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PERFORMANCE OF THE LOW-RANK TT-SVD FOR LARGE
DENSE TENSORS ON MODERN MULTICORE CPUs\ast 

MELVEN R\"OHRIG-Z\"OLLNER\dagger , JONAS THIES\ddagger , AND ACHIM BASERMANN\dagger 

Abstract. There are several factorizations of multidimensional tensors into lower-dimensional
components, known as ``tensor networks."" We consider the popular ``tensor-train"" (TT) format and
ask, How efficiently can we compute a low-rank approximation from a full tensor on current multicore
CPUs? Compared to sparse and dense linear algebra, kernel libraries for multilinear algebra are rare
and typically not as well optimized. Linear algebra libraries like BLAS and LAPACK may provide the
required operations in principle but often at the cost of additional data movements for rearranging
memory layouts. Furthermore, these libraries are typically optimized for the compute-bound case
(e.g., square matrix operations), whereas low-rank tensor decompositions lead to memory bandwidth
limited operations. We propose a ``TT singular value decomposition"" (TT-SVD) algorithm based
on two building blocks: a ``Q-less tall-skinny QR"" factorization and a fused tall-skinny matrix-
matrix multiplication and reshape operation. We analyze the performance of the resulting TT-SVD
algorithm using the roofline performance model. In addition, we present performance results for
different algorithmic variants for shared-memory as well as distributed-memory architectures. Our
experiments show that commonly used TT-SVD implementations suffer severe performance penalties.
We conclude that a dedicated library for tensor factorization kernels would benefit the community:
Computing a low-rank approximation can be as cheap as reading the data twice from main memory.
As a consequence, an implementation that achieves realistic performance will move the limit at which
one has to resort to randomized methods that only process part of the data.

Key words. tensor decomposition, performance modeling, high-dimensional problems, higher-
order SVD high-performence computing, TT-format

AMS subject classifications. 15A23, 15A69, 65F99, 65Y05, 65Y20

DOI. 10.1137/21M1395545

1. Introduction. The tensor-train (TT) decomposition is a particular form of
a tensor network representation of a high-dimensional tensor in which the 3D ``core
tensors"" are aligned in a 1D format and connected by a contraction with their direct
neighbors only to represent (or approximate) a d-dimensional tensor. It was intro-
duced as such by Oseledets and Tyrtyshnikov [32, 34]) but in fact has been known to
(and used by) computational physicists under the name of matrix product states since
the 1980s [1, 2]; see also [41] for a more recent reference. Closely related is the density
matrix renormalization group algorithm [42], an optimization method that operates
on the space of matrix product states. An overview on numerical algorithms based on
low-rank tensor approximations can be found in [19]. Recent research also focuses on
applications of TTs in data science see; e.g., [9, 10, 26, 28] for a few examples. The
performance of common arithmetic operations in TT format (such as additions and
scalar products) is discussed in [12].

One can construct an approximate TT decomposition of high-dimensional data
X \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd using a high-order singular value decomposition. An algorithm for
this, called TT-SVD, is presented in [33]. Given X and a maximum ``bond dimension""
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C288 M. R\"OHRIG-Z\"OLLNER, J. THIES, AND A. BASERMANN

rmax, it successively determines the core tensors T (j) \in \BbbR rj - 1\times nj\times rj , j = 1 . . . d, such
that r0 = rd = 1, rj \leq rmax, the rows or columns of some matricization of all but
one T (j) are orthonormal, and the approximation error (difference between the TT
formed by the T (j) and the original data tensor X) is minimized (up to a constant
factor) in the Frobenius norm on the manifold of rank-rmax TT [33]. Definitions of
some of these concepts are obviously needed and will be given in section 2.

The aim of this paper is to develop an efficient formulation and implementation
of this algorithm for modern multicore CPUs. We focus on situations where the data
is large and dense, but it is feasible to process the complete data set for which a
low-rank representation is sought (i.e., to read the data \scrO (1) times). In contrast,
randomized (sampling) algorithms only access part of the data and can be used if the
data set is too large [27, 29]. For the deterministic case, error bounds and asymptotic
complexity estimates (for the size of the result) exist but differ slightly depending
on the desired tensor format; see [19] and the references therein. One usually seeks
an approximation with a specific accuracy (in terms of maximal size of the resulting
approximation or a tolerance or both). However, common implementations often
provide suboptimal performance for this case, as they do not take into account that
the computation is limited by data transfers on current computers (see section 5). We
investigate the TT-SVD because this is a simple and popular choice, but the ideas
can be transferred to other tree tensor networks (see, e.g., [18]) as the algorithmic
building blocks are similar. An important ingredient in our implementation is a Q-
less ``tall-skinny QR"" (TSQR, see [13]) variant that is described in detail in section 3.2.
The idea to avoid computing and storing the large matrix Q of a QR decomposition
was already exploited for, e.g., sparse matrix decompositions and tensor calculus
in [6, 16].

Our contribution is twofold. First, based on the example of the TT-SVD algo-
rithm we show that low-rank tensor approximation is a memory-bound problem in
high dimensions (in contrast to the SVD in two dimensions for square matrices). Sec-
ond, we discuss how the TT-SVD algorithm can be implemented efficiently on current
hardware. In order to underline our findings, we present performance results for the
required building blocks and for different TT-SVD variants and implementations on
a small CPU cluster.

The remainder of this paper is organized as follows. In section 2, we introduce the
basic concepts and notation for tensor networks and performance engineering that we
will use to describe our algorithms and implementation. In section 3 we describe the
TT-SVD algorithm with a focus on our tailored Q-less TSQR variant. In section 4 we
present a performance model for the two key components of TT-SVD (Q-less TSQR
and a ``tall-skinny"" matrix-matrix multiplication), as well as the overall algorithm.
Numerical experiments comparing actual implementations of TT-SVD (including our
own optimized version) against the performance model can be found in section 5, and
the paper closes with a summary of our findings in section 6.

2. Background and notation.

2.1. Tensor notation and operations. Classical linear algebra considers ma-
trices and vectors (n \times 1 matrices) and provides a notation for operations between
them based on matrix-matrix products and matrix transpositions. We make use of
this common notation where possible. In this paper, a dense d-dimensional array or
tensor is denoted by X \in Rn1\times \cdot \cdot \cdot \times nd . We can combine and split dimensions through
reshape operations, e.g.,
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PERFORMANCE OF TT-SVD C289

Y = reshape
\bigl( 
X,

\bigl( 
n1

\=n
n1nd

nd

\bigr) \bigr) 
\in Rn1 \times \=n/(n1nd)\times nd , with \=n :=

d\prod 
i=1

ni,

X = reshape
\bigl( 
Y,

\bigl( 
n1 . . . nd

\bigr) \bigr) 
.

This assumes that the dimensions of a tensor are ordered and provides a notation for
unfolding a d-dimensional tensor into a lower-dimensional tensor, respectively, into a
matrix (matricization) and folding it back into a d-dimensional tensor. It only allows
us to combine neighboring dimensions, which is sufficient for all cases in this paper.
In practice, many tensor algorithms can be written as series of matrix operations of
different matricizations of tensors, but more general reshape operations can often be
implemented without overhead by just reinterpreting the data in memory.

2.1.1. Matrix decompositions. In two dimensions, the SVD defines the (unique)
decomposition of a rectangular matrix M \in Rn1\times n2 ,

M = U\Sigma V T \leftrightarrow Mi1,i2 =

r\sum 
j=1

Ui1,j \sigma j Vi2,j ,(2.1)

into the orthonormal matrices of left and right singular vectors U \in Rn1\times r, UTU = I
and V \in Rn2\times r, V TV = I and a diagonal \Sigma = diag(\sigma 1, . . . , \sigma r) with singular values
\sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma r > 0. The decomposistion is unique if \sigma 1 > \sigma 2 > \cdot \cdot \cdot > \sigma r > 0.
The rank of the matrix is defined as r = card(\{ \sigma j > 0\} ) \leq min(n1, n2).

In the steps of the TT-SVD algorithm, we also use the QR decomposition

M = QR,(2.2)

with an orthonormal matrix Q \in Rn1\times n2 , QTQ = I and an upper triangular matrix
R \in Rn2\times n2 and n1 \geq n2.

2.1.2. TT decomposition. The TT decomposition introduced in [33] general-
izes the idea of the SVD to d dimensions:

Xi1,i2,...,id =

r1\sum 
j1=1

r2\sum 
j2=1

\cdot \cdot \cdot 
rd - 1\sum 

jd - 1=1

T
(1)
1,i1,j1

T
(2)
j1,i2,j2

\cdot \cdot \cdot T (d)
jd - 1,id,1

.(2.3)

Here, the 3D tensors T (j) are called ``core tensors"" of the decomposition and r1, . . . , rd - 1

the ranks. In contrast to the SVD, the TT decomposition is not unique, but a best
approximation with given maximal rank rmax \geq rj exists, and the TT-SVD algorithm
in section 3.1 calculates a quasi-optimal solution. For a detailed discussion, we refer
to [33].

2.2. Performance characteristics on current hardware. Supercomputers
consist of a set of compute nodes that are connected by a network (see, e.g., [21]).
For the performance modeling, we concentrate on the node-level performance of the
required algorithmic building blocks. However, we also show results with a distributed
memory variant of the TT-SVD algorithm that allows scaling beyond a single node.
Our algorithmic choices and performance optimizations are motivated by hardware
characteristics of multicore processors, which we therefore briefly introduce.

Each compute node has one or several multicore CPU sockets with dedicated
memory. The CPU cores can access the memory of the complete node, but accesses
to the dedicated memory of the socket are faster (ccNUMA architecture). To reduce
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C290 M. R\"OHRIG-Z\"OLLNER, J. THIES, AND A. BASERMANN

Table 2.1
Hardware characteristics of a 14-core Intel Xeon Scalable Processor Skylake Gold 6132. The

data was measured using likwid-bench [39] (version 5.0.1) on a single socket of a 4-socket node. All
memory benchmarks use nontemporal stores and AVX512 and an array size of 1 GByte. For this
system, the load bandwidth is approximately twice the store bandwidth. The floating point benchmark
uses AVX512 fused multiply-add (FMA) instructions.

Benchmark Measurement
memory bandwidth (pure load) 93 GByte/s
memory bandwidth (copy) 70 GByte/s
memory bandwidth (STREAM [30]) 73 GByte/s
memory bandwidth (pure store) 45 GByte/s
double precision performance (AVX512 FMA) 1009 GFlop/s

the complexity of the shared memory parallelization, we use OpenMP for parallelizing
over the cores of one socket and the MPI for communicating between sockets and
nodes.

An important aspect of multicore optimization is the increasing gap between
the memory bandwidth and the floating point performance. To alleviate this prob-
lem, multiple levels of caches are used, where the larger and slower levels are shared
between multiple cores. Efficient algorithms need to exploit spatial and temporal lo-
cality (accessing memory addresses close to each other and accessing the same mem-
ory address multiple times). In addition, the floating point performance increased
due to specialized wider SIMD units as well as optimized out-of-order execution of
pipelined instructions. So algorithms can only achieve high performance if they con-
tain many independent instructions for contiguous chunks of data (e.g., no data de-
pendencies/conditional branches).

The actual run-time of a program on a specific hardware may be determined by
many factors. Therefore, it is helpful to model the performance based on a few simple
characteristics that are anticipated to be potential bottlenecks. For our numerical
application, we use the roofline performance model [43], which considers two limiting
factors. The algorithm is either compute-bound (limited by the floating point rate) or
bandwidth-bound (limited by data transfers). The upper bound for the performance
is thus given by

PRoofline = min (Pmax, Icbs) .(2.4)

Here Pmax and bs characterize the hardware: Pmax denotes the applicable peak per-
formance, that is, the maximal performance possible when executing the required
floating point operations. bs is the obtainable bandwidth on the slowest data path
(e.g., from the cache or memory that is large enough to contain all data). The band-
width depends on the access pattern, so we need to measure it with a microbenchmark
that reflects the access pattern of the algorithm; see Table 2.1. The algorithm is char-
acterized by its compute intensity Ic, which specifies the number of floating point
operations per transferred byte. Of course, the roofline model is a simplification:
in particular, it assumes that data transfers and calculations overlap, which is not
realistic if the compute intensity is close to Pmax/bs. However, the model provides
insight into the behavior of the algorithm, and it allows us to assess if a specific
implementation achieves a reasonable fraction of the possible performance.

To analyze an algorithm in this paper, we usually first estimate the compute
intensity Ic and decide whether the algorithm is compute-bound or memory-bound
(limited by main memory bandwidth) on the given hardware:
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PERFORMANCE OF TT-SVD C291

Ic \approx 
nflops

Vread+write
.(2.5)

Then, we calculate the ideal run-time tmin from the number of floating point operations
nflops, respectively, from the main memory data transfer volume Vread+write:

(2.6) tmin =

\Biggl\{ 
nflops

Pmax
if Ic >

Pmax

bs
(compute-bound),

Vread+write

bs
if Ic <

Pmax

bs
(memory-bound),

The quotient Pmax

bs
is called the machine intensity.

Many supercomputers nowadays also feature accelerator hardware such as general
purpose graphics processing units (GPUs). We decided not to exploit GPUs in this
paper because the TT-SVD accesses the complete data, which typically does not fit
into the high bandwidth memory of the device. The slowest data path then is the
PCI/e bus, which would make even the most optimized GPU implementation slower
than our CPU code.

3. Numerical algorithms and required building blocks. In this section we
discuss different variants of the TT-SVD algorithm from [33]. We focus on algorith-
mic choices required for an efficient implementation on current hardware that retain
numerical accuracy and robustness. As an important building block, we present a
Q-less rank-preserving QR implementation for tall-skinny matrices (Q-less TSQR)
based on [14].

3.1. TT-SVD. Based on the original TT format [33], several other formats
have been suggested, such as the quantized TT (QTT) format (see, e.g., [25] and the
references therein) and the QTT-Tucker format [15]. These formats have interesting
numerical properties; however, the required operations for calculating a high-order
SVD from dense data in these formats are similar. For simplicity, we describe the
algorithm for the TT format, although it is important that the individual dimensions
are as small as possible (e.g., two as in the QTT format) to obtain high performance.
For other hierarchical formats such as the \scrH -Tucker format (see, e.g., [18]), the rank
is defined differently, so the complexity analysis of the algorithm is specific to the
(Q)TT format. The algorithmic principles and required building blocks still remain
similar for high-order decomposition algorithms for other tree tensor network formats.

3.1.1. Original TT-SVD algorithm. We first show how the original TT-SVD
algorithm from [33] can be implemented; see Algorithm 3.1 For ease of notation, we
start with dimension nd (right-most core tensor in the TT-format).

The idea of the algorithm is as follows: Each core tensor is built subsequently
from the singular vectors of a truncated SVD of a matricization (first (i - 1) times last
(d  - i + 1) dimensions) of the input/intermediate tensor. In addition, the truncated
directions are also removed from the input tensor for subsequent steps. If rmax is big
enough, the decomposition approximates the input tensor up to the desired accuracy
\epsilon . Otherwise, it is less accurate (an a posteriori error bound can be calculated from the
truncated singular values of each iteration). The costly operations in this algorithm
are computing the SVD in line 7 and evaluating the reduced matrix W for the next
iteration in line 10. And, depending on the implementation, the reshape operation
in line 6 might require copying or reordering the data in memory. In this algorithm,
the total size \=n of the work matrix W is reduced in each step by a factor ri - 1

niri
\leq 1.

And W is reshaped to very tall-skinny matrices in line 6 except for the last iterations,
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Algorithm 3.1 TT-SVD.

Input: X \in Rn1\times \cdot \cdot \cdot \times nd , maximal TT-rank rmax \geq 1, tolerance \epsilon 

Output: TT decomposition
\sum 

j1,...,jd - 1
T

(1)
1,i1,j1

T
(2)
j1,i2,j2

\cdot \cdot \cdot T (d)
jd - 1,id,1

= \~Xi1,...,id with

\| X  - \~X\| F \leq \epsilon \| X\| F if rmax \geq r
(i)
\delta 

1: \delta \leftarrow \epsilon \surd 
d - 1
\| X\| F (truncation parameter)

2: W \leftarrow X (temporary tensor)

3: \=n\leftarrow 
\prod d

i=1 ni (total size of W )
4: rd \leftarrow 1
5: for i = d, . . . , 2 do
6: W \leftarrow reshape (W, ( \=n

niri
niri))

7: Calculate SVD: U\Sigma V T = W with \Sigma = diag(\sigma 1, . . . , \sigma niri)

8: Choose rank ri - 1 = min(rmax, r
(i)
\delta ), r

(i)
\delta = min(j : \sigma 2

j+1 + \sigma 2
j+2 + \cdot \cdot \cdot \leq \delta 2)

9: T (i) \leftarrow reshape ((V:,1:ri - 1
)T ,

\bigl( 
ri - 1 ni ri

\bigr) 
)

10: \=n\leftarrow \=nri - 1

niri
(new total size of W )

11: W \leftarrow U:,1:ri - 1 diag(\sigma 1, . . . , \sigma ri - 1)
12: end for
13: T (1) \leftarrow reshape (W,

\bigl( 
1 n1 r1

\bigr) 
)

where W is much smaller due to the reduction in size \=n in each step. Therefore, it is
advisable to apply the QR trick for calculating the SVD:

W = U\Sigma V T \leftrightarrow W = QR, R = \=U\Sigma V T with U = Q \=U.(3.1)

This idea has been discussed in the literature in similar settings (see, e.g., [11]), but
we can exploit some specific details here.

One can also start the iteration in the middle of the TT by reshaping W into
an (almost) square matrix of size approximately

\surd 
\=n \times 
\surd 
\=n and splitting it with an

SVD into two independent iterations for a left and a right part. This approach is not
advisable because it requires O(\=n

3
2 ) floating point operations in contrast to O(\=n1+ 1

d )
operations for algorithms that start at the boundaries of the TT (see section 4.2).

3.1.2. Optimized TT-SVD algorithm using TSQR. Algorithm 3.2 is based
on the original TT-SVD (Algorithm 3.1) but avoids some unnecessary computations
and data transfers. It has the same numerical properties as Algorithm 3.1 if all
required matrix operations are performed accurately: QR and SVD decompositions
and multiplications with orthogonal matrices.

In the following, we discuss the three main differences between Algorithm 3.1 and
Algorithm 3.2: First, an obvious optimization is to calculate the truncation parameter
\delta from \Sigma in the first iteration (line 7 in Algorithm 3.2). This avoids calculating the
norm of the input in (line 1 of Algorithm 3.1). Second, using the QR trick (3.1),
we replace the large SVD by a QR decomposition followed by a smaller SVD of the
triangular factor R (line 5--6). In addition, we can use the matrix of right singular
vectors V to calculate the work matrix W (i - 1) for the next iteration (line 11 in both
algorithms). This has the benefit that we never need the orthogonal factorQ of the QR
decomposition which can be exploited in the implementation (see section 3.2). Third,
we minimize data transfers that would be required for reshaping with appropriate
padding of the data to avoid cache thrashing. So in line 11, we directly store W (i - 1)

in the desired memory layout for the next iteration. This replaces the additional
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Algorithm 3.2 Optimized TSQR TT-SVD.

Input: X \in Rn1\times \cdot \cdot \cdot \times nd stored in suitable memory layout, maximal TT-rank rmax \geq 
1, tolerance \epsilon 

Output: TT decomposition
\sum 

j1,...,jd - 1
T

(1)
1,i1,j1

T
(2)
j1,i2,j2

\cdot \cdot \cdot T (d)
jd - 1,id,1

= \~Xi1,...,id

1: \=n\leftarrow 
\prod d

i=1 ni

2: rd \leftarrow 1
3: W (d) \leftarrow reshape (X, ( \=n

nd
nd)) (only creates a view of X)

4: for i = d, . . . , 2 do
5: Calculate R from the QR decomposition: QR = W (i)

6: Calculate small SVD: \=U\Sigma V T = R with \Sigma = diag(\sigma 1, . . . , \sigma niri)
7: In the first iteration, \delta \leftarrow \epsilon \surd 

d - 1
\| \Sigma \| F

8: Choose rank ri - 1 = min(rmax, r
(i)
\delta ), r

(i)
\delta = min(j : \sigma 2

j+1 + \sigma 2
j+2 + \cdot \cdot \cdot \leq \delta 2)

9: T (i) \leftarrow reshape ((V:,1:ri - 1
)T , (ri - 1 ni ri))

10: \=n\leftarrow \=nri - 1

niri

11: W (i - 1) \leftarrow reshape (W (i)V:,1:ri - 1 , (
\=n

ni - 1ri - 1
ni - 1ri - 1))

12: end for
13: T (1) \leftarrow reshape (W (1), (1 n1 r1))

reshape operation in line 6 of Algorithm 3.1. We assume further that the input tensor
X already has a suitable memory layout such that we do not need to copy the data for
the first iteration (line 3). The costly operations in this algorithm are the tall-skinny
Q-less QR decomposition (line 5) and the tall-skinny matrix-matrix product fused
with a reshape operation (line 11).

Memory layout. The chosen memory layout has a significant effect on the perfor-
mance. A particular problem is cache thrashing (see, e.g., [21]). An example for this
is shown in section 5 in Figure 5.4(b). This effect occurs for data accesses with strides
that are multiples of 2k, k \in N, with, e.g., k > 6. This easily happens in the TT-SVD
algorithm if the individual dimensions ni are multiples of 2, for example, when storing
W (i) in a column-major layout. To avoid this problem, one can use padding: that
means filling in a few zero entries such that the stride is not close to a multiple of 2k

(in our implementation padding is performed for all matrices such as W (i) to obtain
strides of the form 26(2l + 1), l \in N). In addition, the required matrix operations in
the TT-SVD algorithm are memory-bound in many cases (see section 4 for a detailed
discussion). That means that data locality in these operations plays a crucial role. On
older multicore CPUs, a row-major memory layout in operations with tall-skinny ma-
trices operations is favorable; see, e.g., the comparison in [37]. On newer CPUs (Intel
Skylake and newer), there is no such performance penalty for using a column-major
memory layout (observation of the authors). Therefore, we employ a column-major
memory layout for all matrices in Algorithm 3.2. And the leading dimensions of the
input tensor X are stored contiguously (Fortran ordering). As indicated above, we
thus assume that the stride of the last dimension includes appropriate padding.

3.1.3. Algorithmic variants. In the following, we discuss some interesting al-
gorithmic variations of the TSQR TT-SVD algorithm.

Thick-bounds variant. If the dimensions ni in the first iterations of Algorithm 3.2
are small, the required tall-skinny matrix operations become strongly memory-bound.
We can increase the compute intensity by combining the right-most dimensions of the
input tensor as shown in Algorithm 3.3.
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Algorithm 3.3 Thick-bounds TT-SVD.

Input: X \in Rn1\times \cdot \cdot \cdot \times nd , minimal dimension mmin, minimal reduction factor fmin
1 ,

estimated TT-ranks \~ri (or simply use \~ri = rmax)
Output: TT decomposition T (1), . . . , T (d)

1: Choose \#dimensions k to combine minimal k \in \{ 1, . . . , d\} with m \geq 
max(mmin, f

min
1 \~rk - 1), m :=

\prod d
i=d - k+1 ni

2: W \leftarrow reshape (X, (n1 \cdot \cdot \cdot nd - k m))
3: T (1), . . . , T (d - k), \=T (d - k+1) \leftarrow TT-SVD(W )
4: Recover T (d - k+1), . . . , T (d) from the TT-SVD of \=T (d - k+1)

This approach allows a more efficient of the compute resources: We suggest a
heuristic (line 1) based on estimated TT-ranks on a minimal combined boundary
dimension (mmin) and on a minimal estimated reduction of the work array size in the
first TT-SVD iteration (fmin

1 ). One can choose mmin such that the compute intensity
of the first TSQR step is close to the machine intensity. The reduction factor is
discussed in section 4.2. The TT cores corresponding to the combined dimensions can
be cheaply calculated afterward (line 4).

Two-sided variant. The matrix operations in Algorithm 3.2 become more costly
for increasing TT-ranks. And usually, the ranks are smaller near the left and right
boundaries of the TT. So we can alternatingly calculate TT cores on the left and on
the right as depicted in Algorithm 3.4. The core idea here is to reduce the size of the
work array in each iteration with lower computational costs.

Algorithm 3.4 Two-sided TSQR TT-SVD.

Input: X \in Rn1\times \cdot \cdot \cdot \times nd

Output: TT decomposition T (1), . . . , T (d)

1: W (d) \leftarrow reshape (X, ( \=n
nd

nd)) (with the total size \=n)
2: for i = d, 1, d - 1, 2, d - 2, 3, . . . do
3: Calculate R from the QR decomposition: QR = W (i)

4: Calculate small SVD: \=U\Sigma V T = R
5: if i < d/2 then
6: Get the new rank ri from truncating the SVD (left case)
7: T (i) \leftarrow reshape (V:,1:ri), (ri - 1 ni ri))
8: \=W (i) \leftarrow W (i)V:,1:ri

9: Reshape and transpose \=W (i) to get W (d - i) for the next iteration
10: else
11: Get the new rank ri - 1 from truncating the SVD (right case)
12: T (i) \leftarrow reshape ((V:,1:ri - 1)

T , (ri - 1 ni ri))

13: \=W (i) \leftarrow W (i)V:,1:ri - 1

14: Transpose and reshape \=W (i) to get W (d - i+1) for the next iteration
15: end if
16: end for
17: if d is even then
18: T (d/2) \leftarrow reshape (W (d/2), (rd/2 - 1 nd/2 rd/2))
19: else
20: T ((d+1)/2) \leftarrow reshape ((W ((d+1)/2))T , (r(d - 1)/2 n(d+1)/2 r(d+1)/2))
21: end if
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The algorithm includes additional memory operations (line 9 and 14) to reorder
data. These can be avoided by directly calculating the QR decomposition of the
transposed work matrix ((W (i))T ). However, our TSQR implementation requires a
specific memory layout which makes the additional reordering necessary. It is also
difficult to fuse the reordering with the preceding tall-skinny matrix multiplication
efficiently due to complex index calculations. So Algorithm 3.4 illustrates our slightly
suboptimal implementation. As the ideas of the thick-bounds variant and the two-
sided variant are independent from each other, we can combine them. In our numerical
experiments, we thus directly show timings for a two-sided algorithm with thick-
bounds.

Distributed TSQR TT-SVD. We can extend Algorithm 3.2 to the case where the
input tensor is distributed onto multiple compute nodes. For simplicity, we assume
that the tensor is distributed along the first k dimensions and that the number of
processes matches the total size of those dimensions. This is sketched in Algorithm
3.5.

Algorithm 3.5 Distributed TSQR TT-SVD.

Input: X \in Rn1\times \cdot \cdot \cdot \times nd distributed along the first k dimensions n1 \times \cdot \cdot \cdot \times nk, k \ll d
onto m processes j = 1, . . . ,m with m =

\prod k
i=1 ni

Output: TT decomposition T (1), . . . , T (d) (duplicated on all processes)
1: Read local part: W (j) \leftarrow X

i
(j)
1 ,...,i

(j)
k ,:,...,:

on process j

2: V (j), T (k+1), . . . , T (d) \leftarrow TSQR-TT-SVD(W ) (Algorithm 3.2 with global QR)
3: Gather V \leftarrow reshape((V (1) \cdot \cdot \cdot V (m)), (n1 . . . nk - 1 nkrk))
4: Recover T (1), . . . , T (k) from the TT-SVD of V

The only change required for the distributed case is that the TSQR decomposition
in line 5 of Algorithm 3.2 needs to perform an additional global reduction of the
(local) triangular factors (see discussion in section 3.2). All other costly operations
of Algorithm 3.2 are completely independent on all processes. The work for the
small SVDs is duplicated on each process as well as the work for recovering the
first few dimensions (line 4 of Algorithm 3.5). Of course, the assumption that the
data is distributed along the first dimensions is quite restrictive. For other cases,
we could first calculate the TT decomposition with reordered dimensions using this
algorithm and in a postprocessing step reorder the dimensions in the TT by swapping
dimensions through combining and splitting neighboring TT cores (still efficient if
the TT representation is exponentially smaller than the input tensor). We can locally
use the thick-bounds variant in the distributed TSQR TT-SVD. However, we cannot
efficiently implement the two-sided variant in a distributed setting as the transpose
operations would redistribute the data globally.

3.2. Rank-preserving Q-less TSQR algorithm. In this section, we present
our highly efficient rank-preserving TSQR decomposition based on the communication-
avoiding QR factorization in [14]. The QR decomposition is rank preserving in the
following sense: It does not break down if the input matrix is rank-deficient and the
resulting triangular matrix R has the same (numerical) rank as the input matrix.
For numerical robustness, we choose an implementation based on Householder reflec-
tions [23]. As we do not need the matrix Q in any form, its data is not even stored
implicitly as in common LAPACK [3] routines to reduce the memory traffic. The core
building block transforms a rectangular matrix with zero lower left triangle to upper
triangular form by an orthogonal transformation Q:
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\biggl( 
M
R

\biggr) 
= Q \=R, with M \in Rnb\times m, R, \=R \in Rm\times m.(3.2)

Here, nb denotes a block size that is chosen as a multiple of the SIMD width such that
the data fits into the CPU caches (e.g., M and R fit into L2, multiple Householder
reflectors fit into L1 for internal blocking over columns). This building block is similar
to the LAPACK routine dtpqrt2 (for the special case that M is rectangular). Our
implementation differs in the following three points: First, dtpqrt2 overwrites the
input matrix M with the Householder reflection vectors. We do not modify M and
store reflection vectors as long as they are needed in an internal buffer. Second, we
assume a special memory layout and alignment of M and R; R is overwritten by \=R.
In contrast, LAPACK routines cope with inputs of arbitrary strides and alignment.
Third, our implementation is branchless and uses fewer flops than the LAPACK refer-
ence implementation as discussed below. Based on this building block, we implement
a hybrid-parallel (MPI+OpenMP) TSQR scheme. The TSQR algorithm is explained
in detail in [14]. The main idea is that, with the building block above, one can cal-
culate triangular factors for blocks of the input matrix and combine them, e.g., for a
flat tree reduction,\left(  M1

M2

M3

\right)  =

\left(  Q1R1

M2

M3

\right)  =

\left(  \biggl( 
Q1

I

\biggr) \biggl( 
M2

R1

\biggr) 
M3

\right)  =

\biggl( 
Q12R12

M3

\biggr) 
= \cdot \cdot \cdot = Q123R123.

Each OpenMP thread performs a flat tree reduction (minimizing data transfers). The
resulting triangular m \times m matrices are combined on the master thread (negligible
overhead if the number of rows of the input matrix on each thread is large). The
results on multiple MPI processes are combined using an MPI\.Allreduce operation
with a commutative MPI user reduction. So the MPI library implementation decides
about the actual reduction graph.

Some details of our main TSQR building block are illustrated in Algorithm 3.6.

Algorithm 3.6 Householder QR of a rectangular and a triangular matrix.

Input: M \in Rnb\times m, triangular R \in Rm\times m, \epsilon FP > 0
(\epsilon FP is the smallest positive normalized floating point number)

Output: triangular \=R \in Rm\times m that satisfies (3.2)
1: W1:nb,: \leftarrow (M ;R)
2: for j = 1, . . . ,m do
3: u\leftarrow Wj:nb+j,j (w := Wj:nb+j,j)
4: t\leftarrow \| u\| 22 + \epsilon FP , \alpha \leftarrow 

\surd 
t+ \epsilon FP (\Rightarrow \alpha 2 = \| w\| 22 + 2\epsilon FP )

5: \alpha \leftarrow ( - 1) \cdot \alpha if u1 > 0 else 1 \cdot \alpha (implemented without branches)
6: t\leftarrow t - \alpha u1, u1 \leftarrow u1  - \alpha , \beta \leftarrow 1/

\surd 
t (\Rightarrow t = \| w\| 22 + \epsilon FP  - w1\alpha )

7: v \leftarrow \beta u (\Rightarrow v = (w  - \alpha e1)/
\surd 
t)

8: Wnb+1:nb+j,j \leftarrow (W1:j - 1,j ;\alpha )
9: for k = j + 1, . . . ,m do

10: \gamma \leftarrow vTWj:j+nb,k

11: Wj:j+nb,k \leftarrow Wj:j+nb,k  - \gamma v
12: end for
13: end for
14: \=R\leftarrow Wnb+1:nb+m,:
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There are two numerical differences with respect to the LAPACK reference imple-
mentation: First, we calculate scaled Householder reflection vectors v with \| v\| 2 =

\surd 
2

to avoid some additional multiplications. Second, we add the term \epsilon FP in line 4 to
prevent a breakdown (division by zero in line 6). In contrast, the reference implemen-
tation (dlarfg) checks if \| u\| 2 is equal to zero or almost zero and performs different
(expensive) steps depending on that. So our implementation avoids a conditional
branch at the cost of some numerical robustness. We emphasize that, through adding
\epsilon FP twice as in line 4, we obtain in exact arithmetic

\| v\| 22 =
\| w  - \alpha e1\| 22

t
=
\| w\| 22  - 2w1\alpha + \alpha 2

\| w\| 22 + \epsilon FP  - w1\alpha 
=

2\| w\| 22  - 2w1\alpha + 2\epsilon FP

\| w\| 22 + \epsilon FP  - w1\alpha 
= 2.(3.3)

In inexact arithmetic, this also holds approximately as long as 2\| u\| 22 + \epsilon FP is in
the range where the floating point arithmetic is accurate (no denormal numbers,
e.g., 2\| u\| 22 \lesssim 10308 and \epsilon FP \approx 10 - 308 for double precision). So I  - vvT is a valid
Householder reflection even for \| u\| 2 \approx 0.

The actual implementation looks more complicated as it uses a recursive blocking
of columns: On each recursion level, it splits the matrix into a left block and a right
block and first processes the left block, then applies reflections to the right block and
proceeds with the right block. This is numerically equivalent to the algorithm shown
here as it only reorders the loop iterations. In addition, we avoid the copy in line 1
by just pointing to the actual data. The conditional sign flip in line 5 is compiled
to floating point instructions (masked blending). Moreover, the vector operations
in all iterations use vectors of the same length (nb + 1) which facilitates the SIMD
parallelization.

4. Performance analysis. In this section we first analyze the performance of
the building blocks and then model the run-time of the complete TT-SVD algorithm.
We assume that the dense input tensor is stored in main memory. If we read the input
data from the disk, the same principles apply, but the gap between the bandwidth
and the floating point performance is even larger.

4.1. Building blocks. The main building blocks in Algorithm 3.2 are TSQR
decompositions and matrix-matrix multiplications that we discuss in the following.

4.1.1. Q-less TSQR algorithm. For X \in Rn\times m with n \gg m, the TSQR
algorithm described in section 3.2 calculates the triangular matrix R \in Rm\times m of the
QR decomposition of X. A cache-friendly implementation only reads X once from
main memory (Vread = 8nm bytes for double precision). Thus, a pure load benchmark
shows the upper bound for the possible bandwidth bs = bload. We estimate the
required floating point operations of the Householder QR reduction by considering
lines 4, 7, 10, and 11 in Algorithm 3.6. We can simplify this to

\sum m
k=1(m  - k + 1) =

m(m+1)
2 dot products and scaled vector additions (axpy) of length nb+1. This results

in m(m+1)(nb +1) fused multiply-add instructions, respectively, 2m(m+1)(nb +1)
floating point operations. We need to perform n/nb such reduction steps assuming a
flat TSQR reduction scheme. In practice, we perform some additional reduction steps
with a different block size nb depending on the number of OpenMP threads and MPI
processes, but these are negligible for large n. Overall, we obtain

nflops \approx 
n

nb
(2m(m+ 1)(nb + 1)) \approx 

\biggl( 
1 +

1

nb

\biggr) 
2nm2(4.1)

\Rightarrow Ic =
nflops

Vread
\approx 

\biggl( 
1 +

1

nb

\biggr) 
m

4
.(4.2)
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The compute intensity shows that the algorithm is memory-bound for m up to \sim 50
(assuming nb \gg 1) on the considered hardware (see Table 2.1).

4.1.2. Tall-skinny matrix-matrix multiplication (TSMM). For matrices
X \in Rn\times m, M \in Rm\times k, and Y \in R\^n\times \^m with n\gg m and \^n \^m = nk, the fused kernel
for a TSMM and a reshape operation calculates

Y \leftarrow reshape
\bigl( 
XM,

\bigl( 
\^n \^m

\bigr) \bigr) 
.

The reshape operation just modifies the memory layout of the result and has no in-
fluence on the performance. The matrix-matrix multiplication requires 2nmk floating
point operations and can exploit modern fused multiply-add instructions. The op-
eration reads X (8nm bytes for double precision) and writes Y (8nk bytes) using
nontemporal stores. The ratio of read to write volume is defined by m/k. In our
experiments, we usually have m/k \approx 2, so we approximate the limiting bandwidth
with a STREAM benchmark: bs = bSTREAM. The resulting double precision compute
intensity is Ic = mk

4(m+k) \approx 
m
12 for m/k \approx 2. So on the considered hardware, this

operation is memory-bound for m up to \sim 150 (see Table 2.1).

4.2. Complete TT-SVD algorithm. We only analyze the optimized TSQR
TT-SVD algorithm depicted in Algorithm 3.2. The analysis includes the idea of the
thick-bounds variant in order to adjust algorithmic parameters.

We first consider the case that the number of columns m in the required building
blocks is small enough such that they operate in the memory-bound regime (small
rmax and small ni). For this case, we can estimate a lower bound for the run-time
by considering the data transfers in the main building blocks: One TSQR TT-SVD
iteration first reads the work matrix (TSQR) and then reads it again and writes a
reduced work matrix (TSMM). So for each iteration j = 1, . . . , d  - 1, we obtain the
data volume: Vread+write = 2\=n+ fj\=n. Here, \=n denotes the total size of the input data
of that iteration and fj \in (0, 1] a reduction factor (fj = ri - 1

niri
with i = d  - j + 1 in

Algorithm 3.2). This is the lowest data transfer volume possible for one step in the
TT-SVD algorithm if we assume that we need to consider all input data before we can
compress it (global truncated SVD or QR decomposition). Local transformations are
possible by, e.g., calculating truncated SVDs of blocks of the input matrix that fit into
the cache and combining them later. Such a local approach could at best improve the
performance by roughly a factor of two, as it would only read the data once instead of
twice. However, this reduces the accuracy of the approximation (combining multiple
local approximations instead of one global approximation for each step). For the
complete TSQR TT-SVD algorithm, we sum up the data transfers of all iterations:

\=Vread+write = 2\=n(1 + f1 + f1f2 + \cdot \cdot \cdot ) + \=n(f1 + f1f2 + \cdot \cdot \cdot ) \lesssim 
2\=n

1 - \=f
+

\=f \=n

1 - \=f
,(4.3)

with 1 > \=f \geq fj and the total size of the input tensor \=n. To optimize data transfers,
we thus need a significant reduction f1 \ll 1 of the size of the work matrix in the first
step. This is exactly the idea of the thick-bounds variant discussed in section 3.1.3.
Overall, this indicates that small reduction factors fj would be beneficial. However,
by combining dimensions to reduce fj in the steps of the algorithm, the compute
intensity increases, and at some point the building blocks become compute-bound.
For a rank-1 approximation, we can choose a small reduction factor (e.g., \=f = 1/16 in
our implementation), and for larger maximal rank, we use the choice \=f = 1/2. This
results in overall transfer volumes of
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\=Vread+write \lesssim 

\Biggl\{ 
2.2\=n for \=f = 1

16 ,

5.0\=n for \=f = 1
2 .

(4.4)

So for strongly memory-bound cases (small rmax and ni), we expect a run-time in the
order of the time required for copying the input tensor X (in memory).

In contrast, for larger ranks, the problem becomes compute-bound. The building
blocks need approximately 2nm2 (TSQR), respectively, 2nmk (TSMM) floating point
operations for an input matrix of size n \times m, respectively, the multiplication of an
n \times m with an m \times k matrix. In iteration j, we have dimensions nm = \=n

\prod j - 1
l=1 fj ,

m = k/fj , and k = ri - 1. So for the complete algorithm, we obtain with fj \approx \=f and
fj \leq rmax

nflops \approx 2\=n

\biggl( 
rd - 1

1 + f1
f1

+ f1rd - 2
1 + f2
f2

+ \cdot \cdot \cdot 
\biggr) 

\lesssim 2\=nrmax

\biggl( 
1
\=f
+

2

1 - \=f

\biggr) 
.(4.5)

This shows that combining more dimensions to reduce f1 in the first step increases the
work. The optimal reduction factor to minimize the number of operations is roughly
\=f \approx 0.4. With the choices for \=f from above, we obtain

nflops \lesssim 

\Biggl\{ 
36\=nrmax for \=f = 1

16 ,

12\=nrmax for \=f = 1
2 .

(4.6)

This approximation neglects the operations of the small SVD calculations of the trian-
gular factors. So it is only valid for higher dimensions, e.g., for \=n :=

\prod 
ni \gg (maxni)

3.
For the compute-bound case, we expect roughly a linear increase in run-time for in-
creasing values of rmax given fixed dimensions and a fixed reduction factor \=f (this
requires combining more dimensions). For large dimensions ni the reduction factors
become very small (fj \sim 1/ni without splitting dimensions), and thus the compu-
tational complexity increases. In our implementation (see Algorithm 3.3), we only
combine dimensions at the boundary, so we can only influence the first reduction
factor f1.

5. Numerical experiments. In this section, we first discuss the performance
of the building blocks and then consider different variants and implementations of
the complete TT-SVD algorithm. We perform all measurements on a small CPU
cluster; see Table 2.1 for information on the hardware. For most of the experiments,
we only use a single CPU socket to avoid NUMA effects (accessing memory from
another CPU socket). We implemented all required algorithms in a templated C++
library [36] based on MPI, OpenMP, and CPU SIMD intrinsics. The library includes
scripts for all experiments. Comparisons of building blocks with the Intel Math Kernel
Library (MKL) are written in Python using NumPy. We set up comparisons with other
software very carefully: In particular, we ran benchmarks multiple times and ignored
the first runs to avoid measuring initialization overhead. Furthermore, we checked
that a high fraction of the computing time is spent in appropriate building blocks
(like MKL functions) and not in some (Python) layer above (using the Linux tool
perf). All calculations use double precision. The input data in all experiments is
uniformly random, and we prescribe the dimensions, respectively, TT-ranks.

5.1. Building blocks. The important building blocks are the Q-less TSQR
algorithm and the TSMM (fused with a reshape of the result). Depending on the
desired TT-rank in the TT-SVD algorithm, the number of columns m changes for
the tall-skinny matrices in the building blocks. Therefore, we need to consider the
performance for varying numbers of columns.
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(a) Memory-bound case (Ic \lesssim 11).
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Fig. 5.1. Single socket Q-less TSQR compared with the peak bandwidth, respectively, the peak
Flop/s. Based on Table 2.1, the machine intensity for this operation (pure load) is 1009/93 \approx 
11 [flops/byte]. The input dimensions are chosen such that the matrix has a total size of
\sim 3/14 GByte per core. The TSQR block size is nb = 592 for m \lesssim 160 columns and then re-
duced linearly with m (e.g., nb = 192 for m = 500).

5.1.1. Q-less TSQR algorithm. As analyzed in section 4.1.1, the Q-less TSQR
algorithm is memory-bound for m up to \sim 50 columns on the hardware used. As
we do not store the Q matrix of the TSQR decomposition, its run-time is limited
by the load memory bandwidth. We expect a saturating behavior of the measured
bandwidth up to the peak load bandwidth on 1--14 cores. However, in Figure 5.1(a)
we see that the bandwidth is not fully saturated on 14 cores except for the case
n\times 1. So our implementation partly seems to be limited by the in-core performance
even for the memory-bound cases. This effect increases with the number of columns,
respectively, with the compute intensity. This indicates that our implementation
is still suboptimal. In addition, the simple roofline model based on the number of
floating point operations is too optimistic for this case because the TSQR algorithm
includes data dependencies as well as costly sqrt operations. Overall we obtain more
than 50\% of the peak bandwidth for small numbers of columns.

For the compute-bound case (m \geq 50 on this hardware), we observe the expected
linear scaling with the number of cores (see Figure 5.1(b)). Our implementation
achieves roughly 35\% of the peak performance here, independent of the number of
columns.

Figure 5.2(a) shows the obtained bandwidth on a full socket and the roofline limit
depending on the number of columns m. The kink in the roofline limit denotes the
point where the operation (theoretically) becomes compute-bound. We see that the
obtained bandwidth of our implementation decreases with the number of columns
even in the memory-bound regime. However, our specialized TSQR implementation
is still significantly faster than just calling some standard QR algorithm that is not
optimized for tall-skinny matrices. This is illustrated by Figure 5.2(b). The com-
parison with MKL QR is fair concerning the hardware setting (single socket with 14
cores, no NUMA effects). However, it is unfair from the algorithmic point of view
because we can directly discard Q and exploit the known memory layout, whereas the
MKL QR algorithm must work for all matrix shapes and any given memory layout
and strides. We also show the run-time of the MKL SVD calculation for the same
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Fig. 5.2. Single socket performance of tall-skinny matrix decompositions for varying numbers
of columns.

matrix dimensions. Calculating the singular values and the right singular vectors
from the resulting R of the TSQR algorithm requires no significant additional time
(SVD of m\times m matrix with small m). In addition, we measured the run-time of the
Trilinos [40] TSQR algorithm with the Trilinos Tpetra library on one MPI process
per core. The Trilinos TSQR algorithm explicitly calculates the matrix Q, and it does
not seem to exploit SIMD parallelism: We only obtained scalar fused multiply-add
instructions instead of AVX512 (GCC 10.2 compiler with appropriate flags). Due to
these two reasons, the Trilinos TSQR is still slower than our almost optimal Q-less
TSQR implementation by more than a factor of 10. Finally, we replaced our imple-
mentation for reducing a triangular and a rectangular factor to triangular form in our
Q-less TSQR implementation by the according low-level MKL routine dtpqrt2. In
this case, we need to copy a block of the input matrix to a small buffer to avoid over-
writing the input matrix (overhead of less than \sim 10\% of the total time). This variant
achieves about 1/3 of the performance of our specialized branchless Householder QR
implementation. Overall, the QR trick with our Q-less TSQR implementation reduces
the run-time of the SVD calculation by roughly a factor of 50 compared to just calling
standard LAPACK (MKL) routines.

5.1.2. TSMM. As analyzed in section 4.1.2, the fused TSMM and reshape is
also memory-bound for m up to \sim 150 columns on the given hardware.

Figure 5.3(a) shows the obtained bandwidth for varying numbers of cores. We
observe a saturation of the memory bandwidth for m < 50. For m = 100, we already
see a linear scaling with the number of cores. For the compute-bound case, our
implementation roughly obtains 50\% of the peak performance (see Figure 5.3(b)).

From Figure 5.4(a), we conclude that our TSMM implementation obtains a high
fraction of the maximum possible bandwidth. Near the kink, the roofline model is too
optimistic because it assumes that data transfers and floating point operations over-
lap perfectly. Further insight could be obtained by a more sophisticated performance

D
ow

nl
oa

de
d 

08
/0

9/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C302 M. R\"OHRIG-Z\"OLLNER, J. THIES, AND A. BASERMANN

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14

peak bandwidth (stream)

G
B
y
te
/s

\# cores

n\times 2 (Ic = 0.2)
n\times 10 (Ic = 0.8)
n\times 20 (Ic = 1.7)
n\times 50 (Ic = 4.2)

n\times 100 (Ic = 8.3)

(a) Memory-bound case (Ic \lesssim 14) measured
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Fig. 5.3. Single socket TSMM+reshape compared with the peak bandwidth, respectively, peak
flop/s. The input matrices have dimensions n\times m and m\times m/2; the result is reshaped to n/2\times m.
Based on Table 2.1, the machine intensity for this operation (load/store ratio of 2/1 \widehat = STREAM)
is 1009/73 \approx 14 [flops/byte].
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Fig. 5.4. Single socket performance of TSMM+reshape for varying numbers of columns. The
input matrices have dimensions n \times m and m \times m/2, and our implementation directly stores the
result reshaped to dimensions n/2\times m. (b) illustrates the effect of cache thrashing (the leading array
dimension is a power of two).

model such as the execution-cache-memory model; see [38]. For this operation, our
implementation and the Intel MKL obtain roughly the same performance, as depicted
in Figure 5.4. In contrast to the MKL, our implementation exploits a special memory
layout, which might explain the small differences in run-time. So the advantage of our
TSMM implementation for the complete TT-SVD algorithm consists mainly in fusing
the reshape operation, which ensures a suitably padded memory layout for subsequent
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Fig. 5.5. Single socket run-time of different TT-SVD algorithms for varying maximal TT-rank.

operations at no additional cost. Without appropriate padding, the performance can
degrade significantly due to cache thrashing (also illustrated in Figure 5.4), in partic-
ular for operations from tensor algorithms when individual dimensions are multiples
of two.

5.2. TT-SVD. In the following, we consider the complete TT-SVD algorithm
and different variants and implementations of it. Figure 5.5(a) illustrates the run-time
of the TT-SVD algorithm in different software libraries. All cases show the run-time
for decomposing a random double precision 227 tensor on a single CPU socket with
14 cores with a prescribed maximal TT-rank. For several of these libraries, we tested
different variants and LAPACK back ends [3, 24]. Here, we only report the timings
for the fastest variant that we could find. We show results for the following libraries:
\bullet TSQR TT-SVD: The implementation discussed in this paper.
\bullet ttpy: A library written in Fortran and Python by the author of [33].
\bullet t3f: A library based on the TensorFlow framework [31].
\bullet TensorToolbox: A Python library from the author of [7].
\bullet tntorch: A library based on PyTorch [5].
\bullet TT-SVD with NumPy: Simple implementation in NumPy [22] inspired by [17].
Both ttpy and TensorToolbox use the older (and in many cases slower) dgesvd

routine for calculating SVD decompositions. Our classical TT-SVD implementation
with NumPy uses the newer LAPACK routine dgesdd. The ttpy library is still faster
in many cases. The t3f library is based on TensorFlow, which is optimized for
GPUs. It uses the C++ library Eigen [20] as the back end on CPUs. However, only
some routines in Eigen are parallelized for multicore CPUs which explains why t3f is
slow here. In contrast to all other variants, the run-time of the TT decomposition in
tntorch is almost independent of the maximal TT-rank. tntorch does not implement
the TT-SVD algorithm but instead first constructs a TT of maximal rank, followed
by a left-right orthogonalization step and TT rounding. The computationally costly
part is the left-right orthogonalization step, which is based on QR decompositions
whose size only depends on the size of the input tensor and not on the desired rank.
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Table 5.1
Examples for the resulting effective dimensions and TT-ranks for the different TT-SVD variants

for a 2d tensor. We consider the right-most dimensions and ranks as our implementation calculates
the decomposition from right to left.

Case rmax Effective dim. TT-ranks Reduction factors
(ni) (ri) (fj)

plain 1 . . . , 2, 2 . . . , 1, 1 1
2
, 1

2
, . . .

(fmin
1 = 1) 5 . . . , 2, 2 . . . , 5, 5, 4, 2 1, 1, 5

8
, 1

2
, . . .

16 . . . , 2, 2 . . . , 16, 16, 8, 4, 2 1, 1, 1, 1, 1
2
, . . .

thick-bounds 1 . . . , 2, 2, 16 . . . , 1, 1 1
16

, 1
2
, 1

2
, . . .

(fmin
1 = 1/2) 5 . . . , 2, 2, 16 . . . , 5, 5 5

16
, 1

2
, 1

2
, . . .

16 . . . , 2, 2, 32 . . . , 16, 16 1
2
, 1

2
, . . .

Our TSQR TT-SVD implementation is significantly faster than all other imple-
mentations for two reasons. First, there are multiple combinations of basic linear
algebra building blocks that calculate the desired result. This is an example of the
linear algebra mapping problem as discussed in [35]. Here, we choose a combination of
building blocks (Q-less TSQR + multiplication with truncated right singular vectors)
that leads to (almost) minimal data transfers. Second, common linear algebra soft-
ware and algorithms are not optimized for avoiding data transfers. However, for the
tall-skinny matrix operations required here, the data transfers determine the perfor-
mance. For a detailed overview on communication avoiding linear algebra algorithms,
see, e.g., [4] and the references therein. An interesting discussion that distinguishes
between the effects of reading and modifying data can be found in [8].

Figure 5.5(b) shows the run-time for the different variants of the TSQR TT-SVD
algorithm discussed in section 3.1.3. This is the worst case run-time of the algorithm
because we approximate a random input matrix and we only prescribe the maximal
TT-rank. For the plain case (fmin

1 = 1), there is no reduction in the data size in the
first steps for rmax > 1. For the thick-bounds and two-sided variants we set mmin = 16
(see Algorithm 3.4). This reduces the run-time for small TT-ranks (difference between
plain and other variants for rmax = 1). See Table 5.1 for some examples on resulting
dimensions and TT-ranks.

As expected, the plain variant is slower, as it needs to transfer more data in
the first iterations. For all cases with a prescribed reduction fmin

1 < 1, we observe
roughly a linear scaling with the maximal TT-rank as predicted by the performance
analysis for the compute-bound case. And for small ranks, the run-time is of the
order of copying the data in memory. For our implementation the choice fmin

1 = 1/2
appears to be optimal even though the theoretical analysis indicates that a smaller
fmin
1 could be beneficial. Decreasing fmin

1 increases the number of columns of the
matrices in the first step. This leads to more work, and the obtained bandwidth of
our TSQR implementation decreases (see Figure 5.2(a)). The two-sided variant uses
thick-bounds as well, but it is always slower with our implementation.

The run-time of the individual steps of the algorithm are illustrated in Figure 5.6.
We clearly see the effect of combining multiple dimensions: The first TSQR step takes
longer, but all subsequent steps are faster. The two-sided variant is only slower due
to the additional transpose operation required in our implementation. For real-world
problems, the two-sided variant might be faster depending on the resulting TT-ranks.

To validate our assumptions in the performance analysis in section 4.2, we mea-
sured data transfers and flops for several cases using CPU performance counters; see
Table 5.2. We compare cases where the simple estimates with the global reduction
factor \=f fit well, and we observe a good correlation with the measurements. Depending
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Fig. 5.6. Timings for the building blocks in different TT-SVD variants for two cases from
Figure 5.5(b). The transpose timings refer to the transpose/reshape operations in lines 9 and 14 of
Algorithm 3.4.

Table 5.2
Measured and estimated number of floating point operations and transferred data volume be-

tween the CPU and the main memory for the TSQR TT-SVD algorithm with a 230 tensor in double
precision. The measurements were performed with likwid-perfctr [39]. Estimates based on (4.3) and
(4.5) are shown in parentheses.

Case rmax Operations Data transfers
GFlop GByte

plain (estimate with \=f = 1/2) 1 14 (13) 43 (43)
thick-bounds (estimate with \=f = 1/16) 1 41 (39) 21 (19)
thick-bounds (estimate with \=f = 1/2) 31 417 (399) 43 (43)

on the dimensions and the desired maximal rank, the reduction in the first step can
differ from the following steps (see Table 5.1) which is not captured by (4.3) and (4.5).

The experiments above use 2d tensors for simplicity (as in the QTT format). If we
increase the size of the individual dimensions, the compute intensity of the TSQR TT-
SVD algorithm increases. Figure 5.7 visualizes the run-time for decomposing tensors
of different dimensions with approximately the same total size. For very small max-
imal rank (rmax < 5), all cases require similar run-time. For higher maximal ranks,
the cases with a higher individual dimension become more costly. Near rmax = 32
there are some interesting deviations in the run-time from the expected linear growth.
We can explain these deviations by the possible choices for combining dimensions in
the thick-bounds algorithm: Depending on rmax and ni there are only a few discrete
choices for the number of columnsm of the first step. In particular, we obtainm = 100
for rmax = 10, . . . , 49 for the 109 tensor but m = 512 for rmax = 32, . . . , 255 for the
810 tensor with a prescribed minimal reduction fmin

1 = 1/2. This results in a lower
run-time for the 109 tensor as the first step is the most costly part of the algorithm.
As expected, the run-time of the 326 case increases linearly with the maximal rank
for rmax \geq 16, and the run-time is significantly higher than for smaller dimensions as
the resulting reduction factors are small (fj \approx 1/32).
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Fig. 5.7. Timings for TSQR TT-SVD for varying dimensions on a single socket. Uses the
thick-bounds variant with fmin

1 = 1
2
where beneficial.
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Fig. 5.8. Speedup for the TSQR TT-SVD (thick-bounds variant with fmin
1 = 1

2
) on a varying

number of CPU sockets and nodes with one MPI process per socket. Each node has 4 sockets with
14 cores. The reference time is measured on a single socket.

Finally, we also tested the distributed variant of the TSQR TT-SVD algorithm
using MPI. Figure 5.8 shows strong and weak scaling results for input tensors of
dimension 232 (strong scaling) and 232 to 236 (weak scaling). We observe a good weak
scaling behavior (parallel efficiency of about \sim 95\%). The biggest considered case has
an input tensor of size 236 (\sim 550 GByte). For strong scaling, the problem size per
CPU socket gets smaller. So in particular for bigger TT-ranks, the relative overhead
due to duplicating the work of the small SVD increases. The same holds for the
relative parallelization overhead in the TSQR algorithm. The TSQR MPI reduction
only amounts to about 3\% of the overall run-time (with 16 CPU sockets and rmax = 50,
similar for both strong and weak scaling). Summing up, the distributed variant allows
to tackle problems where the dense input tensor is too large for the memory of a single
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node or where the input tensor is generated by a distributed program on a cluster.
The communication overhead is low. Only for strong scaling, we observe a significant
overhead due to nonparallelized parts of the algorithm.

6. Conclusion and future work. In this paper we analyzed the node-level
performance of the TT-SVD algorithm that calculates a low-rank approximation of a
high-dimensional tensor. The results can also be transferred to other nonrandomized
high-order SVD algorithms. We considered the case where the input tensor is large
and dense but not too large to be processed completely, i.e., to be read from main
memory or disk as a whole. The theoretical minimal run-time depends on the desired
accuracy of the approximation. For small TT-ranks (low accuracy), the algorithm is
memory-bound, and the ideal run-time on current hardware is approximately twice the
time required for reading the data (transferring it from the memory to the CPU). For
larger TT-ranks (higher accuracy), the algorithm becomes compute-bound, and the
ideal run-time increases linearly with the maximal TT-rank. We presented different
variants of the TT-SVD algorithm. In order to reduce the computational complexity,
these variants start with the calculation of the TT-cores at the boundaries of the
TT and reduce the data size in each step. The key ingredient is a Q-less TSQR
decomposition based on Householder reflections that handles rank-deficient matrices
without pivoting by clever use of floating point arithmetic. We performed numerical
experiments with 2d tensors of size up to 550 GByte (d = 36) on up 224 cores on a
small cluster. Our hybrid-parallel (MPI+OpenMP) TT-SVD implementation achieves
almost optimal run-time for small ranks and about 25\% peak performance for larger
TT-ranks. On a single CPU socket, our implementation is about 50\times faster compared
to TT-SVD algorithms in other libraries. We provide a lower bound for the run-
time: reading the data twice from main memory. This also indicates that randomized
algorithms can cirumvent this lower bound by not considering all data.

For future work, we see three interesting directions: First, here, we use random
input data and prescribe the TT-ranks. In real applications, usually a certain trunca-
tion accuracy is prescribed instead, and the TT-ranks depend on the desired accuracy.
For optimal performance one needs to combine, rearrange, or split dimensions based
on some heuristic such that the first step leads to a sufficient reduction in data size.
Second, we only analyzed one TT operation for dense input. Similar performance
gains might be possible for other important operations involving large dense data.
Handling sparse input data efficiently is more challenging, as the reduction in dimen-
sions in each step does not necessarily lead to a reduction in data size. And finally, it
would be interesting to analyze the performance of randomized decomposition algo-
rithms and to deduce lower bounds for their run-time on current hardware.
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