
NEW RIEMANNIAN PRECONDITIONED ALGORITHMS FOR
TENSOR COMPLETION VIA POLYADIC DECOMPOSITION∗

SHUYU DONG† , BIN GAO† , YU GUAN† , AND FRANÇOIS GLINEUR‡

Abstract. We propose new Riemannian preconditioned algorithms for low-rank tensor comple-
tion via the polyadic decomposition of a tensor. These algorithms exploit a non-Euclidean metric
on the product space of the factor matrices of the low-rank tensor in the polyadic decomposition
form. This new metric is designed using an approximation of the diagonal blocks of the Hessian of
the tensor completion cost function, thus has a preconditioning effect on these algorithms. We prove
that the proposed Riemannian gradient descent algorithm globally converges to a stationary point
of the tensor completion problem, with convergence rate estimates using the Lojasiewicz property.
Numerical results on synthetic and real-world data suggest that the proposed algorithms are more
efficient in memory and time compared to state-of-the-art algorithms. Moreover, the proposed algo-
rithms display a greater tolerance for overestimated rank parameters in terms of the tensor recovery
performance, thus enable a flexible choice of the rank parameter.

Key words. Tensor completion, polyadic decomposition, CP decomposition, Riemannian opti-
mization, preconditioned gradient

AMS subject classifications. 15A69, 90C26, 90C30, 90C52

1. Introduction. Tensor completion refers to the task of recovering missing
values of a multidimensional array and can be seen as a generalization of the matrix
completion problem. Similar to the approximation of a matrix with low-rank mod-
els, the approximation of a tensor can be formulated by a low-rank tensor model.
Starting from this idea, low-rank tensor completion consists in finding a low-rank ap-
proximation of a tensor based on a given subset of its entries. Applications of low-rank
tensor completion can be found in many areas, e.g., signal processing for EEG (brain
signals) data [35] and MRI (magnetic resonance imaging) [6], and image and video
inpainting [7, 31, 27].

Depending on different tensor decomposition forms, there are several ways to de-
fine the rank of a tensor. Low-rank tensor decompositions provide a useful tool for
tensor representation and are widely used in tensor completion [4, 11, 24, 2, 38, 47, 26].
The low-rank tensor decomposition paradigm allows for extracting the most meaning-
ful and informative latent structures of a tensor, which usually contain heterogeneous
and multi-aspect data. The Canonical Polyadic (CP) decomposition [21, 29, 26], the
Tucker or the multilinear decomposition [48, 14, 15], and the tensor-train (TT) de-
composition [37, 16, 39] are among the most fundamental tensor decomposition forms.
Other variants include hierarchical tensor representations [13, 40, 41] and PARAFAC2
models [40].

Related work. For the tensor completion problem using the CP decomposition
(CPD), Tomasi and Bro [47] proposed to used the Levenberg-Marquardt (modified
Gauss–Newton) method for third-order tensors, in which the rank-R tensor candi-
date is represented by the vectorization of all three factor matrices of the CPD; Acar
et al. [2] proposed to use a nonlinear conjugate gradient algorithm; Jain et al. [23]

∗This work was supported by the Fonds de la Recherche Scientifique – FNRS and the Fonds
Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no. 30468160 (SeLMA – Structured
low-rank matrix/tensor approximation: numerical optimization-based algorithms and applications).
The first author was supported by the FNRS through a FRIA scholarship.
†ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium ({shuyu.dong, yu.guan}@uclouvain.be,

gaobin@lsec.cc.ac.cn).
‡ICTEAM and CORE, UCLouvain, Louvain-la-Neuve, Belgium (francois.glineur@uclouvain.be).

1

ar
X

iv
:2

10
1.

11
10

8v
2

 [
m

at
h.

O
C

]
 2

 J
un

 2
02

2

2 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

proposed an alternating minimization algorithm, which uses a special initialization by
the Robust Tensor Power Method [3] allowing for a guaranteed tensor recovery with
a sample complexity lower bound. The Tucker decomposition, as a closely related
decomposition format, is also widely used for tensor completion, with more or less
different application purposes; see [12] about the relations and differences between
the Tucker and the CP decompositions. Kressner et al. [28] exploited the Riemannian
geometry of the rank-constrained search space with the Tucker decomposition and
proposed a Riemannian conjugate gradient (RCG) algorithm for the tensor comple-
tion problem. Kasai and Mishra [25] paid attention to the data fitting function of
tensor completion and introduced a preconditioned metric on the quotient space of
the rank-constrained search space with the Tucker decomposition; they used a Rie-
mannian conjugate gradient algorithm with respect to the proposed metric. Breiding
and Vannieuwenhoven [10] proposed a Riemannian Gauss–Newton method for ten-
sor approximation, which is based on the Segre manifold structure of tensors with a
bounded rank. We refer to [43, 44, 45] for more recent work about CP decomposition
methods with fully observed or missing entries.

For a m1 × · · · ×mk tensor that is only partially observed, low-rank tensor com-
pletion using CP decomposition can be modeled by approximating the given par-
tially observed tensor with a rank-R tensor candidate in the CP decomposition form
T = JU (1), . . . , U (k)K, where U (i) are mi × R matrices with full column-rank and
JU (1), . . . , U (k)K denotes the product of the CP decomposition, which is the sum of
the outer products of the respective columns of U (i). In such problem formulations,
the CP decomposition not only provides a powerful data representation, but also has
an advantageously low memory requirement—which scales as O((m1 + · · · + mk)R)
for a given CP rank R—compared to other types of models (e.g., [31]) that involve
otherwise a full dense tensor variable (requiring O(m1m2 . . .mk) memory). However,
the fixed-rank CP decomposition, as well as other tensor decomposition models with
a fixed-rank, requires the choice of an appropriate rank value. Since an optimal rank
choice is usually unknown in practice, fixing the tensor rank in the CP decomposition-
based (as well as Tucker-based) approaches is not an ideal strategy. Unfortunately,
the search or estimation of the optimal rank is also hard [30]. Therefore, the approach
with a fixed CP rank limits the applicability of the completion model, and it is nat-
ural to study CP decompositions with a rank upper bound (e.g., [32]). For example,
a rank-increasing approach is used (e.g., [50]) during the optimization process for the
exploration of an optimal rank.

In this paper, we focus on the polyadic decomposition (PD) approach to tensor
completion and consider the tensor candidate with a bounded CP rank. More pre-
cisely, the kth-order tensor variable is represented by k factor matrices in the polyadic
decomposition form. Thus, we formulate the tensor completion problem as follows,

(1.1) minimize
U :=(U(1),...,U(k))∈M

1

2
‖PΩ(JU (1), . . . , U (k)K− T ?)‖2F + ψ(U),

where JU (1), ..., U (k)K denotes the tensor candidate in the form of polyadic decompo-
sition, T ? is the partially observed tensor, Ω is an index set indicating the observed
entries of T ?, PΩ denotes the orthogonal projector such that the (i1, . . . , ik)-th entry
of PΩ(Z) is equal to Zi1,...,ik if (i1, . . . , ik) ∈ Ω and zero otherwise, and the search
space M is a product space defined as

(1.2) M = Rm1×R × · · · × Rmk×R

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 3

with a rank parameter R, and ψ : M 7→ R is a regularization function. Note that
the search space of (1.1) includes points such that the actual CP rank of the product
JU (1), . . . , U (k)K is smaller than the rank parameter R. Hence, the PD representation
of the tensor candidate by U ∈ M is not necessarily canonical. In the context of
low-rank tensor completion, the optimal rank of the tensor candidate is unknown,
and thus, it is important to choose appropriate parameters of the low-rank model in
question. One of the approaches (using low-rank tensor decomposition) in previous
work is to explore and adjust the rank parameter R sequentially [50]. In the case of
the model using the Tucker decomposition with a fixed Tucker rank [25], the natural
way to choosing the Tucker rank is to explore among a range of (k-dimensional) trials.

In this work, we are interested in choosing a large enough rank parameter (while
maintaining it in the range of values that are much lower than the tensor dimensions)
for the model (1.1). To alleviate issues where R is overestimated compared to the
rank of the desired solution, we design algorithms that tolerate rank-deficient factor
matrices (or almost rank-deficient matrices, with close-to-zero tailing singular values).
The proposed algorithms are shown in numerical results to be able to reach optimal
solutions to (1.1), given a large enough value of R, and thus, avoid lengthy sequential
rank explorations.

Contributions. We design a preconditioned metric on the search space M of the
polyadic decomposition model (1.1) and propose Riemannian gradient descent (RGD)
and Riemannian conjugate gradient (RCG) algorithms to solve the tensor completion
problem.

We prove that the sequence of iterates generated by the RGD algorithm converges
to a critical point of the objective function and provide estimates of the convergence
rate using the Lojasiewicz property.

We test on synthetic data for recovering a partially observed tensor with and
without additive noise. The numerical results show that our algorithms outperform
the several existing algorithms. On the real-world dataset (MovieLens 1M), we find
that the proposed algorithms are also faster than the other algorithms under various
rank choices. Moreover, the tensor recovery performance of our algorithms is not
sensitive to the choice of the rank parameter, in contrast to algorithms based on a
fixed-rank model.

Organization. We give the definitions and notation for the tensor operations and
state the main problem in Section 2. The proposed algorithms and convergence analy-
sis are presented in Sections 3–4. Numerical results are reported in Section 5. We
conclude the paper in Section 6.

2. Preliminaries and problem statement. In this section, we introduce the
definitions and notation involved in the tensor operations and give a concrete problem
formulation of (1.1).

The term tensor refers to a multidimensional array. The dimensionality of a
tensor is described as its order. A kth-order tensor is a k-way array, also known as a
k-mode tensor. We use the term mode to describe operations on a specific dimension
(e.g., mode-k matricization).

For a strictly positive integer n, we denote the index set {1, . . . , n} as [[n]]. The set
of n-dimensional real-valued vectors is denoted by Rn. For ` ∈ [[n]], we denote by e`
the (n-dimensional) vector that indicates 1 in the `-th entry: [e`]` = 1 and [e`]j = 0
for all j 6= `. The set of kth-order real-valued tensors is denoted by Rm1×···×mk . The
i-th row and the j-th column of a matrix A are denoted by Ai,: and A:,j respectively.
An entry of a real-valued kth-order tensor Z ∈ Rm1×···×mk is accessed via an k-

4 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

dimensional index [`j]j=1,...,k, with `j ∈ [[mj]], and is denoted as Z`1,...,`k . The inner
product of two tensors Z(1),Z(2) ∈ Rm1×···×mk is defined as follows

〈
Z(1),Z(2)

〉
=∑m1

i1=1 · · ·
∑mk

ik=1Z
(1)
i1,...,ik

Z(2)
i1,...,ik

. The Frobenius norm of a tensor Z is defined as

‖Z‖F =
√
〈Z,Z〉.

The following definitions are involved in the tensor computations. The Kronecker
product of vectors u = [u`] ∈ Rm1 and v = [v`] ∈ Rm2 results in a vector u ⊗ v =
[u1v

T , u2v
T , . . . , um1v

T]T ∈ Rm1m2 . The Khatri–Rao product of two matrices with
the same number of columns U ∈ Rm1×R and V ∈ Rm2×R is defined and denoted
as U � V = [U:,1 ⊗ V:,1, . . . , U:,R ⊗ V:,R] ∈ Rm1m2×R. The Hadamard product of two
matrices A and B of the same dimensions, denoted by A ?B, is a matrix of the same
dimensions by entrywise multiplications: [A ? B]ij = AijBij . The mode-` product of
a given tensor G ∈ Rr1×···×rk with a matrix U ∈ Rm×r` , denoted as G×`U is a tensor
of size r1 × · · · × r`−1 ×m× r`+1 · · · × rk, which has entries

[G ×` U]i1,...,i`−1,j,i`+1,...,ik
=

r∑̀
p=1

Uj,pGi1,...,i`−1,p,i`+1,...,ik
,

for j ∈ [[m]], i1 ∈ [[r1]] and so on. The mode-i matricization Z(i) of a tensor Z ∈
Rm1×···×mk , also called the unfolding of Z along the i-th mode, is a matrix of size
mi×(

∏
j 6=imj) such that the tensor element z`1,...,`k in Z is identified with the matrix

element [Z(i)]`i,ri in Z(i), where ri = 1+
∑k
n=1,n6=i(`n−1)In, with In =

∏n−1
j=1,j 6=imj .

Using the (`i, ri)-indexing, the mode-i matricization of the k-dimensional indices in
an index set Ω ⊂ [[m1]] × · · · × [[mk]] is defined in the same way as in the tensor
matricization, and the mode-imatricization of Ω is an index set Ω(i) such that (`i, ri) ∈
Ω(i) if and only if (`1, . . . , `k) ∈ Ω.

Definition 2.1 (Tucker decomposition). The Tucker decomposition of a ten-
sor [48, 14, 15] is defined with a series of mode-` products between a core tensor
G ∈ Rr1×···×rk and the (orthogonal) factor matrices U (i) ∈ Rmi×ri such that

Z = G ×1 U
(1) ×2 · · · ×k U (k).

A tensor Z admitting a Tucker decomposition form with G and U (1), . . . , U (k) can
be unfolded along its i-th mode into the following matricization,

Z(i) = U (i)G(i)

(
U (i−1) ⊗ · · · ⊗ U (1) ⊗ U (k) ⊗ · · · ⊗ U (i+1)

)T
.

The tensor Tucker rank or multilinear rank [48] is defined as

ranktc(Z) = (rank(Z(1)), . . . , rank(Z(k))),

where rank(Z(i)) denotes the matrix rank, for i = 1, . . . , k.

A tensor Z ∈ Rm1×···×mk of the form Z = u(1) ◦· · ·◦u(k), where u(i) ∈ Rmi and ◦
denotes the outer product, is said to be a rank-1 tensor, which is also called a simple
tensor [19] or decomposable tensor [18]. The CP rank of a tensor Z is defined as the
minimum number of rank-1 tensors which sum to Z [21, 29]:

rankCP(Z) = min{R ∈ Z+ : ∃{u(1)
r , . . . ,u(k)

r }r=1,...,R, s.t. Z =

R∑
r=1

u(1)
r ◦ · · · ◦ u(k)

r }.

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 5

T ∈ Rm1×m2×m3

=

U(1)

G U(2)

U(3)

T ∈ Rm1×m2×m3

=

u1

v1

w1

+ . . . +

uR

vR

wR

Fig. 1. Left: Tucker decomposition. Right: CP decomposition.

Definition 2.2 (CP decomposition). Let Z ∈ Rm1×···×mk be a tensor such that
rankCP(Z) = R. Then there exist k matrices U (i) ∈ Rmi×R with full column-rank,
for i = 1, . . . , k, such that

Z = JU (1), . . . , U (k)K =

R∑
r=1

U (1)
:,r ◦ · · · ◦ U (k)

:,r ,

which is referred to as the Canonical Polyadic decomposition [21, 29, 26] of Z.

The CP decomposition can be considered as the “diagonalized” version of the
Tucker decomposition (Definition 2.1), in the sense that a tensor that admits a rank-R
CP decomposition also admits a Tucker decomposition with a R×· · ·×R hypercube as
core tensor, whose nonzero values are only on the diagonal entries. Figure 1 illustrates
the Tucker and CP decompositions of a third-order tensor. The matricization of a
tensor in the CP decomposition form Z = JU (1), . . . , U (k)K can be written using the
Khatri–Rao product,

(2.1) Z(i) = U (i)[(U (j))�j 6=i]T := U (i)(U (k) � · · · � U (i+1) � U (i−1) � · · · � U (1))T .

A point in the search space M = Rm1×R × · · · × Rmk×R of (1.1) is denoted
by U = (U (1), . . . , U (k)), where U (i) ∈ Rmi×R is the i-th factor matrix of U . In
fact, M is a smooth manifold, and the tangent space to M at any point U ∈ M
is TUM = Rm1×R × · · · × Rmk×R. Therefore, a tangent vector in TUM is also a
tuple of k factor matrices, denoted as ξ = (ξ(1), . . . , ξ(k)), where ξ(i) ∈ Rmi×R, for
i = 1, . . . , k. The Euclidean metric at U is defined and denoted as, for all ξ, η ∈ TUM,

〈ξ, η〉 =
∑k
i=1 tr(ξ(i)T η(i)), where tr(·) is the trace of a matrix.

Let M be endowed with a Riemannian metric g, then the Riemannian gradient
of a real-valued smooth function f at U ∈ M, denoted as gradf(U), is the unique
element in TUM that satisfies, for all ξ ∈ TUM, gU (gradf(U), ξ) = Df(U)[ξ], where
Df(U) denotes the (Euclidean) first-order differential of f at U . In particular, the
Euclidean gradient of f at U is denoted as ∇f(U).

Problem statement. By setting the regularizer as ψ(U) = λ
2

∑k
i=1 ‖U (i)‖2F, in a

similar way as in Maximum-margin Matrix Factorization [46], we specify the polyadic
decomposition-based model (1.1) as follows,

(2.2) minimize
U∈M=Rm1×R×···×Rmk×R

f(U) := fΩ(U) +
λ

2

k∑
i=1

‖U (i)‖2F,

where the first term fΩ(U) := 1
2p‖PΩ(JU (1), · · · , U (k)K − T ?)‖2F is referred to as the

data fitting function of the problem, and p = |Ω|/(m1 · · ·mk) is a constant called the
sampling rate. Note that when the regularization parameter λ > 0, the regularizer ψ
has an effect of keeping the variable U in a compact subset of M.

6 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

3. Algorithms. In this section, we propose a new metric on the manifoldM =
Rm1×R × · · · ×Rmk×R. Under the proposed metric, we develop Riemannian gradient
descent and Riemannian conjugate gradient algorithms on M.

3.1. A preconditioned metric. The Riemannian preconditioned algorithms
in [33, 25] on the product space of full-column rank matrices were proposed to im-
prove the Euclidean gradient descent method. In these algorithms, a Riemannian
metric was defined on the search space according to the differential properties of the
cost function. Specifically, it is designed based on an operator that approximates the
“diagonal blocks” of the second-order differential of the cost function. The chosen
metric plays a role of preconditioning in the optimization algorithms such as Rie-
mannian gradient descent. We refer to [34] for a more general view on this topic of
Riemannian preconditioning.

Starting from the idea of Riemannian preconditioning, we design a metric for the
polyadic decomposition-based problem (1.1), in which the rank constraints are more
relaxed than the fixed Tucker-rank constraint in [25]. First, we construct an operator
H(U) : TUM 7→ TUM using the “diagonal blocks” of the second-order differential of
the data fitting function fΩ in (2.2). Roughly speaking, such an operator satisfies

(3.1) 〈H(U)[ξ], η〉 ≈ ∇2fΩ(U)[ξ, η],

for all ξ, η ∈ TUM, where ∇2fΩ(U) denotes the (Euclidean) second-order differential
of fΩ, and 〈·, ·〉 is the Euclidean metric. Then, we design a metric that behaves lo-
cally like (ξ, η) 7→ 〈H(U)[ξ], η〉. Assume that the operator H(U) is invertible and that
g̃ : (ξ, η) 7→ 〈H(U)[ξ], η〉 forms a Riemannian metric onM, then the Riemannian gra-
dient gradfΩ(U) satisfies, by definition, g̃U (gradfΩ(U), ξ) = DfΩ(U)[ξ] = 〈∇fΩ(U), ξ〉
for all ξ ∈ TUM, where ∇fΩ(U) denotes the Euclidean gradient of fΩ. Hence,

gradfΩ(U) = H(U)
−1

[∇fΩ(U)]. In view of H(U) as in (3.1), gradfΩ(U) is an approx-
imation of the Newton direction of fΩ, which results in a much improved convergence
behavior than the Euclidean gradient descent.

For the tensor completion problem (1.1), one difficulty in designing such a metric
using H(U) as in (3.1) is that we need to find an appropriate approximation to the
second-order differential ∇2fΩ(U). This requires finding the explicit forms of the first
and second-order derivatives of fΩ as defined in (2.2), and hence those of the CPD
map Ψ :M 7→ Rm1×···×mk : U 7→ JU (1), · · · , U (k)K. Concretely, we proceed as follows.

First, we deduce the second-order partial derivatives of fΩ. Let U be a point in
M. The Euclidean gradient of fΩ at U ∈M is

(3.2) ∇fΩ(U) = (∂U(1)fΩ(U), . . . , ∂U(k)fΩ(U)),

where the partial derivatives have the following element-wise expression, for i =
1, . . . , k,

(3.3) [∂U(i)fΩ(U)]`,r :=
d

dt
fΩ(U (1), . . . , U (i) + tE`,r, . . . , U

(k))

∣∣∣∣
t=0

,

where E`,r = e`e
T
r . The right-hand side of (3.1) can be written in terms of the

following second-order partial derivatives,

∇2fΩ(U)[ξ, η] :=

k∑
i=1

〈∂2
iifΩ(U)[ξ], η〉+

k∑
i=1,j′ 6=i

〈∂2
ij′fΩ(U)[ξ], η〉 ,

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 7

where

(3.4) ∂2
ijfΩ(U)[ξ] :=

d

dt

(
∂U(i)fΩ(U (1), . . . , U (j) + tξ(j), . . . , U (k))

)∣∣∣∣
t=0

,

for i, j = 1, . . . , k. Subsequently, we construct H(U) as an operator on TUM based on
the action of the aforementioned “diagonal blocks” of ∇2fΩ(U), i.e., ∂2

iifΩ(U)[ξ] for
i = 1, . . . , k. More accurately, to design a metric that works for all tensor completion
problems with a certain subsampling pattern Ω, we use the expectation of these terms
over the subsampling operator. Therefore, we defineH(U) : TUM 7→ TUM as follows,

(3.5) H(U)[ξ] =
(
EΩ

[
∂2

11fΩ(U)[ξ]
]
, . . . ,EΩ

[
∂2
kkfΩ(U)[ξ]

])
.

Given the polyadic decomposition-based data fitting function fΩ in (2.2), fΩ can
be rewritten in terms of U (i) and (U (j))�j 6=i through the mode-i tensor matriciza-

tions (2.1): fΩ(U) = 1
2p

∥∥∥PΩ(i)

(
U (i)((U (j))�j 6=i)T − T ?(i)

)∥∥∥2

F
, where Ω(i) is the mode-i

matricization of Ω. Therefore, from (3.3), the first-order derivatives have the following
expression,

(3.6) ∂U(i)fΩ(U) =
1

p
S(i)(U

(j))�j 6=i ,

where S(i) is the mode-imatricization of the residual S := PΩ

(
JU (1), · · · , U (k)K− T ?

)
.

Combining (3.4) and (3.6), it follows that

∂2
iifΩ(U)[ξ] =

1

p
PΩ(i)

(
ξ(i)((U (j))�j 6=i)T

)
(U (j))�j 6=i .(3.7)

Let Ω be a random index set of entries that are i.i.d. samples of the Bernoulli distri-
bution: (i1, . . . , ik) ∈ Ω, with probability p, for (i1, . . . , ik) ∈ [[m1]]×· · ·× [[mk]]. Then
by taking the expectation over the index set Ω, (3.7) has the following approximation

(3.8) EΩ

[
∂2
iifΩ(U)[ξ]

]
= ξ(i)((U (j))�j 6=i)T (U (j))�j 6=i .

Therefore, the operator H(U) as defined in (3.5) reads

(3.9) H(U)[ξ] =
(
ξ(1)(U (j))�j 6=1)T (U (j))�j 6=1 , . . . , ξ(k)(U (j))�j 6=k)T (U (j))�j 6=k

)
.

Note that, by using the approximation (3.8), we finally obtain an operator H(U) that
is independent of the subsampling index set Ω. Interestingly, the idea of Riemannian
preconditioning using (3.1)–(3.9), for the problem (2.2), is similar to the Riemannian
Gauss–Newton (RGN) method for minimizing 1

2p‖Ψ(U) − T ?‖2F in [10], where the
normal equation of their RGN method involves the Jacobian J of the CPD map
Ψ : U 7→ JU (1), · · · , U (k)K. The operator (3.9) is thus similar to the term JTJ in their
RGN method.

A second difficulty is that the operator H(U) in (3.9) may not be invertible,
since the R-by-R symmetric matrices in the form of ((U (j))�j 6=i)T (U (j))�j 6=i are not
necessarily positive definite. To this end, we propose to regularize H(U) with the
identity operator on TUM. This is done by shifting the aforementioned matrices by
adding a constant diagonal matrix δIR, where IR denotes the R-by-R identity matrix
and δ > 0 is a relatively small parameter. Consequently, we define the following inner
product.

8 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

Definition 3.1. Given U = (U (1), . . . , U (k)) ∈M, let gU be an inner product in
TUM as follows,

(3.10) gU (ξ, η) =

k∑
i=1

tr
(
ξ(i)Hi,U (η(i))T

)
, for ξ, η ∈ TUM,

where Hi,U is a R-by-R matrix defined as

(3.11) Hi,U = ((U (j))�j 6=i)T (U (j))�j 6=i + δIR

and δ > 0 is a constant parameter.

Note thatHi,U is positive definite even when there is a rank-deficient factor matrix
among {U (i)}. Moreover, g is smooth on M, and is therefore a Riemannian metric.

Now, we consider M as a manifold endowed with the Riemannian metric (3.10).
The associated norm of a tangent vector ξ ∈ TUM is defined and denoted by ‖ξ‖U =√
gU (ξ, ξ). Based on the Euclidean gradient of f in (3.2), the Riemannian gradient

of f is, by definition,

(3.12) gradf(U) =
(
∂U(1)f(U)H−1

1,U , · · · , ∂U(k)f(U)H−1
k,U

)
.

As mentioned in the beginning of this subsection, the Riemannian gradient (3.12) can
be seen as the result of preconditioning of the Euclidean gradient ∇f(U) with the
operator H(U) (upto a “rescaling” with δIR). We refer to the new metric (3.10) as
the preconditioned metric on M.

3.2. The Riemannian preconditioned algorithms. With the gradient de-
fined in (3.12) using Riemannian preconditioning, we adapt Riemannian gradient
descent and Riemannian conjugate gradient algorithms (e.g., [1]) to solve the prob-
lem (2.2).

Algorithm 3.1 Riemannian Gradient Descent (RGD)

Input: f :M 7→ R, x0 ∈M, tolerance ε > 0; t = 0.
Output: xt.

1: while ‖gradf(xt)‖ > ε do
2: Set ηt = −gradf(xt). # See (3.12)
3: Set stepsize st through one of the rules (3.13), (3.14) or (3.15).
4: Update: xt+1 = xt + stηt; t← t+ 1.
5: end while

The Riemannian gradient algorithm is given in Algorithm 3.1, which consists
mainly of setting the descent direction as the negative Riemannian gradient and se-
lecting the stepsizes. Note that since the search space isM = Rm1×R× · · ·×Rmk×R,
the retraction map in this algorithm (line 4) is chosen as the identity map. In line 3,
given an iterate xt ∈ M and ηt ∈ Txt

M, the stepsize st is chosen by one of the
following three methods.

Stepsize by line minimization. The line minimization consists in computing a
stepsize as follows,

(3.13) st = arg min
s>0

h(s) := f(xt + sηt).

With third-order tensors (k = 3), the solution can be obtained numerically by selecting
from the roots of the derivative h′(s), which is a polynomial of degree 5.

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 9

Backtracking line search with the Armijo condition. We first set up a trial step-
size s0

t using the classical strategy [36, §3.4]: (i) when t ≤ 1, s0
t = 1, (ii) when t ≥ 2,

s0
t = 2(f(xt−1) − f(xt−2))/gxt−1

(ηt−1, gradf(xt−1)); then the stepsize st is returned
by a backtracking procedure, i.e., finding the smallest integer ` ≥ 0 such that

(3.14) f(xt)− f (xt + stηt) ≥ σstgxt
(−gradf(xt), ηt),

for st := max(s0
tβ

`, smin) with a constant parameter smin > 0. The backtracking
parameters are fixed with σ, β ∈ (0, 1).

The Barzilai–Borwein (BB) stepsize. Recently, the Riemannian Barzilai–Borwein
(RBB) stepsize [22] has proven to be an efficient stepsize rule for Riemannian gradient
methods. Hence, we choose the stepsize as

(3.15) sRBB1
t :=

‖zt−1‖2xt

|gxt
(zt−1, yt−1)|

, or sRBB2
t :=

|gxt(zt−1, yt−1)|
‖yt−1‖2xt

,

where zt−1 = xt − xt−1 and yt−1 = gradf(xt)− gradf(xt−1).
The Riemannian conjugate gradient (RCG) algorithm is similar to RGD (Algo-

rithm 3.1) in terms of the stepsize selection (line 3) and the update step (line 4), but
differs with RGD in the choice of the search direction (line 2). More specifically, the
search direction of RCG is defined as

ηt = −gradf(xt) + βtηt−1,

where βt is the CG parameter. In the numerical experiments, we choose the Rie-
mannian version [9] of the modified Hestenes–Stiefel rule [20] (HS+) as follows,

βt = max

(
0,

gxt
(ξt − ξt−1, ξt)

gxt(ξt − ξt−1, ηt−1)

)
.

The vector transport operation involved in the computation of βt is chosen to be the
identity map.

In both algorithms, the cost for calculating the Riemannian gradient (3.12) is
a dominant term of the total cost. Therefore, we propose an efficient method for
evaluating the Riemannian gradient in the next section.

3.3. Computation of the gradient. We focus on the computation of the
Riemannian gradient of f in (2.2). From the definition (3.12), the computation
of gradf(U) = (η(1), . . . , η(k)) consists of two parts: (i) computing the partial de-
rivatives Di := ∂U(i)f(U) ∈ Rmi×R and (ii) computing the matrix multiplications
η(i) = DiH

−1
i,U . From the expressions (3.6) and (3.11), we have

Di =
1

p
S(i)(U

(j))�j 6=i︸ ︷︷ ︸
D̃i

+λU (i),(3.16)

η(i) = Di(((U
(j))�j 6=i)T (U (j))�j 6=i + δIR︸ ︷︷ ︸

Hi,U

)−1.(3.17)

In a straightforward manner, these two parts require mainly the following operations:
1. Computing the sparse tensor S as in (3.6), which requires 2|Ω|R flops;

2. Computing (U (j))�j 6=i for i = 1, . . . , k, which requires 2
∑k
i=1m−iR flops,

where m−i :=
∏
j 6=imj ;

10 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

3. Forming the sparse matricizations S(i) for i = 1, . . . , k, which takes some
extra time for input/output with the sparse tensor S and the matricizations
of the index set Ω.

4. Computing the sparse-dense matrix products D̃i := S(i)(U
(j))�j 6=i , for i =

1, . . . , k, which require 2k|Ω|R flops. Then, one has access to {Di}i=1,...,k

after the matrix additions with λU (i) (whose cost is not listed out since it is
fixed regardless of the computational method).

5. Computing the R-by-R matrix Hi,U (3.11) based on the matrix (U (j))�j 6=i

(obtained in step 2), which consists of a dense-dense matrix multiplication
of sizes R × m−i and m−i × R, for i = 1, . . . , k, which mainly requires

2
∑k
i=1m−iR

2.
6. Computing DiH

−1
i,U given Di (obtained in step 4) and Hi,U (obtained in step

5), through Cholesky decomposition of Hi,U , for i = 1, . . . , k, which requires∑k
i=1 2miR

2 + CcholR
3.

The sum of the flops counted in the above list of operations is

(3.18) 2(k + 1)|Ω|R+ (

k∑
i=1

2m−i(R
2 +R)) + (

k∑
i=1

2miR
2 + CcholR

3).

An efficient computational method. We propose a computational method that
avoids the matricizations of the residual tensor S and the computations of the Khatri–
Rao products (U (j))�j 6=i .

Given the residual tensor S after the step 1 above, we propose to compute D̃i

in (3.16) without passing through the steps 2 and 3. In fact, the computation of
D̃i = S(i)(U

(j))�j 6=i corresponds to the Matricized tensor times Khatri–Rao product
(MTTKRP), which is a common routine in the tensor computations. Through basic
tensor computations, the entrywise expression of this MTTKRP does not require
forming the matricizations of S explicitly. For brevity, we demonstrate these relations
concretely in the case of third-order tensors (k = 3), knowing that their extension to
higher-order tensors is straightforward. The matrix D̃1 = S(1)(U

(j))�j 6=1 ∈ Rm1×R

in (3.16) has the entrywise expression below,

(3.19)
[
D̃1

]
i1`

=

m2∑
i2=1

m3∑
i3=1

Si1i2i3U
(3)
i3`
U

(2)
i2`
,

for (i1, i2, i3) ∈ [[m1]] × · · · × [[m3]] and ` = 1, . . . , R. Based on (3.19), Algorithm 3.2
presents an efficient way to compute the MTTKRPs of (3.16), with a sparse residual
tensor S as input. Note that the computations of D̃2 and D̃3 correspond to the same
equation (3.19) but with the indices (i1, i2, i3) swapped via the rotations (1, 2, 3; 2, 3, 1)
and (1, 2, 3; 3, 1, 2) respectively.

Subsequently, we propose to compute Hi,U (3.11) without large matrix multipli-
cations. In fact, the large matrix multiplications with (U (j))�j 6=i in (3.11) can be
decomposed into smaller ones. Note that these matrix multiplications satisfy the
following identity:

(3.20)
(

(U (j))�j 6=i

)T (
(U (j))�j 6=i

)
= Gk ? · · ·Gi+1 ? Gi−1 ? · · · ? G1,

where Gj := U (j)TU (j) for j 6= i and the product by ? denotes the Hadamard product.

Using this property, the computation of Hi,U reduces to computing Gj = U (j)TU (j),

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 11

Algorithm 3.2 Sparse MTTKRP

Input: The index sets by axis IΩ := {i : (i, j, k) ∈ Ω}, JΩ and KΩ. The sparse tensor
S in the form of a |Ω|-by-1 array of observed entries {Sp = Sip,jp,kp : (ip, jp, kp) ∈
Ω}. The factor matrices (U (i))i=1,2,3.

Output: D̃ := S(1)U
(3) � U (2).

1: D̃ = 0.
2: for p = 1, . . . , |Ω| do
3: for ` = 1, . . . , R do

4: D̃ip` = D̃ip` + SpU (3)
kp`
U

(2)
jp`

.
5: end for
6: end for

and then the entrywise multiplications between the (small) R-by-R matrices {Gj},
which require only

∑k
i=1(2mi + k− 1)R2 flops, since the computation of the matrices

Gj cost 2
∑k
i=1miR

2 and the entrywise multiplications between Gj cost (k − 1)R2.
In summary, the operations reduce to the following steps.
a. Computing the sparse tensor S as in (3.6). This is identical to the step 1

above, which requires 2|Ω|R flops;
b. Computing D̃i := S(i)(U

(j))�j 6=i , for i = 1, . . . , k, using S (obtained in step
a) and U ; see Algorithm 3.2. The computational cost of this step is 2k|Ω|R.
Then, one has access to {Di}i=1,...,k after the matrix additions with λU (i).

c. Computing the R-by-R matrix Hi,U (3.11) using U (input data); see (3.20).

The computational cost of this step is
∑k
i=1(2mi + k − 1)R2.

d. Computing DiH
−1
i,U given Di (obtained in step b) and Hi,U (obtained in step

c), through Cholesky decomposition of Hi,U , for i = 1, . . . , k. This is identical

to the step 6 above, which requires
∑k
i=1 2miR

2 + CcholR
3 flops.

Therefore, the total cost of the above steps is

2(k + 1)|Ω|R+

k∑
i=1

(4mi + k − 1)R2 + CcholR
3,

which is significantly reduced compared to the cost (3.18) of the naive method. In
particular, for third-order (or a bit higher-order) tensors (k � mi) with a low rank

parameter R, the dominant term in (3.18) is 2(k+1)|Ω|R+
∑k
i=1(2m−i+2mi)R

2, while

the dominant term in the cost of the proposed method is 2(k+1)|Ω|R+
∑k
i=1 4miR

2.
The reduction in the cost can be seen from the fact that mi � m−i =

∏
j 6=imj and

mi � |Ω| = pm1 . . .mk. Note that on top of the above reduction in flops, the time
efficiency is further improved as the matricizations of the residual tensor S are not
needed. In particular, speedups related to the step b (instead of steps 2–4 in the naive
method) are demonstrated in Table 3.

4. Convergence analysis. In this section, we analyze the convergence behavior
of Algorithm 3.1. Let {xt}t≥0 denote the sequence generated by this algorithm. First,
we demonstrate in Proposition 4.3 that every accumulation point of {xt}t≥0 is a
stationary point. Second, we analyze the iterate convergence property of the algorithm
in Theorem 4.5.

The following lemma generalizes the class of functions with Lipschitz-continuous
gradient to functions defined on Riemannian manifolds, and will be used in Lemma 4.2.

12 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

Lemma 4.1 ([8, Lemma 2.7]). Let M′ ⊂M be a compact Riemannian subman-
ifold. Let Rx : TxM′ 7→ M′. If f :M′ 7→ R has Lipschitz continuous gradient in the
convex hull of L. Then there exists L > 0 such that, for all x ∈M′ and ξ ∈ TxM′,

(4.1) |f(Rx(ξ))− (f(x) + gx(ξ, gradf(x))| ≤ L

2
‖ξ‖2x.

Starting from the above lemma, we show that the proposed algorithm ensures a
sufficient decrease property at each iteration.

Lemma 4.2. Let {xt}t≥0 be the sequence generated by Algorithm 3.1 (RGD), in
which the step sizes are chosen by either line minimization (3.13) or Armijo line
search (3.14). For all t ≥ 0, there exists C̄ > 0 such that

(4.2) f(xt)− f(xt+1) ≥ C̄‖gradf(xt)‖2xt
.

In particular, with the step sizes chosen by line minimization (3.13), there exists a
Lipschitz-like constant L0 > 0 such that (4.2) holds for C̄ = 1

2L0
.

Proof. Due to the fact that the objective function is coercive (because of the
Frobenius norm-based terms), the sublevel set L = {x ∈ M : f(x) ≤ f(x0)} is a
closed and bounded subset of M. Due to the boundedness of L, the convex hull
of L, denoted as L̄, is bounded. Therefore, f has Lipschitz continuous gradient in L̄
since f ∈ C2(M). From Lemma 4.1, there exists a Lipschitz-like constant L0 > 0 such
that (4.1) holds. The inequality (4.1) ensures an upper bound of f(Rx(sξ)) = f(x+sξ)
as follows, f(x+sξ) ≤ f(x)+gx(sξ, gradf(x))+ L0

2 ‖sξ‖
2
x, for all s ≥ 0. Consequently,

when the stepsize st = s∗ is selected by line minimization (3.13), we have

f(xt+1) = f(xt − s∗gradf(xt))

≤ min
s≥0

(
f(x)− s(1− L0s

2
)‖gradf(xt)‖2xt

)
= f(xt)− C̄‖gradf(xt)‖2xt

,

with C̄ = 1
2L0

. When the stepsize st is selected using Armijo line search, the new iter-
ate xt+1 = xt − stgradf(xt) is an Armijo point, where st ≥ smin > 0, by construction
of the line search procedure (with the parameter of lower bound of stepsizes smin).
Hence, through (3.14), we have

f(xt)− f(xt+1) ≥ σst‖gradf(xt)‖2xt
≥ C̄‖gradf(xt)‖2xt

,

where C̄ = σsmin > 0, with the line search parameter σ ∈ (0, 1).
In conclusion, the sufficient decrease property is satisfied with the two stepsize

selection methods in the statement.

Proposition 4.3. The sequence {xt}t≥0 generated by Algorithm 3.1, with step
sizes chosen by either line minimization (3.13) or Armijo line search (3.14), satis-
fies the following convergence properties: (i) Every accumulation point is a station-

ary point; (ii) The algorithm needs at most
⌈

(f∗−f(x0))
C̄

1
ε2

⌉
iterations to reach an

ε-stationary solution, for a constant C̄ > 0.

Proof. (i) Let x∗ ∈M be an accumulation point, then there exists a subsequence
(xk(t))t≥0, where {k(t) : t ≥ 0} ⊂ N, such that limt→∞(f(xk(t)) − f(x∗)) = 0. This
entails that

∑∞
t=0 f(xk(t))−f(xk(t+1)) = f(xk(0))−f(x∗) <∞. Applying the sufficient

decrease property (4.2) of Lemma 4.2 to this previous inequality, we have

(4.3)

∞∑
t=0

C̄‖gradf(xk(t))‖2xk(t)
≤
∞∑
t=0

f(xk(t))− f(xk(t+1)) <∞,

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 13

for a constant C̄ > 0. Therefore, lim
t→∞

‖gradf(xk(t))‖xk(t)
= 0. (ii) Suppose that the

algorithm does not attain an ε-stationary point (a point on which the gradient norm
is bounded by ε) at iteration T − 1, then ‖gradf(xt)‖ > ε, for all 0 ≤ t ≤ T − 1.

Using (4.2), we have f(x0) − f(xT) ≥ C̄
∑T−1
t=0 ‖gradf(xt)‖2xt

≥ C̄ε2T . Therefore

T ≤ f(x0)−f(x∗)
C̄

1
ε2 .

Next, we prove the iterate convergence of the RGD algorithm in Theorem 4.5 using
the Lojasiewicz property. We first give the definition of the Lojasiewicz inequality for
functions defined on a Riemannian manifold [42].

Definition 4.4 (Lojasiewicz inequality [42, Definition 2.1]). Let M ⊂ Rn be
a Riemannian submanifold of Rn. The function f : M 7→ R satisfies a Lojasiewicz
gradient inequality at a point x ∈ M, if there exists δ > 0, σ > 0 and θ ∈ (0, 1/2]
such that for all y ∈M with ‖y − x‖ ≤ δ, it holds that

(4.4) |f(x)− f(y)|1−θ ≤ σ‖gradf(y)‖,

where θ is called the Lojasiewicz exponent.

The Proposition 2.2 of [42] guarantees that (4.4) is satisfied for real analytic func-
tions defined on an analytic manifold. Since the objective function of (2.2) is indeed
real analytic and that the search space M is an analytic manifold, the Lojacisiewicz
inequality (4.4) holds. Consequently, we have the following iterate convergence result.

Theorem 4.5. Let {xt}t≥0 be the sequence generated by Algorithm 3.1 with step-
sizes chosen by either line minimization (3.13) or Armijo line search (3.14). Then
{xt}t≥0 converges to a stationary point x∗ ∈M. Moreover, the local convergence rate
of {xt}t≥0 follows:

‖xt − x∗‖ ≤ C
{
e−ct if θ = 1/2,
t−θ/(1−2θ) otherwise,

with the Lojacisiewicz exponent θ ∈ (0, 1/2] and constants c > 0 and C > 0.

Proof. The inequality (4.2) ensures that the sequence {xt}t≥0 is monotonically
decreasing. Hence, the RGD algorithm satisfies the conditions in [42, Theorem 2.3].
More precisely, it follows from (4.2) of Lemma 4.2 that

|f(xt+1)− f(xt)| ≥ C̄‖gradf(xt)‖2xt
= (C̄/st)‖xt+1 − xt‖xt‖gradf(xt)‖xt

≥ κ0‖xt+1 − xt‖xt‖gradf(xt)‖xt ,(4.5)

where κ0 > 0, since with line minimization (3.13), st = s∗ > 0, for all t ≥ 0, is
chosen from a finite number of numerical solutions; and with Armijo line search (3.14),
0 < smin ≤ st ≤ s0

t , where s0
t > 0 is the initial stepsize before backtracking. In

addition, the RGD update rule ensures that

(4.6) ‖xt+1 − xt‖xt
= st‖gradf(xt)‖xt

≥ κ‖gradf(xt)‖xt
,

for κ > 0. The result of the theorem is obtained by combining (4.5), (4.6) and the
 Lojasiewicz inequality (4.4) and using [42, Theorem 2.3].

As far as we know, the global convergence of the RGD algorithm using RBB
stepsizes without line search is not known. However, one can apply the RBB stepsize
as an initial trial stepsize to the backtracking line search procedure; and consequently,
all the convergence results in this section can be proved. Interested readers are referred
to [22] for details.

14 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

5. Experiments. In this section, we carry out numerical experiments for ten-
sor completion using the proposed algorithms and several existing algorithms in the
related work. Details of these algorithms are as follows.

The proposed Algorithm 3.1 is labeled as Precon RGD and the proposed RCG
algorithm is labeled as Precon RCG. Depending on the stepsize selection method,
these algorithms are labeled with a descriptor (i) line minimization (linemin) for
the stepsize rule (3.13), and (ii) Riemannian Barzilai–Borwein (RBB) for (3.15). We
choose to restrict ourselves to linemin and RBB in our experiments, since they appear
to show better performances in practice and are easier to use than the Armijo line
search rule; see Appendix A for a detailed discussion.

Euclidean gradient descent (Euclidean GD) and nonlinear conjugate gradient
(Euclidean CG) algorithms refer to the algorithms using the Euclidean gradient (3.2)
in the definition of the search directions on M. The stepsize selection rules are
the same as the proposed algorithms; these algorithms are implemented along with
the proposed algorithms in the source code. INDAFAC is a damped Gauss–Newton
method for CPD-based tensor completion proposed by Tomasi and Bro [47]. CP-
WOPT [2] is a nonlinear conjugate gradient algorithm for CPD-based tensor com-
pletion. AltMin [17] is an alternating minimization algorithm for CPD-based tensor
completion, which uses the linear CG for each of the least squares subproblems.

KM16 refers to a Riemannian optimization algorithm proposed by Kasai and
Mishra [25] for tensor completion with a fixed Tucker rank. The Riemannian gradient
in this algorithm is defined under a metric selected through Riemannian precondi-
tioning on the manifold corresponding to a (fixed-rank) Tucker decomposition. In
this algorithm, the tensor candidate is represented by a tuple of factor matrices and a
core tensor via the Tucker decomposition. In our experiments on third-order tensors,
this algorithm is labeled as KM16 (r1, r2, r3), according to the Tucker rank (r1, r2, r3)
with which it is tested. Note that the dimension of the search space of KM16 is∑k
i=1

(
miri − r2

i

)
+
∏k
i=1 ri, which is different than the dimension ofM (search space

of the CPD/PD-based algorithms); In particular, the difference in these dimensions
is marginal when ri ≈ R for i = 1, 2, 3, with R� min(m1, . . . ,mk).

All the CPD/PD-based algorithms are initialized with a same randomly generated
point onM and the Tucker decomposition-based algorithm (KM16) is initialized with
a point such that its tensor representation is close enough to that of the initial point
of the other algorithms; see Appendix B for details.

All numerical experiments were performed on a workstation with 8-core Intel Core
i7-4790 CPUs and 32GB of memory running Ubuntu 16.04 and MATLAB R2019. The
source code is available at https://gitlab.com/shuyudong.x11/tcprecon/. Implemen-
tations of the existing algorithms are also publicly available.

5.1. Synthetic data.
Tensor model. We consider a low-rank tensor model that is composed of a low

Tucker-rank tensor and independent additive noises: with a given Tucker rank pa-
rameter r? = (r?1 , r

?
2 , r

?
3), we generate such a tensor T ? using the following procedure,

(5.1) T ? = Tr?(T) + E ,

where T ∈ Rm1×m2×m3 is a third-order tensor composed of i.i.d. Gaussian entries,
that is, Tijk ∼ N (0, 1), the operator in the form of Tr(·) is a Tucker-rank (ranktc)
truncation operator defined as the best Tucker rank-r approximation of T . The
truncation Tr(·) can be obtained using existing implementations that are available in
state-of-the-art tensor toolboxes (e.g., Tensor Toolbox [5] and Tensorlab [49]). Here

https://gitlab.com/shuyudong.x11/tcprecon/

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 15

we use the function tucker als.m in the MATLAB Tensor Toolbox. In the scenario
of noiseless observations, E = 0; otherwise E ∈ Rm1×m2×m3 contains independent
noises such that E`1`2`3 ∼ N (0, σ), where σ is set according to a given signal-to-noise
ratio (SNR); see Appendix B.

Low-rank tensor recovery from partial, noiseless observations. A synthetic tensor
T ? is generated with the model (5.1) without noise. The tensor T ? is only observed
on an index set Ω, which is composed of indices drawn from the Bernoulli distribution:
(i, j, k) ∈ Ω with probability p ∈ (0, 1), for all (i, j, k) ∈ Jm1K× Jm2K× Jm3K.

For the problem model (2.2), we set the regularization parameter λ to zero, which
allows for recovering the low-rank tensor T ? without any bias, provided that the
sampling rate p is sufficient. Then we test the aforementioned algorithms with a
given rank parameter R, assuming that the rank (CP or Tucker rank) of the hidden
tensor T ? is unknown to all the algorithms. For the CPD and PD-based algorithms,
we set the rank parameter R to an arbitrary value such that R ≥ max(r?1 , r

?
2 , r

?
3).

Since the optimal CP rank of the tensor candidate is unknown, a larger-than-expected
rank parameter is interesting because it allows for searching solutions in a fairly large
tensor space, so that there is better chance that optimal solutions are in the search
spaceM. For parameter δ of (3.11) involved in our Riemannian gradients, we choose
to use very small values since we are mostly interested in the performance of the
Riemannian preconditioning technique. In all the experiments of Section 5, we set
δ = 10−7.

The termination of the proposed algorithms (Precon RGD and Precon RCG) is
controlled by a tolerance parameter (ε = 10−7 in this experiment) against the norm
of the gradient; KM16 uses a Riemannian CG algorithm with Armijo line search
and default stopping criteria. On top of their respective stopping criteria, all the
algorithms are tested within heuristic iteration budget maxiter = 1000 and Tmax = 100
seconds. Note that for all tested algorithms except AltMin, one iteration corresponds
to one pass over the whole training data PΩ(T ?); for AltMin, one iteration corresponds
to multiple passes over the training data, since each of its iteration has a number of
inner iterations for solving the underlying alternating subproblem. Table 1 shows the
performances of the tested algorithms in terms of recovery errors and time, under the
sampling rate p = 0.3 and rank parameters R ∈ {12, 14, 16}. The iteration histories of
these algorithms (including KM16) with R = 14 are shown in Figure 2. Specifically,
for the fixed-Tucker rank algorithm, KM16, we also test several other rank parameters
than r = (R,R,R); its tensor recovery performances along with those of the proposed
algorithms are presented in Table 2. In Table 2, “#variables” indicates the dimension
of the search space of each of algorithms, depending on the rank parameters.

From the results shown in Figure 2 and Tables 1–2, we have the following ob-
servations: (i) For all three values of the rank parameter R that are larger than
max(r?1 , r

?
2 , r

?
3), the proposed algorithms and HaLRTC [31] succeeded in recovering

exactly the true hidden tensor T ? (with a test RMSE lower than 10−6). AltMin,
CP-WOPT and Euclidean CG succeeded exact recoveries only with one or two of the
rank parameter choices, and their convergences are slower than the proposed algo-
rithms by orders of magnitude. The test error of KM16 stagnated at a certain level
as the core tensor dimensions chosen are not exactly the same as the Tucker rank
of T ?; (ii) Among the algorithms that successfully recovered the true hidden tensor,
the proposed algorithms (Precon RGD and Precon RCG) outperform AltMin in time
with a speedup of around 10 times, and they achieve speedups between 2 and 6 times
compared to HaLRTC; Especially, Precon RGD (RBB2) has the fastest convergence
behavior, due to the fact that the RBB stepsize implicitly involves second-order infor-

16 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

0 20 40 60

Time (in seconds)

10 -5

10 0

R
M

S
E

 (
T

ra
in

)

Rank parameter R = 14

(a) Training RMSEs

0 20 40 60

Time (in seconds)

10 -5

10 0

R
M

S
E

 (
T

e
s
t)

Rank parameter R = 14

(b) Test RMSEs

0

10 0

Euclidean CG (linemin)

KM16 (R,R,R)

AltMin

INDAFAC

CP-WOPT

FaLRTC

SiLRTC

HaLRTC

Precon RGD (linemin)

Precon RCG (linemin)

Precon RGD (RBB2)

Fig. 2. Tensor completion from noiseless observations. The size of T ? is (100, 100, 100) with
a Tucker rank r? = (3, 5, 7). The sampling rate is 0.3. The rank parameter is set as R = 14.

mation through a rough approximation of the Hessian. (iii) For KM16 specifically, the
time efficiency and the recovery performance of KM16 (r, r, r) improves significantly
when the core tensor dimensions (r, r, r) decrease (and get closer to r?). In particular,
when r is only 1/2 of the rank parameter R = 14, the time efficiency of KM16 (r, r, r)
gets close to those of the proposed algorithms. Note that when r ≈ R/2, the dimen-
sions of the search space of KM16 (r, r, r) is much smaller than that of the proposed
algorithms; see Table 2. These comparisons can be explained by the fact that the
per-iteration cost of KM16 is much larger than the proposed algorithms, even when
the dimensions of its search space is close or smaller than that of the proposed algo-
rithms; see Figure 3 for detailed comparisons of their average per-iteration time. The
high computational cost of KM16 lies in its computation of the Riemannian gradient,
which scales poorly with the Tucker rank as it involves computing the Gram matrix
of the matricizations of the core tensor—with a cost of O(r1r2r3(r1 + r2 + r3))—and
solving Lyapunov equations (for k = 3 times) of the ri × ri matrices.

Precon R
GD (li

nemin)

Precon R
CG (li

nemin)

Precon R
GD (R

BB2)

Euclid
ean C

G (li
nemin)

KM16 (R
,R

,R
)

CP-W
OPT

FaLRTC

SiLRTC

HaLRTC
0

50

100

T
im

e
 (

s
e
c
o
n
d
s
)

Precon R
GD (li

nemin)

Precon R
CG (li

nemin)

Precon R
GD (R

BB2)

Euclid
ean C

G (li
nemin)

KM16 (R
,R

,R
)

CP-W
OPT

FaLRTC

SiLRTC

HaLRTC

10
-1

10
0

10
1

T
im

e
 (

s
e

c
o

n
d

s
)

Fig. 3. Computation time for tensor completion tasks. (Top): total time when reaching the
target accuracy ε = 10−7 or the time budget Tmax = 100 seconds; (Bottom): average time per itera-
tion. The three bars of each algorithm correspond to the cases with R = 12, 14, and 16 respectively.
The size of T ? is (100, 100, 200) with a Tucker rank r? = (3, 5, 7). The sampling rate is 0.3.

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 17

Table 1
Tensor completion with noiseless observations. The size of T ? is (100, 100, 200) with a Tucker

rank r? = (3, 5, 7). The sampling rate is 0.3. The rank parameters R tested are {12, 14, 16}.

Algorithm R iter time (s) RMSE (test) RMSE (train)
Euclidean CG (linemin) 12 592 100.03 1.57e-12 2.03e-12
AltMin 12 67 100.97 8.05e-06 8.09e-06
INDAFAC 12 7 129.91 3.97e-01 4.57e-01
CP-WOPT 12 405 29.96 5.74e-07 6.70e-07
HaLRTC 12 142 15.81 2.19e-07 –
Precon RGD (linemin) 12 96 16.25 3.84e-08 4.79e-08
Precon RCG (linemin) 12 48 8.23 1.96e-08 3.58e-08
Precon RGD (RBB2) 12 65 3.91 9.52e-09 4.74e-07
Euclidean CG (linemin) 14 518 100.11 2.20e-06 3.10e-06
AltMin 14 19 39.27 2.39e-07 4.35e-07
INDAFAC 14 5 125.77 1.35e+00 2.60e+00
CP-WOPT 14 1561 94.29 2.40e-06 3.35e-06
HaLRTC 14 142 15.97 2.19e-07 –
Precon RGD (linemin) 14 82 15.90 1.38e-08 1.99e-08
Precon RCG (linemin) 14 34 6.65 1.29e-08 4.39e-08
Precon RGD (RBB2) 14 39 2.69 9.84e-09 2.38e-08
Euclidean CG (linemin) 16 456 100.01 1.37e-07 1.53e-07
AltMin 16 8 31.79 2.67e-08 3.32e-08
INDAFAC 16 5 154.34 9.78e-01 1.19e+00
CP-WOPT 16 1766 99.02 5.23e-06 7.00e-06
HaLRTC 16 142 16.34 2.19e-07 –
Precon RGD (linemin) 16 40 8.82 1.56e-09 2.51e-09
Precon RCG (linemin) 16 50 11.09 2.59e-09 5.08e-09
Precon RGD (RBB2) 16 39 3.03 1.53e-10 3.14e-10

Table 2
Tensor completion with the noiseless observations. Proposed algorithms vs KM16 (r, r, r) with

different choices of r. The size of T ? is (100, 100, 200), with a Tucker rank r? = (3, 5, 7).

Algorithm R #variables iter Time (sec.) RMSE (test)
KM16 (R, R, R) – 7756 29 102.20 2.70e-02

KM16 (12, 12, 12) – 6096 30 88.32 9.00e-04
KM16 (9, 9, 9) – 4086 21 29.63 2.70e-05
KM16 (7, 7, 7) – 2996 22 14.39 2.99e-05

Precon RGD (linemin) 14 5600 82 15.90 1.38e-08
Precon RCG (linemin) 14 5600 34 6.65 1.29e-08
Precon RGD (RBB2) 14 5600 39 2.69 9.84e-09

Furthermore, we make a more thorough test to evaluate the tensor completion
performances of the proposed algorithms, alongside Euclidean CG for comparison, in
the same tensor completion task on a 6× 10 grid of (p,R) ∈ {0.12, 0.152, . . . , 0.28} ×
{4, 6, . . . , 16, 17, 19, 21}, for 5 random runs at each (p,R) (each run is based on a
randomly generated index set Ω); see results in Figure 8 in Appendix C. These results
provide a broader view on the difficulties—in terms of chances of exactly recovering
T ?—of the tensor completion task with different sampling rates and rank parameter
values.

Finally, in addition to tensor completion, we extend the application of the pro-
posed algorithms to tensor approximation, where the tensor T ? is fully observed tensor
and the goal is to approximate T ? with a tensor with an upper-bounded CP rank. We
give performance comparisons between the proposed algorithms and the Riemannian
Gauss–Newton method (RGN) of [10]; see details in Appendix C.

18 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

Low-rank tensor recovery from partial, noisy observations. In the following ex-
periments, we conduct tensor completion tests under the same tensor model as in
the previous experiment, except that the revealed tensor entries are observed with
additive noise, and the noise level σ in the model (5.1) is set according to a given
signal-to-noise ratio (SNR) of 40 dB. To make this experiment similar to experiments
on real data (MovieLens), in which case the sampling rate is usually at the order of
1% or even lower, we set the sampling rate p = 5%.

In this experiment, the regularization parameter λ of the problem (2.2) is selected
from {0, 1/p, 101/2/p, 10/p} (where the scalar p is the sampling rate) for a rank pa-
rameter R = 14 and the selected value of λ is 101/2/p. All the tested algorithms are
terminated if the relative change of the training error attains a given tolerance value:

(5.2) relchg =
|E(U t+1)− E(U t)|

|E(U t)|
≤ tol,

where E denotes the training RMSE. Also, the algorithms terminates if a heuristic
time budget Tmax is attained. We set the tolerance parameter as tol = 10−6 and the
time budget as Tmax = 300s (seconds).

10 0 10 2

Time (in seconds)

0

2

4

6

8

10

R
M

S
E

 (
T

ra
in

)

Rank parameter R = 14

(a) Training RMSEs of all algorithms

10 0 10 2

Time (in seconds)

0

2

4

6

8

10

R
M

S
E

 (
T

e
s
t)

Rank parameter R = 14

(b) Test RMSEs of all algorithms

10 0
0

10

Euclidean CG (linemin)

KM16 (R,R,R)

AltMin

airCP

TNCP

CP-WOPT

HaLRTC

Precon RGD (linemin)

Precon RCG (linemin)

Precon RGD (RBB2)

10 0 10 2

Time (in seconds)

0

2

4

6

8

10

R
M

S
E

 (
T

ra
in

)

Rank parameter R = 14

(d) Comparison with KM16

10 0 10 2

Time (in seconds)

0

2

4

6

8

10

R
M

S
E

 (
T

e
s
t)

Rank parameter R = 14

(e) Comparison with KM16

10 0
010

KM16 (R,R,R)

KM16 (12,12,12)

KM16 (9,9,9)

KM16 (7,7,7)

Precon RGD (linemin)

Precon RCG (linemin)

Precon RGD (RBB2)

Fig. 4. Tensor completion from noisy observations. The size of T ? is (300, 500, 200) with rank
r? = (3, 7, 5). The sampling rate is 5%. The rank parameter R = 14.

The performances of the tested algorithms are shown in Figure 4. From these
results, we have similar observations as in the previous experiments: (i) For a polyadic
decomposition rank R that is larger than max(r?1 , r

?
2 , r

?
3), all algorithms achieve a

recovery performance of the same level (with a test RMSE around 0.050); (ii) the
proposed algorithms (Precon RGD and Precon RCG) outperform the rest of the
algorithms in time with speedups between 4 and 15 times at the several accuracy
levels near their respective termination point; (iii) the time efficiency of KM16 (r, r, r)

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 19

improves significantly when the core tensor dimensions (r, r, r) decrease but it remains
inferior to those of the proposed algorithms; see Figure 4(d)–4(e).

5.2. Real data. In this subsection, we conduct experiments on a real-world
dataset. We focus on evaluating the time efficiency of the proposed algorithms under
various choices of the rank parameter R. To ensure a good generalization perfor-
mance of the tensor completion model, we activate the regularization terms of the
problem (2.2) with a regularization parameter λ > 0.

Dataset and algorithms. The tensor completion tests are conducted on the Movie-
Lens 1M dataset1, which consists of 1 million movie ratings from 6040 users on 3952
movies and seven-month period from September 19th, 1997 through April 22nd, 1998.
Each movie rating in this dataset has a time stamp, which is the number of week dur-
ing which a movie rating was given. Therefore, this dataset has a tensor form T ? of
size 6040×3952×150, where the first two indices are the user and movie identities and
the third order index is the time stamp. The dataset contains over 106 ratings, which
correspond to the known entries of the data tensor T ?. For the tensor completion
tasks, we randomly select 80% of the known ratings as the training set. Note that in
this case, the absolute sampling rate p = |Ω|/(m1m2m3) is 2.23%.

Due to the large dimensions of the data tensor of MovieLens 1M, several afore-
mentioned algorithms in the related work were not tested on this dataset due to
excessive memory requirements. In the implementation of these algorithms, the ten-
sor index filtering operations such as accessing T ?|Ω or T|Ω in iterations, a dense ten-
sor format is used for the index set Ω, which—for the same size as T ?—requires
the storage of over 3.5 × 109 entries in total; Such a data format poses a memory
requirement bottleneck that blocks the test. On the other hand, the proposed algo-
rithms and Euclidean GD/CG, KM16 and AltMin can be run without the memory
issue since they use the COO format for the training set Ω, which corresponds to
only 106 entries on the same dataset. Note that for all tensor decomposition-based
algorithms, the memory requirement for the decomposition variables (or factor ma-
trices) is O((m1 + m2 + m3)R)—which is bounded by 105 for any rank parameter
R < 100 in the experiments on MovieLens-1M—is also memory-efficient. Therefore,
the algorithms that are tested are: the proposed algorithms (Precon RGD/RCG),
Euclidean GD/CG, KM16 and AltMin.

Experiments and results. Given the data tensor T ? and the index set Ω as the
training set, we conduct performance evaluations using various choices for the rank
parameter R, after selection of the regularization parameter λ. The parameter λ for
the CPD-based algorithms is selected among {0, 1/p, 101/3/p, 102/3/p, 10/p, 104/3/p}
via 3-fold cross validation using the Euclidean GD algorithm (instead of the proposed
ones), where the rank parameter R is set to be 5, 10 and 15 respectively; and the values
selected by these cross validation procedures are 102/3/p (when R = 5 and 10) and
104/3/p (when R = 15). For the Tucker decomposition-based algorithm—KM16—
with the Tucker rank r = (R,R,R), for R ∈ {5, 10, 15}, the values of λ selected after
the same cross validation procedure are 0. Subsequently, we test all algorithms using
the selected parameters. Similar to previous tests, the stopping criteria for all the
tested algorithms use the relative change of training errors, i.e., relchg in (5.2), and
a large enough time budget Tmax. We set the tolerance parameter for relchg (5.2)
as tol = 10−5 and the maximal time budget as Tmax = 1800s.

We present the iteration histories of all algorithms under the rank parameter R =

1https://grouplens.org/datasets/movielens/1m/

20 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

15 in Figure 5(a). We also observe the recovery performances of the algorithms under
a series of different rank parameters—for R ∈ {1, . . . , 15, 17, 19} and λ = 102/3/p; see
Figure 5(b).

10
0

10
1

10
2

10
3

Time (in seconds)

0

1

2

3

4

5

6

7

8

R
M

S
E

 (
T

ra
in

)

Rank = 15

Euclidean GD (BB2)

Euclidean CG (linemin)

KM16 (R,R,R)

AltMin (reg)

Precon RGD (RBB2)

Precon RCG (linemin)

(a) Training RMSEs by time

5 10 15 20

Rank Parameter

0.7

0.8

0.9

1

1.1

R
M

S
E

Precon RGD (RBB2)

Precon RCG (linemin)

KM16 (R,R,R)

Training RMSEs

(b) Training and test RMSEs

Fig. 5. Tensor completion on the MovieLens 1M dataset. Recovery performances with various
rank parameters and comparisons of the algorithms (with R = 15) in time.

Moreover, Figure 6 shows the iteration histories of the proposed algorithm Pre-
con RGD (using the BB stepsize) in comparison with KM16, with the rank parameters
R ∈ {3, 6, 15}.

10 -2 10 0 10 2 10 4

Time (in seconds)

0

2

4

6

8

R
M

S
E

 (
T

ra
in

)

R=3 Precon RGD (RBB2)

R=3, KM16 (R,R,R)

R=6 Precon RGD (RBB2)

R=6, KM16 (R,R,R)

R=15 Precon RGD (RBB2)

R=15, KM16 (R,R,R)

(a) Training RMSE

10 -2 10 0 10 2 10 4

Time (in seconds)

0

2

4

6

8

R
M

S
E

 (
T

e
s
t)

R=3 Precon RGD (RBB2)

R=3, KM16 (R,R,R)

R=6 Precon RGD (RBB2)

R=6, KM16 (R,R,R)

R=15 Precon RGD (RBB2)

R=15, KM16 (R,R,R)

(b) Test RMSE

Fig. 6. Proposed algorithms and KM16 [25]. Dataset: MovieLens 1M. The rank parameters R
are {3, 6, 15}.

From Figure 5(a), we observe that (i) the two proposed algorithms have faster
convergence behaviors than all the rest of the tested algorithms, and (ii) in particular,
the proposed algorithms achieve the same recovery error with speedups of around 10
times compared to KM16, and 6 times compared to Euclidean CG (linemin). The re-
sults in Figure 5(b) give an overview of the performance of our algorithms and KM16
in terms of their trade-offs between the model complexity (for the minimization of
the fitting error) and the generalization of the model for the prediction of missing
entries. From these results, we can see that (under the several randomly generated
regularization parameters so-far explored), the rank choice of R = 8 provides the best

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 21

recovery error on (unknown) test entries. Moreover, for rank choices that are larger
than R = 8, the decrease in the recovery performances of the proposed algorithms
(compared to the case with R = 8) is much smaller than that of KM16. This can be
explained by the fact that the search space of our algorithms under larger rank param-
eters contain those with smaller ranks, while the search space of KM16 corresponds
to matrix spaces of a fixed column-rank.

6. Conclusion. We proposed a new class of Riemannian preconditioned first-
order algorithms for tensor completion through low-rank polyadic decomposition. We
have analyzed the convergence properties of Riemannian gradient descent using the
proposed Riemannian preconditioning. The main feature of the proposed algorithms
stems from a new Riemannian metric defined on the product space of the factor ma-
trices of polyadic decomposition. This metric induces a local preconditioning on the
Euclidean gradient descent direction of the PD-based objective function; the under-
lying preconditioner has the form of an approximated inverse of the diagonal blocks
of the Hessian of the objective function.

These Riemannian preconditioned algorithms share some characteristics with the
related work [25], which deals with tensor completion with a fixed Tucker rank. They
differ however in the following sense: the polyadic decomposition model allows for
finding a low-rank tensor candidate within a range of CP ranks, while the algorithm
of [25] searches a tensor solution with a fixed (Tucker) rank.

Because of the more flexible decomposition modeling, our algorithms perform
well with various arbitrary choices of the rank parameter in the tensor completion
tasks on both synthetic and the MovieLens 1M datasets. Moreover, we have observed
that the proposed algorithms provide significant speedup over several state-of-the-art
algorithms for CPD-based tensor completion, while providing comparable or better
tensor recovery quality.

A. Algorithmic details.
Speed-up by using C/MEX-based MTTKRP. Algorithm 3.2 is implemented in a

mexfunction and has shown significant speedup over the so-far implemented computa-
tions (explicit sparse matricizations times the explicitly computed Khatri–Rao prod-
ucts). Table 3 shows comparative results on the MovieLens 1M dataset, “Naive” cor-
responds to the implementation where the gradient computations involve (i) forming
sparse matricizations of the residual tensor, (ii) computing the Khatri–Rao products
and (iii) sparse-dense matrix multiplication. “Proposed” corresponds to the results
of the implementation using sparse MTTKRP (Algorithm 3.2).

Table 3
Speedups of the efficient computational method. The tensor dimensions are 6040× 3952× 150.

iter
Time (s) Average RMSE

Naive Proposed speedup Naive/Proposed
1 0.568 0.067 – 4.778 / 4.778

101 71.848 16.199 4.435× 0.795 / 0.795
201 142.697 32.333 4.413× 0.765 / 0.765
301 213.897 48.508 4.410× 0.759 / 0.759
401 285.117 64.609 4.413× 0.759 / 0.759
501 356.405 80.712 4.416× 0.759 / 0.759

Performance of the three stepsize methods. We compare the performances of the
three stepsize methods (in Section 3.2) in the same experimental settings as in Sec-
tion 5.1. The three stepsize methods for the proposed algorithms (Precon RGD and

22 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

RCG) are tested in tensor completion tasks with sufficiently large sampling rate. In
Table 4, the time (s) and RMSE scores of each method correspond to the average
of their respective values (at termination) after 20 random tests. Table 4 shows: (i)
for Precon RGD, all three stepsize methods yield successful recovery results in terms
of the average test RMSE but linemin and RBB2 are faster than Armijo; and (ii)
for Precon RCG, the percentage of successful recoveries (#Succ/20) with Armijo is
inferior to those with linemin and RBB2. In particular, we show the iteration history
of one failed attempt of Precon RCG (Armijo), in Figure 7(b), in which the algorithm
stagnates prematurely. Therefore, for better practical performance in the experiment
of Section 5.1, we favor the choice of linemin and RBB2 for the computation of the
stepsizes.

Table 4
Comparison of the three stepsize meethods under the same setting as in Section 5.1. The time

(s) and RMSE scores at termination of each algorithm are the average values over the results of 20
random tests. The size of T ? is (100, 100, 200) with a Tucker rank r? = (3, 5, 7). The sampling rate
is 0.3. The Armijo rule uses default settings in [9].

Stepsize rule R #Succ/20 time (s) RMSE (test) RMSE (train)

Precon RGD
(Armijo) 14 20/20 12.176 1.8932e-08 1.8438e-08
(linemin) 14 20/20 6.169 2.7023e-08 3.2530e-08

(RBB2) 14 20/20 1.468 2.5175e-08 7.9817e-08

Precon RCG
(Armijo) 14 18/20 2.630 1.3037e-02 1.3139e-02
(linemin) 14 20/20 3.919 1.6501e-08 2.9628e-08

0 5 10 15 20

Time (seconds)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
M

S
E

 (
tr

a
in

)

Precon RGD (linemin)

Precon RGD (Armijo)

Precon RGD (RBB2)

(a) With Precon RGD

0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
M

S
E

 (
tr

a
in

)

Precon RCG (linemin)

Precon RCG (Armijo)

(b) With Precon RCG

Fig. 7. Comparisons between the stepsize selection methods. Tensor size (100, 100, 200), Tucker
rank r? = (3, 5, 7). The rank parameter R = 14. The sampling rate is set to 0.3.

B. Experimental details.
Synthetic model. The noise level in the synthetic tensor model (5.1) is determined

according to the signal-to-noise ratio (SNR): SNR = E[T 2]/E[E2], where T and E are
the random variables that represent the tensor entries of the low-rank tensor T and
the noise tensor E in (5.1). In the experiments with T ∼ N (0, 1) and E ∼ N (0, σN),
the parameter σN is computed for a given SNR. The SNR expressed the logarithmic
decibel scale (dB) is defined as SNR (dB) = 10 log10(SNR).

Initialization. The initial point of all CPD and polyadic decomposition-based

algorithms is a tuple U0 = (U
(1)
0 , . . . , U

(k)
0), where the mi × R factor matrices are

random Gaussian matrices: [U
(i)
0]`r ∼ N (0, 1). For the Tucker decomposition-based

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 23

algorithm (KM16), we choose to construct an initial point that is close enough to
U0 ∈ M for fair comparisons. For a Tucker rank (r1, . . . , rk), we initialize KM16
(r1, . . . , rk) with a point in Tucker decomposition form (G; Ũ (1), . . . , Ũ (k)), such that

its tensor representation is close enough to JU (1)
0 , · · · , U (k)

0 K. For this purpose, we

set Ũ
(i)
0 as random Gaussian matrices of size mi × ri with Ũ

(i)
0 ∼ N (0, 1), and set

the core tensor G of size r1 × · · · × rk as a random Gaussian matrix with Gi1,...,ik ∼
N (0, σ), where σ =

√
R/r1...rk. The choice of this variance parameter is based on

the observation that the CPD form can be seen as a special Tucker with diagonal core
tensor D = diag(1, ..., 1) ∈ RR×...×R. Restricting G to have the same Frobenius norm
as D requires that the variance parameter σ =

√
R/r1...rk. In particular, in the case

whre ri = R, we set Ũ
(i)
0 = U

(i)
0 , for i = 1, . . . , k.

Performance evaluation. In the experiments, we evaluate the quality of tensor
completion with the root-mean-square error (RMSE), for a tensor candidate T and
a given index set Ω′, RMSE(Ω′) = ‖PΩ′ (T − T ?) ‖F/

√
|Ω′|. The training and test

RMSE refer to RMSE(Ω) and RMSE(Ω̃c) respectively, where Ω is the (training) index
set of the observed entries used in the definition of the data fitting function fΩ in (2.2)
and the test set Ω̃c is the complementary of Ω in the set of all available entries. In
some of the experiments, Ω̃c is a subset of the complementary set (with uniformly
distributed indices) such that |Ω̃c| = (1/4)|Ω| in order to reduce the time for evaluating
the test RMSE, if the whole complementary set is overwhelmingly large (2.106).

C. Supplementary experiments.
Tensor recovery performances. In addition to the tensor completion results shown

in Section 5.1, we conducted tensor completion tasks on a 6 × 10 grid of (p,R) ∈
{0.12, 0.152, . . . , 0.28}×{4, 6, . . . , 16, 17, 19, 21}, for 5 random runs at each (p,R) (each
run is based on a randomly generated index set Ω).

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

2

4

6

8

10

(a) Euclidean CG

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

2

4

6

8

10

(b) PreconRGD (lmin)

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

1

2

3

4

5

6

7

8

9

10

(c) PreconRCG (lmin)

0.15 0.2 0.25

Sampling rate

4

6

8

10

12

14

16

18

20

R
 (

ra
n
k
 p

a
ra

m
e
te

r)

0

1

2

3

4

5

6

7

8

9

10

(d) PreconRGD (rbb2)

Fig. 8. Tensor completion performances based on different sampling rates and rank parameters.
(Top, a-d): Rate of successful recoveries; (Bottom, a-d): Average errors in − log10(RMSE). The
size of T ? is (100, 100, 200) with a Tucker rank r? = (3, 5, 7). (lmin) is short for (linemin) in some
of the algorithm descriptors above.

24 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

Figure 8 shows the average final RMSEs of the solutions given by the algorithms
and the corresponding rate of successful recoveries among the 5 random runs. Each
solution is counted as a successful recovery if its RMSE is lower than 10−7. In Figure 8,
we observe, for each algorithm tested, a clear enough phase transition of recovery rates
from the unsuccessful regime to the successful regime, when the rank parameter R
increases. We observe that the minimal value of R (for all these algorithms) to ensure
a good chance of exact recovery is around R = 10, which corresponds to a search
space slightly larger but close enough in dimensionality to the tensor space with a
Tucker rank ranktc(T ?) = (3, 5, 7).

Tensor approximation. In addition to tensor completion tasks, we investigate the
performance of the proposed algorithms for low-rank CP decomposition and com-
pare them with a low-rank CPD algorithm using the Riemannian Gauss–Newton
method [10].

2 4 6 8 10

r

0

1

2

3

4

s

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

r

0

1

2

3

4

s

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

r

0

1

2

3

4
s

0

0.2

0.4

0.6

0.8

1

(a) RGN-HR

2 4 6 8 10

r

0

1

2

3

4

s

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

r

0

1

2

3

4

s

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

r

0

1

2

3

4

s

0

0.2

0.4

0.6

0.8

1

(b) Precon RGD (RBB2)

0 1 2 3 4 5 6

Time (seconds)

10
-15

10
-10

10
-5

10
0

R
M

S
E

RGN-HR

Precon RGD (RBB2)

Precon RCG (linemin)

(c) (s = 0, r = 9)

0 1 2 3 4 5 6 7

Time (seconds)

10
-15

10
-10

10
-5

10
0

R
M

S
E

RGN-HR

Precon RGD (RBB2)

Precon RCG (linemin)

(d) (s = 1, r = 9)

Fig. 9. Tensor approximation performances on tensors T ? generated from the class Gr(s). (a):
Rate of successful attempts by RGN-HR using R = b1.5rc, R = 2r, and R = 3r (from left to right)
respectively. (b): Rate of successful attempts by Precon RGD (RBB2) using the same choices of R;
(c-d): Iteration histories randomly picked from successful attempts.

The tensor approximation (TAP) task here refers to the problem of finding the
best approximation to a given, fully-observed tensor by a tensor of bounded CP

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 25

rank, which is a special case of (1.1) with the sampling operator reduced to identity
(where Ω is the full index set). The performance of these algorithms in the tensor
approximation tasks is evaluated as follows: (i) Randomly sample an kth-order low-
rank decomposition from the model (5.1) with a low Tucker-rank and the Model 2
in [10, §7.4], which consists of generating A = (A(1), . . . , A(k)) ∈ Gr(s) for a low CP
rank r and s ∈ {0, 1, 2, 3, 4}, and letting A := JA(1), · · · , A(k)K; (ii) create a perturbed
tensor T ? := A

‖A‖ + 10−e E
‖E‖ , where all entries of E ∼ N (0, 1) and e > 0; (iii) solve

the TAP of T ? with a rank parameter R ≥ r, from a random starting point q using
each algorithm, where q = (Q(1), . . . , Q(k)) ∈ M = Rm1×R × · · · × Rmk×R with all
entries of Q(i) ∼ N (0, 1).

We compare the performances of Precon RGD (RBB2), Precon RCG (linemin)
with RGN-HR [10] under the two models described above. For the proposed algo-
rithms, we set δ = 10−15. In the tests with the Model 2 of [10, §7.4], we explore
(r, s) on a 7 × 5 grid of {2, 3, 4, 5, 7, 9, 11} × {0, 1, 2, 3, 4} and test with the CP rank
parameter R ∈ {r, b1.5rc, 2r, 3r}. The chances of successful recovery are estimated
after 20 random runs for each (s, r) setting and each value of R. The comparative
results on these two models are given in Figures 9–10 respectively.

10 12 14 16 18

Rank parameter R

0

0.2

0.4

0.6

0.8

1

1.2

R
a
te

 o
f
a
c
c
u
ra

te
 r

e
c
o
v
e
ri
e
s

Precon RGD (RBB2)

Precon RCG (linemin)

RGN-HR

12 14 16

Rank parameter R

0

0.5

1

1.5

T
im

e
 (

s
e
c
o
n
d
s
)

RGN-HR

Precon RGD (RBB2)

Precon RCG (linemin)

0 0.1 0.2 0.3 0.4 0.5

Time (seconds)

10
-10

10
-5

10
0

R
M

S
E

RGN-HR

Precon RGD (RBB2)

Precon RCG (linemin)

0 0.1 0.2 0.3 0.4 0.5

Time (seconds)

10
-10

10
-5

10
0

R
M

S
E

RGN-HR

Precon RGD (RBB2)

Precon RCG (linemin)

Fig. 10. The tensor T ? is of size 10 × 30 × 30 and has a Tucker rank r? = (3, 5, 7), which is
generated in the same manner as in the experiment of Fig. 2.

From Figure 9, we observe that RGN-HS performs better than the proposed
algorithms in a large part of the 7 × 5 grid of (r, s), where the tensors T ? under the
Model 2 of [10, §7.4] are challenging because of their high condition number. From
Figure 10, we observe that the proposed algorithms outperform RGN-HR in both
successful recovery rate and convergence time, for tensors of the model (5.1), where
the core tensor of T ? is not cubic.

Acknowledgment. We thank the referees for the insightful comments. We
gratefully acknowledge the helpful discussions with P.-A. Absil and his valuable com-

26 S. DONG, B. GAO, Y. GUAN, F. GLINEUR

ments during the preparation of this paper.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ, 2008.

[2] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, Scalable tensor factorizations for
incomplete data, Chemometr. Intell. Lab. Syst., 106 (2011), pp. 41–56.

[3] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, Tensor decompositions
for learning latent variable models, J. Mach. Learn. Res., 15 (2014), pp. 2773–2832.

[4] C. A. Andersson and R. Bro, Improving the speed of multi-way algorithms:: Part i. tucker3,
Chemometr. Intell. Lab. Syst., 42 (1998), pp. 93–103.

[5] B. W. Bader, T. G. Kolda, et al., Matlab tensor toolbox version 3.1. Available online, June
2019.

[6] D. Banco, S. Aeron, and W. S. Hoge, Sampling and recovery of mri data using low rank
tensor models, in 2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), IEEE, 2016, pp. 448–452.

[7] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 417–424.

[8] N. Boumal, P. A. Absil, and C. Cartis, Global rates of convergence for nonconvex optimiza-
tion on manifolds, IMA J. Numer. Anal., 39 (2019), pp. 1–33.

[9] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, Manopt, a Matlab toolbox for
optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455–1459.

[10] P. Breiding and N. Vannieuwenhoven, A Riemannian trust region method for the canonical
tensor rank approximation problem, SIAM J. Optim., 28 (2018), pp. 2435–2465.

[11] W. Chu and Z. Ghahramani, Probabilistic models for incomplete multi-dimensional arrays,
in Artificial Intelligence and Statistics, 2009, pp. 89–96.

[12] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.
Phan, Tensor decompositions for signal processing applications: From two-way to multi-
way component analysis, IEEE Signal Process. Mag., 32 (2015), pp. 145–163.

[13] C. Da Silva and F. Herrmann, Hierarchical tucker tensor optimization-applications to ten-
sor completion. sampta 2013, in 10th International Conference on Sampling Theory and
Application, Jacobs University Bremen, 2013.

[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278 (electronic).

[15] , On the best rank-1 and rank-(R1, R2, · · · , RN) approximation of higher-order tensors,
SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324–1342 (electronic).

[16] L. Grasedyck, M. Kluge, and S. Krämer, Alternating least squares tensor completion in
the tt-format, arXiv preprint arXiv:1509.00311, (2015).

[17] Y. Guan, S. Dong, P.-A. Absil, and F. Glineur, Alternating minimization algorithms for
graph regularized tensor completion, arXiv preprint arXiv:2008.12876, (2020), pp. 1–30.

[18] W. Hackbusch, Tensor spaces and numerical tensor calculus, vol. 42, Springer, 2012.
[19] D. Hernandez, Simple tensor products, Invent. Math., 181 (2010), pp. 649–675.
[20] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. res. Natl. Bur. Stand., 49 (1952), pp. 409–436.
[21] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, Journal of

Mathematics and Physics, 6 (1927), pp. 164–189.
[22] B. Iannazzo and M. Porcelli, The Riemannian Barzilai–Borwein method with nonmonotone

line search and the matrix geometric mean computation, IMA J. Numer. Anal., 38 (2018),
pp. 495–517.

[23] P. Jain and S. Oh, Provable tensor factorization with missing data, Adv. Neural. Inf. Process.
Syst., 2014, pp. 1431–1439.

[24] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, Multiverse recommendation:
n-dimensional tensor factorization for context-aware collaborative filtering, in Proceedings
of the fourth ACM conference on Recommender systems, ACM, 2010, pp. 79–86.

[25] H. Kasai and B. Mishra, Low-rank tensor completion: a Riemannian manifold precondition-
ing approach, in International Conference on Machine Learning, 2016, pp. 1012–1021.

[26] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[27] T. Korah and C. Rasmussen, Spatiotemporal inpainting for recovering texture maps of oc-

RIEMANNIAN PRECONDITIONING FOR TENSOR COMPLETION 27

cluded building facades, IEEE Trans. Image. Process., 16 (2007), pp. 2262–2271.
[28] D. Kressner, M. Steinlechner, and B. Vandereycken, Low-rank tensor completion by

riemannian optimization, BIT, 54 (2014), pp. 447–468.
[29] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-

cation to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), pp. 95–138.
[30] , Rank, decomposition, and uniqueness for 3-way and n-way arrays, Multiway data

analysis, (1989), pp. 7–18.
[31] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing values

in visual data, IEEE Trans. Pattern. Anal. Mach. Intell., 35 (2012), pp. 208–220.
[32] Y. Liu, F. Shang, H. Cheng, J. Cheng, and H. Tong, Factor matrix trace norm minimization

for low-rank tensor completion, in Proceedings of the SIAM International Conference on
Data Mining, SIAM, 2014, pp. 866–874.

[33] B. Mishra, K. Adithya, and A. R. Sepulchre, A Riemannian geometry for low-rank matrix
completion, arXiv preprint arXiv:1211.1550, (2012).

[34] B. Mishra and R. Sepulchre, Riemannian preconditioning, SIAM J. Optim., 26 (2016),
pp. 635–660.

[35] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred, Parallel factor
analysis as an exploratory tool for wavelet transformed event-related eeg, NeuroImage, 29
(2006), pp. 938–947.

[36] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,
2006.

[37] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[38] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, Tensors for data mining and data

fusion: Models, applications, and scalable algorithms, ACM Trans. Intell. Syst. Technol.,
8 (2016), pp. 1–44.

[39] H. N. Phien, H. D. Tuan, J. A. Bengua, and M. N. Do, Efficient tensor completion: Low-
rank tensor train, arXiv preprint arXiv:1601.01083, (2016).

[40] H. Rauhut, R. Schneider, and Ž. Stojanac, Tensor completion in hierarchical tensor rep-
resentations, in Compressed Sensing and its Applications, Springer, 2015, pp. 419–450.

[41] , Low rank tensor recovery via iterative hard thresholding, Linear Algebra Appl., 523
(2017), pp. 220–262.

[42] R. Schneider and A. Uschmajew, Convergence results for projected line-search methods
on varieties of low-rank matrices via lojasiewicz inequality, SIAM J. Optim., 25 (2015),
pp. 622–646.

[43] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms for ten-
sor decompositions: Canonical polyadic decomposition, decomposition in rank-(l r,l r,1)
terms, and a new generalization, SIAM J. Optim., 23 (2013), pp. 695–720.

[44] , Structured data fusion, IEEE J. Sel. Top. Signal Process., 9 (2015), pp. 586–600.
[45] M. Sørensen and L. De Lathauwer, Fiber sampling approach to canonical polyadic decom-

position and application to tensor completion, SIAM J. Matrix Anal. Appl., 40 (2019),
pp. 888–917.

[46] N. Srebro, J. D. Rennie, and T. S. Jaakkola, Maximum-margin matrix factorization, Adv.
Neural. Inf. Process. Syst., 17 (2005), pp. 1329–1336.

[47] G. Tomasi and R. Bro, Parafac and missing values, Chemometr. Intell. Lab. Syst., 75 (2005),
pp. 163–180.

[48] L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966),
pp. 279–311.

[49] N. Vervliet, O. Debals, L. Sorber, M. V. Barel, and L. D. Lathauwer, Tensorlab 3.0.
Available online, Mar. 2016.

[50] T. Yokota, Q. Zhao, and A. Cichocki, Smooth parafac decomposition for tensor completion,
IEEE Trans. Signal Process., 64 (2016), pp. 5423–5436.

	1 Introduction
	2 Preliminaries and problem statement
	3 Algorithms
	3.1 A preconditioned metric
	3.2 The Riemannian preconditioned algorithms
	3.3 Computation of the gradient

	4 Convergence analysis
	5 Experiments
	5.1 Synthetic data
	5.2 Real data

	6 Conclusion
	A Algorithmic details
	B Experimental details
	C Supplementary experiments
	References

