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Abstract. We use the Burnett spectral method to solve the Boltzmann equation whose collision term is

modeled by separate treatments for the low-frequency part and high-frequency part of the solution. For
the low-frequency part representing the sketch of the distribution function, the binary collision is applied,

while for the high-frequency part representing the finer details, the BGK approximation is applied. The

parameter controlling the ratio of the high-frequency part and the low-frequency part is selected adaptively
on every grid cell at every time step. This self-adaptation is based on an error indicator describing the

difference between the model collision term and the original binary collision term. The indicator is derived

by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments
show that such an error indicator is effective and computationally affordable.

Keywords: Boltzmann equation, Burnett spectral method, self-adaptation

1. Introduction

Due to the extensive applications of rarefied gas dynamics in a number of engineering fields, including the
manufacturing of spacecrafts and micro-electro-mechanical systems, the numerical simulation of gas kinetic
theory is under active research in recent years. In the kinetic theory, the fluid state is described using
the distribution function f(x,v, t), where t is the time, and x and v represent the spatial coordinates and
the velocity of gas molecules, respectively. The distribution function represents the number density of gas
molecules in the joint position-velocity space. In this paper, we consider the Boltzmann equation:

∂f

∂t
+ v · ∇xf = Q[f, f ],

where Q[f, f ] is the binary collision term defined by:

Q[f, g](v) =
1

2

∫
R3

∫
n⊥g

∫ π

0

B(|g|, χ)[f(v′)g(v′∗) + f(v′∗)g(v′)− f(v)g(v∗)− f(v∗)g(v)] dχdndv∗.

In the equation above, the relative velocity g is defined by g = v − v∗, and the post-collisional velocities v′

and v′∗ are given by

v′ = cos2(χ/2)v + sin2(χ/2)v∗ − |g| sin(χ/2) cos(χ/2)n,

v′∗ = cos2(χ/2)v∗ + sin2(χ/2)v + |g| sin(χ/2) cos(χ/2)n.

Note that here n is a unit vector in S2, which implies that the integral with respect to n is a one-dimensional
integral over a circle perpendicular to g. The non-negative function B(·, ·) is the collision kernel determined
by the mutual force between gas molecules.

One of the numerical difficulties in the discretization of the Boltzmann equation lies in the high-dimensional
integral form of Q[f, f ]. To compute the collision term efficiently, the velocity variable in the distribution
function is usually discretized by high-order schemes such as the spectral methods [37, 5] and discontinuous
Galerkin methods [2], so that the number of degrees of freedom can be reduced. In the literature, the spectral
methods mainly include the Fourier spectral method [5, 16, 20] based on the periodization of the velocity
variable and the Hermite/Burnett spectral method based on the unbounded velocity domain [21, 29]. The
Fourier spectral method provides a significant improvement in computational efficiency [15, 27], and the
recent development of the Hermite/Burnett spectral method shows its advantage due to its connection with
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modelling in the gas kinetic theory. Specifically, the Hermite/Burnett spectral method can be linked to
the moment method since the coefficients in the spectral expansion are actually the moments of the distri-
bution functions. Such a property has been applied to derive the regularized 13-moment equations in [9],
and inversely, some modelling techniques can therefore also be applied to the spectral methods. In [7], by
taking the idea of the Shakhov operator [38], the authors divided all moments of the distribution function
into two sets, with one set including low-order moments describing the sketch of the distribution function,
and the other including high-order moments providing the details. For the set with low-order moments, the
linearized collision operator is applied, while for the set with high-order moments, a simple decay towards
the equilibrium is used as an approximation. This hybrid approach is later extended to quadratic collision
operators in [40, 6]. One parameter in this hybrid approach is the critical order M0 that defines the “low-
order” and “high-order” moments. In this paper, we will focus on the selection of this parameter in the
spatially inhomogeneous Boltzmann equation.

Since the parameter M0 defines the modeling accuracy, it is expected that the choice of M0 should depend
on the “modeling error” given by some differences between the current collision model and the exact binary
collision model when applied to the current distribution function. Once such an error indicator is obtained,
we can change the value of M0 dynamically during our simulation. However, the construction of such an
error indicator is far from trivial due to the following reasons:

(1) Unlike the a posteriori error estimation in the finite element methods, we do not have an equation
to define the “residual” as an error indicator.

(2) The collision operator is generally unbounded, so that even an a priori error estimation is non-trivial.
(3) Another common technique by comparing the current model and a more accurate model with larger

M0 is not applicable here due to the rapid growth of the computational cost with respect to M0

(usually M8
0 ).

Because of these difficulties, we have to look for non-standard techniques to quantify the error. Since a
rigorous and numerically affordable error bound is difficult to find, as an initial study, the goal of this paper
is to establish an error indicator with low computational cost compared to the collision term. With this
error indicator, we are able to choose this modeling parameter M0 adaptively on each spatial grid cell at
each time step with the purpose to reduce the computational time on the collision terms. Due to the high
computational complexity with respect to M0, reducing M0 can effectively save the computational cost.

This work contributes to the adaptive methods for the Boltzmann equation. In the literature, the self-
adaptive methods have been applied to both spatial discretization and velocity discretization [30, 11, 3, 1],
which can effectively reduce the degrees of freedom in the simulation. There have been also many works
coupling the kinetic equations and fluid equations, so that the cheaper Navier-Stokes equations or Euler
equations can be solved where the fluid is close to its local equilibrium [13, 12, 18], and many criteria have
been proposed to predict the breakdown of fluid equations [34, 39, 19]. While the method in this work does
not change the number of variables, we consider the modeling adaptivity, which changes the complexity of
the collision model. We hope that this work can provide a new perspective for the simulation of Boltzmann
equations, which might also be applicable in other related areas.

In the rest of this paper, we will first review the Burnett spectral method introduced in [24] (Section
2), and then in Section 3, we will detail the derivation of the error indicator, and the general structure of
our numerical algorithm will also be presented. One- and two-dimensional numerical experiments showing
the efficiency of the self-adaptive method will be given in Section 4, and the paper is concluded by a brief
summary in Section 5.

2. Burnett spectral method for the Boltzmann equation

The Burnett spectral method is based on the following expansion of the distribution function:

(1) f(x,v, t) =

+∞∑
l=0

l∑
m=−l

+∞∑
n=0

flmn(x, t)ϕlmn(v),
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where ϕlmn(v) = ϕ0
lmn(v − u), and

ϕ0
lmn(v) =

√
21−lπ3/2n!

Γ(n+ l + 3/2)
L(l+1/2)
n

(
|v|2

2θ̄

)(
|v|√
θ̄

)l
Y ml

(
v

|v|

)
· 1

(2πθ)3/2
exp

(
−|v|

2

2θ

)
,

l, n = 0, 1, · · · , m = −l, · · · , l,

with L
(α)
n (·) being the Laguerre polynomials and Y ml (·) being the spherical harmonics. The parameters u

and θ are chosen to specify the center and the scaling of the basis functions. Note that ϕlmn is the product
of a Gaussian and a polynomial of degree l+ 2n. When we truncate the series (1) in our numerical method,
we select a positive integer M as the upper bound of the polynomial, and preserve only the terms with
l + 2n 6M . Thus, the truncated series reads

(2) fM (x,v, t) =

M∑
l=0

l∑
m=−l

b(M−l)/2c∑
n=0

flmn(x, t)ϕlmn(v).

In this expansion, the basis functions ϕlmn satisfy the orthogonality

(3) 〈ϕlmn(v), ϕl′m′n′(v)〉ω :=

∫
R3

ϕ†lmn(v)ϕl′m′n′(v)ω(v) dv = δll′δmm′δnn′ ,

where † refers to the complex conjugate, and the weight function is

ω(v) =

[
1

(2πθ)3/2
exp

(
−|v − u|

2

2θ

)]−1

.

Note that here ω(v) is the reciprocal of a global Maxwellian, while in what follows, we use the term “local
Maxwellian” to refer to the MaxwellianM(v) = exp(α+β ·v+γ|v|2) associated with a distribution function
f(v) by

(4)

∫
R3

 1
v
|v|2

M(v) dv =

∫
R3

 1
v
|v|2

 f(v) dv.

Let f(x, t) be the vector including all the coefficients flmn(x, t) with l + 2n 6 M , and define ϕ as the
vector including all the basis function ϕlmn(v) also with l+ 2n 6M arranged in the same order as f . Then

fM (x,v, t) = [f(x, t)]Tϕ(v).

With the Petrov-Galerkin method [21, 24] based on the orthogonality (3), the semi-discrete Boltzmann
equation has the form

(5)
∂f

∂t
+

3∑
k=1

Ak
∂f

∂xk
= Q : (f ⊗ f).

Here Ak, k = 1, 2, 3 are sparse matrices coming from the discretization of the advection term, and Q is
a 3-tensor representing the discrete collision kernel. Since f has O(M3) components, the tensor Q has
O(M9) elements, where only O(M8) elements are nonzero due to the rotational invariance of the collision
operator [6]. Despite this sparsity of Q, the computational cost grows quickly as M increases. To reduce
the computational cost, in [6, 24], the authors chose M0 < M and split the discrete distribution function
into two parts fM = f (1) + f (2), where

(6)

f (1)(x,v, t) =

M0∑
l=0

l∑
m=−l

b(M0−l)/2c∑
n=0

flmn(x, t)ϕlmn(v),

f (2)(x,v, t) =

M∑
l=0

l∑
m=−l

b(M−l)/2c∑
n=max(0,b(M0−l)/2c+1)

flmn(x, t)ϕlmn(v).

Due to the high efficiency of the spectral approximation, we expect that by choosing M0 < M , the first part
f (1) can capture the sketch of distribution function f , while f (2) provides more details of its profile. For
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simplicity, we write f as

f =

(
f (1)

f (2)

)
,

where f (1) includes all the coefficients in the expansion of f (1) and f (2) includes all the coefficients in the
expansion of f (2). Similarly, we let M denote the coefficients in the truncated expansion of the local
Maxwellian defined by (4),and use M(1) and M(2) to denote its subvectors. Then using the idea of the BGK
and Shakhov collision operators, the original collision term Q : (f ⊗ f) can be approximated by

(7)

(
QM0 : (f (1) ⊗ f (1))
νM0

(M(2) − f (2))

)
.

Here QM0 is the discrete collision kernel for M = M0. The approximation (7) applies the accurate binary
collision operator to the sketch of the distribution function, while for the part representing the finer details,
a simpler BGK-like expression is used instead. Such an idea can be found in [10] as a generalization of the
classical BGK model. It was later realized for the linearized Boltzmann collision operator in [7], where the
authors proved that for the linearized collision term, our BGK-like operator converges to the original operator
in the resolvent sense as M0 → +∞. The generalization to quadratic collision operators was first introduced
in [40], where the choice of the parameter νM0 was chosen to be the spectral radius of the truncated linearized
collision operator following the approach in [7]. Here we adopt the same choice of νM0 , and the details are
given in the Appendix A.

To preserve Maxwellian in the homogeneous Boltzmann equation, in [24], the approximate collision term
(7) is supplemented by adding a close-to-zero term so that the semi-discrete equation reads

(8)
∂f

∂t
+

3∑
k=1

Ak
∂f

∂xk
= Q̃(M0; f) :=

(
QM0

: (f (1) ⊗ f (1) −M(1) ⊗M(1))
νM0(M(2) − f (2))

)
.

Here M(1) plays the same role as f (1) and provides the sketch of the local Maxwellian. Since any Maxwellian
is a smooth function, we again expect that M(1) can well capture the general structure of the Maxwellian
with a moderate value of M0. Thus the corresponding collision term QM0 : (M(1) ⊗M(1)) is likely to be
close to zero. Such a discrete collision term ensures that it vanishes if f (1) = M(1) and f (2) = M(2). The idea
of this approach comes from the steady-state preserving method introduced in [17], which uses an equivalent
form

QM0
: (f (1) ⊗ f (1) −M(1) ⊗M(1)) = QM0

: (g(1) ⊗ g(1) + g(1) ⊗M(1) + M(1) ⊗ g(1)),

where g(1) = f (1) −M(1) denotes the non-equilibrium part of the distribution function. Such splitting also
borrows ideas from the method of micro-macro decomposition to develop asymptotic preserving schemes [4].

The idea of hybridizing expensive and cheap models has been tested in a number of previous works [7, 8,
40, 25, 6, 24]. However, the choice of M0 remains to be problem-dependent, and currently its determination
can only be based on trial-and-error approaches. In this work, we would like to determine M0 based on an
error estimate, and different M0 will be used on different spatial grids.

3. Error indicator for the adaptive collision operator

According to the discussion in the previous section, given f defined on any spatial grid cell, our purpose is
to choose appropriate M0 such that the right-hand side of (8) is a good approximation of the collision term.
Since the collision operator is defined locally in both time and space, we expect that the choice M0 on any
cell depends only on the distribution function defined thereon. Hence, we will omit the arguments x and t
in the following discussion. Also, we assume that the distribution function f has been normalized such that
its integral equals 1. The purpose of this normalization is to provide the bounds for the relative error. To
begin with, we will introduce some notations and assumptions for the sake of convenience.

3.1. Notations and hypotheses. Let TM be truncation operator that cut off the series defined in (1) by
discarding all the terms with polynomials of degree greater than M . Therefore

TMf = fM
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with fM given in (2). Then in the original spectral method (5), the right-hand side represents the coefficients
in the expansion of TMQ[fM , fM ]. In other words, we have

(9) [Q : (f ⊗ f)]Tϕ = TMQ[fM , fM ].

Similarly, for the right-hand side of (8), we have

(10)

(
QM0

: (f (1) ⊗ f (1) −M(1) ⊗M(1))
νM0(M(2) − f (2))

)T
ϕ = TM0

(
Q[f (1), f (1)]−Q[M(1),M(1)]

)
+ νM0(M(2) − f (2)),

where we have used M to denote the local Maxwellian associated with the distribution function f , and we
will use the notationsMM ,M(1) andM(2) defined similarly to (2) and (6). Likewise, we define the operator

QM = TMQ,
so that the right-hand side of (9) can be written as QM [fM , fM ].

To choose M0, we are interested in the estimation of the difference between the two right-hand sides in
(9) and (10). For this aim, we make the following assumptions:

• The truncated series fM provides a sufficiently good approximation of the distribution function f ,
so that we can assume

fM (v) ' 0, ∀v ∈ R3,

where “'” means the inequality holds approximately.
• The truncated seriesMM provides a sufficiently good approximation of the local MaxwellianM, so

that we can assume Q[MM ,MM ] ≈ 0.
• The operator QM provides a sufficiently good approximation of the collision operator Q, so that QM

and Q are interchangeable in the derivation below.

In general, these assumptions mean that M is sufficiently large so that truncated functions and operators
can almost preserve the properties of the original functions and operators. The purpose of these conditions
is to focus mainly on the modeling error to be described below, and temporarily ignore the error introduced
by the spectral method itself. Alternatively, one can regard M as infinity in our following derivations so that
the conditions above hold naturally. After the error indicator is derived, to make the computation feasible,
the infinities that appear in its expression are replaced by a finite M to approximate our error indicator.

Now we use ∆Q to denote the modeling error, i.e. the difference between the right-hand sides of (9) and
(10):

∆Q := QM [fM , fM ]−
(
QM0

[f (1), f (1)]−QM0
[M(1),M(1)] + νM0

(M(2) − f (2))
)
.

Our aim is to find a heuristic error indicator characterizing the size of the quantity above. This error indicator
must be relatively cheap to compute given the expansion of fM . To this end, we split ∆Q into three terms,
written in the three lines below:

∆Q =
(
QM [f (1), f (1)]−QM [M(1),M(1)]

)
−
(
QM0

[f (1), f (1)]−QM0
[M(1),M(1)]

)
+QM [fM , fM ]−

(
QM [f (1), f (1)]−QM [M(1),M(1)]

)
− νM0

(M(2) − f (2)).

(11)

The first line in this equation is the truncation error of the function QM [f (1), f (1)]−QM [M(1),M(1)]. The
estimation of the truncation error usually requires the information of the function, which is expensive to
retrieve. As a workaround, we choose to ignore this term in our error indicator. In fact, this term may be
relatively small due to the following two reasons:

(1) Both f (1) and M(1) are early truncations of the series (only include polynomials of degree up to
M0), which usually appear to be very smooth. Therefore both QM [f (1), f (1)] and QM [M(1),M(1)]
are sufficiently smooth functions which can be well approximated by an early truncation of their
expansions.

(2) According to the observations in [7], the dependence of higher moments on the lower moments is
relatively weak, meaning that f (1) does not produce large numbers in the higher coefficients in the
expansion of QM [f (1), f (1)], which is similar for M(1).

These statements are yet to be verified rigorously. We would like to leave it to future work. Below we will
mainly focus on the quantification of the second line in (11).
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3.2. Building indicator. According to our working hypotheses, we rewrite the second line of (11) by
replacing QM with Q and subtracting an approximately zero term Q[MM ,MM ]. Thereby we can rewrite
this term as

(12) δQ :=
(
Q[fM , fM ]−Q[MM ,MM ]

)
−
(
Q[f (1), f (1)]−Q[M(1),M(1)]

)
.

Using fM = f (1) + f (2) and the fact that Q[·, ·] is quadratic and symmetric, we have
(13)
δQ =

(
Q[MM + (fM −MM ),MM + (fM −MM )]−Q[MM ,MM ]

)
−
(
Q[M(1) + (f (1) −M(1)),M(1) + (f (1) −M(1))]−Q[M(1),M(1)]

)
= 2
(
Q[fM −MM ,MM ]−Q[f (1) −M(1),M(1)]

)︸ ︷︷ ︸
δQa

+
(
Q[fM −MM , fM −MM ]−Q[f (1) −M(1), f (1) −M(1)]

)︸ ︷︷ ︸
δQb

,

where δQa and δQb can be further simplified as

(14)

δQa = 2Q[(f (1) −M(1)) + (f (2) −M(2)),M(1) +M(2)]− 2Q[f (1) −M(1),M(1)]

= 2Q[f (2) −M(2),MM ] + 2Q[f (1) −M(1),M(2)],

δQb = Q[fM −MM , fM −MM ]−Q[(fM −MM )− (f (2) −M(2)), (fM −MM )− (f (2) −M(2))]

= Q[f (2) −M(2), f (2) −M(2)] + 2Q[fM −MM , f
(2) −M(2)].

Inserting (14) into (13) yields

(15)
δQ = 2Q[fM , f

(2) −M(2)]︸ ︷︷ ︸
δQ1

+2Q[f (1) −M(1),M(2)]︸ ︷︷ ︸
δQ2

+Q[f (2) −M(2), f (2) −M(2)]︸ ︷︷ ︸
δQ3

.

This expression implies that δQ is small in either of the following two scenarios:

(1) The functions f (1) and M(1) can accurately describe fM and MM , respectively, which means f (2)

and M(2) are small.
(2) The function fM is close to the equilibriumMM , which means f (1)−M(1) and f (2)−M(2) are both

small.

In either case, the term δQ3 appears to be a quadratic term, and is expected to be smaller than the previous
two terms. Hence, we ignore this term in our error indicator and mainly discuss the estimation of δQ1 and
δQ2. The analysis above indicates that δQ1 and δQ2 present two different sources of the error: δQ1 mainly
captures the error due to the BGK approximation of the high-frequency part, and δQ2 mainly captures the
error due to the missing interaction between the low-frequency part and the high-frequency part.

Before proceeding, we would like to first discuss how much computational cost we can afford to estimate
(15). Recall that the time complexity for evaluating all the coefficients in the expansion of QM [fM , fM ] is
O(M8). Therefore, the computational cost of the indicator should be essentially smaller than O(M8) to
achieve savings. Besides, the computational cost for the right-hand side of (8) is O(M8

0 +M3) according to
[24], and our computational cost for the indicators should not be significantly larger than this. Thus, it is
unrealistic to compute δQ1 directly since its computation requires already O(M8) operations. Meanwhile,
we would also like to avoid direct computation of δQ2 since it requires O(M6M2

0 ) operations, which would
take the most time of the simulation if computed. As a result, we need to estimate these terms using a
computationally cheaper expression. The most naive approach is to consider the following type of estimation:

‖Q[f, g]‖ 6 C‖f‖ · ‖g‖.
Unfortunately, the collision operator Q is unbounded for most collision kernels. Note that the gain term
may be bounded when the assumption of Grad’s angular cut-off holds (see e.g. [36]), while our approach to
be proposed in the rest part of this section does not rely on this assumption.

The basic idea is to bound Q[f, g] by splitting it into the gain and loss operators:

Q+[f, g] =
1

2

∫
R3

∫
n⊥g

∫ π

0

B(|g|, χ)[f(v′)g(v′∗) + f(v′∗)g(v′)] dχdn dv∗,

Q−[f, g] =
1

2

∫
R3

∫
n⊥g

∫ π

0

B(|g|, χ)[f(v)g(v∗) + f(v∗)g(v)] dχdn dv∗.
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Then for any functions f and g satisfying f > 0, if we can find another distribution function h satisfying
|g(v)| 6 h(v) for every v ∈ R3, then it holds that

(16) |Q[f, g]| = |Q+[f, g]−Q−[f, g]| 6 Q+[f, |g|] +Q−[f, |g|] 6 Q+[f, h] +Q−[f, h],

where we have used the positivity of the collision kernel B(|g|, χ) to get the last inequality. Thus, the
right-hand side of (16) can be used as an upper bound of |Q[f, g]|. In general, the computational cost of
this upper bound is as high as a full collision operator. Therefore, the function h must be chosen carefully
so that Q+[f, h] +Q−[f, h] can be efficiently computed. For simplicity, we define

Qabs[f, h] = Q+[f, h] +Q−[f, h],

which is different from Q[f, h] since Q[f, h] is the difference of these two terms. Based on this idea, we need
to answer the following two questions:

(1) What should the general form of h be such that the computation of Qabs[f, h] is efficient?
(2) Given fM , how to find the function h as the bound of fM?

These two questions will be addressed in the following two subsections.

3.2.1. Space of the bounding function. Our choice of h is established on the rotational invariance of the
collision operator:

Lemma 1. For any orthogonal matrix R, let

fR(v) = f(Rv), gR(v) = g(Rv).

Then
Q[f, g](Rv) = Q[fR, gR](v), Qabs[f, g](Rv) = Qabs[fR, gR](v).

Here the rotational invariance of the collision operator is a classical result and can be found in [14, p.
45]. The rotational invariance of Qabs can be derived from the rotational invariance of both Q+ and Q−. A
natural consequence of this result is

Corollary 2. Let h(v) be a function depending only on |v|. Then the linear operator Lh[·] := Qabs[·, h] is a
rotational invariant operator, i.e., for any orthogonal matrix R, we have

Lh[f ](Rv) = Lh[fR](v),

for fR(v) = f(Rv).

For linear rotationally invariant operators, we have the following result:

Theorem 3. Suppose L[·] is a linear rationally invariant operator. For any non-negative integers l and n,
there exists an isotropic function cln(|v|) such that

L[ϕlmn](v) = cln(|v|)ϕlmn(v), ∀m = −l, · · · , l.

This result is already given in [7, Theorem 1], where the statement is written for the linearized collision
operator but the proof only requires the rotational invariance of L. This theorem indicates that the series
form of Lh[ϕlmn] should be

(17) Lh[ϕlmn] =

+∞∑
n1=0

a
(h)
lnn1

ϕlmn1 .

Consequently, if we choose h(v) to be an isotropic function that depends only on |v|, we have

Qabs[fM , h] = Lh[fM ] =

M∑
l=0

l∑
m=−l

b(M−l)/2c∑
n=0

flmnLh[ϕlmn] =

M∑
l=0

l∑
m=−l

b(M−l)/2c∑
n=0

+∞∑
n1=0

flmna
(h)
lnn1

ϕlmn1
.

Numerically, we truncate the series above by replacing +∞ with b(M − l)/2c. Thus, when all the coefficients

a
(h)
lnn′ are given, the computational cost for the expansion of Qabs[fM , h] is O(M4). Technically, this can be

done by carrying out the matrix-vector multiplication

(18) Qabs
lmn1

=

b(M−l)/2c∑
n=0

a
(h)
lnn1

flmn, l = 0, 1 · · · ,M, m = −l, · · · , l, n1 = 0, 1, · · · , b(M − l)/2c,
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as allows efficient libraries of linear algebra to be used.

To find the coefficients a
(h)
lnn1

, we need the expansion of h in terms of the basis functions ϕlmn. Since we
choose h to be isotropic, the expansion holds the form

h(v) =

+∞∑
n′=0

hn′ϕ00n′(v).

For each n′, the function ϕ00n′ is also isotropic, implying that Lϕ00n′ [·] = Qabs[ϕ00n′ , ·] is rotationally
invariant. Thus we can assume

Lϕ00n′ [ϕlmn] =

+∞∑
n1=0

an
′

lnn1
ϕlmn1

,

so that

Lh[ϕlmn] =

+∞∑
n′=0

hn′Lϕ00n′ [ϕlmn] =

+∞∑
n1=0

+∞∑
n′=0

an
′

lnn1
hn′ϕlmn1

.

By comparing this equation with (17), one can find that

(19) a
(h)
lnn1

=

+∞∑
n′=0

an
′

lnn1
hn′ , l = 0, 1, · · · ,M, n, n1 = 0, 1, · · · , b(M − l)/2c.

In practice, we again truncate the above series by replacing +∞ with some N0 = O(M). Then the equation
(19) shows that the computation of all required coefficients again needs O(M4) operations.

By now, we have concluded that choosing h(v) to be an isotropic function can reduce the computational
cost of Qabs[f, h] to O(M4) (including (19) and (18)). To complete the computation, we still need to obtain

an
′

lnn1
for a given collision operator. These coefficients can be precomputed before the simulation, which will

be discussed in detail in Section 3.2.3. Now we will first discuss the construction of h such that |g| 6 h for
some given function g in order that the estimation (16) holds.

3.2.2. The approximation of the bounding function and the error indicator. In our implementation, instead
of looking for h that bounds |g| pointwisely, we choose to find an approximate upper bound with the form

(20) h(v) =

N0∑
n′=0

hn′ϕ00n′(v), N0 =

⌈
M

2

⌉
.

The general idea to find h is to bound the radial part and the angular part separately. To this end, we write
the basis functions as

(21) ϕlmn(v) = ϕ1
ln(v − u)Y ml

(
v − u
|v − u|

)
,

where

(22) ϕ1
ln(v) =

√
21−lπ3/2n!

Γ(n+ l + 3/2)
L(l+1/2)
n

(
|v|2

2θ

)(
|v|√
θ

)l
· 1

(2πθ)3/2
exp

(
−|v|

2

2θ

)
represents the radial part of the basis function. Without loss of generality, we set ū = 0 and θ̄ = 1 in
the analysis below. Since ϕ1

ln(v) depends only on |v|, here we approximate its absolute value by a linear
combination of ϕ00n:

(23) |ϕ1
ln(v)| ≈

N0∑
n′=0

sn
′

lnϕ00n′(v),

and we choose to find the approximation by orthogonal projection:

(24) sn
′

ln =

∫
R3

|ϕ1
ln(v)|ϕ00n′(v)ω(v) dv.
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Since ϕ00n contains a polynomial with even order 2n, by choosing N0 = dM2 e, we can guarantee that the

degree of the polynomial in the right-hand side of (23) is no less than that in the radial function ϕ1
ln. Thus,

it holds for any distribution function g that

(25)

|g(v)| =

∣∣∣∣∣∣
M∑
l=0

b(M−l)/2c∑
n=0

l∑
m=−l

glmnY
m
l

(
v

|v|

)
ϕ1
ln(v)

∣∣∣∣∣∣ 6
M∑
l=0

b(M−l)/2c∑
n=0

∣∣∣∣∣
l∑

m=−l

glmnY
m
l

(
v

|v|

)∣∣∣∣∣ |ϕ1
ln(v)|

6
M∑
l=0

b(M−l)/2c∑
n=0

gln|ϕ1
ln(v)| ≈

M∑
l=0

b(M−l)/2c∑
n=0

gln

N0∑
n′=0

sn
′

lnϕ00n′(v),

where

(26) gln = max
|n|=1

∣∣∣∣∣
l∑

m=−l

glmnY
m
l (n)

∣∣∣∣∣ .
Equation (25) shows that we can choose

(27) hn′ =

M∑
l=0

b(M−l)/2c∑
n=0

glns
n′

ln, n′ = 0, 1, · · · , N0

such that h(v) is an approximate upper bound of g(v).

In the calculation of hn′ , the coefficients sn
′

ln can be precomputed by numerical integration before the
simulation. Thus once gln are obtained, the computational cost is O(M3). As for gln, we again choose to
approximate them instead of computing them exactly. We pick a finite set of points Ω ∈ S2 and approximate
gln by

(28) gln ≈ max
n∈Ω

∣∣∣∣∣
l∑

m=−l

glmnY
m
l (n)

∣∣∣∣∣ .
In our implementation, the fifty-point Lebedev-Gauss integral points [32] are chosen to form the set Ω. Thus
the computational cost to find all gln is also O(M3).

By such means, we can find h(v) with the form (20) such that |f (2)(v)−M(2)(v)| / h(v), meaning that
h(v) is an approximate bound of f (2) −M(2). Thus δQ1 defined in (15) can be bounded by

(29) |δQ1| 6 Qabs[fM , |f (2) −M(2)|] / Qabs[fM , h],

which can be computed via (18) and (19) with computational cost O(M4). To bound δQ2, we adopt the
similar approach: by constructing h(1)(v) and h(2)(v) such that |f (1) −M(1)| / h(1)(v), |M(2)| / h(2)(v)
and

(30) h(1)(v) =

N0∑
n′=0

h
(1)
n′ ϕ00n′(v), h(2)(v) =

N0∑
n′=0

h
(2)
n′ ϕ00n′(v),

we have

(31)

|δQ2| 6 Qabs[|f (1) −M(1)|, |M(2)|] / Qabs[h(1), h(2)]

=

N0∑
n′=0

N0∑
n=0

h(1)
n h

(2)
n′ Lϕ00n′ [ϕ00n] =

N0∑
n′=0

N0∑
n=0

h(1)
n h

(2)
n′

N0∑
n1=0

an
′

0nn1
ϕ00n1

=

N0∑
n1=0

(
N0∑
n′=0

N0∑
n=0

h(1)
n h

(2)
n′ a

n′

0nn1

)
ϕ00n1

,

where the coefficients

(32) Q̃abs
n1

=

N0∑
n′=0

N0∑
n=0

h(1)
n h

(2)
n′ a

n′

0nn1
, n = 0, 1, · · · , N0
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can be computed with time complexity O(M3). Finally, we choose our error indicator to be the sum of the
bounds of both δQ1 and δQ2:

(33) Indicator =

√√√√ M∑
l=0

l∑
m=−l

N0∑
n1=0

∣∣Qabs
lmn1

∣∣2 +

√√√√ N0∑
n1=0

∣∣∣Q̃abs
n1

∣∣∣2.
Here we have used the weighted L2-norm with weight function ω(v) so that the norm is simply the sum
of squares of the coefficients. This error indicator can be considered as an a posteriori estimation of the
truncation error, since it depends on the numerical solution but only estimates the error of the collision term
instead of the solution itself.

In the indicator above, we did not consider the third line of (11) since the contribution of this term is
similar to h times a constant (since h(v) is the approximate bound of |f (2)(v)−M(2)(v)|). Such contribution
has been covered by the term Qabs[fM , h] and it is less meaningful to duplicate it in the error indicator.

3.2.3. Computation of the coefficients an
′

lnn1
. By the orthogonality of the basis functions (3), we have

(34) an
′

lnn1
=

∫
R3

p†lmn(v)Qabs[ϕlmn1
, ϕ00n′ ](v) dv

for any m = −l, · · · , l. For simplicity, here we have used

plmn(v) = ϕlmn(v)ω(v),

and plmn is a polynomial of degree l + 2n. Below we will also use p0
lmn to denote the polynomial plmn with

u set to be zero. In our calculation, we choose m = 0 so that all the functions are real and we can remove
“†” in (34). A well-known property of the collision integral is

∫
R3

pl0n(v)Qabs[ϕl0n1 , ϕ00n′ ](v) dv

=
1

2

∫
R3

∫
R3

∫
n⊥g

∫ π

0

[pl0n(v′) + pl0n(v′∗) + pl0n(v) + pl0n(v∗)]B(|g|, χ)ϕl0n1(v)ϕ00n′(v∗) dχdndv∗ dv.

(35)

A classical approach [22, 31] to computing this integral is to define

g′ = v′ − v′∗, h =
v + v∗

2
,

which yields

|g| = |g′|, v = h+
1

2
g, v∗ = h− 1

2
g, v′ = h+

1

2
g′, v′∗ = h− 1

2
g′, dv dv∗ = dg dh.

The purpose of these changes of variables is to convert the integral with respect to v∗ and v to the integral
with respect to g and h. This requires us to express the polynomials in (35) by linear combinations of the
basis polynomials of g and h. This requires the following result:

Theorem 4. For any non-negative integers l, n and n′, it holds that

pl0n

(
h+

1

2
g

)
p00n′

(
h− 1

2
g

)
=

∑
l1,l2,n1,n2>0

l1+l2+2(n1+n2)=l+2(n+n′)

∑
m1=−l1,··· ,l1
m2=−l2,··· ,l2
m1+m2=0

Al1l2m2n2

lnn′ pl1m1n1
(
√

2h)p0
l2m2n2

(
g√
2

)
.(36)
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The coefficients Al1l2m2n2

lnn′ are constants satisfying the recurrence relation:

Al1l2m2n2

ln,n′+1 =
1√

(n′ + 1)(n′ + 3/2)

[
2∑
k=1

√
nk(nk + lk + 1/2)

2
Al1l2m2,n2−δ2k
lnn′

+

1∑
µ=−1

(−1)µ
(√

(l1 + n1 + 1/2)(l2 + n2 + 1/2)γ−µl1,m2+µγ
−µ
l2,m2+µA

l1−1,l2−1,m2+µ,n2

lnn′

− (−1)µ
√
n1(l2 + n2 + 1/2)γ−µ−l1−1,m2+µγ

−µ
l2,m2+µA

l1+1,l2−1,m2+µ,n2

lnn′

− (−1)µ
√
n2(l1 + n1 + 1/2)γ−µl1,m2+µγ

−µ
−l2−1,m2+µA

l1−1,l2+1,m2+µ,n2−1
lnn′

+
√
n1n2γ

−µ
−l1−1,m2+µγ

−µ
−l2−1,m2+µA

l1+1,l2+1,m2+µ,n2−1
lnn′

)]
,

(37)

where n1 = (l − l1 − l2)/2 + (n+ n′ − n2), and γµlm is defined by

(38) γµlm =

√
[l + (2δ1,µ − 1)m+ δ1,µ][l − (2δ−1,µ − 1)m+ δ−1,µ]

2|µ|(2l − 1)(2l + 1)
,

and Al1m1n1,l2m2n2

lnn′ is regarded as zero if any of the following conditions are violated:

(1) l1, l2, n2 are positive integers; (2) l − l1 − l2 + 2(n+ n′ − n2) > 0; (3) |m2| 6 min(l1, l2).

The proof of this theorem is similar to the proof of [7, Proposition 3], and the details can be found in
Appendix B. The recurrence relation (37) helps compute the coefficients in the expansion (36). The initial

condition corresponds to the case n′ = 0, for which p00n′(·) ≡ 1 and the corresponding coefficients Al1l2m2n2

lnn′

have been derived in [7, Proposition 3].
By (36), we have

pl0n(v′) + pl0n(v′∗) + pl0n(v) + pl0n(v∗)

=
∑

l1,l2,n1,n2>0
l1+l2+2(n1+n2)=l+2n

∑
m1=−l1,··· ,l1
m2=−l2,··· ,l2
m1+m2=0

Al1l2m2n2

ln0 pl1m1n1
(
√

2h)×

[
p0
l2m2n2

(
g′√

2

)
+ p0

l2m2n2

(
− g

′
√

2

)
+ p0

l2m2n2

(
g√
2

)
+ p0

l2m2n2

(
− g√

2

)]
=

∑
l1,l2,n1,n2>0

l1+l2+2(n1+n2)=l+2n

∑
m1=−l1,··· ,l1
m2=−l2,··· ,l2
m1+m2=0

[1 + (−1)l2 ]Al1l2m2n2

ln0 pl1m1n1
(
√

2h)

[
p0
l2m2n2

(
g′√

2

)
+ p0

l2m2n2

(
g√
2

)]
,

where we have used the property that p0
lmn is odd/even if l is odd/even. By the equality [26, Eq. (7.1)]∫

n⊥g
p0
lmn

(
g′√

2

)
dn = 2πp0

lmn

(
g√
2

)
Pl(cosχ),

we conclude that

∫
n⊥g

[pl0n(v′) + pl0n(v′∗) + pl0n(v) + pl0n(v∗)] dn

=
∑

l1,l2,n1,n2>0
l1+l2+2(n1+n2)=l+2n

∑
m1=−l1,··· ,l1
m2=−l2,··· ,l2
m1+m2=0

2π[1 + (−1)l2 ][Pl2(cosχ) + 1]Al1l2m2n2

ln0 pl1m1n1
(
√

2h)p0
l2m2n2

(
g√
2

)
.

(39)

Next, we perform the following operations:

(1) Insert (39) into (35);
(2) Use (36) to expand ϕl0n1

(v)ϕ00n′(v∗) in (35);
(3) Use the orthogonality (3) to integrate with respect to h.
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(4) Represent g using spherical coordinates as gω and use the orthogonality of spherical harmonics to
integrate with respect to ω.

We omit the details of these steps since they are standard procedures to compute the moments of the collision
operators. Afterward, we obtain

an
′

lnn1
=

∑
l1,l2>0

l−(l1+l2) is even
l1+l26l+2 min(n,n1+n′)

min(l1,l2)∑
m2=−min(l1,l2)

∑
n2,n

′
2>0

n−n2=n1+n′−n′
2

n26(l−l1−l2)/2+n

√
n2!n′2!

Γ(l2 + n2 + 3/2)Γ(l2 + n′2 + 3/2)
Al1l2m2n2

ln0 A
l1l2m2n

′
2

ln1n′

× π[1 + (−1)l2 ]

∫ +∞

0

∫ π

0

B(
√

4θ̄r, χ)[Pl2(cosχ) + 1]L(l2+1/2)
n2

(r)L
(l2+1/2)
n′
2

(r)rl2+1/2 exp(−r) dχdr,

(40)

where r comes from the change of variables r = g2/(4θ̄).
The integrals with respect to χ and r depend on the collision kernel. For the variable-hard-sphere (VHS)

model, the collision kernel is

(41) B(g, χ) = gν sinχ for ν ∈ [0, 1].

In this case, the underlined integral in the equation above can be computed explicitly as

2ν+1(δ0,l2 + 1)θ̄ν/2
∫ +∞

0

L(l2+1/2)
n2

(r)L
(l2+1/2)
n′
2

(r)rl2+(ν+1)/2 exp(−r) dr

= (−1)n2+n′
22ν+1(δ0l2 + 1)θ̄ν/2Γ

(
l2 + 1 +

ν + 1

2

)min(n2,n
′
2)∑

k=0

(
ν/2
n2 − k

)(
ν/2
n′2 − k

)(
k + l2 + (ν + 1)/2

k

)
.

(42)

Note that the coefficients an
′

lnn1
can all be precomputed before the simulation. In our implementation, we

ignore the coefficient θ̄ν/2 since it only introduces a universal constant to the indicator.

3.3. Adaptive strategy. With the error indicator defined by (33), we compute this quantity for the dis-
tribution function on each spatial grid cell after every time step. For distribution functions with a large
indicator, we increase the value of M0 at the next time step, and vice versa. In our implementation, in
order that the numerical solution does not oscillate due to the self-adaptation, we would like to maintain
the stability of the collision model by avoiding the drastic change of the value of M0. To this end, we adopt
the following two strategies:

• Instead of a single threshold for the indicator like in most adaptive methods, we introduce two
thresholds ε1 and ε2. If the error indicator of a certain distribution function lies between (ε1, ε2), we
keep the value of M0 unchanged.

• The value of M0 changes only by 1 at each time step. More precisely, if the error indicator exceeds
ε2, we increase M0 by 1; if the error indicator falls below ε1, we reduce M0 by 1.

In general, if the range of the interval (ε1, ε2) is wider, M0 is more stable and the algorithm is less adaptive.
A larger lower bound ε1 makes it easier for M0 to drop; a larger upper bound ε2 makes it harder for M0 to
increase. In many applications, the bounds do not need to be too tight since the first few moments (e.g.,
density, velocity, and temperature) are usually not very sensitive about small changes of the collision models.
This is why some simpler collision models such as the ES-BGK and the Shakhov models can still provide
decent numerical results for these macroscopic variables.

To select the proper values of ε1 and ε2, we adopt the following strategy:

(1) Do a test run with a small M0 (e.g. M0 = 3) being fixed without self-adaptation. Calculate the
indicators for all time steps on all grid cells, and find its maximum value εmax.

(2) Use εmax as a reference value and choose the initial guesses of ε1 and ε2. They should be less than
but not too far away from εmax, e.g. ε1 = εmax/4 and ε2 = εmax/2.

(3) Do a test run for the self-adaptive algorithm with the chosen ε1 and ε2, and then reduce ε1 (e.g. set
ε1 to be ε1/2).

(4) Do another test run for the current ε1 and ε2.
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(5) Compare the results of the two most recent runs. Go to the next step if the two results are sufficiently
close to each other; otherwise, reduce ε1 again and return to the previous step.

(6) Keep ε1 fixed and reduce the value of ε2 (e.g. set ε2 to be ε2/2).
(7) Compare the results of the two most recent runs. Stop if the two results are sufficiently close to

each other; otherwise, reduce the value of ε2 and check if ε1 < ε2. If so, return to Step 6; otherwise,
reduce ε1 and return to Step 3.

Here, the purpose of the first step is to provide a general range of the acceptable error indicator. Then,
based on the initial guess of ε1 and ε2 in the second step, we first determine the lower bound by reducing
ε1 until the solution looks stable, and then apply the same approach to ε2 to find a suitable upper bound.
All test runs can be carried out on a coarse grid to save computational time. An example will be given in
Section 4.2.1.

3.4. Outline of the algorithm. As a summary, below we list out the general steps of our algorithm:

(1) Precompute the coefficients sn
′

ln according to (24).

(2) Precompute the coefficients Al1l2m2n2

lnn′ according to (37).

(3) Precompute the coefficients an
′

lnn1
according to (40) with the underlined term replaced by (42).

(4) Solve the Boltzmann equation by one time step. Terminate if the final time is reached.
(5) For each distribution function, use (27) and (28) to find the bounding functions h, h(1) and h(2),

which bound f (2) −M(2), f (1) −M(1) and M(2), respectively.
(6) Use (18)(19)(32)(33) to compute the error indicator for each collision term.
(7) Perform self-adaptation on each grid cell: if the error indicator is greater than the threshold ε1, we

increase M0 by 1; if the error indicator is less than the threshold ε2, we decrease M0 by 1 if M0 > 3.
(8) Return to Step 4.

In the algorithm, we have required that M0 is no less than 3, which is the smallest M0 that includes the
heat flux in the quadratic part of the collision operator. This ensures that the Navier-Stokes limit can
always be correctly captured. The computation of the indicator lies in Steps 5 and 6. In these two steps,
the computation of (18) and (19) has complexity O(M4), and the computation (28) requires O(|Ω|M3)
operations, where |Ω| denotes the number of quadrature points on the sphere. These parts take up most of
the computational time in Steps 5 and 6. Note that the computational cost of the indicator depends on M
instead of M0, since the computation of Qabs(·, ·) involves the complete distribution function instead of only
the low-frequency part, so that the error due to the inaccuracy of the high-frequency part can be captured.
Nevertheless, as we will see in the next section, such a cost is quite small compared to the evaluation of the
collision operator for a large M0.

4. Numerical scheme and experiments

We are now ready to integrate the adaptation technique into the Boltzmann solver and carry out numerical
experiments. In what follows, we will first brief our numerical algorithm to solve the system (8), and then
present several numerical experiments to demonstrate the effectiveness of the proposed indicator.

4.1. Numerical scheme. For convenience, we will only provide the numerical algorithm for the spatially
one-dimensional case (the velocity space is still three-dimensional), where we assume that

(43)
∂f

∂x2
=

∂f

∂x3
= 0.

The algorithm can be naturally generalized to the multi-dimensional case with uniform grids. Suppose the
spatial domain Ω ⊂ R is discretized by a uniform grid with cell size ∆x. Using fnj to approximate the average
of f over the jth grid cell [xj−1/2, xj+1/2] at time tn, we can solve the system (8) by the following finite
volume method with time step size ∆t:

(44) f∗j = fnj −
∆t

∆x
[Fnj+1/2 − Fnj−1/2], fn+1

j = f∗j + ∆tQ̃(M0; fnj ),
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where Q̃(M0; fnj ) is the modified collision operator defined in (8). The numerical fluxes Fnj±1/2 are chosen

according to the HLL scheme [23]:

(45) Fnj+1/2 =
λRA1f

n
j − λLA1f

n
j+1 + λRλL

(
fnj+1 − fnj

)
λR − λL

,

where λR and λL are the minimum and maximum eigenvalues of A1, respectively. Precisely, we have

(46) λL = ū1 − CM+1

√
θ̄, λR = ū1 + CM+1

√
θ̄,

and CM+1 is the largest zero of the Hermite polynomial of degree M + 1. Here the parameters are always
chosen such that λL < 0 and λR > 0 to avoid advection only in one direction. Besides, the time step size is
determined by the CFL condition

(47) ∆t
|ū1|+ CM+1

√
θ̄

∆x
= CFL < 1.

In our actual implementation, we have upgraded this scheme to the second order by linear reconstruction with
minmod limiter, Heun’s time integrator, and the Strang splitting. Such strategies are standard techniques
and can be found in many textbooks (e.g. [33]).

4.2. One-dimensional numerical examples. In this section, we present two numerical examples, both
of which use the variable hard sphere model with ν = 5/9 (see (41)). In our simulation, in order to prevent
the computational cost from getting out of control, we set a cap for the value of M0 to be 15, and we use
the non-adaptive results with M0 = 15 being fixed as our reference solution. All the numerical tests in this
section are carried out on a desktop with CPU model Intel® Core™ i7-7600U.

4.2.1. Colliding flow. We consider the colliding flow with the initial condition

(48) f(x,v, 0) =
ρ(x)

(2πθ(x))3/2
exp

(
−|v − u(x)|2

2θ(x)

)
with

(49) ρ(x) = 1, u(x) =

{
(1, 0, 0)T , if x < 0,

(−1, 0, 0)T , if x > 0,
θ(x) = 1/3.

We scale the collision term such that the Knudsen number equals 0.5. The initial condition consists of
two equilibrium flows with the same temperature moving in opposite directions, and it is expected that the
collision of the two Maxwellians will create some non-equilibrium effects, which require a relatively large M0

to accurately capture the flow states.
The computational domain is set as [−20, 20]. In (2), we choose M to be 30, and ū and θ̄ are set to be

0 and 1, respectively. To determine the values of the thresholds ε1 and ε2, we follow the strategy in Section
3.3 and carry out a test run for M0 fixed to be 3 up to t = 15. The cell size is chosen to be ∆x = 0.4 in all
the test runs below. The numerical solutions of this test run at different times are given in Figure 1, which
plots the density ρ and heat flux q of the gas, which are defined by

(50) ρ =

∫
R3

f(v) dv, q =
1

2

∫
R3

|v − u|2(v − u)f(v) dv,

where u is the average velocity of gas molecules:

(51) u =
1

ρ

∫
R3

vf(v) dv.

For this one-dimensional flow, only the first component of q is plotted. Due to the insufficient resolution of
the solution and the small value of M0, the peak values of both density and heat flux are not well captured,
but the general behavior of the flow is still qualitatively correct: the collision of the flow generates two shock
waves moving in opposite directions, and the heat flux is nonzero inside these shock waves. During the test
run, we record the maximum value of the indicator, which turns out to be

εmax = 15.6.
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This leads us to the following initial guess of ε1 and ε2:

(ε1, ε2) = (4, 8) ≈ (εmax/4, εmax/2).
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(a) ρ
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(b) q1

Figure 1. Plots of density and heat flux for the colliding flow with M0 = 3 (fixed) at
different times.

We now carry out a test with adaptive collision operators using this pair of parameters, and then reduce
the value of ε1 to 2 and run another test. The comparison of these two tests is given in Figure 2, where we
only present the non-equilibrium variable q1 that shows a more significant difference than the equilibrium
variables. It can be seen from Figure 2b that the smaller value of ε1 leads to slightly greater M0 inside the
shock wave. Since the graph of q1 in Figure 2a still shows quite some difference between the two solutions,
we further reduce ε1 by a half and carry out another test run. The comparison of the solutions is given in
Figure 3. We are now satisfied with the small difference and will fix the value of ε1 to be 1.
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(a) q1. Solid lines: (ε1, ε2) = (4, 8).

Dashed lines: (ε1, ε2) = (2, 8).
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(b) M0. Solid lines: (ε1, ε2) = (4, 8).

Dashed lines: (ε1, ε2) = (2, 8).

Figure 2. Profiles of heat flux and distributions of M0 for the colliding flow with two
different pairs of indicator thresholds (ε1, ε2) = (4, 8) and (ε1, ε2) = (2, 8).
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(a) q1. Solid lines: (ε1, ε2) = (2, 8).

Dashed lines: (ε1, ε2) = (1, 8).
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(b) M0. Solid lines: (ε1, ε2) = (2, 8).

Dashed lines: (ε1, ε2) = (1, 8).

Figure 3. Profiles of heat flux and distributions of M0 for the colliding flow with two
different pairs of indicator thresholds (ε1, ε2) = (2, 8) and (ε1, ε2) = (1, 8).

The selection of ε2 is done in a similar way. We reduce ε2 from 8 to 4 and compare the results with the
parameters (ε1, ε2) = (1, 8) and (ε1, ε2) = (1, 4). As shown in Figure 4, in a few grid cells inside the shock
wave, the values of M0 have been significantly increased, while the solution of the heat flux does not change
too much. We therefore fix the value of ε2 to be 4. The computational times for these test runs are given in
Table 1, which look affordable due to the coarse grid size.
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(a) q1. Solid lines: (ε1, ε2) = (1, 8).
Dashed lines: (ε1, ε2) = (1, 4).
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(b) M0. Solid lines: (ε1, ε2) = (1, 8).
Dashed lines: (ε1, ε2) = (1, 4).

Figure 4. Profiles of heat flux and distributions of M0 for the colliding flow with two
different pairs of indicator thresholds (ε1, ε2) = (1, 8) and (ε1, ε2) = (1, 4).

Next, we refine the grid and set the cell size to be ∆x = 0.1. With (ε1, ε2) chosen to be (1, 4), we rerun
the simulation up to t = 15. The numerical solutions at different times are given in Figure 5, including three
equilibrium quantities (density ρ, velocity u and temperature θ) and one non-equilibrium moment (heat flux
q). The temperature θ is related to the distribution function by

(52) θ =
1

3ρ

∫
R3

|v − u|2f(v) dv.
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Table 1. CPU times of the test run for the collision flow. The parameters (0,+∞) refers
to the non-adaptive run with M0 fixed to be 3.

(ε1, ε2) (0,+∞) (4, 8) (2, 8) (1, 8) (1, 4)

Total CPU time (s) 240.62 479.27 510.55 525.35 724.82

For the velocity and heat flux, only their first components are plotted due to the one-dimensional nature
of the flow. Similar to our test runs, the flow structure emerges from the middle of the domain due to the
interaction of the two Maxwellians, producing higher density and temperature. Then two shock waves are
formed and move in opposite directions. After the two shock waves are separated, the center of the domain
returns to local equilibrium state. We would like to emphasize that Figure 5 includes two sets of solutions
(the reference solution and the self-adaptive solution) which almost coincide.
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Figure 5. Solution of the colliding flow at different times. The solid lines are the numerical
solution of the adaptive algorithm and the dashed lines are the reference solution.

The evolution of the distribution of M0 is provided in Figure 6. Initially, we set M0 = 15 on all grid
cells. In a few time steps, this drops to 3 almost everywhere except the center of the domain. Afterward,
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the evolution of M0 well agrees with the evolution of the non-equilibrium. During the simulation, most
part of the domain is in the local equilibrium state, where M0 stays at its lowest value 3, requiring much
less computational cost. Consequently, as shown in Table 2, the total CPU time is significantly reduced
compared with the simulation using a uniform M0. Moreover, the evaluation of the error indicator only
takes a relatively small portion of the total computational time, which agrees with the goal we set in Section
1. It is also worth mentioning that the total computational time is 3993.29s, which is even longer than the
sum of all our test runs.
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(d) M0, t = 5, 10, 15

Figure 6. Distribution of M0 for the colliding flow at different times.

Table 2. Statistical data for the colliding flow. Tref and Tadp refer to the average CPU
time per time step for the reference solution and the self-adaptive solution, respectively, and
Tind refers to the average CPU time per time step for the computation of the error indicator.

Tref Tadp Tind 1− Tadp/Tref Tind/Tadp

16.96s 1.06s 0.108s 93.7% 10.1%
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4.2.2. Planar Couette flow. The planar Couette flow is a commonly used benchmark problem for the one-
dimensional Boltzmann equation. We assume that the gas between two infinite parallel plates has an initial
temperature θ = 1, and the two plates move in the opposite directions with velocities parallel to the plates.
The speeds of both plates are 0.5, and the distance between the two plates is L = 1. Both plates are assumed
to be completely diffusive, meaning that for any particle hitting the wall, the reflected velocity is completely
independent of the incident velocity. Instead, the distribution of the reflected velocity follows the Maxwellian
with the wall velocity being the center and wall temperature being the variance. The implementation of the
boundary condition in the Burnett spectral method has been detailed in [24, Section 3.4]. The initial state
of the fluid is set to be a uniform Maxwellian with density ρ = 1, velocity u = 0 and temperature θ = 1.
Driven by the motion of the plates, the flow will reach a steady state as time approaches infinity. Here we
choose the Knudsen number to be 0.5, for which a strong non-equilibrium can be expected, especially on the
boundary of the domain where the distribution function is discontinuous.

Numerically, we set ū = 0, θ̄ = 1 and M = 30 in (2). A uniform grid with 200 cells is used for spatial
discretization, and the thresholds of the error indicator are set to be ε1 = 1 and ε2 = 8. Figure 7 shows the
numerical solution of the four moments defined in (50)(51) and (52), and Figure 8 shows the evolution of the
parameter M0. During the evolution to the steady state, some small differences between the self-adaptive
solution and the reference solution can be observed. The discrepancy of the velocity profiles appears to be
the most significant due to its small magnitude. In this example, large M0 only appears near the boundary
of the domain for small t, since the central part of the domain is still mostly in the initial equilibrium
state. As the boundary effect propagates inward, the value of M0 gradually increases. Interestingly, the
distribution of M0 reaches the “steady state” earlier than the fluid does. As shown in Figures 8c and 8d, at
t = 1.0, while the fluid structure is still evolving, M0 does not change with time any more. Compared to the
example in Section 4.2.1, the non-equilibrium spreads more widely in this case, resulting in less reduction of
the computational cost (see Table 3). Nevertheless, the CPU time per time step is still reduced to nearly
one-sixth. Here, the computation of the indicator takes a smaller portion since longer time is spent on the
evaluation of the collision term.

Table 3. Statistical data for the planar Couette flow. Tref and Tadp refer to the CPU time
per time step for the reference solution and the self-adaptive solution, respectively, and Tind

refers to the CPU time per time step for the computation of the error indicator.

Tref Tadp Tind 1− Tadp/Tref Tind/Tadp

8.54s 1.51s 0.057s 82.3% 3.78%

4.3. Two-dimensional examples. In our two-dimensional examples, we also consider the variable hard
sphere model with ν = 5/9, and M0 is still capped at 15. Two examples with and without boundary
conditions will be considered in the following two subsections.

4.3.1. Fluid diffusion. Our first two-dimensional example considers the initial data

f(x1, x2,v, 0) =
ρ(x1, x2)

(2πθ(x1, x2))3/2
exp

(
−|v − u(x1, x2)|2

2θ(x1, x2)

)
,

where u(x1, x2) = 0 and θ(x1, x2) = 1 for all x1 and x2, while ρ(x) is set to be

ρ(x1, x2) =

{
10, if |x1| 6 0.05 and |x2| 6 0.05,
1, otherwise.

We set the computational domain to be Ω = [−0.5, 0.5] × [−0.5, 0.5] and apply the Neumann boundary
condition to simulate the flow in the unbounded domain. In this example, there is a high density region in
the center of the domain, and we are interested in the dynamics of its diffusion into the background fluid.
Here we choose the Knudsen number to be Kn = 0.05. The parameters in (2) are set to be M = 30, ū = 0
and θ̄ = 1. A uniform grid of size 200× 200 is utilized here to discretize the physical space. The thresholds
of the error indicator are chosen as (ε1, ε2) = (2.5, 8.5).
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Figure 7. Solution of the Couette flow at different times. The solid lines are the numerical
solution of the adaptive algorithm and the dashed lines are the reference solution.

We plot the evolution of the fluid states in Figure 9, with reference solutions computed by using M0 = 15
everywhere. Besides the equilibrium variables density ρ and temperature θ, we have also plotted the shear
stress σ12, which is related to the distribution function by

(53) σ12 =

∫
R3

(v1 − u1)(v2 − u2)f(v) dv.

It can be seen that the density in the center of the domain gradually decreases, and as the mass flows out,
the temperature also starts to decrease so that the total energy can be conserved. Due to the symmetry
of the initial data, the value of the non-equilibrium variable σ12 equals zero on both x- and y-axes. As
the fluid evolves with time, the non-equilibrium effect spreads out, while the peak values of σ12 start to
decrease. With our adaptive method, these phenomena can be accurately captured. To get a clearer view
of the difference between the adaptive solutions and the reference solutions, we define

(54) Eρ = ρadp − ρref , Eθ = θadp − θref , Eσ12
= σadp

12 − σref
12 ,

where the superscripts “adp” and “ref” denote the adaptive solution and the reference solution, respectively.
These quantities are plotted in Figure 10, and the corresponding relative L2 differences are given in Table 4.
One can observe that the difference between the two solutions increases with time due to the accumulation
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Figure 8. Distribution of M0 for the Couette flow at different times.

of the error. This also implies that the thresholds ε1 and ε2, whose values stay the same throughout the
simulation, do not directly correspond to the error of the solution. Our error indicator only estimates the
local truncation error, which may accumulate in time-dependent problems. In such circumstances, to ensure
the numerical accuracy for longer simulations, one may need to choose smaller values of ε1 and ε2. Such an
effect is automatically incorporated into the procedure of parameter selection introduced in Section 3.3 if
the test runs are also preformed until the desired final time.

Table 4. Relative L2 difference between the self-adaptive solution and the reference solu-
tion.

t = 0.04 t = 0.08 t = 0.12 t = 0.15

‖Eρ‖L2/‖ρref‖L2 0.01% 0.03% 0.11% 0.24%

‖Eθ‖L2/‖θref‖L2 0.01% 0.04% 0.12% 0.20%

‖Eσ12‖L2/‖σref
12 ‖L2 0.30% 0.84% 1.29% 2.01%
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Figure 9. Solution of the fluid diffusion problem at different times. The red contours are
the numerical solutions of the adaptive method and the black contours are the reference
solutions.
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Figure 10. Error (54) of the fluid diffusion problem at different times.
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The evolution of the distribution of M0 is given in Figure 11. Initially, the mixing of two fluid regions
creates some non-equilibrium. However, due to the high density in the central part of the domain, fast
collisions of particles keep the fluid near its local equilibrium, so that M0 is generally not too large at t = 0.04.
As t increases, both the density and the temperature in the central area decrease, and correspondingly, M0

needs to be increased to capture the non-equilibrium effects. From t = 0.12 to t = 0.15, although the fluid
has spread more widely, the outside layers are almost in the equilibrium states, and therefore the distribution
of M0 does not change significantly. Compared with the reference solution, the average CPU time per time
step is reduced from 1473 seconds to 123.7 seconds using our method.
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(d) t = 0.15

Figure 11. Distribution of M0 for fluid diffusion at different times.

4.3.2. Lid-driven cavity flow. Our second example assumes that the gas is in a square cavity Ω = [0, 1]×[0, 1],
and we scale the collision term such that the Knudsen number is 0.1. The top lid of the cavity moves
horizontally at a constant speed v = 0.0208, and all the four sides of Ω are assumed to be fully diffusive.
Initially, the fluid is in the equilibrium state with density ρ = 1, velocity u = 0 and temperature θ = 1. The
friction between the lid and the gas causes the rotation of the fluid, and a steady state will be developed
after a sufficiently long time. Such an example has been widely studied in the literature [28, 35]. Here we
discretize the domain Ω with a uniform grid of size 100× 100. The parameters in (2) are set to be M = 40,
ū = 0 and θ̄ = 1. The reference solution will again be provided by the uniform M0 equal to 15.

To study the effect of adaptive parameters, we consider two groups of thresholds: (ε11, ε
1
2) = (0.05, 0.20)

and (ε21, ε
2
2) = (0.025, 0.08). Clearly, the second set of parameters is tighter and will lead to larger M0 in

the simulations. The evolution of the fluid states is plotted in Figure 12, which includes the density ρ,
the temperature θ, and shear stress σ12 at time t = 0.5, 1, 5 and the steady state. One can observe the
singular flow structure in the top two corners of the cavity, where the distributions are distorted due to the
inconsistent boundary velocities. In Figure 12, three sets of solutions generally agree with each other. Some
differences can be observed in the second column representing the temperature contours. Despite this, the
relative difference in temperature between our results and the reference solution is well below 0.05%. In the
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first and third columns, all the three sets of contour lines almost coincide with each other, indicating the
effectiveness of our error indicator.

The distribution of M0 is given in Figure 13. Since the flow is driven by the movement of the top lid,
non-equilibrium emerges from the upper part of the domain, and then expands downward as t increases. For
the first set of parameters (left column), the value of M0 reaches the cap 15 only near the boundary of the
domain, where the distribution function is discontinuous, while in the right column, more than a half of the
grid cells are covered by the collision term with M0 = 15, which is consistent with our prediction.

4.4. Discussion on the choice of parameters. In the previous numerical examples, one can observe that
the choice of the thresholds ε1 and ε2 appears to be quite problem-dependent. This is mainly due to the
different requirements of the numerical accuracy in different problems. Generally speaking, for flows with
larger fluctuations such as Section 4.3.1, we tend to choose a larger pair of parameters since the small error
is less noticeable, while for the lid-driven cavity flow in Section 4.3.2, the parameters are chosen smaller
since the contour lines are more sensitive to the numerical error. In practice, when the flow structure is
complicated, the flows in different areas may have different features, which may require different thresholds
to obtain proper relative errors. To achieve this, a straightforward method is to add the spatial variable x to
both thresholds. Then the method in Section 3.3 can still be applied to determine ε1(x) and ε2(x). Further
study of this approach will be considered in our future work.

5. Summary and outlook

This paper contributes to the efficient simulation of the Boltzmann equation with the quadratic collision
operator. Instead of a full discretization of the binary collision term, we choose to replace part of it with
the BGK simulation, and the choice of “BGK part” changes with the distribution function. To make proper
choices adaptively, we construct our error indicator based on a novel idea that uses a cheaper linear operator
to control some quadratic parts of the error term, so that even in the case where the full binary collision
operator has to be used widely, our adaptive method does not slow down the computation. Our numerical
simulation shows the affordability and reliability of our indicators.

The error indicator introduced in this paper is specially designed for the Burnett spectral method, while
we expect that the same idea can be applied to other approaches such as the Fourier spectral method, which
has lower time complexity. As the Fourier spectral method is also much cheaper for certain particular models
[16], we are exploring the possibilities of such extensions.

Appendix A. Choice of the parameter νM0

The parameter νM0
in the approximate collision term (7) is chosen following [7, 40, 6]. It can be obtained

by the following steps:

• Set u and θ to be the velocity u and temperature θ, respectively, so that

M =

(
M(1)

M(2)

)
= (ρ, 0, · · · , 0)T .

• Define the linearized collision operator

L(f (1)) = QM0
: (f (1) ⊗M(1)).

Since M(1) denotes an isotropic distribution function, the operator can be expressed by

glmn =

b(M0−l)/2c∑
n′=0

a0
lnn′flmn′ , l = 0, 1, · · · ,M0, m = −l, · · · , l, n = 0, · · · , b(M0 − l)/2c

where flmn′ are the components of f (1) and glmn are the components of L(f (1)).
• Set νM0

to be the spectral radius of L, which can be computed via

νM0 = max
l=0,1,··· ,M0

max{|λ| : λ is the eigenvalue of the matrix Al = (a0
lnn′)}.

The coefficients a0
lnn′ are given in (34), and the matrix eigenvalues are numerically computed.
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When M0 = 2, the matrix A0 is a 2 × 2 matrix, and A1 and A2 are scalars. Due to the conservation of
mass, momentum and energy, we have A0 = 0, A1 = 0. Thus, the absolute value of the only coefficient a0

200

in A2 provides the value of νM0
. This coefficient indicates the decay rate of the stress tensor, which is often

used as the collision frequency in the BGK model.

Appendix B. Proof of Theorem 4

Lemma 5. Given non-negative indices l, n, n′, l1, n1, l2, n2 and integer indices m1 ∈ [−l1, l1] and m2 ∈
[−l2, l2], the integral∫

R3

∫
R3

p†l1m1n1
(
√

2h)p0†
l2m2n2

(
g√
2

)
pl0n

(
h+

1

2
g

)
p00n′

(
h− 1

2
g

)
ω

(
h+

1

2
g

)
ω

(
h− 1

2
g

)
dg dh

is nonzero only if l1 + l2 + 2(n1 + n2) = l + 2(n+ n′) and m1 +m2 = 0.

This conclusion can be found in [31, eqs. (112)(114)].

Proof of Theorem 4. Due to the orthogonality of the polynomials plmn, we know that

Al1l2m2n2

lnn′ =

∫
R3

∫
R3

p†l1m1n1
(
√

2h)p0†
l2m2n2

(
g√
2

)
pl0n

(
h+

1

2
g

)
p00n′

(
h− 1

2
g

)
×ω

(
h+

1

2
g

)
ω

(
h− 1

2
g

)
dg dh,

(55)

where m1 = −m2 and n1 = l − l1 − l2 + 2(n + n′ − n2). For simplicity, we assume that u = 0, and in the

case of nonzero u, the result can be obtained by translation. To derive the recurrence relation of Al1l2m2n2

lnn′ ,
we use the recurrence relation of Laguerre polynomials to get

p00,n′+1

(
h− 1

2
g

)
= − 1

2
√

(n+ 1)(n+ 3/2)
θ
−1
∥∥∥∥h− 1

2
g

∥∥∥∥2

p00n′

(
h− 1

2
g

)
+ (Lower degree polynomials),

where “lower degree polynomials” refers to the polynomials of g and h of degree less than 2(n′ + 1). Due
to the orthogonality of plmn, these terms will vanish when calculating the integral (55) with n′ replaced by
n′ + 1:

Al1l2m2n2

ln,n′+1 = − 1

2
√

(n+ 1)(n+ 3/2)
θ
−1
∫
R3

∫
R3

(
h2 +
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4
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√
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(
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2
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)
p00n′

(
h− 1

2
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)
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(
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2
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)
ω

(
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2
g

)
dg dh.

(56)

Using

θ
−1
(
h2 +

1

4
g2

)
pl1m1n1

(
√

2h)p0
l2m2n2

(
g√
2

)
= −

2∑
k=1

√
nk(nk + lk + 1/2)pl1,m1,n1−δ1k(

√
2h)p0

l2,m2,n2−δ2k

(
g√
2

)
+ (Higher degree polynomials)

(57)

and

1

2
θ
−1

(h · g)pl1m1n1
(
√

2h)p0
l2m2n2

(
g√
2

)
=

1∑
µ=−1

(−1)µ
[√

l1 + n1 + 1/2γµl1,m1−µpl1−1,m1−µ,n1(
√

2h)− (−1)µ
√
n1γ

µ
−l1−1,m1−µpl1+1,m1−µ,n1−1(

√
2h)
]

×
[√

l2 + n2 + 1/2γ−µl2,m2+µpl2−1,m2+µ,n2
(
√

2h)− (−1)µ
√
n2γ

−µ
−l2−1,m2+µpl2+1,m2+µ,n2−1(

√
2h)
]

+ (Higher degree polynomials).

(58)

We refer the readers to [7, Appendix B] for the derivation of these equations. In the above two equations,
“higher degree polynomials” refer to the orthogonal polynomials of g and h whose degrees are higher than
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l + 2(n + n′) − 1, and such terms will vanish after substituting (57) and (58) into (56). The recurrence
relation (37) can be obtained by such substitution and using the properties

m1 +m2 = 0, γµl,m = γ−µl,−m. �
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(l) σ12, steady state

Figure 12. Solution of the lid-driven cavity flow at different times. The white contours and
the red contours are the numerical solutions with threshold parameters (ε11, ε

1
2) and (ε21, ε

2
2),

respectively. The black contours are the reference solution.
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Figure 13. The distribution of M0 for the lid-driven cavity flow at different times.
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