additional phase and sign mξ̂m,
and the proposition is complete. �

Step 3: Computing bulk-difference invariants of H2×2 in the small ε limit and estimate
their contribution to the true bulk-difference invariant.

Henceforth we consider only m = ±1 as the integer-valued invariants for m near ±1 are
identical to those of m = ±1 by continuity.

Since we now know that W d
n is integer-valued as we demonstrated the presence of a

spectral gap (technically, we have not shown this for |ξ| close to 0 yet; this is done below)
and we also showed that it was independent of 0 < ε < ε0, any contribution to (3.1) that



MULTISCALE INVARIANTS OF FLOQUET TOPOLOGICAL INSULATORS 21

is small as ε→ 0 may therefore be safely ignored. By construction, the invariant of H4×4

is therefore asymptotically the only contribution to the invariant of interest in the integral
(3.1) for values of |ξ| close to l.

Continuous deformations show that we may remove K±` from H4×4 and κ from H2×2

in the invariant computations. We therefore replace the 2 × 2 and 4 × 4 Hamiltonians
respectively with

H2×2 = (`− |ξ|)σ3 −mcε2`ξ̂2m` · σ

H4×4 =

(
`+ ξσ ε(εξ̂−m)2`−1cB∗m

ε(εξ̂m)2`−1cBm −`+ ξσ

)
.

We now need to elucidate one point. The reduction from the 4×4 to the 2×2 Hamiltonians
in (3.5) depends on ξ and it is therefore not clear a priori that the invariant for the 4× 4
systems can be computed using the invariant for the 2 × 2 system. We need to verify
the invariant for H2×2 is the same as the invariant of H4×4 in the small ε limit. To do
so, we use the computation of invariants using the connections rather than the curvatures
knowing that these two computations are related by a simple application of the Stoke’s
theorem (since curvature is defined as the exterior derivative of the connection) [4, 11].

Defining V = (v1, v2) and (ϕ±,±E) as the eigenpairs of H2×2, we find to leading order
(in ε) that

H4×4V ϕ
± ≈ ±EV ϕ±.

In the computation of the bulk-difference invariant for H4×4 using an integral such as (3.1),
we can approximate the contributions for |ξ| close to ` using m = −1 by

ω` = 2i

∫
C`
d(V ϕ+, d(V ϕ+)) = 2i

∫
C`
d(ϕ+, dϕ+) + d(ϕ+, (V ∗dV )ϕ+)

where C` = {z ∈ C : |z| ∈ [` − 1/2, ` + 1/2]}. Now we wish to show the second term is 0.
That the second term above vanishes shows that the invariants, which may be computed
as line integrals of connections instead of volume integrals of curvatures [4, 11], are indeed

identical. We find: V ∗dV = ξ̂d̂̄ξ. Hence∫
C`
d(ϕ+, (V ∗dV )ϕ+) =

∫
∂C`

ξ̂dξ̂ = 0.

The final integral is zero as we integrate over two oppositely directed circles.
It finally remains to compute the invariant of the limiting 2 × 2 system. We use the

coordinates ξ = eiθ(n + ε2nr) for (r, θ) ∈ R × (0, 2π). The system becomes after dividing
by ε2`, and to leading order |ξ| = 1 + ε2`r,(

−r αe−2`iθ

αe2`iθ r

)
ϕ = (−rσ3 + α cos(2`θ)σ1 + α sin(−2`θ)σ2)ϕ = Eϕ,

for some constant α 6= 0. Consider the slightly more general family of Hamiltonians

Hp = cos(pθ + φ)σ1 + sin(pθ + φ)σ2 + τrσ3.
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We are interested in the case p = −2` and τ = −1. We find

∂1H = τσ3, ∂2H = −p sin(pθ + φ)σ1 + p cos(pθ + φ)σ2

and

[∂1H, ∂2H] = −2iτp(sin(pθ + φ)σ2 + cos(pθ + φ)σ1)

so that ∫ 2π

0
trH[∂1H, ∂2H]dθ = −8πipτ.

This result is independent of the phase φ. Note that H2 = (1 + r2)I. We thus compute
half the contribution to the ring’s bulk-difference invariant −p

2signτ when integrating

i

2π

∫ −1

8|H|3 trH[∂1H, ∂2H]dk.

Since τ = −1 above and p = −2`, we obtain

ω` = −4`

with the extra factor of 2 coming from the fact this is a bulk-difference invariant (which
we recall means computing the difference of the above integrals evaluated for m = ±1).
This concludes the computation of the contributions to the invariant coming from |ξ| ∼ l
for l ≥ 1.

The case |ξ| small. It thus remains to compute the contribution to the invariant
coming from ξ ∼ 0. We do it when n = 1 to slightly simplify notation. The generalization
to arbitrary n follows similar machinery from the previous case. We want to eliminate
non-contributing terms and write an equation for the middle component of the system1− E + ξ · σ εB∗m 0

εBm ξ · σ − E εB∗m
0 εBm −1− E + ξ · σ

 ψ1

ψ0

ψ−1

 = 0.

For ξ and E close to 0, all diagonal terms but the middle one are invertible. We obtain
the result(

−
(
εB∗m
εBm

)∗(
1− E + ξ · σ 0

0 −1− E + ξ · σ

)−1(
εB∗m
εBm

)
+ ξ · σ − E

)
ψ0 = 0.

This opens a gap, so that we now officially know that Hn has a spectral gap near E = 0
for ε small enough since the only possible remaining obstruction was for |ξ| small. The gap
close to ξ = 0 is well approximated by the system

(ξ · σ − E −mε2σ3)ψ0 = 0.

The invariant for such an operator is −sign(m)1
2 so that the bulk-difference invariant equals

ω0 = 1.
We thus obtain the two reduced systems of interest when two eigenvalues are close to

the gap E = 0. We find a contribution to the bulk-difference invariant equal to ω0 = 1
for the contribution close to |ξ| = 0 and equal to ω` = −4` for the contribution close to
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|ξ| = `. The topology of the projection onto the negative part of the energy of Hn is thus
given by the winding number (at energy E = 0)

W d
n =

n∑
`=0

ω` = 1− 4

n∑
`=1

` = 1− 2n(n+ 1).

For n = 1 (the 3−replica model) for example, we find W1 = −3. �

3.2. Interface conductivity. Let n be fixed and H = Ĥn one of the above replica models
or H = h the reduced 2×2 system defined in (2.18). Bulk-difference invariants (when m is
constant) were computed for these Hamiltonians in the preceding section. We already know
from the discussion in the introduction (or indeed from the calculations in the preceding
section) that the bulk-difference invariant for h is W d

0 = 1.
The above bulk computations translate to a quantization of an interface conductivity σI

in (1.2) when the now spatially varying mass term m(y) has different signs as |y| → ∞. We
assume that m(y) is smooth and is equal to m0 > 0 for y > y0 > 0 and equal to −m0 for
y < −y0, where m0 is sufficiently close to 1 as discussed in the previous section so that gaps
open for these values. This translates into a gap |E| > E0 for the bulk Hamiltonian with
m = ±m0. We use semiclassical calculus results derived in [3] to show that there indeed is
a well defined interface current, which is quantized according to the bulk invariants.

Many results on the correspondence between interface and bulk invariants are available
in the literature both for time-dependent (Floquet) topological insulators or not; see for
instance [8, 13, 21, 24, 28].

We can also write

H = D · γ0 + εγ(y)

for γ0 = σ ⊗ In, σ = (σ1, σ2). For y < −y0, γ = γ− and y > y0, γ = γ+. Here we use

γ = ε−1(H −D · γ0).

Hence γ(y) has constant coefficients away from the interface, and γ(y) is smooth across the
interface. We know the corresponding constant coefficient Hamiltonians have bulk gaps as
shown in the previous section. This is the structure of PDEs considered in [3], which we
will apply here to establish the bulk-interface correspondence for H.

We define P as a smooth non-decreasing function of x ∈ R such that P (x) = 0 for
x ≤ −x0 < 0 and P (x) = 1 for x ≥ x0. We let ϕ be a smooth function with ϕ(u) = 0 for
u < −E1 and ϕ(u) = 1 for u > E1, where 0 < E1 < E0 and [−E0, E0] is within the bulk
gap. We then define the edge conductivity:

σI = Tr i[H,P ]ϕ′(H).

The main result of this section will then be the bulk-interface correspondence:

Theorem 3.2. For the system defined as above and ε sufficiently small, we have the bulk-
interface correspondence

2πσI = −W d
n .
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Proof. The proof relies on verifying the conditions of Proposition 4.7 (quantization of σI)
and Corollary 4.15 (bulk-interface correspondence) of [3]. Most of the conditions are trivial,
but we do need to verify conditions on our operator done through operator Weyl symbols.
A matrix valued operator A with values in M2(2n+1) (2(2n+ 1)× 2(2n+ 1) matrices) can

be represented in terms of its Weyl symbol a(x, ξ) ∈ S ′(R2 × R2;M2(2n+1)):

A = Op(a), Op(a)ψ(x) =
1

(2π)2

∫
R2×R2

ei(x−y)·ξa(
x+ y

2
, ξ)ψ(y)dydξ.

To apply Proposition 4.7 of [3] to obtain quantization of σI , we first need to show (I+H2)−1

has Weyl symbol with appropriate decay. Let a be the symbol of I +H2. We must show

(I +H2)−1 = Op(ã)

for some ã ∈ S−2. Here Sm is defined as the Fréchet space of functions satisfying

(3.8) |∂(α,β)a(x, ξ)| ≤ Cα,β〈ξ〉m−β.
To verify the form of (I + H2)−1, we refer to the argument from Equation (8.10) in [7]
and the application of Beals’ criteria (Proposition 8.3 in [7]) to verify ã ∈ S0. This also
provides us an operator R = Op(r) with r ∈ S−1 such that

A−1 = Op(ã) = Op(a−1)−Op(ã)R.

R is thus a smoothing operator, and the parametrix Op(a−1) dominates the decay esti-
mates. Hence ã ∈ S−2 since a−1 ∈ S−2.

The conditions (h1)-(h2) for Corollary 4.15 of [3] are trivially verifiable using the symbol
of H, ξ · γ0 + γ(y). Thus we obtain the bulk-interface correspondence, which concludes the
proof. �

In other words, we find that 2πσI(Ĥn) = −1 + 2n(n+ 1). This is confirmed numerically
for n = 1 as well as for the central gap corresponding to n = 0 (see Figure 2). For n = 0,
recall that h = D · σ − ε2m(y)σ3 after a bit of algebra, hence yielding a standard gapped
Dirac edge state.

We interpret these results as follows. For sufficiently small times (less than Ω = ε−1

for a coupling B of order O(1) in the original variables), then the topology of the central
gap is given by n = 0 with a mode propagating from right to left along the x−axis with a
topology given by W d

0 = 1.
For longer times, heuristically less than Ω3 = ε−3, then interactions between the propa-

gating modes in the n = 1 model (one mode propagating to the left as above with 4 modes
propagating to the right) become significant. For sufficiently long times, an equilibrium
takes place with a topology given by W d

1 = −3. For yet longer times, the modes of the
n = 2 model (the 5−replica model) also participate in the transport (provided that ϕ′ is
now so concentrated that it is supported in the spectral gap of the 5−replica model). We
then expect transport to respect a topology given by W d

2 = −11.
The topology W d

0 = 1 is likely to be of most interest practically. It should govern
interface transport for times that are long but not too long (at most Ω = ε−1); see also
[18] for large pulsed irradiations that open sizeable gaps without damaging the underlying
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(a) Here we plot the edge state for h with
Ω = 10/3 in rescaled units. Two edges were
included, and we plot only edge states local-
ized to one side of the two-edge system.
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�1<latexit sha1_base64="U4fjRI1hbK8RGVf4F6a80f7R6V0=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CRbBjSURQd0V3bisYGyhDWUyvW2HTh7M3Ig1BH/FjQsVt36IO//GaZqFth64cDjn3rlzjx8LrtC2v43SwuLS8kp5tbK2vrG5ZW7v3KkokQxcFolItnyqQPAQXOQooBVLoIEvoOmPriZ+8x6k4lF4i+MYvIAOQt7njKKWuuZeB+EB83dSXySQpcdO1jWrds3OYc0TpyBVUqDRNb86vYglAYTIBFWq7dgxeimVyJmArNJJFMSUjegA2pqGNADlpfnWzDrUSs/qR1JXiFau/p5IaaDUOPB1Z0BxqGa9ifif106wf+6lPIwThJBNF/UTYWFkTaKwelwCQzHWhDLJ9V8tNqSSMtSBVXQIzuzJ88Q9qV3UnJvTav2ySKNM9skBOSIOOSN1ck0axCWMPJJn8krejCfjxXg3PqatJaOY2SV/YHz+AJBrlX0=</latexit><latexit sha1_base64="U4fjRI1hbK8RGVf4F6a80f7R6V0=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CRbBjSURQd0V3bisYGyhDWUyvW2HTh7M3Ig1BH/FjQsVt36IO//GaZqFth64cDjn3rlzjx8LrtC2v43SwuLS8kp5tbK2vrG5ZW7v3KkokQxcFolItnyqQPAQXOQooBVLoIEvoOmPriZ+8x6k4lF4i+MYvIAOQt7njKKWuuZeB+EB83dSXySQpcdO1jWrds3OYc0TpyBVUqDRNb86vYglAYTIBFWq7dgxeimVyJmArNJJFMSUjegA2pqGNADlpfnWzDrUSs/qR1JXiFau/p5IaaDUOPB1Z0BxqGa9ifif106wf+6lPIwThJBNF/UTYWFkTaKwelwCQzHWhDLJ9V8tNqSSMtSBVXQIzuzJ88Q9qV3UnJvTav2ySKNM9skBOSIOOSN1ck0axCWMPJJn8krejCfjxXg3PqatJaOY2SV/YHz+AJBrlX0=</latexit><latexit sha1_base64="U4fjRI1hbK8RGVf4F6a80f7R6V0=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CRbBjSURQd0V3bisYGyhDWUyvW2HTh7M3Ig1BH/FjQsVt36IO//GaZqFth64cDjn3rlzjx8LrtC2v43SwuLS8kp5tbK2vrG5ZW7v3KkokQxcFolItnyqQPAQXOQooBVLoIEvoOmPriZ+8x6k4lF4i+MYvIAOQt7njKKWuuZeB+EB83dSXySQpcdO1jWrds3OYc0TpyBVUqDRNb86vYglAYTIBFWq7dgxeimVyJmArNJJFMSUjegA2pqGNADlpfnWzDrUSs/qR1JXiFau/p5IaaDUOPB1Z0BxqGa9ifif106wf+6lPIwThJBNF/UTYWFkTaKwelwCQzHWhDLJ9V8tNqSSMtSBVXQIzuzJ88Q9qV3UnJvTav2ySKNM9skBOSIOOSN1ck0axCWMPJJn8krejCfjxXg3PqatJaOY2SV/YHz+AJBrlX0=</latexit><latexit sha1_base64="U4fjRI1hbK8RGVf4F6a80f7R6V0=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CRbBjSURQd0V3bisYGyhDWUyvW2HTh7M3Ig1BH/FjQsVt36IO//GaZqFth64cDjn3rlzjx8LrtC2v43SwuLS8kp5tbK2vrG5ZW7v3KkokQxcFolItnyqQPAQXOQooBVLoIEvoOmPriZ+8x6k4lF4i+MYvIAOQt7njKKWuuZeB+EB83dSXySQpcdO1jWrds3OYc0TpyBVUqDRNb86vYglAYTIBFWq7dgxeimVyJmArNJJFMSUjegA2pqGNADlpfnWzDrUSs/qR1JXiFau/p5IaaDUOPB1Z0BxqGa9ifif106wf+6lPIwThJBNF/UTYWFkTaKwelwCQzHWhDLJ9V8tNqSSMtSBVXQIzuzJ88Q9qV3UnJvTav2ySKNM9skBOSIOOSN1ck0axCWMPJJn8krejCfjxXg3PqatJaOY2SV/YHz+AJBrlX0=</latexit>

+2
<latexit sha1_base64="BN9QQzaUa+BPRgB96rJDS2fDB/Y=">AAAB/HicbVDLSsNAFJ34rPUVHzs3wSIIQkmKoO6KblxWsLbQhjKZ3rRDJw9mbsQagr/ixoWKWz/EnX/jNM1CWw9cOJxz79y5x4sFV2jb38bC4tLyympprby+sbm1be7s3qkokQyaLBKRbHtUgeAhNJGjgHYsgQaegJY3upr4rXuQikfhLY5jcAM6CLnPGUUt9cz9LsID5u+knkggS09qWc+s2FU7hzVPnIJUSIFGz/zq9iOWBBAiE1SpjmPH6KZUImcCsnI3URBTNqID6Gga0gCUm+ZbM+tIK33Lj6SuEK1c/T2R0kCpceDpzoDiUM16E/E/r5Ogf+6mPIwThJBNF/mJsDCyJlFYfS6BoRhrQpnk+q8WG1JJGerAyjoEZ/bkedKsVS+qzs1ppX5ZpFEiB+SQHBOHnJE6uSYN0iSMPJJn8krejCfjxXg3PqatC0Yxs0f+wPj8AY7llXw=</latexit><latexit sha1_base64="BN9QQzaUa+BPRgB96rJDS2fDB/Y=">AAAB/HicbVDLSsNAFJ34rPUVHzs3wSIIQkmKoO6KblxWsLbQhjKZ3rRDJw9mbsQagr/ixoWKWz/EnX/jNM1CWw9cOJxz79y5x4sFV2jb38bC4tLyympprby+sbm1be7s3qkokQyaLBKRbHtUgeAhNJGjgHYsgQaegJY3upr4rXuQikfhLY5jcAM6CLnPGUUt9cz9LsID5u+knkggS09qWc+s2FU7hzVPnIJUSIFGz/zq9iOWBBAiE1SpjmPH6KZUImcCsnI3URBTNqID6Gga0gCUm+ZbM+tIK33Lj6SuEK1c/T2R0kCpceDpzoDiUM16E/E/r5Ogf+6mPIwThJBNF/mJsDCyJlFYfS6BoRhrQpnk+q8WG1JJGerAyjoEZ/bkedKsVS+qzs1ppX5ZpFEiB+SQHBOHnJE6uSYN0iSMPJJn8krejCfjxXg3PqatC0Yxs0f+wPj8AY7llXw=</latexit><latexit sha1_base64="BN9QQzaUa+BPRgB96rJDS2fDB/Y=">AAAB/HicbVDLSsNAFJ34rPUVHzs3wSIIQkmKoO6KblxWsLbQhjKZ3rRDJw9mbsQagr/ixoWKWz/EnX/jNM1CWw9cOJxz79y5x4sFV2jb38bC4tLyympprby+sbm1be7s3qkokQyaLBKRbHtUgeAhNJGjgHYsgQaegJY3upr4rXuQikfhLY5jcAM6CLnPGUUt9cz9LsID5u+knkggS09qWc+s2FU7hzVPnIJUSIFGz/zq9iOWBBAiE1SpjmPH6KZUImcCsnI3URBTNqID6Gga0gCUm+ZbM+tIK33Lj6SuEK1c/T2R0kCpceDpzoDiUM16E/E/r5Ogf+6mPIwThJBNF/mJsDCyJlFYfS6BoRhrQpnk+q8WG1JJGerAyjoEZ/bkedKsVS+qzs1ppX5ZpFEiB+SQHBOHnJE6uSYN0iSMPJJn8krejCfjxXg3PqatC0Yxs0f+wPj8AY7llXw=</latexit><latexit sha1_base64="BN9QQzaUa+BPRgB96rJDS2fDB/Y=">AAAB/HicbVDLSsNAFJ34rPUVHzs3wSIIQkmKoO6KblxWsLbQhjKZ3rRDJw9mbsQagr/ixoWKWz/EnX/jNM1CWw9cOJxz79y5x4sFV2jb38bC4tLyympprby+sbm1be7s3qkokQyaLBKRbHtUgeAhNJGjgHYsgQaegJY3upr4rXuQikfhLY5jcAM6CLnPGUUt9cz9LsID5u+knkggS09qWc+s2FU7hzVPnIJUSIFGz/zq9iOWBBAiE1SpjmPH6KZUImcCsnI3URBTNqID6Gga0gCUm+ZbM+tIK33Lj6SuEK1c/T2R0kCpceDpzoDiUM16E/E/r5Ogf+6mPIwThJBNF/mJsDCyJlFYfS6BoRhrQpnk+q8WG1JJGerAyjoEZ/bkedKsVS+qzs1ppX5ZpFEiB+SQHBOHnJE6uSYN0iSMPJJn8krejCfjxXg3PqatC0Yxs0f+wPj8AY7llXw=</latexit>

(b) Edge states for Ĥ1 for Ω = 10/3 in
rescaled units.

Figure 2. Replica model edge states plotted against bulk quasi-band struc-
ture.

material. For longer times, many physical phenomena (e.g., heat generation) not included

in Ĥn may become more prevalent. If Ĥn remains a valid model, then we should observe
a transition from the W d

0 ‘topology’ to the W d
1 ’topology’ in the presence of sufficient

scattering among all propagating modes; see discussion in concluding section.

4. Averaging theory

This section considers a class of Hamiltonians for which explicit effective Hamiltonians
may be derived by an averaging method in the high frequency regime. Consider the unper-
turbed Hamiltonian H0 = D · σ. A general electromagnetic time-dependent perturbation
takes the form

(4.1) H(t) = (D +A(t)) · σ + V (t)

with A(t) and V (t) the magnetic and electric potentials, respectively. As in the preceding
sections, the Hamiltonian H(t) has no component along the gap-opening component σ3.

The objective is to propose large, high-frequency modulations (A, V ) such that a non-
trivial topology emerges for an effective Hamiltonian. As in the preceding section, the
effective Hamiltonian dominates dynamics only for times that are not-too-large (small
compared to the driving frequency, assumed to be large).
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We still denote by Ω the driving frequency and by ε = 1
t0Ω � 1 for t0 ≡ 1 a reference

time scale. We then construct the Hamiltonian

(4.2) Hε(t) = D · σ +
1

ε

(
f1(

t

ε
)σ1 + f0(

t

ε
)v(y)

)
.

This corresponds to the choice A1(t) = 1
εf1( tε), A2(t) = 0, and V (t) = 1

εf0( tε)v(y). The

functions fj(τ) are chosen to be t0−periodic so that fj(
t
ε) is Ω−1−periodic.

The factor 1
ε reflects the fact that the rapid fluctuations need to be large to have an

order O(1) effect as ε→ 0. The term f1(t), a spatially constant rapidly oscillating magnetic
potential creates the necessary twisting to acquire a non-trivial topology. The potential
term f0(t)v(y) also requires an appropriate time evolution as we shall see while the spatial
component v(y) provides the edge confinement as the effective bulk topology depends on
the sign of v.

The last important ingredient in the above structure is that the fast Hamiltonian

H−1(τ) = f1(τ)σ1 + f0(τ)v(y)

is explicitly integrable since the commutator [H−1(τ1), H−1(τ2)] = 0 for any times τ1, τ2.
Indeed, let Fj(τ) be the antiderivatives of fj(τ), i.e., F ′j(τ) = fj(τ) with Fj(0) = Fj(t0) = 0

assuming
∫ t0

0 fj(τ)dτ = 0, as we do for the rest of the section.
The evolution associated to H−1(τ) is given by the unitary

U−1(τ) = e−i
∫ τ
0 H−1(s)ds = e−i[F1(τ)σ1+F0(τ)v(y)] = e−iF0(τ)v(y)

(
cos(F1(τ))I − i sin(F1(τ)σ1

)
,

where we used that
eiaσ1 = cos a I + i sin a σ1.

Let Uε(t) be the unitary evolution associated with Hε(t), i.e., the solution of

i∂tUε(t) = Hε(t)Uε(t)

with Uε(0) = I. Factoring out the fast evolution, we may introduce

Ũε(t) = U∗−1(
t

ε
)Uε(t)

and obtain that

(4.3) i∂tŨε(t) = H̃ε(t)Ũε(t), H̃ε(t) = U∗−1(
t

ε
)H0U−1(

t

ε
).

Introducing H̃(τ) = H̃ε(ετ) and Ũ(τ) = Ũε(ετ), we obtain using shorthand Fj = Fj(τ)

H̃(τ) = U∗−1(τ)H0U−1(τ)

= eiF0v(y)(cosF1I + i sinF1σ1)D · σ(cosF1I − i sinF1σ1)e−iF0v(y)

=
1

i
∂xσ1 + (cosF1I + i sinF1σ1)σ2(cosF1I − i sinF1σ1)(−F0v

′(y) +
1

i
∂y)

=
1

i
∂xσ1 + (cosF1I + i sinF1σ1)2σ2(−F0v

′(y) +
1

i
∂y)

= (cos 2F1σ2 − sin 2F1σ3)(−F0v
′(y) +

1

i
∂y).
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Thus we have

(4.4) H̃(τ) =
(

cos(2F1(τ))σ2 − sin(2F1(τ))σ3

)(1

i
∂y − F0(τ)v′(y)

)
+

1

i
∂xσ1.

Here, we used that σ1σ2 = iσ3. We now observe at the fast scale that

i∂τ Ũ(τ) = εH̃(τ)Ũ(τ).

Since the influence is small, it is reasonable to expect that the main effect of H̃ is felt
through its time average, at least up to moderately large times where additional effects
may appear. To prove this, we use a two-scale averaging framework in a functional setting
adapted to the differential operator H0.

Let us introduce

(4.5) 〈H〉 =
1

t0

∫ t0

0
H(τ)dτ.

Proposition 4.1. Let H(t) be a t0−periodic Hamiltonian with a scale of Hilbert spaces Hs
such that H(t) is (uniformly in time) bounded from Hs to Hs+1 for s = 0, 1 and generates a
unitary evolution in H0. Let 〈H〉 be the time averaged operator and ϕ ∈ H2 be a sufficiently
smooth initial condition.

Consider the evolutions

i∂tψε = H(
t

ε
)ψε, i∂tψ = 〈H〉ψ

both with initial conditions ψε(0) = ψ(0) = ϕ.
Then we have the approximation

‖ψε(t)− ψ(t)‖H0 ≤ Ctε sup
0≤s≤t

‖ψ(s)‖H2

for a constant C = C(t0, H) independent of ε and t.

This shows that the averaging approximation holds up to times that are small com-
pared to 1

ε t0 times the supremum sup0≤s≤t ‖ψ(s)‖H2 . This depends on the structure of the
averaged Hamiltonian. For times of order O(t0), such a supremum is bounded by stan-
dard regularity theory so that the error in the quantum dynamics is proportional to ε, or
equivalently Ω−1. For longer times, this supremum may grow polynomially for some initial
conditions ψ. We do not consider this well-studied problem and refer instead to [17] and
its references for details.

Proof. In a two-scale formalism, we replace the ε−dependent problem formally up to O(ε2)
terms in the expansion of ψ by

(
i

ε
∂τ + i∂t)(ψ0 + εψ1) = H(τ)(ψ0 + εψ1).

Here we assume ψj(t, τ) is periodic in τ . Solving these equations in turns gives ψ0 = ψ0(t)
and then

i∂tψ0 = 〈H〉ψ0, iψ1(t, τ) =
(∫ τ

0
(H(s)− 〈H〉)ds

)
ψ0(t) + ψ10(t).
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We choose ψ10(t) = 0 and ψ0(0) = ϕ while ψ1(0) = 0. We can use these terms in a Hilbert
expansion

i∂t(ψ0(t) + εψ1(t,
t

ε
) + ζε) = H(

t

ε
)(ψ0(t) + εψ1(t,

t

ε
) + ζε)

and obtain that

i∂tζε = H(
t

ε
)ζε + Sε

where the source term is given by

Sε = εi
[ ∫ t

ε

0
(H(s)− 〈H〉)ds〈H〉 −H(

t

ε
)

∫ t
ε

0
(H(s)− 〈H〉)ds

]
ψ0.

This is a term of order O(ε) provided that ψ0 is sufficiently smooth. The integrals in time
occur over an interval or size bounded by t0 since H is periodic. This provides an error
estimate for ζε(t) as given in the proposition. The term εψ1 is bounded similarly. �

We now apply the above result to the operator in (4.2), for which we chooseHs = Hs(R2)
the standard Sobolev space of functions with s derivatives in L2(R2) ≡ H0(R2).

Corollary 4.1. Let Hε(t) be the modulated operator given in (4.2) and assume that v′(y)
is smooth and uniformly bounded on R. The effective Hamiltonian is given by

(4.6) H̃ =
1

i
∂xσ1 + Y

1

i
∂y +Mv′(y)

with constant matrices Y and M given by

Y = 〈cos(2F1)〉σ2 + 〈sin(2F1)〉σ3, M = −(〈cos(2F1)F0〉σ2 + 〈sin(2F1)F0〉σ3).

Let ψε be the solution of

i∂tψε = Hεψε, ψε(0) = ϕ

for ϕ ∈ H2. Define ψ as the solution to the effective evolution

i∂tψ = H̃ψ, ψ(0) = ϕ.

Then we have

‖ψε(t)− U−1(
t

ε
)ψ(t)‖H0 ≤ Ctε sup

0≤s≤t
‖ψ(s)‖H2 .

Proof. This is a direct corollary of the preceding result and the fact that U−1 is unitary
on H0. That sup0≤s≤t ‖ψ(s)‖H2 is uniformly bounded at least for times of order O(1) is a
standard regularity result. In general, we expect such a supremum to grow as a function
of t although we do not consider the details here; see [17]. �

Let us consider the case with F1(τ) and F0(τ) odd with respect to 1
2 t0. Then

〈sin(2F1)〉 = 〈cos(2F1)F0)〉 = 0

by oddness. Defining

hy = 〈cos(2F1)〉 and m(y) = −〈sin(2F1)F0)〉v′(y),
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we obtain the effective Hamiltonian

H̃ =
1

i
∂xσ1 + hy

1

i
∂yσ2 +m(y)σ3

which has a nontrivial topology when hy > 0, say, and m(y) is bounded away from 0 away
from y = 0 and has different signs as y → ±∞.

More generally, let us define a matrix B with entries

b11 = 〈cos(2F1)〉, b12 = −〈cos(2F1)F0)〉, b21 = 〈sin(2F1)〉, b22 = −〈sin(2F1)F0)〉,
and assume that B has non-vanishing determinant. Let us also assume to simplify that
m′(y) is continuous and non-vanishing so that it has constant sign. Then we find that the
interface conductivity (invariant) is given by

2πσI = −sgn(DetB) sgn(m′(0)).

These formulas are obtained as we did in earlier section. We leave the details to the reader.

The above results show that the local density |ψε|2(t, x) of ψε(t) is accurately described
by that of ψ(t), the solution of a topologically non-trivial Hamiltonian dynamics. Indeed,
the unitary U−1(τ) is locally unitary in the sense that |U−1(τ)ψ|2 = |ψ|2 for any two-
spinor ψ. However, such an approximation is a priori valid only over times that are short
compared to the driving frequency Ω (or in proper units, Ω|H|−2 as may be inferred from
the proof of the above proposition, with |H| a frequency quantifying the strength of the
Hamiltonian H).

5. Conclusions

The topology of a material, as is the case for a manifold, concerns its global structure. It
is immune to continuous deformations by construction and this makes topological invariants
useful in practice when they can be associated with physical behaviors. In topological
insulators, the edge conductivity (1.2), characterizing global properties of transport along
an interface between insulators, is one such physically relevant invariant.

In a model such as (1.1), the topology of the model is that of the vortex ξ · σ in mo-

mentum space, characterized by the winding of ξ1+iξ2
|ξ| around a ‘circle at infinity’. It is

this behavior at infinity, combined with the behavior at infinity of the mass term m(y)
that characterizes the quantized values of σI in (1.3). While such infinite domains are
unrealistic but convenient in many modelings and applications, here they are central to
the definition of the topology and a modeling choice we make.

Physically, σI non vanishing indicates that transport along the edge has to occur. How-
ever, it does not fully describe edge transport. Let us assume that in a given energy range
within the bulk band-gap, m modes are allowed to propagate along the x axis in the posi-
tive direction and n modes in the negative one. Then 2πσI = m − n in (1.3). Neither m
nor n are topologically protected separately. In the presence of minimal coupling among
the modes, then m modes will propagate rightward and n modes leftward independently
of what σI indicates. However, in the presence of strong coupling (or equivalently over
long times), then (Anderson) localization effects prevent min(m,n) from propagating, and
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asymptotically in the strong coupling regime, only m−n modes propagate; see [2, Theorem
6.2] in the context of (1.1), where it is shown that propagation across a highly heterogeneous
slab asymptotically results in m − n transmitting modes and min(m,n) totally reflected
modes. Topology alone cannot protect against backscattering. It rather protects against
the localization of exactly 2πσI = m− n modes.

This paper analyzes how much of the above picture remains valid in the context of
time-periodically driven materials such as graphene. As we mentioned in the introduction,
opening a gap (with m(y) large enough so that ϕ′(H) has enough bandwidth) is a non-
trivial task. Provided that the electromagnetic drive does not heat the material too rapidly,
the Hamiltonian description of the light-matter interaction in (1.4) is reasonable. In such
a context, which needs to be posed on an infinite domain R2 if we want to model the
presence of (non-periodic) impurities (since σI is independent of the presence of a large
class of impurities [1]), the Hamiltonian H(t) is locally (in time) trivial in the sense that
it does not display any spectral gap, and the associated unitary evolution U(t) also does
not display any spectral gap at any time. It therefore seems difficult to define an explicit
effective Hamiltonian as well as any topology based on a three dimensional winding number
[23].

Instead, what we show is that emergent topologically non-trivial effective Hamiltonians
appear at different time scales for times that are long compared to the forcing period T . In
the absence of scale separation, the coupling between the replica levels (see Fig.1(a)) may
be arbitrarily complicated and results in complex transport patterns; see [10, Chapter 5]
for relevant numerical simulations. The scale separation Ω� 1 allows for the perturbation
expansion considered in sections 2 and 4. We showed that the unitary evolution U(t) was
well approximated by Un(t) based on the n−replica model up to times of order Ωn+1. We
also showed an approximation of U(t) by an evolution U0(t) valid up to times of order
Ω2 provided the initial condition is sufficiently smooth. Associated to these evolutions Un
are a sequence of gapped effective Hamiltonians Hn. Even though Un converges to U in
operator norm over increasing ranges of time, the interface conductivities σI(Hn) diverge
as n increases and no σI can be assigned to the time-dependent Hamiltonian H(t).

As a result, we obtain a sequence of effective conductivities 2πσI(H0) = −1, 2πσI(H1) =
3, and so on, which reflects the topology that may be perceived at different time scales.
Let us comment on the two panels in Fig. 2. Let us consider a density of states given
by ϕ′(H0) concentrated in the central gap of the left panel in Fig. 2. For times of order
O(1), these wave packets evolve according to that dispersion relation with one more mode
moving left-ward (with a negative group velocity) than right-ward. As time increases
and in the presence of coupling among modes in that energy range (as shown e.g. in [2]
for the Dirac operator (1.1)), the other modes that are compatible energetically become
populated until an equilibrium given by the conductivity associated to H1 is reached, with
2πσI(H1) = 3 more modes moving right-ward than left-ward. Higher-order conductivities
may then be relevant for even longer time scales (of order ε−n+1 for the n−replica model)
provided that the considered wavepackets live in the nth bulk gap (of width ε2n for n ≥
1). Heuristically, the system undergoes a cascade of phase transitions from 2πσI(Hj) to
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2πσI(Hj+1) for appropriately confined wavepackets until the Hamiltonian description no
longer holds because of, e.g, dissipative effects.

In the last section, we considered a different model where a direct averaged effective
Hamiltonian may be explicitly computed. In the high-frequency, high-amplitude regime,
we show at least theoretically that large gaps may be opened in graphene over time scales
that are (i) not-too-long compared to Ω and (ii) small enough that the dissipation-less
Hamiltonian models remains relevant. The main feature that allowed us to obtain an
effective Hamiltonian explicitly was to use a fast driving force that involves commuting
Hamiltonians (i.e., not circularly polarized light). We stress that, here as in the preceding
sections, the topology is associated to an effective Hamiltonian, whose validity is demon-
strated only over not-too-long times.
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