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Abstract

We consider a distributionally robust second-order stochastic dominance constrained optimization problem. We
require the dominance constraints hold with respect to all probability distributions in a Wasserstein ball centered
at the empirical distribution. We adopt the sample approximation approach to develop a linear programming
formulation that provides a lower bound. We propose a novel split-and-dual decomposition framework which
provides an upper bound. We establish quantitative convergency for both lower and upper approximations
given some constraint qualification conditions. To efficiently solve the non-convex upper bound problem, we
use a sequential convex approximation algorithm. Numerical evidences on a portfolio selection problem valid
the convergency and effectiveness of the proposed two approximation methods.
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1 Introduction

Stochastic dominance (SD), originated from economics, is popular in comparing random outcomes. In their
pioneering work [8], Dentcheva and Ruszczyński studied the stochastic optimization problem with univariate
SD constraints, where they developed the optimality conditions and duality theory. The commonly adopted
univariate SD concepts in stochastic optimization are first-order SD (FSD) and second-order SD (SSD). Re-
searchers have investigated the stochastic optimization problem with FSD constraints from different aspects,
such as stability and sensitivity analysis [6], mixed-integer linear programming formulations [29], and linear
programming relaxations [34]. The stochastic optimization problem with SSD constraints has been intensively
studied in quite a few literature. For theoretical foundations, the stability and sensitivity analysis were pre-
sented in [7]. For solution methods, different linear programming formulations were derived in [8, 29] and the
cutting plane methods were adopted in [14, 38, 39]. The stochastic programs with SD constraints induced by
mixed-integer linear recourse were studied in [17] for FSD and in [16] for SSD. Stochastic optimization problems
with multivariate extensions of SD constraints were considered in [20, 21, 33]. There is also a rich literature
considering SD under dynamic settings, such as [13]. Applications of SD constraints in finance were investigated
in [5, 9, 22].

A challenge of stochastic programming problems is the accessibility of the true probability distribution of
the uncertain parameters. In some practical problems, the true probability distribution sometimes could not be
completely observed. For this reason, distributionally robust optimization (DRO) models have been proposed to
address the lack of complete information on the true probability distribution, where the expectations are taken
under the worst-case probability distribution in a specific ambiguity set. There are mainly two types of ambiguity
sets in the existing literature. The first type is the moment-based ambiguity sets, which is characterized by some
moment inequalities [18,44]. The second type is the distance-based ambiguity sets, which contain all probability
distributions close to a nominal distribution measured by some probability metrics, such as Kullback-Leibler
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divergence [26], φ-divergence [24], and Wasserstein distance [2,23,26,31,40]. Esfahani and Kuhn [32] estimated
a priori probability that the true distribution belongs to the Wasserstein ball and established finite sample and
asymptotic guarantees for the distributionally robust solutions. With the duality theory, the DRO problem with
Wasserstein ball can be reformulated as convex programs [15,32,43]. Such reformulations were then applied to
chance-constrained DRO problems [2, 23, 40].

Incorporating the basic ideas of SD and distributional robustness, Dentcheva and Ruszczyński [10] first in-
troduced the distributionally robust SD and established the optimality conditions of the stochastic optimization
problem with distributionally robust SSD constraints. Since then, a stream of research has paid attention to
stochastic optimization with distributionally robust SD constraints. Dupačová and Kopa [12] modeled the am-
biguity of the distribution in FSD by a linear combination of a nominal distribution and a known contamination
distribution with the combination parameter being in a parametric uncertainty set. Guo, Xu and Zhang [18]
proposed a discrete approximation scheme for the moment-based ambiguity sets and approximately solved the
resulting stochastic optimization problem with distributionally robust SSD constraints. Under a moment-based
ambiguity set, Liesiö et al. [25] identified optimal portfolios robustly SSD dominating a given benchmark. Chen
and Jiang [3] and Zhang et al. [42] studied stability of DRO problems with kth order SD constraints induced
by full random recourse. The optimality conditions and duality theory of DRO problems with multivariate SD
were discussed in [4, 19].

As is mentioned above, SD constrained optimization under distributional ambiguity is an important class of
problems. While the distributionally robust SSD constrained optimization with Wasserstein ball has not been
well studied in the existing literature. The main difficulties of solving such problems lie in three aspects.

• The semi-infiniteness induced from both the SSD and the distributionally robust counterpart are the main
challenge.

• Distributionally robust SSD constraints are non-smooth such that gradient based methods fail to work
here.

• Compared to moment-based ambiguity sets, the Wasserstein distance contains an extra optimization
problem on computing the optimal transportation from the true distribution to the nominal distribu-
tion. Such an inner-level optimization problem leads a min-max-min structure and non-convexity of the
distributionally robust SSD constraints.

Therefore, it is quite challenging for us to study the approximation schemes and algorithms for the distribu-
tionally robust SSD constrained optimization problem with Wasserstein ball. Thanks to the rapid development
recently on the strong duality theory of DRO problems with Wasserstein ball [15,32], we have a chance to show
in this paper efficient approximation methods for such SSD constrained problem.

In detail, we first utilize the strong duality results for DRO problem with Wasserstein ball in [15] to derive
a reformulation of distributionally robust SSD constraints. Then we adopt the sampling approach to approxi-
mate the infinitely many constraints by finitely many constraints and develop a linear programming formulation
which is a lower bound approximation. We further analyze the quantitative convergency of the lower bound ap-
proximation. To overcome the ‘curse of dimensionality’ of the linear programming approximation, we propose a
novel split-and-dual decomposition framework. We separate the support set of the parameter in distributionally
robust SSD constraints into finite sub-intervals. For each sub-interval, we exchange the order of the supremum
operator and the expectation operator to get an upper bound approximation. We prove that the optimal value
of the upper bound approximation converges to that of the original problem as the number of sub-intervals goes
to infinity and we quantitatively estimate the approximation error. As the derived upper bound approximation
problem is non-convex, we apply the sequential convex approximation method to solve it.

This paper improves results in quite a few papers. Specifically, we extend the DRO with Wasserstein
ball [2, 15, 23, 32, 40] to a more complicated case with infinitely many constraints induced by SSD. Compared
with robust SD constrained optimization problems in [4, 18, 25, 42], we study Wasserstein ball rather than
moment-based ambiguity sets. The main contributions of this paper include:

• We derive a lower bound approximation of the distributionally robust SSD constrained optimization with
Wasserstein ball by the sample approximation approach, and establish the quantitative convergency of
the approximation problem.

• We propose a novel split-and-dual decomposition framework, which provides an upper bound approxima-
tion of the problem. As far as we know, the upper bound approximations of SD constrained problems
are seldom studied in existing literature. We prove the convergency of the approximation approach and
quantitatively estimate the approximation error when the number of sub-intervals is sufficiently large.
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While preparing this paper for publication, we became aware of an independent work by Peng and Delage
[35] on distributionally robust SSD constraints with Wasserstein ball. Peng and Delage [35] formulated the
distributionally robust SSD constrained problem as a multistage robust optimization problem, and proposed
a tractable conservative approximation that exploits finite adaptability and a scenario-based lower bounding
problem with nice numerical feasibility. We distinguish our work from Peng and Delage [35] in a different
split-and-dual decomposition framework for the upper bound and detailed quantitative convergency analysis.

The rest of this paper is organized as follows. In section 2, we introduce the distributionally robust SSD
constrained optimization problem. In section 3, we adopt the sampling approximation approach to obtain
the lower bound approximation and establish the quantitative convergency. In section 4, we propose a split-
and-dual decomposition framework to derive the upper bound approximation, whose optimal value can be
obtained by solving a sequence of second-order cone programming problems. We also quantitatively estimate
the approximation error when the number of sub-intervals is sufficiently large. Numerical evidences valid the
convergency and effectiveness of the proposed approximation methods in Section 5. Section 6 concludes the
paper.

2 Preliminaries

2.1 Distributionally robust second-order stochastic dominance

First we introduce some notations. Let U be the set of all non-decreasing and concave utility functions u : R→ R.
We use (·)+ = max{·, 0} to denote the positive part function. Let d(x,A) := infy∈A ‖x − y‖ be the distance
from a point x to a set A. Denote the deviation of a set A from another set B by D(A,B) = supx∈A d(x,B) and
the Hausdorff distance between A and B by H(A,B) = max{D(A,B),D(B,A)}. Let (Ω,F ) be a measurable
space with F being the Borel σ-algebra on Ω, and P be the set of all probability measures on (Ω,F ).

Before introducing the distributionally robust SSD, we recall the definition of classic SSD. Consider the
random variables X and Y on a probability space (Ω,F , P ) with finite first order moments, here P ∈ P is
the true distribution. We say that X stochastically dominates Y in the second order, denoted by X �P

(2) Y , if

EP [u(X)] ≥ EP [u(Y )], ∀u ∈ U . X �P
(2) Y is equivalent to

EP [(η −X)+ − (η − Y )+] ≤ 0, ∀η ∈ R. (1)

Let Y be the set of all realizations of the random variable Y . It has been shown in [28, Proposition 1] that (1)
is equivalent to

EP [(η −X)+ − (η − Y )+] ≤ 0, ∀η ∈ Y. (2)

In some data-driven problems, it is difficult to obtain the complete information about the true probability
measure P . To address this issue, Dentcheva and Ruszczyński [10] introduced distributionally robust SSD by
considering an ambiguity set of probability measures instead of P .

Definition 1. X dominates Y robustly in the second order over a set of probability measures Q ⊂P, denoted
by X �Q

(2) Y , if

EP [u(X)] ≥ EP [u(Y )], ∀u ∈ U , ∀P ∈ Q.

In the rest of this paper, we investigate the following distributionally robust SSD constrained optimization
problem

(PSSD) min
z∈Z

f(z)

s.t. zT ξ �Q
(2) z

T
0 ξ,

where f is proper and continuous, ξ denotes the random vector, Z ⊂ Rn is a bounded polyhedral set, and
z0 ∈ Z is a given benchmark. From (1), problem (PSSD) can be rewritten as

min
z∈Z

f(z)

s.t. EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0, ∀η ∈ R, ∀P ∈ Q.
(3)

We can observe that the semi-infiniteness of constraints in problem (3) arises from η ∈ R and P ∈ Q, induced
from the SSD constraints and the distributionally robust ambiguity set, respectively. Moreover, the constraint
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functions in problem (3) are non-smooth as (·)+ is involved. Therefore, problem (3), as well as problem (PSSD),
is hard to solve. To reduce the difficulties in solving problem (PSSD), we firstly assume that the support set Ξ
has a polyhedral structure. The polyhedral structure of Ξ, also assumed in [32, Corollary 5.1], contributes to
applying the duality theory of second-order conic programming when deriving the upper bound approximation
later in this paper.

Assumption 1. Ξ is polyhedral, i.e., Ξ = {ξ ∈ Rn | Cξ ≤ d}, where C ∈ Rl×n, d ∈ Rl, and zT0 Ξ := {zT0 ξ | ξ ∈
Ξ} is a compact set.

If Ξ is a polyhedron, then Assumption 1 holds automatically. Keeping in mind the equivalence of (1) and
(2), problem (3) can be formulated as

min
z∈Z

f(z)

s.t. EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0, ∀η ∈ R := zT0 Ξ, ∀P ∈ Q.
(4)

We denote the smallest and largest numbers in R by Rmin and Rmax, respectively, thus, R = [Rmin,Rmax].

2.2 Data-driven Wasserstein ambiguity set

In this section, we introduce the data-driven Wasserstein ambiguity set Q and recall a fundamental duality
result in DRO problems with Wasserstein ball [15, 32, 43].

Let P(Ξ) be the space of all probability measures P supported on Ξ with EP [‖ξ‖] < ∞. We consider
1-Wasserstein distance, also known as Kantorovich metric.

Definition 2. The Kantorovich metric dK : P(Ξ)×P(Ξ)→ R+ is defined via

dK(P,Q) := inf
π

{∫

Ξ2

‖ξ1 − ξ2‖π(dξ1, dξ2) :
π is a joint distribution of ξ1 and ξ2
with marginals P and Q, respectively

}
.

Kantorovich metric can be written in a pseudo metric form [1].

Proposition 1. Let G be the set of all Lipschitz continuous functions h : Ξ→ R with modulus 1. Then

dK(P,Q) := sup
h∈G

∣∣∣∣
∫

Ξ

h(ξ)P (dξ)−

∫

Ξ

h(ξ)Q(dξ)

∣∣∣∣ .

Given P ,Q ⊂ P(Ξ), define the deviation of P from Q by DK(P ,Q) := supP∈P infQ∈Q dK(P,Q), and the
Hausdorff distance between P and Q by HK(P ,Q) := max{DK(P ,Q), DK(Q,P)}.

Given N observations {ξ̂i}Ni=1 of ξ, we define the data-driven Wasserstein ambiguity set Q as a ball centered

at the empirical distribution P̂N = 1
N

∑N
i=1 δξ̂i ,

Q := {P ∈P(Ξ) : dK(P, P̂N ) ≤ ǫ}, (5)

where ǫ is a prespecified robust radius. Esfahani and Kuhn [32] proved that with any prescribed β ∈ (0, 1), by
appropriately defining ǫ(β), the true distribution P belongs to Q with the confidence level 1− β.

Under some mild conditions, strong duality results of DRO problems with Wasserstein ball have been
established in [32, Theorem 4.2], [15, Corollary 2] and [43, Proposition 2].

Lemma 1. If Ψ(ξ) is proper, continuous, and for some ζ ∈ Ξ, the growth rate κ := lim sup‖ξ−ζ‖→∞
Ψ(ξ)−Ψ(ζ)

‖ξ−ζ‖ <

∞, then the optimal values of

sup
P∈P(Ξ)

{∫

Ξ

Ψ(ξ)P (dξ) : dK(P, P̂N ) ≤ ǫ

}

and

min
λ≥0

{
λǫ +

1

N

N∑

i=1

sup
ξ∈Ξ

[Ψ(ξ)− λ‖ξ − ξ̂i‖]

}
(6)

are equal. Moreover, the optimal solution set of (6) is nonempty and compact.
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Proof. The strong duality was established in [15, Theorem 1]. We only need to prove the nonemptiness and

compactness of the optimal solution set of (6). Let fD(λ) :=λǫ+ 1
N

∑N
i=1supξ∈Ξ[Ψ(ξ)−λ‖ξ − ξ̂i‖]. It is easy to

see that fD is lower semi-continuous and convex, and fD(λ) ≥ λǫ + 1
N

∑N
i=1 Ψ(ξ̂i), ∀λ ≥ 0. Since Ψ is proper,

fD is bounded from below on bounded sets and

lim inf
λ→∞

fD(λ)

λ
≥ lim inf

λ→∞

λǫ + 1
N

∑N
i=1 Ψ(ξ̂i)

λ
= ǫ > 0.

This means that fD is level-coercive [37, Definition 3.25].
Next, we prove that fD is proper by showing fD(κ) <∞ at κ := lim sup

‖ξ−ζ‖→∞
(Ψ(ξ)−Ψ(ζ))/‖ξ − ζ‖. Consider

for each i = 1, · · · , N , the optimal value ϑ∗
i of problem supξ∈Ξ fi(ξ) := Ψ(ξ) − κ‖ξ − ξ̂i‖. Assume there

exists a sequence {ξιi}
∞
ι=1 ⊂ Ξ such that fi(ξ

ι
i) → ϑ∗

i . We then have two cases. Case 1: ‖ξιi‖ → ∞. As the

growth rate κ does not depend on the choice of ζ [15, lemma 4], we can select ξ = ξιi and ζ = ξ̂i, and thus

have ϑ∗
i = limι→∞ Ψ(ξιi) − κ‖ξιi − ξ̂i‖ ≤ Ψ(ξ̂i) < ∞. Case 2: ξιi → ξ∗i with ‖ξ∗i ‖ < ∞. Since Ξ is closed,

ξ∗i ∈ Ξ. By continuity of Ψ, we have ϑ∗
i = limι→∞ Ψ(ξιi) − κ‖ξιi − ξ̂i‖ = Ψ(ξ∗i ) − κ‖ξ∗i − ξ̂i‖ < ∞. Therefore,

fD(κ) = κǫ + 1
N

∑N
i=1 ϑ

∗
i <∞ and thus fD is proper. By [37, Corollary 3.27], fD is level-bounded. Therefore,

it is known from [37, Theorem 1.9] that argminλ fD(λ) is nonempty and compact.

2.3 Flowchart of the lower and upper bounds approximation schemes

Later on, we will derive for problem (PSSD) a lower bound approximation in Section 3 and an upper bound
approximation in Section 4. The relationship of formulations in intermediate steps of the two approximation
schemes is illustrated in Figure 1.

(PSSD) ⇔ (3) ⇔ (4)

lower
====⇒
bound

(7) ⇔ (13) ⇔ (14) ⇔ (PSSD−L)

⇔ (16) ⇔ (18)
upper
====⇒
bound

(19) ⇔ (20) ⇔ (PSSD−U )

Figure 1: The flowchart of the two approximation schemes.

The key reformulation or approximation steps in the two approximation schemes can be summarized as
follows:

1) Reformulations (PSSD) ⇔ (3) and (3) ⇔ (4) are due to the definition of distributionally robust SSD.

2) Approximation (4)
lower

====⇒
bound

(7) comes from the finite sample approximation; Reformulation (7) ⇔ (13) is

due to the duality theory of DRO problems with Wasserstein ball from Lemma 1; Reformulations (13) ⇔ (14)
and (14) ⇔ (PSSD−L) are obtained by adding auxiliary variables.

3) We propose a split-and-dual decomposition framework for the upper bound approximation. In detail,
(4) ⇔ (16) is a rewrite; We split the interval R into sub-intervals in the reformulation (16) ⇔ (18); We

exchange the order of the expectation and supremum to derive the upper bound approximation (18)
upper
====⇒
bound

(19); Reformulations (19)⇔(20) is due to the duality theory of DRO problems with Wasserstein ball from
Lemma 1; Reformulation (20) ⇔ (PSSD−U ) is due to the strong duality of second-order cone programming.

3 Lower bound approximation of distributionally robust SSD con-

strained optimization

In order to tackle the semi-infiniteness arising from the constraints in problem (4), we consider the approximation
of the sets Q and R. Let ΞN = {ξ̄j}Nj=1 be a set of finite samples in Ξ and ΓM = {ηk}Mk=1 be a set of finite
samples in R = [Rmin,Rmax], here N andM denote the sample sizes. We then approximate the ambiguity set
Q by the following Wasserstein ball:

QN := {P ∈P(ΞN ) : dK(P, P̂N ) ≤ ǫ}.
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Different from Q which covers both discrete and continuous probability measures supported on Ξ, QN only
contains discrete probability measures supported on ΞN . It is easy to see QN ⊂ Q and ΓM ⊂ R. Therefore,
we have a lower bound approximation of problem (4):

min
z∈Z

f(z)

s.t. EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0, ∀η ∈ ΓM, ∀P ∈ QN .
(7)

In subsection 3.1, we establish the quantitative convergency for problem (7) in terms of the feasible set,
the optimal value, and the optimal solution set. Then in subsection 3.2, we show how problem (7) can be
reformulated as a linear programming problem, and the computational efficiency for large sample sizes can be
further improved by the cutting-plane method.

3.1 Quantitative analysis of the lower approximation

We denote the feasible sets of problem (4) and problem (7) by F and FN ,M, the optimal solution sets by S
and SN ,M, and the optimal values by v and vN ,M, respectively. To establish the quantitative convergency for
problem (7), we need the following Slater constraint qualification.

Assumption 2. There exist a point z̄ ∈ Z and a constant θ > 0 such that

sup
η∈R

sup
P∈Q

EP [(η − z̄T ξ)+ − (η − zT0 ξ)+] < −θ.

Let L := supz∈Z(‖z‖+‖z0‖) <∞, since Z is compact. Denote the Hausdorff distance between Ξ and ΞN by
αN := supξ∈Ξ infξ′∈ΞN ‖ξ− ξ′‖, and the Hausdorff distance between R and ΓM by γM := supη∈R infη′∈ΓM |η−
η′|.

Assumption 3. limN→∞ αN = 0 and limM→∞ γM = 0.

Theorem 1. Given Assumptions 2 and 3, the following assertions hold.
(i) For any N and M,

H(FN ,M,F) ≤
2DZ

θ
(LαN + γM),

where DZ denotes the diameter of Z and θ is defined as in Assumption 2.
(ii) limN→∞,

M→∞
vN ,M = v and lim supN→∞,

M→∞
SN ,M ⊂ S.

(iii) If, in addition, the objective function f is Lipschitz continuous with modulus Lf , then for any N and
M,

|vN ,M − v| ≤
2DZLf

θ
(LαN + γM).

Moreover, if problem (4) satisfies the second-order growth condition at the optimal solution set S, i.e., there
exists a positive constant ρ such that

f(z)− v ≥ ρd(z,S)2, ∀z ∈ F ,

then for sufficiently large N andM,

D(SN ,M,S) ≤
(√2DZ

θ
+

√
4LfDZ

ρθ

)√
LαN + γM. (8)

Proof. (i) We write φ(η, z, ξ) = (η−zT ξ)+− (η−zT0 ξ)+, w(z) = supη∈R supP∈Q EP [φ(η, z, ξ)], and wN ,M(z) =
supη′∈ΓM

supP ′∈QN
EP ′ [φ(η′, z, ξ)]. Since QN ⊂ Q and ΓM ⊂ R, then for any z ∈ Z,

wN ,M(z) ≤ w(z). (9)

One can observe that φ is uniformly Lipschitz continuous w.r.t. ξ with modulus L and also uniformly Lipschitz
continuous w.r.t. η with modulus 2. Then by Proposition 1, we have

|EP [φ(η, z, ξ)]− EP ′ [φ(η′, z, ξ)]|

≤ |EP [φ(η, z, ξ)]− EP ′ [φ(η, z, ξ)]|+ |EP ′ [φ(η, z, ξ)]− EP ′ [φ(η′, z, ξ)]|

6



≤ LdK(P, P ′) + 2|η − η′|.

Therefore, for any z ∈ Z,

w(z)− wN ,M(z) ≤ sup
η∈R

inf
η′∈ΓM

sup
P∈Q

inf
P ′∈QN

(
EP [φ(η, z, ξ)]− EP ′ [φ(η′, z, ξ)]

)

≤ sup
η∈R

inf
η′∈ΓM

sup
P∈Q

inf
P ′∈QN

(
LdK(P, P ′) + 2|η − η′|

)
(10)

= sup
P∈Q

inf
P ′∈QN

LdK(P, P ′) + sup
η∈R

inf
η′∈ΓM

2|η − η′| = LDK(Q,QN ) + 2γM.

By [1, Theorem 2], we have HK(Q,QN ) ≤ 2αN . Thus, combining inequalities (9) and (10) gives

sup
z∈Z

|w(z)− wN ,M(z)| ≤ LHK(Q,QN ) + 2γM ≤ 2LαN + 2γM.

With Assumption 2, we can apply Robinson’s error bound for convex inequality system [36] and obtain
d(z,F) ≤ DZ

θ
[w(z)]+, ∀z ∈ Z. On one hand, for any z ∈ FN ,M, we have

d(z,F) ≤
DZ

θ
[w(z)]+ ≤

DZ

θ
(|w(z)− wN ,M(z)|+ [wN ,M(z)]+)

=
DZ

θ
|w(z)− wN ,M(z)| ≤

2DZ

θ
(LαN + γM).

This implies

D(FN ,M,F) ≤
2DZ

θ
(LαN + γM). (11)

Since wN ,M(z) ≤ w(z), ∀z ∈ Z, Assumption 2 implies wN ,M(z̄) < −θ. This means that the convex inequality
constraint wN ,M(z) ≤ 0 also satisfies the Slater constraint qualification. On the other hand, for any z ∈ F , we
have

d(z,FN ,M) ≤
DZ

θ
[wN ,M(z)]+ ≤

DZ

θ
|wN ,M(z)− w(z)| ≤

2DZ

θ
(LαN + γM),

which implies

D(F ,FN ,M) ≤
2DZ

θ
(LαN + γM). (12)

Inequalities (11) and (12) mean conclusion (i).
(ii) Let f̄(z) = f(z) + δF (z) and f̄N ,M(z) = f(z) + δFN ,M(z). Since FN ,M converges to F , then by [37,

Proposition 7.4(f)], δFN ,M epi-converges to δF as N → ∞,M→∞. As f is continuous and finite, we obtain
by [37, Exercise 7.8] that f̄N ,M = f +δFN ,M epi-converges to f̄ = f+δF when N →∞,M→∞. As F , FN ,M

are closed and f is continuous, f̄N ,M and f̄ are lower semi-continuous. Moreover, since f̄N ,M and f̄ are proper,
it can then be deduced from [37, Theorem 7.33] that v = lim N→∞

M→∞
vN ,M and lim sup N→∞

M→∞
SN ,M ⊂ S.

(iii) Let z ∈ S and zN ,M ∈ SN ,M. By definition of D(FN ,M,F), d(zN ,M,F) ≤ D(FN ,M,F). Then there
exists a z′ ∈ F such that ‖zN ,M − z′‖ ≤ D(FN ,M,F). From the Lipschitz continuity of f , we have

v =f(z) ≤ f(z′) ≤ |f(z′)− f(zN ,M)|+ f(zN ,M)

≤Lf‖z
′ − zN ,M‖+ f(zN ,M) ≤ LfD(FN ,M,F) + vN ,M.

Exchanging the roles of zN ,M and z, we obtain vN ,M ≤ LfD(F ,FN ,M) + v. Applying conclusion (i), for any
N andM, we have

|vN ,M − v| ≤ LfH(FN ,M,F) ≤
2DZLf

θ
(LαN + γM).

Now, we show (8). Let z ∈ S and zN ,M ∈ SN ,M. Denote by ΠA(x) ∈ arginfs∈A ‖x− s‖ the projection of a
point x on a set A. If problem (4) satisfies the second order growth condition, then

f(zN ,M)− f(ΠF (zN ,M)) = f(zN ,M)− f(z)−
(
f(ΠF (zN ,M))− f(z)

)

≤ f(ΠFN ,M(z))− f(z)− ρd(ΠF (zN ,M),S)2.
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Since f is Lipschitz continuous, we have

d(ΠF (zN ,M),S) ≤
√
(Lf/ρ)(‖ΠFN ,M(z)− z‖+ ‖ΠF (zN ,M)− zN ,M‖).

By triangle inequality and the definition of projection Π, we get

d(zN ,M,S) ≤ ‖zN ,M −ΠF (zN ,M)‖+ d(ΠF (zN ,M),S)

≤ ‖zN ,M −ΠF (zN ,M)‖+
√
(Lf/ρ)

(
‖ΠFN ,M(z)− z‖+ ‖ΠF(zN ,M)− zN ,M‖

)

= d(zN ,M,F) +
√
(Lf/ρ)

(
d(z,FN ,M) + d(zN ,M,F)

)

≤ H(FN ,M,F) +
√
(2Lf/ρ)H(FN ,M,F) ≤

(
1 +

√
2Lf/ρ

)√
H(FN ,M,F),

where the last inequality holds as H(FN ,M,F) ≤
√
H(FN ,M,F) for sufficiently large N andM. Since zN ,M

is arbitrarily chosen from SN ,M, then (8) follows from (i).

Theorem 1 establishes the quantitative convergency for problem (7) in the sense of the feasible set, the
optimal value and the optimal solution set. For the case that the support set Ξ is finite, the lower bound
approximation (7) is tight.

Corollary 1. If Ξ is a finite set, ΞN = Ξ, and ΓM = {zT0 ξ | ξ ∈ Ξ}, the optimal values of problem (4) and
problem (7) are equal.

Proof. The conclusion follows from [8, Proposition 3.2].

3.2 Tractability of the lower bound approximation problem (7)

Recall that ΞN = {ξ̄j}Nj=1 and ΓM = {ηk}Mk=1, problem (7) can be rewritten as

min
z∈Z

f(z)

s.t. sup
P∈QN

EP [(ηk − zT ξ)+ − (ηk − zT0 ξ)+] ≤ 0, k = 1, · · · ,M.

Then by Lemma 1, its optimal value is equal to that of

min
z∈Z,λ∈R

M
+

f(z)

s.t. λkǫ−
1
N

N∑
i=1

min
1≤j≤N

[
λk‖ξ̄j − ξ̂i‖ − (ηk − zT ξ̄j)+ + (ηk − zT0 ξ̄j)+

]
≤ 0,

k = 1, · · · ,M.

(13)

By introducing auxiliary variables βik, i = 1, · · · , N, k = 1, · · · ,M, problem (13) can be reformulated as

min
z,λ,β

f(z) (14a)

s.t. λkǫ −
1

N

N∑

i=1

βik ≤ 0, k = 1, · · · ,M, (14b)

βik ≤ λk‖ξ̄j − ξ̂i‖ − (ηk − zT ξ̄j)+ + (ηk − zT0 ξ̄j)+, (14c)

i = 1, · · · , N, j = 1, · · · ,N , k = 1, · · · ,M,

z ∈ Z, λ ∈ RM
+ , β ∈ RN×M. (14d)

Problem (14) is equivalent to problem (7), and thus is a lower bound approximation of problem (PSSD).
By introducing auxiliary variables sjk, j = 1, · · · ,N , k = 1, · · · ,M, to handle (ηk − zT ξ̄j)+ (refer to [8]

(3.10)-(3.12)), we have a linear programming reformulation of problem (14)

min
z,λ,β,s

f(z)

8



s.t. λkǫ−
N∑

i=1

1

N
βik ≤ 0, k = 1, · · · ,M,

(PSSD−L) βik + sjk ≤ λk‖ξ̄j − ξ̂i‖+ (ηk − zT0 ξ̄j)+,

i = 1, · · · , N, j = 1, · · · ,N , k = 1, · · · ,M,

sjk ≥ ηk − zT ξ̄j , j = 1, · · · ,N , k = 1, · · · ,M,

z ∈ Z, λ ∈ RM
+ , β ∈ RN×M, s ∈ RN×M

+ .

In fact, the dimension of s is N ×M and the number of constraints in problem (PSSD−L) isM+N ×N ×M+
N ×M. Thus the size of problem (PSSD−L) increases rapidly with the increase of the sample sizes N andM.

Algorithm 1 Cutting-plane Method

Start from ι = 1 and J ι
1 = J ι

2 = ∅.
while ι ≥ 1 do

Solve the approximate problem:

min
z,λ,β,s

f(z)

s.t. βik + sjk ≤ λk‖ξ̄j − ξ̂i‖+ (ηk − zT0 ξ̄j)+, i = 1, · · · , N, j ∈ J ι
1 , k ∈ J

ι
2 ,

sjk ≥ ηk − zT ξ̄j , j ∈ J
ι
1 , k ∈ J

lι
2 , (15)

(14b), z ∈ Z, λ ∈ RM
+ , β ∈ RN×M, s ∈ RN×M

+ .

Let (zι, λι, βι, sι) denote the optimal solution of problem (15).
Calculate

δι := max
i∈{1,··· ,N},j∈{1,··· ,N},

k∈{1,··· ,M}

{
βι
ik − λι

k‖ξ̄j − ξ̂i‖+ (ηk − (zι)T ξ̄j)+ − (ηk − zT0 ξ̄j)+

}
.

if δι ≤ 0 then

Stop.
else

Determine

(iι, jι, kι) ∈

argmax
i∈{1,··· ,N},j∈{1,··· ,N},

k∈{1,··· ,M}

{
βι
ik − λι

k‖ξ̄j − ξ̂i‖+ (ηk − (zι)T ξ̄j)+ − (ηk − zT0 ξ̄j)+

}
.

Let J ι+1
1 = J ι

1 ∪ jι, J ι+1
2 = J ι

2 ∪ kι and ι← ι+ 1.
end if

end while

In order to numerically solve problem (14) for largeN ,M, we propose a cutting-plane method, see Algorithm
1. At each iteration of the cutting-plane method, we solve problem (15), a relaxation of problem (14). After
solving (15), we check whether all the constraints in (14c) are satisfied or not. If all the constraints in (14c) are
satisfied, then the optimal solution we find for problem (15) is also optimal for problem (14). Otherwise, we
add the violated constraint to the approximate problem (15) at the next iteration.

Proposition 2. Algorithm 1 stops at the optimal value and optimal solution of problem (14) within finite steps.

Proof. It is easy to see that J ι
1 $ J ι+1

1 or J ι
2 $ J ι+1

2 . As the possible number of constraints that can be
added is finite, Algorithm 1 must stop at the optimal value and optimal solution of problem (14) within finite
steps.

To conclude this section, we develop a lower bound approximation (7) for the distributionally robust SSD
constrained optimization problem (PSSD). Problem (7) can be reformulated as problem (14), which can be
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easily solved using linear programming formulation (PSSD−L) or by Algorithm 1.

4 Upper bound approximation of distributionally robust SSD con-
strained problem

Notice that problem (4) can be rewritten as

min
z∈Z

f(z)

s.t. sup
P∈Q

sup
η∈R

EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0. (16)

If we exchange the order of operators supη∈R and EP in problem (16), we obtain an upper bound approximation
for problem (16). However, such an upper bound approximation might be loose or even infeasible since the gap

EP

[
sup
η∈R
{(η − zT ξ)+ − (η − zT0 ξ)+}

]
− sup

η∈R
EP [(η − zT ξ)+ − (η − zT0 ξ)+] (17)

might be large. This is because we determine an η for all possible ξ’s in the latter supremum in (17), while we
determine an η for each realization of ξ in the former supremum in (17). The larger the range R of η, the larger
the gap in (17). As an extreme case, when R reduces to a singleton, the gap (17) becomes 0. This observation
motivates us to divide R into small sub-intervals, and exchange the order of the expectation operator and
the supremum over each sub-interval, which provides an upper bound approximation of the sub-problem in the
sub-interval. Summing all sub-problems in all sub-intervals, we obtain an improved upper bound approximation
of problem (16). We name such a bounding method a split-and-dual framework.

In detail, we divide R = [Rmin,Rmax] into K intervals with disjoint interiors, [η
k
, η̄k], k = 1, · · · ,K, where

the boundary points of the intervals are specified by η
k
= Rmin + (k− 1)Rmax−Rmin

K , η̄k = Rmin + kRmax−Rmin

K ,
k = 1, · · · ,K. Notice that problem (16) can also be reformulated as

min
z∈Z

f(z)

s.t. max
1≤k≤K

sup
η∈[η

k
,η̄k]

sup
P∈Q

EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0,

or, equivalently,

min
z∈Z

f(z) (18a)

s.t. sup
P∈Q

sup
η∈[η

k
,η̄k]

EP [(η − zT ξ)+ − (η − zT0 ξ)+] ≤ 0, k = 1, · · · ,K. (18b)

Exchanging the order of operators supη∈[η
k
,η̄k] and EP in (18b), we have the following approximation problem

min
z∈Z

f(z)

s.t. sup
P∈Q

EP

[
sup

η∈[η
k
,η̄k]

{(η − zT ξ)+ − (η − zT0 ξ)+}
]
≤ 0, k = 1, · · · ,K. (19)

The feasible set of problem (18) contains that of problem (19). Thus problem (19) provides an upper bound
approximation for problem (18).

4.1 Quantitative analysis of the upper approximation

In what follows, we show that when the interval number K goes to infinity, the optimal value of problem (19)
converges to that of (18). To this end, we first prove the convergence from

g(z,K) := max
1≤k≤K

sup
P∈Q

EP

[
sup

η∈[η
k
,η̄k]

{
(η − zT ξ)+ − (η − zT0 ξ)+

} ]
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to

g(z) : = sup
P∈Q

sup
η∈R

EP

[
(η − zT ξ)+ − (η − zT0 ξ)+

]

= max
1≤k≤K

sup
P∈Q

sup
η∈[η

k
,η̄k]

EP

[
(η − zT ξ)+ − (η − zT0 ξ)+

]
.

As ∪k=1,...,K[ηk, η̄k] = R, the function g(z) does not depend on the splitting of R.

Proposition 3. Given Assumption 1, for any positive integer K, g(·,K) and g(·) are Lipschitz continuous with
modulus C = supP∈Q EP [‖ξ‖] <∞.

Proof. It follows from [11, page 164].

Next, we prove that g(z,K) converges to g(z) when K goes to infinity.

Proposition 4. Given Assumption 1, we have that

g(z,K)− g(z) ≤ 2
Rmax −Rmin

K
,

and limK→∞ g(z,K)=g(z), uniformly with respect to z ∈ Z.

Proof. Denote

η∗k(ω) ∈ argsup
η∈[η

k
,η̄k]

{
(η − zT ξ(ω))+ − (η − zT0 ξ(ω))+

}
, ω ∈ Ω, k = 1, · · · ,K

Denote
η∗∗k ∈ argsup

η∈[η
k
,η̄k]

EP

[
(η − zT ξ)+ − (η − zT0 ξ)+

]
, k = 1, · · · ,K.

Notice that η∗k is a random variable, while η∗∗k is a real number. Since η∗k(ω) and η∗∗k take values in the same
interval [η

k
, η̄k], for any ω ∈ Ω, we have |η∗k(ω)− η∗∗k | ≤ η̄k − η

k
= Rmax−Rmin

K . Then we obtain

g(z,K)− g(z) ≤ max
1≤k≤K

sup
P∈Q

{
EP

[
sup

η∈[η
k
,η̄k]

{
(η − zT ξ)+ − (η − zT0 ξ)+

} ]

− sup
η∈[η

k
,η̄k]

EP

[
(η − zT ξ)+ − (η − zT0 ξ)+

]
}

≤ max
1≤k≤K

sup
P∈Q

EP

∣∣∣
[
(η∗k − zT ξ)+ − (η∗k − zT0 ξ)+

]
−
[
(η∗∗k − zT ξ)+ − (η∗∗k − zT0 ξ)+

] ∣∣∣

≤ 2
Rmax −Rmin

K
,

where the last inequality is due to the Lipschitz continuity of the positive part function (·)+. Then the conclusion
immediately follows.

Proposition 4 shows that to control the approximation error of the constraint function, the interval number
K should be large enough when the range R is large.

We denote the feasible sets of problem (18) and problem (19) by F and FK, the optimal solution sets by
S and SK, and the optimal values by v and vK, respectively. It is clear that FK ⊂ F , ∀K. To derive the
convergence from vK to v, as well as the quantitative approximation error estimation, we need some constraint
qualification, e.g., Mangasarian Fromovitz constraint qualification (MFCQ) [30]. However, classical MFCQ
works only in the differentiable case (e.g., [27]), while function g(·,K) here is non-smooth. We can find that
g(·,K) and g(·) are continuous and convex, and thus subdifferentiable everywhere. Therefore, it is reasonable
for us to extend MFCQ to the subdifferentiable case.

Definition 3. (ND-MFCQ) Let F (t) := {x ∈ Rn | gj(x, t) ≤ 0, j ∈ J} with subdifferentiable gj, here t is the
parameter in the constraints. Given t̄ and x̄ ∈ F (t̄), if there exist some vector θ and real constants σ < 0,
α1 > 0, α2 > 0 such that

〈ς, θ〉 ≤ σ < 0, ∀ς ∈ ∂gj(x, t), ∀x : ‖x− x̄‖ ≤ α1, ∀t : ‖t− t̄‖ ≤ α2, ∀j ∈ J0(x̄, t̄),
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where J0(x̄, t̄) := {j ∈ J | gj(x̄, t̄) = 0}, then we say that non-differentiable MFCQ (ND-MFCQ) holds at (x̄, t̄)
with θ, σ, α1 and α2,

We notice that the MFCQ condition under nonsmooth cases has been discussed in some literature, such
as [41, Page 14]. In fact, the ND-MFCQ in Definition 3 is more strict than that in [41]. We require ND-MFCQ
hold uniformly in a neighborhood of (x̄, t̄) with the same vector θ, while [41] only requires ND-MFCQ hold at
the point x̄. ND-MFCQ is an extension of MFCQ [30], and is equivalent to MFCQ if the constraint functions
are differentiable.

In this paper, we only have one constraint and thus J = {1}. Our decision variable z corresponds to x
and our parameter 1

K corresponds to t in Definition 3. To arrive at the convergence result, we also require the
following assumption.

Assumption 4. The optimal solution set of problem (19) with K = 1, denoted by S1, is nonempty.

From (18b) and the constraints in (19), we have that S ⊃ SK ⊃ S1 for any K. Therefore, if S1 is nonempty,
then S and SK, ∀K, are also nonempty.

Theorem 2. Given Assumptions 1 and 4. For some z∗ ∈ S, assume that ND-MFCQ holds at (z∗, 0) with θ,
σ, α1, and α2 as is defined in Definition 3. If the objective function f is Lipschitz continuous with modulus Lf ,

then for K ≥ max
{

1
α2

, 2
|σ|

Rmax−Rmin

α1
‖θ‖,−2Rmax−Rmin

g(z∗)

(
C ‖θ‖

|σ| + 1
)}

, we have that

|vK − v| ≤ Lf

2‖θ‖

|σ|

Rmax −Rmin

K
,

and limK→∞ vK = v.

Proof. For any K, let zK = z∗ − 2
σ

Rmax−Rmin

K θ. Since z∗ ∈ S, then obviously g(z∗) ≤ 0.
Firstly, we claim that zK ∈ FK. To prove this, we examine two cases on whether the constraint g(z) ≤ 0 is

active at z∗.
• Case 1: g(z∗) = 0. By Proposition 4, we have

g(zK,K) = g(zK,K)− g(z∗,K) + g(z∗,K)− g(z∗) + g(z∗)

=g(zK,K)− g(z∗,K) + g(z∗,K) − g(z∗) ≤ g(zK,K)− g(z∗,K) + 2
Rmax −Rmin

K
.

By the extended mean-value theorem [37, Theorem 10.48], for some τ ∈ (0, 1) and the corresponding point
zτK = (1 − τ)zK + τz∗, there is a vector ς ∈ ∂g(zτK,K) satisfying

g(zK,K) ≤ g(zK,K)− g(z∗,K) + 2
Rmax −Rmin

K
= 〈ς, zK − z∗〉+ 2

Rmax −Rmin

K
.

For any K ≥ 2
|σ|

Rmax−Rmin

α1
‖θ‖, zτK is in the α1-neighborhood of z∗, which can be seen from

‖zτK − z∗‖ = ‖(1− τ)(zK − z∗)‖ ≤ ‖zK − z∗‖ =
2

|σ|

Rmax −Rmin

K
‖θ‖ ≤ α1.

Therefore, by ND-MFCQ at (z∗, 0), we have 〈ς, θ〉 ≤ σ for ς ∈ ∂g(zτK,K) and K ≥ max
{

2
|σ|

Rmax−Rmin

α1
‖θ‖, 1

α2

}
.

Then we have

g(zK,K) ≤ 〈ς, zK − z∗〉+ 2
Rmax −Rmin

K
= −

2

σ

Rmax −Rmin

K
〈ς, θ〉+ 2

Rmax −Rmin

K

≤ −
2

σ

Rmax −Rmin

K
σ + 2

Rmax −Rmin

K
= 0.

Then zK ∈ FK.

• Case 2: g(z∗) < 0. Let δ := −g(z∗) > 0. If K ≥ 2Rmax−Rmin

δ

(
C ‖θ‖

|σ| + 1
)
, then we obtain from Propositions

3 and 4 that

|g(zK,K)− g(z∗)| ≤ |g(zK,K)− g(z∗,K)| + |g(z∗,K)− g(z∗)|
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≤C‖zK − z∗‖+ 2
Rmax −Rmin

K
= 2
Rmax −Rmin

K

(
C
‖θ‖

|σ|
+ 1

)
≤ δ.

This indicates that g(zK,K) ≤ g(z∗) + δ = 0. Thus zK ∈ FK under this case.
Next, we estimate the approximation error |vK − v| of the optimal values. Since FK ⊂ F , then vK ≥ v. By

Assumption 4, we can choose z∗K ∈ SK. Then we have

0 ≤ vK − v = f(z∗K)− f(z∗) ≤ f(zK)− f(z∗)

≤ Lf‖zK − z∗‖ = Lf

2‖θ‖

|σ|

Rmax −Rmin

K
.

The conclusions follow immediately.

Proposition 2 quantitatively estimates the approximation error between the optimal values of problem (19)
and problem (18).

4.2 Reformulation of problem (19)

By applying Lemma 1 to each supremum problem w.r.t. P for k = 1, . . . ,K, we have a reformulation of problem
(19)

minz∈Z,λ∈R
K
+

f(z) (20a)

s.t. λkǫ+
1

N

N∑

i=1

sup
ξ∈Ξ

{
(20b)

sup
η∈[η

k
,η̄k]

{(η − zT ξ)+ − (η − zT0 ξ)+} − λk‖ξ − ξ̂i‖

}
≤ 0, k = 1, · · · ,K.

To simplify the notation, we write (20b) as

λkǫ +
1

N

N∑

i=1

V ik
S ≤ 0, k = 1, · · · ,K, (21)

where
V ik
S := sup

(ξ,η)∈Ξ×[η
k
,η̄k]

(η − zT ξ)+ − (η − zT0 ξ)+ − λk‖ξ − ξ̂i‖, i = 1, · · · , N, k = 1, · · · ,K.

In what follows, we derive a reformulation for V ik
S . According to Assumption 1, V ik

S is equivalent to

sup
ξ,η,s,m

(η − zT ξ)+ − s− λkm

s.t. s ≥ η − zT0 ξ, Cξ ≤ d,

η ≥ η
k
, η ≤ η̄k, ‖ξ − ξ̂i‖ ≤ m,

ξ ∈ Rn, η ∈ R, s ∈ R+,m ∈ R.

(22)

Problem (22) is a non-convex optimization problem with a piecewise linear objective function with two pieces.
Examining the two pieces of the objective function separately, we can split problem (22) into two convex
sub-problems:

V ik
S1 = sup

ξ,η,s,m

η − zT ξ − s− λkm V ik
S2 = sup

ξ,η,s,m

−s− λkm

s.t. s ≥ η − zT0 ξ, s.t. s ≥ η − zT0 ξ,

η − zT ξ ≥ 0, η − zT ξ ≤ 0,

(P ik
SSD−1) Cξ ≤ d, (P ik

SSD−2) Cξ ≤ d,

s ≥ 0, s ≥ 0,

η ≥ η
k
, η ≥ η

k
,
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η ≤ η̄k, η ≤ η̄k,

‖ξ − ξ̂i‖ ≤ m. ‖ξ − ξ̂i‖ ≤ m.

And we have
V ik
S = max{V ik

S1, V
ik
S2}. (23)

Using conic duality theory, we derive the dual problem of (P ik
SSD−1) as follows:

Ṽ ik
S1 = inf

µ,ν
dT ν − ξ̂Ti (z − µ1z0 + µ2z + CT ν)− µ3ηk + (1−µ1 + µ2 + µ3)η̄k

(Dik
SSD−1) s.t. µ1 ≤ 1, 1− µ1 + µ2 + µ3 ≥ 0,

‖z − µ1z0 + µ2z + CT ν‖ ≤ λk,

µ ∈ R3
+, ν ∈ Rl

+.

Likewise, the dual problem of (P i
SSD−2) is

Ṽ ik
S2 = inf

µ,ν
dT ν − ξ̂Ti (−µ1z0 − µ2z + CT ν)− µ3ηk + (−µ1 − µ2 + µ3)η̄k

(Dik
SSD−2) s.t. µ1 ≤ 1, −µ1 − µ2 + µ3 ≥ 0,

‖ − µ1z0 − µ2z + CT ν‖ ≤ λk,

µ ∈ R3
+, ν ∈ Rl

+.

By equation (23) and the duality theory, we have that V ik
S ≤ max{Ṽ ik

S1, Ṽ
ik
S2}, i = 1, · · · , N, k = 1, · · · ,K.

Assumption 5. For any i = 1, · · · , N, k = 1, · · · ,K, problems (P ik
SSD−1) and (P ik

SSD−2) are strictly feasible.

Given Assumption 5, the strong duality holds. Thus, the duality gap between V ik
S1 (resp. V ik

S2) and Ṽ ik
S1

(resp. Ṽ ik
S2) is zero, and V ik

S = max{Ṽ ik
S1, Ṽ

ik
S2}, i = 1, · · · , N, k = 1, · · · ,K. Introducing auxiliary variables

V ik, i = 1, · · · , N, k = 1, · · · ,M, constraints

λkǫ+
1
N

N∑
i=1

V ik ≤ 0, k = 1, · · · ,K,

V ik ≥ Ṽ ik
S1, i = 1, · · · , N, k = 1, · · · ,K,

V ik ≥ Ṽ ik
S2, i = 1, · · · , N, k = 1, · · · ,K

(24)

are equivalent to constraints (21). Taking the formulations (Dik
SSD−1) and (Dik

SSD−2) of Ṽ ik
S1 and Ṽ ik

S2 into
constraints (24) gives the following theorem.

Theorem 3. Given Assumptions 1 and 5, the optimal value of the following optimization problem

min f(z)

s.t. λkǫ+
1

N

N∑

i=1

V ik ≤ 0, k = 1, · · · ,K,

(PSSD−U)

µik
1 ≤ 1, µ̃ik

1 ≤ 1, 1− µik
1 + µik

2 + µik
3 ≥ 0, −µ̃ik

1 − µ̃ik
2 + µ̃ik

3 ≥ 0,

V ik ≥ dT νik− ξ̂T
i
(z− µik

1 z0+ µik
2 z+ CT νik)− µik

3 η
k
+ (1− µik

1 + µik
2 + µik

3 )η̄k ,

V ik ≥ dT ν̃ik − ξ̂T
i
(−µ̃ik

1
z0 − µ̃ik

2
z + CT ν̃ik) − µ̃ik

3
η
k
+ (−µ̃ik

1
− µ̃ik

2
+ µ̃ik

3
)η̄k ,

‖z − µik
1
z0 + µik

2
z + CT νik‖ ≤ λk, ‖ − µ̃ik

1
z0 − µ̃ik

2
z + CT ν̃ik‖ ≤ λk,

µik ∈ R3
+, νik ∈ Rl

+, µ̃ik ∈ R3
+, ν̃ik ∈ Rl

+, V ik ∈ R,






i = 1, · · · , N, k = 1, · · · ,K,

z ∈ Z, λ ∈ RK
+.

is an upper bound to that of problem (PSSD).

Proof. Problem (PSSD−U ) is a reformulation of problem (19), and thus an upper bound approximation of
problem (PSSD). The infimum in (Dik

SSD−1) and (Dik
SSD−2) can be reached by the corresponding minimization

problems due to the closeness of the feasible sets, given that the finite optimal values exists.
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4.3 Sequential convex approximation for (PSSD−U)

We observe that bilinear terms µik
2 z and µ̃ik

2 z in problem (PSSD−U ) make it difficult to solve problem (PSSD−U )
directly. We apply a sequential convex approximation method to solve problem (PSSD−U ), see Algorithm 2.
The idea is to separate coupling variables. At each iteration, we fix z and optimize w.r.t. µ, µ̃; then fix µ, µ̃ and
optimize w.r.t. z. The sequential convex approximation method finally generates a sequence of decisions whose
objective values converge to an upper bound of the optimal value of (PSSD−U ).

Algorithm 2 Sequential convex approximation

Start from zι ∈ Z, ι = 1.
while ι ≥ 1 do

Solve problem (PSSD−U ) with an additional constraint z = zι. Denote the optimal µ, µ̃ by µι, µ̃ι, respec-
tively.
Solve problem (PSSD−U ) with additional constraints µ = µι, µ̃ = µ̃ι. Denote the optimal z by zι+1.
if zι+1 = zι then
Break.

else

ι← ι+ 1.
end if

end while

Proposition 5. Suppose that the optimal value of problem (PSSD) is finite. Given a starting point z1. Algorithm
2 generates a sequence of decisions whose objective values converge to an upper bound of the optimal value of
problem (PSSD−U ).

Proof. Denote the feasible set of problem (PSSD−U ) by FU . We write all the decision variables excluding z, µ, µ̃
by y. We can thus write problem (PSSD−U ) in a compact form min{f(z)| (z, µ, µ̃, y) ∈ FU}.

Firstly, observe that each problem we solve in Algorithm 2 has an additional constraint compared with
problem (PSSD−U ). Therefore, f(z

ι), ι = 1, · · · , are upper bounds to the optimal value of problem (PSSD−U ).
Next, the sequence {f(zι)} has a finite lower bound, the optimal value of problem (PSSD). Thus in order

to show the convergence of {f(zι)}, it is sufficient to prove that {f(zι)} is nonincreasing. From Algorithm
2, there exists y′ such that (µι, µ̃ι, y′) = argminµ,µ̃,y{f(z

ι)| (zι, µ, µ̃, y) ∈ FU}. It follows immediately that
(zι, µ, µ̃, y′) ∈ FU . Also there exists y′′ such that (zι+1, y′′) = argminz,y{f(z)| (z, µ

ι, µ̃ι, y) ∈ FU}. Since
(zι, µι, µ̃ι, y′) ∈ FU , we have f(zι+1) ≤ f(zι).

Here it is necessary to point out that any element in the sequence of optimal values generated by Algorithm
2 is an upper bound of the optimal value of problem (PSSD−U ). Each problem we solve in Algorithm 2 is a
second-order cone programming and thus is computationally tractable.

To conclude this section, we divide R into sub-intervals and exchange the order of the expectation operator
and the supremum over each sub-interval to derive an upper bound approximation (PSSD−U ) for the distribu-
tionally robust SSD constrained optimization problem (PSSD). We prove the convergence of the optimal value
of the upper bound approximation problem and quantitatively estimate the approximation error. To cope with
bilinear terms in problem (PSSD−U ), we apply the sequential convex approximation method, Algorithm 2, to
obtain an upper bound of the optimal value of problem (PSSD−U ).

5 Numerical experiments

In this section, we present the results of numerical experiments to illustrate the validity and practicality of
our lower and upper bound approximation methods for model (PSSD). The numerical experiments are carried
out by calling the Gurobi solver in CVX package in MATLAB R2016a on a Dell G7 laptop with Windows 10
operating system, Intel Core i7 8750H CPU 2.21 GHz and 16 GB RAM.
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5.1 Case study: an illustrative numerical example

We begin with a simple numerical example and examine the validation of the proposed lower and upper bound
approximations. Consider the following problem:

min
1

2
‖z‖2

s.t. EP [(η − zT ξ)+] ≤ EP [(η − zT0 ξ)+], ∀η ∈ R, ∀P ∈ Q, (25)

z ∈ R+
2 , ‖z‖1 ≤ 1.

where z0 = (1, 0)T and Q = {P ∈ P(Ξ) : dK(P, P̂N ) ≤ ǫ} is defined as that in (5). Here P̂N = 1
N

∑N
i=1 δξ̂i is

the empirical distribution. The support set is supposed to be Ξ = {(ξ1, ξ2)T | ξ1 ∈ [0, 250], ξ2 ∈ [0, 500]}. We

set ǫ = 10−5, N = 10 and the observed sample set {ξ̂i}10i=1 consists of (0, 0)T , (250, 0)T , (0, 500)T , (100, 100)T ,
(200, 200)T , (100, 0)T , (200, 0)T , (0, 100)T , (0, 200)T , (200, 500)T .

Table 1: The optimal values and the optimal solutions of the lower and upper bound approximations to problem
(25).

lower bound approximation ((PSSD−L) or Algorithm 1) upper bound approximation (Algorithm 2) Gap
N M Optimal value Optimal solution K Optimal value Optimal solution
100 100 0.2922 (0.4229, 0.4027)T 10 0.4097 (0.8010, 0.1564)T 40.2122%
200 200 0.2964 (0.4266, 0.4077)T 11 0.3044 (0.4590, 0.4002)T 2.6991%
300 300 0.3014 (0.4423, 0.4014)T 12 0.3025 (0.4653, 0.3868)T 0.3650%

We get the lower bound approximation by solving the linear programming formulation (PSSD−L) or Al-
gorithm 1 and obtain the upper bound approximation by Algorithm 2. The optimal values and the optimal
solutions are shown in Table 1. We also calculate the relative gaps of the optimal values of the lower and upper
bound approximations (i.e., Gap= |upper−lower

lower |). From Table 1, we can see that the relative gap between the
optimal values of the lower and upper bound approximations decreases quickly to 0 with the increase of sample
sizes N ,M and the interval number K, which verifies the validation of the proposed approximation methods.

5.2 Case study: a practical portfolio selection problem

We consider a financial application of model (PSSD) to the portfolio selection problem with distributionally
robust SSD constraints:

min
z∈Z

E
P̂N

[−zT ξ]

s.t. EP [(η − zT ξ)+] ≤ EP [(η − zT0 ξ)+], ∀η ∈ R, ∀P ∈ Q,
(26)

where Z = {z ∈ Rn| z ≥ 0,
∑n

i=1 zi = 1}. Problem (26) is inspired by [18, Example 4.2]. The difference between
problem (26) and that in [18, Example 4.2] lies in the construction method of the ambiguity set. In [18, Example
4.2], the ambiguity set Q is determined by first two order moment information, while in problem (26), Q is a
Wasserstein ball.

We use the same historical annual return rate data of eight risky assets as that in [8, Table 8.1] (with a total
of N = 22 years). We choose the equally weighted portfolio as the benchmark portfolio z0. We select z0 as the
starting point z1 in Algorithm 2.

In what follows, we show the numerical results emphatically illustrating from the following aspects: the
convergence of the lower and upper bound approximations with respect to the sample sizes and the interval
number, the price of introducing distributional robustness in SSD constraints, and the influence of the robust
radius.

5.2.1 Convergence of lower and upper bounds

Firstly, we demonstrate the convergence of the lower bound approximation with respect to the sample sizes
N , M and the decreasing trend of the upper bound approximation when the interval number K increases. We
fix the robust radius ǫ = 10−4.

For the lower bound approximation, we consider the cases with the sample sizes beingN =M = 40, 60, 80, 100, 120.
To make fair comparison later in Section 5.2.2 with the portfolio optimization problem with classic (non-robust)
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SSD constraints, we let ΞN contain all the historical annual return rates {ξ̂i}Ni=1 from [8, Table 8.1] and ΓM

contain {zT0 ξ̂i}
N
i=1. For the upper bound approximation, we consider the cases with the interval number being

K = 1, 2, 4, 8, 12, respectively. Figure 2 shows the convergence trend of the optimal values of the lower and
upper bound approximations for problem (26).
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Figure 2: Optimal values of the lower bound approximation with respect to N ,M and that of the upper bound
approximation with respect to K.

From Figure 2, we can observe that the lower bound monotonuously increases with the increase of the sample
sizes N , M and the upper bound decreases with the increase of the interval number K. The gap between the
lower and uppers approaches 0. These observations verify the quantitative convergency established in Theorem
1 and Theorem 2. To see more details, we present in Table 2 the optimal values and the optimal solutions
obtained from the lower and upper bound approximations.

Table 2: Optimal values and the optimal solutions of the lower bound approximation with respect to N ,M,
and those of the upper bound approximation with respect to K.

lower bound approximation ((PSSD−L) or Algorithm 1) upper bound approximation (Algorithm 2)
N M Optimal value(%) K Optimal value(%) Gap

Optimal solution Optimal solution

40 40 -11.0082 1 -10.6534 3.2231%
(0.000,0.000,0.068,0.188,0.000,0.391,0.231,0.122) (0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)

60 60 -10.9872 2 -10.6543 3.0299%
(0.000,0.038,0.000,0.269,0.000,0.354,0.213,0.126) (0.125,0.124,0.124,0.127,0.125,0.126,0.125,0.125)

80 80 -10.9463 4 -10.6546 2.6648%
(0.000,0.006,0.094,0.138,0.036,0.389,0.215,0.123) (0.124,0.124,0.123,0.127,0.124,0.127,0.125,0.125)

100 100 -10.7838 8 -10.6551 1.1935%
(0.000,0.018,0.168,0.000,0.131,0.384,0.172,0.126) (0.124,0.124,0.123,0.128,0.124,0.127,0.125,0.125)

120 120 -10.7838 12 -10.7389 0.4164%
(0.000,0.018,0.168,0.000,0.131,0.384,0.172,0.126) (0.075,0.067,0.005,0.274,0.087,0.238,0.125,0.129)

From Table 2, we can see the changing trend of the optimal portfolios of the lower and upper bound
approximations. Especially for the upper bound approximation, the optimal portfolio under K = 1 is the equally
weighted portfolio, while the optimal portfolio under K = 12 is quite different from the equally weighted portfolio
and approaches the optimal portfolios obtained from the lower bound approximation. We observe from Table
2 that the lower and upper bounds we finally obtain are not equal. This happens because when implementing
the upper bound approximation we can only have finite sub-intervals and thus a gap is induced whenever we
exchange the order of operators supη∈[η

k
,η̄k]

and EP . We calculate the relative gap between the upper bound

with K = 12 and the lower bound with N = 120,M = 120, which is only | 10.7838−10.7389
−10.7838 | = 0.4164%. This is

quite satisfactory for real applications.

5.2.2 Price of distributional robustness

To examine the price of introducing distributional robustness, we compare the numerical result of problem (26)
with that of classic SSD constrained portfolio optimization problem

min
{
E
P̂N

[−zT ξ]| z ∈ Z, zT ξ �P̂N

(2) zT0 ξ
}
. (27)
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Table 3 reports the comparative results of the optimal expected return rates, which are absolute values of the
optimal values of problems (26) and (27) since they are minimization problems.

Table 3: Optimal expected return rates (absolute value of the optimal value) of the lower and upper bound
approximations to problem (26), optimal expected return rate of problem (27), and expected return rate of z0.

Portfolio optimization problem Expected return rate(%)

(26)
lower bound approximation (N =M = 120) 10.7838
upper bound approximation (K = 12) 10.7389

(27) 11.0082
Benchmark 10.6534

From Table 3, we can see that both the lower and upper bound approximations to problem (26) with
distributionally robust SSD constraints derive a smaller optimal expected return rate than problem (27) with
classic SSD constraints. Therefore, the optimal expected return rate of problem (26) must be smaller than that
of problem (27). As we expected, considering the distributionally robust ambiguity in SSD constraints induces
a more conservative solution. It can also be seen from Table 3 that the expected return rates of the lower and
upper bound approximations are larger than that of the benchmark portfolio, which means that model (26)
derives a portfolio better than the benchmark portfolio in sense of the expected return rate. These numerical
results demonstrate that introducing distributional robustness brings in conservation without loss of stochastic
dominance.

5.2.3 Influence of the robust radius

Finally, we briefly examine the impact of robust radius on the lower and upper bound approximations to the
portfolio optimization problem (26). The optimal values of the lower and upper bound approximations under
different robust radii are shown in Table 4.

Table 4: Optimal values of the lower and upper bound approximations, and their relative gaps with respect to
different robust radii.

Robust radius Optimal values (%) Gap
ǫ lower bound approximation upper bound approximation

10−5 -10.8775 -10.8268 0.4661%
10−4 -10.7838 -10.7389 0.4164%
10−3 -10.7836 -10.6536 1.2055%
10−2 -10.7823 -10.6535 1.1946%
0.1 -10.7689 -10.6534 1.0725%
0.5 -10.6885 -10.6534 0.3284%
1 -10.6534 -10.6534 0%

We can see from Table 4 that, as is expected both the optimal values of the lower and upper bound
approximations of problem (26) are monotonously increasing, which implies that the optimal value of problem
(26) increases as the robust radius increases. Table 4 also tells us that choosing a proper robust radius is a
crucial issue in distributionally robust SSD constrained problems. For robust radius ǫ ≥ 0.1, the upper bound
coincides with E

P̂N
[−zT0 ξ], while for ǫ ≤ 10−2 both the lower and upper bound approximations derive optimal

portfolios better than the benchmark portfolio.

6 Conclusion

We consider a distributionally robust SSD constrained optimization problem, where the true distribution of
the uncertain parameters is ambiguous. The ambiguity set contains those probability distributions close to the
empirical distribution under the Wasserstein distance.

We propose two approximation methods to obtain bounds on the optimal value of the original problem.
We adopt the sample approximation approach to develop a linear programming formulation to obtain a lower
bound approximation for the problem. The lower bound approximation can be easily solved by using linear
programming formulation or by the cutting-plane method. Moreover, we establish the quantitative convergency
for the lower bound approximation problem. We also develop an upper bound approximation and quantitatively
estimate the approximation error between the optimal value of the upper bound approximation and that of the
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original problem. We propose a novel split-and-dual decomposition framework to reformulate distributionally
robust SSD constraints. The upper bound approximation problem can be solved by a sequence of second-order
cone programming problems. We carry out numerical experiments on a portfolio optimization problem to
illustrate our lower and upper bound approximation methods.

One of future research topics would be modifying the design of cutting-planes to solve the lower bound
approximation problem more efficiently. While for the upper bound approximation, it is interesting to in-
vestigate the critical number of intervals for further enhancing the practicality of the approximation scheme.
Besides, finding efficient approximation and solution methods for distributionally robust multivariate robust
SSD constrained optimization is also a promising topic.
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[16] Ralf Gollmer, Uwe Gotzes, and Rüdiger Schultz. A note on second-order stochastic dominance constraints
induced by mixed-integer linear recourse. Mathematical Programming, 126(1):179–190, 2011.
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