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EQUILIBRIA AND THEIR STABILITY IN NETWORKS WITH STEEP
SIGMOIDAL NONLINEARITIES

WILLIAM DUNCAN, TOMAS GEDEON, HIROSHI KOKUBU, KONSTANTIN MISCHAIKOW, AND

HIROE OKA

Abstract. In this paper we investigate equilibria of continuous differential equation models of network dynamics.
The motivation comes from gene regulatory networks where each directed edge represents either down- or up-
regulation, and is modeled by a sigmoidal nonlinear function. We show that the existence and stability of equilibria
of a sigmoidal system is determined by a combinatorial analysis of the limiting switching system with piece-wise
constant non-linearities. In addition, we describe a local decomposition of a switching system into a product of
simpler cyclic feedback systems, where the cycles in each decomposition correspond to a particular subset of network
loops.

1. Introduction. Analysis of large systems of ordinary differential equations is difficult, espe-
cially when we seek to understand changes in dynamics when parameters change. To set the stage,
we are interested in systems of O(10) differential equations with the same order of magnitude of
number of parameters; big enough to be complicated but not so large that statistical approaches
may be applicable. Systems of this size are important in systems biology, in particular, in models of
gene regulation. Here variables usually represent concentrations of chemical species (mRNA, pro-
teins) in the cell, and the interactions between variables are represented in a form of a network with
signed directed edges. Nodes represent concentrations and directed edges monotone interactions;
positive edges indicate activation and negative edges repression. The interactions are nonlinear;
both on the level of the pairwise effect of xi on xj which is usually modeled by a saturating func-
tion, but also on the level of how effects from different inputs combine together to influence xj . The
choice of the nonlinearity that models the effect of xi on xj is not given by any fundamental law of
physics; the usual choices are Hill functions, but other sigmoid functions and threshold (switching)
functions are used as well. This ambiguity, coupled with technical challenges related to simultane-
ous measurement of time evolution of multiple chemical species in a single cell, necessarily limits
the expectation of fidelity of the model simulations with the experimental data. The model should
not be expected to reproduce measurements in fine detail, but still answer qualitative questions on
number and types stable equilibria are present, or capacity of the network to admit oscillations.
Taking into consideration ever present noise in molecular systems, there is always a need to address
a question of how robust these qualitative features are under parameter changes in the model.

In this paper we concentrate on the existence and stability of equilibria in networks where the
pairwise interaction is modeled by sigmoidal nonlinearities. Extending results [22, 28, 19], we show
that the equilibria in a network modeled by sufficiently steep sigmoidal functions are in one-to-
one correspondence with a collection of so called regular and singular equilibria of a model of the
same network using switching functions. Switching functions are piece-wise constant functions
with a single threshold and range with two values {L,U}, which can be interpreted as two rates
of expression (L for Lower, and U for Upper) of the target gene based on whether the controlling
gene is below, or above the threshold θ. These models have been used for gene regulatory networks
since the 70’s [15, 16, 6, 25, 7, 5, 19, 11]. However, using these functions as the right hand side of
an ODE system presents several technical challenges, especially how to deal with the fact that the
vector field is not defined at thresholds θ. One approach to extend switching systems so that they
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are defined at thresholds is to view them as differential inclusions rather than ordinary differential
equations. Stability of singular equilibria of the switching systems from this point of view were
studied by [2]. Convergence of switching systems dynamics was studied also by [21] who formulated
conditions that are needed to construct a global Lyapunov function for a switching system by piecing
together local Lyapunov functions. The idea of the new DSGRN (Dynamic Signatures Generated
by Regulatory Networks) approach [5, 12, 11], supported by a suite of corresponding software [4], is
to capture information about the network dynamics given by switching system models in a form of
combinatorial (finite) data, and then use this data to rigorously establish results about well-defined
dynamics of ODE’s with continuous right hand side that are a small perturbation of the switching
functions. We emphasize that the distinction in the two approaches is that the Filippov extension
approach is concerned with the dynamics of switching systems whereas the DSGRN approach only
uses switching systems as a computational tool for the study of the dynamics of sigmoidal systems.

While we describe the combinatorial data in greater detail below, for the purpose of this introduction
it is sufficient to note that the switching system ODE only contains stable equilibria (which we call
regular), because the unstable equilibria of sigmoidal systems limit to intersections of thresholds
of switching systems. In this paper we show that the intersections, the intersections that appear
as such limits of unstable equilibria, which we call loop characteristic equilibrium cells, can be
precisely characterized using combinatorics of the switching system. In particular, we add to the
DSGRN approach by showing how to use the combinatorial data from a switching system to predict
existence and stability of all equilibria for all sigmoidal functions that arise as perturbations to the
switching functions. The combinatorial data only uses the type (i.e. positive feedback or negative
feedback) and the number of feedback loops in the network. To obtain these results we show that
switching systems can be locally (in phase space) decomposed into a product of simpler cyclic
feedback systems. Each such cyclic system can be associated to a unique oriented loop in the gene
regulatory network.

A potential application of description of equilibria and their stability in sigmoidal systems is in
the recurrent artificial neural networks (rANN). These models were introduced by Hopfield [18]
and Grossberg [17] almost 40 years ago, but they found their newest incarnation as Echo state
networks [20]. There is a great variety of implementations but at the core there are network nodes
(i.e. neurons) that are connected by weighted directed edges. Each node processes the input
through a nonlinear function (binary, sigmoidal, or a ramp). Our work provides a characterization
of the number of stable equilibria for steep sigmoidal functions baased on the combinatorics of the
switching system, which is ultimately tied to the structure of the connections in the network.

1.1. Organization of the paper. In Section 2, we define sigmoidal functions and switching
functions. In Section 3, we define the combinatorial data associated to switching functions and show
how this data can be used to identify all equilibria of steep sigmoidal systems. The proofs for these
results are in Section 6. In Section 4, we use the results of Section 3 to characterize the equilibria
of cyclic feedback networks and then analyze their stability. The proofs can be found in Section 7.
In Section 5, we show that all switching systems can be locally (in phase space) decomposed as a
product of cyclic feedback systems and use this decomposition to generalize the stability results of
Section 4 from cyclic feedback systems to general networks. Finally, in Section 8, we conclude with
a discussion of our results.

2. The Regulatory Network and Switching Systems.
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Definition 2.1 ([5]). A regulatory network RN = (V,E) is an annotated finite directed graph with
vertices V = {1, . . . , N} called network nodes and directed edges E ⊂ V ×V ×{1,−1}. An annotated
edge (j, i,+1) represents an activation of node i by node j and is denoted j → i; annotated edge
(j, i,−1) represents repression of node i by node j and is denoted j ⊣ i. We write sij = 1 if j → i
and sij = −1 if j ⊣ i. We indicate either j → i or j ⊣ i without specifying which by writing
(j, i) ∈ E. We allow self edges, but admit at most one edge between any two nodes. The set of
sources and targets of a node are denoted by

S(k) = {j | (j, k) ∈ E} and T(k) = {j | (k, j) ∈ E}

and we require every node has a target.

We remark that the assumption that every node has a target is not a serious constraint. If a node
j does not have a target, then the dynamics of the remaining nodes are independent of j. Once
the dynamics of the remaining nodes are understood, the dynamics of node j can be treated as a
non-autonomous system driven by the remaining nodes.

To an RN we associate a switching system of the form

ẋ = −Γx+ Λ(x)(2.1)

where Γ is a diagonal matrix with entries Γjj = γj and Λ is a nonlinear function of the form

Λi(x) :=

pi∏

ℓ=1

∑

j∈Iℓ

σij(xj)(2.2)

with I1, . . . , Ipi
a partition of S(i). Each σij is a switching function of the form

σij(xj) :=






Lij , sij = 1 and xj < θij or sij = −1 and xj > θij

Uij , sij = 1 and xj > θij or sij = −1 and xj < θij

undefined, if xj = θij .

(2.3)

The parameter Z = (L,U, θ,Γ), where L := (Lij), U := (Uij), θ := (θij) are vectors indexed by
(ij), is the switching parameter. We denote a switching system parameterized by Z by SWITCH(Z).

To an RN we also associate a sigmoidal system, S(Z, ε), where Z is a switching parameter and
ε ∈ RN×N is a perturbation parameter. We say ε′ ≤ ε or ε′ < ε when the component-wise
comparisons ε′ij ≤ εij or ε′ij < εij hold for each (j, i) ∈ E, respectively. The pair (Z, ε) is the
sigmoidal parameter. The dynamics of S(Z, ε) are given by

ẋ = −Γx+ Λ(x; ε)(2.4)

where Λ(x; ε) is obtained from Λ by replacing the switching functions σij with sigmoidal perturbations
σij(·; εij), which we define below.

Definition 2.2. σij(·; εij) is a family of sigmoidal perturbations of σij at a parameter Z if for each
εij ∈ R+,

1. σij(·; εij) is continuously differentiable and monotone non-increasing or monotone non-
decreasing,
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2. supx σij(x; εij) = Uij and infx σij(x; εij) = Lij,

3. There is a neighborhood U1(εij) ⊂ R of θij such that U1(εij) → {θij} as εij → 0 and a
constant C1 > 0, such that if x ∈ R \ U1(εij), then |σ′

ij(x; εij)| ≤ C1εij.

4. There is a neighborhood U2(εij) ⊂ R of θij such that U2(εij)) → {θij} and σij(U2(εij); εij) →
(Lij , Uij) as εij → 0 and a constant C2 > 0 such that if x ∈ U2(εij) then |σ′

ij(x; εij)| ≥

C2ε
−1
ij .

Given a perturbation parameter ε, we will write σij(·; ε) instead of σij(·; εij) to simplify notation.
Note that as ε → 0, the sigmoidal perturbation σij(·; ε) converges pointwise to the step function
σij . Given a switching parameter Z and perturbation parameter ε ≥ 0, we denote the Jacobian of
(2.4) at x by J(x; ε) or J(ε) when x is implied from context.

Example 2.3. Throughout the paper we will illustrate the concepts on a simple example of a two
node network we call the positive toggle plus, where two nodes activate themselves and mutually
activate each other, i.e.

RN = (V,E) = ({1, 2}, {(1 → 1), (2 → 2), (1 → 2), (2 → 1)}).

The name ”positive toggle” refers to the network without self loops and was chosen for its resem-
blance to the toggle switch introduced in [10], in which the nodes mutually repress each other rather
than activate. The ”plus” modifier refers to the addition of the self loops. The associated switching
system has the form

ẋ1 = −γ1x1 + σ11(x1)σ12(x2)

ẋ2 = −γ2x2 + σ22(x2)σ21(x1)

and we note s11 = s22 = s12 = s21 = 1. We will consider this system with a switching parameter
satisfying

L11L12 < L11U12 < γ1θ21 < U11L12 < γ1θ11 < U11U12, and

L22L21 < γ2θ12 < L22U21 < U22L21 < U22U21 < γ2θ22.

3. Equilibria of Regulatory Networks. As observed in [5], the thresholds θij of a switching
system impose a grid-like structure on phase space RN

+ . In this section we characterize where the
equilibria lie in phase space relative to this structure. We begin by defining the structure.

Definition 3.1. 1. For each j ∈ V , we define θ−∞j := 0, θ∞j := ∞, and

Θj(Z) := {θij > 0 | i ∈ T(j)} ∪ {θ∞j, θ−∞j}.

The threshold set is the collection Θ(Z) := (Θ1(Z), . . . ,ΘN(Z)). We say θi1j , θi2j ∈ Θj(Z)
are consecutive thresholds if θi1j < θi2j and there does not exist θi3j ∈ Θj(Z) such that
θi1j < θi3j < θi2j.

2. A cell, τ associated to a threshold set Θ, is a product of k ≤ N thresholds and N − k
open intervals whose endpoints are consecutive thresholds. By renumbering the variables
we write

τ =

k∏

j=1

{θijj} ×
N∏

j=k+1

(θajj , θbjj).
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We write πj(τ) for the projection of τ onto the jth direction. A cell is regular if k = 0
and singular otherwise. The cell complex, χ(Θ), is the collection of all cells associated to
the threshold set Θ. The cell complex associated to the switching system 2.1 at parameter
Z is χ(Θ(Z)). When the switching parameter Z and the threshold set Θ(Z) are clear from
context we drop the argument Θ(Z) and write χ.

Figure 1(a) depicts the cell complex χ for the positive toggle plus. The concept of neighboring
cells is described below.
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0
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κ
−
2

θ21 θ11

κ
+
2

∞

θ12

θ22

∞

κ
−
1 κ

+
1

0
0

θ21 θ11

τ̃

∞

θ12

θ22

∞

τ

τ
′

τ
′′

(a) (b)

Fig. 1: The cell complex χ, neighbors, and the labeling map in the positive toggle plus
network. The network and switching system are defined in Example 2.3. (a): Each box, line, and
point is a cell in the cell complex χ. The cell κ = {θ21}× (θ12, θ22) is indicated by the dashed line.
For κ, the direction 1 is singular and the direction 2 is regular. The 2-neighbors of κ (see Definition
3.5), κ+

2 and κ−
2 , are indicated by the gray circles while the 1-neighbors, κ−

1 and κ+
1 , are the labeled

two dimensional cells. (b): The loop characteristic cells τ and τ̃ are indicated by the gray circles
and the regular cells τ ′ and τ ′′ are labeled. The dotted arrow represents L(τ, 1,−) for which 1 is a
singular direction and, at the same time, it represents L(τ ′, 2,+) and L(τ ′′, 2,−) for which 2 is a
regular direction. See Example 3.10 for details. These values are equal to −1 so the arrow points
down. The arrows on the outside cell complex boundary are not drawn because they point inwards
for all choices of parameters. The arrows of the labeling map imply that Φ1(τ) = Φ2(τ

′) = 0. The
arrows on the top and bottom boundaries of τ ′′ indicate that Φ2(τ

′′) = −1.

Observe, that in the switching system, the function Λ is only defined on regular cells and not on
singular cells. Therefore, equilibria of SWITCH(Z) can only be contained in regular cells. Equilibria
in singular cells can be understood if (2.1) is replaced with its Filippov extension wherein the
differential equation is replaced by a differential inclusion. This was done in [2] where existence
and stability of these singular equilibria was studied. However, our goal is to understand equilibria
of the sigmoidal systems S(Z, ε) which are perturbations of the switching system SWITCH(Z), and
not the equilibria of SWITCH(Z). For this reason, in the next definition we define an equilibrium
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cell to be a cell which a sigmoidal equilibrium converges to as ε → 0. It is straightforward to see
that regular equilibrium cells contain a unique stable equilibrium of SWITCH(Z).

Definition 3.2. Let Z be a switching parameter and τ ∈ χ. If there is an A ∈ RN×N
+ so that for

all ε < A, S(Z, ε) has a fixed point xε satisfying xε → τ as ε → 0, then τ is an equilibrium cell. If
τ is a singular cell, then xε is a singular stationary point (SSP).

Theorem 3.13 characterizes equilibrium cells using combinatorial information about SWITCH(Z)
only. That is, information about the switching system is necessary and sufficient to characterize the
equilibria of the sigmoidal system S(Z, ε) when ε is small enough. To state the theorem precisely,
we need some additional definitions to describe the cell complex and a notion of a flow direction
map on the cell complex.

3.1. Cell Complex.

Definition 3.3. 1. Given τ ∈ χ, the singular directions of τ , denoted sd(τ), correspond to
the set of indices, s, such that πs(τ) = {θiss}. An index is a regular direction if it is not
singular. We define ρτ : V → V by

ρτ (j) :=

{
ij , j ∈ sd(τ)

j, otherwise.

The set of cells with k singular directions is denoted χ(N−k). The map ρτ depends on the
cell τ , but when τ is fixed and clear from the context, we will use ρ instead of ρτ .

2. If s is a singular direction of τ ∈ χ we denote the neighboring thresholds by θρ−(s)s and
θρ+(s)s where θρ−(s)s < θρ(s)s < θρ+(s)s are consecutive thresholds in Θs(Z). If r is a regular
direction of τ we write πr(τ) = (θarr, θbrr).

Definition 3.4. A cell, τ ∈ χ, is a loop characteristic cell if ρτ is a permutation on sd(τ). We
denote the set of loop characteristic cells by LCC. Note that all N -dimensional cells κ are automat-
ically loop characteristic cells, since sd(κ) = ∅. Therefore χ(N) ⊂ LCC.

A loop characteristic cell is a cell in which some number of disjoint loops of the network are active.
For example, the loop characteristic cells of the positive toggle plus network (see Example 2.3)
include {θ21} × {θ12}, where the loop 1 → 2 → 1 is active, {θ11} × (θ12, θ22), where the loop
1 → 1 is active, and θ11 × θ22, where the loops 1 → 1 and 2 → 2 are both active. The concept
of loop characteristics was introduced in [22] where it was shown singular equilibria of switching
systems are contained in loop characteristic cells. This was later extended to sigmoidal systems by
[28] who showed that equilibrium cells are a subset of loop characteristic cells when the sigmoidal
perturbations are taken to be Hill functions. Theorem 3.13 extends this work by considering a more
general class of sigmoids and providing necessary and sufficient conditions for a loop characteristic
cell to be an equilibrium cell.

In the following definition we introduce notation to describe the neighbor of a cell. By a neighbor
to τ we mean a cell which is directly adjacent to τ .

Definition 3.5. Let τ ∈ χ and j ∈ V .The left j-neighbor (see Figure 1) of the cell τ is a cell τ−j ,
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defined by

πk(τ
−
j ) :=






πj(τ), j 6= k

(θρ−(j)j , θρ(j)j), j = k, k ∈ sd(τ)

{θajj}, j = k, k /∈ sd(τ).

Similarly, the right j-neighbor, τ+j , is defined by

πk(τ
+
j ) :=






πk(τ), j 6= k

(θρ(j)j , θρ+(j)j), j = k, k ∈ sd(τ)

{θbjj}, j = k, k /∈ sd(τ).

An j-neighbor of τ is either a left or right j-neighbor of τ . A neighbor of τ is any j-neighbor.

On a diagram of the cell complex, the left j-neighbor of τ , τ−j , is the cell directly below τ in the

jth direction and the right j-neighbor of τ , τ+j , is the cell directly above τ in the jth direction. If

j is a singular direction of τ then j is a regular direction of τ±j . If j is a regular direction of τ then

j is a singular direction of τ±j . See Figure 1(a) for an example.

In the remainder of the paper we assume that the thresholds θij are positive. This reflects that our
motivation comes from biological networks in which activities or concentrations of a reactant are
always non-negative. We also assume that thresholds corresponding to the same node are not equal.
This holds generically, greatly simplifies our analysis, and is typical in the literature on switching
systems [22, 2, 8, 28, 19, 5, 21]. These assumptions are captured in the following definition.

Definition 3.6. The switching parameter Z is threshold regular if

• For all (j, i) ∈ E, θij > 0, and

• for all j ∈ V , i1, i2 ∈ T(j), θi1j 6= θi2j.

Definition 3.7 (Definition 4.6 of [5]). Consider a threshold regular switching parameter Z. For
j ∈ V , denote the ordering of the thresholds {θij | i ∈ T(j)} by Oj(Z). The order parameter of Z
is the collection of these orders, O(Z) = (O1(Z), . . . , ON (Z)).

3.2. Flow Direction Map. The goal of this section is to define a flow direction map on the
cell complex χ(Θ(Z)), which is induced by the right hand side of the switching system (2.1). We
start by introducing some notation. Observe that if j is a singular direction of τ ∈ χ and thus
πj(τ) = {θij} for some i, then by equation (2.3) the function σij(xj) is not defined on τ . However,
if j is a regular direction of τ and thus πj(τ) = (θi1j , θi2j), then σij(xj) is constant on τ . We denote
its value by σij(τ). It follows that for τ ∈ χ(N) which has no singular directions sd(τ) = ∅, the value
of Λi(τ) is well defined and constant for very i. The vector Γ−1Λ(τ) is sometimes called the focal
point of τ because any trajectory of the switching system with initial condition in τ will converge
to this value until the trajectory reaches the boundary of τ [2]. In the following definition we give
non-degeneracy conditions for the switching parameter Z which we will assume throughout.

Definition 3.8 (Definition 2.7 of [5]). The switching parameter Z is regular if

• Z is threshold regular,
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• for all (j, i) ∈ E, 0 < Lij < Uij ,

• for all k ∈ V , γk > 0, and

• for all κ ∈ χ(N) and (j, i) ∈ E, γjθij 6= Λj(κ) for each threshold θij which defines κ.

The last condition expresses the requirement that the focal point of each regular cell κ does not lie
in the boundary of κ, which holds generically. This is a typical assumption for switching systems
because it implies that the right hand side of the switching system (2.1) has a well defined crossing
direction on all the boundaries of cells κ ∈ χ(N) [2, 8, 5, 21]. We will use this to define a labeling
map that collects information about these crossing directions. We then use the labeling map to
define the flow direction map which indicates the direction in which the flow of the corresponding
system crosses the the threshold. The flow direction map can be viewed as a multi-valued map and
represented as a state transition graph that is a combinatorial summary of the flow information
given by the switching system. The labeling map, defined below, generalizes the concept of wall-
labeling (Definition 3.1 of [5]) in switching systems from regular cells to loop characteristic cells.

Definition 3.9. Let Z be a regular switching parameter

1. The labeling map L : LCC×V ×{−,+} → {−1, 1} describes the sign of the right hand side
of the switching system on the cells that are neighbors of τ ∈ LCC in a particular direction.
Letting ρ = ρτ , we first consider regular directions j /∈ sd(τ). Here we look at the sign of
the j-th equation of the switching system (2.1) on the boundary in the j-th direction

L(τ, j, β) :=

{
sgn(−γjθaτ

j
j + Λj(τ)), j /∈ sd(τ), β = −

sgn(−γjθbτ
j
j + Λj(τ)), j /∈ sd(τ), β = +

For singular direction j ∈ sd(τ), we look at a j-neighbor of τ and ask for the sign of the
ρ(j)-th equation of the switching system because Λρ(j) is guaranteed to be well defined on a
j-neighbor (see Lemma 6.1):

L(τ, j, β) :=

{
sgn(−γρ(j)θρ2(j)ρ(j) + Λρ(j)(τ

−
j )), j ∈ sd(τ), β = −

sgn(−γρ(j)θρ2(j)ρ(j) + Λρ(j)(τ
+
j )), j ∈ sd(τ), β = +.

2. The flow direction map, Φ : LCC → {−1, 0, 1}N summarizes the degree of agreement in the
labeling map between the neighbors of τ in a given direction. It is defined component-wise
by

Φj(τ) :=






1, L(τ, j,−) = 1 = L(τ, j,+)

−1, L(τ, j,−) = −1 = L(τ, j,+)

0, L(τ, j,−) = −L(τ, j,+).

Example 3.10. Consider the positive toggle plus system of Example 2.3. Let τ ′ = (0, θ21)× (0, θ12)
be the lower left regular cell of the cell complex as in Figure 1(b). Then Λ2(τ

′) = L22L21 and
θb22 = θ12 so that

L(τ ′, 2,+) = sgn(−γ2θa22 + Λ2(τ
′)) = sgn(−γ2θ12 + L22L21) = −1

8



which is represented by the dotted down arrow originating from the upper boundary of τ ′ Figure
1(b). This indicates the flow of the switching system in the x2 direction is downward when x ∈ τ ′

is close to the upper boundary of τ ′. We also have θa22 = 0 so that

L(τ ′, 2,−) = sgn(−γ2θa22 + Λ2(τ
′)) = sgn(0 + L22L21) = 1

and Φ2(τ
′) = 0 since L(τ ′, 2,−) = −L(τ ′, 2,+). This indicates that ẋ2 = 0 for some x ∈ τ ′. The

cell τ = {θ21} × {θ12} is a loop characteristic cell with ρ(1) = 2 and ρ(2) = 1. We compute

L(τ, 1,−) = sgn(−γρ(1)θρ2(1)ρ(1) + Λρ(1)(τ
−
1 )) = sgn(−γ2θ12 + L22L21) = −1.

which is the direction of the flow on the left neighbor of τ . This is also represented by the dotted
down arrow in Figure 1(b).

In general, L(τ, j,±) is represented on a diagram of the cell complex by an arrow originating from
τ±j pointing in direction ρ(j) either positively or negatively according to the sign of L(τ, j,±). As
suggested by Figure 1, the flow direction map gives rise to a state transition graph which represents
admissible transitions between the states that are represented by κ ∈ χ(N). The state transition
graph is explicitly constructed in [5].

Note that the flow direction map depends on the choice of parameter Z. A key observation is
that it only depends on inequalities between parameters. We define an equivalence relation on all
parameters Z that satisfy the same inequalities and therefore produce the same flow direction map.
These equivalence classes, which we now proceed to define, will be called combinatorial parameters.

Definition 3.11 (Definitions 4.5 and 4.6 of [5]). Consider a regular switching parameter Z.

1. The input combinations of the ith node is the Cartesian product

Ini :=
∏

j∈S(i)

{off, on}.

The indicator function, 1i : R
S(i)
+ → Ini, is defined component-wise by

1ij(x) :=





off, sij = 1 and xj < θij or sij = −1 and xj > θij

on, sij = 1 and xj > θij or sij = −1 and xj < θij

undefined, otherwise.

The σ-valuation function, vij : Ini → R is defined by

vij(A) :=





Lij , A = off

Uij , A = on

undefined, otherwise.

Note that σij = vij ◦ 1ij . The Λ-valuation function, ωi : Ini → R, is defined by

ωi(A) :=

pi∏

ℓ=1

∑

j∈Iℓ

vij(Aj).
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Note that Λi = ωi ◦ 1i.

Define Lj : Inj ×T(j) → {−1, 1} by

Lj(A, i) := sgn(−γjθij + ωj(A)).

The logic parameter is the collection L(Z) := (L1(·, ·), . . . , LN (·, ·)).

2. We define an equivalence relation Z ∼ Z ′ whenever (L(Z ′), O(Z ′)) = (L(Z), O(Z)). The
combinatorial parameter is an equivalence class of this relationship. In other words, Z ′ ∈
P(Z) whenever (L(Z ′), O(Z ′)) = (L(Z), O(Z)).

The notion of combinatorial parameter P(Z) was introduced in [5]. Each combinatorial parameter is
defined in terms of inequalities between real valued parameters of Z. Therefore each combinatorial
parameter corresponds to an open domain in the real-valued parameter space of parameters Z. The
key observation from [5] is that any two parameters Z1, Z2 ∈ P(Z) define identical labeling maps
and therefore identical flow direction maps. This is because the logic parameters Lj that enter
the definition of combinatorial parameters represent the same signs of the switching differential
equations that define the labeling map.

Example 3.12. Consider the positive toggle plus system of Example 2.3. We will reference τ ′ and
τ ′′ from Figure 1(b). The input combinations for the first node is

In1 = {off, on} × {off, on}

because the first node has two inputs. The indicator function depends only on the order parameter
O(Z). The second component of the indicator function 11 satisfies

112(x) =

{
off, x ∈ τ ′

on, x ∈ τ ′′
.

The σ-valuation function v12 satisfies v12(off) = L12 and v12(on) = U12 so that

σ12(x) = v12(112(x)) =

{
L12, x ∈ τ ′

U12, x ∈ τ ′′
.

The Λ-valuation function ωi satisfies

ω1((off, off)) = v11(off)v12(off) = L11L12, and

ω1((off, on)) = v11(off)v12(on) = L11U12

so that

Λ1(x) = ω1(11(x)) =

{
ω1((off, off)) = L11L12, x ∈ τ ′

ω1((off, on)) = L11U12, x ∈ τ ′′
.

The first component of the logic parameter L(Z) satisfies

L1((off, off), 2) = sgn(−γ1θ21 + ω1((off, off))) = sgn(−γ1θ21 + L11L12) = −1, and

L1((off, on), 2) = sgn(−γ1θ21 + ω1((off, on))) = sgn(−γ1θ21 + L11U12) = 1.

These values are related to the labeling map via L(τ ′, 1,+) = L1((off, off), 2) and L(τ ′′, 1,+) =
L1((off, on), 2).
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3.3. Characterization of Equilibrium Cells. We now provide a theorem which character-
izes the equilibrium cells of the switching system SWITCH(Z) and shows that there is a unique
equilibrium of S(Z, ε) which converges to each equilibrium cell. The proof for the theorem can be
found in Section 6.

Theorem 3.13. Let Z be a regular switching parameter.

(a) τ ∈ χ is an equilibrium cell if and only if

1. τ is a loop characteristic cell, and

2. Φj(τ) = 0 for each j.

(b) Furthermore, there is an 0 < A ∈ RN×N so that for ε < A any sigmoidal system S(Z, ε) has
a unique equilibrium xεsuch that xε → τ as ε → 0.

The theorem in the case of regular cells is implied by Proposition 3.6 of [5]. It was shown in [28] that
loop characteristic cells are a subset of equilibrium cells in the case that the sigmoidal perturbations
σij(·, ε) are Hill functions. This theorem extends these results by providing a necessary and sufficient
condition for the identification of all equilibrium cells, enlarging the class of functions for which it
applies, and giving uniqueness of the equilibrium xε.

By Theorem 3.13, an equilibrium cell κ has a unique equilibrium xε of S(Z, ε) associated to it. We
associate the stability of this equilibrium with the cell through the following definition.

Definition 3.14. An equilibrium cell κ is stable if the associate equilibrium xε of S(Z, ε) is stable
for all ε > 0 small enough and unstable otherwise.

The equilibrium cells of a switching system can be computed using the DSGRN software [4]. We
show in Section 5 that the analysis of their stability can be reduced to the problem of stability of
multiple cyclic feedback systems that are associated to each singular equilibrium cell. We therefore
first discuss the stability of equilibrium cells in cyclic feedback systems.

4. Equilibrium Cells and their Stability in Cyclic Feedback Networks. This section
concentrates on a particular type of a network, a cyclic feedback network, and characterizes the
equilibrium cells and the stability of the equilibria they contain. In the following section, we
generalize these results to arbitrary networks.

Definition 4.1. A cyclic feedback network (CFN) is a regulatory network RN = (V,E) such that
E = {(1, 2), (2, 3), . . . , (N − 1, N), (N, 1)}. A cyclic feedback system (CFS) is a switching or sig-
moidal system associated to a CFN.

Throughout this section we will assume that RN is a cyclic feedback network. Since each node
j has exactly one target, j + 1, and one source, j − 1, the node j is associated to exactly one
threshold, θ(j+1)j , and Λj = σj(j−1). This implies the combinatorial parameter, and thus the flow
direction map, is determined by the ordering of numbers within the sets {γjθ(j+1)j , Lj(j−1), Uj(j−1)},
j = 1, . . . , N mod N . This observation informs the following definition.

Definition 4.2. Given a regular switching parameter Z = (L,U, θ,Γ) for a cyclic feedback system,
a node j is essential if Lj(j−1) < γjθ(j+1)j < Uj(j−1) and inessential otherwise.
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Another consequence of having exactly one threshold for each node is that there is only one singular
loop characteristic cell, τ , for which all the directions are singular, i.e. sd(τ) = V . The permutation
ρ for this cell is defined by ρτ (j) = j + 1. Throughout this section, τ always denotes this cell and
ρ = ρτ will denote the associated permutation. We associate a sign to ρ which describes whether
the net effect of the cycle is positive or negative:

sgn(ρ) :=

N∏

i=1

s(i+1)i.

We say RN is a positive CFN if sgn(ρ) = 1 and a negative CFN if sgn(ρ) = −1.

4.1. Equilibrium Cells. This section identifies equilibrium cells of a CFN. To simplify no-
tation, we observe as in [14] that by changing variables we may assume without loss of generality
that if RN is a positive CFN, then every edge is activating, and if RN is a negative CFN, then
every edge is activating except the edge (N, 1). This change of variables is of the form

xj → αj(xj − θ(j+1)j) + θ(j+1)j ,

where αj = ±1.

The following lemma specifies the equilibrium cell for a CFS at a parameter Z for which it has an
inessential node.

Lemma 4.3. If at a switching parameter Z = (L,U, θ,Γ) the CFS has at least one inessential node,
then SWITCH(Z) has a unique equilibrium cell κ and this cell is regular. The cell κ is defined as
follows. If j is an inessential node, the j-th projection is

πj(κ) =

{
(0, θ(j+1)j), if Uj(j−1) < γjθ(j+1)j

(θ(j+1)j ,∞), if γjθ(j+1)j < Lj(j−1).

If j is essential, let k be the inessential node which forms the shortest path of the form k → k+1 →
· · · → j, where nodes k + 1, . . . , j − 1 are essential. We have two cases:

If sgn(ρ) = 1, then

πj(κ) =

{
(0, θ(j+1)j), if Uk(k−1) < γkθ(k+1)k,

(θ(j+1)j ,∞), if γkθ(k+1)k < Lk(k−1).

If sgn(ρ) = −1, then

πj(κ) =

{
(0, θ(j+1)j), if Uk(k−1) < γkθ(k+1)k and 1 ≤ k < j, or γkθ(k+1)k < Lk(k−1) and j < k ≤ N,

(θ(j+1)j ,∞), if γkθ(k+1)k < Lk(k−1) and 1 ≤ k < j, or Uk(k−1) < γkθ(k+1)k and j < k ≤ N.

When N = 2, and for a parameter Z where all nodes are essential, the value of the labeling map on
the neighbors of τ for a positive CFS is depicted in Figure 2(a), and for a negative CFS in Figure
2 (b). It is apparent that the positive CFS has two regular equilibrium cells and the negative CFS
has no regular equilibrium cells. In either case τ is a singular equilibrium cell. The next lemma
shows that this is true for all N .
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0
0

θ21

θ12

∞

τ

∞

κ
L

κ
H

0
0

θ21

θ12

∞

τ

∞

κ

(a): Positive CFS (b): Negative CFS

Fig. 2: Labeling map for the two node CFSs with no inessential nodes. The labeling map on
the boundary of R2

+ points inward (not shown). (a): RN = (V,E) = ({1, 2}, {(1 → 2), (2 → 1)}.
The arrows indicate Φi(κ

L) = Φi(κ
H) = Φi(τ) = 0, i = 1, 2 so that κL, κH , and τ are equilibrium

cells. (b): RN = (V,E) = ({1, 2}, {(1 → 2), (2 ⊣ 1)}. The arrows indicate that Φ2(κ) = 0 but
Φ1(κ) = 1 so that κ is not an equilibrium cell. However, Φ1(τ) = Φ2(τ) = 0 so τ is an equilibrium
cell. There are no regular equilibrium cells.

Lemma 4.4. If at a switching parameter Z = (L,U, θ,Γ) the CFS has no inessential nodes, then τ
is an equilibrium cell of SWITCH(Z). Furthermore,

1. If RN is a positive CFN then SWITCH(Z) has exactly two regular equilibrium cells defined
by

κL =

N∏

j=1

(0, θ(j+1)j) and κH =

N∏

j=1

(θ(j+1)j ,∞).

2. If RN is a negative CFN then τ is the unique equilibrium cell.

The proofs for these lemmas can be found in Section 7.1.

4.2. Stability of Equilibria in Sigmoidal CFSs. To determine stability of equilibria of
S(Z, ε), we compute the characteristic polynomial of the Jacobian J(ε). The structure of a cyclic
feedback system imposes structure on J . In particular, we have

J =




−γ1 σ′
1N

σ′
21 −γ2

. . .
. . .

σ′
N(N−1) −γN


 .(4.1)
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Before computing the characteristic polynomial we first note that we can obtain stability of any
regular equilibrium cell κ from J .

Proposition 4.5. If κ is a regular equilibrium cell then it is stable.

Proof. If xε is an equilibrium of S(Z, ε) which converges to κ, then σ′
j(j−1)(x

ε; ε) converges to 0.
Therefore, for ε small enough J is strictly diagonally dominant with negative diagonal entries and
thus all eigenvalues have negative real part.

We now give the characteristic polynomial of J , which can be computed using the Leibniz Formula
for the determinant. For the proof of the following lemma and remaining results of this subsection,
see Section 7.2.

Lemma 4.6. Let S(Z, ε) be a cyclic feedback system. The characteristic polynomial of the Jacobian
J(x; ε) is given by

det(J(x; ε)− λI) = (−1)N

(
N∏

i=1

(γi + λ)− sgn(ρ)M(x, ε)

)

where M(x, ε) :=
∏N

i=1 |σ
′
i(i−1)(x; ε)|.

The sign of the CFS plays a significant role in stability of equilibria. First we address positive cyclic
feedback systems.

Proposition 4.7. Let RN be a positive CFN and x be an equilibrium of S(Z, ε). Stability of x
can be determined as follows.

1. If M(x, ε) <
∏

j γj then x is asymptotically stable.

2. If M(x, ε) >
∏

j γj then x is unstable.

3. If M(x, ε) =
∏

j γj then S(Z, ε) has a steady state bifurcation at x.

If an equilibrium xε of S(Z, ε) converges to the singular loop characteristic cell τ , then condition
(2) of Proposition 4.7 is satisfied if ε is small enough. Therefore, we have the following.

Proposition 4.8. Let RN be a positive CFN. If τ is a singular equilibrium cell, then it is unstable.

Now we discuss negative cycles. When there are N ≤ 2 nodes, we can compute eigenvalues at an
equilibrium and show that τ is stable.

Proposition 4.9. Let RN be a negative CFN with N ≤ 2. If τ is a singular equilibrium cell, then
it is stable.

To address negative cyclic feedback systems with N > 2 we make an additional assumption that
the γ’s are identical, that is Γ = I. This allows us to explicitly compute all the eigenvalues of J .

Lemma 4.10. Let RN be a CFN. Consider switching parameter Z with Γ = I. Let λk(x, ε) for
k = 0, . . . , N − 1 be the eigenvalues of the Jacobian J(x; ε) evaluated at x. Then

λk(x, ε) =




−1 + (e2πikM(x, ε))

1
N , sgn(ρ) = 1

−1 + (eπi+2πikM(x, ε))
1
N , sgn(ρ) = −1.

(4.2)
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An eigenvalue with largest real part is

λ0(x, ε) =

{
−1 +M(x, ε)

1
N , sgn(ρ) = 1

−1 + (eπiM(x, ε))
1
N , sgn(ρ) = −1.

(4.3)

The next proposition, often referred to as the secant condition for negative feedback systems [27,
26, 23, 24, 9], follows immediately from the computation of the eigenvalues.

Proposition 4.11. Let RN be a negative CFN, Z = (L,U, θ,Γ) be a switching parameter with
Γ = I, and x be an equilibrium of S(Z, ε). If N > 2, then stability can be determined as follows.

1. If M(x, ε) < sec
(
π
N

)N
then x is asymptotically stable.

2. If M(x, ε) > sec
(
π
N

)N
then x is unstable.

3. If M(x, ε) = sec
(
π
N

)N
then S(Z, ε) has a Hopf bifurcation at x.

If N > 2 and an equilibrium xε converges to the singular loop characteristic cell τ , the second
condition of Proposition 4.11 holds when ε is small enough and we have the following.

Proposition 4.12. Let RN be a negative CFN with N > 2 and and Z = (L,U, θ,Γ) be a switching
parameter with Γ = I. If τ is a singular equilibrium cell it is unstable.

We remark that while Proposition 4.12 is a statement about sigmoidal CFS, [8] proves a stronger
statement for switching CFS. In [8] it was shown that a negative switching CFS with N > 2 and
no inessential nodes has a stable periodic orbit and that the singular loop characteristic cell τ is an
unstable source. This was proven even for Γ 6= I. We suspect Proposition 4.12 holds for Γ 6= I as
well but do not pursue it here. We also suspect that for small ε the sigmoidal CFS with N > 2 has
a stable periodic orbit. This is consistent with Proposition 4.11 which suggests the existence of a
supercritical Hopf bifurcation as ε increases.

5. Equilibria, Stability, and Bifurcations in General Networks. To characterize the
equilibrium cells, stability and bifurcations of a networkRN which is not a cyclic feedback network,
we decompose SWITCH(Z) locally on a neighborhood of an arbitrary loop characteristic cell into
cyclic feedback systems and then apply the results of Section 4. Before proceeding to describe the
decomposition, we define the neighborhood of a cell on which the local decomposition is valid.

Definition 5.1. For τ ∈ χ, the cell neighborhood of τ , denoted N (τ) is defined by

N (τ) := {κ ∈ χ | τ ⊂ κ},

where κ is the closure of κ.

We will write x ∈ N (κ) to denote x ∈ τ for some τ ∈ N (κ). Note that the cell neighborhood of
a regular cell κ consists only of κ. In Figure 1(a), the cell neighborhood of the singular cell κ is
given by N (κ) = {κ, κ−

1 , κ
+
1 }. The cell neighborhood of the singular cell τ̃ of the positive toggle

plus system consists of all cells contained in the interior of the gray shaded region of Figure 3(a).
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5.1. Local Decomposition of SWITCH(Z) into Cyclic Feedback Systems. The idea
behind the decomposition is to examine the values of Λ on the cell neighborhood of a loop char-
acteristic cell τ . Using the next lemma we will show that for any regular direction r of τ , Λr is
constant on N (τ). This will be used to show that regular directions enter trivially into the decom-
position. On the other hand, for any singular direction s of τ , the lemma will be used to show
that Λρ(s) takes one of two possible values. Furthermore, the value of Λρ(s) can only change in the
s direction. This will ultimately lead to the decomposition into cyclic feedback systems along the
cycles in the permutation ρτ . See Section 6 for the proof of the lemma.

Lemma 5.2. Let τ ∈ χ and (j, i) ∈ E. If j is a regular direction of τ or j ∈ sd(τ) and i 6= ρτ (j)
then

• σij(τ) is well defined,

• for all κ ∈ N (τ), we have σij(κ) = σij(τ) is independent of κ.

Consequently if i 6∈ {ρτ(j) | j ∈ sd(τ)}, then

• Λi(τ) is well defined,

• for all κ ∈ N (τ) we have Λi(κ) = Λi(τ) is independent of κ,

Let τ ∈ χ be a loop characteristic cell, ρ = ρτ be the corresponding permutation. By Lemma 5.2,
for each x in a cell-neighborhood of τ , x ∈ N (τ), and each regular direction r, the value of ẋr in
the switching system (2.1) is independent of every other variable.

Also by Lemma 5.2, σsj(κ) = σsj(τ) is well defined for each singular direction s and j ∈ S(s) \
{ρ−1(s)} on any cell κ ∈ N (τ). Therefore, the value of ẋs in the switching system (2.1) for
any singular direction s is independent of the regular directions. We conclude that on N (τ), the
switching system SWITCH(Z) decomposes into two independent systems: one corresponding to the
singular directions and one corresponding to the regular directions. Since for each regular direction
r, ẋr in (2.1) depends only on xr itself, the regular directions system consists of a collection of
uncoupled one dimensional systems.

The dynamics of the singular directions decomposes according to the cycles that generate the
permutation ρ. Let ρ|sd(τ) = (c1, . . . , cn) be the cycle decomposition of ρ restricted to the singular
directions. Let ℓd = length(cd) and sd =

∑
j<d ℓj . We reorder the variables so that cd acts on

{sd + 1, sd + 2, . . . , sd + ℓd} and cd(sd + i) = sd + i + 1 for i < ℓd and cd(sd + ℓd) = sd + 1. On
N (τ), the dynamics of the variables xd = (xsd+1, . . . xsd+ℓd) are independent of the value of all
other variables so that the dynamics of the singular directions can be written as n independent
systems. Within each system, ẋs depends only on ρ−1(s) so each of these n systems are cyclic
feedback systems.

We conclude that the switching system SWITCH(Z) restricted to N (τ) decomposes into d cyclic
feedback systems and a diagonal system corresponding to regular directions. The sign of the cycle

sgn(cd) :=

sd+ℓd∏

j=sd+1

scd(j)j

determines whether the dth system is a positive or negative CFS.
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To explicitly write the decomposition we define ℓn+1 := N − sn+1 to be the number of regular
directions. For d = 1, . . . , n + 1 we define the projections of the cell neighborhood N (τ) and cells
κ ∈ N (τ)

N d(τ) :=

sd+ℓd∏

j=sd+1

πj(N (τ)) and κd :=

sd+ℓd∏

j=sd+1

πj(κ).

We set Λ(·; τ) := Λ|N (τ) to be the restriction of Λ onto N (τ). We then define

Λd(·; τ) := (Λsd+1(·; τ), . . . ,Λsd+ℓd(·; τ))

to be the projection of the resulting function onto the directions in the d-th subsystem.

Further, let Γd be the ℓd × ℓd diagonal matrix with entries Γii = γsd+i for i = 1, . . . , ℓd. The
dynamics for the d-th subsystem is given explicitly by

ẋd = −Γdxd + Λd(xd; ε, τ), xd ∈ N d(τ ; ε)(5.1)

which we denote by SWITCHd(Z; τ). On the collection of cells N (τ), the system is

SWITCH(Z; τ) := (SWITCH1(Z; τ), . . . , SWITCHn(Z; τ), SWITCHn+1(Z; τ)).

We denote the cyclic feedback network associated with SWITCHd(Z; τ) by RNd(τ).

Example 5.3. Consider the positive toggle plus system of Example 2.3. For the loop characteristic
cell τ̃ = {θ11} × {θ22} pictured in Figure 1(b), the singular directions of τ̃ are both directions 1
and 2 and the cycle decomposition is given by ρ = (c1, c2) where c1(1) = 1 and c2(2) = 2. The
cycle decomposition corresponds to the disjoint loops 1 → 1 and 2 → 2 in the network. The cell
neighborhood of τ̃ , N (τ̃ ) is the gray shaded region in Figure 3(a). For x ∈ N (τ̃ ), x1 > θ21 and
x2 > θ12 so that

ẋ1 = −γ1x1 + Λ1(x) = −γ1x1 + U12σ11(x1)

ẋ2 = −γ1x2 + Λ2(x) = −γ2x2 + U21σ22(x2).

The decomposition at τ̃ , SWITCH(Z) = (SWITCH1(Z; τ̃ ), SWITCH2(Z; τ̃ )) is defined by x1 = x1,
x2 = x2, Γ

1 = γ1, Γ
2 = γ2, Λ

1(x1; τ̃ ) = U12σ11(x1), and Λ2(x2; τ̃ ) = U21σ22(x2). Note that the
superscripts index the cycles, not the directions.

Next we show every regular cell in χ lies in a neighborhood of at least one singular loop characteristic
cell. This implies that every regular cell will be in at least one neighborhood N (τ) on which
decomposition into cyclic feedback systems is applicable. Therefore, in spite of of being local, the
decomposition into cyclic feedback systems affects all the cells in χ. In particular, all equilibrium
cells of SWITCH(Z) are contained in at least one neighborhood N (τ).

Lemma 5.4. Suppose that every node of RN has an out-edge. Then for every regular cell κ ∈ χ(N),
there is a singular loop characteristic cell τ ∈ χ so that κ ∈ N (τ).

Proof. Let κ be a regular cell. Recall that for every j, πj(κ) = (θaκ
j
j , θbκ

j
j) where aκj , b

κ
j ∈ V ∪

{−∞,∞}. Since every j has an out-edge and hence a target node ij, there is a threshold θijj so
that θijj is a boundary of πj(κ). In particular, since ij is a network node, ij /∈ {θ−∞j, θ∞j}. The
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selection of such a threshold for every j ∈ V defines a map σ : V → V by σ(j) = ij. Note that
since σ(V ) ⊂ V and V is finite, the set

U :=
∞⋃

k=1

σk(V )

is non-empty and satisfies U = σ(U). Then a cell τ defined by

πj(τ) =

{
πj(κ), j /∈ U

{θσ(j)j}, j ∈ U

is a loop characteristic cell with κ ∈ N (τ).

5.2. Equilibrium Cells. First, we generalize Section 4.1 and characterize the equilibrium
cells of SWITCH(Z) in N (τ). We will take advantage of the decomposition

SWITCH(Z) = (SWITCH1(Z; τ), . . . , SWITCHn(Z; τ), SWITCHn+1(Z; τ))

which is valid on N (τ) = N 1(τ) × · · · × Nn(τ) × Nn+1(τ) (equation 5.1). However, the lemmas
of Section 4.1 are only valid for cyclic feedback systems which are defined on the whole positive
orthant. We therefore extend SWITCH

d(Z; τ) to all of Rℓd
+ for d ≤ n. The regular directions do

not form a cyclic feedback system on N (τ) so we do not need to extend SWITCHn+1(Z; τ).

The dynamics of SWITCHd(Z; τ) are given by

ẋd = −Γdxd + Λd(xd; τ), xd ∈ N d(τ).

To extend the domain of definition of SWITCH
d(Z; τ) on Rℓd

+ , we need to define Λd(·; τ) on Rℓd
+ ,

while ensuring SWITCHd(Z; τ) remains a cyclic feedback system. To do so, we make the following
definition.

Definition 5.5. Given a loop characteristic cell τ ⊂ RN
+ with permutation ρ = ρτ , the cone C(κ; τ)

rooted in τ and induced by a cell κ ∈ N (τ) is defined by its N projections. For a regular direction,
r, of τ

πr(C(κ; τ)) := πr(τ).

For a singular direction, s ∈ sd(τ),

πs(C(κ; τ)) :=





{θρ(s)s}, if πs(κ) = {θρ(s)s}

(θρ(s)s,∞), if πs(κ) = (θρ(s)s, θρ+(s)s)

(0, θρ(s)s), if πs(κ) = (θρ−(s)s, θρ(s)s).

For σ ∈ N d(τ) define a d-cone in Rℓd
+ by

Cd(σ; τ) :=

sd+ℓd∏

j=sd+1

πj(C(σ; τ)).
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Fig. 3: The decomposition of the positive toggle plus system at a loop characteristic
cell τ̃ . The switching parameter is chosen as in Example 2.3. (a): The cell complex χ and the
labeling map. The cell neighborhood N (τ̃ ) consists of all cells in the shaded gray region. The
regular cells in the cell neighorhood are labeled. (b): The cell complex and labeling map formed by
the product of switching systems (SWITCH1(Z; τ̃ ), SWITCH2(Z; τ̃ )) after extending their domains.
The cell complex is formed by the cones rooted in τ̃ . The cones induced by the regular cells are
labeled. (c): The cell complex χ2(τ) and labeling map L2 for SWITCH2(Z; τ̃). The cell τ̃−2 is a
2-candidate equilibrium cell because C2(τ̃−2 ; τ̃) is an equilibrium cell of SWITCH

2(Z; τ̃). It is also
2-consistent. (d): The cell complex χ1(τ) and labeling map L1 for SWITCH1(Z; τ̃ ). Each of τ̃ , τ̃−1 ,
and τ̃+1 are candidate equilibrium cells. The cells τ̃ and τ̃+1 are 1-consistent, while τ̃−1 is not. See
Example 5.12 for more details on (a) and (b).

The cones for a loop characteristic cell τ in a two node network are depicted in Figure 3.

We now proceed to extend the function Λd from N d(τ) to Rℓd
+ . Take xd ∈ Rℓd

+ . If xd /∈ N d(τ),
then xd ∈ Cd(σ; τ) for some σ ∈ N d(τ). We define the value of Λd on Cd(σ; τ) to be the value of
Λd on σ. Explicitly,

Λd(xd; τ) := Λd(σ), xd ∈ Cd(σ; τ).

Given this extension, SWITCHd(Z; τ) is a switching system defined on Rℓd
+ with an associated cell

complex, labeling map, and flow direction map which we denote χd(τ), Ld(·, ·, ·; τ), and Φd(·; τ),
respectively. Here, the threshold set which generates χd(τ), Θd := (Θd

sd+1, . . . ,Θsd+ℓd), is defined
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by

Θd
j :=

{
{0, θρ(j)j ,∞}, j ∈ sd(τ)

{θaτ
j
j , θbτ

j
j}, otherwise.

Lemmas 4.3 and 4.4 can be used to determine the equilibrium cells of SWITCHd(Z; τ). Since the
cell complex is formed by the cones (see Figure 3(c) and (d))

χd(τ) = {Cd(σ; τ) | σ ∈ N d(τ)},

there is a straightforward identification between cells of SWITCHd(Z; τ) and cells σ ∈ N d(τ).

Definition 5.6. The d-candidate equilibrium cells of τ are defined by

Eqd(τ) := {σd | σ ∈ N (τ) and Cd(σ; τ) is an equilibrium cell of SWITCHd(Z; τ)}.

The candidate equilibrium cells of τ are Eq(τ) :=
∏n+1

d=1 Eq
d(τ).

See Figure 3 and Example 5.12 for examples of candidate equilibrium cells in the positive toggle
plus system. The next lemma justifies the name candidate equilibrium cell.

Lemma 5.7. If κ ∈ N (τ) is an equilibrium cell, then κ ∈ Eq(τ).

Before proving the lemma, we isolate part of the proof that will be useful later.

Lemma 5.8. Let κ ∈ N (τ). If r is a regular direction of τ then Φr(κ) = Φn+1
r (C(κ; τ); τ). For any

singular direction s of κ that belongs to {sd + 1, . . . , sd + ℓd} we have Φs(κ) = Φd
s(C(κ; τ); τ).

Proof. First consider the case that r is a regular direction of τ . Then r is also a regular direction
of κ and πr(κ) = πr(τ) = (θaτ

r ,r, θbτrr). Further, by Lemma 5.2, Λr(τ) = Λr(κ). Finally we have
Λn+1
r (C(κ; τ); τ) = Λr(κ) = Λr(τ). These observations allow us to compute the labeling map of κ

in the r-th direction. We have

Ln+1(C(κ; τ), r,−) = sgn(−γrθaτ
rr + Λn+1

r (C(κ; τ); τ)) = sgn(−γrθaτ
r r + Λr(τ)) = L(τ, r,−)

and

Ln+1(C(κ; τ), r,+) = sgn(−γrθbτrr + Λn+1
r (C(κ; τ); τ)) = sgn(−γrθbτrr + Λr(τ)) = L(τ, r,+).

Since the labeling maps agree and the flow direction maps are defined via the labeling maps (see
Definition 3.9), we have Φr(τ) = Φn+1

r (C(κ; τ); τ).

Now suppose s ∈ {sd + 1, . . . , sd + ℓd} is a singular direction of κ for some d = 1, . . . , n. Then

L(κ, s,−) = sgn(−γρ(s)θρ2(s)ρ(s) +Λρ(s)(κ
−
s )) and L(κ, s,+) = sgn(−γρ(s)θρ2(s)ρ(s) +Λρ(s)(κ

+
s )).

Since Λρ(s)(κ
±
s ) = Λd

ρ(s)(C(κ±
s ; τ); τ), we have L

d(C(κ; τ), s,−) = Ld(C(κ; τ), s,−) and L(κ, s,+) =

−Ld(C(κ; τ), s,+), or Φs(κ) = Φd
s(C(κ; τ); τ).
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Proof of Lemma 5.7. Let κ ∈ N (τ) be an equilibrium cell. By Theorem 3.13 we have Φj(κ) = 0
for every j ∈ V . By Lemma 5.8, we have

Φn+1
r (C(κ; τ); τ) = Φr(κ) = 0 and Φd

s(C(κ; τ); τ) = Φs(κ) = 0

both for regular directions r of τ and singular directions s of κ for some d = 1, . . . , n. This implies
κn+1 ∈ Eqn+1(τ) and κd ∈ Eqd(τ) where s ∈ {sd + 1, . . . , sd + ℓd}.

Suppose j ∈ {sd + 1, . . . , sd + ℓd} is a singular direction of τ but a regular direction of κ. Assume
without loss of generality that πρ(j)(κ) = (θρ−(j)j , θρ(j)j). Then we have

1 = L(κ, j,−) = sgn(−γjθρ−(j)j + Λj(κ)) = − sgn(−γjθρ(j)j + Λj(κ)) = −L(κ, j,+).

Now, Ld(C(κ; τ), j,+) = L(κ, j,+) so we only need to check L(κ, j,−) = 1 = Ld(κd, j,−). Since
Θd

j = {0, θρ(j)j ,∞}, we have

Ld(C(κ; τ), ρ(j),−) = sgn(−γρ(j) · 0 + Λρ(j)(κ
d)) = 1

so that Φd(κd; τ) = 0 and κd ∈ Eqd(τ). Since κd ∈ Eqd(τ) for each d, κ ∈ Eq(τ).

Once we have identified a candidate equilibrium cell κ ∈ Eq(τ), there is one more property to check
to ascertain that it is an actual equilibrium cell. Since κd ∈ Eqd(τ), the cell Cd(κd; τ) must be an
equilibrium cell of SWITCHd(Z; τ). However, Cd(κd; τ) is a super set of κd, so this equilibrium may
not be contained in κd.

Definition 5.9. Let σ ∈ Eq
d(τ) and d ≤ n. If the equilibrium of SWITCH

d(Z; τ) in Cd(σ; τ) is
contained in σ, then we say σ is a d-consistent candidate equilibrium cell.

The next proposition shows how to check if σ is a d-consistent candidate equilibrium cell. Notice
that the condition of the proposition is vacuously satisfied when σ is a singular equilibrium cell of
SWITCHd(Z; τ). In other words, if the singular loop characteristic cell τd is an equilibrium cell, it is
always d-consistent. It is also important to note, that while seemingly complicated, this condition
is readily algorithmically checkable.

Proposition 5.10. Let d ≤ n and σ ∈ Eq
d(τ). Then σ is a d-consistent candidate equilibrium cell

if, and only if, for each j ∈ {sd + 1, . . . , sd + ℓd}, if πj(σ) is equal to the i-th value in first column,
and πj−1(σ) is equal to the k-th value in first row, then the inequality in entry (i, k) of the following
table is satisfied.

πj(σ)
πj−1(σ) (θρ−(j−1)(j−1), θj(j−1)) (θj(j−1), θρ+(j−1)(j−1))

(θρ−(j)j , θ(j+1)j) γjθρ−(j)j < Λj(τ
−
j−1) γjθρ−(j)j < Λj(τ

+
j−1)

(θ(j+1)j , θρ+(j)j) Λj(τ
−
j−1) < γjθρ+(j)j Λj(τ

+
j−1) < γjθρ+(j)j

Here sd + ℓd + 1 is identified with sd + 1 and (sd + 1)− 1 is identified with sd + ℓd.

Proof. Let Φd denote the flow direction map for the cyclic feedback system SWITCHd(Z; τ). We
show that Φd(σ) = 0 if and only if the conditions are satisfied. Applying Theorem 3.13 then
completes the proof.
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We first assume that σ is the singular loop characteristic cell of SWITCHd(Z, τ). Then σ = Cd(σ; τ).
Since σ ∈ Eqd(τ), Cd(σ; τ) is an equilibrium cell of SWITCHd(Z; τ) so that

Φd(σ) = Φd(Cd(σ; τ)) = 0.

If σ is not the singular loop characteristic cell then σ must be a regular cell of SWITCHd(Z; τ) by
Lemma 4.3 and 4.4. Since σ ∈ N (τ),

πj(σ) = (θ(j+1)j , θρ+(j)j) or πj(σ) = (θρ−(j)j , θ(j+1)j)

for each j.

Fix j and suppose σ satisfies πj(σ) = (θ(j+1)j , θρ+(j)j). Since σ ∈ Eqd(τ), we have Φd
j (C(σ; τ)) = 0.

Since πj(σ) and πj(C(σ; τ)) have the same left boundary (by the assumption on σ), we have

1 = Ld(C(σ; τ), j,−; 0) = Ld(σ, j,−; 0).

Therefore, Φd
j (σ) = 0 if and only if Ld(σ, j,+; 0) = −1. This is equivalent to

sgn(−γjθρ+(j)j + Λj(σ)) = −1, or Λj(σ) < γjθρ+(j)j .(5.2)

If πj−1(σ) = (θρ−(j−1)(j−1), θj(j−1)) then σ ∈ N (τ−j−1) and if πj−1(σ) = (θj(j−1), θρ+(j−1)(j−1))

then σ ∈ N (τ+j−1). Notice that j − 1 is the only singular direction of τ that maps to j under ρ

and j − 1 is not a singular direction of τ−j−1 or τ+j−1. Therefore, by Lemma 5.2, Λj(σ) = Λj(τ
−
j−1)

or Λj(σ) = Λj(τ
+
j−1) according to value of πj−1(σ). Together with (5.2), this observation proves

the proposition in the case πj(σ) = (θ(j+1)j , θρ+(j)j). A similar argument applies to the case
πj(σ) = (θρ−(j)j , θ(j+1)j)).

See Example 5.12 for an example application of Proposition 5.10. The next theorem shows that any
equilibrium cell in N (τ) can be written as a product over consistent candidate equilibrium cells.

Theorem 5.11. Let κ ∈ N (τ). Then κ is an equilibrium cell of SWITCH(Z) if and only if

• κ ∈ Eq(τ), and

• for every d, κd is a d-consistent candidate equilibrium cell.

Proof. Let κ ∈ N (τ). By Lemma 5.7, κ ∈ Eq(τ) is a necessary condition for κ to be an equilibrium
cell. We may therefore assume κ ∈ Eq(τ).

By Theorem 3.13, κ is an equilibrium cell if and only if Φj(κ) = 0 for every j ∈ V . Lemma 5.8 shows
that if r is a regular direction of τ then Φr(κ) = Φn+1

r (C(κ; τ); τ) and if s ∈ {sd+1, . . . , sd+ℓd} is a
singular direction of κ then Φs(κ) = Φd

s(C(κ; τ); τ). It remains to show that Φj(κ) = 0 if and only
if κd is d-consistent when j ∈ {sd + 1, . . . , sd + ℓd} is a regular direction of κ but singular direction
of τ . There are four cases determined by the values of πj(κ) and πj−1(κ) indicated by the table
in the statement of Proposition 5.10. We prove the case πj(κ) = (θρ−(j)j , θρ(j)j) and πj−1(κ) =
(θρ−(j−1)(j−1), θj(j−1)). The remaining cases are similar. Since πj−1(κ) = (θρ−(j−1)(j−1), θj(j−1))

we have Λj(κ) = Λj(τ
−
j ) so that

L(κ, j,−) = sgn(−γjθρ−(j)j + Λj(τ
−
j )).
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Therefore L(κ, j,−) = 1 if and only if κd is d-consistent. Since κd ∈ Eqd(τ),

Ld(C(κd; τ), j,−) = sgn(−γj · 0 + Λd
j (C(κd; τ))) = 1 = −Ld(C(κd; τ), j,+).

But Ld(C(κ; τ), j,+) = sgn(−γjθρ(j)j +Λd
j (C(κ; τ)) = L(κ, j,+) since Λd

j (C(κ; τ)) = Λj(κ). There-

fore Φj(κ) = 0 if and only if κd is d-consistent, completing the proof of the theorem.

Example 5.12. Consider the decomposition of the positive toggle plus system described in Example
5.3. The cell complexes χ1(τ̃ ) and χ2(τ̃ ) with corresponding labeling maps L1 and L2 are pictured
in Figure 3(c) and (d). SWITCH1(Z; τ̃ ) admits three 1-candidate equilibrium cells given by τ̃ , τ̃−1
and τ̃+1 . Applying Proposition 5.10, we have τ̃ is a consistent equilibrium cell vacuously, τ̃−1 is not
a consistent equilibrium cell since Λ1(τ̃

−
1 ) = L11U12 < γ1θ21, and τ̃+1 is a consistent equilibrium

cell since Λ1(τ̃
+
1 ) = U11U12 < γ1θ∞1 = ∞. SWITCH2(Z; τ̃) admits one 2-candidate equilibrium

cell, τ̃−2 . Since Λ2(τ̃−2 ) = L22U21 > γ2θ21, it is a consistent equilibrium cell. By Theorem 5.11, the
equilibrium cells of SWITCH(Z) which are contained in N (τ) are given by a product over projection
of the consistent equilibrium cells, namely τ̃−2 = π1(τ̃ )× π2(τ̃

−
2 ) and κ4 = π1(τ̃

+
1 )× π2(τ̃

−
2 ).

5.3. Stability of Equilibria. The decomposition in Theorem 5.11 implies that the Jacobian
J(ε) for S(Z, ε) has a block structure up to order ε. In particular, we have that there is a B ∈ RN×N

such that

J(ε) =




J1(ε)
J2(ε)

. . .

Jn(ε)
Jn+1(ε)




+ εB, Jn+1 =




−γsn+1

−γsn+2

. . .

−γN


 ,

and Jd(ε) for 1 ≤ d ≤ n has the same structure as (4.1) although the entries σ′
(j+1)j are replaced with

∂
∂xj

Λj+1(x; ε). The block Jd(ε) is the Jacobian for the sigmoidal system Sd(Z, ε; τ) obtained from

perturbing the switching system SWITCHd(Z; τ). This implies that the stability of an equilibrium
xε associated to an equilibrium cell κ ∈ N (τ) is determined by the stability of κd as an equilibrium
cell of SWITCHd(Z; τ) for d = 1, . . . , n+ 1. We formally state this observation as a theorem after
the following definition.

Definition 5.13. An equilibrium cell κ ∈ N (τ) is d-stable if κd is stable as a cell of SWITCHd(Z; τ),
and d-unstable otherwise.

Theorem 5.14. An equilibrium cell κ ∈ N (τ) is stable if and only if κ is d-stable for each d.

As a result of Theorem 5.14, we can immediately generalize the stability results given by Proposi-
tions 4.5, 4.8, 4.9, and 4.12, which results in the following theorem.

Theorem 5.15. Let Z = (L,U, θ,Γ) be a switching parameter, τ be a loop characteristic cell, and
κ ∈ N (τ) be an equilibrium cell. Then d-stability of κ can be determined as follows.

1. If κd is a regular cell then κ is d-stable.

2. If κd is a singular cell and cd is positive, then κ is d-unstable.

3. If κd is a singular cell, cd is negative, and ℓd ≤ 2, then κ is d-stable.
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4. If Γ = I, κd is a singular cell, cd is negative, and ℓd > 2, then κ is d-unstable.

We remark that an equilibrium cell κ is always d = n+ 1-stable since the only equilibrium cell of
SWITCHn+1(Z; τ) is regular.

Example 5.16. Consider the decomposition of the positive toggle plus system at τ̃ pictured in
Figure 3. The equilibrium cell κ4 is 1-stable because π1(κ4) = C1(κ4; τ̃ ) = C1(τ̃+1 ; τ̃ ) is stable
in SWITCH1(Z; τ̃) as can be seen in Figure 3(d). κ4 is also 2-stable because π2(κ4) = C2(κ4; τ̃ ) =
C2(τ̃−2 ; τ̃) is stable in SWITCH2(Z; τ̃) as can be seen in Figure 3(c). The equilibrium cell τ̃−2 is
1-unstable because π1(τ̃

−
2 ) = τ̃1 is unstable in SWITCH1(Z; τ̃ ).

6. Proof of Theorem 3.13. Before proving the theorem, we will prove some technical lem-
mas. We begin by proving Lemma 5.2.

Proof of Lemma 5.2.. Let τ ∈ χ be a cell, κ ∈ N (τ) be a cell in the cell neighborhood N (τ) of
τ (see Definition 5.1), and (j, i) ∈ E be an edge. Suppose j is a regular direction of τ with
πj(τ) = (θi1j , θi2j). Then σij(τ) is well defined. Since τ ⊂ κ,

(θi1j , θi2j) = πj(τ) ⊂ πj(κ) = [θi′1j , θi′2j ].

Because θi′1j < θi′2j are consecutive thresholds we must have θi1j = θi′1j and θi2j = θi′2j . Therefore
πj(κ) = πj(τ). This implies σij(κ) = σij(τ).

Now suppose j ∈ sd(τ), and πj(τ) = {θi0j}. Assume i0 6= i. This implies that σij(θi0j) is
defined and σij(τ) = σij(θi0j). Let θi1j < θi0j < θi2j be consecutive thresholds. Then either
πj(κ) = (θi1j , θi0j), πj(κ) = (θi0j , θi2j), or πj(κ) = {θi0j}. Since θij /∈ (θi1j , θi2j), σij(xj) = σij(τ)
for all xj ∈ (θi1j , θi2j) and σij(κ) = σij(τ).

Since Λi is a product of sums of switching functions σij , Λi(κ) is well defined whenever σij(τ) is well
defined for all j ∈ S(i). That is, Λi(κ) is well defined whenever i /∈ ρ(sd(τ)) = {ρ(j) | j ∈ sd(τ)}.

Recall that τ±s denotes an s-neighbor of a cell τ ∈ χ (see Definition 3.5). A consequence of Lemma
5.2 is that the labeling map L and thus the flow direction map Φ (see Definition 3.9), are well
defined because Λρ(s)(τ

±
s ) is well defined for every singular direction s of a loop characteristic cell

τ .

Lemma 6.1. Let τ ∈ χ be a loop characteristic cell. If s is a singular direction of τ then Λρ(s)(τ
±
s )

is well defined.

Proof. Since s is the unique singular direction of τ which maps to ρ(s), we have ρ(s) /∈ ρτ
±
s (sd(τ±s ))

since s is a regular direction of τ±s . Lemma 5.2 then implies Λρ(s)(τ
±
s ) is well defined.

Having confirmed that L and Φ are well defined on their domain, we now prove Theorem 3.13.

6.1. Proof of Theorem 3.13. Let τ ∈ χ be an equilibrium cell and xε be an equilibrium of
S(Z, ε) such that xε → x∗ ∈ τ as ε → 0+. Let ρ = ρτ .

First suppose that statement (1) does not hold. Then there is a singular direction s ∈ sd(τ) so that
ρ(j) 6= s for all j ∈ sd(τ). By Lemma 5.2, Λs(τ) is well defined and Λs(κ) = Λs(τ) for all κ ∈ N (τ).
Therefore, for all x ∈ N (τ), Λs(x; ε) → Λs(τ) as ε → 0. Since xε → x∗ ∈ τ , there is an A > 0 so
that for ε < A, xε ∈ N (τ). Therefore, Λs(x

ε, ε) → Λs(τ) as ε → 0. Finally, since πs(τ) = {θρ(s)s},
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we have xε
s → θρ(s)s so that the sth component of x∗ satisfies x∗

s = θρ(s)s. These arguments imply
that taking the limit of the expression

lim
ε→0+

−γsx
ε
s + Λs(x

ε; ε) = 0

results in
−γsθρ(s)s + Λs(τ) = 0.

But this contradicts the fact that Z is a regular parameter. This proves (1).

To prove (2) we consider regular and singular directions separately. For a regular direction, r, let
x∗
r = limε→0 x

ε
r. We have

lim
ε→0+

−γrx
ε
r + Λr(x

ε; ε) = −γrx
∗
r + Λr(τ) = 0.

Since x∗
r ∈ (θarr, θbrr), we must have −γrθarr + Λr(τ) > 0 and −γrθbrr + Λr(τ) < 0. Therefore,

Φr(τ) = 0.

For a singular direction, s, let η = min
{

θρ+(s)s−θρ(s)s

2 ,
θρ(s)s−θρ−(s)s

2

}
. Note that η is independent

of ε. With this η, define the sample points x±η,ε by

x±η,ε
j =

{
xε
j , j 6= s

xε
s ± η, j = s.

Note that x±η,ε → τ±s as ε → 0+. Using the fact that xε is an equilibrium of the sigmoid system
S(Z, ε), we have

0 =− γρ(s)x
ε
ρ(s) + Λρ(s)(x

ε; ε)

=− γρ(s)x
ε
ρ(s) + Λρ(s)(x

ε; ε)− Λρ(s)(x
±η,ε; ε) + Λρ(s)(x

±η,ε; ε)

=− γρ(s)x
ε
ρ(s) +




ps∏

ℓ=1
s/∈Iℓ

∑

j∈Iℓ

σρ(s)j(x
ε
j ; ε)


 (σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε)) + Λρ(s)(x

±η,ε; ε).

Rearranging the resulting equality, we get

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε)) = − sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε))

)
(6.1)

The left hand side of (6.1) is L(τ, s,±) in the limit of ε → 0. To see this notice that since ρ is a
permutation, there is no j ∈ sd(τ±s ) so that ρτ (j) = ρτ (s). By Lemma 5.2, for every x ∈ N (τ±s ),
the function values Λρ(s)(x; ε) → Λρ(s)(τ

±
s ) as ε → 0+. Since in the same limit x±η,ε → τ±s , there

is an A > 0 such that for ε < A, we have x±η,ε ∈ N (τ±s ). Therefore, Λρ(s)(x
±η,ε; ε) → Λρ(s)(τ

±
s )

as ε → 0+. Because the projection πρ(s)(τ) = {θρ2(s)ρ(s)} we conclude that xε
ρ(s) → θρ2(s)ρ(s). To

summarize, we have shown

lim
ε→0+

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε)) = sgn(−γρ(s)θρ2(s)ρ(s) + Λρ(s)(τ
±
s )) = L(τ, s,±).(6.2)

To show that L(τ, s,+) = −L(τ, s,−), we study the right hand side of (6.1). By Properties (1)
and (4) of sigmoidal perturbations, there is a neighborhood U ⊂ R+ of θρ(s)s such that σρ(s)s(·; ε)
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is monotone increasing on U when sρ(s)s = 1 and decreasing when sρ(s)s = −1. Since σρ(s)s is
monotone non-increasing or non-decreasing according to sρ(s)s, this implies

− sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε)

)
= − sgn

(
xε
s − x±η,ε

s

)
sρ(s)s

= −(∓1)sρ(s)s = ±sρ(s)s.

We have shown

L(τ, s,±) = lim
ε→0+

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε))

= lim
ε→0+

− sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε))

)
= ±sρ(s)s

where the first equality follows from (6.2) and the second equality follows from (6.1). Therefore
L(τ, s,+) = −L(τ, s,−) so that Φs(τ) = 0. This finishes the proof of (2) and thus the forward
implication in statement (a). We now proceed with the backward implication in (a).

For a singular direction s ∈ sd(τ), let U2,s(ε) be the neighborhood of θρ(s)s defined for σρ(s)s in
property 4 of sigmoidal perturbations (Definition 2.2). For a regular direction r /∈ sd(τ), we have
Φr(τ) = 0 or

sgn(−γrθarr + Λr(τ)) = − sgn(−γrθbrr + Λr(τ)).

Since Λr(x; ε) → Λr(τ) for x ∈ τ , we may choose ηr > 0 small enough so that

sgn(−γr(θarr + ηr) + Λr(τ)) = − sgn(−γr(θbrr − ηr) + Λr(τ)).(6.3)

We now define a closed neighborhood τ(ε) of τ by

πj(τ(ε)) :=

{
U2,j(ε), j ∈ sd(τ)

[θarr + ηr, θbrr − ηr], j /∈ sd(τ).

Note that τ ⊂ τ(ε). By properties 3 and 4 of sigmoidal perturbations we may choose A ∈ RN×N

so that for ε < A and x ∈ τ(ε)

∣∣∣∣
∂

∂xs
Λρ(s)(x; ε)

∣∣∣∣ ≥ 2γρ(s), and

∣∣∣∣
∂

∂xr
Λr(x; ε)

∣∣∣∣ ≤
1
2γr.(6.4)

Property 4 implies that the image of Λρ(s)(·; ε) on τ(ε) converges, as ǫ → 0, to the interval
with endpoints Λρ(s)(τ

−
s ) and Λρ(s)(τ

+
s ), i.e. Λρ(s)(τ(ε); ε) → (Λρ(s)(τ

−
s ),Λρ(s)(τ

+
s )). Here we

have assumed without loss of generality that Λρ(s)(τ
−
s ) < Λρ(s)(τ

+
s ). Since Φs(τ) = 0, we have

γρ(s)θρ2(s)ρ(s) ∈ (Λρ(s)(τ
−
s ),Λρ(s)(τ

+
s )). Therefore, we may further refine our choice of A so that

γρ(s)θρ2(s)ρ(s) ∈ Λρ(s)(τ(ε); ε) for each ε < A. That is, for each s ∈ sd(τ), there is an x ∈ τ(ε) so
that

fρ(s) := −γρ(s)xρ(s) + Λρ(s)(x; ε) = ẋρ(s)|x = 0.

For a regular direction r, we also have that there is an x ∈ τ(ε) with

fr := −γrxr + Λr(x; ε) = ẋr |x = 0
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by (6.3).

By (6.4), if x ∈ τ(ε) and s ∈ sd(τ) is a singular direction or r is a regular direction then

∣∣∣∣
∂fρ(s)

∂xs
(x)

∣∣∣∣ > γρ(s) > 0 and
∂fr
∂xr

(x) < − 1
2γr < 0.

In either case, the derivatives are bounded away from zero so we may apply the implicit function
theorem to get a function

Xj :
∏

i6=j

πi(τ(ε)) → πj(τ(ε))

so that

fρ(j)((x1, . . . , Xj(x1, . . . , xj−1, xj+1, . . . , xN ), . . . , xN )) = 0.

Define g : τ(ε) → τ(ε) by

g(x1, . . . , xN ) := (X1(x2, . . . , xN ), . . . , XN(x1, . . . , xN−1)).

By Brouwer’s fixed point theorem, g has a fixed point x in τ(ε) so that we can simultaneously solve
ẋj = 0 for all j.

To prove part (b) and show that the fixed point is unique, we apply the inverse function theorem.
Let xε be an equilibrium of S(Z, ε). We note that except for O(ε) terms, the Jacobian J(ε) has
a block diagonal structure with blocks Jd(ε) corresponding to the cyclic feedback decomposition
of SWITCH(Z) at τ (see Section 5.1). Each block corresponding to singular directions of τ has
the form of (4.1) while the block corresponding to regular directions is diagonal. Therefore the
determinant is given by

det(J(x; ε)) =

n∏

d=1

(−1)ℓd

(
sd+ℓd∏

s=sd+1

γs − sgn(cd)M
d(x, ε)

)(
N∏

r=sn+1

−γr

)
+O(ε)(6.5)

where Md(x, ε) =
∏sd+ℓd

s=sd+1 |σ
′
ρ(s)s(xs, ε)|. Since Md(x, ε) → ∞ for x ∈ τ we have that for small

enough ε, J(x; ε) is non-singular on τ(ε). The inverse function theorem then implies that the
equilibrium xε of S(Z, ε) in τ(ε) is unique.

7. Proof of Cyclic Feedback System Results. In this section, we prove the results of
Section 4. The section is organized into subsections which correspond to the subsections of Section
4. Recall that the edges of a cyclic feedback network (CFN) are of the form (j, j + 1) where j + 1
is computed modulo N (see Definition 4.1). Furthermore, by changing variables we may assume
without loss of generality that all edges of a positive CFN are activating and the edges of a negative
CFN are all activating except for the edge N ⊣ 1 which is repressing (see Section 4.1).

7.1. Equilibrium Cells.

Proof of Lemma 4.3. Let κ′ be a regular equilibrium cell. We will show that κ′ = κ where κ is the
claimed unique equilibrium cell defined in the statement of the lemma. Recall that for each j ∈ V ,
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θ−∞j = 0 and θ∞j = ∞ (see Definition 3.1). We have First note that

sgn(−γjθ−∞j + Λj(κ
′)) = sgn(0 + Λj(κ

′)) = 1, and

sgn(−γjθ∞j + Λj(κ
′)) = sgn(−∞+ Λj(κ

′)) = −1.

If j is inessential and γjθ(j+1)j < Lj(j−1) then

sgn(−γjθ(j+1)j + Λj(κ
′)) = −1.

If j is inessential and Uj(j−1) < γjθ(j+1)j then

sgn(−γjθ(j+1)j + Λj(κ
′)) = 1.

In either case, Φj(κ
′) = 0 if and only if πj(κ

′) = πj(κ).

Now suppose that k is essential and k + 1 is inessential. If πk(κ
′) = (0, θ(k+1)k), then, using the

assumption on the sign of the edges,

Λk+1(κ
′) =

{
L(k+1)k, sgn(ρ) = 1 or k < N

U(k+1)k, sgn(ρ) = −1 and k = N

This implies

sgn(−γk+1θ(k+2)(k+1) + Λk+1(κ
′)) =

{
−1, sgn(ρ) = 1 or k < N

1, sgn(ρ) = −1 and k = N

so that Φk+1(κ
′) = 0 if and only if πk+1(κ

′) = πk+1(κ). A similar argument shows πk+1(κ
′) =

πk+1(κ) when πk(κ
′) = (θ(k+1)k,∞). An induction argument then shows that for every essential

node j, πj(κ
′) = πj(κ).

We have shown that the only regular equilibrium cell is κ. Since equilibrium cells are a subset
of loop characteristic cells, to complete the proof we need only show that the only singular loop
characteristic cell τ =

∏
{θ(j+1)j} is not an equilibrium cell. Let j be a node so that j + 1 is

inessential. Assume U(j+1)j < γj+1θ(j+2)(j+1). Then

L(τ, j,+) = L(τ, j,−) = −1

since sgn(−γj+1θ(j+2)(j+1) + Λj+1(τ)) = −1. Similarly,

L(τ, j,+) = L(τ, j,−) = 1

when γj+1θ(j+2)(j+1) < L(j+1)j . This shows Φj(τ) 6= 0 so that τ is not an equilibrium cell.

Proof of Lemma 4.4. Let RN be a cyclic feedback network and Z be a switching parameter so that
the corresponding cyclic feedback system SWITCH(Z) has no inessential nodes. First we show that
the singular loop characteristic cell, τ =

∏
{θ(j+1)j}, is an equilibrium cell. Using the assumption

on the sign of the edges, for every j ∈ V we have

Λj+1(τ
−
j ) =

{
L(j+1)j , sgn(ρ) = 1 or j < N

U(j+1)j , sgn(ρ) = −1 and j = N
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and

Λj+1(τ
+
j ) =

{
U(j+1)j , sgn(ρ) = 1 or j < N

L(j+1)j , sgn(ρ) = −1 and j = N.

Since L(j+1)j < γj+1θ(j+2)(j+1) < U(j+1)j , this implies Φj(τ) = 0. τ is therefore an equilibrium cell
by Theorem 3.13.

Now consider the caseRN is a positive CFN. Since πj(κ
L) = (0, θ(j+1)j) and all edges are activating,

Λj+1(κ
L) = L(j+1)j . We therefore have

L(κL, j + 1,+) = sgn(−γj+1θ(j+2)(j+1) + Λj+1(κ
L)) = −1.

A similar argument shows L(κH , j + 1,−) = 1 for all j. Since

sgn(−γj+1θ−∞j + Λj+1(κ)) = 1 and sgn(−γj+1θ∞j + Λj+1(κ)) = −1

for all cells κ, this implies Φj+1(κ
L) = Φj+1(κ

H) = 0 so that both cells are equilibrium cells.

Let κ be a regular cell different from κH and κL. Then there is a j so that πj(κ) = (θ(j+1)j ,∞)
but πj+1(κ) = (0, θ(j+2)(j+1)). πj(κ) = (θ(j+1)j ,∞) implies Λj+1(κ) = U(j+1)j . But πj+1(κ) =
(0, θ(j+2)(j+1)) implies

L(κ, j + 1,+) = sgn(−γj+1θ(j+2)(j+1) + U(j+1)j) = 1

so that Φj(κ) = 1 and κ is not an equilibrium cell.

Finally, consider the case that RN is a negative CFN. Let κ be a regular cell. Suppose there is a
j < N such that

πj(κ) = (0, θ(j+1)j) and πj+1(κ) = (θ(j+2)(j+1),∞).

Then Λj+1 = L(j+1)j so that

L(κ, j + 1,−) = sgn(−γj+1θ(j+2)(j+1) + L(j+1)j) = −1.

This implies Φj+1(κ) = −1 so that κ is not an equilibrium cell. Similarly, if

πj(κ) = (θ(j+1)j ,∞) and πj+1(κ) = (0, θ(j+2)(j+1)),

then Φj+1(κ) = 1 and κ is not an equilibrium cell. Suppose that πj(κ) = (0, θ(j+1)j) for each j.
Then since N ⊣ 1 is repressing,

L(κ, 1,+) = sgn(−γ1θ21 + U1N) = 1

and Φ1(κ) = 1. Similarly, Φ1(κ) = −1 if πj(κ) = (θ(j+1)j ,∞) for each j. Therefore there are no
regular equilibrium cells. Since τ is the only singular loop characteristic cell and equilibrium cells
are loop characteristic cells, τ is the unique equilibrium cell.
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7.2. Stability of Equilibria. We begin by providing the calculation of the characteristic
polynomial of the Jacobian J(x; ε). The Jacobian is given in (4.1).

Proof of Lemma 4.6. Let J̃ = J(ε)−λI. Let SN be the set of permutations of order N . For η ∈ SN

let par(η) denote the parity of η, i.e. par(η) = 1 if η is even and par(η) = −1 if η is odd. The
Liebniz Formula gives

det(J̃) =
∑

η∈SN

par(η)

N∏

i=1

J̃η(i)i.

The only non-zero derivative of Λi is the derivative with respect to xi−1. Therefore, the only

non-zero entries of J̃ are the diagonal entries Jii = −γi − λ and the entries

J̃i(i−1) =
∂

∂xi−1
Λi = σ′

i(i−1).

The only non-zero entries in the sum then correspond to the identity permutation, id and the
permutation ρ. Since par(id) = 1 and par(ρ) = (−1)N−1,

det(J̃) =

N∏

i=1

(−γj − λ) + (−1)N−1
N∏

i=1

σ′
i(i−1)

= (−1)N

(
N∏

i=1

(γi + λ)−
N∏

i=1

σ′
i(i−1)

)

= (−1)N

(
N∏

i=1

(γi + λ)− sgn(ρ)
N∏

i=1

M

)

To determine stability of positive cyclic feedback systems, we apply Descartes’ rule of signs and the
fact that J is a Metzler matrix (off diagonal entries are non-negative) so that the eigenvalue with
largest real part is real (see Theorem 4 of [1]).

Proof of Proposition 4.7. Let p(λ) := (−1)N det(J−λI) be the characteristic polynomial of J(x, ε)
normalized so that the leading coefficient is positive. Notice that p(λ) has all positive coefficients
except for possibly the coefficient of λ0 which is given by (−1)N det(J) =

∏
j γj − M(x, ε). If

M(x, ε) >
∏

j γj then by Descartes’ rule of signs, p has a positive real root so that x is unstable.
If M(x, ε) <

∏
j γj , then by Descartes’ rule of signs, M(x, ε) has no positive real roots. Theorem

4 of [1] says that J has a real eigenvalue with largest real part. Since J has no positive real roots,
this eigenvalue must be negative, implying that x is asymptotically stable. If M(x, ε) =

∏
j γj then

det(J) = 0 so that S(Z, ε) has a bifurcation at x.

The stability of equilibria of negative cyclic feedback systems when N ≤ 2 involves only a simple
computation.

Proof of Proposition 4.9. If N = 1, then x = x1 and ẋ = −γ1x + σ11(x; ε). Since σ11(x; ε) is non-
increasing we have J(x; ε) = −γ1 + σ′

11(x; ε) ≤ −γ1 so that the equilibrium of S(Z, ε) is stable. If
N = 2, then det(J(x; ε)) = γ1γ2 − σ′

21(x; ε)σ
′
12(x; ε) ≥ γ1γ2 > 0 since σ12 is non-decreasing and

σ12 is non-increasing. We also have that the trace of J(x; ε) is negative. Since det(J(x; ε) > 0 and
Tr(J) < 0, the eigenvalues of J have negative real part.
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Proof of Propositions 4.8 and 4.12. In proving Theorem 3.13, we showed that for ε small enough
the equilibrium xε which converges to τ satisfies xε ∈ Uj(ε) where Uj is defined as in property (4) of
Definition 2.2. Therefore M(x, ε) → ∞ as ε → 0. Applying Proposition 4.7 or 4.11 as appropriate
then proves the propositions.

8. Discussion. In this paper we present explicit and direct correspondence between equilibria
of systems of differential equations with sigmoidal nonlinearities and equilibrium objects that are
associated to a switching system. ODE models associated to switching systems are not well defined
for points that lie on the family of thresholds associated to these functions. Because of the difficulties
that this presents for construction of a well defined flow, we prefer to think of a switching system
not as an ODE model, but as a source of combinatorial (i.e. finite) data that can be used to study
sigmoidal systems. Following this philosophy we build upon work of others [28, 19] to show that all
equilibria and their stability for sufficiently steep sigmoidal functions can be determined from the
data associated to the corresponding switching system. Dissecting further this rigidity, the sufficient
data consists of network structure and a discrete description of parameter regime in the terms of
a set of monotone Boolean functions [3]. To facilitate this work, we realize that the dynamics in a
neighborhood of loop characteristic cells, that contain so called singular equilibria of the switching
system, can be fully understood as a product of cyclic feedback networks. These, in turn, have a
simpler structure that can be fully analyzed.

There are several natural extensions of the present work. One set of questions involves asking how
far the switching system can be perturbed while maintaining its predictions. Given a switching
parameter, how steep must the sigmoidal functions be so that the equilibria given by the switching
system data are maintained in the sigmoidal system? How can the switching parameter be chosen
so that the equilibria are maintained for the shallowest possible sigmoids? We are currently working
on this problem in the context of ramp systems, wherein the sigmoidal functions are replaced by
continuous piece-wise linear functions. In this setting, explicit analytic results to these questions
can be given.

Another set of questions involves non-stationary dynamics. The switching system dynamics can
be represented by a state transition graph that has information not only about the equilibria, but
also about recurrent and global dynamics of sigmoidal systems. What is the relationship between
recurrent dynamics, say periodic trajectories, in the state transition graph, and periodic orbits and
their stability in sigmoidal systems? We have already shown that the global dynamics of the STG is
closely related to global dynamics of sigmoidal perturbations in two dimensional systems [13]. We
are currently working on a generalization of this result to higher dimensions. We believe that the
results of this paper present only a first step in establishing a firm connection between dynamics
of sigmoidal models of network dynamics and combinatorial dynamics of state transition graphs of
switching systems.
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