
ar
X

iv
:2

10
2.

02
90

5v
2 

 [
m

at
h.

A
P]

  1
8 

M
ay

 2
02

1

Strain and defects in oblique stripe growth

Kelly Chen 1, Zachary Deiman 2, Ryan Goh 3, Sally Jankovic 2 and Arnd Scheel 2

1Massachusetts Institute of Technology, Department of Mathematics, 182 Memorial Drive, Cambridge, MA 02139, USA
2University of Minnesota, School of Mathematics, 206 Church St. S.E., Minneapolis, MN 55455, USA

3Boston University, Department of Mathematics and Statistics, 111 Cummington Mall, Boston, MA 02215, USA

Abstract

We study stripe formation in two-dimensional systems under directional quenching in a phase-diffusion approx-

imation including non-adiabatic boundary effects. We find stripe formation through simple traveling waves for

all angles relative to the quenching line using an analytic continuation procedure. We also present comprehensive

analytical asymptotic formulas in limiting cases of small and large angles as well as small and large quenching

rates. Of particular interest is a regime of small angle and slow quenching rate which is well described by the

glide motion of a boundary dislocation along the quenching line. A delocalization bifurcation of this dislocation

leads to a sharp decrease of strain created in the growth process at small angles. We complement our results with

numerical continuation reliant on a boundary-integral formulation. We also compare results in the phase-diffusion

approximation numerically to quenched stripe formation in an anisotropic Swift Hohenberg equation.

1 Introduction

We investigate the influence of boundary conditions on the formation of striped patterns. Striped patterns occur in

many experimental setups [1, 5, 6, 10, 14, 29, 40, 41, 42, 44] and their existence and stability is quite well studied.

In particular, idealized periodic striped patterns in unbounded, planar systems occur in families parameterized by

the wavenumber, the orientation, and a phase encoding translations. Stability depends only on the wavenumber

and instability mechanisms include Eckhaus and zigzag instabilities. Away from instabilities, striped phases are well

described by a phase diffusion equation for a phase ϕ which encodes the (local) shift of a fixed reference pattern. Local

wavenumbers and orientation are encoded in the gradient ∇ϕ. Rigorous derivations are possible in a slow modulation

approximation [13]. In a homogeneously quenched pattern-forming system, posed with small noisy initial conditions,

the observed pattern indeed locally resembles a suitably rotated and stretched periodic pattern, away from isolated

points or lines where defects form. More regular patterns emerge when the pattern-forming region expands in time,

either through apical growth at the boundary of the domain, or through directional quenching where a parameter in

the system is changed spatio-temporally such that the parameter region where pattern formation is enabled grows

temporally. Our interest here is with this growth scencario in an idealized situation.

A prototypical model equation for the the formation of striped patterns is the Swift-Hohenberg equation

ut = −(∆x,y + 1)2u+ µu− u3, (x, y) ∈ R
2, u ∈ R, (1.1)

which, for µ > 0, possesses families of stable periodic striped patterns given through uper(kx; k) = uper(kx + 2π; k),

close to
√

4µ/3 cos(kx) for small µ and k ∼ 1. Directional quenching here refers to the situation where µ =

−µ0 sign (x − cxt) for some µ0 & 0. For patterns with trivial y-dependence and cx = 0, there exists a family of

“quenched” periodic patterns u with

|u(x)− uper(kxx− ϕ; kx)| → 0, x→ −∞, |u(x)| → 0, x→ +∞, (1.2)

for wavenumbers obeying the strain-displacement relation kx = g(ϕ) ∼ 1 + µ0

16
sinϕ; see [30, 39].

For positive speeds cx > 0, one observes the formation of stripes with a selected wavenumber. This stripe formation

is enabled by time-periodic solutions u(t, x) = u∗(x − cxt, kxx), with u∗(ξ, ζ) = u∗(ξ, ζ + 2π) and

u∗(ξ, ζ) → uper(ζ; kx), ξ → −∞, u∗(ξ, ζ) → 0, ξ → +∞.
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These solutions represent stripes parallel to the quenching interface x = cxt, with trivial y-dependence. The wavenum-

ber kx of stripes selected by this directional quenching process can be computed in terms of the strain-displacement

relation and effective diffusivities deff as

kx ∼ kmin + k1c
1/2
x +O(c3/4x ), k1 = −ζ(1/2)

√

2kmin/deff ,

where kmin denotes the minimum of the strain-displacement relation; see [16].

Including possible y-dependence, one would be interested in solutions that create periodic patterns at a given angle

relative to the quenching interface. This problem was analyzed in [2] when stripes are nearly perpendicular to the

quenching interface and in [19] when stripes are almost parallel to the boundary for fixed cx > 0. Our focus here is on

the case of stripes almost parallel to the quenching interface and small speeds. Most of our results are concerned with a

phase-diffusion approximation but we demonstrate numerically good agreement with Swift-Hohenberg computations.

The phase-diffusion approximation for stripes relies on writing solutions u to (1.1) in the form u(t, x) = uper(ϕ; k),

with |∇x,yϕ| ∼ 1, slowly varying, and

ϕt = ∆ϕ,

after possibly scaling x and y so that effective diffusivities agree. Of course, this assumes that the patterns considered

here are away from possible instabilities, where for instance the Cross-Newell equations would be more appropriate.

In a context of directional quenching, such an approximation is meaningful only in the pattern forming region x < cxt.

The equation therefore needs to be supplemented at the quenching line x = cxt, y ∈ R, with an effective boundary

condition, which in particular should reflect the strain-displacement relation in the parallel case with cx = 0. We

then arrive at

ϕt = ∆ϕ+ cxϕx, x < 0; ϕx = g(ϕ), x = 0, (1.3)

where g reflects the strain-displacement relation,

g(ϕ) = g(ϕ+ 2π), g(ϕ) > 0, (1.4)

for instance g(ϕ) = 1 + κ sin(ϕ) for some 0 ≤ κ < 1. Clearly, setting ϕ = ϕ∗(x) and cx = 0, we find simple affine

profiles for any ϕ0 ∈ R,

ϕ∗(x) = ϕ0 + g(ϕ0)x,

corresponding to the solutions in (1.2) compatible with the strain-displacement relation. Note that (1.3) possesses

a gauge symmetry that maps solutions ϕ(t, x) to solutions ϕ(t, x) + 2π, reflecting the periodicity of the underlying

periodic pattern that is modulated through ϕ. It does not possess a continuous symmetry ϕ(t, x) 7→ ϕ(t, x) + ϕ̄,

ϕ̄ ∈ R, which would result in g ≡ const and reflect boundary conditions insensitive to the crystalline microstructure.

This latter situation arises at leading order when one derives averaged amplitude or phase equations and one can

then think of the presence of a nontrivial flux g as a non-adiabatic effect, not visible in averaged approximations.

The equation (1.3) was analyzed in [16] for y-independent solutions, deriving in particular universal asymptotics

for solutions in the cases cx ≪ 1 and cx ≫ 1. For cx ≪ 1, excellent agreement with solutions in (1.1) and several

other prototypical examples of pattern-forming systems was found, including reaction-diffusion, Ginzburg-Landau,

and Cahn-Hilliard equations. For bounded initial conditions and cx > 0, solutions eventually become time-periodic

up to the gauge symmetry, and converge locally uniformly to linear profiles for large negative x,

ϕ(t+ T, x) = ϕ(t, x) + 2π, |ϕ(t, x) − (kxx− ωt)| → 0, x→ −∞, ω = cxkx,

for some T = 2π
ω > 0, for given g > 0. The existence and stability of such solutions with the minimal, 1:1-

resonant period T = 2π
ω was established generally in [32]. Here, the resonance refers to the frequency of the periodic

solution 2π/T relative to the frequency of patterns generated in the far field ω. In particular, subharmonic solutions

2πℓ/T = ω, ℓ > 1, are ruled out.

In the two-dimensional, oblique case, these simplest resonant solutions correspond to traveling waves; see Figure

1.1. In the far field, x → −∞, we are interested in oblique stripes which are represented by values of the phase
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Figure 1.1: Schematic plot of patterns with found through (1.5)–(1.8), with ky = O(1) (left), ky ≫ 1 (center), and ky ≪ 1 (right). Also

shown on the left is the effect of growth, leading to an apparent drift of the pattern along the interface with speed cy = −kxcx/ky; see
text for details. Colors chosen to show contours of u = uper(ϕ(x, y, t)) with uper(φ) = sin(ϕ); see Figure 1.3 for computed profiles.

ϕ ∼ kx(x + cxt) + kyy = kxx + ky(y − cyt) with cy = −kxcx/ky. Such solutions are in fact traveling waves in the

y-direction. We therefore focus on solutions ϕ(x, ky(y − cyt)) to (1.3), periodic up to the gauge symmetry in the

second argument, that is, solutions to

0 = ϕxx + k2yϕζζ + cxϕx − kxcxϕζ , x < 0, ζ ∈ R, (1.5)

0 = ϕ(x, ζ + 2π)− ϕ(x, ζ) − 2π, x ≤ 0, ζ ∈ R, (1.6)

0 = ϕx − g(ϕ), x = 0, ζ ∈ R, (1.7)

0 = lim
x→−∞

|ϕ(x, ζ) − (kxx+ ζ)|, ζ ∈ R. (1.8)

All solutions are in fact classical solutions since we shall assume g to be smooth. We will also see later that the

convergence in (1.8) is in fact uniform.

In addition to ϕ, the system (1.5)–(1.8) includes 3 variables: the lateral periodicity ky, which we will assume to be

positive, without loss of generality; the quenching speed cx which we assume to be non-negative; and the strain kx in

a direction perpendicular to the quenching line, which we think of as a Lagrange multiplier that compensates for the

phase shift induced by ζ-translations. Given kx = kx(cx, ky), one can then determine angle and wavenumber from

the wave vector (kx, ky).

Our main results are as follows.

Existence for all cx ≥ 0, ky > 0 Assuming g is smooth and 2π-periodic, we have existence.

Theorem 1 (Existence). Suppose g > 0. Then for all cx ≥ 0, ky > 0, we have existence of solutions to (1.5)–(1.8)

with kx = Kx(ky , cx), smooth. Moreover, solutions are strictly monotonically increasing in ζ.

Using reflection symmetry, one can also find monotonically decreasing solutions. Solutions are unique within this

class of solutions up to the trivial translation symmetry in ζ.

We computed the function Kx(cx, ky) numerically and show the resulting graph in Figure 1.2, using an appropriate

compactification of the positive quadrant cx, ky ≥ 0. One sees quite distinct limiting behaviors of the surface and

much of this paper is concerned with exploring these limits. Figure 1.2 includes a guide to the asymptotics and how

they are reflected in this surface.

Asymptotics cx → ∞ Solutions ϕ and wavenumbers converge as cx → ∞ with limiting wavenumber Kx(cx =

∞, ky) independent of ky, given through the harmonic average of g. At finite but large cx, wavenumbers decrease

from the harmonic average for small ky and increase for large ky, proportional to c
−2
x at leading order.

Asymptotics cx → 0, ky > 0 fixed Solutions and wavenumbers are smooth at cx = 0 with limit kx given by the

average of g, and linear asymptotics for cx small. We establish asymptotics for the linear coefficient as ky → 0.

3



Figure 1.2: Computed values of kx as a function of ky and cx in a compactified scale including the limits ky = ∞ and cx = ∞. Surface

plot (left; see §4.6 for other views) and contour plot with limiting values and asymptotics, details in the sections referenced (right).

Asymptotics ky → 0, cx > 0 fixed. Solutions are smooth (albeit likely not analytic) near ky = 0, cx > 0, a

regime explored also in [19]. We numerically compute a leading-order quadratic coefficient and explore asymptotics

of this coefficient as cx → 0 numerically.

Asymptotics ky → ∞ In this limit of perpendicular stripes, we find again the average of g as the limit and

asymptotics with leading-order term k−3
y .

Asymptotics ky ∼ cx → 0 In the most striking regime close to the origin, the sharp peak in the surface in

Figure 1.2, we use an inner expansion to arrive at a reduced problem which amounts to describing the glide motion

of a dislocation-type defect in the y-direction under an externally imposed strain. Most interestingly, we identify

a qualitative “phase transition” where this defect changes type, explaining qualitatively the shape of the surface

kx(cx, ky) close to the origin. Profiles of solutions in this regime on the boundary and in the whole domain are shown

in Figure 1.3, demonstrating in particular the phase transition corresponding to the delocalization of a defect near

ky/cx ∼ 2.8845; see §5.

Numerical continuation We illustrate results and explore the approximation quality of theoretical asymptotics

using numerical continuation for solutions of (1.5)–(1.8), and also for corresponding solutions of the Swift-Hohenberg

equation. We find good agreement with asymptotics in the phase-diffusion equation, and a qualitatively similar

transition near cx, ky ∼ 0 due to defect delocalization in the Swift-Hohenberg equation.

Consequences for homogenized descriptions Thinking of the gradient of the phase as a macroscopic, homoge-

nized strain variable for a crystalline phase, our results provide corresponding effective boundary conditions through

a micropscopic analysis of the boundary layer. The dependence kx = Kx(ky ; cx) provides mixed boundary conditions,

such that the renormalized strain φ = ϕ−Kx(ky ; cx)x solves

φt = ∆φ+ cxφx, x < 0, φx = 0, x = 0,
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Figure 1.3: Profiles of ϕ on x = 0 for ky = 2.4 × 10−3, kx = 0.9 (top left), and ky = 6.75 × 10−5, kx = 0.7147 (bottom,left), both with

cx = 10−4. Note the different scales on the horizontal axis, showing that the jump is stronger localized for larger ky . Associated profiles

of sin(ϕ) in the x− y-plane (only part of y-region shown), showing a sharply localized defect for larger ky (top right) and a delocalized

defect for small ky (bottom right).

eliminating variations on the microscopic scale 1/Kx. Such a description is not possible for cx = ky = 0, since

the derivative ϕx at the boundary depends on the microscopic phase variable ϕ and, at steady-state, there are

multiple compatible equilibrium strain configurations. The presence of a spatial defect, ky 6= 0, or a temporal

defect, cx 6= 0, forces selection of a unique normal strain at the boundary and allows this macroscopic description.

From this perspective, our work establishes existence of a unique normal strain and analyzes in detail properties

of this normal strain in various limiting regimes, in particular relying on properties of the spatio-temporal defect

at the boundary. We emphasize that these effective boundary conditions are not the natural boundary conditions

associated with minimizing a free energy density and “select” non-energy-minimizing strains; see §7 for a discussion

of stored energies in the growth processes considered here and more context for wavenumber selection in striped

phases.

Outline We introduce a boundary integral formulation together with a priori estimates and numerical setup in §2

and prove existence of oblique quenched fronts for all ky 6= 0, cx ≥ 0, in §3. We derive asymptotics in the limits

cx → 0, cx → ∞, ky → 0, and ky → ∞ in §4. We present an analysis near the origin ky, cx ∼ 0 in §5 and compare

with Swift-Hohenberg in §6.

2 Boundary integral formulation, a priori estimates, and numerical

setup

To solve (1.5),(1.6), and (1.8), we first set

ψ(x, ζ) := ϕ(x, ζ) − (kxx+ ζ), (2.1)

which gives

0 = ψxx + k2yψζζ + cxψx − kxcxψζ , x < 0, ζ ∈ R, (2.2)

0 = ψ(x, ζ + 2π)− ψ(x, ζ), x ≤ 0, ζ ∈ R, (2.3)

0 = ψx − g(ψ + ζ) + kx, x = 0, ζ ∈ R, (2.4)

0 = lim
x→−∞

ψ(x, ζ), ζ ∈ R. (2.5)

5



Next, writing Fourier series ψ(x, ζ) =
∑

ℓ∈Z
ψℓ(x)eiℓζ transforms (2.2) into

d2

dx2
ψℓ + cx

d

dx
ψℓ − k2yℓ

2ψℓ − kxcxiℓψ
ℓ = 0, (2.6)

with

ψℓ(x) =
∑

±

ψℓ
±e

νℓ
±x, νℓ± = −cx

2
±
√

c2x
4

+ k2yℓ
2 + cxkxiℓ, ℓ 6= 0, (2.7)

where we use the standard cut at R
− in the square root and restrict to cx ≥ 0. For ℓ 6= 0, decay (2.5) requires

ψℓ
− = 0. For cx = ℓ = 0, solutions are affine, ψ0(x) = ψ0

0 + ψ0
1x, and we can set ψ1

0 = 0 since this part of the

solution is already parameterized by the ansatz (2.1) through the parameter kx. For cx > 0, ℓ = 0, convergence as

in (2.5) implies ψ0(x) ≡ ψ0
0 = 0. Evaluating ψx at x = 0 and substituting into (2.4) then reduces (2.2)–(2.5) to the

boundary-integral equation

0 = D+(∂ζ ; cx, kx, ky)ψ − g(ψ + ζ) + kx, ψ(ζ) = ψ(ζ + 2π), D+(iℓ; cx, kx, ky) = νℓ+, (2.8)

where the operator D+ is understood as a Fourier multiplier acting through multiplication by νℓ+ on Fourier series.

One readily confirms that D+ : H1
per ⊂ L2 → L2 is a closed, sectorial operator as a relatively compact perturbation

of ky|∂ζ |, with compact resolvent and spectrum with strictly positive real part except for the simple eigenvalue λ = 0

associated with constant functions. The definition of D+ extends to cx = 0 in natural agreement with our problem.

For later puposes, we also introduce the associated pseudo-differential operator D− through D−(iℓ; cx, kx, ky) = νℓ−.

Lemma 2.1. For any periodic and smooth flux g, there exists an a priori bound C∞(g, cx, ky,m) such that any

solution to (2.8) with ψ(0) ∈ [0, 2π) satisfies

‖ψ‖Cm + |kx| ≤ C∞.

Moreover, C∞ is uniformly bounded for fixed m and δ > 0 such that |ky| > δ, ‖g‖Cm ≤ 1/δ.

Proof. Since the average −

∫

D+ψ = 0, −

∫

= 1
2π

∫

, vanishes and |g|∞ ≤ Cg, we find an a priori bound |kx| ≤ −

∫

|g(ψ(ζ)+
ζ)|. This in turn gives an L∞ a priori bound on D+ψ and, using the regularizing properties of D+ and a bootstrap,

the desired a priori bound on ψ. Uniformity of C∞ follows readily from the fact that the pseudo-inverse of D+ is

uniformly bounded from L2 into H1/2 as long as ky is outside a neighborhood of the origin.

Numerical setup We solve (2.8) numerically for the variables ψ and kx, with parameters cx and ky, and adding a

phase condition
∫

ψ(ζ) exp(−ζ2/δ)dζ = 0. The resulting nonlinear equation is evaluated using fast Fourier transform.

A Newton method, using gmres to solve the linear equation in each Newton step was found to converge robustly

even for poor initial guesses. Most of the solutions were then computed using secant continuation in ky for fixed cx
with adaptive control of the continuation step. During each step, we control for the number of Fourier modes by

ensuring that amplitudes in high Fourier modes is below a tolerance, which we found to have little effect once below

10−4. Step sizes are very small and numbers of Fourier modes grow when cx, ky ∼ 0, due to large gradients in the

profile. We address this regime directly using an inner expansion and a slightly different ansatz function in §5. The

code was implemented in matlab and Newton iterations for large sizes N ≥ 218 were carried out on a Nvidia GV100

GPU. All numerical results use g(ϕ) = 1 + κ sin(ϕ) with κ = 0.3 unless otherwise noted.

3 Existence in the phase-diffusion approximation

In this section, we prove Theorem 1. Throughout we write −

∫

= 1
2π

∫

for the average integral. For this, we perform

a homotopy, introducing gτ (u) := τg(u) + (1 − τ)−
∫

g. Clearly, gτ satisfies all the assumptions of Theorem 1 for

τ ∈ [0, 1], in particular gτ > 0. Let I ⊂ [0, 1] be the set of values where the conclusion of Theorem 1 holds. We will

show below that
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(i) 0 ∈ I; (ii) I is closed; (iii) I is open.

Together, this implies that I = [0, 1] and establishes Theorem 1. This general strategy of proof was used in [32] for the

case ky = 0, although the proof there was based directly on the parabolic equation rather than the boundary-integral

formulation which we shall exploit here.

To show (i), we set kx = −

∫

g and ψ = 0, such that ϕ is strictly monotone.

To show (ii), take a sequence of solutions ψn with wavenumbers knx for converging values τn → τ∞. We may assume,

possibly adding multiples of 2π, that ψn(0) ∈ [0, 2π). By Lemma 2.1, we can assume that ψn → ψ∞ and knx → k∞x ,

possibly passing to a subsequence. The limit then solves (2.2)–(2.5). It remains to show that the limit ϕ∞ = ψ∞+ ζ

is strictly monotone. Clearly, (ψ∞)′ ≥ −1 by uniformity of the limit. We argue by contradiction. Suppose therefore

that (ψ∞)′(ζ0) = −1. Note that v = (ψ∞)′ + 1 solves (2.2), (2.3), and (2.5), together with the linearized boundary

conditions

0 = vx − g′τ∞(ψ∞ + ζ)v, x = 0, ζ ∈ R,

and has v(ζ0) = 0, vζ(ζ0) = 0, vζζ(ζ0) ≥ 0. Extending into x < 0 and using the boundary condition gives vx(ζ0) = 0

and, using the equation, vxx ≤ 0. On the other hand, since −

∫

v > 0 at x = 0, v(ζ, x) → −

∫

v|x=0 > 0, a constant. Since

interior minima are excluded by the maximum principle, the minimum of v is necessarily located at the boundary

x = 0, ζ = ζ0, which however implies vx(ζ0) > 0 by the Hopf boundary lemma, a contradiction.

It remains to show (iii) for any gτ . Therefore, first notice that the linearization of (2.8) at any profile ψ∗,

L∗v = D+(kx)v − g′τ (ψ∗ + ζ)v,

is Fredholm of index zero with ψ′
∗(ζ)+1 belonging to the kernel. We claim that the kernel is indeed one-dimensional

and that the derivative of (2.8) with respect to kx, D′
+(kx)ψ∗, does not belong to the range. Together, this then

establishes (iii) via the Implicit Function Theorem since the linearization with respect to (ψ, k) is onto. Suppose first

that there is a function v in the kernel that is not a multiple of ψ′
∗(ζ)+1. Then we can find a linear combination that

is non-negative but not strictly positive, that is, a function w in the kernel with w(ζ0) = 0, w(ζ) ≥ 0, and −

∫

w ≥ 0.

Arguing as in (ii), we can then obtain a contradiction from the maximum principle. It now only remains to show

that there does not exist a nontrivial solution to

D+(kx)v − g′τ (ψ∗ + ζ)v = −D′
+(kx)ψ∗ − 1, (3.1)

where we suppressed the dependence of D+ on its arguments other than kx. Note that in the case cx = 0, D′
+ = 0,

D+ is self-adjoint, with cokernel ψ′
∗ + 1, such that the right-hand side of (3.1) has nonzero scalar product with the

cokernel and hence does not belong to the range. We shall therefore assume in the sequel that cx > 0. The boundary

integral equation (3.1) is equivalent to the elliptic equation

0 = vxx + k2yvζζ − cxkxvζ + cxvx, x < 0, (3.2)

0 = vx − g′τ (ψ + ζ)v +D′
+(kx)v + 1, x = 0. (3.3)

We claim that the existence of a solution to (3.3) is equivalent to the existence of a generalized eigenvector in

an associated elliptic problem, which will then lead to a contradiction. Consider therefore the eigenvalue problem

associated with our linearization

0 = vxx + k2yvζζ − cxkxvζ + cxvx − λv, x < 0, (3.4)

0 = vx − g′τ (ψ + ζ)v, x = 0, (3.5)

with solution v = ψ′
∗ + 1 at λ = 0. Existence of a generalized eigenvector then amounts to a solution v to

0 = vxx + k2yvζζ − cxkxvζ + cxvx − cx(ψ
′
∗ + 1), x < 0, (3.6)

0 = vx − g′τ (ψ + ζ)v, x = 0, (3.7)

7



or, setting v = w + x,

0 = wxx + k2ywζζ − cxkxwζ + cxwx − cxψ
′
∗, x < 0, (3.8)

0 = wx − g′τ (ψ + ζ)w + 1. x = 0. (3.9)

Solving the first equation using Fourier series in ζ and a variation-of-constant formula exploiting boundedness as

x→ ∞, we find after a short calculation

wx(0) = D+w(0) + (D+ −D−)
−1cxψ

′
∗|x=0,

which is equivalent to (3.3). This however contradicts the simplicity of the first eigenvalue of the elliptic operator

defined in (3.3).

4 Asymptotics near the boundaries of {ky > 0, cx > 0}

We derive asymptotics in the regular and singular limits when either cx or ky tend to 0 or infinity.

4.1 The case cx = 0

In this case, we can multiply (2.8) by ψ′
∗ + 1 and integrate over ζ ∈ [0, 2π] to find

0 =

∫

ζ

((ψ′
∗ + 1)D+ψ∗ − (ψ′

∗ + 1)g(ψ∗ + ζ) + (ψ′
∗ + 1)kx)

= 2π(kx −−
∫

ϕ

g(ϕ)),

where we used that D+ is a symmetric operator with kernel spanned by the constant functions to see that the first

summand vanished, and monotonicity of ψ∗ + ζ to transform the second summand into an integral over ϕ. As a

consequence kx = −

∫

g is a priori known; see also [26, 2, 3], where this wavenumber selection mechanism was derived

from Hamiltonian identities.

4.2 The limit cx → 0

We suppose that ky > 0 and study the limit cx → 0. Since the operator D+(cx) is continuous in the limit cx = 0 as

a map from H1 into L2, this limit is a regular perturbation problem. Using in addition that the linearization at a

profile, including the parameter kx as a variable, is onto, we conclude that we can formally expand the solution in

cx,

ψ∗(ζ; cx) = ψ∗(ζ; 0) + cxψ1(ζ) +O(c2x), kx = kx,0 + cxkx,1 +O(c2x), kx,0 = −
∫

g.

Inserting this expansion into the equation and taking the scalar product with the kernel of the linearization ψ′
∗ + 1

gives at order cx, expanding D+ = D0
+ + cxD1

+ +O(c2x), D1
+(ℓ) =

1
2
(−1 + i

kx,0

ky
sign(ℓ)), ℓ 6= 0, sign(0) = 0,

0 =

∫

ζ

(ψ′
∗ + 1)

(

D1
+ψ∗ + kx,1

)

= 2π

(

kx,1 +
kx,0
2ky

‖ψ∗‖2H̊1/2

)

,

where we used
∫

ψ∗ = 0 and set ‖ψ∗‖2H̊1/2
= −

∫

ψ|∂ζ |ψ, which gives

kx = kx,0 +

(

−kx,0
ky

‖ψ∗‖2H̊1/2

)

cx
2

+O(c2x), kx,0 = −
∫

g. (4.1)
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Figure 4.1: Left: Strain as a function of small growth rates comparing numerical continuation with theory (4.1), where the H̊1/2-norm

was computed numerically. Right: Asymptotics for the H̊1/2-norm as ky → 0, comparing with theory (4.2), best fit for O(1) terms.

Formally setting ky = cx = 0, we find that D+ = 0 and a solution ψ0,∗ = −ζ mod 2π which does not belong to

H̊1/2. Writing the equation as ψ = (1 +D+)
−1ψ + g − kx leads to the prediction ψ∗ ∼ (1 + ky |∂ζ |)−1ψ0,∗ with

‖ψ∗‖2H̊1/2 ∼ −2 log(ky) +Oky (1). (4.2)

In particular, we expect a strong initial stretching , that is, a decrease in kx with cx proportional to −2cx| log(ky)|/ky.
Computed solutions kx are compared with the asymptotic prediction in Figure 4.1, where we also show agreement

between the asymptotic prediction for the linear coefficient and the asymptotic formula (4.2).

4.3 The limit cx → ∞

We suppose that ky > 0 and study the limit cx → ∞. We therefore set cx = ε−1 and formally expand

D+(ℓ; ε) = ikxℓ+ (k2x + k2y)ℓ
2ε+ (2iℓkx(ℓ2k2x + ℓ2k2y))ε

2 +O(ε3).

We start by considering the case ε = 0, where D+(∂ζ ; 0) = kx∂ζ . As a consequence, at ε = 0, the solution ψ = ψ0+ ζ

solves the ordinary differential equation

kxψ0,ζ = g(ψ0), ψ0(ζ + 2π) = ψ0(ζ) + 2π, (4.3)

with implicit solution from separation of variables. In particular, the wavenumber at infinity is the harmonic average

of the nonlinearity,

kx,0 =

(

−
∫

(g(v))
−1

)−1

.

The linearization at ε = 0, ψ0 is

L0v = kx,0vζ − g′(ψ0)v,

which we consider as a Fredholm operator of index zero from H1
per into L

2. The derivative of (4.3) with respect to

kx is ψ0,ζ which does not belong to the range, so that the linearization is, as in the case of finite cx discussed in §3,

onto and we can use the Implicit Function Theorem to solve. Since the equation is not smooth in ε, one needs to be

somewhat careful. We therefore first expand formally,

kx = kx,0 + kx,1ε+ kx,2ε
2 +O(3), ψ = ψ0 + ψ1ε+ ψ2ε

2 +O(3),

9



where ψj , j > 1 are periodic, and substitute into (2.8). At first order, we find

L0ψ1 +
(

kx,1ψ0,ζ −
(

(kx,0)
2 + k2y

)

ψ0,ζζ

)

= 0. (4.4)

Integrating against the adjoint kernel 1/ψ0,ζ we see that kx,1 = 0 since, using the chain rule to compute ψ0,ζζ and

changing integration to ψ instead of ζ,

∫ 2π

0

ψ0,ζζ

ψ0,ζ
dζ =

∫ 2π

0

g′(ψ)

g(ψ)
dψ = 0,

by periodicity of log(g(ψ)). We can then solve for ψ1 as

ψ1 =
(kx,0)

2 + k2y
kx,0

log(ψ0,ζ)ψ0,ζ =
(kx,0)

2 + k2y
(kx,0)2

log

(

g(ψ0)

kx,0

)

g(ψ0). (4.5)

At order ε2, we find

L0ψ2 +
(

kx,2ψ0,ζ −
1

2
g′′(ψ0)(ψ1)

2 + 2kx,0
(

(kx,0)
2 + k2y

)

ψ0,ζζζ + kx,1ψ1,ζ

− 2kx,0kx,1ψ0,ζζ −
(

(kx,0)
2 + k2y

)

ψ1,ζζ

)

.
(4.6)

Using that kx,1 = 0, integrating against the kernel of the adjoint 1/ψ0,ζ, and changing variables of integration gives

kx = kx,0 + kx,2c
−2
x +O(c−4

x ),

with

kx,2 = −
∫

{1

2
g′′(ψ0)(ψ1)

2 − 2kx,0
(

(kx,0)
2 + k2y

)

ψ0,ζζζ +
(

(kx,0)
2 + k2y

)

ψ1,ζζ

}

× 1

(ψ0,ζ)2
dψ0,

(4.7)

where one substitutes

ψ0,ζ =
1

kx,0
g(ψ0),

ψ0,ζζ =
1

(kx,0)2
g′(ψ0)g(ψ0),

ψ0,ζζζ =
1

(kx,0)3
(

g′′(ψ0)(g(ψ0))
2 + (g′(ψ0))

2g(ψ0)
)

,

(4.8)

and uses equation (4.5).

The resulting integrals can be evaluated numerically for specific choices of g(v). We found that for g(v) = 1+κ sin(v),

|κ| < 1, kx,2 is monotonically increasing as a a function of ky, kx,2 < 0 for ky = 0 and 0 < kx,2 ∼ k4y for ky large.

More explicitly, the integrals can be evaluated to order κ4 for g(ϕ) = 1 + κ sin(ϕ), yielding

kx(cx) =
√

1− κ2 +
1

2

(

κ2(−1 + k4y) +
1

4
κ4(3 + 5k4y) +O(κ6)

)

c2x +O(c4x). (4.9)

This proves in particular that, at least for small κ, the monotonicity of kx as a function of cx changes, that is, kx,2
changes sign, to leading order at ky = 1.

Figure 4.2 shows numerically computed values of kx compared with asymptotics for large cx, for several values of ky,

and demonstrates the sign change of the second-order coefficient kx,2 in a comparison with (4.9).

In order to make this expansion rigorous, we rewrite the equation as

(1−D+,1(ε, ζ))D0
+ψ − g(ψ) + kx = 0. (4.10)

10
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Figure 4.2: Left: kx for large cx for several ky-values, compared with theory (4.7); inset shows comparison on of kx−kx,∞ and cx on log-

scales. Right: Leading-order coefficient kx,2 as a function of ky through numerical evaluation of (4.7), (solid), and explicit approximation

(4.9),

The operator (1−D+,1(ε, ζ)) is bounded invertible on L2 as a direct inspection of the Fourier symbol shows. Moreover,

it is continuous at ε = 0 as an operator from H1 to L2, again via a direct inspection of the Fourier symbol, with

limit the identity. Therefore, (4.10) can be written as

F (ψ, kx) := D0
+ψ − (1−D+,1(ε, ζ))

−1(g(ψ − kx) = 0,

where F : H1 × R → L2 is continuous in ε at ε = 0. The Implicit Function Theorem then guarantees the existence

of solutions for ε > 0, small, with leading-order terms ψ0, kx,0. Substituting subsequently higher-order expansion,

one can proceed in a similar fashion to establish validity of the expansion to any fixed order.

4.4 The limit ky → 0

We follow the strategy from the previous section and find at O(2),

0 = −
∫

ψad
(

c2x + 4cxkx,0∂ζ
)−1/2

(ψ0,ζζ − cxkx,2ψ0,ζ) dζ,

where ψad is the (unique up to scalar multiples) periodic solution to the adjoint equation D+(−∂ζ)ψ0−g′(ψ0)ψ0 = 0.

Unfortunately, the solution to the adjoint equation does not appear to be readily expressible in terms of ψ0 so that

we will rely on numerical methods to evaluate the integral and obtain coefficients kx,0 and kx,2 in the expansion

kx = kx,0 + kx,2k
2
y +O(k4y). (4.11)

The numerically computed results shown in Figure 4.3 show good agreement up to a sharp transition value that we

shall discuss in §5.

Numerically, we find that the quadratic coefficient kx,2 decreases with cx in a monotone fashion, converges to 0 as

cx → ∞ and to ∞ for cx → 0, with power law asymptotics kx,2 ∼ c−β
x , β ∼ 1/2. Asymptotics are well captured

through

kx,2 = c−1/2
x (c1 log(cx) + c2); (4.12)

fitting c1 and c2 for cx ∈ [5 · 10−6, 1 · 10−5] provides excellent agreement for a wide range of cx-values; see Figure 4.3.

We did not attempt to justify asymptotics but provide a conceptual explanation in §5.
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4.5 The limit ky → ∞

Expanding in inverse powers ε = 1/ky, we find formally at orders −1, 0, 1,

O(−1) : |∂ζ |ψ0 = 0,

O(0) : |∂ζ |ψ1 + kx,0 −
cx
2
ψ0 − g(ψ0 + ζ) = 0,

O(1) : |∂ζ |ψ2 −
1

2
cxψ1 +

1

8
|∂ζ |−1

(

c2x + 4cxkx,0∂ζ
)

ψ0 + (kx,1 − g′(ψ0 + ζ)ψ1) = 0.

At O(−1), we set ψ0 = 0, which gives at O(0),

kx,0 = −
∫

g, ψ1 = |∂ζ |−1(g −−
∫

g).

Substituting the result into the equation at O(1) yields

|∂ζ |ψ2 −
1

2
cxψ1 + (kx,1 − g′(ζ)ψ1) = 0,

which upon averaging gives

kx,1 = −
∫

g′(ζ)|∂ζ |−1(g(ζ)−−
∫

g) = 0,

which can be readily seen upon expanding g in Fourier series, and

ψ2 = |∂ζ |−1

(

(g′ +
1

1
cx)ψ1

)

.

Assuming that g′ is even, for instance g = 1 + κ sin(v), we see that ψ1 and ψ2 are both odd. At the next order, we

find

kx,2 = −
∫
(

(−1

2
cx − g′(ζ))ψ2 − 4g′′(ζ)(ψ1)

2

)

,

which vanishes when g′ is even. Continuing further the expansion, we find that the even part of ψ3 is nonzero,

ψ3,e = |∂ζ |−3

(

−1

2
cxkx,0g

′(ζ)

)

,

and therefore

kx,3 = −
∫

ψ3g
′ 6= 0.

In the specific case g(v) = 1 + κ sin(v), we find

kx = 1 + kx,3k
3
y +O(k4y), kx,3 = −1

4
cxκ

2; (4.13)

see Figure 4.3 for comparison with directly computed solutions. Note in particular that the asymptotics become

steeper as cx increases, accommodating thus for the mismatch of limiting values,

−
∫

g = lim
ky→∞

lim
cx→∞

kx 6= lim
cx→∞

lim
ky→∞

kx =

(

−
∫

g−1

)−1

;

compare also the graphs in Figure 4.4.

4.6 Qualitative summary and numerical explorations

In the specific case of g(v) = 1+κ sin(v), the asymptotics described above coincide well with numerical computations

and predictions from the asymptotics give a good qualitative overall picture.
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Figure 4.3: Left: Selected kx vs ky for ky small, compared with numerically computed quadratic approximation (4.11); note the good

fit, albeit on increasingly small ky-ranges as cx decreases. Center: Quadratic coefficient kx,2 in (4.11) vs cx and comparison with best fit

c1 = −0.3422, c2 = −1.0439 in (4.12). Right: Selected kx vs ky for ky large and sample values of cx, compared with (4.13); inset log-log

plot of 1− kx vs ky confirming the good cubic approximation for moderate values of cx.

Behavior for fixed ky Fixing ky small, we discuss the curve kx(cx). By the integral identities above, kx(0) = 1

and k′x(0) < 0, while kx(∞) < 1, monotonically increasing for ky < k∗y and monotonically decreasing for ky > k∗y ,

cx ≫ 1. The asymptotics are therefore compatible with globally monotonically decreasing kx(cx) for ky > k∗y and

with kx(cx) having a unique minimum for some finite cx(ky) for ky < k∗y . This simple behavior with unique minimum

or simple monotonicity is indeed what we observe numerically.

Behavior for fixed cx From the analysis above, we found kx(∞) = 1 and kx monotonically increasing for large ky
(4.13). For ky = 0, the asymptotics and numerical analysis in [16] predict 1− κ < kx(0) < 1. The asymptotics with

numerical evaluations of the relevant integrals predict that kx is monotonically increasing for ky ∼ 0, as well. Curves

kx(ky) computed numerically are in fact monotonically increasing on ky ≥ 0, albeit with a characteristic transition

that we will discuss in the next section.

Behavior as ky → 0 One notices that the limit of curves kx(cx) as ky → 0 is not regular. In fact, at ky = 0, the

results in [16] show a monotone curve kx = 1−κ+O(
√
cx), and kx ∈ [1−κ, 1+κ] for cx = 0. For ky > 0 curves kx(cx)

are non-monotone and appear to converge to this limiting set (cx, ky) ∈ 0× [1− κ, 1 + κ] ∪ {(cx, kx(cx)), cx > 0}.

Summary Rephrasing our findings in terms of strain, measured through the deviation of kx from the equilibrium

strain kx = 1, induced on stripes through forced growth at rate cx and imposed angle determined by ky, we can

summarize our findings as follows.

(i) for small angles, ky ∼ 0, slow growth creates the largest residual strain in the stripes. For zero angles, ky = 0,

the strain decreases with increased growth rate, but for small angles the residual strain first increases with cx
before faster growth reduces strain;

(ii) for fixed growth rate, residual strain decreases with increasing angles;

(iii) for larger angles, strain increases with growth rate.

The induced strain at ky = 0 can be understood as a non-adiabatic effect, proportional to κ which measures the

non-adiabaticity, that is, the size of terms that do not commute with the phase averaging symmetry ϕ 7→ ϕ+ const.

Stripes are stretched maximally for small speeds, repeated stripe nucleation helps release stress with increased growth
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rate as described in [16]. For small angles, an effect similar to zero angle can be observed, with the caveat that for

very small speeds, the gliding of a localized boundary defect along the growth interface can mediate the growth

process with little residual stress. Increasing the rate of growth increases the glide speed of the defect and thereby

residual strain. Yet stronger growth leads to a phase transition in the nature of the boundary defect that leads to

delocalization and decreased strain.

Increasing the angle through ky reduces the non-adiabaticity, up to the point where stripes perpendicular to the

boundary can grow without deformation at the interface, ky = 1, not creating any strain. Figure 4.4 shows the surface

kx(ky, cx) from different angles, exhibiting the singularities that occur in the compactification at the boundaries

cx, ky ∈ {0,∞}.

Figure 4.4: Surface kx as a function of ky and cx. Plots use ky/(1 + ky) and cx/(1+ cx) as coordinates to include the limits cx = ∞ and

ky = ∞ at 1; see also mod space all.mp4 in the supplementary materials.

5 Asymptotics near the origin

The strain in a large region of parameter space is simply monotone and fairly simple asymptotics explain the behavior.

The most intriguing, non-monotone dynamics occur in a vicinity of cx = ky = 0. In this regime, profiles ϕ converge to

step-like functions in ζ; see Figure 1.3. An inner expansion of the layer-type solution reveals an interesting transition

that sheds light on the asymptotics in this region.

We scale in (2.2)–(2.5) for an inner expansion at the heteroclinic ky = k̃yε, cx = ε and ∂ζ = ε∂z, and obtain,

expanding the Fourier symbol D+, at leading order

Dψ = g(ψ)− kx, y ∈ R, ψ(−∞) + 2π = ψ(+∞) = ψ∗, D =
√

−k̃2y∂zz + kx∂z, (5.1)

where D now is defined as a Fourier multiplier for functions on the real line rather than periodic functions. This

equation does have a local interpretation as a traveling-wave solution ψ = ψ(k̃yy + kxt, x) to the heat equation with

nonlinear boundary flux,

ψt = ∆ψ, x < 0, y ∈ R, ψx = g(ψ)− kx, x = 0, y ∈ R.

Such traveling waves have been studied in [9], establishing in particular existence and monotonicity properties for

solutions ψ(y − ct), with c = c(kx) for |kx − 1| < κ when g(ψ) = 1 + κ sin(ψ). Rescaling y = z/ky shows that these

traveling solutions give solutions to (5.1) whenever

ky =
kx
c(kx)

. (5.2)

Moreover, monotonicity of c in kx from [9] implies that ky is monotonically increasing as a function of kx with

minimum k∗y , such that we can rewrite (5.2) as

kx = kfx(ky), for ky > k∗y . (5.3)
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For 0 < ky < k∗y , we conjecture the existence of heteroclinic solutions with kx = min g(ϕ), asymptotic to argmin g(ϕ)

and argmin g(ϕ) + 2π. In particular, the selected kx is constant at leading order.

Below, we provide numerical evidence for our predictions.

Computing heteroclinic orbits in (5.1) We focus on the specific case g(ψ) = 1 + κ sinψ. In order to solve

(5.1), we rely on Fourier transform. We therefore write ψ = ψs + ψ̃ with ψs(z) = ψ∗ + 2 arctan(z). The profile ψs(z)

accounts for the heteroclinic structure such that ψ̃ can be chosen to be periodic. The asymptotic state is (necessarily)

chosen such that g(ψ∗) = kx, g
′(ψ∗) ≥ 0. The choice of arctan(z) is motivated by the fact that the action of the

integral operator is explicit,

R(z; kx, k̃y) := Dψs(z) =
2
√
πk̃y

1 + z2
Re

(

(1 + i)U

(

−1

2
, 0,

kx(−i + z)

k̃2y

))

,

where U is the confluent hypergeometric Kummer-U function. We then solve

D(kx, k̃y)ψ̃ +R(kx, k̃y)− g(ψs + ψ̃) + kx = 0,

with periodic boundary conditions on a large domain |z| ≤ L together with a phase condition
∫

ψ̃(z)e−z2

dz = 0 and

with kx as a Lagrange multiplier using a Newton method and secant continuation in ky. The spectral discretization

gives accuracy of 10−6 for moderate effective discretization sizes of 0.1. Solutions decay however only weakly with

z−1/2, z → −∞, and z−3/2 for z → +∞. We found accuracy of 10−6 for domain sizes L ∼ 106 using N = 224 ∼ 107

Fourier modes. The code was implemented in matlab and ran on an Nvidia GV100 graphics card allowing for

fast evaluation of the large discrete Fourier transforms. The Kummer-U function was evaluated and tabulated in

mathematica and interpolated in matlab, since direct evaluation in matlab is slow.

0 2 4 6 8 10

0.7

0.8

0.9

0 0.5 1 1.5

10 -3

0.7

0.75

0.8

0.85

0.9

-10 -8 -6
-5

-4

-3

Figure 5.1: Left: selected kx in (2.8) plotted against ky/cx = k̃y, for cx decreasing geometrically by factors 8/9 and with the selected

ky from the heteroclinic continuation for comparison. Right: section through the diagram on the left, plotting kx as a function of cx
for fixed k̃y , showing in particular that the values are almost independent of k̃y < 2, below the heteroclinic bifurcation. For such small

values, kx ∼ 0.7 + 1.52
√
cx in good agreement with [16].

Results from the computation of heteroclinic orbits are shown in Figure 5.2, left upper panel, showing a characteristic

transition from increasing values kx(k̃y) for moderate k̃y to constant kx for small k̃y. At the transition value, the

heteroclinic orbit delocalizes, the amplitude of ψy decreases. In the limit ky → ∞, we find the “Hamiltonian” picture,

with kx = 1.
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The computed values of kx compare well with the selected values in the selection problem periodic in y, as shown

in Figure 5.1. Selected wavenumbers kx as function of the scaled wavenumber ky/cx, computed for fixed values of

cx ≪ 1 through continuation in ky → 0, converge to the limiting curve given by the heteroclinic orbit.

The nonlocal problem is related to the Weertman equation that is used to describe the glide motion of dislocations;

see [22] and references therein. In fact, the nonlocal Weertman equation can be obtained by replacing our nonlinear

fluxes by a dynamic (Wentzel) boundary conditions,

ϕt = ∆ϕ, x < 0; ϕt = −ϕx + g(ϕ), x = 0.

Our numerical methods in fact resemble the approach taken in [23], although pseudo-differential operators are more

difficult in our case and the emphasis in [22] is on the time-dependent initial-value problem. We conclude this analysis

with a heuristic explanation of the transition from a sharply localized defect selecting strains kx to a delocalized

heteroclinic selecting minimal values of kx, through analogy to a local differential equation.

Comparison with local heteroclinic bifurcations A qualitatively equivalent picture emerges when the nonlocal

pseudo-differential operator D is replaced by a local operator Dloc = −k̃2y∂zz + kx∂z. In this case, elementary phase

plane analysis establishes the existence of heteroclinic orbits to Dlocψ = 1 + κ sin(ψ) − kx. Rescaling ky∂z = ∂y, we

find the traveling-wave equation to the (asymmetric) parabolic Sine-Gordon equation,

uyy + cuy = 1 + κ sin(u)− kx, c = kx/ky. (5.4)

For kx = 1 we have c = 0 and a heteroclinic between u = 0 and u = 2π. The heteroclinic is transversely unfolded

in the parameter c and we can in fact continue the heteroclinic with c = c(kx) monotonically increasing as kx is

decreasing, until kx = 1− κ. For c≫ 1, we find at leading order, after a reduction to a slow manifold,

cuy = 1 + κ sin(u)− kx,

which possesses heteroclinic orbits for kx = 1 − κ, connecting the saddle-node equilibria u = −π/2 mod 2π. These

heteroclinics between saddle-node equilibria are robust up to a heteroclinic codimension-two bifurcation [12, 4]. The

associated phase-portraits in the u−uy–plane are shown in Figure 5.3 and can be easily confirmed using elementary

phase-plane analysis and monotonicity in c.

6 Comparison with an anisotropic Swift-Hohenberg equation

Returning to the motivation by striped patterns, we now study the formation of striped patterns in a directionally

quenched Swift-Hohenberg equation. The phase-diffusion approximation with nonlinear boundary fluxes given by the

strain-displacement relation was shown to be a correct approximation in the case cx = 0 in [39], for y-independent

patterns. Considering patterns in two spatial dimensions, one notices that patterns selected for cx ≪ 1 and ky ≪ 1

have wavenumber k < 1 and are zigzag unstable; see again, for instance, [39]. As a consequence, a phase-diffusion

approximation for dynamics of these patterns would yield a negative effective diffusion coefficient in the direction

along stripes and higher-order corrections as in the Cross-Newell equation are necessary to fully capture dynamics;

see for instance [33].

We therefore focus on the quenched anisotropic Swift-Hohenberg equation,

ut = −(1 + ∆x,y)
2u+ β∂yyu+ µu− u3, (6.1)

used in [7, 11, 20, 24, 25, 27, 31, 36, 37] to describe nematic liquid crystals, electroconvection, ion bombardment,

surface catalysis, or vegetation patterns; see also [21] for an analysis of dislocations in this model. For β > 0, the

anisotropic term suppresses the zig-zag instability in stripes with wavenumbers k . 1. For sufficiently large β all

wavenumbers within the strain-displacement relation, k ∈ (kmin, kmax), with kmax = max g(φ), are stabilized. In the
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Figure 5.2: Selected wavenumbers in nonlocal (5.1) and local (5.4) problems (left top and bottom, resp.) for several values of κ. Both

show the distinct transition to a flat regime for small ky, where the nature of the heteroclinic changes and prevents further increase of the

deviation from equilibrium strain kx = 1. The transition in the local case can be understood as a heteroclinic flip bifurcation with phase

portraits depicted on the right, with the flat piece of the kx − −ky graph corresponding to the saddle-node heteroclinic at the bottom

and the transition occurring at the heteroclinic flip bifurcation.

following, we first derive a phase-diffusion approximation and nonlinear fluxes in the form studied in this paper from

the anisotropic Swift-Hohenberg equation, and then describe a numerical approach to computing striped patterns

created in directional quenching, with the goal of comparing the numerical results to the quantitative predictions

from the phase-diffusion approximation. Throughout, we focus on the regime 0 < cx, ky ≪ 1 and use a quenched

parameter of the form µ = −µ0 tanh((x − cxt)/δ) with δ = 0.5.

Derivation of phase diffusion in anisotropic Swift-Hohenberg Focusing on nearly parallel stripes with

constant parameter µ, we use the parabolic scaling µ = ǫ2, x = ǫx̃, y = ǫỹ, t = ǫ2t̃, and substitute the ansatz

u(x, y, t) = εA
(

x̃, ỹ, t̃
)

eix + c.c. into (6.1) to obtain, at leading order, an anisotropic Ginzburg-Landau equation

At̃ = 4Ax̃x̃ + βAỹỹ +A− 3A|A|2. (6.2)

Introducing polar coordinates A = Reiφ̃ and expanding near R = 1/
√
3, φ̃ = 0, one finds an exponentially damped

equation for R and an anisotropic diffusion equation for φ̃,

φ̃t̃ = 4φ̃x̃x̃ + βφ̃ỹỹ. (6.3)

Note that this equation is again invariant under the parabolic scaling such that we may consider (6.3) in the original

coordinates t, x, y to describe patterns in (6.1).
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Figure 5.3: Profiles of derivatives ∂yϕ (top) and ∂xψ in unscaled variables y for values of k̃y = ky/cx, cx = 10−4, passing the heteroclinic

bifurcation. Profiles are roughly constant for large k̃y (left inset) but rapidly delocalize past the heteroclinic transition with long tails to

the left of the peak; amplitude of profiles rapidly decreases past heteroclinic bifurcation (right inset). Normal derivatives also delocalize

but always peak at minimal and maximal strain.

We next turn to the effect of the spatial quenching. At the order of the Ginzburg-Landau equation, one does

not capture the non-adiabatic effects of the parameter jump. We use the expression for the strain-displacement

relation from [39] for the strain-displacement relation in the one-dimensional case, unaffected by the anisotropic

term, φ̃x = gSH(φ̃) := 1 + µ0

16
sin 2φ̃ + O(µ

3/2
0 ). The symmetry φ̃ 7→ φ̃ + π is present at higher orders, as well, and

caused by the u 7→ −u symmetry in the nonlinearity and the ensuing symmetry uper(ξ) 7→ −uper(ξ + π) of periodic

patterns. We use the same boundary condition for two-dimensional patterns, neglecting in particular dependence of

gSH on φ̃y , and also dependence on cx, which gives the two-dimensional system

φ̃t = 4φ̃xx + βφ̃yy + c̃xφ̃, x < 0, y ∈ R, φ̃x = gSH(φ̃), x = 0, y ∈ R. (6.4)

With the additional scaling φ = 2φ̃, x = x̃, y = ỹ, cx = 8c̃x, t = 16t̃, we then obtain the phase-diffusion

equation (1.3) with strain-displacement relation φx = gSH(φ/2) at x = 0. We remark that by setting κ = µ0/16,

gSH agrees to leading order with the relation φx = g(φ) employed in previous sections. Through these scalings, we

can compare the heteroclinic prediction of Section 5 with moduli curves of quenched patterned solutions u(x̃, ỹ, t) =

u(kx(x̃ − c̃xt), ky(ỹ − cy t̃)) of the full equation (6.1). In our comparisons below, we use a value for κ slightly

different from µ0/16, computed directly from the one-dimensional Swift-Hohenberg equation as described in [30, 39],

accounting for both error terms O(µ
3/2
0 ) and corrections due to the fact that we use a smoothed version of the step

function for the spatially dependent parameter µ.
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Oblique stripe formation in the full Swift-Hohenberg equation The formation of striped patterns is de-

scribed by traveling-wave solutions [19, 2] with speed vector (cx, cy), again requiring cy = kxc̃x/ky,

0 = −(1 + k2x∂
2
ξ + k2y∂

2
ζ )

2u+ βk2y∂
2
ζu+ µu− u3 + c̃xkx(∂ξ + ∂ζ)u, ξ < 0, ζ ∈ R, (6.5)

0 = u(ξ, ζ + 2π)− u(ξ, ζ), ξ ≤ 0, ζ ∈ R, (6.6)

0 = lim
ξ→∞

u(ξ, ζ), 0 = lim
ξ→−∞

|u(ξ, ζ)− uper (ξ + ζ; kx, ky) |, ζ ∈ R. (6.7)

We numerically solve (6.5) - (6.7) using a farfield-core approach similar to [26, 2], which decomposes u = w +

χuper (kx, ky), where w is localized near the quenching interface, and χ is a cutoff function supported in the ξ-farfield.

Here, we solve for w and kx with parameter ky, using a spectral discretization in both ξ and ζ so that functions can

be evaluated with the fast Fourier transform. Each Newton step of the pseudo-arclength continuation algorithm was

once again performed using gmres to solve the associated linear problem. The nonlinear system was conjugated with

exponentially localized weights and pre-conditioned with the principal symbol of the linear equation. Discretization

and domain size were controlled adaptively ensuring both small tails at the end of the (periodic) domain and small

amplitudes in highest Fourier modes. Typical domain sizes near the origin were x ∈ (−800, 800) with 8192 × 4096

Fourier modes in (ξ, y). Code was again implemented in matlab with computations carried out using an Nvidia

GV100 GPU. Further details of this numerical approach are left for a companion work. For values of c̃x and ky
smaller than the ones shown, gmres would usually not converge due to constraints on the number of inner iterations

caused by limited memory.

Comparisons between phase-diffusion and Swift-Hohenberg Figure 6.1 gives slices of the moduli space for

(6.1) with c̃x fixed and shows that the surface is a graph kx = kx(ky, c̃x) for (ky , c̃x) ∼ 0. Curves, which are plotted

over the scaled wavenumber k̃y = ky/c̃x, show good agreement with the heteroclinic asymptotics of Section 5, with

a transition around ky/c̃x ∼ 6 between a localized defect near the quenching interface to the delocalized heteroclinic

selecting smaller wavenumbers; see Figure 6.2 for plots of relevant solutions.

Figure 6.1: Wavenumber selection curves for anisotropic Swift-Hohenberg (6.5)–(6.7) for ky/c̃x ∼ 0 with c̃x fixed. Left: comparison for

a range of c̃x values with the heteroclinic curve (black) of §5; here, β = 1 and µ0 = 3/4 so that κ = µ0/16 = 3/64. The heteroclinic

curve (black) is obtained using numerically derived strain-displacement relation to account for higher-order corrections in µ0. Right: plot

of selected wavenumber k for ky/c̃x ∼ 0 for a range of β values with µ0 = 3/4 fixed (solid) and range of µ0 values with β = 1 fixed

(dot-dashed), c̃x = 0.0025.

Varying the anisotropy coefficient β and the parameter µ0, we also show how this phase transition depends on sys-

tem parameters. As expected, the strength of non-adiabatic effects increases with µ0 as averaging is less effective,

and the strain 1 − k on the stripes created at small ky increases, roughly proportional to µ0 as predicted by the
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Figure 6.2: Plots of solutions of (6.5)-(6.7) near quenching interface in original coordinates for c̃x = 10−3 fixed for a range of k̃y values:

k̃y = 118.23... (top left), k̃y = 25.13... (top right ). Bottom row illustrates delocalization of dislocation defect both in x and y for small

k̃y, with a zoom-in near a defect for k̃y = 25.13... (left) k̃y = 4.35... (right). Note that the odd symmetry in Swift-Hohenberg creates two

antisymmetric dislocation-type defects, a covering symmetry visible also in the phase-diffusion approximation through the dependence of

the strain-displacement relation on 2φ̃, only.

amplitude µ0/16 of the strain-displacement relation. The location of the transition appears to be roughly indepen-

dent of µ0, in agreement with our derivation above. Varying the strength of anisotropy does affect the transition.

Stronger anisotropy narrows the plateau where delocalized defects determine wavenumber selection. Very weak and

in particular vanishing anisotropy lead to non-monotone dependence of k on ky which is beyond the scope of this

paper.

7 Conclusions and discussion

We investigated directional growth of striped phases in the absence of instabilities and for weakly oblique orientation

of stripes relative to the boundary. In a reduced phase-diffusion approximation, we established existence of simple,

resonant growth mechanisms and derived universal asymptotics in limiting regimes. Our results compare well with

computations in a Swift-Hohenberg equation where instabilities are suppressed by weak anisotropy.

Many of our results can be rephrased in coarse terms. For parallel stripes, we had earlier found that very small

speeds cause maximal strain, given by the minimum of the strain-dispersion relation, which decreases up to a

dynamically averaged (harmonic average) strain for large speeds. Zero speeds and growth at larger angles yield zero

strain, with selected wavenumber given by the (energy-minimizing) average of the strain-displacement relation. At

small angles, ky ∼ 0, the growth process is mediated by the emergence of a point defect at the boundary, which

undergoes a delocalization bifurcation at a critical value, similar in character to the codimension-two bifurcation

from a hyperbolic homoclinic orbit to a saddle-node homoclinic orbit. The growth process is described well by a

glide motion of the defect along the boundary of the patterned region, adding one stripe once the defect has moved

by one period along the boundary. In our asymptotics, we identify the glide motion in the absence of growth, cx = 0,

when a non-equilibrium strain k 6= −

∫

g is imposed in the far field: the nonequilibrium strain k drives the defect at a

finite speed cy(k), c
′
y 6= 0. Then, for a growth process with given speed cx and angle ky, the selected wavenumber

k adjusts such that the induced glide speed cy(k) corresponds to compatible defect motion by one y-period 2π/ky
while one stripe is grown across the interface, in time 2π/(cxkx). The effective wavenumber used in the scaling,

ky/cx = kx/cy ∼ 1/cy, is at leading order simply the inverse glide speed. From this perspective, the k̃y-dependent

contribution to the strain stems from drag in the glide motion of the defect. The cx-dependence can be understood
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as in [16] as an interaction between dislocation over the finite distance 2π/ky, leading to an effective deceleration of

the glide motion and reduced strain.

Effect on energy densities Our results can also be interpreted from an energetic point of view. The Swift-

Hohenberg equation in the unquenched form is a gradient flow to the energy
∫

E with energy density E = 1
2
(∆u +

u)2 − µ
2
u2 + 1

4
u4. Among the striped patterns there is a unique wavenumber kzz = 1 + O(µ2) that minimizes the

energy per unit volume. The wavenumber kzz happens to coincide with the onset of the zigzag instability in k < kzz
in the isotropic case, although this instability is suppressed in the anisotropic setting. Periodic patterns do in fact

minimize the energy density in one space-dimension [28] and one typically sees convergence to periodic patterns and

energy densities vary close to the minimizer in large bounded one-dimensional domains. In higher dimensions, proofs

that periodic patterns minimize energies do not appear to be available, and generic initial conditions do not converge

to periodic patterns. Defects and boundary conditions play an important role both in the organization of stable

stationary states and in the selection of wavenumbers.

The present results demonstrate the effect of growth on energy in the bulk. The energy minimizing wavenumber

corresponds to kx = 1 in the phase-diffusion approximation, such that the square deviation (kx − 1)2 is a good

approximation for the energy density of the pattern in the bulk, away from the interface. The selection of the energy

minimizer at ky 6= 0, cx = 0 echoes the selection of periodic patterns with minimal energy by grain boundaries [26].

At ky = cx = 0, the boundary does not select a specific wavenumber but rather (significantly) narrows the band

of compatible wavenumbers from O(
√
µ) to O(µ), a mechanism also observed in point defects; see for instance [38,

§4.4] for the case of a focus defect. For wavenumbers outside of the compatible band, one usually sees diffusive repair

between the selected wavenumber and the imposed farfield wavenumber, as in the case of grain boundaries, or drift

of phase and defects, as in the case ky 6= 0, cx = 0.

For nonzero speeds, the growth process selects a unique wavenumber away from the energy minimizer: The fact

that kx < 1 guarantees that energy, inserted into the system at the moving quenching line, is stored in the bulk

at a constant density. In other words, the gradient dynamics are driven by a localized energy source and relax to

equilibrium in the bulk away from the source, albeit not the energy-minimizing “thermodynamic equilibrium”. Our

results show that such a relaxation to the energy minimizer occurs only in the limit ky → ∞, that is, for large angles

between rolls and quenching line, or for vanishing non-adiabatic effects, κ = 0 or g ≡ const. It does not seem obvious

how one might quantify the stored energy in the system directly from energetic considerations at the quenching line.

For larger speeds, beyond the validity of the phase-diffusion approximation, one finds selected wavenumbers close

to the wavenumbers selected by free invasion fronts [17]. In a Ginzburg-Landau approximation, these select the

minimium energy solutions. Higher-order corrections in the Swift-Hohenberg equation show however that the selected

wavenumber does not correspond to the energy minimizer. In fact, most patterns created through directional

quenching have wavenumbers below kzz and are thus zigzag unstable in the isotropic case, although the instability

may spread more slowly than patterns are created at the quenching line [2].

Other models of growth: heterogeneities and dynamic boundary conditions We also remark that several

other growth processes also induce wavenumber selection phenomena which collapse the “Busse Balloon” of possible

wavenumbers supported in a homogeneous spatial domain [8]. For example, if the sharp quenching step with cx = 0

is replaced by a slowly varying parameter ramp, the band of compatible wavenumbers is significantly narrowed [35].

One could also model growth by restricting to a bounded, or semi-bounded domain with dynamic boundary. Various

types of boundary conditions and their wavenumber selection properties in the wake were studied in the stationary

case [30]; see also [43] and references therein for a review of other work in this direction. Motivated by precipitation

and deposition phenomena, traveling source terms could also be used to force a system out of equilibrium and select

wavenumbers in the wake [42, 44, 18].
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Further directions: phenomena, theory, and experiments Looking forward, we hope that this glimpse into

the role of point defects in growth of crystalline phases can be extended, including for instance the effect of zigzag

instabilities associated with wrinkling. More mathematically, of the many phenomena described here, it would be

interesting to analyze the heteroclinic bifurcation at the origin, finding in particular better asymptotics near the

critical value of k̃y. One may also hope to better understand some of the asymptotic expansions derived here, adding

mathematical rigor, or relating them more directly to our understanding of dislocations, their farfield, and interaction

properties.

We hope that some of the predictions here can be confirmed in experiments; see [15] for a current overview of

experimental setups in the context of electroconvection with nematic liquid crystals. Approximation of dynamics

by a Ginzburg-Landau equation has been confirmed quantitatively in many experiments, potentially allowing for

quantitative comparisons with our results; see for instance [25] and references therein. A setup where applied

currents can be controlled locally would then allow experiments that test some of our predictions. Most notably, it

would be interesting to observe the non-monotonicity of strains in speed for small angles and compare the related

dynamics of dislocation-type point defects near the quenching line and with the glide motion of free dislocations in

the Ginzburg-Landau equation [34].
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