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TWO-LEVEL NYSTRÖM–SCHUR PRECONDITIONER FOR SPARSE1

SYMMETRIC POSITIVE DEFINITE MATRICES∗2

HUSSAM AL DAAS† , TYRONE REES† , AND JENNIFER SCOTT†‡3

Abstract. Randomized methods are becoming increasingly popular in numerical linear algebra.4
However, few attempts have been made to use them in developing preconditioners. Our interest lies5
in solving large-scale sparse symmetric positive definite linear systems of equations where the system6
matrix is preordered to doubly bordered block diagonal form (for example, using a nested dissection7
ordering). We investigate the use of randomized methods to construct high quality preconditioners.8
In particular, we propose a new and efficient approach that employs Nyström’s method for computing9
low rank approximations to develop robust algebraic two-level preconditioners. Construction of the10
new preconditioners involves iteratively solving a smaller but denser symmetric positive definite Schur11
complement system with multiple right-hand sides. Numerical experiments on problems coming from12
a range of application areas demonstrate that this inner system can be solved cheaply using block13
conjugate gradients and that using a large convergence tolerance to limit the cost does not adversely14
affect the quality of the resulting Nyström–Schur two-level preconditioner.15

Key words. Randomized methods, Nyström’s method, Low rank, Schur complement, Deflation,16
Sparse symmetric positive definite systems, Doubly bordered block diagonal form, Block Conjugate17
Gradients, Preconditioning.18

1. Introduction. Large scale linear systems of equations arise in a wide range19

of real-life applications. Since the 1970s, sparse direct methods, such as LU, Cholesky,20

and LDLT factorizations, have been studied in depth and library quality software is21

available (see, for example, [9] and the references therein). However, their memory22

requirements and the difficulties in developing effective parallel implementations23

can limit their scope for solving extremely large problems, unless they are used in24

combination with an iterative approach. Iterative methods are attractive because25

they have low memory requirements and are simpler to parallelize. In this work,26

our interest is in using the conjugate gradient (CG) method to solve large sparse27

symmetric positive definite (SPD) systems of the form28

(1.1) Ax = b,29

where A ∈ Rn×n is SPD, b ∈ Rn is the given right-hand side, and x is the required30

solution. The solution of SPD systems is ubiquitous in scientific computing, being31

required in applications as diverse as least-squares problems, non-linear optimization32

subproblems, Monte-Carlo simulations, finite element analysis, and Kalman filtering.33

In the following, we assume no additional structure beyond a sparse SPD system.34

It is well known that the approximate solution xk at iteration k of the CG method35

satisfies36

(1.2) ‖x? − xk‖A ≤ 2‖x? − x0‖A
(√

κ− 1√
κ+ 1

)k
,37

where x? is the exact solution, x0 is the initial guess, ‖·‖A is the A-norm, and κ(A) =38

λmax/λmin is the spectral condition number (λmax and λmin denote the largest and39
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2 H. AL DAAS, T. REES, AND J. SCOTT

smallest eigenvalues of A). The rate of convergence also depends on the distribution40

of the eigenvalues (as well as on b and x0): eigenvalues clustered away from the41

origin lead to rapid convergence. If κ(A) is large and the eigenvalues of A are evenly42

distributed, the system needs to be preconditioned to enhance convergence. This43

can be done by applying a linear operator P to (1.1), where P ∈ Rn×n is chosen so44

that the spectral condition number of PA is small and applying P is inexpensive. In45

some applications, knowledge of the provenance of A can help in building an efficient46

preconditioner. Algebraic preconditioners do not assume such knowledge, and include47

incomplete Cholesky factorizations, block Jacobi, Gauss–Seidel, and additive Schwarz;48

see, for example, [36]. These are referred to as one-level or traditional preconditioners49

[7, 43]. In general, algebraic preconditioners bound the largest eigenvalues of PA but50

encounter difficulties in controlling the smallest eigenvalues, which can lie close to the51

origin, hindering convergence.52

Deflation strategies have been proposed to overcome the issues related to small53

eigenvalues. As explained in [25], the basic idea behind deflation is to “hide” certain54

parts of the spectrum of the matrix from the CG method, such that the CG iteration55

“sees” a system that has a much smaller condition number than the original matrix.56

The part of the spectrum that is hidden from CG is determined by the deflation57

subspace and the improvement in the convergence rate of the deflated CG method is58

dependent on the choice of this subspace. In the ideal case, the deflation subspace59

is the invariant subspace spanned by the eigenvectors associated with the smallest60

eigenvalues of A and the convergence rate is then governed by the “effective” spectral61

condition number associated with the remaining eigenvalues (that is, the ratio of the62

largest eigenvalue to the smallest remaining eigenvalue). The idea was first introduced63

in the late 1980s [8, 33], and has been discussed and used by a number of researchers64

[2, 3, 10, 14, 22, 23, 27, 32, 40, 41, 45, 46]. However, in most of these references,65

the deflation subspaces rely on the underlying partial differential equation and its66

discretization, and cannot be applied to more general systems or used as “black box”67

preconditioners. Algebraic two-level preconditioners have been proposed in [4, 11,68

15, 30, 43, 44]. Recently, a two-level Schur complement preconditioner based on the69

power series approximation was proposed in [50].70

In recent years, the study of randomized methods has become an active and71

promising research area in the field of numerical linear algebra (see, for example,72

[16, 31] and the references therein). The use of randomized methods to build73

preconditioners has been proposed in a number of papers, including [14, 18]. The74

approach in [14] starts by reordering the system matrix A to a 2 × 2 doubly75

bordered block diagonal form, which can be achieved using a nested dissection76

ordering. The Schur complement system must then be solved. Starting from77

a first-level preconditioner P, a deflation subspace is constructed via a low rank78

approximation. Although deflation can be seen as a low rank correction, using79

randomized methods to estimate the low rank term is not straightforward because80

the deflation subspace is more likely to be associated with the invariant subspace81

corresponding to the smallest eigenvalues of the preconditioned matrix, and not to82

its dominant subspace. In section 2, we review the ingredients involved in building83

our two-level preconditioner. This includes Nyström’s method for computing a low84

rank approximation of a matrix [12, 16, 34, 47, 48], basic ideas behind deflation85

preconditioners, and the two-level Schur complement preconditioners presented in86

[14, 27]. In section 3, we illustrate the difficulties in constructing these two-level87

preconditioners by analysing the eigenvalue problems that must be solved. We show88

that these difficulties are mainly associated with the clustering of eigenvalues near89

This manuscript is for review purposes only.



TWO-LEVEL NYSTRÖM–SCHUR PRECONDITIONER FOR SPD MATRICES 3

Identifier n nnz(A) κ(A) nΓ 2D/3D Application Source

bcsstk38 8,032 355,460 5.5e+16 2,589 2D Structural problem SSMC
ela2d 45,602 543,600 1.5e+8 4,288 2D Elasticity problem FF++
ela3d 9,438 312,372 4.5e+5 4,658 3D Elasticity problem FF++
msc10848 10,848 1,229,776 1.0e+10 4,440 3D Structural problem SSMC
nd3k 9,000 3,279,690 1.6e+7 1,785 3D Not available SSMC
s3rmt3m3 5,357 207,123 2.4e+10 2,058 2D Structural problem SSMC

Table 1
Set of test matrices. n and nnz(A) denote the order of A and the number of nonzero entries

in A disregarding, κ(A) is the spectral condition number, nΓ is the order of the Schur complement
(2.11). SSMC refers to SuiteSparse Matrix Collection [5]. FF++ refers to FreeFem++ [17].

the origin. Motivated by this analysis, in section 4 we propose reformulating the90

approximation problem.91

The new formulation leads to well-separated eigenvalues that lie away from92

the origin, and this allows randomized methods to be used to compute a deflation93

subspace. Our approach guarantees a user-defined upper bound on the expected value94

of the spectral condition number of the preconditioned matrix. Numerical results for95

our new preconditioner and comparisons with other approaches are given in section 5.96

Concluding remarks are made in section 6.97

Our main contributions are:98

• an analysis of the eigenvalue problems and solvers presented in [14, 27];99

• a reformulation of the eigenvalue problem so that it be efficiently solving using100

randomized methods;101

• a new two-level preconditioner for symmetric positive definite systems that102

we refer to as a two-level Nyström–Schur preconditioner;103

• theoretical bounds on the expected value of the spectral condition number of104

the preconditioned system.105

Test environment. In this study, to demonstrate our theoretical and practical106

findings, we report on numerical experiments using the test matrices given in Table 1.107

This set was chosen to include 2D and 3D problems having a range of densities and108

with relatively large spectral condition numbers. In the Appendix, results are given109

for a much larger set of matrices. For each test, the entries of the right-hand side110

vector f are taken to be random numbers in the interval [0, 1]. All experiments are111

performed using Matlab 2020b.112

Notation. Throughout this article, matrices are denoted using uppercase letters;113

scalars and vectors are lowercase. The pseudo inverse of a matrix C is denoted by C†114

and its transpose is given by C>. Λ(M) denotes the spectrum of the matrix M and115

κ(M) denotes its condition number. Λk = diag(λ1, . . . , λk) denotes a k × k diagonal116

matrix with entries on the diagonal equal to λ1, . . . , λk. S̃ (with or without a subscript117

or superscript) is used as an approximation to a Schur complement matrix. P (with118

or without a subscript) denotes a (deflation) preconditioner. M (with or without119

a subscript) denotes a two-level (deflation) preconditioner. Matrices with an upper120

symbol such as Z̃, Ẑ, and Z̆ denote approximations of the matrix Z. Euler’s constant121

is denoted by e.122

2. Background. We start by presenting a brief review of Nyström’s method for123

computing a low rank approximation to a matrix and then recalling key ideas behind124

two-level preconditioners; both are required in later sections.125

This manuscript is for review purposes only.



4 H. AL DAAS, T. REES, AND J. SCOTT

2.1. Nyström’s method. Given a matrix G, the Nyström approximation of a126

SPSD matrix B is defined to be127

(2.1) BG(G>BG)†(BG)>.128

We observe that there are a large number of variants based on different choices of129

G (for example, [16, 28, 31]). For q ≥ 0, the q-power iteration Nyström method is130

obtained by choosing131

(2.2) G = BqΩ,132

for a given (random) starting matrix Ω. Note that, in practice, for stability it is133

normally necessary to orthonormalize the columns between applications of B.134

The variant of Nyström’s method we employ is outlined in Algorithm 2.1. It gives135

a near-optimal low rank approximation to B and is particularly effective when the136

eigenvalues of B decay rapidly after the k-th eigenvalue [16, 31]. It requires only one137

matrix-matrix product with B (or q + 1 products if (2.2) is used). The rank of the138

resulting approximation is min(r, k), where r is the rank of D1, see Step 5.139

Algorithm 2.1 Nyström’s method for computing a low rank approximation to a
SPSD matrix.
Input: A SPSD matrix B ∈ Rn×n, the required rank k > 0, an oversampling

parameter p ≥ 0 such that k, p� n, and a threshold ε.

Output: B̃k = ŨkΣ̃kŨ
>
k ≈ B where Ũk is orthonormal Σ̃k is diagonal with non

negative entries.

1: Draw a random matrix G ∈ Rn×(k+p).
2: Compute F = BG.
3: Compute the QR factorization F = QR.
4: Set C = G>F .
5: Compute the EVD C = V1D1V

>
1 +V2D2V

>
2 , where D1 contains all the eigenvalues

that are at least ε.
6: Set T = RV1D

−1
1 (RV1)>.

7: Compute the EVD T = WEW>.

8: Set Ũ = QW , Ũk = Ũ(:, 1 : k), Σ̃ = E(1 : k, 1 : k), and B̃k = ŨkΣ̃kŨ
>
k .

Note that, if the eigenvalues are ordered in descending order, the success of140

Nyström’s method is closely related to the ratio of the (k + 1)th and the kth141

eigenvalues. If the ratio is approximately equal to one, q must be large to obtain142

a good approximation [37].143

2.2. Introduction to two-level preconditioners. Consider the linear system144

(1.1). As already noted, deflation techniques are typically used to shift isolated145

clusters of small eigenvalues to obtain a tighter spectrum and a smaller condition146

number. Such changes have a positive effect on the convergence of Krylov subspace147

methods. Consider the general (left) preconditioned system148

(2.3) PAx = Pb, P ∈ Rn×n.149

Given a projection subspace matrix Z ∈ Rn×k of full rank and k � n, define the150

nonsingular matrix E = Z>AZ ∈ Rk×k and the matrix Q = ZE−1Z> ∈ Rn×n. The151

deflation preconditioner PDEF ∈ Rn×n is defined to be [10]152

(2.4) PDEF = I −AQ.153
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TWO-LEVEL NYSTRÖM–SCHUR PRECONDITIONER FOR SPD MATRICES 5

It is straightforward to show that PDEF is a projection matrix and PDEFA has k zero154

eigenvalues (see [44] for basic properties of PDEF). To solve (1.1), we write155

x = (I − P>DEF)x+ P>DEFx.156157

Since Q is symmetric, P>DEF = I −QA, and so158

x = QAx+ P>DEFx = Qb+ P>DEFx,159160

and we only need to compute P>DEFx. We first find y that satisfies the deflated system161

(2.5) PDEFAy = PDEFb,162

then (due to the identity AP>DEF = PDEFA) we have that P>DEFy = P>DEFx. We therefore163

obtain the unique solution x = Qb+P>DEFy. The deflated system (2.5) is singular and164

can only be solved using CG if it is consistent [24], which is the case here since the165

same projection is applied to both sides of a consistent nonsingular system (1.1).166

The deflated system can also be solved using a preconditioner, giving a two-level167

preconditioner for the original system.168

Tang et al. [44] illustrate that rounding errors can result in erratic and slow169

convergence of CG using PDEF. They thus also consider an adapted deflation170

preconditioner171

(2.6) PA-DEF = I −QA+Q,172

that combines P>DEF with Q. In exact arithmetic, both PDEF and PA-DEF used with173

CG generate the same iterates. However, numerical experiments [44] show that the174

latter is more robust and leads to better numerical behavior of CG1.175

Let λn ≥ · · · ≥ λ1 > 0 be the eigenvalues of A with associated normalized176

eigenvectors vn, . . . , v1. For the ideal deflation preconditioner, Pideal, the deflation177

subspace is the invariant subspace spanned by the eigenvectors associated with the178

smallest eigenvalues. To demonstrate how Pideal modifies the spectrum of the deflated179

matrix, set Zk = [v1, . . . , vk] to be the n×k matrix whose columns are the eigenvectors180

corresponding to the smallest eigenvalues. It follows that E = Z>AZ is equal to181

Λk = diag(λ1, . . . , λk) and the preconditioned matrix is given by182

PidealA = A− ZkΛkZ
>
k .183184

Since Zk is orthonormal and its columns span an invariant subspace, the spectrum185

of PidealA is {λn, . . . , λk+1, 0}. Starting with x0 such that Z>k r0 = 0 (r0 is the186

initial residual), for l ≥ 0, Z>k (PidealA)lr0 = 0 and Z>k A
lr0 = 0. Hence the search187

subspace generated by the preconditioned CG (PCG) method lies in the invariant188

subspace spanned by vn, . . . , vk+1, which is orthogonal to the subspace spanned by189

the columns of Zk. Consequently, the effective spectrum of the operator that PCG190

sees is {λn, . . . , λk+1} and the associated effective spectral condition number is191

κeff(PidealA) = λn/λk+1.192

Using similar computations, the ideal adapted deflated system is given by:193

(2.7) PA-ideal = A− ZkΛ−1
k Z>k + ZkZ

>
k .194

1In [44], PDEF and PA-DEF are termed PDEF1 and PA-DEF2, respectively
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6 H. AL DAAS, T. REES, AND J. SCOTT

Furthermore, the spectrum of the operator that PCG sees is {λn, . . . , λk+1, 1, . . . , 1}195

and the associated effective spectral condition number is196

κeff(PA-idealA) = max{1, λn}/min{1, λk+1}.197

In practice, only an approximation of the ideal deflation subspace spanned by the198

columns of Zk is available. Kahl and Rittich [25] analyze the deflation preconditioner199

using Z̃k ≈ Zk and present an upper bound on the corresponding effective spectral200

condition number of the deflated matrix κ (PA). Their bound [25, Proposition 4.3],201

which depends on κ(A), κeff(PidealA), and the largest principal angle θ between Z̃k202

and Zk, is given by203

(2.8) κ (PA) ≤
(√

κ(A) sin θ +
√
κeff(PidealA)

)2

,204

where sin θ = ‖ZkZ>k − Z̃kZ̃>k ‖2.205

2.3. Schur Complement Preconditioners. This section reviews the Schur206

complement preconditioner with a focus on two-level variants that were introduced in207

[14, 27].208

One-level preconditioners may not provide the required robustness when used with209

a Krylov subspace method because they typically fail to capture information about210

the eigenvectors corresponding to the smallest eigenvalues. To try and remedy this, in211

their (unpublished) report, Grigori et al. [14] and, independently, Li et al. [27] propose212

a two-level preconditioner based on using a block factorization and approximating the213

resulting Schur complement.214

Applying graph partitioning techniques (for example, using the METIS package215

[26, 29]), A can be symmetrically permuted to the 2×2 doubly bordered block diagonal216

form217

(2.9) P>AP =

(
AI AIΓ
AΓI AΓ

)
,218

where AI ∈ RnI×nI is a block diagonal matrix, AΓ ∈ RnΓ×nΓ , AΓI ∈ RnΓI×nΓ and219

AIΓ = A>ΓI . For simplicity of notation, we assume that A is of the form (2.9) (and220

omit the permutation P from the subsequent discussion).221

The block form (2.9) induces a block LDLT factorization222

(2.10) A =

(
I

AΓIA
−1
I I

)(
AI

SΓ

)(
I A−1

I AIΓ
I

)
,223

where224

(2.11) SΓ = AΓ −AΓIA
−1
I AIΓ225

is the Schur complement of A with respect to AΓ. Provided the blocks within AI226

are small, they can be factorized cheaply in parallel using a direct algorithm (see,227

for example, [38]) and thus we assume that solving linear systems with AI is not228

computationally expensive. However, the SPD Schur complement SΓ is typically229

large and significantly denser than AΓ (its size increases with the number of blocks230

in AI) and, in large-scale practical applications, it may not be possible to explicitly231

assemble or factorize it.232
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TWO-LEVEL NYSTRÖM–SCHUR PRECONDITIONER FOR SPD MATRICES 7

Preconditioners may be derived by approximating S−1
Γ . An approximate block233

factorization of A−1 is234

M−1 =

(
I −A−1

I AIΓI
I

)(
A−1
I

S̃−1

)(
I

−AΓIA
−1
I I

)
,235

236

where S̃−1 ≈ S−1
Γ . If M−1 is employed as a preconditioner for A then the237

preconditioned system is given by238

(2.12) M−1A =

(
I A−1

I AIΓ(I − S̃−1SΓ)

S̃−1SΓ

)
,239

with Λ(M−1A) = {λ ∈ Λ(S̃−1SΓ)} ∪ {1}. Thus, to bound the condition number240

κ(M−1A), we need to construct S̃−1 so that κ(S̃−1SΓ) is bounded. Moreover, (2.12)241

shows that applying the preconditioner requires the efficient solution of linear systems242

with S̃−1SΓ and AI , the latter being relatively inexpensive. We therefore focus on243

constructing preconditioners S̃−1 for linear systems of the form244

(2.13) SΓw = f.245

Consider the first-level preconditioner obtained by setting246

(2.14) S̃−1
1 := A−1

Γ .247

Assume for now that we can factorize AΓ, although in practice it may be very large248

and a recursive construction of the preconditioner may then be needed (see [49]). Let249

the eigenvalues of the generalized eigenvalue problem250

(2.15) SΓz = λS̃1z251

be λnΓ
≥ · · · ≥ λ1 > 0. From (2.11), λnΓ

≤ 1 and so

κ(S̃−1
1 SΓ) =

λnΓ

λ1
≤ 1

λ1
.

As this is unbounded as λ1 approaches zero, we seek to add a low rank term to252

“correct” the approximation and shift the smallest k eigenvalues of S̃−1
1 SΓ. Let253

Λk = diag{λ1, . . . , λk} and let Zk ∈ RnΓ×k be the matrix whose columns are254

the corresponding eigenvectors. Without loss of generality, we assume Zk is AΓ-255

orthonormal. Let the Cholesky factorization of AΓ be256

(2.16) AΓ = R>ΓRΓ257

and define258

(2.17) S̃−1
2 := A−1

Γ + Zk(Λ−1
k − I)Z>k .259

S̃−1
2 is an additive combination of the first-level preconditioner S̃−1

1 and an adapted260

deflation preconditioner associated with the subspace spanned by the columns of261

Uk = RΓZk, which is an invariant subspace of R−1
Γ SΓR

−>
Γ . Substituting Uk into262

(2.17) and using (2.16),263

(2.18) S̃−1
2 = R−1

Γ (I + Uk(Λ−1
k − I)U>k )R−>Γ .264

This manuscript is for review purposes only.



8 H. AL DAAS, T. REES, AND J. SCOTT

Setting Q = UkΛ−1
k U>k in (2.6) gives265

PA-DEF = RΓS̃
−1
2 R>Γ .266267

Now S̃−1
2 SΓ = R−1

Γ PA-DEFR
−>
Γ SΓ and PA-DEFR

−>
Γ SΓR

−1
Γ are spectrally equivalent

and Λ(S̃−1
2 SΓ) = {λnΓ , λnΓ−1, ..., λk+1} ∪ {1}. It follows that

κ(S̃−1
2 SΓ) =

λnΓ

λk+1
≤ 1

λk+1
.

Grigori et al. [14] note that (2.15) is equivalent to the generalized eigenvalue268

problem269

(2.19) (AΓ − SΓ)z = AΓIA
−1
I AIΓz = σAΓz, σ = 1− λ.270

Setting u = RΓz and defining271

(2.20) H = R−>Γ AΓIA
−1
I AIΓR

−1
Γ ,272

(2.19) becomes273

(2.21) Hu = σu.274

Thus, the smallest eigenvalues λ of (2.15) are transformed to the largest eigenvalues275

σ of problems (2.19) and (2.21). Grigori et al. employ a randomized algorithm to276

compute a low rank eigenvalue decomposition (EVD) of H that approximates its277

largest eigenvalues and vectors, which are multiplied by R−1
Γ to obtain approximate278

eigenvectors of A−1
Γ SΓ.279

In [27], Li et al. write the inverse of the Schur complement SΓ as:280

S−1
Γ =

(
AΓ −AΓIA

−1
I AIΓ

)−1

=
(
R>ΓRΓ −AΓIA

−1
I AIΓ

)−1

= R−1
Γ (I −H)

−1
R−>Γ ,

(2.22)281

282

where the symmetric positive semidefinite (SPSD) matrix H is given by (2.20). Since
I − H = R−>Γ SΓR

−1
Γ is SPD, the eigenvalues σ1 ≥ . . . ≥ σnΓ of H belong to [0, 1].

Let the EVD of H be
H = UΣU>,

where U is orthonormal and Σ = diag{σ1, . . . , σnΓ}. It follows that283

S−1
Γ = R−1

Γ

(
I − UΣU>

)−1
R−>Γ

= R−1
Γ U (I − Σ)

−1
U>R−>Γ

= R−1
Γ

(
I + U

(
(I − Σ)

−1 − I
)
U>
)
R−>Γ

= A−1
Γ +R−1

Γ U
(

(I − Σ)
−1 − I

)
U>R−>Γ .

(2.23)284

285

If H has an approximate EVD of the form286

H ≈ U Σ̃U>, Σ̃ = diag{σ̃1, . . . , σ̃nΓ},287288
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TWO-LEVEL NYSTRÖM–SCHUR PRECONDITIONER FOR SPD MATRICES 9

then an approximation of S−1
Γ is289

S̃−1 = A−1
Γ +R−1

Γ U

((
I − Σ̃

)−1

− I
)
U>R−>Γ .(2.24)290

291

The simplest selection of Σ̃ is the one that ensures the k largest eigenvalues of (I−Σ̃)−1292

match the largest eigenvalues of (I−Σ)−1. Li et al. set Σ̃ = diag(σ1, . . . , σk, θ, . . . , θ),293

where θ ∈ [0, 1]. The resulting preconditioner can be written as294

(2.25) S̃−1
θ =

1

1− θ
A−1

Γ + Zk

(
(I − Σk)

−1 − 1

1− θ
I

)
Z>k ,295

where Σk = diag(σ1, . . . , σk) and the columns of Zk = R−1
Γ Uk are the eigenvectors296

corresponding to the k largest eigenvalues of H. In [27], it is shown that κ(S̃−1
θ S) =297

(1− σnΓ)/(1− θ), which takes its minimum value for θ = σk+1.298

In the next section, we analyse the eigenvalue problems that need to be solved299

to construct the preconditioners (2.17) and (2.25). In particular, we show that the300

approaches presented in [14, 27] for tackling these problems are inefficient because of301

the eigenvalue distribution.302

3. Analysis of Hu = σu.303

3.1. Use of the Lanczos method. Consider the eigenproblem:304

Given ε > 0,find all the eigenpairs (λ, z) ∈ R× RnΓ such that

SΓz = λAΓz, λ < ε.
305

306

This can be rewritten as:307

Given ε > 0,find all the eigenpairs (λ, z) ∈ R× RnΓ such that

(I −H)u = λu, z = R−1
Γ u, λ < ε,

(3.1)308

309

where RΓ and H are given by (2.16) and (2.20). Consider also the eigenproblem:310

Given ε > 0,find all the eigenpairs (σ, u) ∈ R× RnΓ such that

Hu = σu, σ > 1− ε.
(3.2)311

312

As already observed, each eigenpair (λ, z) of (3.1) corresponds to the eigenpair (1 −
λ,RΓz) of (3.2). Consider using the Lanczos method to solve these eigenproblems.
The Krylov subspace at iteration j generated for (3.1) is

Kj((I −H), v1) = span(v1, (I −H)v1, . . . , (I −H)j−1v1),

while the subspace generated for (3.2) is

Kj(H, v1) = span(v1, Hv1, . . . ,H
j−1v1).

It is clear that, provided the same starting vector v1 is used, Kj((I − H), v1) and
Kj(H, v1) are identical. Suppose that [Vj , vj+1] is the output of the Lanczos basis of
the Krylov subspace, then the subspace relations that hold at iteration j are

(I −H)Vj = VjTj + vj+1h
>
j ,
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10 H. AL DAAS, T. REES, AND J. SCOTT

HVj = Vj(I − Tj)− vj+1h
>
j ,

where Tj ∈ Rj×j is a symmetric tridiagonal matrix and hj ∈ Rj . The eigenpair313

(λ, z) (respectively, (σ, u)) corresponding to the smallest (respectively, largest)314

eigenvalue in (3.1) (respectively, (3.2)) is approximated by the eigenpair (λ̃, R−1
Γ Vj ũ)315

(respectively, (σ̃,Vj ũ)) corresponding to the smallest (respectively, largest) eigenvalue316

of Tj (respectively, I − Tj). To overcome memory constraints, the Lanczos procedure317

is typically restarted after a chosen number of iterations, at each restart discarding318

the non convergent part of the Krylov subspace [42]. Hence, starting with the same319

v1 and performing the same number of iterations per cycle, in exact arithmetic the320

accuracy obtained when solving (3.1) and (3.2) is identical.321

Having shown that the convergence of Lanczos’ method for solving (3.1) and (3.2)322

is the same, we focus on (3.2). In Figure 1, for each of our test matrices in Table 1
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Fig. 1. Largest 100 eigenvalues of H = R−>Γ AΓIA
−1
I AIΓR

−1
Γ associated with our test matrices

computed to an accuracy of 10−8 using the Krylov-Schur method [42].

323
we plot the 100 largest eigenvalues of the matrix H given by (2.20). We see that the324

largest eigenvalues (which are the ones that we require) are clustered near one and325

they do not decay rapidly. As there are a significant number of eigenvalues in the326

cluster, computing the largest k (for k = O(10)) and the corresponding eigenvectors327

with sufficient accuracy using the Lanczos method is challenging. Similar distributions328

were observed for the larger test set that we report on in the Appendix, particularly329

for problems for which the one-level preconditioner S̃1 was found to perform poorly,330

which is generally the case when κ(A) is large. Table 2 reports the Lanczos iteration331

counts (itLan) for computing the k = 20 and 40 largest eigenpairs (that is, the number332

of linear systems that are solved in the Lanczos method). In addition, we present the333

PCG iteration count (itPCG) for solving the linear system (2.13) using the first-level334

preconditioner S̃1 = A−1
Γ and the two-level preconditioner S̃2 given by (2.17). We335

see that, in terms of the total iteration count, the first-level preconditioner is the336

more efficient option. It is of interest to consider whether relaxing the convergence337

tolerance εLan in the Lanczos method can reduce the total iteration count for S̃2.338

Table 3 illustrates the effect of varying εLan for problem el3d (results for the other test339

problems are consistent). Although itLan decreases as εLan increases, itPCG increases340

and the total count still exceeds the 175 PCG iterations required by the first-level341

preconditioner S̃1.342

As already observed, in [49] a recursive (multilevel) scheme is proposed to343

help mitigate the computational costs of building and applying the preconditioner.344
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S̃2

S̃1 k = 20 k = 40

Identifier itPCG itLan itPCG total itLan itPCG total

bcsstk38 584 797 122 919 730 67 797
el2d 914 1210 231 1441 982 120 1102
el3d 174 311 37 348 389 27 416
msc10848 612 813 116 929 760 63 823
nd3k 603 1796 143 1939 1349 105 1454
s3rmt3m3 441 529 70 599 480 37 517

Table 2
The Lanczos iteration count (itLan) and the iteration count for PCG (itPCG). The convergence

tolerance for the Lanczos method and PCG is 10−6. The size of the Krylov subspace per cycle is
2k.

k = 20 k = 40

εLan itLan itPCG total itLan itPCG total

0.1 50 131 181 80 101 181
0.08 50 131 181 100 85 185
0.06 60 121 181 100 85 185
0.04 82 100 182 120 71 191
0.02 127 64 201 207 37 244
0.01 169 41 210 259 32 291
0.005 213 38 251 316 29 345
0.001 247 37 284 372 28 400

Table 3
Problem el3d and two-level preconditioner S̃2: sensitivity of the number of the Lanczos iteration

count (itLan) and the iteration count for PCG (itPCG) to the convergence tolerance εLan. The PCG
convergence tolerance is 10−6. The size of the Krylov subspace per cycle is 2k.

Nevertheless, the Lanczos method is still used, albeit with reduced costs for applying345

the operator matrices.346

3.2. Use of Nyström’s method. As suggested in [14], an alternative approach347

to approximating the dominant subspace of H is to use a randomized method,348

specifically a randomized eigenvalue decomposition. Because H is SPSD, Nyström’s349

method can be use. Results are presented in Table 4 for problem el3d (results for our350

other test examples are consistent with these). Here p is the oversampling parameter351

and q is the power iteration parameter. These show that, as with the Lanczos method,352

Nyström’s method struggles to approximate the dominant eigenpairs of H. Using353

k = 20 (respectively, 40) exact eigenpairs, PCG using S̃2 requires 37 (respectively,354

28) iterations. To obtain the same iteration counts using vectors computed using355

Nyström’s method requires the oversampling parameter to be greater than 2000,356

which is clearly prohibitive. Using the power iteration improves the quality of the357

approximate subspace. However, the large value of q needed to decrease the PCG358

iteration count means a large number of linear systems must be solved with AΓ, in359

addition to the work involved in the orthogonalization that is needed between the360

power iterations to maintain stability. Indeed, it is sufficient to look at Figure 1 to361

predict this behaviour for any randomized method applied to H. The lack of success362

of existing strategies motivates us, in the next section, to reformulate the eigenvalue363
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problem to one with a spectrum that is easy to approximate.364

p k = 20 k = 40

100 171 169
200 170 165
400 165 161
800 155 146

1600 125 111
3200 55 45

q k = 20 k = 40

0 172 171
20 121 87
40 86 48
60 68 34
80 55 30

100 46 29

Table 4
PCG iteration counts for problem el3d using the two-level preconditioner S̃2 constructed using

a rank k approximation of H = R−>Γ AΓIA
−1
I AIΓR

−1
Γ . The PCG convergence tolerance is 10−6.

Nyström’s method applied to H with the oversampling parameter p ≥ 100 and the power iteration
parameter q = 0 (left) and with p = 0 and q ≥ 0 (right).

4. Nyström–Schur two-level preconditioner. In this section, we propose365

reformulating the eigenvalue problem to obtain a new one such that the desired366

eigenvectors correspond to the largest eigenvalues and these eigenvalues are well367

separated from the remaining eigenvalues: this is what is needed for randomized368

methods to be successful.369

4.1. Two-level preconditioner for SΓ. Applying the Sherman Morrison370

Woodbury identity [13, 2.1.3], the inverse of the Schur complement SΓ (2.11) can371

be written as:372

S−1
Γ = A−1

Γ +A−1
Γ AΓI(AI −AIΓA−1

Γ AΓI)
−1AIΓA

−1
Γ

= A−1
Γ +A−1

Γ AΓIS
−1
I AIΓA

−1
Γ ,

(4.1)373

374

where375

(4.2) SI = AI −AIΓA−1
Γ AΓI376

is the Schur complement of A with respect to AI . Using the Cholesky factorization377

(2.16), we have378

(4.3) RΓS
−1
Γ R>Γ = I +R−>Γ AΓIS

−1
I AIΓR

−1
Γ .379

Note that if (λ, u) is an eigenpair of R−>Γ SΓR
−1
Γ , then ( 1

λ − 1, u) is an eigenpair of380

R−>Γ AΓIS
−1
I AIΓR

−1
Γ . Therefore, the cluster of eigenvalues of R−>Γ SΓR

−1
Γ near the381

origin (which correspond to the cluster of eigenvalues of H near 1) correspond to382

very large and highly separated eigenvalues of R−>Γ AΓIS
−1
I AIΓR

−1
Γ . Hence, using383

randomized methods to approximate the dominant subspace of R−>Γ AΓIS
−1
I AIΓR

−1
Γ384

can be an efficient way of computing a deflation subspace for R−>Γ SΓR
−1
Γ . Now385

assume that we have a low rank approximation386

(4.4) R−>Γ AΓIS
−1
I AIΓR

−1
Γ ≈ ŬkΣ̆kŬ

>
k ,387

where Ŭk ∈ RnΓ×k is orthonormal and Σ̆k ∈ Rk×k is diagonal. Combining (4.3) and388

(4.4), we can define a preconditioner for R−>Γ SΓR
−1
Γ to be389

(4.5) P1 = I + ŬkΣ̆kŬ
>
k .390
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The preconditioned matrix P1R
−>
Γ SΓR

−1
Γ is spectrally equivalent to R−1

Γ P1R
−>
Γ SΓ.391

Therefore, the preconditioned system can be written as392

(4.6) M1SΓ = R−1
Γ P1R

−>
Γ SΓ =

(
A−1

Γ + Z̆kΣ̆kZ̆
>
k

)
SΓ,393

where Z̆k = R−1
Γ Ŭk. If (4.4) is obtained using a truncated EVD denoted by UkΣkU

>
k ,394

then Ŭk = Uk and the subspace spanned by the columns of Uk is an invariant subspace395

of RΓS
−1
Γ R>Γ and of its inverse R−1

Γ SΓR
−>
Γ . Furthermore, using the truncated EVD,396

(4.5) is an adapted deflation preconditioner for R−>Γ SΓR
−1
Γ . Indeed, as the columns of397

Uk are orthonormal eigenvectors, we have from (4.3) that RΓS
−1
Γ R>ΓUk = Uk(I+Σk).398

Hence R−>Γ SΓR
−1
Γ Uk = Uk(I + Σk)−1 and the preconditioned matrix is399

PA-DEFR
−>
Γ SΓR

−1
Γ = R−>Γ SΓR

−1
Γ + UkΣk(I + Σk)−1U>k400

= R−>Γ SΓR
−1
Γ + Uk ((I + Σk)− I) (I + Σk)−1U>k401

= R−>Γ SΓR
−1
Γ − Uk(I + Σk)−1U>k + UkU

>
k ,402403

which has the same form as the ideal adapted preconditioned matrix (2.7).404

Note that given the matrix Ŭk in the approximation (4.4), then following405

subsection 2.2, we can define a deflation preconditioner for R−>Γ SΓR
−1
Γ . Setting406

Ek = Ŭ>k R
−>
Γ SΓR

−1
Γ Ŭk and Q = ŬkE

−1Ŭ>k , the deflation preconditioner is407

(4.7) P1-A-DEF = I −QR−>Γ SΓR
−1
Γ +Q.408

The preconditioned Schur complement P1-A-DEFR
−>
Γ SΓR

−1
Γ is spectrally similar to409

R−1
Γ P1-A-DEFR

−>
Γ SΓ and thus410

(4.8) M1-A-DEF = R−1
Γ P1-A-DEFR

−>
Γ411

is a two-level preconditioner for SΓ.412

4.2. Lanczos versus Nyström. The two-level preconditioner (4.8) relies on413

computing a low-rank approximation (4.4). We now consider the difference between414

using the Lanczos and Nyström methods for this.415

Both methods require the application of R−>Γ AΓIS
−1
I AIΓR

−1
Γ to a set of k + p416

vectors, where k > 0 is the required rank and p ≥ 0. Because explicitly computing417

the SPD matrix SI = AI − AIΓA−1
Γ AΓI and factorizing it is prohibitively expensive,418

applying S−1
I must be done using an iterative solver.419

The Lanczos method builds a Krylov subspace of dimension k + p in order to420

compute a low-rank approximation. Therefore, k + p linear systems must be solved,421

each with one right-hand side, first for RΓ, then for SI , and then for R>Γ . However,422

the Nyström method requires the solution of only one linear system with k+ p right-423

hand sides for RΓ, then for SI , and then for R>Γ . This allows the use of matrix-matrix424

operations rather than less efficient matrix-vector operations. Moreover, as we will425

illustrate in section 5, block Krylov subspace methods, such as block CG [35], for426

solving the system with SI yield faster convergence than their classical counterparts.427

When the Nyström method is used, we call the resulting preconditioner (4.8) the428

Nyström–Schur preconditioner.429

4.3. Avoiding computations with RΓ. For large scale problems, computing430

the Cholesky factorization AΓ = R>ΓRΓ is prohibitive and so we would like to avoid431
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computations with RΓ. We can achieve this by using an iterative solver to solve linear432

systems with AΓ. Note that this is possible when solving the generalized eigenvalue433

problem (2.15). Because AΓ is typically well conditioned, so too is RΓ. Thus, we can434

reduce the cost of computing the Nyström–Schur preconditioner by approximating435

the SPSD matrix AΓIS
−1
I AIΓ (or even by approximating S−1

I ). Of course, this needs436

to be done without seriously adversely affecting the preconditioner quality. Using an437

approximate factorization438

(4.9) AΓIS
−1
I AIΓ ≈ W̃kΣ̃kW̃

>
k ,439

an alternative deflation preconditioner is440

P2 = I +R−>Γ W̃kΣ̃kW̃
>
k R
−1
Γ ,441

= R−>Γ

(
AΓ + W̃kΣ̃kW̃

>
k

)
R−1

Γ .442
443

The preconditioned Schur complement P2R
−>
Γ SΓR

−1
Γ is spectrally similar to444

R−1
Γ P2R

−>
Γ SΓ and, setting Z̃k = A−1

Γ W̃k, we have445

(4.10) M2SΓ = R−1
Γ P2R

−>
Γ SΓ = (A−1

Γ + Z̃kΣ̃kZ̃
>
k )SΓ.446

Thus M2 = A−1
Γ + Z̃kΣ̃kZ̃

>
k is a variant of the Nyström–Schur preconditioner for SΓ447

that avoids computing RΓ.448

Alternatively, assuming we have an approximate factorization449

(4.11) S−1
I ≈ V̂kΣ̂kV̂

>
k ,450

yields
P3 = I +R−>Γ AΓI V̂kΣ̂kV̂

>
k AIΓR

−1
Γ .

Again, P3R
−>
Γ SΓR

−1
Γ is spectrally similar to R−1

Γ P3R
−>
Γ SΓ and, setting Ẑk =451

A−1
Γ AΓI V̂k, we have452

(4.12) M3SΓ = R−1
Γ P3R

−>
Γ SΓ = (A−1

Γ + ẐkΣ̂kẐ
>
k )SΓ,453

which gives another variant of the Nyström–Schur preconditioner. In a similar way454

to definingM1-A-DEF (4.7), we can defineM2-A-DEF andM3-A-DEF. Note thatM2-A-DEF455

and M3-A-DEF also avoid computations with RΓ.456

4.4. Nyström–Schur preconditioner. Algorithm 4.1 presents the457

construction of the Nyström–Schur preconditioner M2; an analogous derivation458

yields the variantM3. Step 3 is the most expensive step, that is, solving the nI × nI459

SPD linear system460

(4.13) SIX = F,461

where F ∈ RnI×(k+p) and SI = AI −AIΓA−1
Γ AΓI . Using an iterative solver requires a462

linear system solve with AΓ on each iteration. Importantly for efficiency, the number463

of iterations can be limited by employing a large relative tolerance when solving464

(4.13) without adversely affecting the performance of the resulting preconditioner.465

Numerical experiments in section 5 illustrate this robustness.466

Observe that applying M2 to a vector requires the solution of a linear system467

with AΓ and a low rank correction; see Step 12.468
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Algorithm 4.1 Construction of the Nyström–Schur preconditioner (4.10)

Input: A in block form (2.9), k > 0 and p ≥ 0 (k, p� nΓ) and ε > 0.
Output: Two-level preconditioner for the nΓ × nΓ Schur complement SΓ.

1: Draw a random matrix G ∈ RnΓ×(k+p).
2: Compute F = AIΓG.
3: Solve SIX = F .
4: Compute Y = AΓIX.
5: Compute Y = QR.
6: Set C = G>Y .
7: Compute the EVD C = V1D1V

>
1 +V2D2V

>
2 , where D1 contains all the eigenvalues

that are at least ε.
8: Set T = RV1D

−1
1 V >1 R>.

9: Compute the EVD T = WEW>.

10: Set Ũ = YW (:, 1 : k), Σ = E(1 : k, 1 : k).

11: Solve AΓZ = Ũ .
12: Define the preconditioner M2 = A−1

Γ + ZΣZ>.

4.5. Estimation of the Spectral Condition Number. In this section, we469

provide an expectation of the spectral condition number of SΓ preconditioned by470

the Nyström–Schur preconditioner. Saibaba [37] derives bounds on the angles471

between the approximate singular vectors computed using a randomized singular472

value decomposition and the exact singular vectors of a matrix. It is straightforward473

to derive the corresponding bounds for the Nyström method. Let ΠM denote474

the orthogonal projector on the space spanned by the columns of the matrix M .475

Let (λj , uj), j = 1, . . . , k, be the dominant eigenpairs of R−>Γ SΓR
−1
Γ . Following476

the notation in Algorithm 2.1, the angle θj = ∠(uj , Ũ) between the approximate477

eigenvectors Ũ ∈ RnΓ×(k+p) of R−>Γ SΓR
−1
Γ and the exact eigenvector uj ∈ RnΓ478

satisfies479

(4.14) sin∠(uj , Ũ) = ‖uj −ΠŨuj‖2 ≤ γ
q+1
j,k c,480

where q is the power iteration count (recall (2.2)), γj,k is the gap between λ−1
j − 1481

and λ−1
k+1 − 1 given by482

(4.15) γj,k = (λ−1
k+1 − 1)/(λ−1

j − 1),483

and c has the expected value484

(4.16) E(c) =

√
k

p− 1
+
e
√

(k + p)(nΓ − k)

p
,485

where k is the required rank and p ≥ 2 is the oversampling parameter. Hence,486

(4.17) E
(

sin∠(uj , Ũ)
)

= E
(
‖uj −ΠŨuj‖2

)
≤ γq+1

j,k E(c).487

Note that if λj ≤ 1/2 then γj,k ≤ 2λj/λk+1 (j = 1, . . . , k).488

Proposition 4.1. Let the EVD of the SPD matrix I −H = R−>Γ SΓR
−1
Γ be[

U⊥ Uk
] [Λ⊥

Λk

] [
U>⊥
U>k

]
,
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where Λ⊥ ∈ R(nΓ−k)×(nΓ−k) and Λk ∈ Rk×k are diagonal matrices with the eigenvalues489

(λi)k≥i≥1 and (λi)nΓ≥i≥k+1, respectively, in decreasing order. Furthermore, assume490

that λk ≤ 1/2. Let the columns of Ũ ∈ RnΓ×(k+p) be the approximate eigenvectors of491

I −H computed using the Nyström method and let492

P = I − (I −H)ŨE−1Ũ> with E = Ũ>(I −H)Ũ ,493

be the associated deflation preconditioner. Then, the effective condition number of the494

two-level preconditioner P(I −H) = PR−>Γ SΓR
−1
Γ satisfies495

(4.18) E
(√

κeff (P(I −H))
)
≤ c1

√
λnΓ

λk+1
,496

where c21 is independent of the spectrum of I −H and can be bounded by a polynomial497

of degree 3 in k.498

Proof. Let x ∈ RnΓ . Since u1, . . . , unΓ
form an orthogonal basis of RnΓ , there499

exists α1, . . . , αnΓ ∈ R such that x =
∑nΓ

i=1 αiui. In [25, Theorem 3.4], Kahl and500

Rittich show that, if for some positive constant cK , Ũ satisfies501

(4.19) ‖x−ΠŨx‖
2
2 ≤ cK

‖x‖2I−H
‖I −H‖2

,502

then the effective condition number of P(I −H) satisfies

κeff (P(I −H)) ≤ cK .

Let t ≤ k and consider503

‖x−ΠŨx‖2 = ‖
nΓ∑
i=1

αiui −ΠŨ

nΓ∑
i=1

αiui‖2504

≤ ‖
nΓ∑

i=t+1

(I −ΠŨ )αiui‖2 +

t∑
i=1

|αi|‖ui −ΠŨui‖2505

≤ ‖
nΓ∑

i=t+1

αiui‖2 +

t∑
i=1

|αi|‖ui −ΠŨui‖2.506

507

The last inequality is obtained using the fact that I −ΠŨ is an orthogonal projector.508

Now bound each term on the right separately. We have509

‖
nΓ∑

i=t+1

αiui‖2 ≤
1√
λt+1

‖
nΓ∑

i=t+1

√
λt+1αiui‖2 ≤

1√
λt+1

‖
nΓ∑

i=t+1

√
λiαiui‖2510

≤ 1√
λt+1

nΓ∑
i=t+1

λiα
2
i =

1√
λt+1

‖x−ΠUtx‖I−H =

√
λnΓ

λt+1

‖x−ΠUt
x‖I−H√

‖I −H‖2
.511

512
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From (4.15), γi,k ≤ 1 for i = 1, . . . , t, thus,513

t∑
i=1

|αi|‖ui −ΠŨui‖2 ≤
t∑
i=1

|αi|γq+1
i,k c ≤ cγq+

1
2

t,k

t∑
i=1

|αi|
√
γi,k514

= cγ
q+ 1

2

t,k

√
λ−1
k+1 − 1

t∑
i=1

|αi|
1√

λ−1
i − 1

515

≤ cγq+
1
2

t,k

1√
λk+1

t∑
i=1

|αi|
1√

λ−1
i − 1

.516

517

Assuming that λi ≤ 1/2 for i = 1, . . . , t, we have518

t∑
i=1

|αi|‖ui −ΠŨui‖2 ≤
√

2cγ
q+ 1

2

t,k

1√
λk+1

t∑
i=1

|αi|
1√
λ−1
i

519

≤
√

2cγ
q+ 1

2

t,k

1√
λk+1

t∑
i=1

|αi|
√
λi.520

521

Using the fact that the l1 and l2 norms are equivalent, we have522

t∑
i=1

|αi|‖ui −ΠŨui‖2 ≤ c
√

2tγ
q+ 1

2

t,k

1√
λk+1

√√√√ t∑
i=1

α2
iλi523

= c
√

2tγ
q+ 1

2

t,k

1√
λk+1

‖ΠUtx‖I−H524

= c
√

2tγ
q+ 1

2

t,k

√
λnΓ

λk+1

‖ΠUt
x‖I−H√

‖I −H‖2
.525

526

Since λk ≥ λt we have527

t∑
i=1

|αi|‖ui −ΠŨui‖2 ≤ c
√

2tγ
q+ 1

2

t,k

√
λnΓ

λt+1

‖ΠUt
x‖I−H√

‖I −H‖2
.528

529

It follows that530

‖x−ΠŨx‖2 ≤

√
λnΓ

λt+1

‖x−ΠUt
x‖I−H√

‖I −H‖2
+ c
√

2tγ
q+ 1

2

t,k

√
λnΓ

λt+1

‖ΠUt
x‖I−H√

‖I −H‖2
531

≤
√

2 max(c
√

2tγ
q+ 1

2

t,k , 1)

√
λnΓ

λt+1

‖x‖I−H√
‖I −H‖2

.532

533

Hence (4.19) is satisfied and we have534

κeff (P(I −H)) ≤ 2 max(2c2tγ2q+1
t,k , 1)

λnΓ

λt+1
.535

Thus,536

E
(√

κeff (P(I −H))
)
≤
√

2 max(E(c)
√

2tγ
q+ 1

2

t,k , 1)

√
λnΓ

λt+1
.537
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Since t is chosen arbitrarily between 1 and k we have538

(4.20) E
(√

κeff (P(I −H))
)
≤
√

2 min
1≤t≤k

(
max

(
E(c)
√

2tγ
q+ 1

2

t,k , 1
)√ λnΓ

λt+1

)
.539

Because E(c) can be bounded by a polynomial of degree 1 in k and γt,k ≤ 1,540

max(4tγ2q+1
t,k (E(c))

2
, 2) can be bounded by a polynomial of degree 3 in k independent541

of the spectrum of I −H.542

Note that, in practice, when the problem is challenging, a few eigenvalues of543

R−>Γ SΓR
−1
Γ are close to the origin. This is reflected in a rapid and exponential544

decay of the values of the entries of Λ−1 − I. Figure 2 depicts the bound obtained545

in Proposition 4.1 for different values of k and q for problem s3rmt3m3.546

5 10 20 40

k

10
2

10
4

10
6

q=0

q=1

q=2

1
/

k

Fig. 2. Problem s3rmt3m3: Values of the bound (4.20) on
(
E
(√

κeff (P(I −H))
))2

for a range
of values of k and q.

5. Numerical Experiments. We use 64 subdomains (i.e., AI is a 64-block547

diagonal matrix) for each of our test matrices with the exception of one problem. The548

matrix nd3k is much denser than the others, and we use only two blocks (to reduce549

the runtime). For comparison purposes, we include results for the Schur complement550

preconditioners S̃1 and S̃2 given by (2.14) and (2.17), respectively. As demonstrated551

in subsection 3.1, the latter is too costly to be practical, however, its performance552

is the ideal since it guarantees the smallest spectral condition number for a fixed553

deflation subspace. Therefore, the quality of the Nyström–Schur preconditioner will554

be measured in terms of how close its performance is to that of S̃2 and the reduction in555

iteration it gives compared to S̃1. For a given problem, the right-hand side vector is the556

same for all the tests: it is generated randomly with entries from the standard normal557

distribution. The relative convergence tolerance for PCG is 10−6. Unless otherwise558

specified, the parameters within Nyström’s method (Algorithm 2.1) are rank k = 20,559

oversampling p = 0, and power iteration q = 0. To ensure fair comparisons, the560

random matrices generated in different runs of the Nyström algorithm use the same561

seed. We employ the Nyström–Schur variant M2 (4.10) (recall that its construction562

does not require the Cholesky factors of AΓ). The relative convergence tolerance used563

when solving the SPD system (4.13) is εSI
= 0.1. This system (4.13) is preconditioned564

by the block diagonal matrix AI . We denote by itSI
the number of block PCG565

iterations required to solve (4.13) during the construction of the Nyström–Schur566

preconditioners (it is zero for S̃1 and S̃2), and by itPCG the PCG iteration count567
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Fig. 3. Histogram of the PCG iteration counts for (4.13) for problem bcsstk38. The number of
right hand sides for which the iteration count is between [k, k + 10), k = 100, . . . , 240, is given.

Classic Block

Identifier iters itPCG iters itPCG

bcsstk38 238 186 46 173
el2d 549 261 72 228
el3d 95 56 24 52
msc10848 203 194 47 166
nd3k 294 191 32 178
s3rmt3m3 403 157 37 98

Table 5
A comparison of the performance of classic and block PCG. iters denotes the iteration count

for solving (4.13) (details in the text) and itPCG is the iteration count for solving (2.13).

for solving (2.13). The total number of iterations is ittotal = itSI
+ itPCG. We use the568

code [1] to generate the numerical experiments.569

5.1. Linear system with SI . We start by considering how to efficiently570

compute an approximate solution of (4.13).571

5.1.1. Block and classic CG. The system (4.13) has k + p right hand sides.572

The number of iterations required by PCG to solve each right hand side is different573

and the variation can be large; this is illustrated in Figure 3 for problem bcsstk38.574

Here we report the number of right hand sides for which the iteration count lies in575

the interval [k, k + 10), k = 100, . . . , 240. For example, there are 4 right hand sides576

for which the count is between 110 and 119. Similar behaviour was observed for our577

other test problems.578

Table 5 reports the iteration counts for the classical PCG method and the579

breakdown-free block PCG method [21, 35]. For PCG, iters is the largest PCG580

iteration count over the k + p right hand sides. For the block method, iters = itSI
is581

the number of block PCG iterations. As expected from the theory, the block method582

significantly reduces the (maximum) iteration count. For our examples, it also leads583

to a modest reduction in the iteration count itPCG for solving (2.13).584

5.1.2. Impact of tolerance εSI
. We now study the impact of the convergence585

tolerance εSI
used when solving (4.13) on the quality of the Nyström–Schur586

preconditioner. In Table 6, we present results for three test problems that illustrate587

the (slightly) different behaviors we observed. The results demonstrate numerically588
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M2 S̃1 S̃2

Identifier εSI
itSI

itPCG

el2d

0.8 1 500+

914 231
0.5 68 228
0.3 70 228
0.1 72 228
0.01 78 228

el3d

0.8 1 173

174 37
0.5 2 171
0.3 22 52
0.1 24 52
0.01 27 52

nd3k

0.8 32 178

603 143
0.5 32 178
0.3 32 178
0.1 32 178
0.01 33 178

Table 6
The effects of the convergence tolerance εSI

on the quality of the Nyström–Schur preconditioner.

Identifier M1 M1-A-DEF M2 M2-A-DEF M3 M3-A-DEF S̃1 S̃2

bcsstk38 218 218 219 219 360 313 584 122
el2d 266 267 300 300 282 282 914 231
el3d 73 72 76 75 78 76 174 37
msc10848 206 205 213 211 216 222 612 116
nd3k 205 205 210 210 211 211 603 143
s3rmt3m3 127 127 135 134 161 153 441 70

Table 7
Comparison of ittotal for the variants of the Nyström–Schur preconditioner and S̃1 and S̃2.

εSI
= 0.1.

that a large tolerance can be used without affecting the quality of the preconditioner.589

Indeed, using εSI
= 0.3 leads to a preconditioner whose efficiency is close to that of the590

ideal (but impractical) two-level preconditioner S̃2. The use of a large εSI
to limit itSI

591

is crucial in ensuring low construction costs for the Nyström–Schur preconditioners.592

5.2. Type of preconditioner. We next compare the performances of the593

variantsMi andMi-A-DEF (i = 1, 2, 3) of the Nyström–Schur preconditioner presented594

in section 4. In Table 7, we report the total iteration count ittotal. All the variants595

have similar behaviors and have a significantly smaller count than the one-level596

preconditioner S̃1.597

5.3. Varying the rank and the oversampling parameter. We now look598

at varying the rank k within the Nyström algorithm and demonstrate numerically599

that the efficiency of the preconditioner is robust with respect to the oversampling600

parameter p. For problem s3rmt3m3, Table 8 compares the iteration counts for M2601

with that of the ideal two-level preconditioner S̃2 for k ranging from 5 to 320. For S̃1,602

the iteration count is 441. This demonstrates the effectiveness of the Nyström–Schur603

preconditioner in reducing the iteration count. Increasing the size of the deflation604

subspace (the rank k) steadily reduces the iteration count required to solve the SI605
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k 5 10 20 40 80 160 320

M2
itSI

97 57 37 23 16 11 8
itPCG 244 203 98 53 30 20 14

S̃2 itPCG 212 153 70 37 22 13 9

Table 8
Problem s3rmt3m3: Impact of the rank k on the iteration counts (p = 0).

p 0 5 10 20 40

itSI
37 31 28 23 20

itPCG 98 86 79 77 74

Table 9
Problem s3rmt3m3: Impact of the oversampling parameter p on the iteration counts (k = 20).

system (4.13). For the same test example, Table 9 presents the iteration counts for606

a range of values of the oversampling parameter p (here k = 20). We observe that607

the counts are relatively insensitive to p but, as p increases, itPCG reduces towards608

the lower bound of 70 PCG iterations required by S̃2. Similar behavior was noticed609

for our other test examples. Although increasing k and p improves the efficiency610

of the Nyström–Schur preconditioner, this comes with extra costs during both the611

construction of the preconditioner and its application. Nevertheless, the savings from612

the reduction in the iteration count and the efficiency in solving block linear systems613

of equations for moderate block sizes (for example, k = 40) typically outweigh the614

increase in construction costs.615

5.4. Comparisons with incomplete Cholesky factorization616

preconditioners. Finally, we compare the Nyström–Schur preconditioner with617

two incomplete Cholesky factorization preconditioners applied to original system.618

The first is the Matlab variant ichol with the global diagonal shift set to 0.1 and619

default values for other parameters and the second is the Matlab interface to the620

incomplete Cholesky (IC) factorization preconditioner HSL_MI28 [39] from the HSL621

library [20] using the default parameter settings. IC preconditioners are widely used622

but their construction is often serial, potentially limiting their suitability for very623

large problems (see [19] for an IC preconditioner that can be parallelised). In terms624

of iteration counts, the Nyström–Schur and the HSL_MI28 preconditioners are clearly625

superior to the simple ichol preconditioner, with neither consistently offering the626

best performance. Figure 4 presents the residual norm history for PCG. This is627

confirmed by the results in the Appendix for our large test set. The residual norm for628

M2 decreases monotonically while for the IC preconditioners we observe oscillatory629

behaviour.630

Because our implementation of the Nyström–Schur preconditioner is in Matlab,631

we are not able to provide performance comparisons in terms of computation times.632

Having demonstrated the potential of our two-level Nyström–Schur preconditioner,633

one of our objectives for the future is to develop an efficient (parallel) implementation634

in Fortran that will be included within the HSL library. This will allow users to635

test out the preconditioner and to assess the performance of both constructing and636

applying the preconditioner. Our preliminary work on this is encouraging.637
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Identifier M2 HSL_MI28 ichol

itSI
itPCG

bcsstk38 46 173 593 2786
ela2d 72 228 108 2319
ela3d 24 52 36 170
msc10848 47 166 145 784
nd3k 32 178 102 1231
s3rmt3m3 37 98 610 2281

Table 10
PCG iteration counts for the Nyström–Schur preconditioner M2 (with k = 20) and the IC

preconditioners HSL_MI28 and ichol.
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Fig. 4. PCG residual norm history for test examples bcsstk38 (top) and ela2d (bottom).

6. Concluding comments. In this paper, we have investigated using638

randomized methods to construct efficient and robust preconditioners for use with639

CG to solve large-scale SPD linear systems. The approach requires an initial640

ordering to doubly bordered block diagonal form and then uses a Schur complement641

approximation. We have demonstrated that by carefully posing the approximation642

problem we can apply randomized methods to construct high quality preconditioners,643

which gives an improvement over previously proposed methods that use low rank644

approximation strategies. We have presented a number of variants of our new645

Nyström–Schur preconditioner. During the preconditioner construction, we must646

solve a smaller linear system with multiple right-hand sides. Our numerical647

experiments have shown that a small number of iterations of block CG are needed648

to obtain an approximate solution that is sufficient to construct an effective649

preconditioner.650
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Currently, the construction and application of our Nyström–Schur preconditioners651

requires the solution of linear systems with the block matrix AΓ (2.9). Given652

the promising results presented in this paper, in the future we plan to investigate653

employing a recursive approach, following ideas given in [49]. This will only require654

the solution of systems involving a much smaller matrix and will lead to a practical655

approach for very large-scale SPD systems. A parallel implementation of the656

preconditioner will also be developed.657

Appendix A. Extended numerical experiments. Here we present results658

for a larger test set. The problems are given in Table 11. We selected all the SPD659

matrices in the SuiteSparse Collection with n lying between 5K and 100K, giving us a660

set of 71 problems. For each problem, we ran PCG with the S̃1,M2, S̃2 and HSL MI28661

preconditioners. In all the tests, we use 64 subdomains. For M2, we used k = 20662

and set p = q = 0. Iteration counts are given in the table, whilst performance profiles663

[6] are presented in Figure 5. In recent years, performance profiles have become a664

popular and widely used tool for providing objective information when benchmarking665

algorithms. The performance profile takes into account the number of problems solved666

by an algorithm as well as the cost to solve it. It scales the cost of solving the problem667

according to the best solver for that problem. In our case, the performance cost is668

the iteration count (for M2, we sum the counts itSI
and itPCG). Note that we do669

not include S̃2 in the performance profiles because it is an ideal but impractical two-670

level preconditioner and, as such, it always outperformsM2. The performance profile671

shows that on the problems where S̃1 struggles, there is little to choose between the672

overall quality of M2 and HSL MI28.

S̃1 M2 S̃2 HSL MI28 κ(A)

Identifier itSI
itPCG

aft01 118 19 45 31 17 9e+18
apache1 667 122 291 192 72 3e+06
bcsstk17 349 46 55 48 59 1e+10
bcsstk18 136 40 77 45 26 6e+11
bcsstk25 † 92 660 453 254 1e+13
bcsstk36 451 64 214 169 † 1e+12
bcsstk38 584 46 171 122 593 6e+16
bodyy6 182 53 163 129 5 9e+04
cant † 57 228 396 933 5e+10
cfd1 209 30 72 50 274 1e+06
consph 185 47 177 136 50 3e+07
gridgena 426 90 377 298 66 6e+05
gyro † 55 346 518 319 4e+09
gyro k † 55 346 518 319 3e+09
gyro m 165 16 34 22 17 1e+07
m t1 867 85 247 187 ‡ 3e+11
minsurfo 15 3 15 13 3 8e+01
msc10848 612 47 168 116 145 3e+10
msc23052 479 69 220 175 ‡ 1e+12
nasasrb 1279 135 496 421 † 1e+09
nd3k 1091 56 301 230 102 5e+07
nd6k 1184 108 325 248 116 6e+07
oilpan 647 67 122 72 507 4e+09
olafu 1428 69 489 757 557 2e+12
pdb1HYS 869 89 83 274 483 2e+12
vanbody † 287 1106 769 ‡ 4e+03
ct20stif 1296 90 232 281 † 2e+14
nd12k 1039 155 337 265 111 2e+08
nd24k 1093 165 386 268 120 2e+08
s1rmq4m1 154 19 50 32 33 5e+06
s1rmt3m1 192 24 59 39 18 3e+08
s2rmq4m1 231 28 54 41 39 4e+08
s2rmt3m1 260 31 64 45 33 3e+11
s3dkq4m2 † 148 339 236 610 6e+11

S̃1 M2 S̃2 HSL MI28 κ(A)

Identifier itSI
itPCG

s3dkt3m2 † 164 338 270 1107 3e+10
s3rmq4m1 356 31 80 58 472 4e+10
s3rmt3m1 434 36 101 64 413 4e+10
s3rmt3m3 441 37 101 70 610 3e+00
ship 001 1453 367 600 368 1177 6e+09
smt 399 59 112 72 95 1e+09
thermal1 169 30 62 47 30 4e+01
Pres Poisson 92 13 29 19 32 3e+06
crankseg 1 92 16 49 33 34 9e+18
crankseg 2 89 17 47 32 38 8e+06
Kuu 81 16 44 31 10 3e+04
bodyy5 72 19 67 57 4 9e+03
Dubcova2 62 11 32 23 14 1e+04
cbuckle 55 9 51 39 47 7e+07
fv3 50 12 31 21 8 4e+03
Dubcova1 39 8 24 15 7 2e+03
bodyy4 34 8 29 24 4 1e+03
jnlbrng1 22 4 21 19 4 1e+02
bundle1 13 3 8 5 5 1e+04
t2dah e 12 3 12 11 3 3e+07
obstclae 12 3 12 12 3 4e+01
torsion1 12 3 12 12 3 8e+03
wathen100 12 3 12 11 3 2e+07
wathen120 12 3 12 11 3 2e+07
fv1 7 2 7 7 3 1e+01
fv2 7 2 7 7 3 1e+01
shallow water2 7 40 7 7 3 3e+12
shallow water1 5 20 5 5 2 1e+01
Muu 6 1 6 6 2 1e+02
qa8fm 6 1 6 6 2 1e+02
crystm02 6 1 6 5 2 4e+02
crystm03 6 1 6 5 2 4e+02
finan512 5 1 5 5 3 9e+01
ted B unscaled 3 1 3 4 2 4e+05
ted B 2 1 3 3 2 2e+11
Trefethen 20000b 3 1 2 2 3 1e+05
Trefethen 20000 4 1 2 2 3 2e+05

Table 11
PCG iteration counts for SPD matrices from the SuiteSparse Collection with n ranging between

5K and 100K.

673
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Fig. 5. Iteration count performance profile for the large test set. The 40 problems used in the
right hand plot are the subset for which the S̃1 (one-level) iteration count exceeded 100.
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