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Abstract. We develop an algorithm that computes strongly continuous semigroups on infinite-
dimensional Hilbert spaces with explicit error control. Given a generator A, a time t > 0, an
arbitrary initial vector u0 and an error tolerance ε > 0, the algorithm computes exp(tA)u0 with
error bounded by ε. The algorithm is based on a combination of a regularized functional calculus,
suitable contour quadrature rules, and the adaptive computation of resolvents in infinite dimensions.
As a particular case, we show that it is possible, even when only allowing pointwise evaluation of
coefficients, to compute, with error control, semigroups on the unbounded domain L2(Rd) that are
generated by partial differential operators with polynomially bounded coefficients of locally bounded
total variation. For analytic semigroups (and more general Laplace transform inversion), we pro-
vide a quadrature rule whose error decreases like exp(−cN/ log(N)) for N quadrature points, that
remains stable as N → ∞, and which is also suitable for infinite-dimensional operators. Numerical
examples are given, including: Schrödinger and wave equations on the aperiodic Ammann–Beenker
tiling, complex perturbed fractional diffusion equations on L2(R), and damped Euler–Bernoulli beam
equations.
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1. Introduction. Given a linear operatorA on an infinite-dimensional separable
Hilbert space H, can we numerically compute, with error control, the solution of

(1.1) u′(t) = Au(t) for t ≥ 0, with initial condition u(0) = u0 ∈ H?

The desired solution is written as u(t) = exp(tA)u0 and made rigorous through the
theory of semigroups [3,74]. Equation (1.1) arises in numerous applications and there
exist many numerical methods designed to approximate u(t), including but not limited
to: contour methods (the method adopted in the current paper) [42,79,85,94]; domain
truncation and absorbing boundary conditions (e.g., when A represents a differential
operator on an unbounded domain) [2, 4, 30, 82, 87]; Galerkin methods [53, 54, 60];
Krylov methods [39,41,56]; rational approximations [13,24,72]; and series expansions,
splitting methods, and exponential integrators [1, 45,46,48,61,63].

The majority of convergence results in the literature concern specific cases of the
operator A. If A is unbounded with domain D(A), it is common to assume regularity
on u0 (e.g., u0 ∈ D(Aν) for some ν > 0) to obtain asymptotic rates of convergence. In
particular, the important problem of explicit error control of solutions for arbitrary
initial data is largely open. In this paper, we consider the following question:

Q.1: Can we compute semigroups with error control? That is, does there exist an
algorithm that when given a generator A of a strongly continuous semigroup on H,
time t > 0, arbitrary u0 ∈ H and error tolerance ε > 0, computes an approximation
of exp(tA)u0 to accuracy ε in H?

We provide a positive answer in Theorem 3.1, with minimal assumptions on the op-
erator A and the initial condition u0. Our method combines a regularized functional
calculus, suitable contour quadrature rules, and the adaptive computation of resol-
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vents in infinite dimensions. To the best of our knowledge, this provides the first
answer to Q.1.

A prototypical example of (1.1) is when A is a partial differential operator (PDO)
on some domain. For unbounded domains, such as H = L2(Rd), this is a well-studied
yet notoriously difficult challenge. The methods listed above yield invaluable insight
into many computational issues. However, the answer to Q.1 for unbounded domains
remains largely unknown in the general case. For example, only in specific cases
does one know how to truncate the domain and set appropriate boundary conditions.
Even if one can prove the existence of suitable truncations and boundary conditions,
there may not be an algorithm that does this (the original results of [31] reflect
this). Moreover, difficulties are intensified in the case of irregular geometry or variable
coefficients (see subsection 6.1). For the case of the Schrödinger equation,

(1.2) i
∂u

∂t
= −∆u+ V u, u0 ∈ L2(Rd),

Q.1 has only just been answered for general classes of potential V by using weighted
Sobolev bounds on the initial condition for rigorous domain truncation [7]. In light
of this, a second question we consider is the following:

Q.2: For H = L2(Rd), is there a large class of PDO generators A (more general
than (1.2)) on the unbounded domain Rd where the answer to Q.1 is yes?

We provide a positive answer in Theorem 4.1, for PDOs formally defined by

[Au](x) =
∑

k∈Zd≥0
,‖k‖∞≤N

ak(x)∂ku(x),

with minimal regularity assumptions on the coefficients ak. Our method uses Hermite
functions (for convenience only) to reduce the problem to Q.1 via quasi-Monte Carlo
numerical integration. Similar results can be shown via this technique for domains
different to Rd and using other choices of basis.

The solution of (1.1) is, at least formally, the Bromwich complex contour integral

(1.3) exp(tA)u0 =

[
−1

2πi

∫ σ+i∞

σ−i∞
ezt(A− zI)−1 dz

]
u0, for sufficiently large σ ∈ R,

and computing solutions of (1.1) is a special case of inverting an operator-valued
Laplace transform. The first use of (1.3) as a method for solving the heat equation
goes back to Talbot [83], though with no reported numerical results for time-evolution
problems. For early numerical work on this problem, see Gavrilyuk and Makarov [37],
as well as Sheen, Sloan, and Thomée [79]. Since these early works, there have been
numerous methods using (1.3), with a focus on parabolic PDEs [27,36,59,64,79,92,94]
(see also the discussion in section 5). For analytic semigroups, one can deform the
contour of integration to obtain exponential decay of the integrand (see Figure 1).

An excellent survey of contour methods is provided in the paper [85] of Trefethen
and Weideman. Contour methods possess many potential advantages, particularly
when the resolvents (A− zI)−1 can be computed efficiently. The linear systems that
result from quadrature rules can be solved in parallel, and their solutions can be reused
for different times. When direct methods are impractical, Krylov subspace methods
are useful since only one Krylov basis needs to be constructed and computations for
different z reduce to a sequence of upper-Hessenberg systems of small dimension [80].
In the present paper, we demonstrate an additional key advantage: contour methods
can be used in the infinite-dimensional setting to tackle Q.1 directly, even for non-
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analytic semigroups. In the general case, contour deformations may not be possible
and one needs to be careful even when defining exp(tA) for unbounded, possibly
non-normal operators A [5]. For example, the integrand in (1.3) is not absolutely
convergent. To overcome this issue, we combine a regularized version of the functional
calculus and numerical quadrature of an appropriate contour integral. We compute
the resolvent in an adaptive manner, providing explicit error control.

Dealing with the operator A directly, as opposed to a truncation or discretiza-
tion, allows us to provide rigorous convergence results under quite general assump-
tions. In many problems, there is an additional practical benefit in that it is easier to
bound the resolvent (see (6.1) for how to do this using the numerical range). In con-
trast, previous approaches to (1.1) are typically of the flavor “truncate-then-solve.”
A truncation/discretization of A is adopted and methods for computing the expo-
nential of a finite matrix are used. In rigorously answering Q.1, it is vital to adopt
a “solve-then-discretize” approach1, with the main steps outlined in Algorithm 3.1.
The “solve-then-discretize” paradigm has recently been applied to spectral computa-
tions [16, 20, 23, 47, 51], extensions of classical methods such as the QL and QR algo-
rithms [21,89] (see also [84]), Krylov methods [38,66], and spectral measures [18,22,90].
Related work includes that of Olver, Townsend and Webb, providing a foundational
and practical framework for infinite-dimensional numerical linear algebra and compu-
tations with infinite data structures [67–70].

1.1. Summary of main results. Paraphrases of our main theorems are:

Theorem 3.1: Given an infinite matrix representation of A, the answer to Q.1 is yes.
Theorem 4.1: The answer to Q.2 is yes for PDOs that generate a strongly continuous
semigroup, and whose coefficients are polynomially bounded and of locally bounded
total variation. This result holds even if we only allow our algorithm to point sample
the coefficients and can be extended to domains other than Rd.
Theorem 5.1: We provide a stable and rapidly convergent quadrature rule for an-
alytic semigroups, summarized in Algorithm 5.1. The quadrature error decreases
like exp(−cN/ log(N)) for N quadrature points and the quadrature remains stable
as N → ∞.2 To deal with infinite-dimensional operators, contours are evaluated far
from the spectrum of A so that computing (A− zI)−1 does not become prohibitively
expensive or require large truncations. Our quadrature rule can also be used for
inverting more general Laplace transforms (subsection 6.2).

We demonstrate the practicality and versatility of our approach on a range of
examples in section 6. The only implementation requirement is computing (A−zI)−1

with error bounds. This flexibility allows users to compute semigroups for a wide range
of problems and employ their favorite discretization.

1.2. Extensions to high-order Cauchy problems. Our results extend to

(1.4) u(N)+AN−1u
(N−1)+· · ·+A0u = 0 for t ≥ 0, u(j)(0) = uj for j = 0, ..., N−1,

for suitable operators A0, ..., AN−1. Here, the notation u(l) means the lth deriva-
tive of u with respect to time. One can study (1.4) directly, under the assumption

1The term “solve-then-discretize” can be traced at least as far back as the Chebfun package for
computing with functions in MATLAB [28].

2This is a well-known difficulty in the literature - instabilities occur for quadrature rules whose
points have unbounded real part as N → ∞ [92]. An advantage of a stable quadrature rule is that
it no longer becomes essential to determine an optimal value of N or optimal contour parameters,
which often requires a heavy burden of case-specific analysis on the user. Taking N larger no longer
incurs a stability penalty, and fine-tuning to achieve high accuracy is no longer needed.
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that uj ∈ H, via the characteristic polynomial p(N)(z) = zN +
∑N−1
j=0 zjAk and the

generalized resolvent R(N)(z) = p(N)(z)
−1. However, a stronger form of the usual

well-posedness [95] is required when N > 1 to prevent paradoxical situations such
as loss of exponential bounds of solutions and non-existence of phase spaces [32]. A
generalization of the Hille–Yosida theorem holds under these conditions [95, Ch. 2]
and our methods of building algorithms with error control can be extended under
strong well-posedness by replacing (A − zI)−1 with R(N)(z). A special case, where
strong well-posedness is not needed, is the generalized wave equation

u′′(t) = Au(t), t ≥ 0 u(0) = u0 ∈ H, u′(0) = u1 ∈ H,

whose solutions can be computed using sines and cosines of
√
−A.

A far more common approach reduces (1.4) to the first-order system [29, Ch. VI]

U ′ = AU for t ≥ 0, A =


0 I

0 I
. . .

. . .

−A0 −A1 · · · −AN

 , U =


u
u(1)

...
u(N−1)

 .

This approach allows a more flexible treatment of initial conditions (e.g., uj could lie
in different subspaces of a Banach space). Our results apply directly to this case if A
generates a strongly continuous semigroup (see the example in subsection 6.3).

1.3. Notation and outline. We use 〈·, ·〉 to denote the inner product onH. The
induced norm and corresponding operator norm are denoted by ‖ · ‖. The identity
operator on a Banach space X is denoted by I and the algebra of bounded linear
operators on X is denoted by L(X). The spectrum and domain of a linear operator
A are denoted by Sp(A) and D(A), respectively. The resolvent operator (A− zI)−1,
defined on the resolvent set ρ(A) := C\Sp(A), is denoted by R(z,A). When dealing
with l2(N) (the space of square summable sequences), Pn denotes the orthogonal
projection onto the span of the first n canonical basis vectors.

In section 2 we recall basic properties of strongly continuous semigroups and suit-
able definitions of computational problems in infinite-dimensional spaces. Results for
the canonical Hilbert space l2(N) are presented in section 3 and extended to partial
differential operators in section 4. Quadrature rules for analytic semigroups are pre-
sented in section 5, along with numerical examples. Further numerical examples are
given in section 6 and concluding remarks in section 7. We also include an Appendix
of some results needed in our proofs.

2. Mathematical preliminaries.

2.1. Recalling basic properties of semigroups. We first recall the following
two definitions, found in any textbook that treats semigroup theory, for example [3,74].
The first definition defines a semigroup, and the second provides standard notions of
a solution of (1.1). Theorem 2.3 then connects these two definitions.

Definition 2.1. A strongly continuous semigroup (C0-semigroup) on a Banach
space X is a map S : [0,∞)→ L(X) such that

1. S(0) = I
2. S(s+ t) = S(s)S(t), ∀s, t ≥ 0
3. S(t) converges strongly to I as t ↓ 0 (i.e., limt↓0 S(t)x = x, for all x ∈ X).

The infinitesimal generator A of S is defined as Ax = limt↓0
1
t (S(t)−I)x, where D(A)

is all x ∈ X such that the limit exists, and we write S(t) = exp(tA).
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Definition 2.2. A continuous function u : [0,∞)→ X is a
1. Classical solution of the Cauchy problem (1.1) if it is continuously differen-

tiable, u(t) ∈ D(A) for all t ≥ 0, and (1.1) is satisfied,
2. Mild solution of the Cauchy problem (1.1) if for all t ≥ 0,∫ t

0

u(s)ds ∈ D(A) and A

∫ t

0

u(s)ds = u(t)− u0.

The following theorem tells us precisely when a unique mild solution exists.

Theorem 2.3 (Theorem 3.1.12 of [3]). Let A be a closed operator acting on the
Banach space X. The following assertions are equivalent:

(a) For any u0 ∈ X, there exists a unique mild solution of (1.1).
(b) ρ(A) 6= ∅ and for every u0 ∈ D(A), there is a unique classical solution of (1.1).
(c) The operator A generates a C0-semigroup S.

When these conditions hold, the solution is given by u(t) = S(t)u0 = exp(tA)u0.

The Hille–Yosida theorem tells us precisely when an operator A generates a strongly
continuous semigroup, and thus, by Theorem 2.3, when (1.1) admits a unique solution.

Theorem 2.4 (Hille–Yosida theorem). A closed operator A on X generates a
C0-semigroup if and only if A is densely defined and there exists ω ∈ R, M > 0 with

(1) {λ ∈ R : λ > ω} ⊂ ρ(A).
(2) For all λ > ω and n ∈ N, (λ− ω)n‖R(λ,A)n‖ ≤M.

Under these conditions, ‖ exp(tA)‖ ≤M exp(ωt) and if Re(λ)>ω then λ∈ρ(A) with

(2.1) ‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
, for all n ∈ N.

We show below that Theorem 2.4 can be exploited to give an algorithm that
positively answers Q.1. In particular, the resolvent bound in (2.1) is used in the proof
of Theorem 3.1 and allows error estimates for regularized contour integrals.

2.2. Computational problems. Since the general Hilbert space H we consider
is infinite-dimensional, care must be taken when defining a computational problem
and when stating the information that we allow our algorithms to access. We begin
with a precise and general definition of a computational problem, following the setup
of Solvability Complexity Index (SCI) hierarchy [8, 17, 19, 44]. The SCI hierarchy
provides a general framework for scientific computation.

Definition 2.5. A collection {Ξ,Ω,M,Λ} is a computational problem if:
(i) Domain: Ω is some set.

(ii) Evaluation set that distinguishes elements of Ω: Λ is a set of complex-valued func-
tions on Ω, such that if ι1, ι2 ∈ Ω has f(ι1) = f(ι2) for all f ∈ Λ, then ι1 = ι2.

(iii) Problem function: Ξ : Ω→M, where M is a metric space with metric dM.

The domain Ω is the set of objects that give rise to our computational problems.
The problem function Ξ : Ω →M describes what we want to compute. Finally, the
evaluation set Λ is the collection of functions that provide the information we allow
algorithms to read. With this in hand, we can define a general algorithm, which shows
the interplay and purpose of each part of a computational problem.

Definition 2.6. Given a computational problem {Ξ,Ω,M,Λ}, a general algo-
rithm is a mapping Γ : Ω→M such that for each ι ∈ Ω
(i) There exists a finite (non-empty) subset of evaluations ΛΓ(ι) ⊂ Λ,

(ii) The action of Γ on ι only depends on {ιf}f∈ΛΓ(ι) where ιf := f(ι),
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(iii) For every η ∈ Ω such that ηf = ιf for every f ∈ ΛΓ(ι), it holds that ΛΓ(η) = ΛΓ(ι).
We will sometimes write Γ({Af}f∈ΛΓ(A)), to emphasize that Γ(A) only depends on
the results {Af}f∈ΛΓ(A) of finitely many evaluations.

These three properties are the most fundamental properties we would expect any
deterministic computational device to obey. The first condition says that the algo-
rithm can only take a finite amount of information, though it is allowed to adaptively
choose the information, depending on the input it reads. The second condition ensures
that the algorithm’s output only depends on its input. The final condition ensures
that the algorithm produces outputs consistently. The goal is for the algorithm Γ to
approximate the problem function Ξ : Ω→M in a suitable sense.

The type of algorithms in this paper: In this paper, we exclusively consider
arithmetic algorithms (shortened to “algorithms”), meaning that Γ is recursive in its
input ({f(ι)}f∈Λ for ι ∈ Ω) and outputs a finite string of complex numbers that can
be identified with an element in M. For example, when considering computations in
l2(N), our algorithms compute a vector in l2(N) of finite support with respect to the
canonical basis. By recursive we mean the following. If f(ι)∈Q+iQ for all f ∈ Λ,
ι ∈ Ω, then Γ({f(ι)}f∈Λ) can be executed by a Turing machine. If f(ι) ∈ C for all
f ∈ Λ, then Γ({f(ι)}f∈Λ) can be executed by a Blum–Shub–Smale (BSS) machine [9].
(In both cases with an oracle consisting of {f(ι)}f∈Λ). The reader need not worry
about these matters, but note that this means that our algorithms can be adapted
and executed rigorously through methods such as interval arithmetic [77, 88].3 For
all of the numerical examples of this paper, we have performed computations using
standard IEEE double-precision floating-point arithmetic.

3. C0-semigroups on l2(N) can be computed with error control. First, we
consider the canonical separable Hilbert space l2(N) of square summable sequences,
using e1, e2, . . . to denote the canonical orthonormal basis. Let C(l2(N)) denote the
set of closed and densely defined linear operators A such that span{en : n ∈ N} forms
a core of A and its adjoint A∗ [52, Ch. 3]. If A ∈ C(l2(N)), then we can associate
an infinite matrix with the operator A through the inner products Aj,k = 〈Aek, ej〉.
Given (A, u0) ∈ C(l2(N))×l2(N), we consider the following evaluation functions (recall
that this is the readable input to our algorithm), denoted by Λ1, which include the
case of inexact input:

• Matrix evaluation functions: {f (1)
j,k,m, f

(2)
j,k,m : j, k,m ∈ N} such that

|f (1)
j,k,m(A)− 〈Aek, ej〉| ≤ 2−m, |f (2)

j,k,m(A)− 〈Aek, Aej〉| ≤ 2−m, ∀j, k,m ∈ N.

• Coefficient and norm evaluation functions: {fj,m : j ∈ N ∪ {0},m ∈ N} such that

(3.1) |f0,m(u0)− 〈u0, u0〉| ≤ 2−m, |fj,m(u0)− 〈u0, ej〉| ≤ 2−m, ∀j,m ∈ N.

Following Definition 2.5, we let ΩC0
denote the set of triples (A, u0, t) where

A ∈ C(l2(N)) generates a strongly continuous semigroup, u0 ∈ l2(N) and t > 0. We
define the set of evaluation functions for such triples to be ΛC0

= Λ1∪{M(A), ω(A)},
where M = M(A) and ω = ω(A) are constants satisfying the conditions in Theo-
rem 2.4 for the generator A. Finally, we consider the problem function ΞC0 : ΩC0 →

3The results of the current paper can be interpreted in terms of the SCI hierarchy. A computa-
tional problem {Ξ,Ω,M,Λ} lies in ∆A

1 if there exists an algorithm Γ such that dM(Γ(ι, ε),Ξ(ι)) ≤ ε
for all ι ∈ Ω and ε > 0. For the other classes in the SCI hierarchy, see [17]. For example, most
infinite-dimensional spectral problems of interest do not lie in ∆A

1 and there is a classification theory
determining which spectral problems can be solved, and with what type of algorithm [17].
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Algorithm 3.1 Algorithm for computing semigroups on l2(N) with error control.
The details of how to do each step are provided in the proof of Theorem 3.1. Steps
2, 3 and 5 require a solve-then-discretize approach for computing the action of A and
the resolvent R(z,A) with error control via the available input information ΛC0

. We
have used the notation ω = ω(A) and M = M(A) (constants in Theorem 2.4).

Input: (A, u0, t) ∈ ΩC0
through evaluation set ΛC0

, where A generates a strongly
continuous semigroup, u0 ∈ l2(N) and t > 0, as well as error bound ε > 0.

Let B =

[
1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z,A)

(z − (ω + 2))2
dz

]
denote the regularized integral.

1: Compute uε0 =
∑J0

j=1 u
(ε)
0j ej , such that ‖u0 − uε0‖ ≤ ε exp(−ωt)/(2M).

2: Compute uε1 =
∑J1

j=1 u
(ε)
1j ej such that ‖uε1−(A−(ω+2)I)uε0‖ ≤ ε exp(−ωt)/(2M2).

3: Compute uε2 =
∑J2

j=1 u
(ε)
2j ej such that ‖uε2+(A−(ω+2)I)uε1‖ ≤ ε exp(−ωt)/(2M2).

4: Compute weights wj and nodes zj such that ‖B −
∑N
j=1 wjR(zj , A)‖ ≤ ε/16.

5: Using the input bounds on the resolvent provided by the Hille–Yosida theorem and
Proposition A.2 to control the total error in computing the resolvents, compute
rεj ≈ R(zj , A)uε2 so that

∑N
j=1 |wj |‖rεj −R(zj , A)uε2‖ ≤ ε/16.

Output: Γ(A, u0, t, ε) =
∑N
j=1 wjr

ε
j , an ε-accurate approximation of exp(tA)u0.

l2(N), (A, u0, t) 7→ exp(tA)u0. In other words, the computation of the solution of
(1.1). The following theorem provides a positive answer to Q.1 in the introduction.

Theorem 3.1 (C0-semigroups on l2(N) computed with error control). There
exists an algorithm Γ using ΛC0

such that for any ε > 0 and (A, u0, t) ∈ ΩC0
,

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε.
The algorithm is summarized in Algorithm 3.1, which outlines the key steps.

First, we write the exponential exp(tA) as an absolutely convergent integral using a
regularized functional calculus. We then reduce the problem to computing this inte-
gral acting on span{en : n ∈ N}. Finally, the integral is computed using quadrature
and adaptive computation of the resolvent with error control.

Proof of Theorem 3.1. Let (A, u0, t) ∈ ΩC0 , and set ω = ω(A) and M = M(A)
throughout the notation of this proof. It suffices to show that given any ε > 0, we can
compute a ε-accurate approximation of exp(tA)u0. We use the following regularization
to define the needed holomorphic functional calculus [6]:

exp(tA)u0 = −(A− (ω + 2)I)2

[
1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z,A)

(z − (ω + 2))2
dz

]
︸ ︷︷ ︸

:=B

u0,

where the integral is taken in the direction ω+1− i∞ to ω+1+ i∞. The point of this
regularization is that the integral now converges absolutely. With this representation
in hand, we can now prove Theorem 3.1 via the following three steps.

Step 1: Reduction to a finite sum. Using Lemma A.1 in the appendix, we can

compute uε0 =
∑J0

j=1 u
(ε)
0j ej , such that ‖u0 − uε0‖ ≤ ε exp(−ωt)/(2M) (approximating

this quantity from below using ΛC0
). This bound is chosen so that, using ‖ exp(tA)‖ ≤

M exp(ωt), we have ‖ exp(tA)(u0 − uε0)‖ ≤ ε/2. So it suffices to compute exp(tA)uε0
7



to accuracy ε/2.
Step 2: Reduction to an absolutely convergent integral. Since uε0 is a

finite sum of elements in D(A), uε0 ∈ D(A) and we can rewrite the exponential as

exp(tA)uε0 = −(A− (ω + 2)I)B(A− (ω + 2)I)uε0.

Note that the evaluation functions in ΛC0
allow us to compute the inner products

〈(A−(ω+2)I)uε0, (A−(ω+2)I)uε0〉 and 〈(A−(ω+2)I)uε0, ej〉 to any specified accuracy.
We can therefore apply Lemma A.1 to the vector (A− (ω + 2)I)uε0 to compute uε1 =∑J1

j=1 u
(ε)
1j ej such that ‖uε1 − (A− (ω + 2)I)uε0‖ ≤ ε exp(−ωt)/(2M2). Since

(3.2) ‖(A−(ω + 2)I)B‖≤‖ exp(tA)‖‖R(ω + 2, A)‖≤M2eωt/2,

we must have that ‖ exp(tA)uε0 + (A− (ω+ 2)I)Buε1‖ ≤ ε/4. So it suffices to compute
−(A− (ω + 2)I)Buε1 to accuracy ε/4. Since uε1 ∈ D(A) (it is a finite sum of elements
in D(A)), −(A − (ω + 2)I)Buε1 = −B(A − (ω + 2)I)uε1. Using the same argument

as before, we can compute uε2 =
∑J2

j=1 u
(ε)
2j ej such that ‖uε2 + (A − (ω + 2)I)uε1‖ ≤

ε exp(−ωt)/(2M2). By Theorem 2.4,

‖B‖ ≤ ‖ exp(tA)‖‖R(ω + 2, A)2‖ ≤M2 exp(ωt)/4.

It follows that ‖Buε2 + (A − (ω + 2)I)Buε1 ≤ ‖ ≤ ε/8. Combining these inequalities,
we therefore have that

‖ exp(tA)u0 −Buε2‖ ≤
ε

2
+
ε

4
+
ε

8
.

Hence it suffices to compute an ε/8-approximation of Buε2. Since uε2 is a finite linear
combination of canonical basis vectors, it suffices to show that for any l ∈ N we can
compute the following to any given accuracy:

(3.3) Bel =

[
1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z,A)

(z − (ω + 2))2
dz

]
el.

Step 3: Approximation of the integral through adaptive approximation
of the resolvent and quadrature. To prove this, fix l ∈ N and define

(3.4) F (s) =
exp((ω + 1)t+ ist)

2π(is− 1)2
R(ω + 1 + is, A)el ∈ l2(N).

Then (3.3) can be re-written as
∫
R F (s)ds. Note that by (2.1),

(3.5) ‖F (s)‖ ≤M exp((1 + ω)t)(1 + s2)−1/(2π).

Given ε̂ > 0, we can therefore compute a cut-off L ∈ N such that∥∥∥ ∫
|y|>L

F (s) ds
∥∥∥ ≤ M exp((1 + ω)t)

π

∫
s>L

(1 + s2)
−1
ds ≤ M exp((1 + ω)t)

πL
≤ ε̂.

Hence it suffices to compute
∫ L
−L F (s) ds to arbitrary accuracy. By bounding each

term of the derivative separately and using (2.1), we have

(3.6) ‖F ′(s)‖ ≤ (3 + t)‖F (s)‖ ≤ (3 + t)M exp((1 + ω)t)/(2π).

Using (3.5) and (3.6), for a given ε̂ > 0, we can compute an integer m such that∥∥∥∫ L

−L
F (s) ds− 1

m

L·m∑
j=−L·m+1

F

(
j

m

)∥∥∥ ≤ 2L‖F ′‖∞
m

≤ ε̂.
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Hence it suffices to be able to compute F (q) for rational q to arbitrary accuracy. This
follows from Proposition A.2 (applied to the shifted operator T = A− (ω+ 1 + iq)I),
standard approximations of exp((ω + 1)t+ iqt)/(2π(iq − 1)2) and the fact that we
can use (2.1) to bound the resolvent norm appearing in Proposition A.2.

In practice, one uses a method such as Gaussian quadrature for the truncated
integral in the final step. The resulting error bounds after truncation decrease expo-
nentially in the number of quadrature points. Optimal contours could also be found by
studying regions of analyticity and bounds on the function F in (3.4). For large times,
one can also use quadrature methods for oscillatory integrals [25]. Such bounds are
more complicated, so we present the above contour and quadrature rule in the proof.
We provide a detailed analysis of quadrature for analytic semigroups in section 5.

4. Extension to partial differential operators on L2(Rd). We now extend
the above technique to PDOs. As an example, we consider the closure, denoted by
A, of the initial operator

(4.1) [Ãu](x) =
∑

k∈Zd≥0
,|k|≤N

ak(x)∂ku(x), D(Ã) = {u smooth with compact support}.

We use multi-index notation with |k| = max{|k1| , ..., |kd|} and ∂k = ∂k1
x1
∂k2
x2
...∂kdxd .

We assume that Ã is closable and that the coefficients ak(x) are complex-valued
measurable functions on Rd. For dimension d and r > 0, consider the space

Ar = {f ∈ Meas([−r, r]d) : ‖f‖∞ + TV[−r,r]d(f) <∞},
where Meas([−r, r]d) denotes the set of measurable functions on the hypercube [−r, r]d
and TV[−r,r]d the total variation norm in the sense of Hardy and Krause [65]. This
space becomes a Banach algebra when equipped with the norm [10]

‖f‖Ar :=
∥∥f |[−r,r]d∥∥∞ + (3d + 1)TV[−r,r]d(f).

We let ΩPDE be all such (A, u0, t) with u0 ∈ L2(Rd) and t > 0, for which A generates
a strongly continuous semigroup on L2(Rd) and the following hold:

(1) The set of smooth, compactly supported functions forms a core of A and A∗.
(2) At most polynomial growth: There exist positive constants Ck and integers Bk

such that almost everywhere on Rd, |ak(x)| ≤ Ck(1 + |x|2Bk).
(3) Locally bounded total variation: For all r > 0, u0|[−r,r]d , ak|[−r,r]d ∈ Ar.

These assumptions are very mild as the class of functions with locally bounded
variation includes discontinuous functions and functions with arbitrary wild oscilla-
tions at infinity. For input (A, u0, t) ∈ ΩPDE, we define ΛPDE as the set of evaluation
functions (where ranges of indices have been suppressed for notational convenience):

(a) Pointwise coefficient evaluations: {Sk,q,m} such that for all m ∈ N,

|Sk,q,m(A)− ak(q)| ≤ 2−m, ∀q ∈ Qd.
(b) Pointwise initial condition evaluations: {Sq,m} such that for all m ∈ N,

|Sq,m(u0)− u0(q)| ≤ 2−m, ∀q ∈ Qd.
(c) Bounds on growth and total variation: {Ck, Bk} such that the bound in (2)

holds and positive sequences {bn}n∈N and {cn}n∈N such that for all n ∈ N,

max
|k|≤N

‖ak‖An ≤ bn, ‖u0‖An ≤ cn.

9



Algorithm 4.1 Algorithm for computing PDO semigroups on L2(Rd) with error
control. The details of how to do each step are provided in the proof of Theorem 4.1.
The choice of Hermite functions is simply for convenience - the algorithm for other
choices of bases and for different domains is analogous.

Input: (A, u0, t) ∈ ΩPDE through evaluation set ΛPDE, where PDO A generates a
strongly continuous semigroup, u0 ∈ L2(Rd) and t > 0, as well as error bound ε > 0.

1: Convert the problem to one on l2(N) via

〈Âek, Âej〉 =

∫
Rd

(Aψmmm(k))(Aψmmm(j)) dx, 〈Âek, ej〉 =

∫
Rd

(Aψmmm(k))ψmmm(j) dx

〈û0, ej〉 =

∫
Rd
u0ψmmm(j) dx, 〈û0, û0〉 =

∫
Rd
u0u0 dx,

where {ψm(j)}j∈N denotes an ordering of a tensor product Hermite basis of L2(Rd).
The integrals are computed using the total variation and growth bounds of coef-
ficients/intial condition and quasi-Monte Carlo numerical integration.

2: Using step 1 to provide the ΛC0
evaluation functions, apply Algorithm 3.1 with

input (Â, û0, t) and ε. Call this output Γ̂(Â, û0, t, ε).
3: Using the finite number of coefficients of Γ̂(Â, û0, t, ε) computed in step 2, generate

the solution
Γ(A, u0, t) =

∑
j

[Γ̂(Â, û0, t, ε)]jψmmm(j) ∈ L2(Rd).

Output: Γ(A, u0, t), an ε-accurate approximation of exp(tA)u0 expressed as a finite
linear combination of tensor products of Hermite functions.

(d) Decay of initial condition: A positive sequence {dn}n∈N, such that

‖u0|[−n,n]d − u0‖L2(Rd) ≤ dn, lim
n→∞

dn = 0,

together with constants M = M(A) > 0 and ω = ω(A) > 0 satisfying the conditions in
Theorem 2.4 for the generator A. We consider the problem function ΞPDE : ΩPDE →
L2(Rd), (A, u0, t) 7→ exp(tA)u0. In other words, the computation of the solution of
(1.1) for PDOs A on L2(Rd). The following theorem provides a positive answer to
Q.2 in the introduction.

Theorem 4.1 (PDO C0-semigroups on L2(Rd) computed with error control).
There exists an algorithm Γ using ΛPDE such that for any ε > 0 and (A, u0, t) ∈ ΩPDE,

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε.

The algorithm is summarized in Algorithm 4.1. Theorem 4.1 says the following
for PDOs with coefficients that are polynomially bounded and have locally bounded
total variation. If the PDO generates a strongly continuous semigroup, then we
can compute the semigroup with error control via point sampling the coefficients
and initial condition. For example, we can solve the time-independent Schrödinger
equation (1.2) on L2(Rd) with error control (here M(A) = 1, w(A) = 0), for potentials
satisfying the conditions in (2) and (3). As discussed in section 1, this is a decidedly
difficult problem. Moreover, the result in Theorem 4.1 is much more general than just
Schrödinger operators.

Proof of Theorem 4.1. The proof strategy is to reduce the computational problem
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to the case covered by Theorem 3.1. We consider the Hermite functions

ψm(x) = (2mm!
√
π)−1/2e−x

2/2Hm(x), Hm(x) = (−1)mex
2 dm

dxm
e−x

2

, m ∈ Z≥0.

As an orthonormal basis of L2(Rd) we consider tensor products ψm = ψm1
⊗ ...⊗ψmd ,

for m = (m1, ...,md) ∈ Zd≥0. Let (A, u0, t) ∈ ΩPDE. The conditions on A imply that
the orthonormal basis of tensor products of Hermite functions forms a core of A
and A∗ [20]. We can choose a suitable ordering (such as the hyperbolic cross [60])
mmm : N→ Zd≥0 of these basis functions to identify L2(Rd) ∼= l2(N). The point of this is

that any (A, u0, t) can be represented by (Â, û0, t) ∈ ΩC0 through the inner products

〈Âek, Âej〉 =

∫
Rd

(Aψmmm(k))(Aψmmm(j)) dx, 〈Âek, ej〉 =

∫
Rd

(Aψmmm(k))ψmmm(j) dx(4.2)

〈û0, ej〉 =

∫
Rd
u0ψmmm(j) dx.(4.3)

Theorem 4.1 follows from Theorem 3.1 if we can show that the evaluation functions
in ΛC0

can be computed via an algorithm from the evaluation functions in ΛPDE.
In [20] (which considered computation of spectra), quasi-Monte Carlo numerical

integration was used to show that the inner products in (4.2) can be computed with
error control using ΛPDE. To finish the proof, we need only consider the evaluation
functions in (3.1). Let δ > 0 and compute n ∈ N such that dn ≤ δ. It follows that∣∣〈u0, u0〉 − 〈u0|[−n,n]d , u0|[−n,n]d〉

∣∣ ≤ δ2,
∣∣〈u0, ej〉 − 〈u0|[−n,n]d , ej〉

∣∣ ≤ δ.
Since δ > 0 was arbitrary, it suffices to show that for any n ∈ N, suitable f0,m and fj,m
in (3.1) can be computed for u0|[−n,n]d instead of u0. But this follows from the results
of [20] that were used to compute the integrals in (4.2) (the bound in assumption (2)
of the definition of ΩPDE is used to truncate the relevant integrals - it is not needed
for u0 because of the compact support of u0|[−n,n]d).

The choice of Hermite functions in the proof is convenient for many practical
scenarios (e.g., it generates sparse matrices for polynomial coefficients) and is chosen
since it allows a very large class of coefficients to be treated, namely those satis-
fying assumptions (2) and (3). There are, of course, many different basis choices
for L2(Rd) for which similar results can be proven with correspondingly different
classes of coefficients for A. The key point is the ability to reduce the problem to
{ΞC0

,ΩC0
, l2(N),ΛC0

} through computation of the relevant integrals and apply The-
orem 3.1. The choice of basis can also impact the computational efficiency, either
in the matrix representation of the operator itself or the solution’s representation.
Similarly, Hilbert spaces different to L2(Rd) and computational domains different to
Rd can be treated: examples are provided in subsection 5.2 and section 6.

5. Stable and rapidly convergent quadrature for analytic semigroups.
In this section, we assume that A generates an analytic semigroup and that the sector
Sδ = {z ∈ C : arg(z) < π − δ} is contained in ρ(A) for some δ ∈ [0, π/2). This is
shown in Figure 1 (right), where we remind the reader that ρ(A) = C\Sp(A). We take
the shift ω in the definition of sectorial operators to be zero without loss of generality
since it can be factored back in via multiplication by a suitable exponential.

As discussed in section 1, there exists a large literature on quadrature of the
integral appearing in (1.3). The typical approach deforms the contour of integration
into a contour γ (parametrized by x ∈ R) that begins and ends in the left half-
plane, such that Re(γ(x)) → −∞ as |x| → ∞. This idea can be traced back to
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Figure 1. Left: The spectral picture of a general semigroup with ω = 0. The shaded region
encloses the spectrum of the generator A and the contour γ is parallel to the imaginary axis. Right:
Example sector containing the spectrum of a generator A of an analytic semigroup (complement of
Sδ for δ = 0.4) and the corresponding deformed hyperbolic contour γ.

the 1950s and Talbot’s doctoral student Green [40], as well as Butcher [15]. Later,
Talbot published a landmark paper [83], where he generalized and improved the earlier
work of Green. Popular contour choices include variations of Talbot’s contour [27],
parabolic contours [37,93] and hyperbolic contours such as Figure 1 (right) [59,79] (see
[86] for interpretations in terms of rational approximations). After such a deformation,
the trapezoidal rule provides a simple and very effective quadrature rule

(5.1) exp(tA)u0 ≈
−h
2πi

N∑
j=−N

ezjtR(zj , A)γ′(jh), zj = γ(jh).

For example, [93, Table 1] provides a comparison of the order of exponential conver-
gence in the number of quadrature points for various methods in the literature.

In our setting, however, there are two important factors that must be consid-
ered. The first is the numerical stability of the sum in (5.1). Even in the unrealistic
situation of computing each R(zj , A) with zero error, if tmax(Re(zj)) is unbounded
as N → ∞, then the exponential terms in (5.1) increase and render the sum un-
stable. This instability is demonstrated in the beautiful error plots of [94], which
considers optimal choices of parameters for parabolic and hyperbolic contours (see
also Figure 2).4 The second factor is the numerical cost of computing R(z,A). This
point is largely neglected in the literature, which focuses on finite-dimensional systems
(such as truncations of differential operators). Here we are referring to the cost of
approximating the full infinite-dimensional R(z,A), as opposed to the cost of com-
puting (Ã − zI)−1 for a truncation/discretization Ã of A. For infinite-dimensional
systems, the cost typically increases as z approaches the spectrum of A (some reasons
for this are given in [22] in the setting of computing spectral measures). For exam-
ple, in [27], the contour passes through a point on the positive real axis whose real

4A mechanism for providing stability for Talbot contours and for operators whose spectrum lies
on the negative real axis (δ = 0, 0 /∈ Sp(A)) is given in [27]. See also [92]. Regarding hyperbolic
contours, [58] shows weak instability for h = log(N)/N and contour parameters µ, α (see (5.2))
independent of N . This leads to O(η log(log(N)) + exp(−cN/ log(N))) convergence, where η is the
error in computing the resolvent. As noted [59], for N -dependent µ and α, stability plays a key role.
A choice of (η,N)-dependent parameters is proposed in [59] that leads to O(η + exp(−cN/ log(N)))
convergence.

12



part decreases like O(N−2t−1), which leads to an increased truncation size needed to
accurately compute the resolvent if 0 ∈ Sp(A). We therefore seek a quadrature rule
that simultaneously

(a) avoids the growth of tmax(Re(zj)) as N →∞, and
(b) whose distance to the spectrum of A does not shrink as N →∞ for a fixed t.

Both points are demonstrated via numerical examples below.
We consider a hyperbolic5 contour parametrized as in [94]:

(5.2) γ(x) = µ(1 + sin(ix− α)), µ > 0, 0 < α <
π

2
− δ.

Since it is beneficial to reuse the computed resolvents at different times in (5.1), we
consider computing exp(tA) for t ∈ [t0, t1] where 0 < t0 ≤ t1. Using the arguments
in [94], there are three error terms associated with the choice (5.2):

E1 = O
(
e−2π(π2−α−δ)/h

)
, E2 = O

(
eµt1−2π αh

)
, E3 = O

(
eµt0(1−sin(α) cosh(hN))

)
.

The first two terms correspond to the discretization error of the integral, whereas the
third corresponds to the truncation error when using a finite value of N . We seek
to asymptotically optimize the parameters h, α and µ, under the assumption that
γ(0)t1 = µt1(1− sin(α)) ≤ β for some β > 0, as N →∞. The extra free parameter β
controls the maximum size of the exponential terms in the sum (5.1) and is introduced
to ensure stability (point (a) above).

Equating the exponential factors in E1 and E2 yields the equation

(5.3) α = (hµt1 + π2 − 2πδ)/(4π).

Since h→ 0 as N →∞, α→ (π − 2δ)/4. We therefore choose

(5.4) µ = (1− sin((π − 2δ)/4))−1β/t1.

We then equate the exponentials in E2 and E3 and set Λt = t1/t0, yielding

µ(1− Λt)h+ 2πα/t0 − µh sin(α) cosh(hN) = 0.

Considering the limit h → 0, we see that hN → ∞ as N → ∞. With the above
choices, it follows that the optimal h satisfies

hehN = sin((π − 2δ)/4)−1π (π − 2δ)/(t0µ) +O(h).

Using W to denote the principal branch of the Lambert W function, we therefore set
(5.5)

h =
1

N
W

(
N

π(π − 2δ)

t0µ sin
(
π−2δ

4

))=
1

N
W

(
ΛtN

π(π − 2δ)

β sin
(
π−2δ

4

)(1− sin

(
π − 2δ

4

)))
.

Algorithm 5.1 summarizes this procedure and the following theorem gives an error
bound for the computed exponential. The two terms in (5.6) correspond to the error
in computing resolvents and the quadrature error, respectively. The error bound η in
the resolvent can be realized using the adaptive methods in section 3 and section 4,
and bounds on the resolvent in a suitable sector Sδ−ν [29, Ch. 2.4]. Bounds can often
be found in practice, for example, by bounding the numerical range as is done via

5We do not consider parabolic contours for two reasons. First, we wish to include the case
that δ > 0, which is impossible for parabolic contours. Second, if max(tRe(zj)) is bounded above
as N → ∞, one can show that the optimal quadrature error when using parabolic contours is
O(exp(−cN2/3)), which is worse than the bounds we derive below.
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Algorithm 5.1 Stable and rapidly convergent algorithm for analytic semigroups.

Input: A (a generator of an analytic semigroup with Sδ ⊂ ρ(A) for δ ∈ [0, π/2)),
u0 ∈ H, 0 < t0 ≤ t1 <∞, β > 0, N ∈ N and η > 0.

1: Let γ be defined as in (5.2) with α, µ and h given by (5.3), (5.4) and (5.5) respec-
tively, where Λt = t1/t0.

2: Set zj = γ(jh) and wj = h
2πiγ

′(jh).
3: Solve (A− zjI)Rj = −u0 for −N ≤ j ≤ N to an accuracy η.

Output: ũN (t) =
∑N
j=−N e

zjtwjRj for t ∈ [t0, t1].

(6.1) in section 6. The quadrature error, which contains the constant C, can be made
explicit by chasing the constants in [94] (that appear in the E1, E2 and E3 terms) and
by controlling the analytic properties of the resolvent. For brevity, we have not given
the explicit result. Finally, we remind the reader that Theorem 5.1 does not apply to
general C0-semigroups, for which one cannot deform the contour as in Figure 1 and
must instead apply the regularization trick of Theorem 3.1.

Theorem 5.1. Suppose that A generates an analytic semigroup and Sδ ⊂ ρ(A)
for δ ∈ [0, π/2). Let u0 ∈ H, 0 < t0 ≤ t1 <∞, β > 0 and η > 0. Let ũN (t) denote the
output of Algorithm 5.1 for N ∈ N and a = sin(π/4 − δ/2)−1 − 1. Then there exists
a constant C such that the following bound holds for any t0 ≤ t ≤ t1 as N →∞,

‖exp(tA)u0 − ũN (t)‖≤
(

2µe
β

1−sin(α)π−1

∫ ∞
0

ex−µt sin(α) cosh(x)dx

)
η︸ ︷︷ ︸

numerical error due to inexact resolvent

+ Ce
β

1−sin(α) · exp

(
− Nπ(π − 2δ)/2

log(Λt
a
βNπ(π − 2δ))

)
︸ ︷︷ ︸

quadrature error

.

(5.6)

Proof. Let t0 ≤ t ≤ t1. The analysis preceding the theorem shows that

max{E1, E2} = O(exp((1− sin(π/4− δ/2))−1β − 2πα/h).

Using sin(α) > sin(π/4− δ/2) for small h and the definition of a, we see that

(5.7) max{E1, E2} = O

(
exp

(
β

1− sin(α)
− Nπ(π − 2δ)/2

W(ΛtN
a
βπ(π − 2δ))

))
.

Using cosh(x) ≥ ex/2, and W (z)eW (z) = z, we have that

µt0 sin(α) cosh(hN) ≥ Nπ(π − 2δ)/2

W(ΛtN
a
βπ(π − 2δ))

sin(α)

sin(π/4− δ/2)
≥ Nπ(π − 2δ)/2

W(ΛtN
a
βπ(π − 2δ))

.

Since t0 ≤ t1, it follows that E3 satisfies the same bound as E1 and E2 in (5.7). Using
‖ · ‖ to denote the operator norm, it follows that

∥∥∥ exp(tA)+
h

2πi

N∑
j=−N

ezjtγ′(jh)R(zj , A)
∥∥∥≤C1exp

(
β

1− sin(α)
− Nπ(π − 2δ)/2

W(ΛtN
a
βπ(π − 2δ))

)
,
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Figure 2. Left: Maximum error MN (defined in (5.9)) for the optimal hyperbolic contour
of [94], showing instability for large N . Right: Same but for the parameter choices from Theorem 5.1
and β = 3, showing stability for large N . In both cases, the dashed lines represent the theoretical
convergence rates.

for a constant C1. Since ‖[Rj+R(zj, A)]u0‖≤η, the left-hand side of (5.6) is bounded
by

(5.8)
η

2π

N∑
j=−N

h|ezjtγ′(jh)|+ C1e
β

1−sin(α) exp

(
− Nπ(π − 2δ)/2

W(ΛtN
a
βπ(π − 2δ))

)
.

A simple calculation shows that | exp(γ(x)t)γ′(x)| ≤ µ exp(|x|+µt−µt sin(α) cosh(x)).
For notational convenience, set c = µt sin(α). Using this bound in (5.8), the resulting
sum for non-negative j is a Riemann sum for the integral in (5.6) (up to constants).
The region of integration can be split into two regions {0 ≤ x < sinh−1(c−1)} and
{x > sinh−1(c−1)}, on which the integrand has positive and negative derivatives
respectively. Let Jh ≤ sinh−1(c−1) ≤ (J + 1)h for J ∈ N. In a neighborhood of the
turning point sinh−1(c−1), the integrand is concave and hence for small h we can also
bound the sum from j = J to j = J + 1 by the integral over [(J − 1)h, (J + 2)h]. It
follows that

N∑
j=−N

h|ezjtγ′(jh)| ≤ 4µe
β

1−sin(α)

∫ ∞
0

ex−c cosh(x)dx, for large N .

Bounding the second term of (5.8) using W(x) ≥ log(x) for large x yields (5.6).

Smaller β leads to a smaller error plateau for a given η as N →∞, but a slower
rate of convergence (with the rate depending only logarithmically on β). In practice,
we found that results were not strongly dependent on reasonable choices of β and
have used a default value of β = 3 in what follows.

5.1. Numerical example showing stability. As a simple example to demon-
strate the numerical stability of the proposed quadrature rule, we consider

eλt =
1

2πi

∫
γ

ezt

z − λ
dz, λ ≤ 0.

To model the situation of singularities at 0 corresponding to 0 ∈ Sp(A), we take λ = 0
(similar behavior occurs for other choices) and consider the maximum error

(5.9) MN = max
t∈[t0,t1]

|1−QN (t)| ,
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where QN denotes the output of the quadrature rule under consideration. Figure 2
shows the error for t0 = 0.1 and a range of Λt values for the quadrature rule in [94]
(using the optimal values of parameters in Table 1 of [94]) and the quadrature rule of
Theorem 5.1. In both cases, the dashed lines represent the theoretical convergence rate
estimates and agree well with the convergence seen in practice. We see the instability
of the quadrature rule in [94]. Such instabilities can be a problem for (1.3), where
estimating the optimal value of N and optimal contour parameters can be difficult for
an operator A with an unknown spectrum (corresponding to unknown singularities of
the resolvent). This can be difficult even in the scalar case when singularities can be
analyzed ( [35, Fig. 1] shows an example of loss of accuracy), and typically requires
the user to perform substantial case-specific analysis [73]. In contrast, the quadrature
rule of Theorem 5.1 is completely stable. An advantage of a stable quadrature rule is
that it no longer becomes essential to determine the optimal value of N and optimal
contour parameters. Increasing N no longer incurs a stability penalty. Moreover,
within the stable region for the quadrature rule in [94], there is very little difference
between the convergence rates of each method.

5.2. Numerical example demonstrating (5.6). To demonstrate the bound
(5.6) and the effects of computing the resolvent near the spectrum of an infinite-
dimensional operator, we consider the variable diffusion equation on L2(R)

(5.10) ut = [(1.1− 1/(1 + x2))ux]x, u0(x) = e−
(x−1)2

5 cos(2x) + 2[1 + (x+ 1)4]−1.

To represent the operator, we use the Malmquist–Takenaka functions, defined by

φn(x) =
√
L/π(1 + iLx)n(1− iLx)−(n+1), n ∈ Z,

where L > 0 denotes a scaling factor (we take L = 1/5, which has not been optimized).
Following the remarks after Theorem 4.1, we can still compute the relevant evaluation
functions Λ for this basis. The orthonormal basis {φn}n∈Z has an interesting history
[49] and approximation properties can be found in [11, 91]. We rapidly compute
expansions in this basis using the fast Fourier transform. The basis also simultaneously
provides sparse matrices for differentiation and multiplication. Even for the most
computationally expensive examples in this section (those with the largest number
of quadrature points and basis functions), the computation (including forming the
linear system, solving for all quadrature points etc.) took less than half a second on
a modest laptop without parallelization.

Figure 3 (left) shows computed solutions with a rigorous error bound ε = 10−12.
As a first demonstration of (5.6), we compute the resolvents so that the second term
on the right-hand side of (5.6) dominates the η term. Figure 3 (right) shows the
convergence (where errors are computed by comparison with larger parameter values
to approximate the true error as opposed to a computed bound) in the number of
quadrature points for Λt = 1. The error is almost independent of t as expected from
(5.6) (recall that µt ≤ β).

The situation becomes quite different when we consider the first error term on
the right-hand side of (5.6). Figure 4 shows errors in terms of m, where we take
{φn : |n| ≤ m} as our basis functions and fixed N = 30 quadrature points so that the
first term on the right-hand side of (5.6) dominates. The dashed lines in the left panel
show relative errors in the computed resolvents R(γ(0), A), where A is the generator.
As t increases, more basis functions are needed to compute the resolvent to a given
accuracy η since γ(0) ∼ t−1 decreases to 0 ∈ Sp(A). However, we can still compute
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bound ε = 10−12. Right: Relative errors of the computed solutions in terms of N , where resolvents
R(zj , A) are computed with an adaptive number of basis functions so that the second term on the
right-hand side of (5.6) dominates the η term. Errors are computed in the L2(R) norm.
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Figure 4. Left: Relative errors of the computed resolvents R(γ(0), A) in terms of m (the

number of basis functions used is 2m + 1). Right: Relative errors of the computed solutions u in
terms of m. Errors are computed in the L2(R) norm. The number of quadrature points (2N + 1
with N = 30) is chosen such that the first term on the right-hand side of (5.6) dominates.

accurate solutions for large time using a modest number of basis functions. In this
example, the cost per solve scales as O(m) owing to the banded matrix representation.
In general, the bandwidth depends on the regularity of the coefficients of the PDO.
For this example and in subsections 6.2 and 6.3, we do not include this when reporting
the complexity in terms of m. The solid lines in Figure 4 (right) show the errors of
the full approximation, which decrease at roughly the same rate as m→∞.

6. Numerical examples. We now provide three examples to demonstrate the
versatility of our approach: an infinite discrete system, a PDE on an unbounded
domain, and a second-order (in time) PDE on a bounded domain. To gain error
bounds for non-normal generators A, we bound the resolvent6 and spectrum using

(6.1) Sp(A) ⊂ N (A)∪N (A∗), ‖R(z,A)‖ ≤ [dist(z,N (A))]−1 ∀z /∈ N (A)∪N (A∗),

where N (A) := {〈Ax, x〉 : x ∈ D(A), ‖x‖ = 1} denotes the numerical range. Working
in infinite dimensions has the advantage that it is often much easier to obtain such
bounds for A than for a discretization or truncation of A. In what follows we use
floating-point arithmetic to compute solutions and error bounds, though it is simple

6See also [92] for pseudospectra considerations when choosing contours.
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Figure 5. Left: Finite portion of the infinite aperiodic Ammann–Beenker (AB) tiling, generated

from an incommensurate rotation and projection of the 4D hypercubic lattice. The AB tiling is
aperiodic with global 8-fold rotational symmetry around a central point, and the lattice is obtained
by considering all vertices of the tiling. The red dots correspond to u0 (see main text). Right:
Difference in norm between the solution computed using the method of this paper (u, which has a
guaranteed error bound of 10−10) and the solution computed using Galerkin projection (uFS). As
t increases, the difference begins to grow quickly as uFS becomes inaccurate because of boundary
effects.

to adapt the algorithms using interval arithmetic [77, 88]. Bounds only need to be
verified for residuals of the solved linear systems. For example, this could be useful
in the growing area of computer-assisted proofs [33,34,43].

6.1. Schrödinger and wave equations on the Ammann–Beenker tiling.
In this example, we consider semigroups on the aperiodic Ammann–Beenker (AB)
tiling, a model of a 2D quasicrystal (aperiodic crystals), shown in Figure 5 (left).
Quasicrystals were discovered in 1982 by Shechtman [78] who was awarded the Nobel
prize in 2011 for his discovery. They have generated considerable interest because of
their exotic physical and spectral properties [81]. Whilst physical transport properties
of quasicrystals are well-studied [50, 75], computing the relevant semigroups on the
infinite-dimensional space is challenging because of the aperiodicity. For example, one
cannot use absorbing boundary conditions. We consider the graph Laplacian

[∆ABψ]i =
∑
i∼j

(ψj − ψi) ,

with summation over nearest neighbor vertices. A natural ordering of the vertices
leads to an operator acting on l2(N) whose local bandwidth grows. We consider the
(free) Schrödinger equation and the wave equation given by

iut = −∆ABu and utt = ∆ABu,

respectively. As our initial condition, we take u0 to be 1 on the vertices shown as red
dots in Figure 5, and zero otherwise (for the wave equation, we set u′(0) = 0).

We compute u with an error bounded by ε = 10−10. Because of the larger trunca-
tion size needed to compute the solution at larger times, the total computation time
for u for this example was of the order of minutes (with parallelization over quadra-
ture points using 20 CPU cores) as opposed to seconds. The cost per linear solve to
compute R(z,∆AB) scales as O(m3/2) for m basis sites, since the local bandwidth of
the infinite matrix grows. The number of basis sites needed depends on the tolerance
required and the distance of z to the spectrum. To demonstrate the difficulties of
finite-dimensional approaches, we also consider uFS, the solution obtained by direct
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Figure 6. Top row: log10(|u(t)|) computed for the Schrödinger equation at times t = 1 (left),
t = 10 (middle) and t = 50 (right). The white circle corresponds to the truncation of the tiling (10001
vertices) when computing uFS for Figure 5. Bottom row: u(t) computed for the wave equation at
times t = 1 (left), t = 30 (middle) and t = 50 (right). The green circle corresponds to the truncation
of the tiling when computing uFS and we have zoomed in compared with the top row for clarity.

diagonalization7 of the Galerkin truncation Pn∆ABPn for n = 10001 (chosen to main-
tain rotational symmetry). Figure 5 (right) shows the difference in norm between the
computed u and uFS. The difference is small for small time t. However, the difference
begins to grow quickly as uFS becomes inaccurate because of boundary effects. This
is demonstrated in Figure 6, which plots the computed solutions u. As t increases, we
need more vertices (basis vectors) to capture the solution. The method of this paper
allows this to be done automatically in a rigorous and adaptive manner.

6.2. Complex perturbed fractional diffusion equation. Our next example
demonstrates the results of section 5 for δ > 0, and also deals with more general
Laplace transform inversions. We consider the following equation on L2(R)

(6.2) Dι
tu = uxx + iu/(1 + x2), 0 < ι ≤ 1,

where Dι
t denotes Caputo’s fractional derivative [62]. Such fractional diffusion prob-

lems are attracting increasing interest and have many applications [26,96]. The solu-
tion is computed using the same method as in section 5, but now with the resolvent
(A− zI)−1 replaced by (Az1−ι − z)−1. We use the Malmquist–Takenaka basis func-
tions and the initial condition u0 from (5.10). Figure 7 shows solutions computed with
an error bound ε = 10−12 for various ι and times t. Even for this small value of ε, the
computational times for this example (including forming the linear system, solving
for all quadrature points etc.) were at most on the order of seconds on a modest
laptop without parallelization. Again, the cost of approximating (Az1−ι− z)−1 scales
as O(m) (using O(m) basis functions) owing to the banded matrix representation.
The size of m needed depends on the point z, as well as the required accuracy.

Despite the same initial conditions, the diffusion changes dramatically with ι, with
a slower diffusion process occurring for smaller ι (ι < 1 is known as sub-diffusion).
When applying domain truncation techniques, it can be challenging, particularly for
small ι, to determine a suitable truncation for a given desired accuracy. Similarly,

7This method was chosen to distill the error associated with truncating the AB tiling as opposed
to errors when approximating the exponential of a finite matrix via other methods.
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Figure 7. Solution of (6.2) for various ι at t = 1 (blue), t = 5 (red) and t = 50 (yellow). The

real parts are shown as solid lines, and the imaginary parts as dashed lines (u0 shown in black).

even when using global basis expansions that do not use a domain truncation, the
number of basis functions needed to capture the solution can be hard to predict a
priori (and one would also want a proof of convergence). Again, the method of this
paper overcomes these issues rigorously and adaptively. Another benefit of contour
methods for fractional PDEs is the reduced memory requirement compared to time
stepping methods, which typically store the history of the solution because of the
non-local nature of Dι

t [55]. Moreover, we avoid having to resolve singularities of the
solution as t ↓ 0. Instead, we compute accurate solutions simultaneously over large
time intervals using Algorithm 5.1.

6.3. Euler–Bernoulli beam equation with Kelvin–Voigt damping. As a
final example, we consider the following second-order problem on the interval [−1, 1]

(6.3) ρ(x)utt = −[a(x)uxx + b(x)uxxt]xx, u(±1, t) = ux(±, t) = 0,

with u(x, 0) = (1− x2) sin(5πx), ut(x, 0) = x, and the choices

ρ(x) = 1 + x/2, a(x) = 1 + x3/2, b(x) = tanh(10(x− 0.7)) + 1.01.

The damping function b models the suppression of vibrations of a clamped elastic
beam [57]. This example has a non-normal generator with complex spectrum, and
has non-empty continuous spectrum [97] despite being posed on a finite interval. The
problem is well-posed for (u0, u

′
0) ∈ H2

0([−1, 1]) × L2([−1, 1]), but for simplicity, we
measure the error of computed solutions in L2([−1, 1]). To solve the shifted linear
systems, we use the ultraspherical spectral method [68].8 Figure 8 shows computed
solutions with an error bound ε = 10−12. Even for this small value of ε, the compu-
tational times (including forming the linear system, solving for all quadrature points
etc.) were at most on the order of seconds on a modest laptop without parallelization.
The cost of approximating the resolvent using m basis functions scales as O(m) owing
to the almost banded matrix representation (filled in rows correspond to the bound-
ary conditions). Since b is only significant from zero for x > 0.7, this region exhibits
the anticipated damped behavior, whilst the section x < 0.7 undergoes almost free
vibration.

7. Concluding remarks. We have developed an algorithm that computes semi-
groups on infinite-dimensional separable Hilbert spaces with explicit and rigorous error
control. Algorithm 3.1 summarizes the approach. We combine a regularized functional
calculus, suitable contours and quadrature, and machinery used to compute the re-

8By using sparse approximations and suitable rectangular truncations, corresponding to bounding
tails of expansions of coefficients and solutions in ultraspherical polynomials, we gain error control.
See [12] for an interval arithmetic implementation of the ultraspherical spectral method.
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Figure 8. Solutions to (6.3) computed at different times t with an error bound ε = 10−12. The

dashed line shows the transition region between small and large damping function b.

solvent with error control. We derive results for both the canonical Hilbert space
l2(N) and partial differential operators on unbounded domains. For analytic semi-
groups, we derive a stable and rapidly convergent scheme. Algorithm 5.1 summarizes
this method, which is suitable for infinite-dimensional operators and more general
Laplace transform inversions. The result is a fully adaptive and rigorous method,
with the flexibility of only requiring solving linear systems with error control.

There are numerous possible extensions of the current work where error control is
an advantageous feature. Our algorithm could be a building block for inhomogeneous,
non-autonomous and non-linear evolution equations. For example, by controlling the
numerical error of exponentials and similar functions of linearized operators, this
could be useful for low regularity integrators [14, 71, 76]. Other avenues to explore
include generalizations of Theorem 4.1 for different classes of coefficients (e.g., singular
terms, which are particularly relevant to the Scrödinger case in (1.2)) and different
choices of basis functions. Another possibility is an error control algorithm using
finite element discretizations instead of spectral methods. This extension would be
particularly useful for complicated domains. For conforming finite elements with
sufficient regularity, it should be possible to reduce the problem to one over l2(N) (as
done in Theorem 4.1) by computing the needed inner products and modifying our
algorithm with a suitable Gramian matrix.

Finally, we point out that contour methods are certainly not the most efficient
method for every type of semigroup. This point is reflected by the diverse list of meth-
ods in section 1 and the fact that contour methods have historically been used mainly
for analytic semigroups. Contour methods do, however, provide a positive answer to
the foundations questions Q.1 and Q.2 in the introduction and lend themselves read-
ily to an infinite-dimensional “solve-then-discretize” approach. In the future, we will
explore using other techniques in answering similar foundational questions in infinite
dimensions.

Appendix A. Auxiliary results. We give two results needed in our proofs.

Lemma A.1. Let x ∈ l2(N) and suppose that we have access to evaluation func-
tions {fj,m} as in (3.1). Then given any ε > 0, we can compute an approximation xε

with finite support (with respect to the canonical basis) such that ‖x− xε‖ ≤ ε.

Proof. Let xε =
∑M
j=1 fj,m(x)ej , where we choose M and m in the following

manner. Clearly xε has finite support with respect to the canonical basis. We also
have that ‖x − xε‖2 ≤

∑M
j=1 2−2m +

∑
j>M |xj |2 and so we must choose M and m
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so that this bound is less than ε2. Given M , we can choose m so that the first term
is bounded by ε2/2, so it suffices to choose M so that the second term is bounded

by ε2/2. But we have that
∑
j>M |xj |2 = 〈x, x〉 −

∑M
j=1 |xj |2. Given the evaluation

functions (now making use of the f0,m that approximate ‖x‖2), we can compute the
right-hand side of this equation to any given accuracy. By doing this for successive
M , we can compute an M adaptively such that

∑
j>M |xj |2 ≤ ε2/2.

Next, we consider evaluating the resolvent. The following proposition uses an
adaptive least-squares approximation [PnT

∗TPn]−1PnT
∗x and a posteriori bounds

on residuals of the corresponding infinite-dimensional linear system.

Proposition A.2. Consider the setup in section 3. Given ε > 0, there exists an
algorithm Γε that when given (T, x) ∈ C(l2(N))× l2(N) with 0 /∈ Sp(T ), uses Λ1 (but
now for T instead of A) to compute a vector Γε(T, x) such that:

1. Γε(T, x) has finite support with respect to the canonical basis.
2. For any input,

∥∥Γε(T, x)− T−1x
∥∥ ≤ ε‖T−1‖.

Proof. Let (T, x) denote a suitable input as in the statement of the proposition.
Since 0 /∈ Sp(T ), n = rank(Pn) = rank(TPn). Hence we can define the least-squares
solution

Γ̃n(T, x) := argminy‖TPny − x‖ = [PnT
∗TPn]−1PnT

∗x.

The space span{en : n ∈ N} forms a core of T . It follows by invertibility of T that
given any δ > 0, there exists an m = m(δ) and a y = y(δ) with Pmy = y such that

‖Ty − x‖ ≤ δ.

It follows that for all n ≥ m, ‖T Γ̃n(T, x)− x‖ ≤ ‖Ty − x‖ ≤ δ and hence that

‖Γ̃n(T, x)− T−1x‖ ≤ δ‖T−1‖.

Since δ > 0 was arbitrary, we see that Γ̃n(T, x) converges to T−1x as n→∞.
For n,m ∈ N, define the finite matrices

Bn = PnT
∗TPn, Cm,n = PnT

∗Pm.

Given the evaluation functions in Λ1, we have access to the entries of these matrices
to any desired accuracy. It follows that we can compute approximations of Bn and
Cm,n denoted B̃n and C̃m,n respectively with

max
{
‖Bn − B̃n‖, ‖B−1

n − B̃−1
n ‖, ‖Cm,n − C̃m,n‖

}
≤ n−1.

We then define

Γm,n(T, x) := B̃−1
n C̃m,nx(m),

where x(m) = Pmx(m) is an approximation of Pmx to accuracy m−1. The bounds n−1

and m−1 are for convenience only. Using the above bounds, we have that

‖Γm,n(T, x)−Γ̃n(T, x(m))‖≤‖B−1
n −B̃−1

n ‖‖Cm,n‖‖x(m)‖+‖B̃−1
n ‖‖Cm,n−C̃m,n‖‖x(m)‖,

so that Γm,n(T, x) converges to T−1x(m) as n → ∞. By construction, Γm,n(T, x)
has finite support with respect to the canonical basis. Given ε > 0, we choose, using
Lemma A.1, m = m(ε) such that ‖x− x(m)‖ ≤ ε/2. Letting Γm,n denote Γm,n(T, x),

‖Γm,n − T−1x(m)‖2 ≤ ‖T−1‖2‖TΓm,n − x(m)‖2(A.1)

= ‖T−1‖2
[
‖TΓm,n‖2 − 2Re(〈TΓm,n, x(m)〉) + ‖x(m)‖2

]
.(A.2)
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Since we have access to approximations of both 〈Tej , T ej〉 (norms of the columns of
T ) and 〈Tei, ej〉 in Λ1, we can approximate all of the terms in the squared brackets
of (A.2) to any desired accuracy. We therefore choose n = n(ε) so that ‖TΓm,n −
x(m)‖2 ≤ ε2/4 and set Γε(T, x) = Γm(ε),n(ε)(T, x) so that∥∥Γε(T, x)− T−1x

∥∥≤‖T−1‖‖x−x(m)‖+‖Γm,n−T−1x(m)‖≤‖T−1‖
( ε

2
+
ε

2

)
= ε‖T−1‖.

This bound completes the proof.

In practice, we approximate Pmx, Bn and Cm,n using floating-point arithmetic
and then apply the above argument to bound the residual. The discretization size is
increased adaptively until the specified tolerance has been reached.
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