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WELL-POSEDNESS OF THE FREE BOUNDARY PROBLEM IN
ELASTICDYNAMIC WITH MIXED STABILITY CONDITION

HUI LI, WEI WANG, AND ZHIFEI ZHANG

ABsTRACT. In this paper, we prove the local well-posedness of the free boundary
problem in incompressible elastodynamics under a mixed type stability condition,
i.e., for each point of the free boundary, at least one of the Taylor sign condition
—0,p > 0 and the non-collinearity condition holds. This gives an affirmative answer
to a problem raised by Trakhinin in [30].

1. INTRODUCTION

1.1. Presentation of the problem. In this paper, we consider the incompressible
inviscid flow in 3-D elastodynamics:

ou+u-Vu+Vp=div(FFT),
0,F +u- VF = VuF,
diva =0,

(1.1)

where u(z, x) = (uy, u,, u3) denotes the fluid velocity, p(z, x) is the pressure, F(z, x) =
(Fij)3x3 is the deformation tensor, F' = (F;;)3x3 denotes the transpose of the ma-
trix F, FF' is the Cauchy-Green tensor in the case of neo-Hookean elastic mate-
rials, (Vu)y; = dju;, (VuF);; = Y3 Fyjowus, (divFT); = Y3, 8;F;, (div(FFT)); =
S et O3 (FacF ).
We will study the solution of (LI)) defined in a time-dependent domain. Precisely,
we let

Q= Tz X [_1’ 1] - R3’ rj = {X € Q|X3 = f(t’ X’), X’ = (-xl’ -x2) € Tz}’

Q={xe Q< f, X)X =(x,x) €T}, 0r= | ] xQ,
1e(0,T)

where I'; is the free boundary and is assumed to be a graph. The system reads as

3
(9,u+u-Vu+Vp:Z(Fj-V)Fj in QT’
(1.2) . Lo S .
divu =0, divFT =0 in  QOr,
O,Fj+u-VFj:(Fj'V)u in QT’
with the boundary conditions on the moving interface I';:
(1.3) u-N;=0,f, F;-N;=0,
(1.4) p=0.
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Here ¥; = (Fyj, F»j, F3j), Ny = (=0, f, —=0,f, 1) and ny = N;/|N/| is the outward unit
normal vector. On the artificial boundary I'" = T? x {—1}, we impose the following
boundary conditions on (u, F):

(15) us :0, F3j:O onl.
The system (I.2) is supplemented with the initial data
(1.6) u(0, x) = uo(x), F(0, x) = Fo(x) in Qp,
with
diVll():O, diVFonO XEQﬁ),
(1.7) Fo; Ny =0 x €Ly,
upz = 0, F()3j:0 xel .

Let us remark that the divergence free restriction on F; is automatically satisfied if
divFy,; = 0. Indeed, if we apply the divergence operator to the third equation of (L2,
we will deduce the following transport equation

8,divF; +u-VdivF; = 0.

Similar argument can be also applied to yield that F; - N = Oon I’ if Fy; - Ny = 0
only.

The main goal of this paper is to study the local well-posedness of the system
(L2)-@7) under some suitable stability conditions imposed on the initial data.

1.2. Backgrounds. The free boundary problems for incompressible inviscid flow
have received a lot of attention in the past decades. It is well-known that, under the
Taylor sign condition

n-Vp<-e<0 on Iy,

the water wave problem for the incompressible Euler flow is well-posed [9, 31,
24, 34]]. Otherwise, the system could be ill-posed [10], which is known as
the Rayleigh-Taylor instability. In addition, the vortex sheet problem for the in-
compressible Euler flow is always ill-posed, which is called the Kelvin-Helmholtz
instability[[17]. However, the surface tension has been proved that it could stabilize
the Kelvin-Helmholtz and Rayleigh-Taylor instability, see [13} 4], 25]].

Syrovatskij [23], 2] observed that the presence of strong tangential magnetic fields
can stabilize the Kelvin-Helmholtz instability for magnetohydrodynamics. There
are many important works devoted to the rigorous mathematical justification, see
26| for the compressible case and 21]] for the incompressible
case. We also refer to [19, 22, for the plasma-vacuum problem in magnetohy-
drodynamics. The effect of the Taylor sign condition in the plasma-vacuum problem
has been studied in [13] [12] [T1]].

There are also several progresses on the free boundary problems for inviscid elas-
todynamics. Chen-Hu-Wang [5]] analyzed the 2-D linearized stability and proved
the stabilization effect of elasticity on compressible vortex sheets. Recently, Chen-
Huang-Wang-Yuan [6] extended the results to the 3-D nonlinear compressible case.
In [30], Trakhinin proved the well-posedness of the fluid-vacuum free boundary
problem in compressible elastodynamics under the condition that there are two columns
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of the 3 x 3 deformation tensor which are non-collinear at each point of the ini-
tial surface. For the incompressible case, Hao-Wang [[14]] proved a priori estimates
for solutions in Sobolev spaces under the Taylor sign condition. Li-Wang-Zhang
[16] proved the stabilization effect of elasticity on both the vortex sheets and fluid-
vacuum problem. Gu-Wang [[11]] proved the local well-posedness in a domain with
two disconnected free boundaries, where the Taylor sign condition and non-collinear
condition hold on each free boundary.

The aim of this paper is to show the local well-posedness for the fluid-vacuum free
boundary problem in incompressible elastodynamics under a mixed type stability
condition, i.e., for each point of the free boundary, one of the Taylor sign condition
and the non-collinear condition is satisfied. The most important contribution of this
paper is that we derived a special evolution equation for the free interface, in which
both effects of those two stability conditions can be reflected, and the combination of
these two conditions will ensure this evolution equation to be strictly hyperbolic.

1.3. Main result. We define
3
s def . ’
AR S inf D (i1 + Fad)'(¥),
=g T -

If AF)(x") > ¢o > 0, we say that F is non-collinear at x’. Here F denotes the
restriction of F" on I'; and x” denotes (xi, x,) the first two components of x.
We assume that there exists ¢y > 0 such that

Nf'VpS—C()<O X’EFI,
(18) l ’ ’ 2
AF)X) > ¢ ¥ er?,

where I'! and I'? are open sets on T? satisfying T?/I"! € I'2. We call (L8)) the mixed
type stability condition.
Let Dp, = F;;0;. Our main result is stated as follows.

Theorem 1.1. Let s > 4 be an integer and assume that
Dry fo € H™VX(T?),  fo e H'(T?), o, Fo € H'(Qp).

Furthermore, for two open sets T'',T? C T? satisfying T?/T! e I?, we assume that
there exists co > 0 so that
1. —(1 =2¢p) < fo < (1 = 2c¢p);
2. =Ny, - Vpo > 2¢p on rt;
3. A(F())(X’) > 2C() on r2.
Then there exists T > 0 such that the system (L2)-(L7) admits a unique solution
(f,u,F)in [0, T] satisfying
f € L=([0,T), H(T?), Dg, f € L=([0, T), H"'/*(T*));
u, F e L2(0, T; H'(Qy));
—(I=co) = f < (1 =co);
-N;-Vp=coonT';
AF)(X') > coonT?

M
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The rest of this paper is organized as follows. In Section 2, we introduce the
harmonic coordinate, Dirichlet-Neumann operator and some basic estimates related
to the theorem. In Section 3, we derive an evolution equation for the free interface in
which both effects of those two stability conditions can be reflected. In Section 4, we
construct an e-regularized system and construct an approximation sequence to the
solution of the original system. In Section 5, we prove the existence and uniqueness
of the solution.

2. HARMONIC COORDINATE AND DIRICHLET-NEUMANN OPERATOR

In this section, we recall some facts and well-known results on the harmonic coor-
dinate and Dirichlet-Neumann operators.

We first introduce some notations used throughout this paper. We use x = (xy, x5, x3)
or y = (y1,y2,y3) to denote the coordinates in the fluid region, and use x" = (xi, x»)
or y’ = (y1,y2) to denote the natural coordinates on the interface. In addition, we will
use the Einstein summation notation where a summation from 1 to 2 is implied over
repeated index, while a summation from 1 to 3 over repeated index will be explicitly
figured out by the symbol )] (i.e. a;b; = a;b; + a,b», Z?:l a;b; = a1by + a,b, + azbs).

For a function g : Qs — R, we denote Vg = (0,g, 0.g, 05¢), and for a function
n:T? = R, V'n=(8in,d,m), it is the same for the operator A and A’. For a function
g : Q¢ — R, we can define its trace on I's, which are denoted by g(x’). Thus, for
i=1,2,

9ig(x’) = 9ig(x’, f(x')) + B38(x', f(x))D; f(x').

In this paper we do not distinguish D; = 0, + u10; + u20, + u3d3z on Q and D, =
0; +u10| + ux0, on I'y. Recalling that u - Ny = 4, f, for any function v defined on €2y,
we have

D[V = DtX'

We denote by || - ||z, | - |+ the Sobolev norm on Q and T? respectively.

In the free boundary problem, the functions (u, F) are defined in a domain chang-
ing with time 7. To overcome this difficulty, we pull them back to the fixed reference
domain Q, [16]). Let I, be a fixed graph surface given by

Lo ={01,y2,¥3) 1 y3 = L0132},
where f, satisfies sz f.0")dy" = 0. The reference domain €, is given by

Q. ={yeQly; < f.(y1,y2)}

We will look for the free boundary which lies in a neighborhood of f.. As a result,
we define

T6.0) € (f € HAT) 1 1f = flwee, < 6).

For f € Y(6, k), we can define the graph I'; by

r, {x € Qulxs = £(1, X), f £t x)dx = o}.
T2
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Now we introduce the harmonic coordinate. Given f € T(6, k), we define a map @y
from €, to Q by the harmonic extension:

AD; =0, yeQ,
2.1) (7, L) = O O, ¥ €T,
Dy, —1) = (v, —1), y €T

Given I',, there exists g = ¢(| filwi~) > 0 so that O, is a bijection when 6 < 6.
Then we can define an inverse map d);l : Qr — Q, such that

D' o ®y = 0po @y =1d.
The following properties come from [21].

Lemma 2.1. Let f € T(dg, s — %) for s > 3. Then there exists a constant C depending
only on 6, and ||ﬁ||H 1 so that

=3

1. If u € H7(Qy) for o € [0, s], then
lu o @l < Cllullgr@)-
2. Ifu e H°(Q,) for o € [0, s], then
llu 0 @7 lpe@y < Cllulle,).
3. Ifu,v e H°(Q.) for o € [2, 5], then
vl < Cllullae@plVllar@p)-

We will use the Dirichlet-Neumann operator, which maps the Dirichlet boundary
value of a harmonic function to its Neumann boundary value. That is to say, for any
g(x') = g(x1, x2) € H*(T?), we denote by Hg the harmonic extension to Q:

(2.2) (Heg)(, f(X) = g(x), x' €T?,
Hg(x',-1) =0, x €T

We define another harmonic extension for different use:

(2.3) (Hp) (', f(x)) = g(x'), x' €T?,
03 Hrg(x',—1) =0, X e T2

Then, we define two kinds of Dirichlet-Neumann operators:
def = def —
(2.4) Nrg = Ny (VHg)l.  Npg = Ny (VHyg)|y,.
We will use the following properties from [T}, 21]].

Lemma 2.2. It holds that
1. Ny is a self-adjoint operator:

(N, ¢) = (W, Nyg), Vo, y € HX(T?);
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2. Ny is a positive operator:
(N1, 9) = IVH P12, 2 0, Vo € H(T?);

Especially, if&2 d(x")dx' = 0, there exists ¢ > 0 depending on cy, ||f||w1~
such that

(N7, 9) > cllH 1, > Il
3. Ny is a bijection from Hg“(Tz) to Hg(Tz) for k > 0, where

H(/;(TZ) défHk(TZ) N {¢ c LZ(TZ) . f ¢(x/)dx/ — O}
T2

Lemma 2.3. If f € H(T?) for s > 3, then it holds that for any o € [3, 5],

(2.5) ING ' Blue < Cf 1)l
Proof. The proof can be found in [21]]. O

The results in the above two lemmas also hold for N;.

3. EvoLuTiON EQUATION FOR THE FREE INTERFACE

In this section, we derive the evolution equation for the interface from the original
system (L2)-(L7). The key ingredient here is that the evolution equation for &, f
could reflect the stabilization mechanism of both two stability conditions explicitly.

Recalling the boundary conditions for u and F, we have

D.f = us.
For any function g = g(t, x"), we also have:
G [D,8lg = -Oudig, D, Fidjlg =0, [8,Fudilg=0Fudg.

Then by D? f = D,us, it follows that
D;d.f = D,0;D,f + DD, 8 f = 8,D; f + Dy, 81D, f + D,[ D, d;1f
= 0Dyus — Oju)D,f — Di(Gju)3f)
= 0;Dyus — (0juj)0;D.f = (9u)Di(9f) = (Didu ;)0 f
= 0;Dyus — (0ju) @ )0, f = 20;u;)Di(03f) = (. Diupdf + (8;ui)(0,u )0 f
= 0;Du; — 2(6;ﬁ)Dt6;f - (8;Dtﬁ)8;f.
Since F; - N, = 0, the first equation of (I.2) implies that

3
D,ui:—a,;p+ZFj'VFij
Jj=1

3 3 3
= —G,;p + ZFWQ’YFU + ZFJ . Nf83F,~j = —G,;p + ZFwaiFU

J=1 J=1 J=1
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Using the equality above, there holds

a;Dt@ - (a;Dtﬂ)a}f

3 3
=~ Gdsp + ) F(Fud Fa) + @), f = > (G/(Fud Fi))f
k=1 k=1
3

=~ 8sp + GOP)IS + Y (O FIFudif) + Fad(G;F j)dif) + Fud(Fudid)f))
k=1

3
= > (@ Fa)@F 108, + Fu(80,F )9, f)
k=1
3

= - 6:63_p + (81’8]_p)8;f + Z ((6’ Yk)F]ka/a/f + F;k(a’ Jk)a/a/f + F;ka’ (ija’a’f))
k=1
3

= = 0[0sp + 00,p)0,f + ), (20 FWIF 38,0, f + Fud(F 9 f),

k=1

where we use F; - Ny = 0 again. Recalling that Dr, = F;;J;, we arrive at

3
DO f == 8j0sp + (3;0,p)0,f + Z (200 F ) F 400, f + Fud,(F38,0)) = 20u))D, 0, f

k=1
3 3
== 00sp + D0;p)F,f + > Dy f + ) 2 F DRI, f = 20ju)D,d}f.
k=1 k=1

Now, we focus on —-8.d;p + (9.0 jp)a; f. We write

3
(3'2) p = pll,ll - Zij,Fj’
j=1

where py, 4, 1s the solution of the following equation:

{ Aplll,llz = —tr(Vu1Vu2) X € Qf,

(3.3) Puju, = 0 X € 1—‘f’

03Puym, =0 xel.

Define auxiliary functions g; def dip + 03pH;(9;f), which satisfies glr, = 9;p +
03p0. f = 0. Then, we have
~0idsp + @0,)0,f =~ 0,03p — Bpd.f + 0,0,p)0,f + 050,39,
= — 8aq; + 0:pdH;(BLf) + 8,£(D,4: — B3pd [H,(B,)
= - Nf . E + 63_pr . V7*{f((9:f)
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Finally, we arrive at
3
(3.4) D2, f =03pNy - VH@if) + > D} i f
k=1

3
+ D 20 F)Drd,f = 2Au)D,df =Ny - Vg;.

k=1

From the fact that p = 0 on I'y, the Taylor sign condition gives
—IN/*33p = -N;-Vp>c>0  onI"

One can see that the equation (3.4) explicitly shows the stabilization mechanism for
both two stability conditions.

As T'; is a graph, |[Nf|;~ < co. In the rest of this paper, we write the Taylor sign
condition as —d3p > c just for convenience.

4. &-REGULARIZED SYSTEM

For the original system (I.2)-(I.77), we choose the initial data (fy, uy, F) satisfies
following conditions:

Cl. Dr, fy € H< VT2, fy € H(T?), uy, Fy € HY(Qy), where s > 4 is an
integer;
C2. For two open set I'', I'? ¢ T? which satisfies T?/T"" e I'?, there exists ¢y > 0
so that:
1. —(1=2¢o) < fo < (1= 2c0);
2. =Ny, - Vpo > 2¢oon T
3. A(F())(X’) > 2C() on FZ.

In this section, we introduce a regularized system with a suitable initial data.
Consider the system (L.2)-(L.7)) with the boundary condition for p in (L.4]) replaced
by

4.1) p= —6N;1A’f onl.

This system requires f to have a higher regularity, thus we equip it with the initial
data (f;, ug, Ff) as defined below. Let

. def
(4.2) 12 E e * fo,

where 1, = én(%) is a mollifier. Apparently, it holds that &|f¢]* < Clfol%, and

Hs+1/2
—(1 = 2¢) < ff < (1 = 3¢o) when & small enough.
We define harmonic coordinate @y : Q7 — Q- based on f. Define

def i -1 def 7q; -1
4.3) uy = Py o @), FyE PE(Fo ),
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where P9 and PS¢ are projection operators which map a vector field Qg to its
0 0
divergence-free part. More precisely, Pdwv v— Vo, Pd“’v =v — V¢ with

A¢p =divv in Qp,

¢=0 on I,
a3¢ = O on F_,
and _
A¢ =divv in Qfg’
Nz Vo =v- (0, fo = 0,159, fo = 3,500 on T,
836 = 0 on I~

Thus, we have F§, - N° = 0 and (uf, F§) satisfies (L7). Since D, fo € HY2(T?),

(ug, F) have the same regularity as (ug, Fp). It is straightforward to show that (ufj o
@, Fj o @-) converges to (ug, Fo) in H°(€25,) when & tends to 0 [21]]. We define

3
s 2 2 2 2
(4.4) M = 1ol + D 1Dy follyrn + oll, ) + Foll,
k=1
4.5) M= A fi e + U5 e + 06l + I e

We choose & small enough such that for all & < & there exists a constant C indepen-
dent of ¢ satisfying

(4.6) M < CM,
We call the system (L.2)-(.3), @.I) with initial data @.2)-@.3) the e-regularized

system.
For this regularized system, one can obtain (the derivation is similar to (3.4) but
more simple; one can also see [[16]] for the detailed derivation)
4.7) 0.f° =6°
(4.8) 00 == 2050,0° + W) — > wld, I f*
T T s,r=1, 2

~Njo - V(purae - Zst P+ Y FEFL0f + eN f7

josr=12"_

Therefore, we can write

thfs = Z Z FijfjaIsa;fe +eA fC+ (&, [°),

josr=1.2

where L(6°, f°) represents lower order terms.
The following proposition is the main results of this section.

Proposition 4.1. Assume that (fy, ug, Fy) satisfies C1 and C2, then there exists con-
stants (&, T), such that for each & € (0,&] and T € [0, T] the system (L2)-(L3), @)
with initial data (4.2))-(4.3) admits a unique solution (f¢,w®,F?) in [0, T] satisfying
1 8|f8 Hs+1/2 + |.f‘9 Hs-1/2 + ||u8||Hs(Q 5) + ||F8||Hs(g e) S CMS
3. —(I—EC)SfSS(l—ECO)
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4. =Np: - Vp® > Legon T
5. A(F)(x') = 3co on T2
Here the index s is given in C1, and the constant C is independent of € and T.

Before presenting the proof, we give some results which will be used. Firstly, from
[16, Theorem 1.2], the e-regularized system is locally well-posed. More precisely, it
holds

Proposition 4.2. Let s > 4 be an integer. Assume that
fo e HYATY),  uf, Ff € H (Qp).
Furthermore, assume that there exists ¢y < 0 so that
—(1 -2¢p) < fy < (1 =2¢).

Then there exists T = T(e, M) > 0 such that, the system (L2)-(L3) and @Il with
initial data @.2)-(.3) admits a unique solution (f¢,u®, F?) on [0, T satisfying

1. f2 e L=([0, T), H**'*(T?));
2.0, F° e L*(0,T; H (Q:));
3. —(1 =¢p) < f2 < (1 —¢y).
Moreover, for t € [0, T] it holds
1 o + 1 B + 0N + PR < 2V

To extend the solution to a time interval independent of &, we have to derive a uni-
form (in &) a priori estimate for the solution (f*, u®, F*). We will drop the superscript
e of (f?,u?,F?, p®) in the rest of this section for convenience.

The following estimates will be frequently used in this section. In these estimates,
we assume f € C*(T?) andu € C *(€y). The proofs of these lemmas can be found
in Appendix. We also remark that the commutator estimates below are inspired from

[24].
Lemma 4.1. For any function a € H*(T?) with s > 2, we have
(4.9) [l (V'Y1f],» < Clall flis.
Here (V')" is the s-order derivatives on T which defined as follows
(V0 = (1+KP)" f, k= (k). ko € Z.
Corollary 4.1. For s > 2, one has
D, (V'Y'1f]» < Cllullgsszapflae-
Lemma 4.2. For any function g € H**'(T%) with s > 3, it holds that
[N, Dglas < 11 lllgsongp) gl
Lemma 4.3. For any functions a € H*(T?), g € H'>(T?), it holds that

IINy, alglee < |flmwlalyselglaie.
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Lemma 4.4. For any functions a € H*(T?), g € H'*(T?), it holds that
[ asoar < latiiety .
Lemma 4.5. For any function a € H*(T?), g € H'/*(T?), it holds that
sz a([D;, Ny1g)gdx' < Cliallgsel f1lallmsplgl 2
Lemma 4.6. [[15] For any function g € H*3/*(T?) with s > 3, it holds that

(V'Y ™2 Nlgle < 1F R nlglissre

4.1. Stability condition of the s-regularized system. This subsection is devoted
to showing that the mixed type stability condition is valid for the initial data of the
e-regularized system and it can be preserved in a uniform time.

Lemma 4.7. Giving (fy, uy, Fy) satisfies C1 and C2, we assume that (f,u,F) is the
solution of system (L2)-(L3), @.I) with initial data (f3, u, ¥}) defined in @.2)-@.3),

and satisfies
(410) 8|f|?{s+1/2 + |f|2Hs—1/2 + ||u||2H‘(Qf) + ||F||2HV(QJ‘) S CM(;
on [0, T]. Then, there exist constants & and T < T such that for each € € (0, &] and
te[0,T],

1. =0;Vp(t,x') > %Co onT!;

2. AF)(t,x') > %Co onT?.
Proof. For the e-regularized system, the pressure can be written as

p=p+p,

where

3

_def -~ o 1., o def

p = —SﬂfolAf, P = pu,u_Zij,Fj-
i=1

Recalling that py = pyyu, — Z;zl Pr,;.Fo; satisfies the Taylor sign condition on I'y, with
x' €T, we choose & small enough such that

.3
~03(Pug ut meﬂ>@mﬂ A(F5) > S¢o on T2,

From Lemma[2.3] we know that
103 p(0, )= < 11p(0, Nt < Cal Sl f§lwor < VeCM,.
- 0

Taking & small enough, we have

~83p(0,x) > ¢ onT!.

Similar to [16], it is direct to show that the non-collinear condition A(F) > %co
will hold in a short time independent of €. So, we only need to focus on the Taylor

sign condition.
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Firstly, we give an estimate of d,p. Applying D, to the first equation of (L2)), with
the help of the third equation of (L2) we have

M

thu,- +Dt(9ip = (D[Fj . VFU +Fj . VD[FU - (F] . Vll) . VFU)

1

J

Fj . V(F] . Vl/l,)

M-

J

Il
—_

Taking divergence on both side of the above equation, we have

3
(@.11) 2D,p =Y (Fu)dsp + Du)d:0.p)

s=1

3
= > (@D )dht + 2@u0)0D)) + > 2(Bitt D14 (o)

k=1 s,k=1
3
+ Z ((aiij)(aszj)asui + Fj(0i0kF )0 5u; + 2(5iij)st5k5sui)-

s, k=1

Here we used the result that divua = 0.
Recalling that

p=0 onT", p=-eN;'Nf  only,
the equation @.I1)) is equipped with the following boundary conditions:
Dip=-eDN;'Nf=—-sN;'DA f—eN;' [Ny, DING'A f onTy,
03D,p = 03u101p + 03u20,p onl".
When s > 1, we have the following estimate
ID:pllrs2p) S WAD:pllusy) + | flassrelDiplpsse) + 03D plysag-).
Substituting (4.11)) into it, one can obtain that
(4.12)  IDpllas2 oy
< ||ll||HS+3(Qf)(||P||Hs+3((zf) + ||F||§1s+3(9f)) + ||Dtll||Hs+2(gf)||u||Hs+2(Qf)
+ 0l + L sl DA fliere + el [l [Ng, DIANGA flygenss
S+ ||U||H~v+3(gf) + ||F||HS+3(Q/) + ||P||HS+3(QJ-) + |f|i]s+5/2 + 3|f|H”7/2)3,

where in the last inequality, we used Lemma[2.3]and Lemma 4.2]
Recalling that

3
p=—eFN;'NF+ pan= ) prw,
=1
and using Lemma[2.3] we get

2 2 2
(413) ”pHHY(Qf) < ||u||H°'_1(Qf) + ||F||H°'_1(Qf) + 8|f|Hs+l/2'
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This means that ||D;pl|g3q,) can be controlled by the initial energy M;. Using @.0),
when & < &, we have |0;D,pl;~ < (1 + CM}?)? and immediately

ID,dspli- < (1+ CM?)’.
As a conclusion, it holds for any x € I'f that
d3p(t, x) > 33p(0, x) — (1 + CM?)*.
Then there exists a constant T, which is independent of &, such that —63_p(t, x') > %co

for any x’ € I’y and 7 € [0, T]. This finishes the proof of Lemma[.7l O

4.2. e-independent energy estimate. Now we derive the e-independent energy es-
timate for the regularized system.
Similar to (3.4)), considering that

~0;03p + (8,0;p)9,f = =Ny - #(Vp)
== (N - Vp) +J(Ny) - Vpp
=e0iN [ — 8,00\ p — 3,0, f0,p,

we can derived for the e-regularized system that

3 3
(4.14)  D};f =03pNy - VH O, f) + Y D3Oif +eNif + 29 Fu)Dr, 0, f
= =
- 2(6;ﬁ)Dt6;f — Ny - Vq; = 810;f0,p — 0,0, f0:p,
where g; = 0;p + d3pH (0. f). Motivated by the above equation, we introduce

3
EX(t) =IDAV'Y P02 + Y IDs VY 02 + £l £
k=1

+ f G(VH (VY 0 Y dx + 12, +10.f1% + i, + IFIE -
Qf ’

where a is a suitably chosen function satisfying

O<cpgac<gC XEQf,
a=-03p x el

Therefore we have

AR, < f S(VH @, ) dx < ClOLSIE, .
Qf

The function @ is constructed in the following way. Define a = —d;p. Recalling

the proof of Lemma &7, @.12)) and @.13) shows that for the solutions constructed
in Propositiond.2] —d; p have a uniform bound when (z, x’) € ([0, T1, T?). Therefore,
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we can choose constant ¢ = ¢(M;) such that ¢ — (93_p > ¢( for all X’ € T?. Then we let
a = a + ¢¢, where ¢ € C*(T?) is a cutoff function satisfying

0<p<1 X eT?
(4.15) $»=0 x € T?/I?,

¢=1 x € T*T.
If the Taylor sign condition holds on I'", it follows that @ > ¢, for (¢, x’) € [0, T] x T?.
We choose @ as the solution of following equation:

Ad=0 xe€Qy,
(4.16) a=a xely,
a=c¢cy xel .
The maximum principle yields that
cp<ac<e on Q.

Thus, the constructed @ meets our requirement.
The uniform a priori estimate is stated as follows:

Proposition 4.3. Giving (fy, wy, Fy) satisfies C1 and C2, we assume that (f,u,F) is

the solution of system (L2)-(L3), @.I) with initial data (f3,ui;, ¥;) defined in @.2)-
@.3), and satisfying stability condition (I8) on [0, T, then it holds that

sup EX(t) < CEX(0)e”,
t€[0,T]

where C is a constant independent of €.
We first introduce an elliptic estimate for a vector field.

Lemma 4.8. For any vector field v defined on ¢, we have
VIl SC(|f|Hs-l/2)(||V X Vg1, + 1div V]|gs-1q))

+ Z |(9;V . Nf|Hs—3/2 + ||V||H°'-1(Qf))‘

i=1,2

Proof. The proof can be found in [25]]. We represent it here for completeness. From
the fact that

Av = -V X (V xv)+ V(divv),
it suffices to prove (let Ly = |f|zs-1/2)
4.17) |Nf 'ﬂle’—}/Z < C(LO)(HV X V”fol(gf) + || div V||Hsfl(Qf) + Z |8:X : Nles—}/Z).

i=12
Define

W(V) = (01V - Ny, 9V - Ny, 03 - Ny).
Then (4.17) is equivalent to

(4.18)  Wlgesn < CLOIY X Vg + 1 divVlleia, + D 18;¥ - Nylpgean),
i=1,2
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since one has

Ny - V¥ = Wlpezn = IN; X (VX Dz < CL)AY X Vg1 ).
Direct calculations give that
(4.19) 7+ W=0;v-Ny+085v-Nsdf =v-Ny,

where 7, = (1,0,0,f) and 7, = (0, 1, 0, f).
To estimate N; - w, we write

(4.20) A+ VDL =(1 + @)1 ®7) — 8, fO,f (11 ®T) + T, ® 7))
+(1+ @) @1+ N @ Ny
Since

0;00y = 3}(0,v + 05vI ) = (i ® 7)) : VOV + 83v3;0, .

J

one has
(1;®7): V)V Ny =90y - Ny — 8;v - N;3j0' f
= 00y Ny = Iy - 0Ny - 05y - N, .
Therefore, together with (4.20), one can get
](Nf Ny : V- Ny — (1L + |V fP)IL: V2)v- Nf]HS_S/Z

< C(Lo)(|53~! Nylgsa2 + Vllas1@p)-
On the other hand
(419 Vv Ng| =]+ 9 PAY N,

Hs-5/2

< CLO)UIY X Vllg-1iqp + 1 div Vligs-1a)),

which implies

(NN V)V eNg| < Co)(193 - Nylose + IVl e

+ IV X Vg1, + 1 div Vil ).
We rewrite
(Ny@Ny: V2)v- Ny =Ny VNgz @ Nygg : V) = (N - VYN @ Npg) 1 U
=N;- VHN;®N; : Vv) = (N, - V)N, ® Nyy) : Uy
+ N7 V(N ® Npgy : Vv = H (N @ Ny 1 Vv)),

where N4 denotes the harmonic extension of N, then we have
[(Nf - VYN @ Nyg) 2 VY|, 50 < CL)IVIlz-10 -
For Q = Nygy ® Nygr : Vv — Hy(N; ® Ny : Vv), one has

Olr, = Q. =0, [IAQlls-ay) < CLO(IV X i1y + 1div Vil )

15
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which implies

INg - VH(N; ® Ny : VV)|pgs-sn2 SC(LO)(W}X - Nylgs-sn + [IVllgs-1))

+ 19 % Vil + 1 div Vil ).
Noticing that Ny ® N, : Vv = N, - w, we have
INs - Wlggesn <CLo)(107% - Nilgos + Wll-1cqy)
+ 11V X Vil + 11div Vil ay))-
Together with (4.19), we obtain (4.18)), which finishes the proof of this lemma. O
Now, we are in the position to prove Proposition 4.3

Proof. Estimate of f. Using (@.14)), direct calculation shows that

%%wxvv“magﬂg

= [ DAY DY) - Sud DAY

- [ @AYy Dl
+ f (DY) TP AD (YYD + DD, (V'Y 10,
+ f ; S u (DY) 28, fydx

- fT (DAY ATy D3,
+ fT Z(Dt(V’)H/za; AAD VY 1D, f + [ﬁ, (VY PID,d . frdx
o [ DAY PN D (7Y PW ) + DAYV

< [ Ty Py D ax
T
+ Cllulcs ) IDAV'Y 20, 17, + ClID g1 @) DAV’ Y ™28, £1,210, Fligs-

From the first equation of (L.2), using (£.12) and (.13), we immediately have || D,ul| -1 (q,) <
CE?. Next we consider the estimate of

[ @iy o ey i ax
T2

- f (DAV'Y 20 AT 93 pNy - VH, (0, f)dx’

f(D (V') 3/26’f)((V ) 3/22D%k6’? Ydx'

k=1
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_ fz(Dt<V/>Y—3/28:f)(<vl>3—3/2(Nf . E))dxl
T
+ f Z(Dt(V’)H/za; XYY (0 F g)Dp,0,f = 20 u))Dd, f)dx’
. U

+ f (DAVY RE VY (N f — 8,0, f0\p — 49, f02p)dX
T2 - -
éll +L+L+1 + 1.

Estimate of I;. Recalling the definition of a, we rewrite
I =- fT (DAY P PUTY N0 )
= [ Ty N @
- fT DT R NI
- fT (DAY T NG @)
The first term is the principle one. To estimate it, we calculate
G | Ay Py e
= fT DAaNKTY AN R0 0] = wd [N K)o NETY 0l
= fT DUQNAYY N TP + aDNKVY AN T 0 )
+ f ANKV) RGPV T 4 f (@ upaN(V) TG P
=2 f DTy PNATY R
+ fT 2 D,V Y PO AN aldV' Y P8 f) + allD, NV Y 28, 1YY 18, frdx
+ fT  DUONKYY AN R0 f) + @upaN(Y 0, Ny 0 .
Where we use the following result. Since N/ is a self-adjoint operator, we have
[ a@N Y Py e i
= f APV RGN T frd + f DLV TGN V) T, frd

+f a([Dt,Nf](V’)S_ma;f)((V’)S_ma;f)dx’.
T2
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We write

f AN (V'Y 26, (V'Y 26, ) = f BNV 26, (V'Y 28, )
T2 T2

- f @ - NL{VY P VY 20, frdx.
T2

Recalling the definition of @ and using integration by parts, one can get
[ @y ey e
T

:f a(wa(<V/>x—3/26;f))2dx + % f Nf . E((V')Y_ma;f)zdx’.

Summarizing the above results gives that
dl

__al < I\S=3/2 g1 2
b= [, SR Ry

dl

——— | Ny Va(V' Yo, p)%dx

ey f (@ - N 20Ny 0, frdx
t T2

" % f D[(<V/>s—3/282f)([Nf, a]<V/>x—3/Za;f)dxl
T

+% f a([Dn NIV Y 20,1 (V'Y 0,
TZ

. fT DUQNAYY 0 NV 0

‘3 f (GuaNKVY G ax

- [ SO D AT NG
T2

_ f ((V’)“'_3/2Dt8;f)([(V’)“'_3/2, a]Nf(a:f))dx’
T

We will control all the terms on the right hand side except the first one by using the
energy.

From Lemma .3 Lemma and Lemma and the commutator estimates for
the Dirichlet-Neumann operators, we have

f DY AN al (V'Y 28 f)dx < 1DV Y 0, ol flislal g0 f e
TZ

f 2 a[D, NAVY 20 VY TR0 dx < lalgsel £, slallasapldf s

T

f 2 a(DAV'Y P8 UNVY T NA@ )Y S 16l P I DCYY T2, £1,210, f L.

T
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Moreover, by Lemma .4 we can get

f DAQINKYY G NCTY TR0 dx’ 5 | flipIDsalr I f e

T
f 2(a;-uj>a<Nf<V'>S‘3/za:-f><<V'>S‘3/za;f>dx' S flslalge il g0 f -

T
Likewise, using Lemma[2.2]and Lemmal4.1l one has
f DAV TNV aINA@; xS 1DV YT izl 10 e

T

Recalling the definition of @, @ — a is a function independent of ¢ with support on I'?,

we can use |Dr, 0. f |12L1s—3 ,» to control

%% f%(a — NKVY 20 AV 0 frd
- fT @ ODNATY 9N Y3
+ (@ = QWA 0 fYDAYY 0, frdx
-5 | G omg Ny Y
=5 |G- NPy o)
+ (DAV'Y 0 HNA(@ = a (V'Y ™0, f)d
#5 [ 4G =0 MKy 50Ty 0 )
+ NA(@ = (V) 20, DAY Y 0, )
" % fT (@@ = N ANV 0 frdx

<Ia = alpsel flislllizs ) 16; f13es + 1DV Y 720, fli21@ = (V)Y 20, i

+ 18 = a2 sl i DY) ™20, 112 + 1070 = a)liseld 17
S(1+]a—algse + lallzs@p) + |f|H4)3(|5§f|Hs-1 +|Dg 0, flyssn + |Dt<v/>s_3/28:'f|L2)2,
where we have used Lemma[2.2]and Lemma[d.3H4.5] In a similar way, we have

d1 < aNS=3/2 90 2 g
—— N:-Va(V 9" )d
1

ZE f D[(Nf . E)((V,>s_3/za;f)2 + 2Nf . E((V’)H/zagf)(D,(V’)S_3/2(9;f)dx’
T2

1 .
+ 5 [ @uN-Taqyy o e
T2 -
<ID(N - V)| 2KV' )20, £,
+ INg - Yl DAV 720, f11210) Lo + 101N - Vol 1y
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_ _ -3/2 2
$||U||12qs|f|12q4(|Dza|H3/2(Qf) + |(1|H5/2)(|a;f|HH + |Dt<V,>S a;fle) :

Recalling the definition of a and @, (4.12) and @.13)) ensure that all the norms related
to these functions in our proof can be controlled by energy E(t).
Combining above estimates, it follows that

n+2l f AVHV')' 10, 1)) dx < P(E(1)),
dr2 Jo,

where P is a polynomial.

Estimate of I,. Using the fact that [D,, Dy, ] = 0, we have

3
12 :f (D[(V,>S_3/2a;f)(<vl>s_3/2 ZD%kalsf)dxi
T2 k=1
3
=>. f DYy, UV ™, De, 1D, 3, f + D (V') ™", Dy 10 f)dx’
=1 YT
3
+ 3 [ ATy DD ()0 i
=1 YT
3
- _ Z f Dt(DFk<V/>s—3/26;f)(<vl>s—3/2DFk8;f)dx/
=1 YT
3
- 3% [ @@y o 0n (7 ol i
= YT

3
£ f (DLV'Y ™20 (V'Y "2, Dy 1Dy, 8,f + Dy, (V'Y ™", Dy, 10, f)dx’
=1 YT

élZl + 122 + 123.
Lemma.T] gives that
Iy + Ly SIDE V'Y 728, f s DAV Y 28, 1.
Since

d 1 A ’ ’ A ’ ’
by + E§|DF,(<V YRR, =~ fz u;0i({V') 2D 8 ) dx
T2 —

s=3/2 2
S|VM|LN(Q/)|DF/(<V,>Y a;f|L2,

we obtain the estimate of I,:

d1 o oy Y
b+ 3DV R0 1 < PEE).

Estimate of 15, 1, and Is. Recalling that g; = 0;p + 0;pH(0,f), qilr, = 0ip +
03p0.f = 0, from the definition of p and Hy, we have
03qilr- = (0:03p + 033pH (0, f) + 03 pO3H (0 )~ = 0,
Aq; = 0:Ap + O3APpH(D; f) + 20;V p - VH(8; ),
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which implies
Ngillespy < N1OAP + O3APH (O f) + 20;V P - VH (I, Ol
S Bl + 1B @0 flas-se + Pllgsn@pl0; flasre.
Accordingly, it holds that

== [ DAY BT N, Ty
< IDAV'Y 20, £112IN - Vil < PAE(D)).
The term I can be estimated in a similar way. For I5s, we have
Is = fT (DAY T NG f 30,101 - 4, f0ap)
Recalling the definition of p, we have
[ 0wy a0y en s pax
—s [ DTy I G
——s [ VO - () fax
- S0, [ @Y (7Y fax
-e fT V(YR - (V)T

+ £ f @) (V'Y PV .
2 T2 ]—
Using Lemma[.3] we have

fT DLV TR @0, £0,p)Ax SIDAY Y0 1120070 210 Pl
<ID3, 10, flus- 12l N A g
$|Dta;f|Hs-3/2|f|HS-3/25|f|12qs+1/2'

Combining these estimates, we have

dl1

dt2

Estimate of (u, F). Recalling the boundary condition on I'y
u-N,=0,f, F;-N;=0,

&l f1%. < P(EX(D)).

15 + Hs+l

we have
D0 f =0.D,f — 8;uj(9}f = 8;@ - a;uja;f =0u-Ny,
Fadd,f = 0j(Fg-Ny) - Fe- N, = 0Fc - Ny

N
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From Lemma4.8] it holds that

Cllully) < (IV X Wl + D 1D fli-see + Il < CEL®),
i=1,2

CllFlzs@p < (IV X Fillgs1ap + Z |Dy, 0, flus-3n2) + [Fillgs1q) < CEX?).

i=1.2
Then it suffices to prove that
T
2 2 2 2 s
”V X u||HS_1(Qf) + ||u||H3_1(Qf) + ||V X Fk”Hs—l(Qf) + ||F||H3_1(Qf) S fo P(Eg(t))dt
Similar to [16, Proposition 4.4], it is direct to obtain that

d \)
(17 Xl + IV X Eullyq,) € PEONIY X0l g, + 1V X Eillyg,):

With the help of evolution equations of u and F in (I.2)), we have

3
d s—1 2 s—1 2
UVl + D IVTF )

j=1
3 3
sf VS_I(ZFj-VFj—Vp)'Vs_ludx+Zf V'U(F; - Vu) - V'R dx
Qy j=1 =1 Y
3
)+ D IR g Il
j=1
3
=) | (V-Epvilu- vIFdx
=1 Y&

3
3 2
+1plls@plull o) + I g ) + D IE Il
j=1
3

3
S( Z ”FjHHS’l(Qf) + ||u||HS*1(Qf) + ||P||H~V(Qf)) .
=1

From @.I3) we have ||pllgs@,) < EL(f), which implies
d N
E(IIUIIHmf) + I ) < P(EAD)).
Completing the proof. Combining all these estimates above, we have

d s s
7 Ee(0) < P(EL(D)).

The proposition follows from Gronwall’s inequality.
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4.3. Approximation sequence to the solution of the original system. Now, we
give the proof of Proposition .11

Proof. Choose & = min(&, &), where & and & are given in (4.6) and Lemma &7 sepa-
rately. For each € < &, we have

2 2 2 2
S5 By + 15T + 101 + I
0

s

Using Proposition 4.2} we solve (f,u, F) on [0, T(g, 2C + C )M;)| which satisfies

2 2 2 2 ~ s
sup (8|f|Hs+l/2 + |f|HH/2 + ||u||HS(Qf) + ||F||Hs(gf)) <22C+ C)M;,
1€[0,T]

where C is given in Proposition 4.3l Lemma [4.7] shows that for 0 <t< T, (f,u,F)
satisfies the mixed type stability condition (L8), where T = min(T, T). Proposition
B3] shows that there exists a constant C such that

sup EX(1) < CE(0)e”.

1€[0,11
If C‘Eg(O)eC_T < (2C + C)M;, then (f, u, F)(T) still satisfies the assumption of Propo-
sition .21 Therefore, we can extend (f,u, F) to [0, T + T]. The above steps can be
repeated until the energy is larger than (2C + C)M;. Since C is independent of &,
we can extend (f,u, F) to a lifespan T independent of &. This finishes the proof of
Proposition 4,11 m|

5. WELL-POSEDNESS OF THE ORIGINAL SYSTEM

5.1. Taking the limit £ — 0. To prove existences of solutions of the original system

@L2)-@.7), we consider the limit & — 0. For the solution (f¢, u®, F?) of each &-

regularized system given in Proposition 4.1} we pull (u®, F?) back to a fixed domain.
We define

i =uodp, F =Fod.,

where @ : Qy — Qg is the harmonic coordinate defined in Section 2. Then by
Lemma[2.1] the following energy

3
Ext) =IDAV'Y 0 7R, + Y IDse (VY PR + el Ry + 10
k=1

2 2 ~e012 Le)12
1 By + 10 ey + N80, + I,

also have an g-independent upper bound on [0, T]. }
Taking & — 0, there exists a subsequence of (f*, 0, F¥) which converges weakly
to a limit which we denote by (f, @1, F) satisfying

D,f € L*([0, T1, H"*(T?),f € L*([0, T1, H'(T*)), Dy, f € L*([0, T1, H"/*(T?)),
f fdx =0, @ e L*([0, T],H (Qy,), F € L*([0, T, H'(Qy,).
T2

In addition, this convergence will be strong in spaces with low regularity. For
u=iod;', F=Fod,,
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standard arguments show that (f, u, F) solves (L2)-(L7).
Define the energy

3
E*(t) =IDAV'Y 720 f12 + D DR (V)Y PO + f A(VH (V'Y 0 f)) dx
=1 Qr

2 2 2 2
+ 1Sl +10:f 1 + Il q,) + IFllGsq,)-
Similar to Proposition4.3] one can also have

sup E*(f,u,F)(t) < 2CM;,
1€[0.7]

where T is the e-independent lifespan obtained in Section 4.
5.2. Uniqueness. Assume that (f4,u?, F4) and (f%,u®, F5) are two solutions to

(L2)-(7) on [0, T]. We denote the difference (f*—fZ, i —ii®, F*—F?) by (f2, i, FP).
For the difference functions, we introduce the following energy

3
Ep(0) =DV Y R0 PR + Y IDp (VY R0 P + f S(VH (V'Y 0, ) dx
k=1 QfA

+ Pl + 101 + I o ) + PN,
where D! means material derivation generated from u?, and & is defined by (4, u?, F*)

in the same way as d. Apparently E7,(0) = 0. We will prove that E},(r) = 0
First of all, by elliptic estimates we know that

1D 1 = D psll g2y < I = FPlasr S EB@).
Recall that

3
(5.1) ROf +wdd0,f + DI = > DhAf — dpNp@f) = g,
k=1

where g is the lower order term

g = —0,0/0/f + Z 28, Fg)Dr, 0, f — 2@0u)D,d,f +2@u)@u)d,f —N; - Vg

k=1

For the two evolution equations of f* and 2, we use g* and g” to denote their lower
order terms separately. Subtracting these two equations, we have

820/(fP )+uA8t6'6' fP+ D28, fP ZD2 8P = 83" Nya(0,f7)

= — ! - ub)3,0'9.f" — (D, - D)3 f" + 2(1)2 - D)3

(5.2) + (03P N0, 2 = 03 p° N w0 fP) + g* = g°.
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The most difficult term in (5.2) is 93 p* N 18, f& — 93 p® N 59, £, which can be written
as

3P N0, f? — 03p° Nys. f°
= (03p" = O3 p")NpuH 0. f + (03P (N4 = N o) H a0, f7)
+ 3PN ys(Hpn — Hp)0 f7).

The first two terms can be estimated in standard methods, while the last term can be
treat in the following way.
For each function ¢ defined on T2, we define

Hystp = Hypsp 0 @ s 0 07
Then we have
A(?’{jAlﬂ - ﬁjb’lﬁ) = —Aﬁjb’lﬁ X € QfA,
(5.3) Hpsp — Hpsp(x', fAX) =0 x' € T2,
Hpny — Hpsp(x', —1) = 0 x e T2
By the definition of harmonic coordinate, we know that

O H sy = (> H sh) 0 Dy 0 Ly ((a q><3>) Ny ;)2
371f f I 3 @ q)(3)) o (D‘l

(G300 0 D (BP0 0 D) — (02q><3>) D13 D) o D)
+ (O3 H pip) o Dy 0 (I)ij

((B3D)) 0 D)

The equations for 0?7:? i and 8%77 sy are similar. From (AH sy) o @ s o (I)Jjj =0,
we know that
AH sy = C(V(@ 1 = D), V(D1 = D pa)) 0 D)

Then the right hand side in (5.2)) can be controlled by E7,.
Similar to Proposition4.2] we can prove

d ’ ~ I\~ ’ s
dt( DAa f |H3 I(TZ) + Z |DFA6 f |H3 I(TZ) f aA(Vq_{fA(<V > laifD))zd-x) S ED(t)
fA
Now we show that

~Dy2 D2 s
dt(”u ||Hs’l(Qf0) + ”F ”Hx—l(QfO)) S ED-

For a vector field v defined on Q, we define
curlc V = (curl(v o d)}é)) o Dy,
dive ¥V = (div(v o q)}:g)) o Dye.
It is clear that

Cllu* —@” o @ 2117

fAH 5— I(Q )y = ||u Hs— I(Q ) = C”u u ° q)fA”Hs I(Q A)°
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2

@, Recalling Lemma 4.8 we

Thus, we only need to estimate |ju® — @® o d);jH
know that
A _ =B -1
||ll —u o (DfA”Hx—l(QfA)
A A ~B _ 1-l oA 1 ~B  p-l
SC(lf |Hs—3/2)(|| curlu” — curla” o (DfA”HS_Z(Q/'A) + || diva” —diva’ o q)fA”Hs—Z(QfA)
A ~B -l A _ =B x-1
+ ) 10t Ny = 96" 0 @71 - Nialgosagrey + 0 = 6% 0 0l )-
i=12 E—
For the terms on the right hand side, we have
A ~B -l
|| curlu” — curli” o d)fAllﬂxfz(QfA)
A B B
<|lcurly u” — curlzu ||Hs_z(gf0) + ||(curlp — curly)u ||Hs_z(gf0)
A B
SH CurlA u - CurIBu ||HS—2(Qf0) + ||q)fA - (DfBHHS‘I(QfO)’
oA 1. <B -1
[|diva”® —diva” o d)fA||Hs_z(QfA)
. A . B . . B
<|ldivg u® —divgu ||Hs_z(Qf0) + [|(divg — div)u ||Hs_z(Qf0)
IO = @ pollgey .
|8;£ . NfA - 8;&3 o q)}j . NfA|Hs—5/2(T2)

S|a:ﬁ . NfA - 5:l~l_B . NfB|Hs—5/2(T2) + |(9:l~l_B . (NfA - NfB)|Hs—5/2(T2)
D B D
S|D?6:f |HS75/2(T2) + |Du06;f |HS75/2(T2) + |f |Hs—3/2(T2),

where D, = ﬂa'l + @6’2.
As a result, it holds that

~Dy 2
”u ||Hs’l(Qf0)

A D D A B ~Dy2
<ID; o0:f |Hs—3/2(T2) +|f |Hs—3/2(T2) + || curl, u” — curlzu ||HS—2(QfO) + ||& ||HS_2(QfO).

2
Hs-1 (Qf()).
Then using the method in Proposition4.3] it follows that

We have similar estimates for ||F?||

2

d A B ~D
E(” curly u” —curlzu ||Hs-2(9f0) + o ||H,Yfz(9f0)

3 3
A B D2 s
+ > leurly B} = curly Bl + D MEDI 0 ) S Eb(D).
j=1 J=1
Thus, finally we have

d
EEB@ < C(MER(®),
which finishes the proof of uniqueness.

APPENDIX A. ESTIMATES RELATED TO THE D-N OPERATOR
Lemma A.1. For any function a € H*(T?) with s > 2, we have

(A1) lla, (V'Y*1f| 2 < Clalss| 1.
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Here (V'Y is the s-order derivatives on T* which is defined as follows
TV = (1+KP) a0, k= hiko) kiko € Z.
Corollary A.1. For s > 2, we have
D, (V'Y1f],> < Cllullgzseirp| flas-
Lemma A.2. Let D, = 0, + u10| + ux0,, then

—0/u-Ny—(0,/)?0u-Ny+ 0,3, fu-N;

DN; =
o L+ @, f7 + 0,0)° o

L 20Ny - @, )0 -N;+ 8, f0,fdu - N,

1+ (0, ) + (9, 1)* 2

9,f0u - Ny + 0, f0u Ny o
L+ @7+ @2 "

where
N, = (=0,f,-05f, 1), 7 =(1,0,0,f), 71=1(0,1,0f).

Proof. Letny = Iz_fl and write D,Ny = Aty + Bty + (D;Ny - ns)ns, where A, B are

undetermined coefficients. Direct calculation shows that
DN, -n, = 91 f0u- Ny + 0, f0u - Ny
VI+@1 )7+ 0,f)
Thanks to Ny - 7y = Ny - 7, = 0, it follows that
A(1 + 8, f*) + B0, fd,f) = DINs -1, = —9ju - N;.
Similarly, we have
A f,f) + B(1 + 0,f*) = DN - 1 = —du - Ny
From above equations, we can solve
(0N~ @7 du N, + 0,13 fom - N))
1+(01f)* + (05f) ’
B (- du-Ny—(9,f)0u-Np+ 3, f0,f0u-Ny)
1+ (01/) + (9,/)

Lemma A.3. For any function g € H**'(T?) with s > %, it holds that
|[Nf,Dt]g|H>' < |f|;_1s+l||u||H”3/2(Qf)|g|Hs+l'
Proof. We start to analyze of [D,, H r]g. Direct calculation shows that
ADH;g = D,AH g +2Vu : V*H;g + Au - VH;g
=2Vu: V*H;g + Au - VH;g.
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So we have
[D,, H,1g = A'2Vu : V*Hg + Au - VH,gg) + Hyg,

where A~! means

4&‘15{ =g Xx€Qp
(A.2) A‘ig =0 xely;
(93A_1g =0 xel-,

and 7f{ + means

A_?f[fg =0 X € .Q.f;
(A.3) Hig=0 xely;
637:{fg = 83”1617:{fg + 63M2827:{fg xel.
Next we consider N;. Using Lemma[A2] we get
[D:. Nylg = Di(Ny - VH;g) =Ny - VH(Dyg)
= Nf . VDtV:[fg — V7:{fg . (Nf . E) + Vﬂfg . (D,Nf) - Nf . Vﬂf(D,g)
=N;-VA'QVu: V*H;g + Au- VH,g) + N, - VH;g - VH,g - (N, - Vu)
, (Z9u-N; - 0,f)°01u- Ny + 81/, f0u - Ny)dig
1+ 01f)* + (0,/)*
L (Zou-N, - (01)*05u - Ny + 0, f0,f0\u - Ny)osg
1+ 01f) + (0,/)*
d1fou-Ny+ 0y fou-Ny -
@ N+ @

As a conclusion, it is easy for us to get

< 3
[IN7, Dilglus < | flyseillallzssnp|glas
H /

Lemma A.4. For any functions a € H*(T?), g € H'/*(T?), it holds that
IN}, algliz < |f|mslalpsre|glee.
Proof. Similar to Lemmal[A.3] we have that
[Ny alg = gNra = 2N; - VA (VHa - VH;g).

It holds that
172 12 12 172
|g/VfCl|L2 < IglLﬁ |Nfa|L{t < |g|H/1/2|Nfa|H/l/2‘
On the other hand, one has

IN; - VAT (VHa - VH )2 < |fluseIVHa - VH gllu-12,).-
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For each test function ¢ with [|@l|g12q,) = 1, we have

f VHa - VHgpdx
Q

S||¢||L3(Qf)||V7‘{fg||L2(Qf)||V7’{fa||L6(Qf)
Sz |glaielal g,

then the conclusion follows easily.

Lemma A.5. For any functions a € H**(T?), g € H'/*(T?), it holds that
[ aNyear < llablety .
T

Proof. We use @ = Hya to denote the harmonic extension of a. Then it holds that

f aN@gdx = [ (VHg) - V@H,g)dx

= L (V?‘{fg) . (V(jl?’{jg + EzV?-{fg)dx
f
Using integration by parts, we know that
fg; VH;g - (VaH,g)dx = sz N, - Vaggdx' - fg HpgVa - VHgdx.
7 A
Thus we have
f aNyggdx' = f a(VH g) dx + 1 f Nraggdx'
T? Q 2 Jpe

2 2
SlalL"“|g|H1/2 + |f|H3|a|H1|g|L4

2
SIf lmlalmsrelgly e

Lemma A.6. For any function a € H*(T?), g € H'/*(T?), it holds that

f allD,, NyIRIgdX < Clalsel Lyl 2P
T

Proof. Similar to Lemma[AJ] we have
[D:, Nylg =N - VA™'2Vu : V*H;g + Au - VHg) — VH;g - (N, - Vu)
(S0 N~ @0 N, + 0,0 0 N)ig
1+ (07)* + (051)*
| (SN, = @7 0u N, +3,10,700u - N)ie
1+ (07)? + (05,/)?
91 f0u- Ny + 9, fou- Ny
Nfg,
1+ (07 ) + (05)*

29
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where A~! means

(A.4) Alg=0 xely;

AN g =g xeQy
Alg=0 xel-.

Using @ = Hya to denote the harmonic extension of a, we can write

f aN; - VAT 2Vu : V*H;g + Au - VHg)gdx'
T2
= | @Vu:V*H;g+ Au-VH;g)aHgdx
Qf
- f VA™'2Vu : V*H;g + Au - VH,g) - (@VH g + HygVa)dx.
Qy

Since u is divergence free, one can get
f (2Vu : V*Hg)aH gdx
Qy
=2 | (0,u,0,0,Hg)aH gdx
Qy
:f (arusaravﬂfg)aq_{fgdx + f (Vq_{fg ’ (Nj ’ @))agdx’
Q; ™
- f (afusaﬂ'( r8)aH gdx — f 0,us0,Hpgo(aH;g)dx
& &
= f (VH;g - (N - Vu))agdx’ — f (07u,0,H g)aH gdx
™ Qf

+ f arl/‘s(as(ar'?-[,)‘(ggl?’{fg) - arq-[fgas(aq{fg) - aswfgar(aq{fg))dx
Q

= f (VH;g - (N - Vu))agdx — f (07u,0,H g)aH gdx
T2 Qy

+ f (0,u - N;,Hrg)agdx' — f 0,us(0,Hygds(aHyg) + 9, Hg0(aH;g))dx.
™~ - Q

s
Analyzing the boundary term carefully, we find that

f 2(ar_u N0, Hrg)agdx'
T Zre el

agdx’

_ f (0u-Ny + (0, f)°0\u-Np = 9, f0, foou - Ny)d' g
=,
> e agdx’
L+, /)* +(95f)

L+ 01 + @)
+ f (0w Ny + (9, )0 - Ny — 0,0, f01u - Ny)dg
-
(N, Vu-NONgg
¥ fT T+ @+ @R 8™
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Combining above results, we have
f i a([D,, Nr1g)gdx’'
T

= f VA™'(2Vu : V*H;g + Au - VHg)(aVg + gVa)dx
Qf

+ f o3u-NyNygagdx' — | (Vu+Vu'): VH;g ® V(aH,g)dx.
™

Qyf

Using Lemmal[A.3] we finally arrive at

fT a([Dy, Nylg)gdx’ < Clalpse|f 1l s, 8l 2
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