
ar
X

iv
:2

10
1.

09
77

7v
1 

 [
q-

fi
n.

M
F]

  2
4 

Ja
n 

20
21

Capital growth and survival strategies

in a market with endogenous prices

Mikhail Zhitlukhin∗

24 January 2021

Abstract

We call an investment strategy survival, if an agent who uses it maintains a
non-vanishing share of market wealth over the infinite time horizon. In a discrete-
time multi-agent model with endogenous asset prices determined through a short-
run equilibrium of supply and demand, we show that a survival strategy can be
constructed as follows: an agent should assume that only their actions determine
the prices and use a growth optimal (log-optimal) strategy with respect to these
prices, disregarding the actual prices. Then any survival strategy turns out to be
close to this strategy asymptotically. The main results are obtained under the
assumption that the assets are short-lived.

Keywords: survival strategies, capital growth, relative growth optimal strategies,
endogenous prices, evolutionary finance, martingale convergence.
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1. Introduction

The main object of study of this paper is asymptotic performance of investment strate-
gies in stochastic market models. The mathematical theory of optimal capital growth
originated with the works of Kelly (1956), Latané (1959), Breiman (1961), and one of
its central results consists in that an agent who maximizes the expected logarithm of
wealth achieves the fastest asymptotic growth of wealth over the infinite time horizon
(see, e.g., Algoet and Cover (1988)). The standard assumption made in this theory is
that an agent has negligible impact on a market, and hence asset prices can be specified
by exogenous random processes not depending on agents’ strategies. The aim of this
paper is to extend these results and describe analogues of growth optimal strategies in
a multi-agent market model which may contain assets with endogenously determined
prices.

We consider a discrete-time model of a market with two type of assets. Assets of the
first type, further called exogenous, have prices and dividends represented by exogenous
random sequences (without loss of generality, we will assume that the dividends are
included in the prices). Agents get profit or loss when the prices of these assets change.
Assets of the second type, further called endogenous, have exogenous dividends, but their
prices are determined endogenously via a short-run equilibrium of supply and demand.
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The supply is exogenous, while the demand is generated by agents’ strategies. Typically,
an asset with larger dividends is more attractive and therefore has a higher price. An
important simplifying assumption that will be made in the paper is that the endogenous
assets are short-lived in the sense that they can be though of as financial contracts which
can be bought at some moment of time, yield payments at the next time instant, and
then expire. For example, they can be derivative securities, loan agreements, contracts
for producing goods, etc. It would be interesting to incorporate long-lived assets (e.g.
common stock) with endogenous prices into the model, but this is a more difficult task
and is left for future research.

We are primarily interested in asymptotic behavior of relative wealth of agents, i.e.
their shares in total market wealth. We investigate it from a standpoint of evolutionary
dynamics and view a market as a population of different strategies competing for capital.
The central concept of the paper is the notion of a survival strategy. Such a strategy
allows an agent to keep the relative wealth strictly bounded away from zero over the
infinite time horizon. Our goal is to construct a survival strategy in an explicit form
and to find what effect the presence of this strategy has on the asymptotic distribution
of wealth between market agents. In particular, we are interested in conditions under
which a strategy is asymptotically dominating, i.e. an agent using it becomes the single
survivor in a market with the relative wealth converging to 1. In order to find a survival
strategy, the notion of a relative growth optimal strategy will be useful. This is a
strategy with the logarithm of its relative wealth being a submartingale. The fact that
a non-positive submartingale converges implies that a relative growth optimal strategy
is survival. The convergence of the compensator of this submartingale allows to obtain
a sufficient condition for a survival strategy to be also dominating.

Note that, in contrast to the optimal growth theory for markets with exogenous
prices, which deals with absolute wealth of agents, we focus on relative wealth, which
turns out to be more amenable to asymptotic analysis in the case of endogenous prices.
Drokin and Zhitlukhin (2020, Section 6) show that the goals of maximization of relative
and absolute wealth in a model with endogenous prices may be incompatible.

Our first main result consists in showing that a relative growth optimal strategy can
be constructed as a growth optimal strategy in a market with exogenous prices equal to
the endogenous prices induced by this strategy when all the agents in the market use it.
We find such a strategy in a tractable form, as a solution of a two-stage optimization
problem. On the first stage, an agent determines the portfolio of exogenous assets by
maximizing the expected log-return (with some adjustments if it is not integrable); on
the second stage the portfolio of endogenous assets is found via a solution of another
maximization problem. We show that this strategy is relative growth optimal in any
strategy profile, irrespectively of the strategies used by the other agents. Another its
feature, which can be attractive for possible applications, is that it needs to know little
information about the market: only the current total market wealth and the probability
distribution of returns of the exogenous assets and payoffs of the endogenous assets, but
does not require the knowledge of the other agents’ individual wealth or their strategies.
It also does not depend on the spot prices of the endogenous assets, and so is not affected
by the impact which an agent may have on the market.

Our second main result shows that the obtained strategy becomes the single surviving
strategy in a market if the representative strategy of the other agents is asymptotically
different from it in a certain sense. Consequently, if some agent uses this strategy, then
any other agent who wants to survive in the market must use an asymptotically similar
strategy. As a corollary, we show that this strategy asymptotically determines the prices
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of the endogenous assets.
The results we obtain are tightly related to and generalize the main results of

Amir et al. (2013) and Drokin and Zhitlukhin (2020). Those papers also studied sur-
vival and growth optimal strategies in markets with short-lived assets and endogenous
prices, however the models were less general. In the former paper it was assumed that
there are only assets with endogenous prices; the latter paper also included a risk-free
bank account with an exogenous interest rate. Another extension consists in that we
allow the model to include constraints on agents’ portfolios specified by random convex
sets. Among other recent papers related to this setting, let us mention the paper of
Belkov et al. (2020), which builds another model that includes assets with endogenous
prices and a risk-free asset. A difference with our model is that they assume asset payoffs
depend linearly on the amount of money invested in the risk-free asset, which allows to
reduce the model to previously known results for models without a risk-free asset.

Let us mention how this paper is related to other results in the literature. In models
with exogenous prices, the asymptotic growth optimality of the log-optimal strategy
(also called the Kelly strategy, after Kelly (1956)) was proved for a general discrete-time
model by Algoet and Cover (1988); a review of other related results in discrete time
can be found in, e.g., Cover and Thomas (2012, Chapter 16) or Hakansson and Ziemba
(1995). For a treatment of a general model with continuous time and portfolio con-
straints, and a connection of growth optimal portfolios (numéraire portfolios) with ab-
sence of arbitrage, see, e.g., Karatzas and Kardaras (2007).

Among various lines of research on markets with endogenous prices, our paper is
most closely related to works in evolutionary finance on stability and survival of in-
vestment strategies, which focus on evolutionary dynamics and properties like survival,
extinction, dominance, and how they affect the structure of a market. Central to this
direction are strategies that perform well irrespectively of competitors’ actions. One
of the main results consists in that the strategy which splits its investment budget be-
tween risky assets proportionally to their expected dividends (often also called the Kelly
strategy) survives in a market provided that the agent’s beliefs about the dividends are
correct. See, for example, the papers of Amir et al. (2005, 2011); Blume and Easley
(1992); Evstigneev et al. (2002, 2006); Hens and Schenk-Hoppé (2005), which establish
this fact for different models and under different assumptions. Reviews of this direction
can be found in Evstigneev et al. (2016) or Amir et al. (2020). Typically, the Kelly
strategy turns out to be the only surviving strategy in a market, i.e. it dominates all
other asymptotically different strategies. For results on market wealth evolution when
agents use strategies different from the Kelly strategy, which may result in survival of
several strategies, see, e.g., Bottazzi and Dindo (2014); Bottazzi et al. (2018).

Most of the above mentioned papers (including the present paper) consider agent-
based models, where agents’ strategies are specified directly as functions of a mar-
ket state. Another large body of literature consists of results on market selection
of investment strategies in the framework of general equilibrium, where agents max-
imize utility from consumption. Among those results one can mention, for example,
Blume and Easley (2006); Borovička (2020); Sandroni (2000); Yan (2008). Holtfort
(2019) provides a detailed survey of the literature in evolutionary finance over the last
three decades, including also some earlier results.

The paper is organized as follows. Section 2 describes the model. The main results
of the paper are stated in the three theorems included in Section 3. Section 4 contains
their proofs.
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2. The model

2.1. Notation

For vectors x, y ∈ R
N , we will denote by 〈x, y〉 their scalar product, and by |x| =

∑
n |x

n|,
‖x‖ =

√
〈x, x〉 the L1 and L2 norms. If f : R → R is a scalar function and x is a vector,

then f(x) = (f(x1), . . . , f(xN )) denotes the coordinatewise application of f to x.
By e we will denote the vector consisting of all unit coordinates, e = (1, . . . , 1), which

may be of different dimensions in different formulas. In particular, 〈e, x〉 is equal to the
sum of coordinates of a vector x.

All equalities and inequalities for random variables are assumed to hold with prob-
ability 1 (almost surely), unless else is stated.

2.2. Investors and assets

Let (Ω,F ,P) be a probability space with a discrete-time filtration F = (Ft)
∞
t=0 on which

all random variables will be defined. Without loss of generality, we will assume that F
is P-complete and F0 contains all P-null events.

The market in the model consists of M agents (investors) and N = N1 +N2 assets
of two types. The assets of the first type are available in unlimited supply and have
exogenous prices; they are treated as in standard models of mathematical finance. The
assets of the second type are in limited supply; they yield payoffs which are defined
exogenously, but their prices are determined endogenously from an equilibrium of supply
and demand in each time period. These assets are short-lived in the sense that they can
be purchased by agents at time t, yield payoffs at t+1, and then get replaced with new
assets; agents cannot sell them, and, in particular, short sales are not allowed (adding
short sales would lead to conceptual difficulties which we prefer to avoid). We will call
the assets of the first and the second type, respectively, exogenous and endogenous.

The prices of the exogenous assets are represented by positive random sequences
(Sn

t )
∞
t=0, n = 1, . . . , N1, which are F-adapted (i.e. Sn

t is Ft-measurable). We assume that
dividends, if there are any, are already included in the prices. By Xn

t = Sn
t /S

n
t−1 > 0 we

will denote the relative price changes. The payoffs of the endogenous assets (per one unit
of an asset) are represented by non-negative adapted sequences (Y n

t )∞t=1, n = 1, . . . , N2.
Without loss of generality, we assume that the supply of each endogenous asset is equal
to 1, so Y n

t is the total payoff of an asset. Their prices will be defined later, as we first
need to define agents’ strategies, on which they will depend.

The agents enter the market at time t = 0 with non-random initial wealth vm0 > 0,
m = 1, . . . ,M . Actions of an agent at time t ≥ 0 are described by a pair of vectors
ht = (αt, βt), where αt ∈ R

N1 , βt ∈ R
N2

+ specify in what proportions this agent allocates
the current wealth between the assets of the two types (the wealth sequences are yet to
be defined), i.e. the proportion αn

t (respectively, βnt ) of wealth is allocated to asset n.1

Since αt, βt are proportions, we require that 〈e, αt〉 + 〈e, βt〉 = 1. The components
of βt are non-negative, because short sales of the endogenous assets are not allowed.
Additionally, we will assume that it is not possible to buy the endogenous assets on
borrowed funds, i.e. 〈e, α〉 ∈ [0, 1], and hence 〈e, β〉 ∈ [0, 1]. Consequently, ht assumes

1In the literature, time indices are often shifted by 1 forward (so ht represents actions at time t− 1,
and, hence, is a predictable sequence). But in discrete time this is just a matter of notation. For our
purposes, it will be more convenient to let ht specify actions at time t.
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values in the set

H = {(α, β) ∈ R
N1 × R

N2

+ : 〈e, α〉 ∈ [0, 1], 〈e, β〉 = 1− 〈e, α〉}.

In order to emphasize that a pair ht is selected by agent m we will use the superscriptm,
e.g. hmt = (αm

t , β
m
t ).

A strategy of an agent consists of investment proportions hmt selected at consecutive
moments of time. It may (and, usually, does) depend on a random outcome and market
history. In order to specify this dependence, introduce the measurable space (Θ,G) with

Θ = Ω× R
M
+ × (HM )∞, G = F ⊗ B(RM

+ × (HM )∞),

where an element χ = (ω, v0, h0, h1, . . .) ∈ Θ consists of a random outcome ω, a vector
of initial wealth v0 = (v10 , . . . , v

M
0 ) ∈ R

M
+ , and vectors of investment proportions ht =

(h1t , . . . , h
M
t ) selected by the agents at each moment of time. Let G = (Gt)t≥0 be the

filtration on Θ defined by

Gt = Ft ⊗ B(RM
+ × (HM )t+1),

i.e. Gt is generated by sets Γ× V ×H0 × . . .×Ht × (HM )∞ with Γ ∈ Ft and Borel sets
V ⊆ R

M
+ , Hs ⊆ HM . We define a strategy of an agent as a sequence of Gt-measurable

functions
ht(χ) : Θ → H, t ≥ 0.

Basically, ht can be thought of as a function ht(ω, v0, h0, . . . , ht), but the notation ht(χ)
will be more convenient for us because we will deal with functions depending on market
histories of different length appearing in one formula, see, e.g., (3) below. Note the
dependence of ht on the argument ht, i.e. an agent may use information (partial or
whole) about actions of other agents at the same moment of time t. This information
may be available to an agent, for example, from asset prices.

We call a vector of initial wealth v0 and a strategy profile (h1, . . . ,hM ) feasible if
there exists a sequence of Ft-measurable functions ht(ω) = (h1t (ω), . . . , h

M
t (ω)) ∈ HM

such that for all ω, t,m

hm
t (χ(ω)) = hmt (ω), where χ(ω) = (ω, v0, h0(ω), h1(ω), . . .). (1)

Such a sequence h(ω) will be called a realization of the agents’ strategies corresponding
to the given strategy profile and initial wealth. We do not require the uniqueness of a
realization, i.e. equation (1) may have several solutions. The main results of the paper
will hold for any chosen realization (however, the uniqueness may be desirable for other
applications).

Remark 1 (On notation). By the bold font we denote functions which depend on χ,
i.e. on a random outcome and market history, while functions which depend only on a
random outcome ω (e.g. realizations of strategies) are denoted by the normal font. In
particular, if ζ is a function of χ, then, given a vector of initial wealth and a strategy
profile, we denote by ζ(ω) its realization ζ(χ(ω)), where χ(ω) is as in (1).

If ξ is a random variable, i.e. a function of ω only, we will sometimes use the same
letter to denote the function ξ(χ) which just ignores the values of v0 and hs, i.e. ξ(χ) =
ξ(ω) at an element χ = (ω, v0, h0, h1, . . .).
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Sufficient conditions for a vector of initial wealth and a strategy profile to be feasible,
in general, can be formulated in terms of assumptions of fixed-point theorems, but we
do not investigate this question in details – our main goal is to find an optimal strategy,
and the strategy which we find will be optimal in any feasible profile. Nevertheless, it is
easy to see that a simple sufficient condition for the feasibility is that the functions hm

t

do not depend on the argument ht, i.e. adapted to the filtration G
− = (G−

t )t≥0, where

G−
t = Ft ⊗ B(RM

+ × (HM )t).

This condition can be interpreted as that at each moment of time the agents decide
upon their actions simultaneously and independently of each other.

Now we can define the prices of the endogenous assets and the wealth sequences
vm
t (χ) inductively in t, beginning with vm

0 (χ) = vm0 . Denote the prices at time t by
pn
t (χ), n = 1, . . . , N2. Suppose for some χ ∈ Θ the wealth sequences are defined up to a

moment of time t, and vm
t (χ) ≥ 0 for all m. Then agent m can purchase y

m,n
t (χ) units

of asset n at this moment, where

y
m,n
t =

βm,n
t vm

t

pn
t

,

and βm,n
t (also αm,n

t below) are taken from the component ht entering χ. In order to
clear the market (recall that the supply of each asset is 1), the prices should be equal to

pn
t =

M∑

m=1

βm,n
t vm

t . (2)

Essentially, we employ the principle of moving equilibrium, which operates with eco-
nomic variables changing with different speeds. In our model, the endogenous asset
prices move fast, while the investment proportions selected by the agents move slow;
the proportions can be considered fixed while the prices rapidly adjust to clear the mar-
ket. The mechanics of this adjustment process is not important to us (as long as it
does not inflict transaction costs) and it can be modeled by various approaches, e.g.
limit order books, auctions, etc. Note that we do not require the agents to agree upon
future asset prices at each random outcome. For a discussion of this moving equilibrium
approach in a similar model, see Section 4 in Evstigneev et al. (2020).

If
∑

m β
m,n
t (χ) = 0 in formula (2) for some n, i.e. no one invests in asset n, we put

y
m,n
t (χ) = 0 for all m; in this case the price pn

t (χ) can be defined in an arbitrary way
with no effect on the agents’ wealth, so we will put pn

t (χ) = 0 in accordance with (2).
Thus, the portfolio of agent m between moments of time t and t+1 consists of ym,n

t

units of endogenous asset n, and x
m,n
t units of exogenous asset n, where

x
m,n
t =

αm,n
t vm

t

Sn
t

.

Consequently, the wealth of this agent at t+ 1 is determined by the relation

vm
t+1 =

N1∑

n=1

x
m,n
t Sn

t+1 +

N2∑

n=1

y
m,n
t Y n

t+1 =

( N1∑

n=1

αm,n
t Xn

t+1 +

N2∑

n=1

βm,n
t Y n

t+1∑
k β

k,n
t vk

t

)
vm
t (3)

(with 0/0 = 0 in the right-hand side).
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Observe that in equation (3) the value of vm
t+1 may become negative, which will

make the right-hand side of the equation meaningless for the next time period. However,
below we will introduce portfolio constraints which prohibit strategies that may lead to
negative wealth. In view of this, we will restrict the domain of the functions vm

t and
define them on sets smaller than Θ. Namely, introduce inductively the sets

Θt = {χ ∈ Θ : vm
s (χ) ≥ 0 for all s ≤ t, m = 1, . . . ,M}, t ≥ 0,

where vm
s (χ) are computed by (3). Note that Θ0 = Θ, Θt ⊇ Θt+1, and Θt ∈ G−

t . From
now on, we will assume that the functions vm

t are defined only for χ ∈ Θt.
It will be also convenient to introduce the sets

Θ′
t = {χ ∈ Θt : vt(χ) 6= 0}, t ≥ 0.

Observe that, essentially, components (αt,βt) of an agent’s strategy need to be defined
only on Θ′

t, since elements from Ω \Θt do not correspond to any realization, and on the
set {χ : vt(χ) = 0} they can be defined in an arbitrary way without any effect on (zero)
wealth.

2.3. Portfolio constraints

Portfolio constraints in the model are specified by a sequence of G−
t -measurable random2

non-empty closed convex sets Ct(χ) ⊆ H, t ≥ 0. The constraints are the same for each
agent.

We say that a strategy h satisfies the portfolio constraints if

ht(χ) ∈ Ct(χ) for all t ≥ 0 and χ ∈ Θ.

From now on, when writing “a strategy”, we will always mean a strategy satisfying the
portfolio constraints.

Notice that the sets Ct are essentially needed to be defined only for elements χ ∈ Θ′
t.

Thus it may be convenient to put, for example, Ct = R
N
+ on Θ \Θ′

t, without any effect
on realizations of the agents’ wealth in the model.

We will consider portfolio constraints only of the following particular form: they are
imposed on the exogenous and endogenous assets separately, and an agent can freely
choose what proportion of wealth to invest in the assets of each of the two types. Namely,
it will be assumed that

Ct = (At ×Bt) ∩H, (4)

where At and Bt are G−
t -measurable closed convex sets in R

N1 and R
N2
+ such that

〈e, α〉 ∈ [0, 1], 〈e, β〉 ∈ [0, 1] for any α ∈ At(χ), β ∈ Bt(χ). We also require that

if α ∈ At(χ), then λα ∈ At(χ) for any λ ∈ [0, 1/〈e, α〉], (5)

if β ∈ Bt(χ), then λβ ∈ Bt(χ) for any λ ∈ [0, 1/〈e, β〉] (6)

(or λ ∈ [0,∞) if 〈e, α〉 = 0 or 〈e, β〉 = 0); i.e. At and Bt can be represented as
intersections of some convex cones with the sets {α ∈ R

N1 : 〈e, α〉 ∈ [0, 1]} and {β ∈
R
N2

+ : 〈e, β〉 ∈ [0, 1]} respectively. Note that relation (4) implies that the sets At, Bt

cannot simultaneously (for the same t, χ) consist of only elements α or, respectively, β
with zero sum of coordinates, since then the set Ct would be empty.

2See Section 4.1 for details on random sets.
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We will need to further restrict the class of portfolio constraints by introducing
several assumptions on the structure of the sets At,Bt. In what follows, let Kt(ω, dω̃)
denote some fixed version of the regular conditional distribution with respect to Ft. By
Pt and Et we will denote, respectively, the regular probability and expectation computed
with respect to Kt, i.e. for a random event Γ ∈ F and a random variable ξ we put

Pt(Γ)(ω) = Kt(ω,Γ), Et(ξ)(ω) =

∫

Ω
ξ(ω̃)Kt(ω, dω̃).

When ξ depends also on market history, i.e. ξ = ξ(χ) is G-measurable, we put

Et(ξ)(χ) =

∫

Ω
ξ(ω̃, v0, h0, . . .)Kt(ω, dω̃), χ = (ω, v0, h0, . . .),

provided that the integral is well-defined.
Let us introduce several random sets which will be needed to formulate the assump-

tions on the sets At,Bt:
• the sets of portfolios of exogenous assets which have non-negative values at the next

moment of time:

Dt(ω) = {α ∈ R
N1 : Pt(〈α,Xt+1〉 ≥ 0)(ω) = 1};

• the linear spaces of null investments (portfolios of exogenous assets with zero current
and next value):

Lt(ω) = {α ∈ R
N1 : 〈e, α〉 = 0, Pt(〈α,Xt+1〉 = 0)(ω) = 1};

• the projection of At on the orthogonal space L⊥
t :

A
p
t (χ) = {α ∈ L⊥

t (ω) : ∃u ∈ Lt(ω) such that α+ u ∈ At(χ)}.

Observe that the sets Dt, Lt are Ft-measurable, and A
p
t are G−

t -measurable. Indeed,
we can represent Dt(ω) = {α : f(ω,α) = 0} with the function f(ω,α) = Et(〈α,Xt〉

− ∧
1)(ω), which is a Carathéodory function, so Dt is measurable by Filippov’s theorem (see
Proposition 4 in Section 4.1). The set Lt is measurable since it is the intersection of Dt,
−Dt and {α : 〈α, e〉 = 0}. The measurability of Ap

t follows from Proposition 6.

Now we are ready to formulate the assumptions on the portfolio constraints. In the
remaining part of the paper we always assume that they are satisfied.

Assumptions. For all t ≥ 1 and χ = (ω, v0, h0, . . .) it holds that

(A.1) At(χ) ⊆ Dt(ω);

(A.2) there exists (α, β) ∈ Ct(χ) such that Pt(〈α,Xt+1〉+ 〈β, Yt+1〉 > 0)(ω) = 1;

(A.3) A
p
t (χ) ⊆ At(χ);

(A.4) A
p
t (χ) is a compact set.

Let us comment on interpretation of these assumptions. (A.1) is imposed to en-
sure that any strategy which satisfies the portfolio constraints generates a non-negative
wealth sequence. As a consequence, for the realization of any profile of strategies satis-
fying the portfolio constraints we have

χ(ω) = (ω, v0, h0(ω), h1(ω), . . .) ∈ Θt a.s. for all t ≥ 0.

8



Since the underlying probability space and the filtration are complete, we can assume
that the above inclusion holds for all ω ∈ Ω, if necessary modifying the strategies on a
set of zero probability.

Assumption (A.2) implies that there exists a strategy with a strictly positive wealth
sequence. Such a strategy can be found via a standard measurable selection argument,
using that Ct are measurable sets. Observe that (A.2) is a very mild assumption. For
example, it holds if there is a non-zero vector α ∈ At with all non-negative coordinates
(recall that Xn

t > 0 for all n), since then (α/|α|, 0) ∈ Ct by (5).
Assumption (A.3) means that the agents can remove null investments from their

portfolios. Note that in the literature it is sometimes required that Lt ⊆ At (i.e. any
investment that leads to no profit or loss is allowed). It is not difficult to see that in our
model this requirement implies (A.3).

Assumption (A.4) will allow to reduce the optimal strategy selection problem to an
optimization problem on a compact set. Actually, it is equivalent to the no arbitrage
condition for the exogenous assets – or, more precisely, no unbounded arbitrage condition
– as we show in the next section.

2.4. Absence of unbounded arbitrage opportunities

Let Ut(ω) denote the cone of arbitrage opportunities in the exogenous assets at time
t ≥ 0, which consists of all u ∈ R

N1 such that

〈e, u〉 = 0, Pt(〈u,Xt+1〉 ≥ 0)(ω) = 1, Pt(〈u,Xt+1〉 > 0)(ω) > 0.

We say that there are no unbounded arbitrage opportunities in the model if for all
χ = (ω, v0, h0, . . .) ∈ Θ and t ≥ 0 the following assumption holds:

(A.5) there is no u ∈ Ut(ω) such that λu ∈ At(χ) for any λ > 0.

In other words, an agent cannot infinitely multiply the profit from an arbitrage oppor-
tunity, but the set At may contain some of them. This condition is analogous to the
no unbounded increasing profit condition (NUIP), known in connection with numéraire
portfolios, see Karatzas and Kardaras (2007, Proposition 3.10). If there are no con-
straints on the exogenous assets (i.e. At = {α ∈ R

N1 : 〈e, α〉 ∈ [0, 1]}), then (A.5) is
equivalent to the usual no-arbitrage condition Ut = ∅.

Proposition 1. Suppose the model satisfies assumptions (A.1), (A.3). Then assump-
tions (A.4) and (A.5) are equivalent.

Proof. It is easy to see that (A.4) implies (A.5). Let us prove the converse implication.
Suppose (A.5) holds. The closedness ofAp

t follows from thatAt is closed and assumption
(A.3).

To prove that Ap
t is bounded, fix χ = (ω, v0, h0, . . .) and suppose, by way of contra-

diction, that there is a sequence un ∈ A
p
t (χ) such that |un| → ∞. The sequence un/|un|

is bounded, so there exists a convergent subsequence unk
/|unk

| → u. It is easy to see
that 〈e, u〉 = 0 (because 〈e, un〉 ∈ [0, 1]), and |u| = 1, u ∈ L⊥

t (ω). The last two properties
imply that u /∈ Lt(ω). Moreover, since At ⊆ Dt, we have Pt(〈un,Xt+1〉 ≥ 0)(ω) = 1,
and hence Pt(〈u,Xt+1〉 ≥ 0)(ω) = 1. Consequently, u ∈ Ut(ω).

However, for any λ > 0 and k such that |unk
| ≥ λ, we have

λ

|unk
|
unk

∈ At(χ),

9



and, in the limit, λu ∈ At(χ), so u is an unbounded arbitrage opportunity, which is a
contradiction.

Examples. Arbitrage opportunities may be eliminated by imposing appropriate port-
folio constraints, even if the unconstrained model with the same exogenous prices St
has arbitrage. As an example, observe that assumption (A.5) automatically holds when
portfolio constraints limit portfolio leverage in the sense that

At ⊆ {α ∈ R
N1 : ct|a

+| ≥ |a−|}, (7)

where 0 ≤ ct < 1 is a random variable (or, in particular, a constant), and α± =
((α1)±, . . . , (αN1)±) are the vectors consisting of the positive and negative parts of the
coordinates of α. In this case, if 〈e, α〉 = 0 for α ∈ At, then α = 0, so Ut ∩At = ∅ and
(A.5) holds.

Constraint (7) means that the long positions of a portfolio should cover the short
positions with some margin, which is determined by the constant ct. If α 6= 0, this is
equivalent to that

|α+| ≥ |α−| and
|α−|

|α+| − |α−|
≤ c′t,

where c′t = ct/(1 − ct), which can be interpreted as that the ratio of the debt to the
value of a portfolio (the leverage) is bounded by c′t. If ct = 0, then (7) prohibits short
sales of the exogenous assets. For details on this leverage constraint and how it can
be used in problems of hedging and optimal growth, see e.g. Babaei et al. (2020a,b);
Evstigneev and Zhitlukhin (2013).

Constraint (7) can be relaxed if one requires

At ⊆ {α ∈ R
N1 : dt + ct|a

+| ≥ |a−|},

where dt ≥ 0. In this case, At may include some portfolios with 〈e, α〉 = 0 (besides
α = 0), in particular arbitrage opportunities, but the set At ∩ {α : 〈e, α〉 = 0} remains
bounded, so there are still no unbounded arbitrage opportunities.

3. Main results

3.1. The notion of optimality

We will be interested in long-run behavior of relative wealth of agents, i.e. their shares
in total market wealth. We define the total market wealth and the relative wealth of
agent m as, respectively,

W t =

M∑

m=1

vm
t , rmt =

vm
t

W t
,

where rmt = 0 if W t = 0. Recall that vt is defined on the set Θt, hence we will assume
that W t and rmt are defined only on this set as well.

For a given feasible strategy profile and a vector of initial wealth, by Wt(ω) =
W t(χ(ω)), r

m
t (ω) = rmt (χ(ω)) we will denote the corresponding realizations defined as

in Remark 1. The realizations of the agents’ wealth sequences will be denoted by vmt (ω).
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Definition 1. In a feasible strategy profile (h1, . . . ,hM ) with initial wealth v0 ∈ R
M
+

such that vm0 > 0, we call a strategy hm survival3 if

inf
t≥0

rmt > 0 a.s.,

and call it dominating if
lim
t→∞

rmt = 1 a.s.

Our main goal will be to show that the strategy ĥ which we construct in the next
section is survival in any strategy profile and dominating in a strategy profile if the
strategies of the other agents are, in a certain sense, different from it asymptotically.
Consequently, if some agents use ĥ, then any other survival strategy should be asymp-
totically close to it.

Note that any survival strategy is asymptotically unbeatable in the following sense:
if agent m uses a survival strategy then there exists a (finite-valued) random variable γ
such that

rkt ≤ γrmt , k = 1, . . . ,M, t ≥ 0,

which expresses the fact that the wealth of any other agent cannot grow asymptotically
faster than the wealth of an agent who uses a survival strategy. For a discussion of
unbeatable strategies as a game solution concept in related evolutionary finance models,
see e.g. Amir et al. (2013).

At the same time, we would like to emphasize that we do not insist on that all
agents should use only survival strategies, as they may have other economic goals or
make systematic errors. We only investigate what happens with a market if some
agents use such strategies.

For construction of a survival strategy, the following notion will be useful.

Definition 2. For a given feasible strategy profile and initial wealth, we call a strategy
hm relative growth optimal if

vmt > 0 for all t ≥ 0 and ln rmt is a submartingale.

Since any non-positive submartingale has a finite limit with probability 1 (see,
e.g., Shiryaev (2019, Chapter 7.4)), for a relative growth optimal strategy we have
limt→∞ ln rmt > −∞, and therefore rm∞ = limt→∞ rmt > 0. This implies the following
result.

Proposition 2. A relative growth optimal strategy is survival.

Note that if the relative wealth of an agent is “infinitesimal” (so the strategy of this
agent does not affect the prices of the endogenous assets), then a relative growth optimal
strategy for this agent, which depends on the current endogenous prices pt, can be found
as a growth optimal portfolio in a market with N = N1+N2 exogenous assets, consider-
ing pt as exogenous prices. In particular, if the asset returns are sufficiently integrable,
then such a strategy maximizes the one-period expected logarithmic return, see, e.g.,
Algoet and Cover (1988) or Cover and Thomas (2012, Chapter 16). The important fea-
ture of the strategy that we construct in the next section is that it essentially depends4

only on the current total market wealth W t, but not on the current endogenous prices,
and hence will be a survival strategy for an agent with any relative wealth.

3We use the terminology of Amir et al. (2013). Note that often a strategy is called survival if
lim sup
t→∞

rmt > 0, see, e.g., Blume and Easley (1992).

4Strictly speaking, this strategy may also depend on some additional information contained in the
market history χ, but only through the dependence of the portfolio constraints on such information.
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3.2. Construction of a relative growth optimal strategy

In this section we find one relative growth optimal strategy in an explicit form. The idea
behind the construction of this strategy consists in that we find it as a growth optimal
portfolio in a market with endogenous prices induced by it (see Theorem 2). We begin
with a lemma which defines the components α̂, β̂ of this strategy. Its statement is
somewhat involved, but clarifying comments will be provided in Remark 2 below.

Recall that we need to define α̂t, β̂t only on the set Θ′
t, while on its complement

these functions can be defined in an arbitrary way (respecting the Gt-measurability and
the portfolio constraints), since this will not have any effect on realizations of wealth
sequences.

In the statement of the lemma and subsequent results, we will use the following
agreement to treat indeterminacies: 0/0 = 0, 0 · ln 0 = 0, a · ln 0 = −∞ if a > 0.

Lemma 1. The following statements hold true for each t ≥ 0.
(a) Consider the G−

t+1-measurable vectors Ỹ t+1 in R
N2 with the components

Ỹ
n

t+1(χ) = Y n
t+1(ω) I(∃ β ∈ Bt(χ) : β

n > 0),

and the functions

gi(x) =
1

i
+ i arctan

(x
i

)
, x ∈ R+, i = 1, 2, . . .

Then there exist G−
t -measurable functions α̂t,i such that for all χ ∈ Θ′

t

α̂t,i ∈ argmax
α∈A

p
t

{
Et ln gi(〈α,Xt+1〉W t + |Ỹ t+1|)− 〈e, α〉

}
. (8)

(b) There exists an increasing sequence of G−
t -measurable functions ij(χ), j ≥ 1,

with positive integer values, and a G−
t -measurable function α̂t with values in A

p
t , such

that on the set Θ′
t

α̂t = lim
j→∞

α̂t,ij .

(c) The set B̃t = {β ∈ Bt(χ) : |β| = 1 − 〈e, α̂t(χ)〉} is non-empty for χ ∈ Θ′
t and

there exists a G−
t -measurable function β̂t with values in Bt such that for any χ ∈ Θ′

t

β̂t ∈ argmax
β∈B̃t

{
Et

〈ln β, Ỹ t+1〉

〈α̂t,Xt+1〉W t + |Ỹ t+1|

}
. (9)

Theorem 1. In every feasible strategy profile, any strategy ĥ = (α̂, β̂) constructed as
in Lemma 1 is relative growth optimal.

Note that Lemma 1 defines α̂t, β̂t not necessarily in a unique way (hence, we write
“any strategy ĥ” in the theorem). This may be so if, for example, some of the vectors
Xt have linearly dependent components.

Let us show that the strategy ĥ can be found as an equilibrium strategy of the
representative agent who holds a growth optimal portfolio in a market with N1 + N2

exogenous assets, where the firstN1 assets are the same as in the original market, and the
remaining N2 assets are treated as exogenous with the prices being equal to the prices of
the endogenous assets induced by ĥ in the original market. This notion of equilibrium
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is conceptually similar to the one in the Lucas model of an exchange economy (Lucas,
1978) with the logarithmic utility, though we do not consider consumption.

Recall that in a market with exogenous prices a strategy with value v̂t > 0 is called
a growth optimal portfolio (or a numéraire portfolio) if for any other strategy with
value vt ≥ 0 it holds that vt/v̂t is a supermartingale. If zt = (vt − vt−1)/vt−1 and
ẑt = (v̂t − v̂t−1)/v̂t−1 denote the one-period returns on the strategies’ portfolios, then
this supermartingality condition is equivalent to that for each t ≥ 0

Et
1 + zt+1

1 + ẑt+1
≤ 1. (10)

Let p̂t denote the endogenous prices that would clear the market if all the agents
used the strategy ĥ, i.e.

p̂n
t = β̂

n

t W t.

Let Zt denote the returns on the endogenous assets in this case,

Zn
t+1 =

Y n
t+1

p̂n
t

.

Consequently, the return on a portfolio (αt,βt) would be

〈αt,Xt+1〉 − 1 + 〈βt,Zt+1〉. (11)

Theorem 2. For any t ≥ 0, χ ∈ Θ′
t, and (α, β) ∈ Ct(χ), we have (cf. (10), (11))

Et
〈α,Xt+1〉+ 〈β,Z t+1〉

〈α̂t,Xt+1〉+ 〈β̂t,Zt+1〉
≤ 1. (12)

If Et | ln(〈α̂t,Xt+1〉+ 〈β̂t,Zt+1〉)| <∞, then

(α̂t, β̂t) ∈ argmax
(α,β)∈Ct

Et ln(〈α,Xt+1〉+ 〈β,Z t+1〉). (13)

Relation (12) expresses the above-mentioned idea of equilibrium, and relation (13)
is an analogue of the well-known fact that a numéraire portfolio maximizes one-period
expected log-returns, under the respective integrability condition.

Remark 2. Let us comment on technical aspects of the above results. Why in Lemma 1
do we introduce the functions gi and consider maximization problem (8)? Actually, we
would like to find a strategy (α̂, β̂) such that

α̂t maximizes Et ln(〈α,Xt+1〉W t + |Yt+1|)− 〈e, α〉 over α ∈ At, (14)

and, for this α̂t, to define the component β̂t as in (9). This strategy would satisfy
inequalities (19) and (26), which play the key role in the proofs.

But it may be not possible to define α̂t in this way, since problem (14) may have
no solution. For this reason, we find the solutions α̂t,i of the maximization problems
truncated by the functions gi and select a convergent subsequence. Then inequalities
(19), (26) still remain satisfied. To ensure that such a subsequence exists, we use the
observation that it is possible to maximize not over the whole set At but over its compact
subset A

p
t . We also replace Y t with Ỹ t to avoid the situation when an asset yields a

positive payoff with positive conditional probability, but it is not possible to invest in it.
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Note that when no portfolio constraints are imposed on the endogenous assets, i.e.
Bt = {β ∈ R

N2

+ : |β| ≤ 1} and hence Ỹ t+1 = Yt+1, we can find β̂t explicitly:

β̂
n

t = Et

Y n
t+1

〈α̂t,Xt+1〉W t + |Yt+1|
(15)

(this formula will be used in Section 3.3). Indeed, for β̂t defined by (15), we have
|β̂t| = 1 − 〈e, α̂t〉 as follows from equality (20) below, and for any β ∈ R

N2

+ with
|β| = 1− 〈e, α̂t〉 we have

Et
〈ln β, Yt+1〉

〈α̂t,Xt+1〉W t + |Yt+1|
= 〈ln β, β̂t〉 ≤ 〈ln β̂t, β̂t〉,

so β̂t indeed delivers the maximum in (9). The inequality here follows from Gibb’s
inequality (see Proposition 8 below).

To conclude this section, let us show how the above theorems generalize known
results on asymptotically optimal strategies. An immediate corollary from Theorem 2
is that in a market with only exogenous assets the strategy α̂t is a numéraire portfolio.
Note that in this case α̂t depends only on ω, but not on market history (assuming that
the constraints set Ct also depend only on ω).

In a market with only endogenous assets and no portfolio constraints, as follows from
(15), the optimal strategy is given by

β̂nt = Et

Y n
t+1

|Yt+1|

(note that again we have the dependence on ω only). This strategy was obtained by
Amir et al. (2013); see also the earlier results of Amir et al. (2005); Evstigneev et al.
(2002); Hens and Schenk-Hoppé (2005) for models with short-lived assets which impose
additional assumptions on admissible strategies or on asset payoffs.

Finally, suppose that there is only one exogenous asset, short sales of this asset are
not allowed, and there are no other portfolio constraints, i.e. Ct = R+ × R

N2

+ . Then
α̂t(χ) is defined as follows: if Et(Xt+1W t/|Yt+1|) ≤ 1, then α̂t = 0; otherwise α̂t is the
unique solution of the equation

Et
Xt+1W t

α+ |Yt+1|
= 1.

This can be seen from relations (19)–(20) below. Indeed, if Et(Xt+1W t/|Yt+1|) ≤ 1,
then equality (20) can be true only if α̂t = 0. In the case Et(Xt+1W t/|Yt+1|) > 1,
equality (20) has two solutions, the zero one and a non-zero one. But if α̂t = 0, then
(19) cannot hold true for α > 0, hence we are left only with the non-zero solution.

After α̂t has been defined as above, the component β̂t can be found from (15), which
gives

β̂
n

t = Et

Y n
t+1

α̂tXt+1W t + |Yt+1|
.

This strategy was obtained by Drokin and Zhitlukhin (2020) in the case when the se-
quence Xt is predictable (e.g. the exogenous asset is a risk-free bond or cash); see
Zhitlukhin (2019, 2020) for its extensions to continuous time.
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3.3. Asymptotic proximity of survival strategies

In this section we investigate evolution of relative wealth of strategies different from ĥ.
The theorem below will be stated for the case when there are no portfolio constraints
on the endogenous assets (Bt = {β ∈ R

N2

+ : |β| ≤ 1}). This assumption is necessary

because the proof relies on the explicit form of β̂t given by (15).
Given a feasible strategy profile and a vector of initial wealth, by h̄ = (ᾱ, β̄) we will

denote the realization of the representative strategy of all the agents, which we define
as the weighted sum of their strategies with rmt as the weights:

ᾱt =
M∑

m=1

rmt α
m
t , β̄t =

M∑

m=1

rmt β
m
t ,

where αt, βt, rt are the corresponding realizations. In a similar way, by h̃ = (α̃, β̃) we will
denote the realization of the representative strategy of agents m = 2, . . . ,M weighted
with their relative wealths excluding agent 1:

α̃t =
M∑

m=2

rmt
1− r1t

αm
t , β̃t =

M∑

m=2

rmt
1− r1t

βmt ,

where 0/0 = 0.

Theorem 3. Suppose Bt = {β ∈ R
N2

+ : |β| ≤ 1}, and agent 1 uses the strategy h1 = ĥ.
Considering the realizations of the strategies, the wealth sequences, and the constraints
sets, let

Qt+1(ω) = max
α∈At(ω)

〈α,Xt+1(ω)〉+
|Yt+1(ω)|

Wt(ω)
.

Then, with probability 1,

∞∑

t=0

(
〈α1

t − ᾱt,Xt+1〉

Qt+1

)2

+ ‖β1t − β̄t‖
2 <∞, (16)

and

lim
t→∞

r1t = 1 on the set

{
ω :

∞∑

t=0

(
〈α1

t − α̃t,Xt+1〉

Qt+1

)2

+ ‖β1t − β̃t‖
2 = ∞

}
. (17)

Note that the maximum in the definition of Qt+1 is attained because, according to
Proposition 1, it can be taken over the compact set Ap

t (ω). Furthermore, Qt+1 > 0 by
assumption (A.2).

Relation (16) essentially shows that if one agent uses the strategy ĥ then this agent
asymptotically determines the representative strategy of the market so that h̄t becomes
close to ĥt in the sense that the series in (16) converges, and, consequently,

〈α1
t − ᾱt,Xt+1〉

Qt+1
→ 0, β1t − β̄t → 0 as t → ∞.

Relation (17) provides a sufficient condition for an agent using the strategy ĥ to
dominate in the market, which happens when the realization of the representative strat-
egy of the other agents is asymptotically different from the realization of ĥ in the sense
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that the series in (17) diverges. From here, we also get a necessary condition for a
strategy to be survival. Indeed, a survival strategy must survive against ĥ, so if agents
m = 1, . . . ,M − 1 use the strategy ĥ, and hence can be considered as a single agent, the
remaining agent m =M has to use a strategy with a realization close to ĥ in the sense
of (17).

Another corollary from Theorem 3 is that the presence of an agent who uses the
strategy ĥ asymptotically determines the relative prices ρnt = pnt /Wt of the endogenous
assets. It is not difficult to see that ρnt = β̄nt , and hence (16) implies that for each n and
t→ ∞ we have β̂nt − ρnt → 0.

4. Proofs of the main results

4.1. Auxiliary results on random sets

In this section we provide several results from the theory of random sets which will be
used in the proofs for dealing with portfolio constraints.

By a random set (or a measurable correspondence) in R
N defined on a measurable

space (S,S) we call a set-valued function φ : S → 2R
N

such that for any open set A ⊆ R
N

it holds that φ−1(A) ∈ S, where φ−1(A) = {s : φ(s) ∩ A 6= ∅} is the lower inverse of
A. An equivalent definition is that the distance function d(x, φ(s)) is S-measurable for
any x ∈ R

N (where d(x, ∅) = ∞). In what follows, the role of (S,S) will be played by
(Ω,Ft), (Θ,Gt), or (Θ,G

−
t ).

A random set is called closed (respectively, compact, non-empty) if φ(s) is closed
(compact, non-empty) for any s ∈ S. A measurable selector is an S-measurable func-
tion ξ such that ξ(s) ∈ φ(s) for any s. A function f(s, x) : S × R

N → R is called a
Carathéodory function if it is measurable in s and continuous in x.

The following results are known for random sets in R
N .

Proposition 3. If φn, n = 1, 2, . . . , are random sets, then ∪nφn is a random set; if φn
are also closed, then ∩nφn is a closed random set.

Proposition 4 (Filippov’s theorem). Suppose φ is a non-empty compact random set,
f is a Carathéodory function, and π is a measurable function. Then the correspondence

ψ(s) = {x ∈ φ(s) : f(s, x) = π(s)}

is measurable and compact. Moreover, if ψ is non-empty, then it has a measurable
selector ξ, and hence f(s, ξ(s)) = π(s).

Proposition 5 (Measurable maximum theorem). For a non-empty compact random set
φ and a Carathéodory function f , let µ be the maximum function and ψ be the argmax
correspondence defined by

µ(s) = max
x∈φ(s)

f(s, x), ψ(s) = argmax
x∈φ(s)

f(s, x).

Then µ is measurable, and ψ is non-empty, compact, measurable, and has a measurable
selector.

Proofs of the above results can be found in the book of Aliprantis and Border (2006,
Chapter 18) for random sets in general metric spaces, except the result about ∩nφn,
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which holds (in a metric space) if φn are compact. For RN , it can be extended to closed
sets using that RN is σ-compact.

For the reader’s convenience, the following results are provided with proofs (they are
not included in the above-mentioned book).

Proposition 6. Let L be a random linear subspace of RN (i.e. for each s the set L(s)
is a linear space and the correspondence L is measurable), L⊥ be the orthogonal space,
and φ be a closed random set in R

N . Then the projection correspondence

prL φ(s) = {x ∈ L(s) : ∃ y ∈ L⊥(s) such that x+ y ∈ φ(s)}

is measurable.

Proof. By Castaing’s theorem (see Corollary 18.14 in Aliprantis and Border (2006)), a
non-empty closed correspondence is measurable if and only if it can be represented as
the closure of a countable family of measurable selectors from it. Hence, we can find
measurable ξi such that φ(s) = cl{ξi(s), i ≥ 1} on the set {s : φ(s) 6= ∅}. Using that

cl(prL φ(s)) =

{
cl{prL ξi(s), i ≥ 1}, if φ(s) 6= ∅,

∅, if φ(s) = ∅,

one can see that cl(prL φ) is measurable. Since the measurability of a correspondence is
equivalent to the measurability of its closure (Aliprantis and Border, 2006, Lemma 18.3),
prL φ is measurable.

Proposition 7. Let φ be a non-empty compact random set and ξn be a sequence of
measurable selectors from it. Then there exists a measurable selector ξ from φ and a
sequence of measurable functions 1 ≤ i1(s) < i2(s) < . . . with integer values such that
limj→∞ ξij(s)(s) = ξ(s) for all s.

Proof. The set ψ(s) = ∩ncl{ξk(s), k ≥ n} is measurable, non-empty, and closed, so
there exists a measurable selector ξ ∈ ψ (by Castaing’s theorem mentioned above).
Then the sequence ij can be constructed by induction as follows. Put i1 = 1. If ij is
defined, consider the random set ηj(s) = {k > ij(s) : |ξk(s) − ξ(s)| ≤ j−1} ⊂ N, which
is measurable, non-empty, and closed. Let ij+1 be a measurable selector from ηj . Then
|ξij+1

− ξ| < j−1, which gives the desired convergence.

4.2. Proof of Lemma 1

Proof of claim (a). Fix any t ≥ 0. Let fi(χ,α) be the function which is maximized in
the definition of α̂t,i, i.e. on the set Θ′

t put

fi = Et ln gi(〈α,Xt+1〉W t + |Ỹ t+1|)− 〈e, α〉,

while on the set Θ \Θ′
t put fi = 0. The function fi is a Carathéodory function, and the

set Ap
t , over which it is maximized, is compact by Proposition 1. Hence the measurable

maximum theorem implies the existence of a measurable selector α̂t,i from the argmax
in (8).

Proof of claim (b) readily follows from Proposition 7. Before we continue with the
proof of claim (c), let us show that α̂t satisfies a number of relations that will be used
in its proof, as well as in the proof of Theorem 1.
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Lemma 2. For any t ≥ 0, χ ∈ Θ′
t, and α ∈ At(χ) we have

Pt(〈α̂t,Xt+1〉W t + |Ỹ t+1| > 0) = 1, (18)

Et

(
〈α̂t − α,Xt+1〉W t

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
≥ 〈e, α̂t − α〉, (19)

Et

(
〈α̂t,Xt+1〉W t

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
= 〈e, α̂t〉. (20)

Proof. Fix t, χ, α, i, and consider the function u(ε) = fi((1− ε)α̂t + εα), ε ∈ [0, 1], i.e.

u(ε) = Et ln gi
(
〈(1− ε)α̂t,i + εα,Xt+1〉W t + |Ỹ t+1|

)
(χ)− 〈e, (1− ε)α̂t,i(χ) + εα〉. (21)

Since ln gi(x) is concave for x ≥ 0, the function u(ε) is also concave. As it attains
the maximum value at ε = 0, the right derivative u′(0) ≤ 0. We want to interchange
the order of differentiation and taking the expectation. The expectation in (21) can be
written as Et ln gi(q(ω̃, ε)) =

∫
Ω ln gi(q(ω̃, ε))Kt(ω, dω̃) with

q(ω̃, ε) = 〈(1 − ε)α̂t,i(χ̃) + εα,Xt+1(ω̃)〉W t(χ̃) + |Ỹ t+1(χ̃)|,

where χ̃ = (ω̃, v0, h0, . . .) and v0, (hs)s≥0 are taken from χ = (ω, v0, h0, . . .). By applying
Fatou’s lemma, we obtain (ω̃ is omitted for brevity)

(Et ln gi(q(ε)))
′
ε=0 ≥ Et

g′i(q(0))

gi(q(0))
〈α− α̂t,i,Xt+1〉W t. (22)

Fatou’s lemma can be applied since for ε ∈ [0, 1) we have the lower bound (Pt-a.s. in ω̃)

ln gi(q(ε)) − ln gi(q(0))

ε
≥ (ln gi(q(ε)))

′ =
g′i(q(ε))

gi(q(ε))
〈α− α̂t,i,Xt+1〉W t

≥ −ig′i((1− ε)〈α̂t,i,Xt+1〉W t)〈α̂t,i,Xt+1〉W t ≥ −
i3

1− ε
.

Here in the first inequality we used the concavity of ln gi(q(ε)). In the second inequality
we used the relation Pt(〈α,Xt+1〉 ≥ 0) = 1, the bound gi(x) ≥ 1/i, and that g′i(x) is
non-increasing for x ≥ 0. The last last inequality holds because g′i(x)x ≤ i2.

Therefore, from (21) and (22) we obtain

0 ≥ u′(0) ≥ Et(ξi〈α,Xt+1〉W t)− Et(ξi〈α̂t,i,Xt+1〉W t)− 〈e, α − α̂t,i〉, (23)

where

ξi =
g′i(q(0))

gi(q(0))
=
g′i(〈α̂t,i,Xt+1〉W t + |Ỹ t+1|)

gi(〈α̂t,i,Xt+1〉W t + |Ỹ t+1|)
.

One can see that for all x ≥ 0

0 ≤
xg′i(x)

gi(x)
≤ 2, lim

i→∞

xg′i(x)

gi(x)
= I(x > 0). (24)

The above inequality can be obtained by using that arctan(x/i) ≥ x/(2i) if x ≤ i and
arctan(x/i) ≥ π/4 if x ≥ i; the computation of the limit is straightforward. Relations
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(24) allow to apply the dominated convergence theorem to the second expectation in
(23), which gives

lim
i→∞

Et(ξi〈α̂t,i,Xt+1〉W t) = Et

(
〈α̂t,Xt+1〉W t

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
, (25)

where at this point we assume 0/0 = 0 in the right-hand side (according with the
indicator in (24)). However, as follows from assumption (A.2), there exists α̃ such that
Pt(〈α̃,Xt+1〉W t + |Ỹ t+1| > 0) = 1. Applying Fatou’s lemma to the first expectation in
(23) with α = α̃, we find that (18) must hold, since otherwise we would have

lim inf
i→∞

Et(ξi〈α̃,Xt+1〉W t) = +∞,

which contradicts (23). Consequently, for any α ∈ At we have

lim inf
i→∞

Et(ξi〈α,Xt+1〉W t) ≥ Et

(
〈α,Xt+1〉W t

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
,

which together with (23) and (25) implies (19).
Let us prove (20). If 〈e, α̂t(χ)〉 = 1, it clearly follows from (19) with α = 0. If

〈e, α̂t(χ)〉 < 1, we can consider small ε > 0 and take as α in (19)

α(±ε) := (1± ε)α̂t(χ) ∈ At(χ),

which gives (20) after simple transformations.

Proof of claim (c) of Lemma 1. If Bt(χ) 6= {0}, then B̃t(χ) 6= ∅ in view of (6). If
Bt(χ) = {0}, then Ỹ t(χ) = 0, and (20) implies that 〈e, α̂t(χ)〉 = 1, so B̃t(χ) = {0} is
non-empty again.

Let f(χ, β) denote the function being maximized in (9):

f(χ, β) =

N2∑

n=1

ln βn Et

(
Ỹ

n

t+1

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
(χ).

The function f may be discontinuous in β. In order to apply the measurable maximum
theorem, let us take Gt−1-measurable β̃(χ) ∈ Bt(χ) such that |β̃(χ)| = 1 − α̂t(χ) and

β̃
n
(χ) > 0 if Pt(Ỹ

n

t+1 > 0)(ω) > 0. Then we can consider the function

f̃(χ, β) = max(f(χ, β), f(χ, β̃(χ))),

which is a Carathéodory function and satisfies the relation

argmax
β∈B̃t

f(χ, β) = argmax
β∈B̃t

f̃(χ, β).

Hence the measurable maximum theorem can be applied to f̃ , giving β̂t which also
maximizes f .
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4.3. Proofs of Theorems 1 and 2

Let us prove two more inequalities which together with (19) will be used in the proofs.

Lemma 3. For any t ≥ 0, χ ∈ Θ′
t, and β ∈ Bt(χ) we have

Et

(
〈ln β̂t − ln β, Ỹ t+1〉

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
≥ |β̂t| − |β|, (26)

Et

|Ỹ t+1| −
∑

n β
nỸ

n

t+1/β̂
n

t

〈α̂t,Xt+1〉W t + |Ỹ t+1|
≥ |β̂t| − |β|, (27)

where in (27) we let βnỸ
n

t+1(χ)/β̂
n

t (χ) = 0 if β̂
n

t (χ) = 0 (then Pt(Ỹ
n

t+1 = 0)(χ) = 1 as
follows from (9)).

Proof. Clearly, (26) holds if |β| = |β̂t(χ)|, as follows from the definition of β̂t. If
|β| 6= |β̂t(χ)|, we have

Et

(
〈ln β̂t − ln β, Ỹ t+1〉

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
≥ Et

(
|Ỹ t+1| ln(|β̂t|/|β|)

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)

≥ Et

(
|Ỹ t+1|

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
|β̂t| − |β|

|β̂t|
= |β̂t| − |β|,

where in the first inequality we represented ln β = ln(β|β̂t|/|β|)−ln(|β̂t|/|β|) and applied
(26) to β|β̂t|/|β| instead of β; in the second inequality we used the estimate ln a ≥ 1−a−1;
and in the equality applied (20). This proves (26).

To prove (27), observe that the function

f(ε) = Et

(
〈ln((1− ε)β̂t + εβ), Ỹ t+1〉

〈α̂t,Xt+1〉W t + |Ỹ t+1|

)
− |(1− ε)β̂t + εβt|, ε ∈ [0, 1],

attains its maximum at ε = 0 and is differentiable on [0, 1), so its derivative at zero

f ′(0) =

N2∑

n=1

(βn − β̂
n

t )Ỹ
n

t+1

β̂
n

t (〈α̂t,Xt+1〉W t + |Ỹ t+1|)
+ |β̂t| − |β|

should be non-positive, which gives (27) (here, the n-th term in the sum is treated as

zero when β̂
n

t (χ) = 0, and hence Ỹ
n

t+1 = 0).

Proof of Theorem 1. Assume that the strategy ĥ is used by agent m = 1. Let us fix the
initial wealth and the strategies of the other agents, and pass on to a realization of the
strategies hmt = (αm

t , β
m
t ), wealth vmt , and relative wealth rmt as functions of ω only. In

notation for agent 1, we will also use the hat instead of the superscript “1”, i.e. α̂ = α1,
β̂ = β1, etc.

Introduce the predictable sequence of random vectors Ft ∈ R
N2

+ with the components

Fn
t =

β̂nt∑
m r

m
t β

m,n
t

,

where 0/0 = 0. From (3), we obtain the relations

v̂t+1 =

(
〈α̂t,Xt+1〉+

〈Ft, Ỹt+1〉

Wt

)
v̂t, Wt+1 =

( M∑

m=1

rmt 〈αm
t ,Xt+1〉+

|Ỹt+1|

Wt

)
Wt.
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Consequently, we find ln r̂t+1 − ln r̂t = ft(Xt+1, Ỹt+1), where ft = ft(ω, x, y) is the
Ft ⊗ B(RN )-measurable function

ft(x, y) = ln

(
〈α̂t, x〉Wt + 〈Ft, y〉

Wt

∑
m r

m
t 〈αm

t , x〉+ |y|

)

(the argument ω is omitted for brevity).
We need to show that Et ft(Xt+1, Ỹt+1) ≥ 0. Rewrite the function ft(x, y) as

ft(x, y) = ln

(
〈α̂t, x〉Wt + |y|

Wt

∑
m r

m
t 〈αm

t , x〉+ |y|

)
+ ln

(
〈α̂t, x〉Wt + 〈Ft, y〉

〈α̂t, x〉Wt + |y|

)

:= f
(1)
t (x, y) + f

(2)
t (x, y).

(28)

For the first term, we can use the inequality lnx ≥ 1− x−1 and apply (19), which gives

Et f
(1)
t (Xt+1, Ỹt+1) ≥ Et

〈α̂t −
∑

m r
m
t α

m
t ,Xt+1〉Wt

〈α̂t,Xt+1〉Wt + |Ỹt+1|
≥

〈
e, α̂t −

M∑

m=1

rmt α
m
t

〉
. (29)

For the second term in (28), we have

Et f
(2)
t (Xt+1, Ỹt+1) ≥ Et

〈lnFt, Ỹt+1〉

〈α̂t,Xt+1〉Wt + |Ỹt+1|
≥ |β̂t| −

M∑

m=1

rmt |βmt |, (30)

where the first inequality follows from the concavity of the logarithm, and the second
one follows from that lnFt = ln β̂t − ln

∑
m r

m
t β

m
t and inequality (26).

Using that |βmt |+ 〈e, αm
t 〉 = 1, we see that Et ft(Xt+1, Ỹt+1) ≥ 0, hence Et ln r̂t+1 ≥

ln r̂t. Since ln r̂t is a non-positive sequence, this inequality also implies the integrability
of ln r̂t (by induction, beginning with ln r̂0), so it is a submartingale.

Proof of Theorem 2. When all the agents use ĥ, from (2) we find pn
t = β̂

n

t W t, and
hence 〈β̂t,Zt+1〉 = Ỹ t+1/W t. Adding (19) and (27), we obtain (12). Then (13) follows
by Jensen’s inequality.

4.4. Proof of Theorem 3

We will need the following proposition which provides two inequalities of a general
nature.

Proposition 8. 1) For any a, b ∈ (0, 1]

ln
a+ b

2
−

ln a+ ln b

2
≥

(a− b)2

8
. (31)

2) Suppose x, y ∈ R
N
+ are two vectors such that |x| ≤ 1, |y| ≤ 1, and for each n it holds

that if yn = 0, then also xn = 0. Then

〈x, ln x− ln y〉 ≥
‖x− y‖2

4
+ |x| − |y|. (32)

Proof. 1) Assume a ≤ b. The inequality clearly holds if a = b. Let f(a) be the difference
of its left-hand side and right-hand side, with b fixed. It is enough to show that f ′(a) ≤ 0
for a ∈ (0, b]. After differentiation, this becomes equivalent to a(a+ b) ≤ 2. The latter
inequality is clearly true, provided that a, b ∈ (0, 1].

2) Inequality (32) follows from a known inequality for the Kullback-Leibler diver-
gence if x/|x| and y/|y| are considered as probability distributions on a set ofN elements.
Its short direct proof can be found in Drokin and Zhitlukhin (2020, Lemma 2).
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Proof of Theorem 3. We will use the same notation for realizations of strategies as in
the proof of Theorem 1. It was shown that ln r̂t is a submartingale. Let ct be its com-
pensator, i.e. the predictable non-decreasing sequence such that ln r̂t−ct is a martingale;
in the explicit form

ct =
∑

s≤t

(Es−1 ln r̂s − ln r̂s−1).

As was shown in the proof of Theorem 1,

ct+1 − ct = Et ft(Xt+1, Yt+1) = Et(f
(1)
t (Xt+1, Yt+1) + f

(2)
t (Xt+1, Yt+1))

with f (1), f (2) defined in (28). Since ln r̂t is non-positive and converges, we have c∞ <∞
with probability 1. Let us consider again inequalities (29)–(30) and strengthen them
using Proposition 8. Fix t ≥ 1 and let

a =
〈α̂t,Xt+1〉+ |Yt+1|/Wt

Qt+1
, b =

〈ᾱt,Xt+1〉+ |Yt+1|/Wt

Qt+1
.

Note that a, b ∈ (0, 1]. Then

Et f
(1)
t (Xt+1, Yt+1) = 2Et

(
ln a−

ln a+ ln b

2

)

≥ 2Et

(
ln
a+ b

2
−

ln a+ ln b

2

)
+ 〈e, α̂t − ᾱt〉

≥

(
〈α̂− ᾱ,Xt+1〉

2Qt+1

)2

+ 〈e, α̂t − ᾱt〉.

(33)

Here, in the first inequality we used the estimate

Et

(
ln a− ln

a+ b

2

)
≥

1

2
Et

〈α̂t − ᾱt,Xt+1〉Wt

〈α̂t,Xt+1〉Wt + |Yt+1|
≥

1

2
〈e, α̂t − ᾱt〉,

which is obtained similarly to (29). In the second inequality of (33) we applied (31).
For the function f (2), using that there are no portfolio constraints on the endogenous

assets, so β̂t is given by (15), we find

Et f
(2)
t (Xt+1, Yt+1) ≥ Et

〈lnFt, Yt+1〉

〈α̂t,Xt+1〉Wt + |Yt+1|
= 〈lnFt, β̂t〉 = 〈β̂t, ln β̂t − ln β̄t〉

≥
‖β̂t − β̄t‖

2

4
+ |β̂t| − |β̄t|,

(34)

where the first inequality is obtained similarly to (30), and in the second one we ap-
plied (32). Consequently, from (33), (34), we obtain

ct+1 − ct ≥

(
〈α̂t − ᾱt,Xt+1〉

2Qt+1

)2

+
‖β̂t − β̄t‖

2

4
.

From here, using that c∞ <∞, we get (16). Moreover, α̂t − ᾱt = (1− r̂t)(α̂t − α̃t) and
β̂t − β̄t = (1− r̂t)(β̂t − β̃t), so on the set (17) we necessarily have limt→∞ r̂t = 1.
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