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TESTING LINEAR-INVARIANT PROPERTIES
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ABSTRACT. Fix a prime p and a positive integer R. We study the property testing of functions
F, — [R]. We say that a property is testable if there exists an oblivious tester for this property
with one-sided error and constant query complexity. Furthermore, a property is proximity oblivious-
testable (PO-testable) if the test is also independent of the proximity parameter €. It is known that
a number of natural properties such as linearity and being a low degree polynomial are PO-testable.
These properties are examples of linear-invariant properties, meaning that they are preserved under
linear automorphisms of the domain. Following work of Kaufman and Sudan, the study of linear-
invariant properties has been an important problem in arithmetic property testing.

A central conjecture in this field, proposed by Bhattacharyya, Grigorescu, and Shapira, is that
a linear-invariant property is testable if and only if it is semi subspace-hereditary. We prove two
results, the first resolves this conjecture and the second classifies PO-testable properties.

(1) A linear-invariant property is testable if and only if it is semi subspace-hereditary.
(2) A linear-invariant property is PO-testable if and only if it is locally characterized.

Our innovations are two-fold. We give a more powerful version of the compactness argument
first introduced by Alon and Shapira. This relies on a new strong arithmetic regularity lemma
in which one mixes different levels of Gowers uniformity. This allows us to extend the work of
Bhattacharyya, Fischer, Hatami, Hatami, and Lovett by removing the bounded complexity restric-
tion in their work. Our second innovation is a novel recoloring technique called patching. This
Ramsey-theoretic technique is critical for working in the linear-invariant setting and allows us to
remove the translation-invariant restriction present in previous work.

1. INTRODUCTION

In property testing, the aim is to find randomized algorithms that distinguish objects that have
some given property from those that are far from satisfying the property by querying the given
large object at a small number of locations. Property testing emerged from the linearity test of
Blum, Luby, and Rubinfeld [10], and was formally defined and systematically studied by Rubinfeld
and Sudan [29] and Goldreich, Goldwasser, and Ron [14]. There have been important developments
especially in the following two settings: graph property testing and arithmetic property testing.

Two representative problems are: (1) given a large graph, test whether the graph is triangle-free
or e-far from triangle-free (an n-vertex graph is e-far from a graph property if one needs to add
and/or remove more than en? edges in order to satisfy the property), and (2) given a function
[ Fy — Fp, test whether f is linear or e-far from linear (for an arithmetic property, being e-far
means that one needs to change the value of the function on more than an e-fraction of the domain
in order to satisfy the property). In both cases, it is known that one can achieve the desired goal by
sampling a fixed number of entries repeatedly C(e) times. For testing whether a graph is triangle-
free [30], one samples a uniformly random triple of vertices and checks whether they form a triangle,
and for testing linearity [10], one samples x,y € F uniformly and checks if f(z)+ f(y) = f(z +y).
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In this paper we give a property testing algorithm for a very general class of arithmetic properties.
The goal is to determine whether a function f: ¥y — [R] := {1,..., R} (with fixed prime p and
positive integer R) satisfies some given property or is e-far from satisfying the property. All the
properties we consider are linear-invariant in the sense that they are invariant under automorphisms
of the vector space F). Linear-invariant properties form an important general class of arithmetic
properties, e.g., the work of Kaufman and Sudan [26] “highlights linear-invariance as a central
theme in algebraic property testing.”

We say that a property P is testable if there exists an oblivious tester with one-sided error (and
constant query complexity) for the property. A tester for P produces a positive integer d = d(e) and
an oracle provides the tester with the restriction f|y where U is a uniform random d-dimensional
linear subspace of the domain (if the domain is large enough that such a subspace exists; if the
domain has dimension strictly less than d, the oracle provides the tester with all of f). We require
our tester accepts functions f satisfying P with probability 1 and reject functions that are e-far from
satisfying P with probability at least § = d(e) for some function 6: (0,1) — (0,1). Furthermore,
we say that P is prozimity oblivious-testable (PO-testable) if d = d(e) is a constant independent of
€. The idea of PO-testability was introduced by Goldreich and Ron [15] who, among other results,
classified the PO-testable graph properties.

One surprising feature of property testing is that many natural properties, such as linearity, are
testable and even PO-testable. A key feature of linearity is that it is subspace-hereditary meaning
that if f: F}) — [F,, is linear, then the same is true for f|y for every linear subspace U < . To be
precise, we say that a linear-invariant property P is subspace-hereditary if for every f: F) — [R]
satisfying P and every linear subspace U < I}, the restriction f|y also satisfies P.

A central conjecture in this field, by Bhattacharyya, Grigorescu, and Shapira, is that all linear-
invariant, subspace-hereditary properties are testable [9, Conjecture 4]. In fact, they conjecture
that the slightly larger class of semi subspace-hereditary properties are testable and prove that no
other properties can be tested.

Definition 1.1. A linear-invariant property P is semi subspace-hereditary if there exists a subspace-
hereditary property Q such that

(i) every function satisfying P also satisfies Q;
(ii) for all € > 0, there exists N(e) such that if f: F) — [R] satisfies Q and is e-far from
satisfying P, then n < N(e).

It is known that there are subspace-hereditary properties where the dimension d sampled must
grow as the proximity parameter ¢ approaches 0. To be PO-testable, a property must satisfy the
following more restrictive condition.

Definition 1.2. A linear-invariant property P is locally characterized if there exists some d such
that the following holds. For every f: F} — [R] with n > d, the function f satisfies P if and only
if f|u satisfies P for every U <} of dimension d.

Our first result is a resolution of the conjecture of Bhattacharyya, Grigorescu, and Shapira,
classifying the testable linear-invariant properties. Our second result is a classification of the PO-
testable linear-invariant properties.

Theorem 1.3. A linear-invariant property is testable if and only if it is semi subspace-hereditary.
Theorem 1.4. A linear-invariant property is PO-testable if and only if it is locally characterized.

Remark 1.5. Note that under our definition, the tester does not know the dimension of the do-
main. This rules out some “unnatural” properties such as those properties that behave differently
depending on whether the dimension of the domain is even or odd.
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Previous work in arithmetic property testing has focused on a number of special cases includ-
ing monotone properties [27, 31], “complexity 1”7 properties over Fy [9], and bounded complexity
translation-invariant properties [7].

We note that very little was previously known about general linear-invariant patterns. One
simple way to define a class of linear-invariant patterns can be done by, for example, choosing an
arbitrary subset of “allowable” maps F2 — [R] and defining a property of functions Fj — [R] to
consist of those whose restriction to every 2-dimensional linear subspace is allowable. Even this
class of 2-dimensionally-defined patterns was not known to be testable in general prior to this work.

Our innovations are two-fold. We prove a strong arithmetic regularity lemma which, unlike
previous arithmetic regularity lemmas, mixes different levels of Gowers uniformity. This allows us
to give a more powerful version of the compactness argument first introduced by Alon and Shapira
[4]. With this tool we can remove the bounded complezity restriction that was present in all previous
work.

Our second innovation is a novel recoloring technique we call patching. This technique is critical
for working in the linear-invariant setting and allows us to handle an important obstacle encoun-
tered by previous works. Roughly speaking, this obstacle is the inability of regularity methods to
regularize functions in a neighborhood of the origin.

In the rest of this section we give a summary of the proof of the main theorem and its relation
to previous work.

1.1. Graph removal lemmas and property testing. We begin with an overview of graph
removal lemmas and their proof techniques (see also the survey [11]).

The triangle removal lemma of Ruzsa and Szemerédi [30] states that for all € > 0 there exists
§ > 0 such that any n-vertex graph with at most dn? triangles can be made triangle-free by removing
en? edges. This was generalized to the graph removal lemma, first stated explicitly by Alon, Duke,
Lefmann, R6dl, and Yuster [1] and by Fiiredi [13].

A key tool for proving the graph removal lemma is a regularity lemma, namely Szemerédi’s
graph regularity lemma. Roughly speaking, the proof proceeds by using this regularity lemma to
partition the input graph G into a small number of structured components. Then we “clean up”
G by removing at most en? edges. This is done in such a way that either the resulting graph is
H-free or the original graph G contains many copies of H.

An important extension of the graph removal lemma is the induced graph removal lemma, proved
by Alon, Fischer, Krivelevich, and Szegedy [2]. The induced graph removal lemma states that for
every graph H (or finite collection H of graphs), for all € > 0 there exists 6 > 0 such that
every n-vertex graph with at most 6n*) induced copies of H can be made induced H-free by
adding and/or removing at most en? edges (here induced H-free means not containing any induced
subgraph isomorphic to H).

The original proof of the induced removal lemma relies on an extension of Szemerédi’s graph reg-
ularity lemma known as the “strong regularity lemma.” Using such a regularity lemma combined
with a random sampling argument, one can produce a “regular model”, that is, a large induced
subgraph X := G[U] (on a constant fraction of the vertices of G) that is very regular and approxi-
mates the original graph well in a certain sense. Then we “clean up” G by adding and/or removing
at most en? edges in such a way that if the resulting graph is not induced H-free then X (in the
original graph) must contain many induced copies of H.

Alon and Shapira [4] extended the induced graph removal lemma to an infinite collection of
graphs. Namely they prove that for a (possibly infinite) set H of graphs and for e > 0 there exist
8 > 0 and k such that the following holds: if G is an n-vertex graph with at most én’*!) copies of
H for all H € H with k or fewer vertices, then G' can be made induced H-free by adding and/or
removing at most en? edges (meaning the modified graph has no induced subgraph isomorphic to
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H for every H € H). This theorem immediately implies (and is equivalent to) the fact that every
hereditary graph property is testable with constant query-complexity and one-sided error.

This series of works, in addition to being important results in their own right, gives a framework
for proving constant query-complexity property testing algorithms in other settings, given an ap-
propriate regularity lemma. In particular, the hypergraph regularity lemma, proved by Gowers [17]
and independently by Ro6dl et al. [28] can be used with the above techniques to prove an infinite
induced hypergraph removal lemma [29]. Consequently, every hereditary hypergraph property is
testable with constant query-complexity and one-sided error.

1.2. Arithmetic analogs. The problem of property testing for functions f: F) — [R] has been
intensely studied, starting with the the classic work of Blum, Luby, and Rubinfeld [10] on linearity
testing. Much of the work focuses on testing whether some function f: ) — F, has certain
algebraic properties (e.g., a polynomial of some given type) [3, 26]. There is also much interest in
testing properties that do not arrive from algebraic characterizations. Below we give an overview of
the developments related to property testing in F)) from a perspective that is parallel to the graph
regularity method developments discussed earlier.

The first arithmetic regularity lemma was proved by Green [19] using Fourier-analytic techniques,
and it laid the groundwork for further developments of the regularity method in the arithmetic
setting. These regularity lemmas has since found many applications in additive combinatorics and
related fields. In particular, combined with the graph removal framework described above, Green’s
regularity lemma is suitable for proving an arithmetic removal lemma for “complexity 1”7 systems
of linear forms (see Section 3 for the definition of complexity); e.g., see [6].

Kral’, Sera, and Vena [27] and independently Shapira [31] bypass the need for an arithmetic regu-
larity lemma and prove the full arithmetic removal lemma by a direct reduction from the hypergraph
removal lemma. Their results imply that all linear-invariant, subspace-hereditary monotone prop-
erties are testable with constant query-complexity and one-sided error. (A property of functions
) — {0,1} is monotone if changing 1’s to 0’s preserves the property.)

Note that the above result is an arithmetic removal lemma and not an induced arithmetic removal
lemma (hence the restriction to monotone properties). Due to the nature of the reduction, the
techniques do not seem to be capable of deducing the induced arithmetic removal lemma from the
induced hypergraph removal lemma.

An alternative approach is to apply the strong graph regularity approach [2] of proving the
induced graph removal lemma to Green’s arithmetic regularity lemma. However there is also a
major obstacle to the approach, related to the fact that the origin plays a special role in a vector
space while there is no corresponding feature of graphs. It turns out that it is not always possible
to regularize the space in a neighborhood of the origin [20].

Bhattacharyya, Grigorescu, and Shapira [9] managed to overcome this obstacle in the special
case of vector spaces over F5. They follow the above strategy, implementing the strong regularity
idea [2] in the style of Green’s arithmetic regularity [19] along with one additional tool, namely a
Ramsey-theoretic result, to prove an infinite induced arithmetic removal lemma for “complexity 1”
patterns over Fy. Unfortunately, it is known [20] that this Ramsey-theoretic result fails over all
finite fields other than Fs.

Bhattacharyya, Fischer, and Lovett [8] managed to overcome this obstacle in a different special
case, namely for translation-invariant patterns. When all patterns considered are translation-
invariant, the origin no longer plays a special role and one can essentially ignore it while carrying
out the strong regularity framework. In addition, [8] allows one to handle higher complexity
patterns, which requires developing and applying tools from higher-order Fourier analysis.

Higher-order Fourier analysis plays a central role in modern additive combinatorics. These
techniques were initiated by Gowers [16] in his celebrated new proof of Szemerédi’s theorem, and
further developed in a sequence of works by Green, Tao, and Ziegler [21, 22, 23] settling classical
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conjectures on the asymptotics of prime numbers patterns. A parallel theory of higher-order Fourier
analysis was developed in finite field vector spaces by Bergelson, Tao, and Ziegler [5, 32, 33], leading
to an inverse Gowers theorem over finite fields vector spaces.

For applications to property testing, this line of work culminated in the work of Bhattacharyya,
Fischer, Hatami, Hatami, and Lovett [7] (extending [8]), who applied the inverse Gowers theorem
over finite fields and developed further equidistribution tools to prove an infinite induced arithmetic
removal lemma for all linear-invariant, subspace-hereditary properties that are also translation-
invariant and bounded-complexity. Their work follows the strong regularity framework of [2, 4].
Our results improve upon this work by removing the translation-invariant and bounded-complexity
restrictions.

In addition to their property testing algorithm, Bhattacharyya, Fischer, Hatami, Hatami, and
Lovett [7] proved that a large class of somewhat algebraically structured properties are indeed
affine-invariant, subspace-hereditary, and locally characterized. These are the so-called “degree-
structural properties”. A simple extension of their result [25, Theorem 16.3] implies that the larger
class of “homogeneous degree-structural properties” are linear-invariant, linear subspace-hereditary
(but not affine-invariant and not subspace-hereditary), and locally characterized, and thus these
properties are testable by our main theorem. As an example, one can test whether a function
F, — [}, can be written as A? + B? where both A and B are homogeneous polynomials of some
given degree d.

1.3. Our contributions.

1.3.1. Patching. In this paper, building on the authors’ earlier work with Fox [12] for complexity
1 patterns, we develop a new technique called “patching” that allows us to overcome the obstacle
faced by earlier approaches, namely that a neighborhood of the origin cannot be regularized and
fails certain Ramsey properties (unless working over Fy). In essence, the patching result states that
if there exists some map f: F;y — [R] that has low density of some colored patterns H for n large
enough, then for all m there must exist some map g: F}* — [R] that has no H-instances.

Theorem 1.6 (Informal patching result). For every set of colored pattern H, there exist g > 0
and ng such that the following holds. FEither:

e for every n, there exists a function f: ¥} — [R] that is H-free; or
e for every function f: Fy — [R] with n > no, the H-density in f is at least ey for some
HeH.

Our proof proceeds in two steps. First, as in [7], following the strong regularity framework of [2]
for proving induced graph removal lemmas, we apply a strong arithmetic regularity lemma, which
produces a partition B of F)) and a “regular model” X C ;' made up of a randomly sampled set
of atoms from 8. Unlike in the graph setting, we cannot ensure that the map f: F — [R] is very
regular on every atom of B|x. In particular, it may be impossible to guarantee that f is regular on
the atom containing the origin. Instead we only ensure that almost every atom of X is very regular.
Unlike earlier proofs of removal lemmas, our “recoloring algorithm” has two components: for the
regular atoms we “clean up” f as usual, while for the irregular atoms we apply our patching result.
Our patching result implies that there is some new global coloring g: F;y — [R] that avoids some
appropriate set of colored patterns. To complete the proof we “patch” f by replacing it by g on all
of the irregular atoms. If f has low density of some set of colored pattern, then our argument shows
that these pattern cannot appear in the recoloring, thereby completing the proof of the induced
arithmetic removal lemma.

Our proof does not give effective bounds on the rejection probability function d(e€) guaranteed
by Theorem 1.3. The ineffectiveness is due to the fact that the current best-known bounds on the
inverse theorem for non-classical polynomials are ineffective (the same occurs in [7]).
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1.3.2. Unbounded complexity. The technique used to handle infinite removal lemmas is a compact-
ness argument first introduced by Alon and Shapira [4] in the graph setting. A key ingredient of
their proof is a strong regularity lemma.

Bhattacharyya, Fischer, Hatami, Hatami, and Lovett [7] prove that all linear-invariant subspace-
hereditary properties that are also translation-invariant and bounded-complexity are testable. Their
result follows from an infinite removal lemma for arithmetic patterns of bounded complexity. The
proof of this result involves a strong arithmetic regularity lemma and a compactness argument in
the spirit of Alon and Shapira.

To remove the bounded complexity assumption from [7], we prove a new strong arithmetic
regularity lemma obtained by iterating a weaker arithmetic regularity lemma. The key innovation
here is the level of Gowers uniformity used in each iteration is allowed to increase at each step of
the process.

2. COLORED PATTERNS AND REMOVAL LEMMAS

Theorem 1.3 and Theorem 1.4 both follow from an arithmetic removal lemma for colored linear
patterns. In this section we define these objects and state the main removal lemma.

Definition 2.1. A linear form over F, in ¢ variables is an expression L of the form

¢
L(xy,...,x¢) = Zcixi
i=1

with ¢; € F),. For any IF,-vector space V, the linear form L gives rise to a function L: V¢ = V that
is linear in each variable.

Definition 2.2. For a prime p and a finite set S, an S-colored pattern over F, consisting of m
linear forms in ¢ variables is a pair (L, ) given by a system L = (Lq,...,L,,) of m linear forms
in ¢ variables and a coloring ¢: [m] — S. Given a finite-dimensional F,-vector space V' and a
function f: V — S, an (L,%)-instance in f is some & € V* such that f(L;(x)) = (i) for all

i € [m]. An instance is called generic if x1, ...,z are linearly independent. We say that (L,) is
translation-invariant if the coefficient of 1 is 1 in each of Lq,..., Ly,.
Given a finite-dimensional Fp-vector space V' and functions f1,..., fm: V — [—1,1], we write

Ap(fis- s fm) = Bgevr[f1(L1(®)) -+ fin (L (2))].

Definition 2.3. For an S-colored pattern over F,, consisting of m linear forms in & variables (L, 1),
a finite dimensional FF),-vector space V, and a function f: V' — S, define the (L,)-density in f
to be AL(f1,..., fm) where f; := 15-1(y;)) for each i € [m].

Our main removal lemma is the following result.

Theorem 2.4 (Main removal lemma). Fiz a prime p and a finite set S. Let H be a (possibly
infinite) set of S-colored patterns over Fy,. For every e > 0, there exists a finite set He C H and
d = 0(e,H) > 0 such that the following holds. Let V be a finite-dimensional F,-vector space. If
f:V — S has H-density at most § for every H € H,, then there exists a recoloring g: V — S
that agrees with f on all but an at most e-fraction of V' such that g has no generic H-instances for
every H € H.

There are several difficulties in the proof of the main removal lemma. The first is that individual
patterns H € H may have “infinite complexity”. Second, the set of patterns H may be infinite.
Complicating this, even if all patterns in H have finite complexity, these complexities can be
unbounded. Finally, there are major difficulties related to the fact that the patterns in ‘H are not
necessarily translation-invariant.
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We use a trick called “projectivization” to reduce to the case where all patterns have finite
complexity. To do this, we need a slightly modified version of the main removal lemma that we call
the projective removal lemma (Theorem 2.8).

A “compactness argument” due to Alon and Shapira [4] reduces the problem of an infinite
collection of patterns to a finite one at the expense of requiring a stronger arithmetic regularity
lemma. If the collection of patterns is all complexity at most d, we only require a strong U%+!-
regularity lemma with rapidly decreasing error parameter. In the most general case when the
collection of patterns has unbounded complexity we require an even stronger regularity lemma
where the error parameter rapidly decreases and the degree of the uniformity norm rapidly increases.

Unless we restrict to the special case where all patterns in H are translation-invariant, the origin
of the vector space plays a special role. This is unfortunate because it is impossible to regularize a
function in the neighborhood of the origin. Since regularity methods are useless here, we turn to a
new technique called patching, originally introduced by the authors and Fox [12], to deal with the
portions of the vector space that cannot be regularized.

Definition 2.5. Let S be a finite set equipped with a group action of F; that we denote c - s
for c € F and s € S. Given a finite-dimensional Fj-vector space V, a function f: V — S is
projective if it preserves the action of F, i.e., f(cx) =c- f(z) for all c € Ff and all z € V.

Definition 2.6. A list of linear forms L = (Lq,...,L,,) is finite complexity if no form is
identically equal to zero, i.e., L; # 0 for all i € [m], and no two forms are linearly dependent, i.e.,
L; # cL; for all i # j and c € F),.

Definition 2.7. Fix a prime p and a positive integer £. We consider two particular systems of
linear forms. For ¢ = (i1,...,iy) € Ff,, define

Li(z1,. .. @) i= i1y + - + igay.
Then define L := (Lg)ieng , the system of p’ linear forms in ¢ variables that defines an /-dimensional

subspace.

Let Ey C Ff, be the set of non-zero vectors whose first non-zero coordinate is 1. Then define

' = (L)ier,, a system of (p° —1)/(p — 1) linear forms in ¢ variables.

. - . . . . .
Note that unlike Lf, the system L has finite complexity. For technical reasons, it will be
convenient to reduce the removal lemma for general patterns to the case where all patterns are
defined by a system of the form L’. Then we reduce this to the following projective removal lemma

where all patterns are defined by a system of the form '’
Theorem 2.8 (Projective removal lemma). Fiz a prime p and a finite set S equipped with an IF';—

action. Let H be a (possibly infinite) set consisting of S-colored patterns over I, of the form (fe, )
where { is some positive integer and v: Ey — S is some map (see Definition 2.7 for the definition of

' and Ey). For every e > 0, there exists a finite subset He CH and 6 = d(e, H) > 0 such that the
following holds. LetV be a finite-dimensional IFy-vector space. If f: V' — S is a projective function
with H-density at most § for every H € H,, then there exists a projective recoloring g: V. — S
that agrees with f on all but an at most e-fraction of V' such that g has no generic H-instances for
every H € H.

3. PRELIMINARIES ON HIGHER-ORDER FOURIER ANALYSIS

3.1. Gowers norms and complexity.

Definition 3.1. Fix a prime p, a finite-dimensional IF)-vector space V, and an abelian group G.
Given a function f: V — G and a shift h € V, define the additive derivative D, f: V — G by

(Dnf)(@) := f(z +h) = f(z).
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Given a function f: V — C and a shift h € V', define the multiplicative derivative A, f: V — C
by

(Anf)(x) == f(z + h)f ().
Definition 3.2. Fix a prime p and a finite-dimensional F,-vector space V. Given a function
f:V — Candd > 1, the Gowers uniformity norm || f||;;« is defined by

d
flloa = [Eapr, . haev (Dny - Ap (@)%

Definition 3.3. A system L = (Ly,...,L;,) of m linear forms in ¢ variables is complexity at
most d if for all € > 0 there exists § > 0 such that for all fy,..., fo: V — [—1,1] it holds that
IAL(f1,--- s fo)|] <€ whenever min || fillgas < 0. (3.1)
1<i<et

The complexity of L is the smallest d such that the above holds, and infinite otherwise.

Remark 3.4. The above definition is sometimes known as true complexity. It is known that a
pattern (Lq,..., L,,) is complexity at most d if and only if LCIZ'H, ..., L%+ are linearly independent
as (d+ 1)th order tensors [18, 24].

Let (L1,...,Ly) be any pattern such that no form is identically zero and no two forms are
linearly dependent. It is known (for example, because Cauchy-Schwarz complexity is an upper
bound for true complexity [22]) that (L1, ..., L,,) has complexity at most m — 2.

It follows from the above discussion that the definition of complexity given in Definition 3.3
agrees with the definition of finite complexity given in Definition 2.6.

3.2. Non-classical polynomials and homogeneity. For ease of notation we write
Uy := 272/7 Cc R/Z (3.2)

Tp

through the paper.
Definition 3.5. Fix a prime p, and a non-negative integer d > 0. Let V be a finite-dimensional
[F,-vector space. A non-classical polynomial of degree at most d is a map P: V — R/Z that
satisfies

(Dhl o 'thHP)(x) =0
for all hy,..., k41,2 € V. The degree of P is the smallest d > 0 such that the above holds. The
depth of P is the smallest k£ > 0 such that P takes values in a coset of Uy ;.

See [33, Lemma 1.7] for some basic facts about non-classical polynomials. We record one such
fact here.

Lemma 3.6 ([33, Lemma 1.7(iii)]). Fiz a prime p, and a finite-dimensional Fy-vector space V ~ Fy.
Then P:V — R/Z is a non-classical polynomial of degree at most d if and only if it can be expressed
in the form

C; . T i, €T in
Pla1,...,a0) = a+ 3 i1y k] ;Ll EM (mod 1),
0<ig,ein <p, j>0; p
0<iy+--+in<d—k(p—1)
for some o € R/Z and coefficients ¢;,,. i,k € {0,...,p — 1} and where | - | is the standard map

F, — {0,...,p — 1}. Furthermore, this representation is unique.

As a corollary we see that in characteristic p, every non-classical polynomial of degree at most d
has depth at most |[(d —1)/(p—1)].

Definition 3.7. A homogeneous non-classical polynomial is a non-classical polynomial P: V' —

R/Z that also satisfies the following. For all b € T, there exists aép) € Z/p**Z such that

P(bx) = UISP)P(x) forall x € V.
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Lemma 3.8 ([24, Lemma 3.3]). Fiz a prime p and integers d > 0 and k > 0 satisfying k <
|(d—1)/(p—1)]. For each b € F, there exists O'(d’k € Z)p* 7 such that O'(P) = dk) for all

homogeneous non-classical polynomials P of degree d and depth k. Furthermore, for b ;é 0, a(d k)
is uniquely determined by the following two properties:

(i) O'(d’k) =% (mod p)
(i) (o) =1 (in 2/t 12,

Theorem 3.9 ([24, Theorem 3.4]). Let P be a non-classical polynomial of degree d and depth k.
Then P can be written as the sum of homogeneous non-classical polynomials of degree at most d
and depth at most k.

3.3. Polynomial factors.

Definition 3.10. Fix a prime p. Define
Dy :=A{(d,k) € Zso X Zzo : k < [(d—1)/(p — 1)},

and

I,=31e2%: Y Iy <o
(d,k)eD,
We call I € 7, a parameter list. For I € 7, we write ||I|| := panFHDlar and deg I for the

largest d such that I # 0 for some k. We add and subtract parameter list coordinatewise. For
I,I' € 7, we write I < I" if Iy, < II;, for all (d, k) € Dp.

Definition 3.11. For p a prime and I € 7, define the atom-indexing set of I to be

Ar= ][ (MZ/Z) . (3.3)

(d,k)EDy
(Note that [A;| = ||1].)
For I,I' € T, with I < I', write m: Ay — Ay for the standard projection map defined by

m ((aZl,k) , k)er> — (af‘i,k) (d,k)EDp - (3.4)
1E[Id o) i€[1q,]
Ay is equipped with the following F;-action:
¢+ (ah) wwen, = (o1Mdi ) @Dy (3.5)
le[ld k] [ d,k]

where a£d’k) is defined in Lemma 3.8.

Definition 3.12. Fix a prime p. Let V be a finite-dimensional [Fj-vector space and let I € 7, be
a parameter list. A polynomial factor on V with parameters I, denoted B, is a collection
(Pix) @meny
i€ [Ia,]
where Pca i s a homogeneous non-classical polynomial of degree d and depth k. We also use ‘B to
denote the map B: V — A; defined by evaluation of the polynomials. We also associate to B the

partition of V' given by the fibers of this map. The atoms of this partition are called the atoms of
B. We write ||B]| := ||| and deg B := deg 1.

Note that if B is a polynomial factor on V with parameters I, then B(cz) = ¢ - B(z) for all
c € F) and € V where the [ -action on A; is defined in Eq. (3.5).
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Definition 3.13. Fix a prime p. Let V be a finite-dimensional F,-vector space and let I, I’ € T, be
two parameter lists. Let B and B’ be two polynomial factors on V with parameters I and I’. We
say that 9B’ is a refinement of B if I < I’ and the lists of polynomials defining 9B’ are extensions
of the lists of polynomials defining 9B. We say that B’ is a weak refinement of 9B if the partition
of V associated to B’ is a refinement of the partition associated to B.

Note that if B’ is a refinement of B, then B = 7 o B’ where m: Ay — Aj is the projection
defined in Eq. (3.4).

Definition 3.14. Fix a prime p and integer d > 0. Let V' be a finite-dimensional F,-vector space.
For a non-classical polynomial P: V' — R/Z, define the d-rank of P, denoted rank, P, to be the
smallest integer r such that there exists non-classical polynomials Q1,...,Q,: V — R/Z of degree
at most d—1 and a function I': (R/Z)" — R/Z such that P(z) = I'(Q1(x),...,Q.(x)) forallz € V.

For a polynomial factor 8 on V' with parameters I € I,,, defined by a collection (P;’ k) (dk)eDy i€l il

where Pé,k is a homogeneous non-classical polynomial of degree d and depth k, we define the rank
of B, denoted rank ‘B, to be

Iq
min . rankg Z Z Mg 1Py g
A€l(ar)en, (z/phtiz) ok (d,k)eD, i=1

where
d = min deg (N 1Py k) -
(d,k)EDp,i€[1g,1] g( d:k d’k)
Lemma 3.15. Fiz a prime p, a parameter list I € I, and a positive integer r. There exists a
constant Npigh—rank (P, I,r) such that for every n > Nhigh—rank (P I,r), there exists a polynomial

factor B on F with parameters I and satisfying rank B > r.

Proof. For (d,k) € D,, write d = (k+a)(p —1) +b where a > 0 and b € {1,...,p — 1}. By
Lemma 3.6 there exists a non-classical polynomial of degree d and depth k. For example, consider

a1 [P~ g Pt ]

pEs (mod 1).

By Theorem 3.9, we can decompose this non-classical polynomial as the sum of homogeneous
non-classical polynomials of degree at most d and depth at most k. Let P: F}) — Ugi; be the
homogeneous part of degree d and depth k.

Next define @Q: IE‘Z@N — Ug41 by

Q(xy1,...,xzN):=P(x1)+ -+ P(xN).

This is clearly a homogeneous non-classical polynomial of degree d and depth k. We claim that for
N large enough, we have ranky Q@ > r. The proof of this fact uses several basic results from [33]
that are not used elsewhere in this paper.

First, since P has degree exactly d, we have that (D, --- Dp
of x, but is not identically zero. This implies that

21i(Dy, - Dp, P)

,P)(x) is a constant, independent

c:= Ehhm’hdeﬁi‘ge < 1.

The quantity —log, c is known as the analytic rank of P. Now a simple calculation shows that

2mi(Dy, -+-Dp Q) _ N
Eny, . haegen e TR = ¢

To conclude we use [33, Lemma 1.15(iii)] which implies that ranksQ > —cqlog,(c") for some
constant ¢4 > 0 only depending on d. Since ¢ < 1, taking N large enough gives rank; @ > r, as
desired.
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Thus there exist homogeneous non-classical polynomials Qg: Vgr — Ugqq of degree d and
depth k that satisfy rank; Qg > r for each (d, k) € D,. Define the vector space

V= EB kaj‘i’k.
(d,k)eD,

Define the homogeneous non-classical polynomials @;k: V — R/Z for each (d,k) € D, and

i € [I4) such that @Zk is equal to Qg1 evaluated on the ith copy of V;; and does not depend on
the other coordinates. In particular, we define

— . .
Qux ((xiz/,k/) (d',k')er> = Qar(Tgp)-

i/e[Id’,k’]

These polynomials define a polynomial factor 28 on V' with parameters I such that each of the
homogeneous non-classical polynomials defining B has rank at least r. Furthermore, since the
polynomials defining 8 depend on disjoint sets of variables, it follows that all non-trivial linear

combinations of the polynomials defining B also have high rank. Setting npigh—rank(p, I, R) =
nhighfrank(pylyr)

dimV, we have constructed the desired polynomial factor on [F, . To extend this
construction to IF‘;L with n > nhigh—rank(p, I,7) one can simply add on extra variables that none of
the polynomials depend on. O

Lemma 3.16 ([7, Lemma 2.13]). Fiz a prime p and a positive integers d,r. Let V be a finite-
dimensional Fy-vector space and let P: V. — R/Z be a non-classical polynomial of degree d such
that ranky(P) > r+p. Let U <V be a codimension-1 hyperplane. Then ranky(P|y) > r unless
d =1 and P|y is identically zero.

As a consequence, let B be a polynomial factor on' V and let P: V — R/Z be a linear polynomial.
Write B’ for the common refinement of B and {P}. If rank®B’ > r + p, then rank B|y > r where
U is the codimension-1 hyperplane where P vanishes.

3.4. Equidistribution and consistency sets.

Definition 3.17. Fix a prime p, integers d > 0 and k > 0 satisfying k¥ < [(d —1)/(p —1)], and
a system L = (Li,...,Ly,,) of m linear forms in ¢ variables. Define the (d, k)-consistency set
of L, denoted ®4(L), to be the subset of U}’ | consisting of the tuples @ = (a1,...,an) such
that there exists a finite-dimensional F,-vector space V', a homogeneous non-classical polynomial
P:V — Uy of degree d and depth k, and a tuple & € V¥ such that a; = P(L;(z)) for all i € [m].

For a parameter list I € Z,, define the I-consistency set of L to be the set of tuples a =

(a1,...,am) € A} such that for each (d,k) € D), and j € [I;;] the tuple <(a1)£,kv cee (am)g,k) lies
in ®45(L).

Lemma 3.18. Fiz a prime p, integers d > 0 and k > 0 satisfying k < |[(d—1)/(p —1)], and a
system L = (L1, ..., L) of m linear forms. The (d, k)-consistency set of L is a subgroup of U}, ;.

Proof. Suppose a,b € ®4(L). We wish to show that —a and a + b both lie in this set. By defini-
tion, there exist finite-dimensional IF,-vector spaces V, W, homogeneous non-classical polynomials
P:V — Uy and Q: W — Upyq of degree d and depth k, and tuples € V¥ and y € W* such
that a; = P(L;(x)) and b; = Q(L;(y)) for all i € [m].

Note that —a € ®q4(L) since —P: V — Ug4q is a homogeneous non-classical polynomial of
degree d and depth k that satisfies (—P)(L;(x)) = —a;.
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Now define P® Q: V& W — Ugiq by (P @ Q)(v @ w) := P(v) + Q(w). One can easily check
that P @ @ is a homogeneous non-classical polynomial of degree d and depth k. Finally note that
(P2 Q)(Li(x ®y)) = a; + b;, as desired.! O

Theorem 3.19 (Equidistribution [24, Theorem 3.10]). Fiz a prime p, a positive integer d > 0,
and a parameter € > 0. There exists requi(p, d, €) such that the following holds. Let V be a finite-
dimensional Fp-vector space and let B be a polynomial factor on V with parameters I such that
deg®B < d and rank(B) > requi(p,d,e). Then for a system of linear forms L = (Li,...,Lp)

consisting of m forms in £ variables, and a tuple of atoms a = (ay,...,an) € ®7(L),
1
Pr (B(L;(®)) =a; foralli e |m]) — ———| <e
Pr (B(Li) = ai f ) - 5

Remark 3.20. To be completely correct, the statement given above follows by combining [24, The-
orem 3.10] and [24, Corollary 2.13].

Note that the probability above is 0 if a ¢ ®;(L). We typically apply the above theorem
with e that decreases rapidly with ||I||, for example, taking ¢ = 2||I||™ and using the fact that
|®7(L)| < [|B||™, we see that in this case the probability above is at least 1/(2|®;(L)]).

Consistency sets are often hard to compute exactly. The next two lemmas give exact relations
on the sizes of consistency sets in two special cases that occur in this paper.

Definition 3.21. Fix a prime p. A system L of m linear forms in ¢ variables over IF), is full dimen-
sional if [®g(L)| = |®qx(LY)| for all (d,k) € D, (recall the system L’ defined in Definition 2.7
defines an ¢-dimensional subspace).

Lemma 3.22. Fiz a prime p and a positive integer £. Let J C Ff, be a set that contains at least
one vector in each direction (i.e., for each i € Ff,, there exists j € J and € F; such that i = bj).

Consider the system Ly := (L%)ics of |J| linear forms in £ variables (recall the linear form L
defined in Definition 2.7)). Then L is full dimensional.

As a special case of this result we see that the system fe, defined in Definition 2.7, is full rank.

Proof. Note that the system L is a subsystem of L. This immediately implies that |®4 (L ;)| <
|®4.x(LY)|, since if (ai)i@% € &g x(LY), then (a;)ics € Par(Ly).

To go the other direction, we use the homogeneity of our polynomials. Suppose (aj)jes €
P4, (Ly). Thus there exists a finite-dimensional [F,-vector space V' and a homogeneous non-classical
polynomial P: V' — Uy of degree d and depth k, and a vector & € V¥ such that P(Lﬁ. () = aj
for all 7 € J. Now by assumption, for z € Ff,, there exists 7 € J and b € F,, such that ¢ = bj. Define
a; := a(d’k)aj (recall the definition of o from Lemma 3.8). We claim that (ai)ie]pg € Oqx(LY).
This is true simply because

P(Li(x)) = POL(@)) = oy P(LY(2)) = 0y a; = a;
where j € J and b € F, are defined as above. Thus |®,x(L,)| > |®4x(L")|, as desired. O
Lemma 3.23. Fix a prime p. Let L be a system of m linear forms in £ variables over IFy,. Say L

is defined by M, an m x £ matriz. (By this we mean that Li(x1,...,xp) = Mi1x1+ -+ M; gxq for

ITo be completely correct, we also need to show that ®g4 (L) is non-empty, which follows from, for example
Lemma 3.6 and Theorem 3.9, which together show the existence of homogeneous non-classical polynomial of degree
d and depth k for every (d, k) € D,.
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all i € [m].) Let L' be a system of m(n + 1) linear forms in €+ ' variables, defined by a matriz of
the form

where ¢, ... ,c, € Fp and N is an mn x ¢’ matriz. Let L" be the system of m(2n+ 1) linear forms
in £+ 20" variables, defined by the matrix
M 010
ClM
. N0
cn M
ClM
: o | N
cnM

Then for all (d, k) € Dp, we have
2

|@ap(L)] - |ak(L")] = [@ar(L)]".
Proof. We construct injections between ®4 (L) X ®q,(L") and ®g4(L") X ®4x(L") in both direc-
tions. Write o; := o %* for i € [n] for the rest of the proof (see Lemma 3.8 for the definition).

Consider a = (ay,...,an,) € ®4x(L) and b= (b1, ..., by2n41)) € Par(L”). By definition, there
exists a finite-dimensional F,-vector space V, a homogeneous non-classical polynomial P: V —
Uj4 of degree d and depth k and a vector € V¥ such that P(L;(x)) = a; for all i € [m]. Also
by definition, there exists a finite-dimensional [F,-vector space W, a homogeneous non-classical
polynomial Q: W — Uy of degree d and depth k and a vector (z',y,y’) € WEx WY x W such
that Q(LY(x',y,vy’)) = b; for all i € [m(2n + 1)].

Now we map (a, b) to the pair (a’,b’) where b, = b; for i € [m(n+1)] and a} = a; +b; for i € [m]
and aj,,; = 0¢@; + by(nit)4i for i € [m] and ¢ € [n]. We can easily check that no two pairs (a, b)
map to the same pair (a’,b’). All that remains is to check that a’,b’ € @4 (L’).

Define PO Q: VAW — Ugy1 by (PO Q)(zDy) := P(x)+ Q(y). This is clearly a homogeneous
non-classical polynomial of degree d and depth k. Note that z := (x @ 2/, 0 y') € (V & W)V
satisfies (P @ Q)(Li(z)) = a} for all i € [m(n + 1)]. Similarly note that 2’ := (0@ z',0 B y) €
(V @ W)Y satisfies (P @ Q)(L)(2')) =V, for all i € [m(n + 1)]. This demonstrates the first
injection.

Now consider a = (a1, ..., tmmpt1)) € Par(L’) and b = (b1,...,bpmni1)) € Par(L’). By defini-
tion, there exists a finite-dimensional F,-vector space V', a homogeneous non-classical polynomial
P:V — Ugyy of degree d and depth k and a vector (z,y) € V¢ x V¥ such that P(L}(x,y)) = a;
for i € [m(n + 1)]. Also by definition, there exists a finite-dimensional F,-vector space W, a
homogeneous non-classical polynomial @Q: W — Ugsq of degree d and depth k£ and a vector
(x',y") € W8 x WY such that Q(Li(x',y’)) = b; for i € [m(n + 1)].

We map (a,b) to the pair (a’,b’) where a} = a; for i € [m] and b, = a; + b; for i € [m] and

tnti = Gma for i € [mn] and b;n(n +1)4i = bmyi for i € [mn]. We can easily check that no two pairs
(a,b) map to the same pair (a’,b’). All that remains is to check that a’ € ®4; and b’ € ®4(L").

As above, define the homogeneous non-classical polynomial P& @Q: V @ W — Uiy of degree
d and depth k by (P @ Q)(x ® y) := P(x) + Q(y). Note that z := x ® 0 € (V & W)* satisfies
(PBQ)(Li(2)) = d fori € [m] and 2’ := (xPa’,yD0,00y) € VW) x (VaWw)’ x (Vew)”
satisfies (P @ Q)(LY(2')) =] for i € [m(2n + 1)], as desired. O
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3.5. Subatom selection functions. A situation that often occurs is the following. We have a
polynomial factor B with parameters I and a refinement B’ with parameters I’. We use the word
atom to refer to the atoms of the partition induced by B; these atoms are indexed by A;. We use
the word subatom to refer to the atoms of the partition induced by 9B’; these atoms are indexed
by Ap. The projection map 7: Ay — Ay, defined in Eq. (3.4), maps a subatom to the atom that
it is contained in.

We wish to designate one subatom inside each atom as special. This choice is given by a map
s: Ar — Ap that is a right inverse for 7. In this paper we define a certain class of these maps that
we call subatom selection functions that have several desirable properties.

First we define certain polynomials Py : F), — Uy for each (d, k) € D,,. Foreachi e {1,...,p—
1}, there exists a homogeneous non-classical polynomial F,, — Uyy; of degree k(p—1)+i and depth
k in one variable. (This follows from Lemma 3.6 and Theorem 3.9.) Let Py(,_1)4;% be one such a
polynomial. Finally, define

Plrets)p—1)+ik+s = Prp—1)+ik
for all i € {0,...,p — 1} and s > 0. This defines P, for each (d, k) € D,,.

Definition 3.24. Fix a prime p and parameter lists I, I’ € Z,, satisfying I < I'. Let Cfi’]/‘k € Z/pk“Z
be arbitrary elements for (d,k) € D, and i € [I1o] and Iz < j < I,. A subatom selection
function is a map of the form s.: A; — A/, defined by

(se(a)] Qi it i < Igp
Scla = ’ .
I Z]h 1 (77 wPd k(‘al 0\) otherwise,

where the maps Py j: F — Ugy; were defined in the preceding paragraph and | - | is the standard
map Uy — Fp.

Lemma 3.25. Fiz a prime p, parameter lists I,1' € T, satisfying I < I', and a subatom selection
function s¢: A — Ap. The following hold:
(i) mos=1d (where w: Ay — Ay is defined in Eq. (3.4));
(i) for a € A; and b € F\, we have b-sc(a) = sc(b-a) (where the action of F)f on A and Ap
is defined in Eq. (3. 5))
(iii) for every system L of m linear forms and every consistent tuple of atoms (ay,...,an) €
®;(L), we have
(sc(ar),...,seclam)) € @p(L)
(see Definition 3.17 for the definition of the consistency sets ®;(L) and ®p/(L)).

Proof. Property (i) is immediate.
For the property (ii), by definition, we have

b se(a)lyy = oy [sc(a)]i

where aéd’k) is defined in Lemma 3.8. Now s.(b- a)d b= al()d k)aihk if ¢ < I, so we are done in this

case.
Assume otherwise. Define d’ such that d = d (mod p — 1) and d = k(p — 1) + ¢ for some

i€ {l,...,p—1}. Remember that P, is a homogeneous non-classical polynomial of degree d’ and
depth k. Note that 0151,0) = b€ Z/pZ. Then we have
Lo I10
[selb- )i = Y chiPar(bla] o) = o Z o Pas(lad o))-
i=1 =1

To complete the proof of (ii) we need to show that ab’k = ng " whenever d = d’ (mod p—1). This
follows from Lemma 3.8 which implies that ng’k is uniquely determined by the facts that ag’k = pd



TESTING LINEAR-INVARIANT PROPERTIES 15

-1
(mod p) and (aéd’k)>p = 1in Z/pF*t'Z. The first property does not change when d changes by

a multiple of p — 1 (by Fermat’s little theorem) and the second property does not depend on d at
all. Thus we conclude the desired result.

Now we prove (iii). We know, by Eq. (3.1), that the consistency set ®4 (L) is a subgroups of
U, ;. Thus it suffices to prove that for (a1, ..., am) € ®10(L) C UT" we have (Pyx(lai1]), ..., Pax(lam])) €
®4,(L). Given that (a1,...,am) € P10 we know that there exists a finite-dimensional [F,-vector
space V, a linear function P: V — Uy, and vectors & = (21, ...,2¢) € V¢ such that P(L;(x)) = a;
for i € [m]. Since P and L; are linear, they commute, and thus L;(y) = |a;| for all i € [m] where
Yy € Ff, is defined by y; = |P(z;)|. Finally, since Py is a homogeneous non-classical polynomial
of degree d' and depth k, we have (Pyx(|ail),..., Pax(laml|)) = (Pax(L1(y));- .., Par(Lm(y)) €
P4 k(L)

To complete the proof, let Q): F}; — Uk be a homogeneous non-classical polynomial of degree d
and depth k. This exists by Lemma 3.6 and Theorem 3.9 as long asn > [(d —1)/(p — 1)] —k. Then
consider the map Py, ®Q: F, ®F) — Uy defined as usual by (Pyr © Q)(z@y) := Pyx(r) +Q(y)-
This is clearly a non-classical polynomial of degree d and depth k. Furthermore,

(Pay ® Q)(b(x @ y)) = 0" M Pyi(z) + oM Q(y) = o\ (P @ Q)(x @ ),

since d = d (mod p —1). Considering y ® 0 € (F, & F)* shows that (Pyx(|a1]),. .., Pik(lam|)) €
®4x(L), as desired.” O

4. ARITHMETIC REGULARITY AND SUBATOM SELECTION

This section follows a fairly standard formula in the theory of regularity lemmas. We start with
an inverse theorem, due to Tao and Ziegler [33]. Iterating the inverse theorem produces a weak
regularity lemma (Lemma 4.3), iterating the weak regularity lemma produces a regularity lemma
(Lemma 4.4), and iterating the regularity lemma gives a strong regularity lemma (Lemma 4.5).
Finally we use the probabilistic method applied to the output of the strong regularity lemma to
produce the desired “subatom selection” result (Theorem 4.6).

Lemma 4.3 and Lemma 4.4 are very similar to results in [8, 7], differing only in some technical
details. The main innovation in this section is that Lemma 4.5 is much stronger than previous
results. To accomplish this, we iterate Lemma 4.4 with the complexity parameter (i.e., degree of
the non-classical polynomials) increasing at each step of the iteration. To our knowledge, this idea
has not appeared previously in the literature.

Notation and conventions: Recall that a polynomial factor 8 on a vector space V with
parameters I gives rise to a partition (or o-algebra) on V' whose atoms are the fibers of the map
B:V — A;. For a function f: V — C, we write E[f|B]: V — C for the projection of f onto the
o-algebra generated by B. Concretely, E[f|B](x) is defined to be the average of f over the atom
of B which contains .

In this section we have to deal with many growth functions. Without loss of generality we always
assume that these growth functions are monotone in all their parameters.

Theorem 4.1 (Inverse theorem [33, Theorem 1.10]). Fiz a prime p, a positive integer d, and a
parameter 6 > 0. There exists €y (p,d,0) > 0 such that the following holds. Let V be a finite-
dimensional Fy-vector space. Given a function f: V — C satisfying ||f|lcc < 1 and ||f|lgrass > 0,

there exists a non-classical polynomial P:V — R/Z of degree at most d such that

EmGVf($)e_2mp(x) > Einv(pa d7 5)

2This argument also shows that for any pattern L, the consistency sets ®4,%(L) are nested as d increases by
multiples of p — 1, though this is the only time we will need that fact in this paper.



16 JONATHAN TIDOR AND YUFEI ZHAO

The next lemma is important for making factors high rank and its second claim will be critical
in proving the stronger regularity lemma where we need to produce a refinement (instead of a weak
refinement).

Lemma 4.2 (Making factors high rank [24], c.f. [7, Theorem 2.19]). Fiz a prime p, positive
integer d, Cy, and a non-decreasing function r: Zsog — Z=q. There exist constants Crqnk(p, d, Co, 1)
and Tyank(p, d,Co, 1) such that the following holds. Let V' be a finite-dimensional F,-vector space.
Suppose that B and B’ are polynomial factors on V with degree at most d such that B’ refines B
and ||%B'[| < Co and

rank B > r.qnk (p7 d, Co, T)-

Then there is a polynomial factor B" on V that weakly refines B’, refines B, and satisfies ||B"]| <
Crank(p,d, Co, ) and degB"” < d and rank B" > r(||B"|]).

Lemma 4.3 (Weak arithmetic regularity). Fixz a prime p, positive integers d, R,Cy, a parameter
n > 0, and a non-decreasing function r: Zso — Zso. There exist constants Creq (p,d, R,Co,n,1)
and ryeq (p,d, R,Co,n,1) such that the following holds. Let V' be a finite-dimensional Fy,-vector
space and let By be a polynomial factor on V satisfying |Bo|| < Co and deg By < d and rank By >
Treg (D, d, R, Co,m, 7). Given functions fO BV 00,1], there exists a polynomial factor B
on V that refines Bg with the following properties. There exists a decomposition

79 = 1+ 1
for each £ € [R] such that:

(i) Ju) = E[f©|B) for cach € € [R);

(ii) | £ pass < n for each € € [R);
(iii) f§f2 has range [0,1] and féﬁ’, has range [—1,1] for each ¢ € [R];
(iv) rankB > r(||B]|);

(v) |B|| < Cyrey(p,d, R, Co,1n,7) and degB < d.

Proof. Set M := [Reim,(p, d, 17)_21. Define non-decreasing functions r;: Z~g — Z~q for each ¢ =
0,...,M such that ro = r and 7;+1(N) > 7rank(p, d,pdSN, r;) and such that r;11(N) > r;(N) for
alli=0,...,M —1and all N € Z~g. Define r,.¢ (p,d, R,Co,n,7) := ra(Cop).
We construct a list of polynomial factors Bg, B1,...,B,, on V such that
e ‘B, refines B; ; fori=1,...,m;
o rankB; > i (||B;]|) for i =0,...,m;
o [|Bil < Crank(p,d, p |Bi_1||, rar—i) and degB; < d fori=1,...,m.

Suppose we have constructed polynomial factors By, ...,%; with the above properties. If ||f(©) —
E[£©|9B;]||a+1 < 1 for each £ € [R] we halt the iteration. Otherwise there is some ¢ € [R] such
that, writing g := f© —E[f()|%B;], we have

lgllrasr > 7.

By Theorem 4.1, there exists a non-classical polynomial P: V — R/Z of degree at most d such
that

—2miP(x)

Euevg(z)e > €inv(p, d, 7).

By Theorem 3.9, we can write P = P; + --- + P as the sum of homogeneous non-classical poly-
nomials. There are at most .4 1+ [(i —1)/(p — 1)] < d? terms in this sum. Let B} to be the
polynomial factor defined by the polynomials defining B as well as the polynomials P, ..., Po.
Note that [|B]|| < pd3||%i||. Finally let 28;,1 be the polynomial factor produced by applying
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Lemma 4.2 to B; and B} with parameters p,d,ry—;—1. In particular B, refines B; and
rank’Bi > TM—Z(”%Z”)

3
> Trank(py dvpd ||%i||7rM—i—1)
> Trank(py da ||%§H7TM—Z'—1)7

so the hypotheses of Lemma 4.2 are satisfied. Thus we have defined 25;,; with all the desired
properties.
Next we claim that this iteration must stop after at most M steps. We claim that

R 2
> e
(=1

increases by at least €;,,(p,d,n)? each time i increases. Since this sum is clearly bounded between
0 and R, it suffices to prove this claim.

First note that by the Cauchy-Schwarz inequality, |[E[f©|B,,1][13 > |E[f®|2,]||3 holds for all £.
Now pick £ € [R] as in the ith iteration, define g := f) —E[f(®)|B,], and let P be the non-classical
polynomial defined in the ith iteration. Note in particular that e=27"(*) is in the o-algebra defined
by 9B. Then we compute

IELFO1B4]l15 — IEFO1B13 > IE[FO18]113 — IELFO1B4]113
= |E[f©)B7] — E[f|B,]]13
= || Elg|8}]II3
> (E[g|B]], e>)”

— (g, e27riP>2

> Einv(p7 da 77)2'
Thus we have produced 9B,,, with m < M such that B, refines By and rank B,,, > 77— (||Bm]]) >
r(|Bn) and [|f© — E[f©O[B,,][|yass < n for each ¢ € [R]. Defining f) = E[f©|B,,] and

f,SQ = fO — fs(fz, we immediately see that conclusions (i), (ii), (iii), and (iv) hold. Con-
clusion (v) holds by defining C,cq(p,d, R,Co,n,7) to be the M-fold iteration of the function

N — Crank(py d, deN, TM) applied to Cj. O

Lemma 4.4 (Arithmetic regularity). Fiz a prime p, positive integers d, R, Cy, a parameter @ > 0, a
non-increasing function n: Zsgo — (0,1), and a non-decreasing function r: Z~g — Z=q. There exist
constants Cregr(p,d, R, Co,0,1,7) and ryeqr(p,d, R,Co,0,m,7) such that the following holds. Let V
be a finite-dimensional Fp-vector space and let B be a polynomial factor on'V satisfying ||Bo|| < Co
and deg By < d and rank By > 1peqr (p, d, 7, 1o, 0,7,7). Given functions fO BV 0,1,
there exists a polynomial factor B on V' that refines By with the following properties. There exists
a decomposition

1O =5+ 19+ 518,

for each € € [R] such that:

(i) f© =E[f©O|B] for each ¢ € [R);

(ii) | fyoHlpars < n(IB]) for each € € [R];

(iii) fgz and fs(fr), + fs(fgl have range [0,1] and féﬁ)r and fs(fil have range [—1,1] for each ¢ € [R];

(iv) rank B > r(||B]]);

() 11£9)2 < 8 for each t € [R);

vt < reg”\D, 4, 11, Lo, 0,1, T) an €g <d.

(vi) |B|| < Cregr(p,d, R, Co,0,m,7) and degB < d



18 JONATHAN TIDOR AND YUFEI ZHAO

Proof. Set M := [R9_21. Define non-decreasing functions r;: Z~g — Zso for each i = 0,..., M
such that 7o = r and 741(N) > 7eg (p,d, R, N,n(N),r;) and such that 7,41 (N) > r;(NN) for all
i=0,...,M —1and all N € Zsg. Define ..y (p,d, R, Co,8,n,7) := r7(Co).
We construct a list of polynomial factors Bg, B1,...,B,, on V such that
e ‘B, refines B; 1 fori =1,...,m;
o rankB; > ryr_i(||Bi]|) for i =0,...,m;
o [Bil| < Creg(p.d, R, [Bial[,n([[Bi-1]]),rar—i) and degB; < d fori=1,...,m.
Suppose we have constructed polynomial factors By,...,2B; with the above properties. If i > 1
and ||E[f©B,]|3 — [E[f©|DB;_1]|3 < 6% for each ¢ € [R] we halt the iteration. Otherwise
let 98,11 be the polynomial factor produced by applying Lemma 4.3 to B; with parameters
p:d, R, [|%Bi |, n([[Bil]), 7asr—i—1. Note that
rank B; > TM_Z(H’B,”)
> Treg! (pa d7 R7 H%ZH7T,(H%Z”)7 rM—i—l)a

so the hypotheses of Lemma 4.3 are satisfied.
Next we claim that this iteration must stop after at most M steps. This is obvious since

R 9 R )
> HE[f(Z)“Bi]HQ - HE[f(Z)PBi—l]HQ > 67
(=1 (=1

for i =1,...,m and the sum is bounded between 0 and R.

Thus we have produced B,,_1 with m < M such that B,,_1 refines By and rank%,, 1 >
8 —mi1(|Bm-1]) = 7(|Bpm-1ll) and [[f© = E[fO)B,.][|yarr < n([|Bm-1]]) for each ¢ € [R] and
HE[f(Z)]’Bm] —E[f(z)]’Bm_l]HQ < @ for each ¢ € [R]. Defining fs(fr), = E[f®¥)|%B,, 1] and féﬁl =
fO — B[f©98,,] and fs(fzbl = E[fO98,,] — E[f©|B,,_1], we immediately see that conclusions (i),
(i), (iii), (iv), and (v) hold. Conclusion (vi) holds by defining Cyeg»(p,d, R,Cy,0,7,7) to be the
M-fold iteration of the function N +— Cy.cq(p,d, R, N,n(NN),r5r) applied to Cy. O

Lemma 4.5 (Strong arithmetic regularity). Fiz a prime p, positive integers R, Cy,dy, a parameter
¢ > 0, non-increasing functions n,0: Zsg x Z=o — (0,1), and non-decreasing functions d,r: Zg X
Z~o — ZL=o. There exist constants Cregr (p, R, Co,do,(,n,6,d,7) and Dyegr (p, R, Co,do, ¢, n,6,d,7)
and ryegm (p, R, Co, do, ¢, n,0,d,r) such that the following holds. Let V be a finite-dimensional -
vector space and let By be a polynomial factor on V satisfying ||Bo|| < Co and degBy < dy and
rank Bo > rypeqn (p, R, Co,do, (1, 0,d,7). Given functions fO BV (0,1, there exist a
polynomial factor B and a refinement B’ both on V with parameters I and I' with the following
properties. There exists a decomposition

1O =8+ 189+ 15
for each { € [R] such that:
(i) £3) =E[f O] for cach ( € [R);
(i1) HfngﬂHUd(deg%,ll%H)Jrl < n(degB', ||B||) for each ¢ € [R];
11 an + ave range |0,1] an sr an ave range |—1,1| for each £ € ;
£ and £+ £8), b d fior and £ b for cach ( € [R
(iv) rank B > r(degB, ||B]|) and rank B’ > r(degB’, ||B'||);

(v) 1 f5mllz < O(deg B, [|B]|) for each £ € [R];
(vi) for all but at most a (-fraction of a € Ay it holds that

Epem—1(a)[f O (@)] = Epems—1(man [f O @)]| < ¢

for each ¢ € [R] (recall the definition of the atom indexing sets from Eq. (3.3) and the
projection map w: Ap — Ar from Eq. (3.4));
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(7)7/7/) H%/” < C?“eg’”(pa R7 CO7d07C777767d7T) and deg%/ < Dreg’”(pr R7 C07d07C777797d7T)'

Proof. Set M := {R(‘gw. Define non-decreasing functions r;: Zsg X Z~g — Z~¢ for each ¢ =
07 s 7M such that To=T and Ti-l—l(Dv N) > Treg”(py d(D7 N)7 R7 N7 H(Dv N)a ﬁ(d(D, N)7 ')7 T (d(Dv N)v ))
and such that r;41(D,N) > r;(D,N) for all i = 0,...,M — 1 and all DN € Z-y. Define
Treg”’(p7 R7 007 d07 C) m, 97 d7 T) = TM(d(]y OO)
We construct a list of polynomial factors Bg, B1,...,B,, on V such that

o ‘B, refines B, _1 fori=1,...,m;

o rankB; > ry/_;(deg B, H’B H) for i =0,.

* [IBill < Cregr(p, d(deg B 17\\’31 1”) R, |, 1H 0,1, 7n—i(d(deg Bi—1, [|Bi-1]]),-)) and deg B; <

d(degB;_1,||Bi—1]|) for i =1,.

Suppose we have constructed polynomial factors By, ..., B; with the above properties. If ¢ > 1
and ||E[f©|B,]13 — [E[f©|B;_1]|3 < ¢ for each £ € [R] we halt the iteration. Otherwise
let 8,11 be the polynomial factor produced by applying Lemma 4.4 to 98; with parameters
pfld(deg Bi, |Bil), B, (1B |, 0(deg B, [|B:]), n(d(deg B, |Bil]), ), rar—i—1(d(deg B, |B]]), -). Note
that

rank B; > ryr—;(deg B, ||Bi])
Tregr (P, d(deg By, ||Bil]), R, [|B; |, 6(deg By, ||Bi]), n(d(deg B, |B:l]), ), ravr—i—1(d(deg B, ||Bill), -).

so the hypotheses of Lemma 4.4 are satisfied.
Next we claim that this iteration must stop after at most M steps. This is obvious since

S* et - 3 im0

for i =1,...,m and the sum is bounded between 0 and R.
Thus we have produced B,,_1 and B,, with m < M such that B,,_1 refines B, and B,,, refines
B,,—1. Furthermore, rank®B,,—1 > Tar—m+1(deg Bp—1, ||Bm-1l]) > r(degBy—1, || Bm-1|) and

rank B, > ry— m(deg%my H%m”) > T(deg%my H%mH Also HE f(z ’% ] E[f(z)’%m—lmi < C3

for each £ € [R]. Let f¥) = fStT, + fpsr + fsml be the decomposition produced by the last ap-
plication of Lemma 4.4. This decomposition satisfies conclusions (i), (ii), (iii), and (v). Con-
clusion (iv) we already verified, and conclusion (vi) follows from Markov’s inequality applied to

the bound HE[f(Z)]’Bm] —E[f©B,,_1] H; < ¢3. Finally conclusion (vii) holds where we define the
pair (Dyegm (p, R, Co,do, ¢,n,0,d,7), Creg (p, R, Co,do,(,n,0,d,7)) to be the M-fold iteration of the
function (D, N) — (Cyegr (p,d(D,N),R,N,8,n,rp(d(D,N),-)),d(D,N)) applied to (do,Cp). O

Recall that for a parameter list I € Z,, and an atom a € A7, we write aqj, € [Ui‘fl to be the degree
d, depth k part of a. In the next theorem we will choose a subatom selection function s: A; — Ap
(recall Definition 3.24) such that s(a) is regular for all a € A; except those with a; o = 0.

Theorem 4.6 (Subatom selection). Fix a prime p, positive integers R,cy, a parameter ¢ > 0,
non-increasing functions n,0: Zso x Zso — (0,1), and non-decreasing functions d,r: Zsg X Z=g —
Z>0' There exist constants C?“eg(p7 R7 €0, <7 n, 07 d7 7") and DTeg (p7 R7 o, C) n, 97 d7 T) and nT@g(pv o, C)
such that the following holds. Let V' be a finite-dimensional Fy-vector space satisfying dimV >
Nreg(Ps €0, C). Given functions S N A GRS g [0,1], there exist a polynomial factor B and a
refinement B’ both on V with parameters I and I' with the following properties. There exists a
subatom selection function s: A; — Ap and a decomposition

f fstr—I_fpsT_‘_fs(Ql
for each £ € [R] such that:
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(i) £} = BIfO|B') for each £ € [R);

(i) [| el racace .m0 < 1(deg B, [|B'])) for each € € [R];
(iii) f§f2 and fs(fz + fs(Ql have range [0,1] and f,SQ and fs(Q,l have range [—1,1] for each ¢ € [R];
(iv) rankB > r(deg B, ||B||) and rank B’ > r(degPB’, ||B’||);

(v) for each a € Ar with a1 o # 0, it holds that

VA
17 a1 aap 2 < O(deg B, 1B]1) [Ty (s(ay |2

for each £ € [R];
(vi) for all but at most a (-fraction of a € Ay it holds that

Epem-1(a)[f9(@)] = Epen1 sy [f O (2)]] < ¢

for each ¢ € [R];
(m'z') [170 Z Co,
(viii) ||B'|| < Creg(p, R,c0,¢,1n,0,d,7) and degB’ < Dyeg(p, R, co,(,1,0,d,7).

Proof. Define nc4(p, co, () := max{cy, [log,(2/¢)]}. Let By be a polynomial factor on V' defined
by 7req(p, co, ) linearly independent linear functions. Define 6': Zso X Zsg — Zxo by ¢'(D,N) :=
6(D,N)/(2V/RN). We apply Lemma 4.5 to B with parameters p, R, ||Bo||,1,¢/4,n,6,d,r. Let B
and B’ be the polynomial factors produced. We immediately have conclusions (i), (ii), (iii), and (iv).
Conclusion (vii) follows since B refines By which is defined by at least ¢ linear forms. Conclusion
(viii) holds by defining Crey(p, R, c0,¢,1,0,d,7) = Cregr (D, R, Nyeg(p, €0,¢),1,(/4,n,0",d,7) and
Dreg(p7 E) €o, C) 7, 97 d7 T) = Dreg’” (p7 R7 pnreg(p7007<), 17 C/47 7, 9,7 d7 T)'

Let c;”]k € Z/p**T'7Z be elements chosen independently and uniformly at random for each (d, k) €
Dy and i€ [I1p]and Iy, < j < I C,l7 .- Consider the subatom selection function s.: A; — Ay defined
in Definition 3.24. We claim that with positive probability, this s. satisfies conclusions (v) and (vi).

Fix a € A; with a9 # 0. We first claim that for this fixed a, as ¢ varies, the subatom s(a) is
uniformly distributed over m~1(a) C Ay. To see this, first note that the univariate homogeneous
non-classical polynomials Py : F), — Uy used in the definition of s, satisfy Py (z) ¢ Uy, for all
x # 0. This follows by homogeneity: if Py(x) € Uy for some x # 0, then Py, always takes values
in Uy, contradicting the assumption that P,y has depth exactly k. Thus for a € A with a1 # 0,
we find that the vector (Pyx(|afl),. . ,Pdk(\aﬁéo )) € Ui:'_ol does not lie in [Uél’o.

Considering the definition of s., we see that the vector ([Sc]fi,k) I<i<r;,, is produced by the
following matrix multiplication. ’

Lyp+1 Tag+1,0 Igp+1,2 Tyx+1,1a,
[c];ifk , C;’k , 3!71: by kak Ndk Py(lat o)
+ +2, +2, +2,
B B B e e N P )
. . . . . . I
[Sc]éé];k CcIl&I;kJ C?;’?Z o céé];k,ld,k Pd7k(|alii(’]k )

As stated above, the vector on the right lies in TUQJ’FOI but not in [UQ’O while the matrix is uniform
random with entries in Z/p*+1Z. This implies that the vector on the left is uniformly distributed

I =1 . . .

over U “* as desired. This holds for each (d, k) € D, and furthermore, since for each (d, k) the
c matrices are chosen independently, one can see that the resulting vectors are also independent,
proving the desired result.

Now note that by Lemma 4.5(vi), for each ¢ € [R],

6(deg B, || B||)2 )

17D 11|13 < [ oy—1a) 13-

EA; pRTe AR||B|J? EA; B
I
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Thus by Markov’s inequality, for ' € Ap chosen uniformly at random, with probability at least
1 —1/(4R||B||?) the following holds

/4
178 L1 ) 13 < OB L1 o) 13- (4.1)

Thus for a fixed a € Ay with a;,9 # 0, we have that for ¢ chosen at random, we have s.(a) satisfies
Eq. (4.1) with probability at least 1 —1/(4R||8B||). Taking a union bound over all choices of a € A;
and ¢ € [R], we see that with probability at least 3/4, conclusion (v) holds.

Now we deduce conclusion (vi). First note that the fraction of @ € A; which satisfy a;9 = 0 is
p~110 < (/2. For the other a € Az, the expected fraction of a € A; that fail to satisfy the desired
inequality is at most /4. Thus by Markov’s inequality, with probability at least 1/2, at most {/2
fraction of a € Ay satisfy a1 0 # 0 and fail to satisfy the desired inequality. Thus with probability
at least 1/2, conclusion (vi) holds. O

5. PATCHING

To motivate the kind of results proved in this section consider the following result, which follows
from an application of Ramsey’s theorem.

Let H be a finite set of red/blue edge-colored graphs. There exists an integer

no = no(H) such that the following holds. Either:

(a) either the all-red coloring of K, or the all-blue coloring of K, contains no
subgraph from H for every n; or

(b) every 2-edge-coloring of K, with n > ng contains a subgraph from #.

We call such a statement a dichotomy result. The first main result of this section, Theorem 5.6,
is a dichotomy result for our setting. In our setting we consider colored labeled patterns instead
of edge-colored subgraphs and instead of monochromatic colorings we have to consider so-called
canonical colorings, defined below.

The second main result of this section, Theorem 5.9, is our patching result, which is a supersat-
uration version of the dichotomy result.

Definition 5.1. For a prime p, a finite set S, and a parameter list I € Z,,, an S-colored I-labeled
pattern over F,, consisting of m linear forms in ¢ variables is a triple (L,, ¢) given by:

e asystem L = (Lq,...,L,) of m linear forms in ¢ variables,

e a coloring ¢: [m] — S, and

e a labeling ¢: [m] — Ay (recall the definition of the atom-indexing set Ar from Eq. (3.3)).
Given a finite-dimensional F)-vector space V, a function f: V — S, and a polynomial factor 8 on
V with parameters I, an (L,, ¢)-instance in (f,B) is some & € V¢ such that f(L;(x)) = ¥(3)
for all i € [m] and B(L;(x)) = ¢(i) for all ¢ € [m]. An instance is called generic if z1,...,zy are
linearly independent.

Definition 5.2. For an S-colored I-labeled pattern (L, 1, ¢) consisting of m linear forms, a finite
dimensional IF,-vector space V, a function f: V' — &, and a polynomial factor 8 on V with
parameters I, define the (L, v, ¢)-density in (f,B) to be

AL(Ly=1@pns—1(o1): - » L1 (w(m)nBs— (6(m)) )
Given a set X C V, define the relative density of (L,1,¢) in X to be

AL (fiy-ey fm)
Ar(1x,...,1x)

where fi:= L= @)= (6()-
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Definition 5.3. Define the first non-zero coordinate function fnz: Fj; — ), by fnz(0,...,0) := 0
and fnz(x1,...,2,) := 2, where 1 = --- = 21 = 0 and x;, # 0. Given a finite-dimensional F-
vector space V equipped with an isomorphism ¢: V' = [, define the function fnz,: V' — F, by
fnz, (z) := fnz(u(x)).

Definition 5.4. Fix a prime p, a finite set S, a parameter list I € Z,,, and a function £: F, x Ay —
S. For a finite-dimensional F)-vector space V' equipped with an isomorphism ¢: V' = F, and a
polynomial factor B on V with parameters I, define the {-canonical coloring Z¢, 3: V — S
by Z¢ s(z) = &(fnz,(v),B(z)). Furthermore, if S is equipped with an [F)-action, say that & is
projective if the same is true for every function =¢, 5. (Note that this property is equivalent to
the condition that { preserves the action of F, i.e., {(cz,c-a) = c-{(z,a) for all c € F);, all z € ),
and all @ € A;. Recall the action of F,; on A defined in Eq. (3.5).)

Definition 5.5. Given a prime p, a finite set S, a parameter list I € Z,,, a function : F, x A — S,
and a S-colored I-labeled pattern H = (L, 1, ¢), say that £ canonically induces H if the following
holds. There exists some n > 0 and a polynomial factor B on ) with parameters I such that there
exists a generic H-instance in (Z¢1q,5,). For a finite set of S-colored I-labeled patterns #, say
that £ canonically induces H if £ canonically induces some H € H.

It is not hard to show that if £ canonically induces H, then there exists a generic H-instance
in (Z¢,n,B) for every V,¢,B as long as dim V' and rankB are large enough. Our first result is a
strengthening of this: if every & canonically induces H, then there exists a generic H-instance in
(f,®B) for every f: V — S and every B as long as dim V' and rank B are large enough.

Theorem 5.6 (Dichotomy). Fiz a prime p, a finite set S with an F) -action, a parameter list
I € 7,,, and a positive integer y. There exist constants ngich, = Naich(p, |S|, I, o) and raicn, =
Tdich(D, |S], I, o) such that the following holds. Let H be a finite set of S-colored, I-labeled patterns
each defined by a system of linear forms in at most £y variables. Fither:

(a) there exists a projective £: F, x Ar — S that does not canonically induce H; or

(b) for every finite-dimensional Fp-vector space V' satisfying dim V' > ng;cp, every projective
function f: V — S, and every polynomial factor B on V with parameters I which has rank
at least 1 gcn, there is a generic H-instance in (f,B) for some H € H.

Proof. Define m to be the smallest positive integer such that the following holds. Let H be a
S-colored, I-labeled patterns defined by a system of linear forms in at most ¢y variables and let
§: Fpx Ar — S be a projective function. If § canonically induces H, then there exists some ng < m
and a polynomial factor By on Fj# with parameters I such that there exists a generic H-instance
in (Z¢14,8,,Bm). This is well defined since there are only a finite number of S-colored, I-labeled
patterns defined by a system of linear forms in at most £y variables.

Lemma 5.7. Fiz a prime p, a finite set S, a parameter list I € 1, and positive integers m, o, ng.
There exist constants Nyamsey = Nramsey(Ps |S|, I, M, 10, 10) and Tramsey = Tramsey (D; |S|, I, m, 1o, 1n0)
such that the following holds. Let V be a finite dimensional Fp-vector space satisfying dimV >
Nramsey, let B be a polynomial factor on Fg with parameters I such rank®B > rrgmsey, and let
f:V — 8 be a function. Then there exists a subspace U <V, and linear functions Py, ..., Pp: V —
Fp, and a function §: F,, x A — & such that the following holds:
(i) £(fnz(Pi(z),..., Pn(z)),B(x)) = f(x) for all x € U that also satisfy (Pi(x),...,Pn(x)) #
(07 A 70);
(ir) £(0,0) = f(0)
(#1) the polynomial factor B’ on U defined by the homogeneous non-classical polynomials that
define By in addition to the polynomials Py, ..., P, satisfies rankB’ > rq;
(iv) dimU > ny.
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Let us show how this lemma completes the proof. Define

1
T0 i= Tequi | P,deg 1, ﬁ) and ng := 2p™ (m + |log, | 1||])-
“ ( 2(p [ TP og, W1

Then define

ndich(py ’8‘7 I, 60) = nramsey(py ’8‘7 I,m,ro, n0)7
and

Tdich(py ’8‘7 I, 60) = Tramsey(pa ‘8’7 I,m,ro, nO)-

Let ‘H be a finite set of S-colored, I-labeled patterns each defined by a system of linear forms in
at most {y variables. Suppose (a) does not hold. Thus for every projective £: F), x Ay — S, there
exists an H € H such that £ canonically induces H.

Now we apply Lemma 5.7 to f: V — S. This produces a subspace U < V', linear functions
Py, ..., P,, and a function §: F, x A; — S with several desirable properties.

First note that since f: V' — S is projective, the same is true of £: F, x A; — S§. Thus by
assumption there exists an H € H such that £ canonically induces H. By the choices in the first
paragraph, there exists a ny < m and a polynomial factor By on Fyp# such that (Be1d, 3y, BH)
contains a generic H-instance.

To complete the proof, all we need to show is that there exists an injective linear map x: Fj# — U
such that By (z) = B(k(z)) for all x € Fp7 and fnz(z) = fz(Pi(k(v)),. .., Pu(s(x))) for all
x € Fy#. This follows by an application of equidistribution (Theorem 3.19).

Recall the definition of L™# (Definition 2.7), the system of p™# linear forms in ny variables that
define an ny-dimensional subspace.

Say that B’ has parameters I’. Thus the atom-indexing set of 8’ can be written as Ay ~ F}' < A;.
We define the following tuple of atoms a = (ai)ieFZH by a; = ((i1,---,%ny,0,...,0), By (7)) where
there are m — ny 0’s. We claim that a € &/ (L™#). We can check this separately for the first and
second coordinate; each is trivial.

Thus by Theorem 3.19 and the rank bound on 2B’, we have

1 1 1
Pr B'(LM (xq,...,x =aq; for all 2 € F'H) > - — > —.

by (B (1)) = ») 2 ] s I 2
We wish to find a single tuple (z1, ..., 2y, ) € V™ that satisfies the above condition and also has
Z1,...,%Tny linearly independent. The number of linearly dependent tuples is small, so we calculate
that the number of good tuples is at least

ﬂ _ ’U‘”H—lan_

2(p™ | 11)P
This is positive by our assumption that dim U > ng. Thus there exists some good tuple (z1,..., 2y, ) €
V. Defining k: Fp# — U by k(i) := L}"(x1,...,%n,) has all the desired properties. Thus we
have shown (b) assuming that (a) does not hold. O

Proof of Lemma 5.7. Define M := m|S \p”I I Our strategy is to find a large subspace Uy, and linear

functions Pi,...,Py: V' — Fp, such that for © € Uy, the value of f(x) only depends on B(z),

fnz(Py(x),..., Py (z)), and the index k such that Pj(x) =--- = Py_1(z) = 0 and Py(z) # 0. Once

we have found such a configuration, we can complete the proof by a simple pigeonhole argument.
Define

L= {pSP(ip_l)S_FLg 18 20,1 € [I(p—l)s+1,s]}a
where Pik is the ith homogeneous non-classical polynomial of degree d and depth k defining 8.

Note that £ is a finite set of linear functions (in particular, it is the set of all p’ P that are classical
linear polynomials where s > 0 is a non-negative integer and P is one of the homogeneous non-
classical polynomials that define 98.) It is immediate from the definition of rank that if P;,..., P,



24 JONATHAN TIDOR AND YUFEI ZHAO

are linear functions such that {Py,..., Py} U L are linearly independent, then rank B’ = rank ‘8.
We will use this fact to guarantee conclusion (iii).
Our main tool is the following lemma which is a Van der Waerden-type result.

Lemma 5.8. Fiz a prime p, a finite set S, a parameter list I € Z,, and positive integers ng,rq.
There exist constants Nramsey’ = MNramsey’ (p7 |S|7 I, ng, TO) and Tramsey’ = Tramsey’ (p7 |S|7 I, ng, TO)
such that the following holds. Let V be a finite dimensional F,-vector space satisfying dimV >
Nramsey’ and let P2V — Ty, be a non-trivial linear function. Let B be a polynomial factor on Fy with
parameters I and let B’ be the common refinement of B and {P}. Suppose that rank B’ > rrgmsey: -
Let f: V. — S be a function. Then there exists a subspace U <V contained in the zero set of P, a
vector z € V such that P(z) =1, and a function x: A — S such that the following holds:

(i) x(B(z)) = f(z) forallx € 24+ U;
(ii) rank B|y > ro;
(iii) dimU > ng.

Define r1,...,7p and nq,...,ny by
ng = max{nramsey’ (p, ‘S’p_ly [7 ni—1, ri—l)a ‘ﬁ‘ + 1}
and
Ti ‘= Tramsey’ (p, ‘S’p_ly [7 Ti—1, Ti—l)-
Then define
nramsey(p7 |S|717m77'07n0) =N and Tramsey(pa |S|,I,m,r0,n0) =TM-

We will find nested subspaces V. = Uy > Uy > --- > Uy, linear functions P;: V. — F,, and
functions &;: (Fp \ {0}) x A; — S such that the following holds for each i € [M]:

o &i(Pi(z),B(x)) = f(z) for all x € U; that satisfy Pi(z) =--- = P;,_1(z) =0 and P;(z) # 0;
e {P,..., P} UL are linearly independent;

o rank By, > ra—; where W :={z € U;: Pi(x) =--- = Pj(x)};

o dimW; > np;—; where W; :={x € U; : Pi(z) =--- = Pi(z)}.

Suppose we have defined V' = Uy > Uy > --- > Uj, linear functions Py,...,F: V — Fp, and
functions &;,...,&: (F, \ {0}) x Ay — S with the above properties.

Define W := {x € U; : Pi(z) = --- = Pi(x) = 0}. We have dim W > m; > |L|. Pick an arbitrary
y € W such y # 0 but all of the linear functions £ vanish on y. Let P,y 1: V — ), be an arbitrary
linear function such that P;j11(y) = 1. Note that automatically we have {Py,...,P;, P41} UL are
linearly independent.

Define W' := {z € W : P;41(xz) = 0}. Note that the subspace W is partitioned into hyperplanes

as W=W'U(y+W)U@2y+W)U---. Write S := 8. Then define f: W — S by

flz+ty) = (f(bx+ by))beF,f for x € W’ and t € F),.

We apply Lemma 5.8 to ?, By, Piy1 with parameters ny;—;—1,7y—;—1 to produce a subspace
U! <W' avector z € y + U/ and a function x: Ay — S with several desirable properties.

We have x(B(z + 2)) = f(z + 2) for all z € U/. Looking at the bth coordinate of this equation
for some b € F) gives x(B(x + 2))a = f(bx + bz). Finally using the homogeneity of B (recall the
action of FX on Aj defined in Eq. (3.5)) gives x(b~! - B(bx + bz)), = f(bz + bz) for all z € U] and
all b€ .

Define U;+1 < U; to be a (dim W + i+ 1)-dimensional subspace of U; that contains z and W and
such that none of Py,..., P; are identically 0 on U;;1. Then define &11: (Fp \ {0}) x Af — S by

iv1(b,a) = x(b7" - a).
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Note dim U1 > dim W’ > m;4 and rankB|y,,, > rank By > riyq. Furthermore, for x € Uiy

such that Py(z) = --- = P,_1(z) = 0 and P;(z) = b # 0, we can write x = bz’ + bz for some 2’ € W’.
Then f(x) = f(2' + 2)p = X(B(2' + 2))p = x(b71 - B(ba' + b2))p = &41(b,B(x)), as desired.
Thus we have defined a sequence of nested subspaces V = Uy < --- < Uy, linear functions

Pi,...,P,:V — F, and functions &;,..., &y (Fp \ {0}) x A — S with the above properties.
Finally note that the number of possible functions (F, \ {0}) x A; — S is at most |S|PI7Il. Thus
by the pigeonhole principle, there exists 1 < 4y < --+ < iy, < M such that & = -+ = &,,. Define
£:Fp,x A — S by £(0,a) = f(0) for all @ € A and &(b,a) = &1(b,a) for all b € (F, \ {0}) and
all a € A. Define Wy := {x € Up; : Pi(z) = --- = Py(x) = 0} and let U be a (dim Wy, + m)-
dimensional subspace of V' that contains Wy, and such that none of F;,..., FP;  are identically 0

tm
on U. Then U, P;,,...,P;, , and £ have all the desired properties. O

Proof of Lemma 5.8. Define constants

n1 := max{no, Nhigh—rank([P, 1,70 + D)},

and )
0= ———— and !

0
. 0 =—
8(2|s[)>™ 11]1/2p1S]

Define the non-increasing functions a: Z~o — (0,1) by

1
a(N) = oINPT
and n: Zso — (0,1) by
1
N)=————
T = SaErsr

and define the non-decreasing function r: Z~g — Z~qg by

r(N) := Tequi(p, " a(IV)).
Define
Nramsey (s [S; I,m0,70) == 2p™ [log,, (16]S|Chegr (p, p™, S|, pII1], 0,1, 7)) |
and
Tramsey' (P, |S], 1,10,70) = Tregr (0, 0™, |S] P, 0,1, 7)
For ¢ € S, define f(9): V — [0, 1] by .= 14-1(¢). We are now ready to proceed with the proof.

We apply the arithmetic regularity lemma, Lemma 4.4, to the polynomial factor 8’ on V and the
functions (f(9)).cs with parameters p,p™,|S|,p||I||,6,n,r. This produces a polynomial factor 8"
refining B’ and decompositions f(¢) = f§§2 + féil + fs(f,zl with several desirable properties.

Say that B’ has parameters I’ and B” has parameters I” (note that ||I'|| = p||I||). We consider
the atom-indexing set of B” (see Eq. (3.3) for the definition) as Ajn ~F, x Ay X Apr_p.

Say that an atom a € Ap» is regular if

|| smll%//—l(a)HQ < 0”1%//—1(&)H2 for all c € S.

Our first goal is to find s € Apv_p such that all atoms of the form (1,a,s) € Ay ~F, x Arx Apr_p
are regular.
By Lemma 4.4(v), for each ¢ € S,

(c)
Z |’fgml1‘3”71(a H2 =9 |S|||I||2 Z Hl%” 1(a) ”2
G,EAIH IIGA "

Thus at least a (1 — 1/(2p||I]|?))-fraction of atoms are regular. For each a € Ay, at least a (1 —
1/(2||1]))-fraction of the atoms of the form (1,a,s) are regular, for s € Aps_p. Thus by a union
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bound there exists some s € Ayr_p such that (1,a,s) is regular for all a € A;. Fix this value of s
for the rest of the proof.

Define y: A; — S such that x(a) is a color that appears in the atom B71(1,a,s) with density
at least 1/|S].

By the definition of n; and Lemma 3.15, there exists a polynomial factor B; on Fj! with
parameters I and satisfying rank 81 > rg + p. Our goal is to find vectors zg, z1,...,z,, € V such
that

o B"(xo 121+ Fing Tpy) = (1,B1(i1,. . -, iny ), 8) for all (in, ... i) € FpL;
o f(zo+irzy+ - +inTpy) = X(B1(i1, ... ,in,)) for all (i,...,dn,) € FpL;
® Iy,...,T,, are linearly independent.

We choose xg, 21, ...,2n, €V independently and uniformly at random. Let p; be the probability
that this choice of x satisfies all three conditions above. First note that the probability that
T, ..., Ty, are linearly dependent is at most p™*!/|V|. Let py be the probability that this choice
of x satisfies the first two conditions above. We have shown that

p1>p2—p" |V
Let L = (L; ),Lanl to be the system of p™ linear forms in n; + 1 variables defined by

Li(azo,azl, - ,xnl) =x9+ 1121+ + inlxnl.
This system defines an ni-dimensional affine subspace. One can easily see that L is finite complexity
and in fact its complexity is at most p™* (see Remark 3.4).
Define ¢ = fx(B1(9) and define ggzz,gggl,gé?r similarly. Define h(®: V — [0,1] by h(®) :=

Log—1(1,1(3),9)-
We compute psy as

p2=Eq | [T 99 (La(@)h® (Li(2))

[ icl,t

= Eq | [T (95 (Li(@) + gu(Li(@)) + g (Li(@))) h<i><Li<w>>]

L <

> Eq ([T (640 (Li@) + g (Lal@) ) B9 (Li(a >>] (1B71).

L 4

The inequality follows from Lemma 4.4(ii) and the counting lemma, Eq. (3.1).
Write pg for the expectation in the last line above. We have py > p3 — 37" n(||B"||). Expanding

the product, there are at most 2P terms involving g(J ) for some J € Fpt. Each of these is bounded

in magnitude by
E [ gsml ‘ H h ]

By applying a change of coordinates, we can transform to the case that 7 = 0 (and Lo(x) = z0).
Then by the Cauchy-Schwarz inequality, the square of the above expression is bounded by
0 2
outen)]| nO )| Bay | B a0 o, |0

-
1#0

The first term is at most 8(||B]|)%||A(?)||3 by the fact that (1,%B1(3),s) is a regular atom for all 4.
The second term can be counted by equidistribution applied to the system L’ of 2p™ — 1 linear

2
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forms in 2nq — 1 variables defined as follows. Set

Lo(zo, @1, ..., Tpy, @, ..., 3y,,) = o,
and for 4 € T \ {0}, define
L;71(:E0,:E1,...,xnl,x'l,...,:p’m) =0 + i1 @1 4 -+ iy Ty s
L o(0, @1, ooy Ty, Ty Ty ) = @0 + 01T + o A iy Ty,

By Lemma 3.23, we know that ||B”|| - |®/(L')| = |®7+(L)|? (see also [7, Lemma 5.13].)
Thus by equidistribution, Theorem 3.19, and the rank bound on 8”, we have the second term
is at most

1 18" " 2||B"|
+o(]|B"]]) = a(||B7])) < :
@ @) @ @)P " @7 (L)[?
Applying equidistribution again we have that the first term is at most
262

92< +a %// >_
e el ) <

Combining these bounds and summing over all terms that contain some g

() o1 0

Write py4 for the expectation in the last line. The quantity ggm)n (Li(z)) is the density of x(B1(2))

in the atom of B” that L;(x) lies in. When B(L;(x)) = (1,B1(2), s), the choice of x implies that
this density is at least 1/|S|. Thus

pa=> ﬁﬂz [H K <Li<w>>] :

Write ps for the expectation in the last line. Unwrapping the definition of A®), this can be
written as

®)

> We see that

p3 > By

ps = Pr (B"(Li(x)) = (1,B1(2),s) for all ¢ € F}}) .

We claim that ((1,’31(1'),3))1an1 is an L-consistent tuple of atoms. We check this coordinate
by coordinate. Obviously (B1(2 ))zeF"l is L-consistent. Furthermore any constant tuple is also
obviously L-consistent (this follows from the fact that L is a translation-invariant pattern). Thus
by another application of equidistribution and the rank bound on 8", we have

1 1
ps 2w — a(IB']) 2 g
@ (L) 2|® (L]

Combining all these inequalities, we see that

P > 1 1 B 2pn1+1L . 3p”1 (”%”H) - pn1+1
L ISP 200 (L) @@ v
This expression is positive by the definition of 6,7 and the assumption that dim V' > n,qmsey -
Thus we have define a function x: Ay — S and found linearly independent zg,z1,...,2,, € V
with several desirable properties. Define z := zg and U := span{x1,...,2y,, }. Since P: V = F,is a
linear function and P(zo+i121+- - -+in, Ty, ) = 1 for all 4 € Fj, we conclude that P(z) = P(zo) = 1
and U is contained in the zero set of P. Furthermore, B(zg+ 121+ -+ in Tny) = B1(i1, -+, 0n,)

for all ¢ € Fj'. Since By was chosen such that rank®B; > 79 + p and n; > ng, we see that
dimU > ng and rank B|spaniz,0y = 70 + p. By Lemma 3.16, we conclude that rank B[y > ro.
Finall% f(xO =+ Z'1331 + -+ Z.n1:17n1) = X(%l(ily cee 7in1)) = X(’B(xo =+ ilxl +e 4+ Z.n1:17n1)) for all
¢ € F))', which proves the desired result. O
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We boost this Ramsey dichotomy result to a density result using a Cauchy-Schwarz supersatu-
ration argument. For technical reasons we need this result to hold inside “subvarieties” of a vector
space, i.e., the zero sets of a sufficiently high-rank collection of non-classical polynomials. Again for
technical reasons, this supersaturation argument only works for full dimensional patterns (recall
Definition 3.21).

Theorem 5.9 (Patching). Fiz a prime p, a finite set S with an F-action, parameter lists I, I'eT,
satisfying I < I', and a positive integer {y. There exist constants Npateh, = Npatch (D, |S|, I', 4o) and
Bpatch = Bpatch(pa |‘S|v I EO) >0 and a non'decreGSing funCtZ’On T'patch = rpatch(py |S|,I,€0)Z Lo X
Z~o — Z~q such that the following holds. Let H be a finite set of S-colored, I-labeled patterns such
that each pattern is defined by a full dimension system of linear forms in at most £y variables (recall
Definition 3.21). FEither:

(a) there exists a projective £: F, x Ar — S that does not canonically induce H; or

(b) for every finite-dimensional Fp-vector space V' satisfying dim'V > npgen, every projec-
tive function f: V — S, every polynomial factor B on V with parameters I that satisfies
rank B > rp40n(deg B, [|B)), and every polynomial factor B’ on V with parameters I' that
refines B and satisfies rank B’ > rpgicn(deg B, |B]]), there is a pattern H € H such that
in (f,B), the relative density of H in B'~1(A; x {0}) is at least Bpatch-

Note that npicr, may depend on I', but critically Spaten does not depend on I”.

Proof. First we define several parameters.
Write 7 := rgien(p, [S|, I, 4o) for brevity. Define

n1 := max{ngich (0, |S|, 1, €0), Phigh—rank (s I,7)}
where ng is defined in Lemma 3.15.
Define the constants
Npaten (D, [S|, T, £o) = 2p™ [log, (II1'[)] ,

and
1

S|, 1,4) =
ﬁpatch(p7| |7 ) 0) 6400€gp2n1-£‘|1‘|2p"1’

and define the non-increasing function a:: Z~g — (0,1) by
1
a(N) == SN2
and the non-decreasing function 7patch (0, [S|, I, 40): Zso X Zso — Z=o by

Tpatch(py ’8‘7 I, 60)(D7 N) = Tequi(pv D, Oé(N))

We now proceed to the proof. Let H be a finite set of S-colored, I-labeled patterns each defined
by a full dimension system of linear forms in at most ¢y variables. We apply Theorem 5.6 to ‘H. If
Theorem 5.6(a) holds, then clearly conclusion (a) holds. Now assume that Theorem 5.6(b) holds.
We wish to show conclusion (b).

Let V' be a finite-dimensional Fj,-vector space satisfying dim V' > npgen, let f: V. — S be a
projective function, let B be a polynomial factor on V' with parameters I that satisfies rank B >
Tpateh (|| B]]), and let B’ be a polynomial factor on V' with parameters I’ that refines B and satisfies
rank B’ > rpaicn ([|B']]).

Write X := B'71(A; x {0}) and n := dim V. By assumption, n > npaen. We wish to count H
instances in (f,B) that are contained in X. Write H = |_|§°:1 H, where Hy is defined to be the
subset of H consisting of colored labeled patterns defined by a system of linear forms in exactly £
variables. We define sets &y, ..., 4, as follows. i, is the set of /-dimensional subspaces U of V
which satisfy the following:

e UCX;
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e there exists a colored labeled pattern H € H;, in ¢ variables and a generic H-instance
T1,...,xp € U.
Note that the requirement that xi,...,z, € U are generic implies that U = span{zy,...,x¢}.
Thus 250:1 || is a lower bound on the number of H-instances in X.
Define the following counting function c¢: Ly — Zso for each ¢ € [{y] as follows. For U € iy,
let ¢(U) be the number of nj-dimensional subspaces that contain U and are contained in X. An
application of the Cauchy-Schwarz inequality implies that

(Soew @)’
teuZ c(U)*

Define S7 to be the number of ni-dimensional subspaces W of V such that W C X and
rank(B|y) > r. By Theorem 5.6(b), every such W contains a generic H-instance. Thus

Lo
> eU) = 8

{=1Uel,

|| >

(5.1)

By the pigeonhole principle, there exists some ¢ € [{y] such that

S
> eU) > o (5.2)

Ueldy
We fix such a value of ¢ € [(] for the rest of the proof.
Define S to be the number of ordered nj-tuples (z1,...,z,,) € V™ such that xi,...,z,, are
linearly independent, span{z1,...,z,, } C X, and rank(%]span{mhm,xnl}) > r. We can compute
ni—1
. 2
Sp =51 [[ (@™ —p") <p"iSh. (5.3)
i=0
Define S5 to be the number of ordered ni-tuples (z1, ..., zy,) € V™ such that span{z1, ..., 2y, } C

X and rank(%\span{xl,,,,@nl}) > r. We can easily bound
52 > 53 - pn'nlpnl_n. (5.4)

By the definition of n; and Lemma 3.15, there exists a polynomial factor B; on Fj! with
parameters I and rank at least r. Define Sy to be the number of ordered ni-tuples (z1,...,x,,) €
V™ such that B1(i1,...,0n,) = B(1x1 + -+ + in,Tp,) and span{xi,...,z,} € X. Notice that
S3 > S4.

Write L' := L™, the system of p™! linear forms in ny variables that define an n;-dimensional
subspace (see Definition 2.7). By definition, (P;’k(il, e ,inl))ierl € @41 (L') for every (d, k) € D,

and i € [I4] where Pé,k is the 7th non-classical polynomial of degree d and depth k defining 5.
Also, (0,...,0) € ®g(L') for all (d,k) € D,. Define a € A3 by

; Py (it yin)  ifi < I,
(ai)d,k = ' . ) .
0 if Iy <1< Iy k-
By the above discussion, a is L’-consistent, so by Theorem 3.19 and the rank assumption of 2B/,
we find
Sy > 8y =|{w e V™ : B (Li(x)) = a; for all i € Fj' }|
1 prm (5.5)
> - I/ > n-ni > S

- <\<I>1/<L'>r ED )P 2 56,
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Combining Eq. (5.2), Eq. (5.3), Eq. (5.4), and Eq. (5.5), we conclude

1 1 1
) 2~ ) 2 56)
2 0= ™ gy ooy (D)

Next we find an upper bound on » 7, c(U)2. Define Ty to be the number of triples (U, W, W’)
where U is a /-dimensional subspace of V and W, W’ are both ni-dimensional subspaces of V' that
contain U and are contained in X. First note that

> U <. (5.7)
Uesly
Now define T3 to be the number of ordered (2n1—£)-tuples (T1,. .., T, Y1y - s Yng—ts Z1y- - - » Zny—t) €
V21—t such that z1,..., 20 y1,... ,Yn,—¢ are linearly independent, x1,..., 2, 21,..., 2y, —¢ are lin-
early independent, span{zi,...,Z¢,y1,...,Yn,—¢} C X, and span{xy,...,xp,21,...,2n,—¢} C X.

We compute

: (h( Z i)> (nﬁ1< g ">> ERa 53)
2 11 p =D 1 p p 1= 100 1
Next define T3 to be the number of ordered (2n;—¢)-tuples (X1, ..., T, Y1, -y Yng—t, 215 -« 5 Znq—t) €
V2=t such that span{zy,...,Te Y1, ,Yn,—¢} C X and span{zi,..., 24, 21,...,2n, ¢} C X.
Clearly T < T5.
Define L” to be the following system of 2p™ — p® linearly forms in 2n; — n, variables. For i € Ff,,
define

L@y, o Tty ooy Yng by 215+ e v 2y —t) 2= 0121 + -+ - + G40
For i € FJt \ (FY x {0}™17F), define

L;:/,l(xla sy LYty Yng L5215 - - - an—é) =i1wy + -+ gy + iZ—i—lyl +- inlyn1—€7
L;:/,Q(xla ey T YLy Y —£, 215 - -y an—f) = Z.1$1 +-+ i€$k + Z.Z—i-lzl -+ in1zn1—€-
Now let B” be the polynomial factor on V with parameters I’ — I defined by homogeneous
non-classical polynomials

i
(Pd,k) (d,k)eDp
Ig p<i<I)

where Pé , 1s the ith non-classical polynomial of degree d and depth k that defines B’. The

important property of this polynomial factor is that X = 9B”71(0). Also note that rank 8" >
rank B’ > r(||B’]]). By Theorem 3.19 and the bounds on rank 8", we find

Ty < Ty = ({m e V2=t B/ (L (z)) = 0}(
1 9pn(2n1—E) (59)
< ! ’I’L(21’L1—£) < p .
< (g o) om0 < 22

Combining Eq. (5.7), Eq. (5.8), and Eq. (5.9), we conclude

200p%mt
> U < = —p"Pmh), (5.10)
p*"i|®p_ (L")

Uesly
Finally, we combine Eq. (5.1), Eq. (5.6), and Eq. (5.10) to find
q> , Ll/
|ug| > | I I( )| n-0

2 3200£(2)p2n1-£|<1>1,(1-//)|2p
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Consider L, the system of p linear forms in ¢ variables that define an ¢-dimension subspace
(see Definition 2.7). By Lemma 3.23, we have |®;_(L%)| - |®p_;(L")| = |®p_;(L')|?. Thus the
above expression simplifies to

1 n-{ 1 n-f
= R > P .
= 32008y 6 (L) [0 1(L0)] = 390002 [ [&p (L))

Therefore there exists some colored labeled pattern H = (L,,¢) € Hy where L is a full
dimension system of linear forms in ¢ variables and such that the number of generic H-instances in
(f,B) which are contained in X is at least 1/|H,| times the right-hand side of the above equation.
Note that by equidistribution, Theorem 3.19, and the rank bound on B”,

1 2

AL(1X,...,1X)Sm a(|lI']]) < By (L)

(5.11)

. Noting that since L is full dimensional, we have |®p_;(L)| = |®p_;(L*)|. Thus dividing the two
above quantities, we find that the relative density of the above H in X is at least
1
640003 p2n-t|| 1 ||2r™

:/Bpatch(pu ‘8’7[760) O

6. PROOF OF REMOVAL LEMMAS

As usual, for an atom a € A; (defined in Eq. (3.3)), we use aq) € Uk+1 to denote the degree

d, depth k part of a. We use the notation A1 C Ay to denote the set A1 ={a € A; : a1p = 0}.
This is the set of atoms that are regularized by Theorem 4.6. Also define I € 7, by I 0 =0 and
Ide = I, otherwise.

Definition 6.1. Fix a prime p, a finite set S equipped with an F;—action, and a parameter
list / € Z,. A summary function with parameters I is a pair (F,§) consisting of a function
F: (Ar\ Ar) — 25\ {0} and a projective function £: Fj, x A7 — S.

Definition 6.2. For an S-colored pattern H = (L, ) consisting of m linear forms and a summary
function (F,&) with parameters I, say that (F,¢) partially induces H if there exists a tuple of
atoms a € AT such that the following holds:
(i) a is L-consistent, i.e., a € ®7(L);
(ii) for each i € [m] such that a; ¢ Ap, we have (i) € F(a;);
(i) defining J := {i € [m] : a; € A;} and Hy := ((L;)ies, V| s, (a:)ics}, an S-colored I-labeled
pattern, we have £ canonically induces H ;.

Proof of Theorem 2.8. We are given a parameter ¢ > 0 and a possibly infinite set H of S-colored
patterns over I, of the form (fg, 1) where ¢ is some positive integer and ¢: Ey — S is some map.

(See Definition 2.7 for the definition of I’ and Ey.)

We begin with a “compactness argument” based on ideas of Alon and Shapira that allows us to
reduce to the case when H is finite size.

For each parameter list I € Z,, we define a finite subset H; C H as follows. Consider the set
of all summary functions (F,&) with parameters I. If there exists any H € ‘H such (F, &) partially
induces H, include one such H in H;. Note that |H| is at most the number of summary functions
with parameters I, which is finite.

Define the compactness functions Uy, : Z~g X Z~g — Zg as follows. Let Uy (D, N) be the largest
positive integer ¢ such that there exists a parameter list I € 7, satisfying deg I < D and ||I|| < N

such that a pattern of the form (fg, ) exists in Hj.
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Now we set several parameters. Define non-increasing functions 7: Z~g X Z~g — Z~g by

1 . p¥H(DN)
D,N)i=— [ ——
(D N) =5 <12N\Sy> ’
B: Zso X Lo — Zq by
D,N) = i ateh (95 |81, 1, U3 (D, N)),
B(D,N) zezp:degnfé%,||z||gv5p ten(Ps [S], I, U (D, N))
0: Z>0 X Z>0 — Z>0 by
W4, (D,N)
D,N poH
oD, Ny = PPN (e ,
10 \8[S]
and a: Zso X Zso — (0,1) by
, B(D,N)
D, N) 1= oAy

Then define non-decreasing functions 7: Z~g X Z~g — Z~g by

r(D,N) := max{requi(p,D,a(D,N)),IGI » gnlli}é ||I||<NTpatCh(p7 |S|, I, Uy (D, N))(D,N)+p [logp N}}
pdegls L/, =

and d: Z>0 X Z>0 — Z>0 by
d(D,N) := p¥n(P:N),
Define parameters

€
¢ := 03] and co := [log,(2/€)] .
Then define

Cmagc = Creg(py |S|, €0, Ca m, 97 d7 T‘),

Doz = Dreg(p7 ’8‘7007 Cﬂ?, 97 d7T)7

Nmgn = Max {nreg(p7 €0, C) npatch(py ’8‘7 [7 \IJH (Dmaxy Cmax)) + “ng Cmax-| } .

, max
IGIP: deg[SDmaCL‘7||I||SCmacv
Finally, define

ﬁ(Dmaxac’mam) ( € >p " P
)

5(€7H) = mln{ 20 4Cmam|8|

_nmin'\I’H(Dmazycmaz) }

and
He = U Hr.
I€T,: | 1||<Crmazx,deg I<Dma
Since the union is over a finite set of I, we have H. is finite. We will show that this choice of § and
H. satisfies the desired conclusion.

Let V be a finite-dimensional F,-vector space and f: V — S be a projective function with H-
density at most d(e, H) for every H € H,. Our goal is to produce a projective recoloring g: V" — S
that agrees with f on all but an at most e-fraction of V that has no generic H-instances for every
He™H.

First note that if dim V' < n,, the theorem is easily follows. This is because for the pattern
H = (fg,q/)), if there exists an H-instance in f, then the H-density in f is at least 1/|V|*. Thus
taking g = f and noticing that we chose d(e, H) < p~"min"¥#(Cmaz,Dmaz) ' the theorem holds in this
case.

Now assume that dimV' > ny,,. We apply Theorem 4.6 to the functions {1;-1(;)}ces with
parameters p, |S|, co, ¢, 7,0, d, r. This produces a polynomial factor 8 and a refinement B’ both on
V with parameters I and I’ and a subatom selection function s: A; — Ay satisfying several other
desirable properties.
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As above, define A; C A to be the set A; := {a € Ar : a1 0 = 0}. We call the atoms a € A;
irreqular and the remaining atoms a € A 1\121 1 regular. Define V to be the codimension-T 1,0 subspace
of V that is the common zero set of all I; ¢ linear polynomials defining 5. The irregular atoms of
9B exactly consist of V, i.e., B~ (A;) = V.

Define B to be the polynomial factor on V defined by the restrictions of the homogeneous non-
classical polynomials that define B to V, except for the linear polynomials (which restrict to the
zero function). Let Ie Z, be the parameter list of B (1:170 = 0 and jzd,k = I, otherwise). Also
define B’ to be the polynomial factor on V defined by the restrictions of the homogeneous non-
classical polynomial that define B’ to V, except for the linear polynomials that also define B. Let
I' € T, be the parameter list of B’ (I{) = I{, — I and I/, = I/, otherwise). Note that by
Lemma 3.16 and our definition of r, we have 7 ’

rank% > Tpatch(pa ‘8’7 f, \I/H(deg%a ”%H))(deg %7 H%”)a
vtk B > 1 paren (9, S, T, s (deg B, [B]))) (deg B, [B]).

We will “clean up” the regular atoms by removing low-density colors in a projective manner.
We will “patch” the irregular atoms by replacing the coloring by a new coloring E& LB for some
projective £: [F), x A — S and ¢: Vs ngmv'

Note that to check that the recoloring g: V' — § is projective, it suffices to check this fact
separately on V and on V' \ V.

Clean up regular atoms: For each a € (A; \ A;), say that a color ¢ € S is high-density in
a if it appears in B/~ 1(s(a)) with density at least €/(4|S|). Say that a color is low-density in a
otherwise.

First note that a basic property of subatom selection functions, Lemma 3.25(ii), is the following.
For a € A; and b € F), we have b- s(a) = s(b-a). Combined with the projectiveness of f, this
implies that for a color ¢ € S and b € F)¥, the c-density in B'~!(s(a)) is the same as the (b-c)-density
in B~1(s(b-a)). Thus a color c is high-density in a if and only if b - ¢ is high density in b - a.

We pick a single high-density color ¢, € S for each regular atom a € (Ag \ [11) in a projective
way, namely such that b-c, = ¢ for all a € (Af\ 1211) and b € F);. By the argument in the above
paragraph, this is possible.

Now we define our recoloring of the regular atoms, g: (V \ V) — S as follows. For each a €
(A7 \ A;) and z € B~ (a), we define g(z) := f(z) unless f(x) is low-density in a, in which case we
define g(z) := ¢,. Note that g is a projective function. Furthermore we claim that g differs from f
on at most an (e/2)-fraction of V.

By Theorem 4.6(vi), for all but at most a (-fraction of a € Aj, the c-density in B~ (a) and
the c-density in 8'1(s(a)) differ by at most ¢ for all s € S. Thus for most atoms a, each low-
density color appears in 87! (a) with density at most €/(4|S|) + ¢, so f and g differ on at most
an (e¢/4 + ¢|S|)-fraction of these atoms. The functions f and ¢g may differ completely on the other
atoms, but there are at most ([|B|| of these. It follows by equidistribution, Theorem 3.19, and
the rank bound on B that each atom of B is at most an (||B|~! + a(deg B, ||B||))-fraction of V.
Putting this all together, we see that ¢ differs from f on at most the following fraction of V'

1 € €
I8l gy +alde 131 ) + (55 +¢ ) 181 < 5.

Patch irregular atoms: We define H to be the set of all S-colored I-labeled patterns that are
defined by a full dimension system of linear forms in at most Wy (degI,||I||) variables and whose
relative density in B! (A7 x {0}) is less than Bpawen (D, |S|, I, ¥ (deg I, | I]))).

We apply our patching result, Theorem 5.9, to the set H. Our definitions are exactly such that
fly with 8,98’ demonstrate that Theorem 5.9(b) does not hold. In particular, we checked the
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rank assumptions on B and B’ above when they were defined. Furthermore, we assumed that
dim V' > nyip, which implies that dim V' > npgsen(p, [S|, I, U9 (deg I, [|I]]). Finally we defined H
to be the set of patterns which appear with very low density in 8/~1(A 7% {0}). Thus we conclude
that Theorem 5.9(a) holds. This means that there exists a projective £: I, x Ai — S that does
not canonically induce H. In particular, this means that for any fixed isomorphism ¢: /e ngmv,
there are no generic H-instances in (557 L’@) for any H € H. i

We complete our definition of g: V' — S by defining g(z) := Eg &(z) for all z € V. To conclude
this portion of the proof, we make sure that [V| < (¢/2)|V|. By assumption,

VI/IV]=p~ 0 <p=@ =¢/2,

as desired.

Proof of correctness: We claim that g has no generic H-instances for each H € H. Define
F: (Ar\ A7) — 25\ {0} to map a to the set of high-density colors in a and recall the projective
function §: F, x A; — S defined in the “patch irregular atoms” section. Now suppose that the
desired conclusion does not hold, i.e., that there is a generic H'-instance in ¢ for some H' € H. By
the construction of g, this means that (F, &) partially induces H'. By the definition of the H, this
means that there is some H € H; C H, so that (F,§) also partially induces H. We will reach a
contradiction by showing that this implies that the H-density in f is larger than §(e, H).

Say that H = (fg,w) (note that ¢ < Wy (degl,||I|)). Since (F,§) partially induces H, this
implies that there exists a tuple of atoms a € ®;(L") C AJIE‘Z with several desirable properties.
Define J:={i € Ey: a; € 1211}. Recalling that A] is just the set of atoms whose linear part is zero,
we can conclude that J C Ey, C IF‘;; is the intersection of F, with some linear subspace U < Ff; of

dimension ¢ < ¢. This means that the system (L¢);c is equivalent to the system (Lf/)ie J where
now we view J C U =~ Ff,/. Define, Hy := (L )icg,, |, (ai)ics), an S-colored I-labeled pattern.
By Lemma 3.22, we see that H; is a full dimension pattern.

The first property, that a is fé—consistent, implies that s(a) is also fé—consistent, by Lemma 3.25(iii).
The second property implies that for each ¢ € (E; \ J), the color () is high-density in a;. The
third property, together with our definition of £ implies that in (f,B), the relative density of H;
in B'1(A; x {0}) is at least Bparcn(p, |S|, I, Ug(deg I, ||I]]) > B(deg I, ||I]))).

Now we put everything together as follows. Write f() for 1 F-1(p(i))- There is a decomposition
o = fs(zz, + fs(;)@l + fé?r given by Theorem 4.6 for each ¢ € Ey. Let p; be the H-density in f. We
lower bound p; as follows.

p1=Eq | [[ FOLL=))

iEE(

=B |[T9@) [T (FOEi@) + fi@) + £ (L (=)

| i€ 1€E\J

> B, |[T/0@@) [T (£ @) + 1S Li@)) | - 35 In(deg ', |B]).

| €] 1€EN\J

The inequality follows from Theorem 4.6(iii), the counting lemma (Eq. (3.1)), and the fact that the
complexity of H is at most d(deg I, ||I||) = p¥n(des LIl
Write po for the expectation in the last line above. By Theorem 4.6(iv), the expression inside

L . . : -
the expectation is non-negative so we can restrict the expectation to « such that L (z) = s(a).
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Thus

P2 = By | [T /O @) 1oy (B @) [T (£ @) + £ (LE@))) Ty a0 (@)

ieJ i€E\J

Write ps for the expectation in the last line above. Expanding the product, there are at most
21Eel terms involving fs(]m)l for some j € E;\ J. Each of these is bounded in magnitude by

Eq

sml ‘ H 1‘3’ L(s(aq)) Lé( ))

S

By applying a change of coordinates, we can assume that Lg () = x1. Then by the Cauchy-Schwarz
inequality, the square of the above expression is bounded by
2

fs(ﬁ,il(:cl)\ 1%/1(3(%))(%1)] Eay |Loy—1(sa;)) (@1)Ban,ze | [ ] 11 (sa0)) (L4 (2))
i#j

The first term is at most 6(deg B, H%H)2H1%/f1(s(aj))”% by Theorem 4.6(vi) and the fact that a; is
a regular atom for j € Ey \ J. The second term can be counted by equidistribution applied to the
system L’ of 2|Eg| — 1 linear forms in 2¢ — 1 variables defined as follows. Set

o |

L;(xl,xg,... ,JZ@,LEIQ,... ,x}) =,
and for i € Ey \ {j}, define
L;,l(ﬂflalﬂz,...,:Eg,ﬂj’z,...,:plg) = Lf(ﬂfl,ﬂh-..,xg),
L;,z(wl,arz,...,xg,a:’z,...,a:’g) = Lf(x17x/27u',f1:/£).

By Lemma 3.23, we know that [|B'| - |®p(L')| = |<I>]/(f£)|2 (see also [7, Lemma 5.13].)
Thus by equidistribution (Theorem 3.19) and the rank bound on B’, we have the second term
is at most
1 Rl / 2||%B’)|
= +a(deg B, [B]]) = ——— + a(deg B, |B])) < ———.
@1 (L) (T2 @02

Applying equidistribution again we have that the first term is at most

20(deg B, ||8]|)?
18] '

(des B, |B])? ( o(deg B, ||93/||>> <

1,
[1B/]]

Combining these bounds and summing over all terms that contain some f we see that

sml’

' i 0(d
po = Bo | [LFO (@) 1oty (L @) TT £ @) s s (L)) | 2 2B R
ieJ i€\ J @5 (T°)]

Write py4 for the expectation above. The quantity f Pl (LZ (x)) is the density of 1(i) in the atom
of B’ that Lf(x) lies in. When B(L{(x)) = s(a;), the fact that (i) is high density in a; for all
i € Ey;\ J implies that

\Ee\
pa > (ﬁ) o | [T O @ @) 1 (s (L (@) [ w1 (s(ay (Zi (@)

1€J iEE{\J
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Write ps for the expectation above. We write L := (Lf)ie J- By assumption, we know that

B(deg 1, ||1]))

[T @110 (Li@) | 2 =525

1eJ

(6.1)

We want to use this inequality to show that ps is at least on the order of (degI, ||I||)/|®r (fz)|.
For simplicity, write 8 := (deg I, ||I]|) in the rest of this argument.

By applying a change of coordinates, we can assume that L; only depends on x1,...,xy and is
independent of xy11,...,2zs. To lower bound ps, we want to show that each tuple (z1,...,zy) that
lies in certain atoms extends to a tuple (z1,...,xy) that still lies in certain atoms in approximately

the same number of ways. We do this by a Cauchy-Schwarz argument. Define L” to be the following
system of 2|Ey| — |J| linear forms in 2¢ — ¢’ variables. For i € J, set

" / AN oA
Li(z1,...,20,Tp g, Tp) = Ly (w1,...,20),
and for i € Ey \ J, define
" / AN 24
i1 (T, T Ty, xy) = L, wy),
" / AN 24
Liy(@1, om0, @y gy ) = L@, T, Ty g1+ -5 Tp).

By Lemma 3.23, we know that |®/(Ly)|- |®; (L") = \(I)I,(fé)\?
Define S € V¥ to be the set of tuples = (z1,...,zy) such that B'(L¢(x)) = s(a;) for each
i €J. For ¢ € S, let ¢, be the number of tuples @’ = (z1,. .., ) such that %'(L(x)) = s(a;) for

each i € Ey. By applying equidistribution (Theorem 3.19) to L; and fé and L”, we find that

v
S| = mze:sl< 1+5/10)|<I>1,(LJ)| (6.2)
\45
Cox 2 - B/10 6.3
mzes / )y@,,( L) o
vt V] ”|<I>II(LJ)|
Z:Sc <( 1+5/10)|<I> 7l = (1+ 5/10) PR (6.4)

Define T'C S C V¥ to be the set of tuples = (z1,...,z¢) such that B'(Li(x)) = s(a;) and
F@O(LE(z)) = 1 for each i € J. Eq. (6.1) implies that
v

T >
1= @

(6.5)

We express ps as follows.

1
b5 = \VV ZC”C: A DI P 2(1_ﬁ/10)‘ (L] ‘z > G

zeT zes xeS\T zeS\t
Then combining Eq. (6.2), Eq. (6.4), Eq. (6.5) with the Cauchy-Schwarz inequality gives
2
2 V]**
Z cx | <|S\T]- Z Cm§(1_45/5)7_2'
2eS\T ZES\T | (L)

Taking the square root and combining the above two inequalities gives
1

Z 10T
1012,(Z")|
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Combining all the above inequalities we see that p;, the H-density in f, is bounded by

|Ey| 1
;> (( ¢ ) B(deg ™, |1 B} —2'Ef'+le<degas,u%||>> L lPy(deg W, W) > o(e, H).

45 10 @5 (L)
This provides the desired contradiction. Therefore we conclude that the recoloring g: V' — S has
no generic H-instances for every H € H. O

Proof of Theorem 2.4. Define S := SF» with F)-action defined by

b (Cb)b@p; = (Cb'b)bgp;-

= || M.
ceSL{0}
as follows. If L; = 0 for some ¢ € [m], place H in the set Hy(i)- Otherwise, place H in Ho. (Without
loss of generality, we can assume that no pattern in H has multiple linear forms that are identically
equal to 0.)
Now we define sets H,. of S-colored patterns for each ¢ € S. Let H = (L,v) € HoU H, be an
S-colored pattern over F,, consisting of m linear forms in ¢ variables. We can write L = (Lf)ie J for

First we partition

some set J C Ff, of size m. We convert H to a set of patterns defined by the system ' = (Lf)ie B
as follows. (See Definition 2.7 for the definitions of Lf and Ey.) For each function ¢: E;, — S that
satisfies 9(i), = ¢ (bi) whenever i € E, C Ff, and b € F are such that bi € J C Ff), we add (IZ,E)
to ﬁc.

For each ¢ € S, we apply Theorem 2.8 to H,. with parameter e. This produces a finite subset
Hee CHe and 0, = 0(e, H,) > 0 with several desirable properties.

Let H. C H be the finite subset consisting of all patterns H such that some pattern H corre-
sponding to H lies in ﬂ% for some ¢ € S. Let 6 = mingesd. > 0. We claim that H, d satisfy the
desired conclusion.

Let V be a finite-dimensional IF,-vector space. Let f: V — & be a function. Suppose that the
H-density in f is at most & for every H € H,. Define f: V — S by

F(@) = (f (b))

Note that f is a projective function. Furthermore, we claim that the ﬁ—dens_ity in fis at ‘most §
for all H € H (). This is true simply because if x = (z1,...,2¢) € V¥ is an H-instance in f, then
x is also an H-instance in f where H € ﬂf(o) is any patterns corresponding to H € Ho U H(q)-

Thus by assumption, there exists a projective recoloring §: V' — S such that § agrees with f on
all but an at most e-fraction of V and g has no generic H-instances for every H € ﬂf(o).

Define g: V. — S by g(x) := g(z); for z # 0 and g(0) = f(0). Note that g agrees with f on
all but an at most e-fraction of V. Furthermore, note that g has no H-instances for H € H, with
c # f(0) since f(0) = g(0). Finally, g has no generic H-instances for H € Ho U Hy () since any
such generic H-instance in g is a generic H-instance in g for some H corresponding H in ﬂf(o),
which we assumed was not the case.

7. PROOF OF PROPERTY TESTING RESULTS

Proof of Theorem 1.3. It follows from [9, Theorem 10] that a linear-invariant property is testable
only if it is semi subspace-hereditary.

Now suppose that P is a linear-invariant semi subspace-hereditary property. By definition, there
exists a subspace-hereditary property Q such that

(i) every function satisfying P also satisfies Q;
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(ii) for all € > 0, there exists N(e) such that if f: V — S satisfies Q and is e-far from satisfying
P, then dim V' < N(e).

We define H a (possibly infinite) set of S-colored patterns. For each f: Ff; — &S that does not
satisfy Q, include H = (L, f) in H (L' is the system of linear forms that defines an /-dimensional
subspace, defined in Definition 2.7). Since Q is subspace-hereditary, it immediately follows that Q
consists exactly of the functions with no generic H-instances for any H € H.

By Theorem 2.4, there exist a finite subset H, C H and some (e, H) > 0 such that the following
holds. If f: V' — S has H-density at most d(e, H) for every H € H,, then f is e-close to Q. Define
{(€) to be the largest ¢ such that some pattern defined by the system L’ is present in H..

Now we define the oblivious tester for P. Given € > 0, the tester produces

d(e) := max {N(e/2), [log,(2/5(/2,H))] + £(€/2)} .

Given a function f: V — S our tester receives oracle access to f|y where

(i) if dimV > d(e), then U is a uniform random affine subspace of dimension d(e);

(ii) else, U =V.
Our tester works as follows. If dimU < d(e) the tester accepts if f|y € P. If dimU > d(e) the
tester accepts in f|y € Q.

Suppose f € P. If dimU < d(e), then U = V, so f|y = f € P. Thus the tester always accepts
in this case. In the other case, note that since f € P, it follows that f € Q, and since Q is
subspace-hereditary, f|y € Q. Thus the tester also always accepts in this case.

Now suppose that f is e-far from P. By the definition of Q we know that either dimV <
N(e/2) < d(e) or f is ¢/2-far from Q. Consider the action of the tester. If dimU < d(e), then
U=V so flu =f & P. Thus the tester always rejects in this case. In the other case, note that
since f is €/2-far from Q, by assumption there is some H € H/, such that f has H-density more
than 0(e/2,H). Let H = (L*,v) for some ¢ < £(¢/2). We claim the fact that the H-density in f is
large implies that there is at least a d(e/2, H)/2-fraction of {-dimensional subspaces that f colors
by 1. (Note that this does not immediately follow since the H-density includes the contribution
of H-instances that are not generic.) We can compute that the probability a uniform random
L'-instance in V is not generic is at most p~4™V Tt follows that the fraction of /-dimensional
subspaces that f colors by v is at least

8(e/2,H) — p"= ™Y > §(e/2,H) — p~ o8N > 5(c/2, 1) /2.
We conclude that in this case the tester rejects with probability at least d(e/2,H)/2, as desired. [

Proof of Theorem 1.4. Suppose P is a linear-invariant property that is PO-testable. By definition,
there exists some d, independent of ¢ and dim V', such that to test f: V — S, the tester receives
flu where U is

(i) if dim V' > d, then U is a uniform random linear subspace of dimension dj
(ii) else, U =V.

We define H to be the set of patterns of the form (L% 1)) where ): IE‘Z — § is a restriction
that the tester rejects on (L¢ is the pattern that defines a d-dimensional subspace, defined in
Definition 2.7). We claim that for every f: V — S with dimV > d, it holds that f € P if and
only if f has no generic H-instances. This claim suffices to prove that H is subspace-hereditary
and locally characterized.

Suppose f: V — S satisfies P and dim V' > d. By the definition of PO-testable, the tester must
accept f with probability 1. Thus the tester must accept f|y for every U < V of dimension d.
This implies that f has no generic H-instances. Now suppose that f: V — S does not satisfy P
and dim V' > d holds. By definition, the tester must accept f with positive probability. Thus there
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must be some U < V of dimension d such that f|y rejects. This is equivalent to the fact that f
contains a generic H-instance for some H € H, proving the desired result.

Now we show that every linear-invariant subspace-hereditary locally characterized property is
testable. Suppose P is such a property. It follows that there is some d and (finite) H consisting of
patterns of the form (L¢,4) such that for f: V — S with dimV > d, we have f satisfies P if and
only if f has no generic H-instances.

The PO-tester for P proceeds in the obvious way. The tester is given oracle access to f|y where
U is

(i) if dim V' > d, then U is a uniform random linear subspace of dimension d;
(ii) else, U = V.

The tester accepts if and only if f|y € P.

Suppose f: V — S satisfies P. If dimV < d, then f|y = f € P, so the tester accepts f. If
dim V' > d, then by the fact that P is subspace-hereditary and locally characterized, it follows that
flu € P for all d-dimensional U < V. Thus the tester accepts f in this case as well.

Now suppose that f: V — S is e-far from P. If dimV < d, then f|y = f & P, so the tester
rejects f. If dimV > d, by Theorem 2.4, there must be some H = (L% 1)) € H such that the
H-density in f is more than (e, H). We claim that this implies that there is a large fraction of
d-dimensional subspaces that f colors by some H € H. (Note that this does not immediately
follow since the H-density includes the contribution of H-instances that are not generic.) We can
compute that at most a p?~4mV _fraction of H-instances are non-generic. Thus at least the fraction
of d-dimensional subspaces that f colors by 1 is at least

5(6, 7‘[) o pd—dimV.

This parameter is negative for small values of dim V', so we can also use the fact that since f does
not satisfy P, there is at least one d-dimensional subspaces that is colored by H. Thus the rejection
probability of this tester is at least

Inax{a(d__]ﬂ—dHnV7p—ddth}'

Note that for dim V' > d, this parameter is uniformly bounded away from 0, as desired. O

REFERENCES

[1] Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtéch Rodl, and Raphael Yuster, The algorithmic aspects of
the regularity lemma, J. Algorithms 16 (1994), 80-109.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy, Efficient testing of large graphs, Combina-
torica 20 (2000), 451-476.

[3] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron, Testing Reed-Muller codes, IEEE
Trans. Inform. Theory 51 (2005), 4032—4039.

[4] Noga Alon and Asaf Shapira, A characterization of the (natural) graph properties testable with one-sided error,
SIAM J. Comput. 37 (2008), 1703-1727.

[5] Vitaly Bergelson, Terence Tao, and Tamar Ziegler, An inverse theorem for the uniformity seminorms associated
with the action of Fy°, Geom. Funct. Anal. 19 (2010), 1539-1596.

[6] Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie, Testing linear-invariant non-linear properties,
Theory Comput. 7 (2011), 75-99.

[7] Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, and Shachar Lovett, Fvery locally charac-
terized affine-invariant property is testable, STOC’13—Proceedings of the 2013 ACM Symposium on Theory of
Computing, ACM, New York, 2013, pp. 429-435.

[8] Arnab Bhattacharyya, Eldar Fischer, and Shachar Lovett, Testing low complezity affine-invariant properties,
Proceedings of the Twenty-Fourth Annual ACM-STAM Symposium on Discrete Algorithms, STAM, Philadelphia,
PA, 2012, pp. 1337-1355.

[9] Arnab Bhattacharyya, Elena Grigorescu, and Asaf Shapira, A unified framework for testing linear-invariant
properties, Random Structures Algorithms 46 (2015), 232-260.



40

(10]

JONATHAN TIDOR AND YUFEI ZHAO

Manuel Blum, Michael Luby, and Ronitt Rubinfeld, Self-testing/correcting with applications to numerical prob-
lems, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (Baltimore, MD, 1990), vol. 47,
1993, pp. 549-595.

David Conlon and Jacob Fox, Graph removal lemmas, Surveys in combinatorics 2013, London Math. Soc. Lecture
Note Ser., vol. 409, Cambridge Univ. Press, Cambridge, 2013, pp. 1-49.

Jacob Fox, Jonathan Tidor, and Yufei Zhao, Induced arithmetic removal: complexity 1 patterns over finite fields,
arXiv:1911.03427.

Zoltan Fiiredi, Extremal hypergraphs and combinatorial geometry, Proceedings of the International Congress of
Mathematicians, Vol. 1, 2 (Ziirich, 1994), Birkhauser, Basel, 1995, pp. 1343-1352.

Oded Goldreich, Shafi Goldwasser, and Dana Ron, Property testing and its connection to learning and approxi-
mation, J. ACM 45 (1998), 653-750.

Oded Goldreich and Dana Ron, On prozimity-oblivious testing, STAM J. Comput. 40 (2011), 534-566.

W. Timothy Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465-588.

W. Timothy Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. (2) 166
(2007), 897-946.

W. Timothy Gowers and Julia Wolf, Linear forms and higher-degree uniformity for functions on Fp, Geom.
Funct. Anal. 21 (2011), 36-69.

Ben Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15
(2005), 340-376.

Ben Green and Tom Sanders, Fourier uniformity on subspaces, arXiv:1510.08739.

Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167
(2008), 481-547.

Ben Green and Terence Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), 1753-1850.

Ben Green, Terence Tao, and Tamar Ziegler, An inverse theorem for the Gowers UST'[N]-norm, Ann. of Math.
(2) 176 (2012), 1231-1372.

Hamed Hatami, Pooya Hatami, and Shachar Lovett, General systems of linear forms: equidistribution and true
complexity, Adv. Math. 292 (2016), 446-477.

Hamed Hatami, Pooya Hatami, and Shachar Lovett, Higher-order fourier analysis and applications, Foundations
and Trends® in Theoretical Computer Science 13 (2019), 247-448.

Tali Kaufman and Madhu Sudan, Algebraic property testing: the role of invariance, STOC’08, ACM, New York,
2008, pp. 403-412.

Daniel Kral, Oriol Serra, and Lluis Vena, A removal lemma for systems of linear equations over finite fields,
Israel J. Math. 187 (2012), 193-207.

Vojtéch Ro6dl, Brendan Nagle, Jozef Skokan, Mathias Schacht, and Yoshiharu Kohayakawa, The hypergraph
regularity method and its applications, Proc. Natl. Acad. Sci. USA 102 (2005), 8109-8113.

Vojtéch Rodl and Mathias Schacht, Property testing in hypergraphs and the removal lemma [extended abstract],
STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007,
pp. 488-495.

Imre Z. Ruzsa and Endre Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics
(Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. Jédnos Bolyai, vol. 18, North-
Holland, Amsterdam-New York, 1978, pp. 939-945.

Asaf Shapira, A proof of Green’s conjecture regarding the removal properties of sets of linear equations, J. Lond.
Math. Soc. (2) 81 (2010), 355-373.

Terence Tao and Tamar Ziegler, The inverse conjecture for the Gowers norm over finite fields via the correspon-
dence principle, Anal. PDE 3 (2010), 1-20.

Terence Tao and Tamar Ziegler, The inverse conjecture for the Gowers norm over finite fields in low character-
istic, Ann. Comb. 16 (2012), 121-188.



	1. Introduction
	1.1. Graph removal lemmas and property testing
	1.2. Arithmetic analogs
	1.3. Our contributions

	2. Colored patterns and removal lemmas
	3. Preliminaries on higher-order Fourier analysis
	3.1. Gowers norms and complexity
	3.2. Non-classical polynomials and homogeneity
	3.3. Polynomial factors
	3.4. Equidistribution and consistency sets
	3.5. Subatom selection functions

	4. Arithmetic regularity and subatom selection
	5. Patching
	6. Proof of removal lemmas
	7. Proof of property testing results
	References

