
A BENCHMARK FOR THE BAYESIAN INVERSION OF
COEFFICIENTS IN PARTIAL DIFFERENTIAL EQUATIONS

DAVID ARISTOFF∗ AND WOLFGANG BANGERTH†

Abstract. Bayesian methods have been widely used in the last two decades to infer statistical
properties of spatially variable coefficients in partial differential equations from measurements of
the solutions of these equations. Yet, in many cases the number of variables used to parameterize
these coefficients is large, and obtaining meaningful statistics of their values is difficult using simple
sampling methods such as the basic Metropolis-Hastings (MH) algorithm – in particular if the inverse
problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have
been described in the literature that converge faster than MH, for example by exploiting hierarchies
of statistical models or hierarchies of discretizations of the underlying differential equation.

At the same time, it remains difficult for the reader of the literature to quantify the advantages of
these algorithms because there is no commonly used benchmark. This paper presents a benchmark
Bayesian inverse problem – namely, the determination of a spatially-variable coefficient, discretized
by 64 values, in a Poisson equation, based on point measurements of the solution – that fills the gap
between widely used simple test cases (such as superpositions of Gaussians) and real applications that
are difficult to replicate for developers of sampling algorithms. We provide a complete description
of the test case, and provide an open source implementation that can serve as the basis for further
experiments. We have also computed 2 × 1011 samples, at a cost of some 30 CPU years, of the
posterior probability distribution from which we have generated detailed and accurate statistics
against which other sampling algorithms can be tested.

AMS subject classifications. 65N21, 35R30, 74G75

1. Introduction. Inverse problems are parameter estimation problems in which
one wants to determine unknown, spatially variable material parameters in a partial
differential equation (PDE) based on measurements of the solution. In the deter-
ministic approach, one in essence seeks that set of parameters for which the solution
of the PDE would best match the measured values; this approach is widely used in
many applications. On the other hand, the Bayesian approach to inverse problems
recognizes that all measurements are subject to measurement errors and that models
are also inexact; as a consequence, we ought to pose the inverse problem as one that
seeks a probability distribution describing how likely it is that parameter values lie in
a given interval or set. This generalization of the perspective on inverse problems has
long roots, but first came to the attention of the wider scientific community through
a 1987 book by Tarantola [49]. It was later followed by a significantly revised and
more accessible version by the same author [50] as well as numerous other books on
the subject; we mention [35] as one example, along with [2, 3, 17] for tutorial-style
introductions to the topic. The Bayesian approach to inverse problems has been used
in a wide variety of inverse applications: Too many to mention in detail, but including
acoustics [12], flow in the Earth’s mantle [59], laminar and turbulent flow [13], ice sheet
modeling [42], astronomy [15], chemistry [26,39], and groundwater modeling [33].

From a computational perspective, the primary challenge in Bayesian inverse
problems is that after discretizing the spatially variable parameters one seeks to in-
fer, one generally ends up with trying to characterize a finite- but high-dimensional
probability distribution π(θ) that describes the relative likelihood of parameters θ. In
particular, we are typically interested in computing the mean and standard deviation

∗Department of Mathematics, 1874 Campus Delivery, Colorado State University; Fort Collins,
CO 80523; USA (aristoff@math.colostate.edu).
†Department of Mathematics, Department of Geosciences, 1874 Campus Delivery, Colorado State

University; Fort Collins, CO 80523; USA (bangerth@colostate.edu).

1

ar
X

iv
:2

10
2.

07
26

3v
2

 [
m

at
h.

N
A

]
 2

8
Fe

b
20

22

of this probability distribution (i.e., which set of parameters 〈θ〉 on average fits the
measured data best, and what we know about its variability given the uncertainty in
the measured data). Computing these integral quantities in high dimensional spaces
can only be done through sampling methods such as Monte Carlo Markov Chain
(MCMC) algorithms. On the other hand, sampling in high-dimensional spaces often
suffers from a number of problems: (i) Long burn-in times until a chain finally finds
the region where the probability distribution π(θ) has values substantially different
from zero; (ii) long autocorrelation length scales if π(θ) represents elongated, curved,
or “ridged” distributions; (iii) for some inverse problems, multi-modality of π(θ) is
also a problem that complicates the interpretation of the posterior probability distri-
bution; (iv) in many ill-posed inverse problems, parameters have large variances that
result in rather slow convergence to reliable and accurate means.

In most high-dimensional applications, the result of these issues is then that one
needs very large numbers of samples to accurately characterize the desired probability
distribution. In the context of inverse problems, this problem is compounded by the
fact that the generation of every sample requires the solution of the forward problem
– i.e., generally, the expensive numerical solution of a PDE. As a consequence, the
solution of Bayesian inverse problems is computationally exceptionally expensive.

The community has stepped up to this challenge over the past two decades:
Numerous algorithms have been developed to make the sampling process more ef-
ficient. Starting from the simplest sampler, the Metropolis-Hastings algorithms with
a symmetric proposal distribution [32], ideas to alleviate some of the problems in-
clude nonsymmetric proposal distributions [44], delayed rejection [53], non-reversible
samplers [21], piecewise deterministic Markov processes [11, 54] including Hamilto-
nian Monte Carlo [38], adaptive methods [6, 31, 43], randomize-then-optimize meth-
ods [7–9], affine invariant samplers [24,29], and combinations thereof [16,30].

Other approaches introduce parallelism (e.g., the differential evolution method
and variations [51, 52, 56]), or hierarchies of models (see, for example, the survey by
Peherstorfer et al. [41] and references therein, as well as [14,23,25,45,57]). Yet other
methods exploit the fact that discretizing the underlying PDE gives rise to a natural
multilevel hierarchy (see [20] among many others) or that one can use the structure
of the discretized PDE for efficient sampling algorithms [36,55].

Many of these methods are likely vastly faster than the simplest sampling methods
that are often used. Yet, the availability of a whole zoo of possible methods and their
various possible combinations has also made it difficult to assess which method really
should be used if one wanted to solve a particular inverse problem, and there is no
consensus in the community on this topic. Underlying this lack of consensus is that
there is no widely used benchmark for Bayesian inverse problems: Most of the papers
above demonstrate the qualities of their particular innovation using some small but
artificial test cases such as a superposition of Gaussians, and often a more elaborate
application that is insufficiently well-described and often too complex for others to
reproduce. As a consequence, the literature contains few examples of comparisons of
algorithms using test cases that reflect the properties of actual inverse problems.

Our contribution here seeks to address this lack of widely used benchmarks. In
particular:

• We provide a complete description of a benchmark that involves characteriz-
ing a posterior probability distribution π(θ) on a 64-dimensional parameter
space that results from inverting data for a discretized coefficient in a Poisson
equation.

2

• We explain in detail why this benchmark is at once simple enough to make
reproduction by others possible, yet difficult enough to reflect the real chal-
lenges one faces when solving Bayesian inverse problems.

• We provide highly accurate statistics for π(θ) that allow others to assess the
correctness of their own algorithms and implementations. We also provide
a performance profile for a simple Metropolis-Hastings sampler as a baseline
against which other methods can be compared.

To make adoption of this benchmark simpler, we also provide an open-source im-
plementation of the benchmark that can be adapted to experimentation on other
sampling methods with relative ease.

The remainder of this paper is structured as follows: In Section 2, we provide a
complete description of the benchmark. In Section 3, we then evaluate highly accurate
statistics of the probability distribution that solves the benchmark, based on 2× 1011

samples we have computed. Section 4 provides a short discussion of what we hope the
benchmark will achieve, along with our conclusions. An appendix presents details of
our implementation of the benchmark (Appendix A), discusses a simple 1d benchmark
for which one can find solutions in a much cheaper way (Appendix B), and provides
some statistical background relevant to Section 3 (in Appendix C).

2. The benchmark for sampling algorithms for inverse problems.

2.1. Design criteria. In the design of the benchmark described in this paper,
we were guided by the following principle:

A good benchmark is neither too simple nor too complicated. It also
needs to reflect properties of real-world applications.

Specifically, we design a benchmark for inferring posterior probability distributions
using sampling algorithms that correspond to the Bayesian inversion of coefficients
in partial differential equations. In other words, cases where the relative posterior
likelihood is computed by comparing (functionals of) the forward solution of partial
differential equations with (simulations of) measured data.

The literature has many examples of papers that consider sampling algorithms
for such problems (see the references in the introduction). However, they are typically
tested only on cases that fall into the following two categories:

• Simple posterior probability density functions (PDFs) that are given by ex-
plicitly known expressions such as Gaussians or superpositions of Gaussians.
There are advantages to such test cases: (i) the probability distributions are
cheap to evaluate, and it is consequently possible to create essentially unlim-
ited numbers of samples; (ii) because the PDF is exactly known, exact values
for statistics such as the mean, covariances, or maximum likelihood (MAP)
points are often computable exactly, facilitating the quantitative assessment
of convergence of sampling schemes. On the other hand, these test cases are
often so simple that any reasonable sampling algorithm converges relatively
quickly, making true comparisons between different algorithms difficult. More
importantly, however, such simple test cases do not reflect real-world proper-
ties of inverse problems: Most inverse problems are ill-posed, nonlinear, and
high-dimensional. They are often unimodal, but with PDFs that are typi-
cally quite insensitive along certain directions in parameter space, reflecting
the ill-posedness of the underlying problem. Because real-world problems are
so different from simple artificial test cases, it is difficult to draw conclusions
from the performance of a new sampling algorithm when applied to a simple
test case.

3

• Complex applications, such as the determination of the spatially variable
oil reservoir permeability from the production history of an oil field, or the
determination of seismic wave speeds from travel times of earthquake waves
from their source to receivers. Such applications are of course the target for
applying advanced sampling methods, but they make for poor benchmarks
because they are very difficult to replicate by other authors. As a consequence,
they are almost exclusively used in only the single paper in which a new
sampling algorithm is first described, and it is difficult for others to compare
this new sampling algorithm against previous ones, since they have not been
tested against the same, realistic benchmark.

We position the benchmark in this paper between these extremes. Specifically,
we have set out to achieve the following goals:

• Reflect real properties of inverse problems: Our benchmark should reflect
properties one would expect from real applications such as the permeability or
seismic wave speed determinations mentioned above. We do not really know
what these properties are, but intuition and knowledge of the literature sug-
gest that they include very elongated and nonlinear probability distributions,
quite unlike Gaussians or their superpositions. In order for our benchmark
to reflect these properties, we base it on a partial differential equation.

• High dimensional: Inverse problems are originally infinite dimensional, i.e.,
we seek parameters that are functions of space and/or time. In practice,
these need to be discretized, leading to finite- but often high-dimensional
problems. It is well understood that the resulting curse of dimensionality
leads to practical problems that often make the Bayesian inverse problem
extremely expensive to solve. At the same time, we want to reflect these
difficulties in our benchmark.

• Computable with acceptable effort: A benchmark needs to have a solution that
is known to an accuracy sufficiently good to compare against. This implies
that it can’t be so expensive that we can only compute a few thousand or
tens of thousands of samples of the posterior probability distribution. This
rules out most real applications for which each forward solution, even on
parallel computers may take minutes, hours, or even longer. Rather, we need
a problem that can be solved in at most a second on a single processor to
allow the generation of a substantial number of samples.

• Reproducible: To be usable by anyone, a benchmark needs to be completely
specified in all of its details. It also needs to be simple enough so that others
can implement it with reasonable effort.

• Available: An important component of this paper is that we make the software
that implements the benchmark available as open source, see Appendix A. In
particular, the code is written in a modular way that allows evaluating the
posterior probability density for a given set of parameter values – i.e., the key
operation of all sampling methods. The code is also written in such a way that
it is easy to use in a multilevel sampling scheme where the forward problem
is solved with a hierarchy of successively more accurate approximations.

2.2. Description of the benchmark. Given the design criteria discussed in
the previous subsection, let us now present the details of the benchmark. Specifically,
we seek (statistics of) a non-normalized posterior probability distribution π(θ|ẑ) on
a parameter space θ ∈ Θ = R64 of modestly high dimension 64 – large enough to be
interesting, while small enough to remain feasible for a benchmark. Here, we think of ẑ

4

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0

13

26

39

52

65

78

91

104

117

130

143

156

1

14

27

40

53

66

79

92

105

118

131

144

157

2

15

28

41

54

67

80

93

106

119

132

145

158

3

16

29

42

55

68

81

94

107

120

133

146

159

4

17

30

43

56

69

82

95

108

121

134

147

160

5

18

31

44

57

70

83

96

109

122

135

148

161

6

19

32

45

58

71

84

97

110

123

136

149

162

7

20

33

46

59

72

85

98

111

124

137

150

163

8

21

34

47

60

73

86

99

112

125

138

151

164

9

22

35

48

61

74

87

100

113

126

139

152

165

10

23

36

49

62

75

88

101

114

127

140

153

166

11

24

37

50

63

76

89

102

115

128

141

154

167

12

25

38

51

64

77

90

103

116

129

142

155

168

Fig. 2.1. Left: Numbering of the 64 cells on which the parameters are defined. Right: Num-
bering and locations of the 132 = 169 evaluation points at which the solution is evaluated.

as a set of measurements made on a physical system that is used to infer information
about the internal parameters θ of the system. As is common in Bayesian inverse
problems, π(θ|ẑ) is defined as the product of a likelihood times a prior probability:

π(θ|ẑ) ∝ L(ẑ|θ)πpr(θ). (2.1)

Here, L(z|θ) describes how likely it would be to measure values z if θ were the “true”
values of the internal parameters. πpr is a (not necessarily normalized) probability
distribution encoding our prior beliefs about the parameters. A complete description
of the benchmark then requires us to describe the values of z and ways to evaluate the
functions L and πpr. We will split the definition of L into a discussion of the forward
model and a statistical model of measurements in the following.

2.2.1. The forward model. The setting we want to pursue is as follows: Let
us imagine a membrane stretched over a frame that bounds a domain Ω which, for
simplicity we assume to be the unit square Ω = (0, 1)2. The membrane is subject to
an external vertical force f(x) which for the purpose of this benchmark we choose
constant as f(x) = 10. Furthermore, the membrane has a spatially variable resistance
a(x) to deflection (for example, it may have a variable thickness or may be made from
different materials). In this benchmark, we assume that a(x) is piecewise constant on
a uniform 8× 8 grid as shown in Fig. 2.1, with the 64 values that parameterize a(x)
given by the elements of the vector θ0, . . . , θ63 as also indicated in the figure. In other
words, there is a 1:1 relationship between the vector θ and the piecewise constant
coefficient function a(x) = aθ(x).

Then, an appropriate model to describe the vertical deflection u(x) of the mem-
brane would express u as the solution of the following partial differential equation
that generalizes the Poisson equation:

−∇ · [a(x)∇u(x)] = f(x) in Ω, (2.2)

u(x) = 0 on ∂Ω. (2.3)

This model is of course not exactly solvable. But its solution can be approximated
using discretization. The way we define the likelihood L then requires us to specify
exactly how we discretize this model. Concretely, we define uh(x) as the solution

5

of a finite element discretization of (2.2)–(2.3) using a uniform 32 × 32 mesh and a
Q1 (bilinear) element. Because f(x) is given, and because there is a 1:1 relationship
between θ and a(x), this discretized model then implies that for each θ we can find a
uh(x) = uθh(x) that can be thought of as being parameterized using the 1089 degrees
of freedom of the Q1 discretization on the 32 × 32 mesh. (However, of these 1089
degrees of freedom, 128 are on the boundary and are constrained to zero.) In other

words, using the Q1 shape functions ϕk(x), we can express uh(x) =
∑1088
k=0 Ukϕk(x).

It is important to stress that the mapping θ 7→ uθh(x) (or equivalently, θ 7→ Uθ) is
nonlinear.

The function uθh(x) can be thought of as the predicted displacement at every point
x ∈ Ω if θ represented the spatially variable stiffness coefficient of the membrane. In
practice, however, we can only measure finitely many things, and consequently define a
measurement operatorM : uh 7→ z ∈ R169 that evaluates uh on a uniform 13×13 grid

of points xk ∈ Ω so that xk =
(

i
13+1 ,

j
13+1

)
, 1 ≤ i, j ≤ 13 with k = 13(i−1)+(j−1).

The locations of these points are also indicated in Fig. 2.1. This last step then defines
a linear mapping. Because of the equivalence between the function uh and its nodal
vector U , the linearity of the measurement operator implies that we can write z = MU
with a matrix M ∈ R169×1089 that is given by Mkl = ϕl(xk).

In summary, a parameter vector θ ∈ R64 then predicts measurements zθ ∈ R169

using the following chain of maps:

θ 7→ aθ(x) 7→ Uθ 7→ zθ. (2.4)

The mapping θ 7→ zθ is commonly called the “forward model” as it predicts mea-
surements zθ if we knew the parameter values θ. The “inverse problem” is then of
course the inverse operation: to infer the parameters θ that describe a system based
on measurements z of its state u.

All of the steps of the forward model have been precisely defined above and are
easily computable with some basic knowledge of finite element methods (or using the
code discussed in Appendix A). The expensive step is to solve for the nodal vector
Uθ, as this requires the assembly and solution of a linear system of size 1089.

Remark 2.1. The 32 × 32 mesh to define the forward model is chosen suffi-
ciently fine to resolve the exact solution u reasonably well. At the same time, it is
coarse enough to allow for the rapid evaluation of the solution – even a rather simple
implementation should yield a solution in less than a second, and a highly optimized
implementation such as the one discussed in Appendix A.1 will be able to do so in less
than 5 milliseconds on modern hardware. As a consequence, this choice of mesh al-
lows for computing a large number of samples, and consequently accurate quantitative
comparisons of sampling algorithms.

We also mention that the 32 × 32 mesh for uh(x) is twice more globally refined
than the 8 × 8 mesh used to define a(x) in terms of θ. It is clear to practitioners
of finite element discretizations of partial differential equations that the mesh for uh
must be at the very least as fine as the one for the coefficient aθ to obtain any kind of
accuracy. On the other hand, these choices then leave room for a hierarchy of models
in which the forward model uses 8 × 8, 16 × 16, and 32 × 32 meshes; we expect that
multilevel sampling methods will use this hierarchy to good effect.

Remark 2.2. In our experiments, we will choose the values of θ (and consequently
of a(x)) clustered around one. With the choice f = 10 mentioned above, this leads
to a solution u(x) with values in the range 0 . . . 0.95. This then also implies that we
should think of the numerical magnitude of our measurements zθk as O(1).

6

2.2.2. The likelihood L(z|θ). Given the predicted measurements zθ that cor-
respond to a given set of parameters θ, the likelihood L(z|θ) can be thought of as
expressing the (non-normalized) probability of actually obtaining z in a measure-
ment if θ were the “correct” set of parameters. This is a statement that encodes the
measurement error of our measurement device.

For the purposes of this benchmark, we assume that these measurement errors
are identical and independently distributed for all 169 measurement points. More
specifically, we define the likelihood as the following (non-normalized) probability
function:

L(z|θ) = exp

(
−‖z − z

θ‖2

2σ2

)
=

168∏
k=0

exp

(
− (zk − zθk)2

2σ2

)
, (2.5)

where we set σ = 0.05 and where zθ is related to θ using the chain (2.4).
Remark 2.3. We can think of (2.5) as encoding our belief that our measure-

ment system produces a Gaussian-distributed measurement zk ∼ N(zθk, σ). Given that
zθk = O(1), σ = 0.05 implies a measurement error of 5%. This is clearly much larger
than the accuracy with which one would be able to determine the deflection of a mem-
brane in practice. On the other hand, we have chosen σ this large to ensure that the
Bayesian inverse problem does not lead to a probability distribution π(θ|ẑ) that is so
narrowly centered around a value θ̄ that the mapping θ 7→ zθ can be linearized around
θ̄ – in which case the likelihood L(ẑ|θ) would become Gaussian, as also discussed in
Appendix B. We will demonstrate in Section 3.4 that indeed π(θ|ẑ) is not Gaussian
and, moreover, is large along a curved ridge that can not easily be approximated by a
Gaussian either.

2.2.3. The prior probability πpr(θ). Our next task is to describe our prior
beliefs for the values of the parameters. Given that the 64 values of θ describe the
stiffness coefficient of a membrane, it is clear that they must be positive. Furthermore,
as with many mechanical properties that can have values over vast ranges,1 reasonable
priors are typically posed on the “order of magnitude” (that is, the logarithm), not the
size of the coefficient itself. We express this through the following (non-normalized)
probability distribution:

πpr(θ) =

63∏
i=0

exp

(
− (ln(θi)− ln(1))2

2σ2
pr

)
, (2.6)

where we choose σpr = 2. We recognize the prior density of ln(θk) as a Gaussian with
mean σ2

pr and standard deviation σpr.
Because this prior distribution is posed on the logarithm of the parameters, the

prior on the parameters themselves is very heavy-tailed, with mean values 〈θk〉πpr

for each component much larger than the value at which πpr takes on its maximum
(which is at θk = 1): Indeed, the mean of each θk with respect to πpr is about 403.43.

We note that this prior probability is quite weak and, in particular, does not
assume any (spatial) correlation between parameters as is often done in inverse prob-
lems [35, 48, 55]. The correlations we will observe in our posterior probability (see
Section 3.3) are therefore a consequence of the likelihood function only.

1For example, the Young’s modulus that is related to the stiffness of a membrane, can range from
0.01 GPa for rubber to 200 GPa for typical steels. Similarly, the permeability of typical oil reservoir
rocks can range from 1 to 1000 millidarcies.

7

Table 2.1
The “true” measurement values ẑk, k = 0, . . . , 168 used in the benchmark. The values are also

available in the electronic supplemental material and are shown in full double precision accuracy to
allow for exact reproduction of the benchmark.

ẑ0 0.060 765 117 622 593 69 ẑ60 0.623 530 057 415 691 7 ẑ120 0.514 009 175 452 694 3
0.096 019 101 208 484 81 0.555 933 270 404 593 5 0.555 933 270 404 596 9
0.123 885 251 783 858 4 0.467 030 499 447 417 8 0.567 744 369 374 330 4
0.149 518 411 737 520 1 0.349 980 914 381 1 0.547 825 166 529 545 3
0.184 159 612 754 978 4 0.196 882 637 462 94 0.489 575 966 490 898 2
0.217 452 502 826 112 2 0.217 452 502 826 125 3 0.410 964 174 301 917 1
0.225 099 616 089 869 8 0.412 232 953 784 340 4 0.395 727 260 284 338
0.219 795 476 900 299 3 0.577 945 241 983 156 6 0.377 894 932 200 473 4
0.207 469 569 837 092 6 0.685 968 374 925 437 2 0.359 626 827 185 712 4
0.188 999 647 766 301 6 0.737 310 833 139 606 3 0.219 125 026 894 894 8

ẑ10 0.163 272 253 215 372 6 ẑ70 0.745 881 198 317 824 6 ẑ130 0.163 272 253 215 368 3
0.127 678 248 003 818 6 0.727 896 802 240 655 9 0.285 039 780 666 332 5
0.077 118 459 157 893 12 0.690 479 353 535 775 1 0.373 006 008 206 081
0.096 019 101 208 485 52 0.636 917 645 271 028 8 0.432 532 550 635 420 7
0.200 058 953 336 798 3 0.567 744 369 374 321 5 0.467 030 499 447 431 5
0.338 559 259 195 176 6 0.478 473 876 486 586 7 0.478 473 876 486 602 3
0.393 430 002 464 780 6 0.360 219 063 282 326 2 0.467 712 268 759 904 1
0.404 022 389 246 154 1 0.203 179 205 473 732 5 0.434 171 688 106 105 5
0.412 232 953 784 309 2 0.225 099 616 089 881 8 0.388 186 479 011 099
0.410 048 009 154 555 4 0.410 048 009 154 578 7 0.377 894 932 200 460 2

ẑ20 0.394 915 163 718 996 8 ẑ80 0.555 561 595 613 713 7 ẑ140 0.363 336 256 718 736 4
0.369 787 326 479 123 2 0.656 123 536 696 093 8 0.346 445 726 190 539 9
0.334 018 262 359 24 0.711 655 887 807 071 5 0.209 636 232 136 565 5
0.285 039 780 666 338 2 0.727 896 802 240 657 0.127 678 248 003 814 8
0.218 426 003 247 867 1 0.712 192 867 867 018 7 0.218 426 003 247 863 4
0.127 112 115 635 095 7 0.671 218 739 142 872 9 0.282 169 498 339 525 2
0.123 885 251 783 861 1 0.613 915 777 559 149 2 0.324 831 514 891 553 5
0.338 559 259 195 181 9 0.547 825 166 529 538 1 0.349 980 914 381 109 7
0.711 928 516 276 647 5 0.467 712 268 759 903 1 0.360 219 063 282 333 3
0.817 571 286 175 642 8 0.358 765 491 100 084 8 0.358 765 491 100 079 9

ẑ30 0.683 625 411 657 810 5 ẑ90 0.205 073 429 167 591 8 ẑ150 0.353 438 997 477 926 8
0.577 945 241 983 115 7 0.219 795 476 900 309 4 0.364 264 009 018 228 3
0.555 561 595 613 689 7 0.394 915 163 719 015 7 0.359 626 827 185 69
0.528 518 156 173 671 9 0.528 518 156 173 691 1 0.346 445 726 190 529 5
0.491 439 702 849 224 0.621 319 720 186 747 1 0.326 072 895 342 464 3
0.440 936 749 485 328 2 0.674 517 904 909 440 7 0.180 670 595 355 394
0.373 006 008 206 077 2 0.690 479 353 535 786 0.077 118 459 157 892 44
0.282 169 498 339 521 4 0.671 218 739 142 878 7 0.127 112 115 635 096 3
0.161 017 673 385 773 9 0.617 840 828 935 951 4 0.161 017 673 385 775 7
0.149 518 411 737 525 7 0.545 360 502 723 788 3 0.183 460 041 273 014 4

ẑ40 0.393 430 002 464 792 9 ẑ100 0.489 575 966 490 909 ẑ160 0.196 882 637 462 944 3
0.817 571 286 175 656 2 0.434 171 688 106 127 8 0.203 179 205 473 735 4
0.943 915 462 552 765 3 0.353 438 997 477 945 6 0.205 073 429 167 588 5
0.801 590 411 509 512 8 0.208 322 749 696 134 7 0.208 322 749 696 124 5
0.685 968 374 925 402 4 0.207 469 569 837 099 0.217 959 990 927 999 8
0.656 123 536 696 059 9 0.369 787 326 479 136 6 0.219 125 026 894 882 2
0.621 319 720 186 731 5 0.491 439 702 849 241 2 0.209 636 232 136 555 1
0.575 361 131 500 004 9 0.575 361 131 500 020 3 0.180 670 595 355 388 7
0.514 009 175 452 682 3 0.623 530 057 415 701 7 ẑ168 0.106 796 555 001 001 3
0.432 532 550 635 416 5 0.636 917 645 271 049 7

ẑ50 0.324 831 514 891 548 2 ẑ110 0.613 915 777 559 157 9
0.183 460 041 273 008 6 0.545 360 502 723 793 5
0.184 159 612 754 991 7 0.433 660 492 961 285 1
0.404 022 389 246 183 2 0.410 964 174 301 931 2
0.683 625 411 657 843 9 0.388 186 479 011 124 5
0.801 590 411 509 539 6 0.364 264 009 018 259 2
0.787 011 956 114 497 7 0.217 959 990 928 014 5
0.737 310 833 139 580 8 0.188 999 647 766 301 1
0.711 655 887 807 046 3 0.334 018 262 359 246 1
0.674 517 904 909 428 3 0.440 936 749 485 338 1

2.2.4. The “true” measurements ẑ. The last piece necessary to describe the
complete benchmark is the choice of the “true” measurements ẑ that we want to
use to infer the statistical properties of the parameters θ. For the purposes of this
benchmark, we will use the 169 values for ẑ given in Table 2.1.

In some sense, it does not matter where these values come from – we could have
measured them in an actual experiment, and used these values to infer the coefficients
of the system we measured on. On the other hand, for the purposes of a benchmark,
it might be interesting to know whether these “true measurements” ẑ correspond to a
“true set of parameters” θ̂ against which we can compare statistics such as the mean
〈θ〉 of the posterior probability π(θ|ẑ).

Indeed, this is how we have generated ẑ: We chose a set of parameters θ̂ that
corresponds to a membrane of uniform stiffness a(x) = 1 except for two inclusions in

8

Fig. 2.2. Top left: The 8×8 grid of values θ̂ used in generating the “true measurements” ẑ via
the forward model discussed in Section 2.2.4. The color scale matches that in Fig. 3.3. Top right:
The solution of the Poisson equation corresponding to θ̂ on the 256× 256 mesh and using Q3 finite
elements. “True” measurements ẑ are obtained from this solution by evaluation at the points shown
in the right panel of Fig. 2.1. Bottom left: For comparison, the solution obtained for the same set
of parameters θ̂, but using the 32×32 mesh and Q1 element that defines the forward model. Bottom
right: The solution of this discrete forward model applied to the posterior mean 〈θ〉π(θ|ẑ) that we

will compute later; the values of 〈θ〉π(θ|ẑ) are tabulated in Table 3.1, and visualized in Fig. 3.3.

which a = 0.1 and a = 10, respectively. This set up is shown in Fig. 2.2.2 Using θ̂, we
then used the series of mappings as shown in (2.4) to compute ẑ. However, to avoid
an inverse crime, we have used a 256 × 256 mesh and a bicubic (Q3) finite element

to compute θ̂ 7→ ûh 7→ ẑ = Mûh, rather than the 32 × 32 mesh and a bilinear (Q1)
element used to define the mapping θ 7→ uh 7→ zθ =Muh.

2This set up has the accidental downside that both the set of parameters θ̂ and the set of
measurement points xk at which we evaluate the solution are symmetric about the diagonal of the
domain. Since the same is true for our finite element meshes, the exact solution of the benchmark
results in a probability distribution that is invariant to permutations of parameters about the diagonal
as well, and this is apparent in Fig. 3.3, for example. A better designed benchmark would have
avoided this situation, but we only realized the issue after expending several years of CPU time.
At the same time, the expected symmetry of values allows for a basic check of the correctness of
inversion algorithms: If the inferred mean value 〈θ7〉π(θ|ẑ) is not approximately equal to 〈θ63〉π(θ|ẑ)
– see the numbering shown in the left panel of Fig. 2.1 – then something is wrong.

9

As a consequence of this choice of higher accuracy (and higher computational
cost), we can in general not expect that there is a set of parameters θ for which
the forward model of Section 2.2.1 would predict measurements zθ that are equal to
ẑ. Furthermore, the presence of the prior probability πpr in the definition of π(θ|ẑ)
implies that we should not expect that either the mean 〈θ〉π(θ|ẑ) nor the MAP point

θMAP = arg maxθ π(θ|ẑ) are equal or even just close to the “true” parameters θ̂.

3. Statistical assessment of π(θ|ẑ). The previous section provides a concise
definition of the non-normalized posterior probability density π(θ|ẑ). Given that the
mapping θ 7→ zθ is nonlinear and involves solving a partial differential equation, there
is no hope that π(θ|ẑ) can be expressed as an explicit formula. On the other hand,
all statistical properties of π(θ|ẑ) can of course be obtained by sampling, for example
using algorithms such as the Metropolis-Hastings sampler [32].

In order to provide a useful benchmark, it is necessary that at least some proper-
ties of π(θ|ẑ) are known with sufficient accuracy to allow others to compare the con-
vergence of their sampling algorithms. To this end, we have used a simple Metropolis-
Hastings sampler to compute 2× 1011 samples that characterize π(θ|ẑ), in the form of
N = 2000 Markov chains of length NL = 108 each. (Details of the sampling algorithm
used to obtain these samples are given in Appendix A.2.) Using the program discussed
in Appendix A.1, the effort to produce this many samples amounts to approximately
30 CPU years on current hardware. On the other hand, we will show below that this
many samples are really necessary in order to provide statistics of π(θ|ẑ) accurately
enough to serve as reference values – at least, if one insists on using an algorithm
as simple as the Metropolis-Hastings method. In practice, we hope that this bench-
mark is useful in the development of algorithms that are substantially better than the
Metropolis-Hastings method. In addition, when assessing the convergence properties
of a sampling algorithm, it is of course not necessary to achieve the same level of
accuracy as we obtain here.

In the following let us therefore provide a variety of statistics computed from our
samples, along with an assessment of the accuracy with which we believe that we can
state these results. In the following, we will denote by 0 ≤ L < N = 2000 the number
of the chain, and 0 ≤ ` < NL = 108 the number of a sample θL,` on chain L. If we
need to indicate one of the 64 components of a sample, we will use a subscript index
k for this purpose as already used in Section 2.2.1.

3.1. How informative is our data set?. While we have N = 2000 chains,
each with a large number NL = 108 of samples per chain, a careful assessment needs
to include an evaluation how informative all of these samples really are. For example,
if the samples on each chain had a correlation length of 107 because our Metropolis-
Hastings sampler converges only very slowly, then each chain really only contains
approximately ten statistically independent samples of π(θ|ẑ). Consequently, we could
not expect great accuracy in estimates of the mean value, covariance matrices, and
other quantities obtained from each of the chains. Similarly, if the “burn-in” time of
the sampler is a substantial fraction of the chain lengths NL, then we would have to
throw away many of the early samples.

To assess these questions, we have computed the autocovariance matrices

ACL(s) =
〈
[θL,` − 〈θ〉L][θL,`−s − 〈θ〉L]T

〉
L

=
1

NL − s− 1

NL−1∑
`=s

[θL,` − 〈θ〉L][θL,`−s − 〈θ〉L]T (3.1)

10

 100000

 1x106

 1x107

 1x108

 0 5000 10000 15000 20000Tr
a
ce

 o
f

th
e
 a

u
to

co
rr

e
la

ti
o
n
 m

a
tr

ic
e
s

A
C

(s
)

Sample lag s

Fig. 3.1. Decay of the trace of the autocovariance matrices ACL(s) with the sample lag s.
The light blue curves show the traces of ACL(s) for twenty of our chains. The red curve shows

the trace of the averaged autocovariance matrices, AC(s) = 1
N

∑N−1
L=0 ACL(s). The thick yellow

line corresponds to the function 4 · 106 · e−s/5300 and shows the expected, asymptotically exponential
decay of the autocovariance. The dashed green line indicates a reduction of the autocovariance by
roughly a factor of 100 compared to its starting values.

between samples s apart on chain L. We expect samples with a small lag s to be
highly correlated (i.e., ACL(s) to be a matrix that is large in some sense), whereas
for large lags s, samples should be uncorrelated and ACL(s) should consequently be
small. A rule of thumb is that samples at lags s can be considered decorrelated from
each other if ACL(s) ≤ 10−2ACL(0) entrywise; see Appendix C.

Fig. 3.1 shows the trace of these autocovariance matrices for several of our chains.
(We only computed the autocovariance at lags s = 0, 100, 200, 300, . . . up to s =
20, 000 because of the cost of computing ACL(s).) The curves show that the autoco-
variances computed from different chains all largely agree, and at least asymptotically
decay roughly exponentially with s as expected. The data also suggest that the au-
tocorrelation length of our chains is around NAC = 104 – in other words, each of our
chains should result in approximately NL/NAC = 104 meaningful and statistically
independent samples.

To verify this claim, we estimated the integrated autocovariance [47] using

IAC ≈ 1

N

N−1∑
L=0

100

200∑
s=−200

ACL(|100s|). (3.2)

The integrated autocovariance is obtained by summing up the autocovariance. (The
factor of 100 appears because we only computed ACL(s) at lags that are multiples
of 100.) We show in Appendix C that the integrated autocovariance leads to the
following estimate of the effective sample size:

Effective sample size per chain ≈ NL
λmax(C−1 · IAC)

≈ 1.3× 104, (3.3)

where λmax indicates the maximum eigenvalue and C = 1
N

∑N−1
L=0 ACL(0) is the co-

variance matrix; see also (3.4) below. This is in good agreement with Fig. 3.1 and the
effective sample size derived from it.

This leaves the question of how long the burn-in period of our sampling scheme
is. Fig. 3.2 shows two perspectives on this question. The left panel of the figure shows

11

 0.1

 1

 10

 100

 1000

 0 20000 40000 60000 80000 100000

V
a
lu

e
s

o
f

co
m

p
o
n
e
n
ts

 k
 o

f
th

e
ta

l

Sample index l

 0.1

 1

 10

 100

 1000

 0 20000 40000 60000 80000 100000

V
a
lu

e
s

o
f

co
m

p
o
n
e
n
ts

 k
 o

f
th

e
ta

l

Sample index l

Fig. 3.2. Two perspectives on the length of the burn-in phase of our sampling scheme. Left:
Values of components k = 0, 9, 36, 54, and 63 of samples θ` for ` = 0, . . . , 100, 000, for one, randomly
chosen chain. (For the geometric locations of the parameters that correspond to these components,

see Fig. 2.1.) Right: Across-chain averages 1
N

∑N−1
L=0 θL,` for the same components k as above.

Both images also shows the mean values 〈θ〉π(θ|ẑ) for these five components as dashed lines.

several components θ`,k of the samples of one of our chains for the first few autocorre-
lation lengths. The data shows that there is at least no obvious “burn-in” period on
this scale that would require us to throw away a substantial part of the chain. At the
same time, it also illustrates that the large components of θ are poorly constrained
and vary on rather long time scales that make it difficult to assess convergence to the
mean. The right panel shows across-chain averages of the `th samples, more clearly
illustrating that the burn-in period may only last around 20,000 samples – that is,
that only around 2 of the approximately 10,000 statistically independent samples of
each chain are unreliable.

Having thus convinced ourselves that it is safe to use all 108 samples from all
chains, and that there is indeed meaningful information contained in them, we will
next turn our attention towards computing statistical information that characterizes
π(θ|ẑ) and against which other implementations of sampling methods can compare
their results.

3.2. The mean value of π(θ|ẑ). The simplest statistic one can compute from
samples of a distribution is the mean value. Table 3.1 shows the 64 values that
characterize the mean

〈θk〉π(θ|ẑ) =
1

N

N−1∑
L=0

(
1

NL

NL−1∑
`=0

θL,`,k

)
.

A graphical representation of 〈θ〉π(θ|ẑ) is shown Fig. 3.3 and can be compared to the

“true” values θ̂ shown in Fig. 2.2.3

3By comparing Fig. 2.2 and the data of Table 3.1 and Fig. 3.3, it is clear that for some parameters,
the mean 〈θk〉π(θ|ẑ) is far away from the value θ̂k used to generate the original data ẑ – principally

for those parameters that correspond to large values θ̂k, but also the “white cross” below and left of
center. For the first of these two places, we can first note that the prior probability πpr defined in
(2.6) is quite heavy-tailed, with a mean far larger than where its maximum is located. And second, by
realizing that a membrane that is locally very stiff is not going to deform in a substantially different
way in response to a force from one that is even stiffer in that region – in other words, in areas where
the coefficient aθ(x) is large, the likelihood function (2.5) is quite insensitive to the exact values of
θ, and the posterior probability will be dominated by the prior πpr with its large mean.

12

Table 3.1
Sample means 〈θ〉π(θ|ẑ) for the 64 parameters, along with their estimated 2-sigma uncertainties.

〈θ〉0 = 76.32 ± 0.30
1.2104 ± 0.0094

0.977 380 ± 0.000 051
0.882 007 ± 0.000 039
0.971 859 ± 0.000 048
0.947 832 ± 0.000 064
1.085 29 ± 0.000 11

11.39 ± 0.10
〈θ〉8 = 1.119 ± 0.011

0.093 721 5 ± 0.000 002 7
0.115 799 2 ± 0.000 003 9

0.5815 ± 0.0022
0.9472 ± 0.0079
6.258 ± 0.079
9.334 ± 0.090

1.081 51 ± 0.000 11
〈θ〉16 = 0.977 449 ± 0.000 052

0.115 796 2 ± 0.000 003 8
0.461 ± 0.020

267.01 ± 0.55
30.87 ± 0.19
7.189 ± 0.089
12.39 ± 0.11

0.949 863 ± 0.000 073

〈θ〉24 =0.881 977 ± 0.000 039
0.5828 ± 0.0020
267.72 ± 0.62
369.35 ± 0.64
234.59 ± 0.53
13.29 ± 0.14
22.36 ± 0.16

0.988 806 ± 0.000 074
〈θ〉32 =0.971 900 ± 0.000 049

0.9509 ± 0.0079
30.76 ± 0.19

233.93 ± 0.52
1.169 ± 0.012

0.8327 ± 0.0057
88.52 ± 0.33

0.987 809 ± 0.000 079
〈θ〉40 =0.947 816 ± 0.000 065

6.260 ± 0.076
7.119 ± 0.087
13.20 ± 0.13

0.8327 ± 0.0035
176.73 ± 0.44
283.38 ± 0.58

0.914 212 ± 0.000 077

〈θ〉48 = 1.085 21 ± 0.000 11
9.386 ± 0.089
12.44 ± 0.12
22.50 ± 0.17
88.57 ± 0.33

283.41 ± 0.57
218.65 ± 0.49

0.933 451 ± 0.000 087
〈θ〉56 = 11.35 ± 0.11

1.081 43 ± 0.000 11
0.949 869 ± 0.000 074
0.988 770 ± 0.000 074
0.987 866 ± 0.000 083
0.914 247 ± 0.000 077
0.933 426 ± 0.000 087
1.599 84 ± 0.000 30

To assess how accurately we know this average, we consider that we have N =
2000 chains of length NL = 108 each, and that each of these has its own chain averages

〈θk〉L =
1

NL

NL−1∑
`=0

θL,`,k.

The ensemble average 〈θk〉π(θ|ẑ) is of course the average of the chain averages 〈θk〉L
across chains, but the chain averages vary between themselves and we can compute
the standard deviation of these chain averages as

stddev (〈θk〉L) =

[
1

N

N−1∑
L=0

(
〈θk〉L − 〈θk〉π(θ|ẑ)

)2]1/2
.

Under standard assumptions, and assuming that the posterior is Gaussian, we can
then estimate that we know the ensemble averages 〈θk〉π(θ|ẑ) to within an accu-

racy of ± 1√
N

stddev (〈θk〉L) with 68% (1-sigma) certainty, and with an accuracy of

± 2√
N

stddev (〈θk〉L) with 95% (2-sigma) certainty. In reality, the posterior is not

Gaussian (see Section 3.4), and the argument is not true as stated; however, com-
puting 2-sigma values for all parameters is still a useful metric for how accurately we
know each of the parameters.

This 2-sigma accuracy is also provided in Table 3.1. For all but parameter θ18
(for which the relative 2-sigma uncertainty is 4.5%), the relative uncertainty in 〈θ〉
is between 0.003% and 1.3%. In other words, the table provides nearly two certain
digits for all but one parameter, and four digits for at least half of all parameters.

For the “white cross”, one can make plausible that the likelihood is uninformative and that,
consequently, mean value and variances are again determined by the prior. To understand why this is
so, one could imagine by analogy what would happen if one could measure the solution u(x) of (2.2)–
(2.3) exactly and everywhere, instead of only at a discrete set of points. In that case, we would have
u(x) = z(x), and we could infer the coefficient a(x) by solving (2.2)–(2.3) for the coefficient instead
of for u. This leads to the advection-reaction equation −∇z(x) ·∇a(x)− (∆z(x))a(x) = f(x), which
is ill-posed and does not provide for a stable solution a(x) at those places where ∇z(x) = ∇u(x) ≈ 0.
By comparison with Fig. 2.2, we can see that at the location of the white cross, we could not identify
the coefficient at one point even if we had measurements available everywhere, and not stably so in
the vicinity of that point. We can expect that this is also so in the discrete setting of this benchmark
– and that consequently, at this location, only the prior provides information.

13

Inferred mean values 〈θk〉π(θ|ẑ). Variances Ckk.

Fig. 3.3. Left: Visualization on an 8 × 8 grid of mean values 〈θ〉π(θ|ẑ) obtained from our

samples. This figure should be compared with the values θ̂ used as input to generate the “true
measurements” ẑ and shown in Fig. 2.2. Right: Variances Ckk of the parameters. Dark colors
indicate that a parameter is accurately known; light colors that the variance is large. Standard
deviations (the square roots of the variances) are larger than the mean values in some cases because
of the heavy tails in the distributions of parameters.

3.3. The covariance matrix of π(θ|ẑ) and its properties. The second statis-
tic we demonstrate is the covariance matrix,

CL =
1

NL − 1

NL−1∑
`=0

(
θL,` − 〈θ〉π(θ|ẑ)

)(
θL,` − 〈θ〉π(θ|ẑ)

)T
,

C =
1

N

N−1∑
L=0

CL.

(3.4)

While conceptually easy to compute, in practice it is substantially harder to obtain
accuracy in C than it is to compute accurate means 〈θ〉π(θ|ẑ): While we know the latter
to two or more digits of accuracy, see Table 3.1, there is substantial variation between
the matrices CL.4 The remainder of this section therefore only provides qualitative
conclusions we can draw from our estimate of the covariance matrix, rather than
providing quantitive numbers.

First, the diagonal entries of C, Ckk, provide the variances of the statistical
distribution of θk, and are shown on the right of Fig. 3.3; the off-diagonal entries Ck`
suggest how correlated parameters θk and θl are and are depicted in Fig. 3.4.

In the context of inverse problems related to partial differential equations, it is
well understood that we expect the parameters to be highly correlated. This can
be understood intuitively given that we are thinking of a membrane model: If we
increased the stiffness value on one of the 8 × 8 pixels somewhat, but decreased the
stiffness value on a neighboring correspondingly, then we would expect to obtain
more or less the same global deformation pattern – maybe there are small changes
at measurement points close to the perturbation, but for measurement points far
away the local perturbation will make little difference. As a consequence, we should
expect that L(ẑ|θ) ≈ L(ẑ|θ̃) where θ and θ̃ differ only in two nearby components, one
component of θ̃ being slightly larger and the other being slightly smaller than the

4For diagonal entries CL,kk, the standard deviation of the variation between chains is between
0.0024 and 37.7 times the corresponding entry Ckk of the average covariance matrix. The variation
can be even larger for the many small off-diagonal entries. On the other hand, the average (across
chains) difference ‖CL −C‖F is 0.9‖C‖F . This would suggest that we don’t know very much about
these matrices, but as shown in the rest of the section, qualitative measures can be extracted robustly.

14

Fig. 3.4. Left: A visualization of the covariance matrix C computed from the posterior proba-
bility distribution π(θ|ẑ). The sub-structure of the matrix in the form of 8× 8 tiles represents that
geographically neighboring – and consequently correlated – parameters are either a distance of ±1

or ±8 apart. Right: Correlation matrix Dij =
Cij√

Cii
√
Cjj

.

 0
 10

 20
 30theta45 0

 10
 20

 30

theta46

0.000

0.002

M
a
rg

in
a
l
p

d
f

 0
 10

 20
 30theta53 0

 10
 20

 30

theta54

0.000

0.002

M
a
rg

in
a
l
p

d
f

Fig. 3.5. Pairwise marginal probabilities for θ45 and θ46 (left) and for θ53 and θ54 (right),
respectively. See Fig. 2.1 for the relative locations of these parameters. These marginal distributions
illustrate the anti-correlation of parameters: If one is large, the other is most likely small, and vice
versa.

corresponding component of θ. If the changes are small, then we will also have that
π(θ|ẑ) ≈ π(θ̃|ẑ) – in other words, we would expect that π is approximately constant
in the secondary diagonal directions (0, . . . , 0,+ε, 0, . . . , 0,−ε, 0, . . . 0) in θ space.

On the other hand, increasing (or decreasing) the stiffness value in both of two
adjacent pixels just makes the membrane overall more (or less) stiff, and will yield
different displacements at all measurement locations. Consequently, we expect that
the posterior probability distribution π(θ|ẑ) will strongly vary in the principal diagonal
directions (0, . . . , 0,+ε, 0, . . . , 0,+ε, 0, . . . 0) in θ space.

We can illustrate this by computing two-dimensional histograms of the samples
for parameters θk and θl corresponding to neighboring pixels – equivalent to a two-
dimensional marginal distribution. We show such histograms in Fig. 3.5. These also
indicate that the posterior probability distribution π(θ|ẑ) is definitely not Gaussian –
see also Remark 2.3.

A better way to illustrate correlation is to compute a singular value decomposition
of the covariance matrix C. Many inverse problems have only a relatively small
number of large singular values of C [12,13,22,42,55,59], suggesting that only a finite
number of modes is resolvable with the data available – in other words, the problem
is ill-posed. Fig. 3.6 shows the singular values of the covariance matrix C for the
current case. The data suggests that from the 169 measured pieces of (noisy) data, a
deterministic inverse problem could only recover some 25-30 modes of the parameter

15

 0.01

 1

 100

 10000

 1x106

 1x108

 0 10 20 30 40 50 60

k'
th

 e
ig

e
n
v
a
lu

e

Index k

Fig. 3.6. Singular values of the covariance matrix C as defined in (3.4). Red bars indicate
eigenvalues of the across-chain averaged covariance matrix. Blue boxes correspond to the 25th
and 75th percentiles of the corresponding eigenvalues of the covariance matrices CL of individual
chains; vertical bars extend to the minimum and maximum across chains for the kth eigenvalue of
the matrices CL; blue bars in the middle of boxes indicate the median of these eigenvalues.

vector θ ∈ R64 with reasonable accuracy.5

3.4. Higher moments of π(θ|ẑ). In some sense, solving Bayesian inverse prob-
lems is not very interesting if the posterior distribution p(θ|ẑ) for the parameters is
Gaussian, or at least approximately so, because it can be done much more efficiently
by computing the maximum likelihood estimator through a deterministic inverse prob-
lem, and then computing the covariance matrix via the Hessian of the deterministic
(constrained) optimization problem. For example, [55] provides an excellent overview
of the techniques that can be used in this case. Because of these simplifications,
it is of interest to know how close the posterior density of this benchmark is to a
multi-dimensional Gaussian.

To evaluate this question, Fig. 3.7 shows histograms of all of the parameters,
using 1000 bins that are equally spaced in logarithmic space; i.e., for each component
k, we create 1000 bins between -3 and +3 and sort samples into these bins based
on log10(θk). It is clear that many of the parameters have heavy tails and can,

5The figure shows the spread of each of the eigenvalues of the within-chain matrices CL in blue,
and the eigenvalues of the across-chain matrix C in red. One would expect the latter to be well
approximated by the former, and that is true for the largest and smallest eigenvalues, but not for
the ones in the middle. There are two reasons for this: First, each of the CL is nearly singular,
but because each chain is finite, the poorly explored directions are different from one chain to the
next. At the same time, it is clear that the sum of (different) singular matrices may actually be “less
singular”, with fewer small eigenvalues, and this is reflected in the graph. A second reason is that we
computed the eigenvalues of each of the CL and ordered them by size when creating the plot, but
without taking into account the associated eigenspaces. As a consequence, if one considers the, say,
32nd largest eigenvalue of C, the figure compares it with the 32nd largest eigenvalues of all of the
CL, when the correct comparison would have been with those eigenvalues of the matrices CL whose
eigenspace is most closely aligned; this may be an eigenvalue elsewhere in the order, and the effect
will likely be the most pronounced for those eigenvalues whose sizes are the least well constrained.

The conclusions to be drawn from Fig. 3.6 are therefore not the actual sizes of eigenvalues,
but the number of “large” eigenvalues. This observation is robust, despite the inaccuracies in our
determination of C.

16

 0.001

 0.01

 0.1 1 10 100

Fr
a
ct

io
n
 o

f
sa

m
p

le
s

in
 e

a
ch

 b
in

Component value

Fig. 3.7. Histograms (marginal distributions) for all 64 components of θ, accumulated over all
2× 1011 samples. The histograms for those parameters whose values were 0.1 for the purposes of
generating the vector ẑ are shown in red, those whose values were 10 in orange, and all others in
blue. The figure highlights histograms for some of those components θk whose marginal distributions
are clearly neither Gaussian nor log-Gaussian. Note that the histograms were generated with bins
whose size increases exponentially from left to right, so that they are depicted with equal size in
the figure given the logarithmic θk axis. Histograms with equal bin size on a linear scale would be
more heavily biased towards the left, but with very long tails to the right. See Fig. 3.5 for (pair)
histograms using a linear scale.

consequently, not be approximated well by Gaussians. On the other hand, given the
prior distribution (2.6) we attached to each of the parameters, it would make sense
to conjecture that the logarithms log(θk) might be Gaussian distributed.

If that were so, the double-logarithmic plot shown in the figure would consist of
histograms in the form of parabolas open to the bottom, and again a simpler – and
presumably cheaper to compute – representation of π(θ|ẑ) would be possible. How-
ever, as the figure shows, this too is clearly not the case: While some parameters seem
to be well described by such a parabola, many others have decidedly non-symmetric
histograms, or shapes that are simply not parabolic. As a consequence, we conclude
that the benchmark is at least not boring in the sense that its posterior distribution
could be computed in some comparably much cheaper way.

3.5. Rate of convergence to the mean. The data provided in the previous
subsections allows checking whether a separate implementation of this benchmark
converges to the same probability distribution π(θ|ẑ). However, it does not help in
assessing whether it does so faster or slower than the simplistic Metropolis-Hastings
method used herein. Indeed, as we will outline in the next section, we hope that this
work spurs the development and evaluation of methods that can achieve the same
results without needing more than 1011 samples.

To this end, let us here provide metrics for how fast our method converges to the
mean 〈θ〉π(θ|ẑ) discussed in Section 3.2. More specifically, if we denote by 〈θ〉L,n =
1
n

∑n−1
`=0 θL,` the running mean of samples zero to n − 1 on chain L, then we are

interested in how fast it converges to the mean. We measure this using the following
error norm

eL(n) =
∥∥∥diag (〈θ〉π(θ|ẑ))

−1
(
〈θ〉L,n − 〈θ〉π(θ|ẑ)

)∥∥∥
=

[(
〈θ〉L,n − 〈θ〉π(θ|ẑ)

)T
diag (〈θ〉π(θ|ẑ))

−2
(
〈θ〉L,n − 〈θ〉π(θ|ẑ)

)]1/2
. (3.5)

17

The weighting by a diagonal matrix containing the inverses of the estimated param-
eters 〈θ〉π(θ|ẑ) (given in Table 3.1 and known to sufficient accuracy) ensures that the

large parameters with their large variances do not dominate the value of eL(n). In
other words, eL(n) corresponds to the “root mean squared relative error”.6

Fig. 3.8 shows the convergence of a few chains to the ensemble average. While
there is substantial variability between chains, it is clear that for each chain eL(n)2 →
0 and, furthermore, that this convergence follows the classic one-over-n convergence
of statistical sampling algorithms. Indeed, averaging eL(n)2 over all chains,

e(n)2 =
1

N

N−1∑
L=0

eL(n)2,

the behavior of this decay of the “average” square error e(n)2 can be approximated
by the following formula that corresponds to the orange line in the figure:

e(n)2 ≈ 1.9× 108

n
. (3.6)

While we have arrived at the factor 1.9× 108 by fitting a curve “by eye”, it turns out
– maybe remarkably – that we can also theoretically support this behavior: using the
Markov chain central limit theorem [34] (see Appendix C for details), we can estimate
the mean of ne(n)2 by

tr
(
diag(〈θ〉π(θ|ẑ))−1 · IAC · diag(〈θ〉π(θ|ẑ))−1

)
≈ 1.9× 108,

where the matrix IAC is defined in (3.2).
If one measures computational effort by how many times an algorithm evaluates

the probability distribution π(θ|ẑ), then n in (3.5) can be interpreted as work units
and (3.6) provides an approximate relationship between work and error. Similar
relationships can be obtained experimentally for other sampling algorithms that we
hope this benchmark will be used for, and (3.6) therefore allows comparison among
other algorithms as well as against the one used here.

4. Conclusions and what we hope this benchmark achieves. As the data
presented in the previous section illustrates, it is possible to obtain reasonably accurate
statistics about the Bayesian solution of the benchmark introduced in Section 2, even
using a rather simple method: The standard Metropolis-Hastings sampler. At the
same time, using this method, it is not at all trivial to compute posterior statistics
accurately : We had to compute 2× 1011 samples, and expended 30 CPU years on this
task (plus another two CPU years on postprocessing the samples).

But all of this also makes this a good benchmark: Simple algorithms, with known
performance, can solve it to a reasonable accuracy, and more advanced algorithms
should be able to do so in a fraction of time without making the test case trivial. For
example, it is not unreasonable to hope that advanced sampling software [1,19,37,40],
using multi-level and multi-fidelity expansions [20,23,41,45], and maybe in conjunction
with methods that exploit the structure of the problem to approximate covariance
matrices [55], might be able to reduce the compute time by a factor of 100 to 1000,

6A possibly better choice for the weighting would be to use the inverses of the diagonal entries
of the covariance matrix – i.e., the variances of the recovered marginal probability distributions of
each parameter. However, these are only approximately known – see the discussion in Section 3.3 –
and consequently do not lend themselves for a concise definition of a reproducible benchmark.

18

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1000 10000 100000 1x106 1x107 1x108

S
q
u
a
re

 o
f

e
rr

o
r

in
 m

e
a
n
,
e
(n

)2

Number of samples per chain

Fig. 3.8. Convergence of the square of the relative error eL(n)2 between the running mean
up to sample n and the true mean 〈θ〉π(θ|ẑ), measured in the weighted norm (3.5), for a subset of

chains. The thick red curve corresponds to the average of these squared errors over all chains. This
average squared error is dominated by some chains with large errors and so lies above the curves

eL(n)2 of most chains. The thick orange line corresponds to the decay 1.9× 108

n
and represents an

approximately average convergence behavior of the chains.

possibly also running computations in parallel. This would move characterizing the
performance of such algorithms for the case at hand to the range of a few hours or
days on moderately parallel computers; practical computations might not actually
need the same level of accuracy and could be solved even more rapidly.

As a consequence of these considerations, we hope that providing a benchmark
that is neither too simple nor too hard, and for which the solution is known to good ac-
curacy, spurs research in the development of better sampling algorithms for Bayesian
inverse problems. Many such algorithms of course already exist, but in many cases,
their performance is not characterized on standardized test cases that would allow a
fair comparison. In particular, their performance is often characterized using probabil-
ity distributions whose characteristics have nothing to do with those that result from
inverse problems – say, sums of Gaussians. By providing a standardized benchmark
that matches what we expect to see in actual inverse problems – along with an open
source implementation of a code that computes the posterior probability function
π(θ|ẑ) (see Appendix A) – we hope that we can contribute to more informed com-
parisons between newly proposed algorithms: Specifically, that their performance can
be compared with the relationship shown in (3.6) and Fig. 3.8 to provide a concrete
factor of speed-up over the method used here.

Acknowledgments. W. Bangerth was partially supported by the National Sci-
ence Foundation under award OAC-1835673 as part of the Cyberinfrastructure for
Sustained Scientific Innovation (CSSI) program; by award DMS-1821210; by award
EAR-1925595; and by the Computational Infrastructure in Geodynamics initiative
(CIG), through the National Science Foundation under Award No. EAR-1550901 and
The University of California – Davis.

W. Bangerth also gratefully acknowledges the discussions and early experiments
with Kainan Wang many years ago. These early attempts directly led to the ideas
that were ultimately encoded in this benchmark. He also appreciates the collaboration

19

with Mantautas Rimkus and Dawson Eliasen on the SampleFlow library that was
used for the statistical evaluation of samples. Finally, the feedback given by Noemi
Petra, Umberto Villa, and Danny Long are acknowledged with gratitude.

D. Aristoff gratefully acknowledges support from the National Science Foundation
via awards DMS-1818726 and DMS-2111277.

Appendix A. An open source code to sample π(θ|ẑ). We make a code
that implements this benchmark available as part of the “code gallery” for deal.II
at https://dealii.org/developer/doxygen/deal.II/code_gallery_MCMC_Laplace.html,
using the name MCMC-Laplace, and using the Lesser GNU Public License (LGPL)
version 2.1 or later as the license. deal.II is a software library that provides the
basic tools and building blocks for writing finite element codes that solve partial
differential equations numerically. More information about deal.II is available at
[4, 5]. The deal.II code gallery is a collection of programs based on deal.II that
were contributed by users as starting points for others’ experiments.

The code in question has essentially three parts: (i) The forward solver that,
given a set of parameters θ, produces the output zθ using the map discussed in
Section 2.2.1; (ii) the statistical model that implements the likelihood L(z|θ) and
the prior probability πpr(θ), and combines these to the posterior probability π(θ|ẑ);
and (iii) a simple Metropolis-Hastings sampler that draws samples from π(θ|ẑ). The
second of these pieces is quite trivial, encompassing only a couple of functions; we
will therefore only comment on the first and the third piece below.

A.1. Details of the forward solver. The forward solver is a C++ class whose
main function performs the following steps:

1. It takes a 64-dimensional vector θ of parameter values, and interprets it as
the coefficients that describe a piecewise constant field a(x);

2. It assembles a linear system that corresponds to the finite element discretiza-
tion of equations (2.2)–(2.3) using a Q1 (bilinear) element on a uniformly
refined mesh;

3. It solves this linear system to obtain the solution vector Uθ that corresponds
to the function uθh(x); and

4. It evaluates the solution uθh at the measurement points xk to obtain zθ.
It then returns zθ to the caller for evaluation with the statistical model.

Such a code could be written in deal.II with barely more than 100 lines of C++
code, and this would have been sufficient for the purpose of evaluating new ideas of
sampling methods. However, we wanted to draw as large a number of samples as
possible, and consequently decided to see how fast we can make this code.

To this end, we focused on accelerating three of the operations listed above,
resulting in a code that can evaluate π(ẑ|θ) in 4.5 ms on an Intel Xeon E5-2698
processor with 2.20GHz (on which about half of the samples used in this publication
were computed), 3.1 ms on an AMD EPYC 7552 processor with 2.2 GHz (the other
half), and 2.7 ms on an Intel Core i7-8850H processor with 2.6 GHz in one of the
authors’ laptops.

The first part of the code that can be optimized for the current application uses
the fact that the linear system that needs to be assembled is the sum of contributions
from each of the cells of the mesh. Specifically, the contribution from cell K is

AK = PTKA
K
localPK

where PK is the restriction from the global set of degrees of freedom to only those
degrees of freedom that live on cell K, and AKlocal is – for the Q1 element used here –

20

https://dealii.org/developer/doxygen/deal.II/code_gallery_MCMC_Laplace.html

a 4× 4 matrix of the form

(AKlocal)ij =

∫
K

aθ(x)∇ϕi(x) · ∇ϕj(x) dx.

This suggests that the assembly, including the integration above that is performed
via quadrature, has to be repeated every time we consider a new set of parameters θ.
However, since we discretize uh on a mesh that is a strict refinement of the one used
for the coefficient aθ(x), and because aθ(x) is piecewise constant, we can note that

(AKlocal)ij = θk(K)

∫
K

∇ϕi(x) · ∇ϕj(x) dx︸ ︷︷ ︸
(Alocal)ij

,

where k(K) is the index of the element of θ that corresponds to cell K. Here, the
matrix Alocal no longer depends on θ and can, consequently, be computed once and
for all at the beginning of the program. Moreover, Alocal does not actually depend on
the cell K as long as all cells have the same shape, as is the case here. We therefore
have to store only one such matrix. This approach makes the assembly substantially
faster since we only have to perform the local-to-global operations corresponding to
PK on every cell for every new θ, but no longer any expensive integration/quadrature.

Secondly, we have experimented with solving the linear systems so assembled as
fast as possible. For the forward solver used for each sample, the size of these linear
systems is 1089×1089, with at most 9 entries per row. Following a substantial amount
of experimentation, we found that a sparse direct solver is faster than any of the other
approaches we have tried, and we use the UMFPACK [18] interfaces in deal.II for
this purpose. In particular, this approach is faster than attempting to use an algebraic
multigrid method as a solver or preconditioner for the Conjugate Gradient method.
We have also tried to use a sparse decomposition via UMFPACK as a preconditioner
for the CG method, updating the decomposition only every few samples – based on
the assumption that the samples change only relatively slowly and so a decomposition
of the matrix for one sample is a good preconditioner for the matrix corresponding
to a subsequent sample. However, this turned out to be slower than using a new
decomposition for each sample.

The linear solver described above consumes about 90% of the time necessary to
evaluate each sample. As a consequence, there is certainly further room for improve-
ments. After all numerical results had been generated for this publication, we have
followed up on a suggestion by Martin Kronbichler to replace the linear solver by a
conjugate gradient method preconditioned by an incomplete LU decomposition. This
accelerates the computations by about a factor of three, from 2.7 ms to less than
0.9 ms per sample on the Intel Core i7-8850H processor mentioned above. It is this
accelerated version that is available at the website mentioned above; we have verified
that the new version results in the same results up to at least 11 digits in computing
the posterior probability using the techniques mentioned in Appendix A.4.

Finally, evaluating the solution of a finite element field uh(x) at arbitrary points
xk is an expensive operation since one has to find which cell K the point belongs to
and then transform this point into the reference coordinate system of the cell K. On
the other hand, the point evaluation is a linear and bounded operation, and so there
must exist a vector mk so that uh(xk) = mk · U where U is the vector of coefficients
that describe uh. This vector mk = (ϕi(xk))1089−1i=0 can be computed once and for all.
The computation of z = (uh(xk))169−1k=0 can then be facilitated by building a matrix

21

M whose rows are the vectors mk, and then the evaluation at all measurement points
reduces to the operation z = MU . M is a sparse matrix with at most 4 entries per
row, making this a very economical approach.

The code with all of these optimizations is not very large – it contains 197 semi-
colons.7

A.2. Details of the Metropolis-Hastings sampler. The steps described at
the start of this appendix yield an algorithm that, given a sample θ, can evaluate
π(θ|ẑ). We use this functionality to drive a Metropolis-Hastings sampler to obtain a
large number of samples characterizing the posterior probability distribution.

While the basic algorithm of the Metropolis-Hastings sampler is well known [32,
35], its practical implementation depends crucially on a number of details that we will
describe in the following.

First, we start the sampling process with a fixed sample θ0 = (1, . . . , 1)T , corre-
sponding to a coefficient aθ(x) = 1.

Secondly, an important step in the Metropolis-Hastings algorithm is the genera-
tion of a “trial” sample θ̃` based on the current sample θ`. To this end, we use the
following strategy: We define the components of θ̃`,k of θ̃` as

θ̃`,k = eln(θ`,k)+ξk = θ`,ke
ξk ,

where ξk, k = 0, . . . , 63, are iid Gaussians with mean 0 and standard deviation σprop.
In other words, the “proposal distribution” for the trial samples is an isotropic Gaus-
sian ball centered at θ` in log space. This has the effect that all elements of samples
always stay positive, as one would expect given that they correspond to material stiff-
ness coefficients. The use of a ball in log space is also consistent with the description
of our prior probability distribution in Section 2.2.3, which is also defined in log space.

To compute the Metropolis-Hastings acceptance probability, we first need to com-
pute the proposal probability density. By definition

P(θ̃`,k ≤ t̃k|θ`,k = tk) = P(tke
ξk ≤ t̃k)

= P(ξk ≤ log t̃k − log tk)

=
1√

2πσ2
prop

∫ log t̃k−log tk

−∞
exp

(
−x2

2σ2
prop

)
dx.

The probability density pprop(θ̃`,k|θ`,k) of proposing θ̃`,k given θ`,k is then the deriva-

tive of this expression with respect to t̃k, with θ̃`,k and θ`,k in place of t̃k and tk:

pprop(θ̃`,k|θ`,k) =
1

θ̃`,k

1√
2πσ2

prop

exp

(
−(log θ̃`,k − log θ`,k)2

2σ2
prop

)
.

By definition, the components θ̃`,k of the proposal vector θ̃` are independent con-

ditional on the current state θ`. Thus the joint probability density, pprop(θ̃`|θ`), of

7Counting semicolons is a commonly used metric in C and C++ programs. It roughly coincides
with the number of declarations and statements in a program, and is a better metric for code size
than the number of lines of code, as the latter also includes comments and empty lines used to help
the readability of a code.

22

proposing vector θ̃` given vector θ` is the product of the probabilities above:

pprop(θ̃`|θ`) =
1∏63

k=0 θ̃`,k
× 1

(2πσ2
prop)32

exp

(
−
∑63
k=0(log θ̃`,k − log θ`,k)2

2σ2
prop

)
.

The Metropolis-Hastings acceptance probability, A(θ̃`|θ`), to accept proposal θ̃` given
the current state θ`, is then

A(θ̃`|θ`) = min

{
1,
π(θ̃`|ẑ)
π(θ`|ẑ)

× pprop(θ`|θ̃`)
pprop(θ̃`|θ`)

}

= min

{
1,
π(θ̃`|ẑ)
π(θ`|ẑ)

×
63∏
k=0

θ̃`,k
θ`,k

}
.

As usual, with probability A(θ̃`|θ`) the proposal θ̃` is accepted, in which case it be-
comes the next sample θ`+1 = θ̃`; otherwise the proposal is rejected and we keep the
current sample, θ`+1 = θ`.

In our experiments, we use σprop = 0.0725, corresponding to changing θ by a fac-
tor eξ that with 65% probability lies within the range [e−σprop , e+σprop] = [0.93, 1.075].
This results in an acceptance rate for the Metropolis-Hastings algorithm of just un-
der 24%. This is close to the recommended value of 0.234 for Metropolis-Hastings
sampling algorithms that can be derived for specific probability distributions that are
generally simpler than the one we are interested in here [27, 46]; the theory guiding
the derivation of the 0.234 value may not be applicable here (see [10]), but absent
better guidance, we stuck with it.

Finally, all steps in the Metropolis-Hastings algorithms that require the use of
a random number use the MT19937 random number generator, as implemented by
C++11 compilers in the std::mt19937 class.

A.3. Implementations of the benchmark in alternative languages. We
consider the C++ implementation discussed above as the “reference implementation”
of the benchmark. However, we recognize that it is rather heavy-weight in the sense
that it requires the installation of the deal.II library. While this readily facilitates
otherwise non-trivial modifications (e.g., for multilevel sampling schemes that require
the solution of the forward problem on coarser meshes), it is clear that for simple
experiments, it would be nice to have stand-alone implementations of the benchmark.

As a consequence, we have also developed Matlab and Python versions of the
benchmark. These are available from the same website from which the C++ imple-
mentation is available – see the link at the top of the appendix. These alternative
implementations provide everything one needs to build a sampler: Namely, the func-
tionality to provide an input vector θ and to compute the prior πpr(θ) and the likeli-
hood L(ẑ|θ) from such an input. Using (2.1), these can then be used to compute the
posterior probability π(θ|ẑ) that forms the basis of most sampling algorithms. The
Matlab version includes a basic Metropolis-Hastings sampler with parallel function-
ality.

On a recent laptop, the Matlab version is able to compute the posterior probability
for a sample in about 4 ms, not substantially slower than the C++ version we have
used for our results. The Python version – although an almost literal transcription
of the Matlab version – requires approximately 25 ms. One imagines that it could
be optimized further (for example, a substantial part of the run time is spent in the

23

insertion of the cell-local 4 × 4 matrices into the global matrix), but we have not
attempted to do so.

A.4. Testing of alternative implementations. In order to facilitate testing
of alternative implementations such as the ones discussed in the previous section (or
testing modifications made to the C++ implementation itself), the website from which
the benchmark can be obtained (see the top of this appendix) also contains a set of
known input/output pairs. Specifically, it contains files for ten different input vectors
θ, along with the corresponding outputs zθ, likelihood L(ẑ|θ), and prior πpr(θ) for each
input vector. The latter two can be combined via (2.1) to the posterior probability
π(θ|ẑ) associated with the input vector θ.

We have used these known input/output pairs obtained from our reference imple-
mentation to verify that the alternative implementations of the benchmark discussed
in the previous sub-section are correct. For example, the Matlab implementation pro-
vides the vectors zθ to relative errors on the order of 10−13; log priors and likelihoods
are computed to relative errors less than 10−11. The Python version achieves the
same level of accuracy.

Appendix B. One dimensional version of the benchmark. Many of the
features of the posterior probability on the 64-dimensional parameter space that we
have experimentally observed in Section 3 match those that one would expect for
inverse problems of the kind discussed herein. In particular, the fact that we have
a large spread between the large and small eigenvalues of the covariance matrix, the
non-Gaussianity of the probability distribution, and the anticorrelation of parameters
defined on neighboring cells did not come as a surprise. Yet, strict proofs for these
properties are hard to come by.

At the same time, we can investigate an analogous situation in a one-dimensional
model with parameters θk, for which one can derive the posterior probability distri-
bution analytically. In this Appendix, we work out some details of a one-dimensional
version of the benchmark. Consider the generalized Poisson equation

− d

dx

(
a(x)

du

dx
(x)

)
= f(x), 0 < x < 1, (B.1)

u(x) = 0, x ∈ {0, 1}. (B.2)

Again we assume a(x) = aθ(x) is parametrized by θ = (θ0, . . . , θN−1) where

a(x) = θk, if
k

N
< x <

k + 1

N
, (B.3)

and we take f(x) ≡ 1. The solution to (B.1) is then of the form

u(x) = −
∫ x

0

y + c

a(y)
dy, (B.4)

where c is constant determined by requiring u(1) = 0. Due to the piecewise constant
form of a = a(x), this rewrites as

u(x) = uk(x) := − 1

θk

(
x2

2
+ cx

)
+ dk, if

k

N
< x <

k + 1

N
. (B.5)

24

There are N − 1 continuity constraints and two boundary conditions, namely,

uk−1

(
k

N

)
= uk

(
k

N

)
, k = 1, . . . , N − 1, (B.6)

u0(0) = 0, uN−1(1) = 0. (B.7)

This translates, via (B.5), into N + 1 linear equations for the N + 1 coefficients
c,d0, . . . , dN−1. The boundary conditions show that

d0 = 0, c = −

∫ 1

0
y

a(y) dy∫ 1

0
1

a(y) dy
= − 1

2N

∑N−1
k=0 θ

−1
k (2k + 1)∑N−1

k=0 θ
−1
k

. (B.8)

The remaining N − 1 equations for d1, . . . , dN−1 can be solved using the continuity
constraints, which give the equations

dk−1 − dk =

(
1

2

(
k

N

)2

+ c
k

N

)(
θ−1k−1 − θ

−1
k

)
, k = 1, . . . , N − 1, (B.9)

which have solution

dk = −
k∑
j=1

(
1

2

(
j

N

)2

+ c
j

N

)(
θ−1j−1 − θ

−1
j

)
, k = 1, . . . , N − 1.

Let us specifically consider the case with N = 2 parameters to understand some
qualitative features of the benchmark. In this case, c = − 1

4 (3θ0 + θ1)/(θ0 + θ1) and

u0(x) = − x2

2θ0
+

3θ0 + θ1
4θ0(θ0 + θ1)

x, u1(x) = − x2

2θ1
+

3θ0 + θ1
4θ1(θ0 + θ1)

x+
θ1 − θ0

4θ1(θ0 + θ1)
.

This solution is shown in Fig. B.1.
Let us assume that we have measurements at x0 = 0.25 and x1 = 0.75. Then the

“exact” measurements we would get are8

ẑ0 = − x20
2θ0

+
3θ0 + θ1

4θ0(θ0 + θ1)
x0, ẑ1 = − x21

2θ1
+

3θ0 + θ1
4θ1(θ0 + θ1)

x1 +
θ1 − θ0

4θ1(θ0 + θ1)
.

We can use these values to exactly and cheaply evaluate the posterior probabil-
ity (without sampling), and Fig. B.2 shows π(θ|ẑ) in this simple case, using “true”

parameters θ̂0 = 0.1 and θ̂1 = 1 to define ẑ. We use the prior and likelihoods defined
before, with the prior standard deviation σpr = 2 and two different values for the
likelihood standard deviations used in (2.5): σ = 0.01 and σ = 0.1.

The figure illustrates more concisely the strong correlation between parameters
that we have experimentally observed in Fig. 3.5. It also illustrates that if σ in the
likelihood (2.5) is chosen small (i.e., if the measurement error is small), then the
posterior is approximately Gaussian. The observation here therefore validates our
choice of a relatively large σ, see also Remark 2.3.

Appendix C. Estimating the essential sample size. Section 3.1 assessed
how much information is actually present in the many samples we have computed,

8Unlike in Section 2, these values are computed using the exact solution, instead of a finite
element approximation.

25

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. B.1. Exact solution to (B.1)–(B.2) when a(x) = 0.1 for 0 < x < 1/2 and a(x) = 1 for

1/2 < x < 1, corresponding to “true” parameters θ̂0 = 0.1 and θ̂1 = 1, with measurements at
x0 = 0.25 and x1 = 0.75.

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. B.2. Left: Non-normalized posterior distribution π(θ|ẑ) when σ = 0.01 in the 1D model.
Notice the distribution is approximately Gaussian for this very small σ. Right: When using σ = 0.1
in the 1D model. For this larger value of σ, the posterior distribution extends to larger values of θ0
and θ1, and has a non-Gaussian, “banana” shape, reminiscent of the pair histograms in Fig. 3.5.

and we have also used the results shown there in providing theoretical support for the
key cost-accuracy estimate (3.6). Many of the statistical errors described there can
be estimated from the autocovariance ACL(s) defined in (3.1). The basis for this is
the Markov chain central limit theorem. Informally, the Markov chain central limit
theorem says that, for large n and NL, the running means 〈θ〉L,n are approximately
normally distributed with mean 〈θ〉π(θ|ẑ) and covariance

Cov (〈θ〉L,n) ≈ IAC

n
, (C.1)

where IAC is the integrated autocovariance, obtained by summing up the autocovari-
ance ACL(s); we estimate IAC from the data in (3.2). Equation (C.1) then justifies
the formula for the scaling of e(n)2 below (3.6).

To establish the effective sample size formula (3.3), we cite the “Delta method” in
statistics [58]. Informally, the Delta method states that, for large n and NL, a contin-
uously differentiable function f of the running means is nearly normally distributed
with variance

Var(f(〈θ〉L,n)) ≈ 1

n
∇f(〈θ〉π(θ|ẑ))T · IAC · ∇f(〈θ〉π(θ|ẑ)), (C.2)

26

provided ∇f(〈θ〉π(θ|ẑ)) is nonzero. The formula (C.2) is obtained by Taylor expanding
f and applying the Markov chain central limit theorem. For a Markov chain in
which successive samples are all independent, IAC is the covariance matrix, which
we estimate from the data in (3.4) and denote by C. Using a standard result on
generalized Rayleigh quotients,

∇f(〈θ〉π(θ|ẑ))T · IAC · ∇f(〈θ〉π(θ|ẑ))
∇f(〈θ〉π(θ|ẑ))T · C · ∇f(〈θ〉π(θ|ẑ))

≤ max
x 6=0

xT · IAC · x
xT · C · x

= λmax(C−1 · IAC),

where λmax denotes the largest eigenvalue. This means that the variance (C.2) is at
most λmax(C−1 · IAC) times the value it would take if all of the samples on chain L
were independent. In other words, the minimum number of “effectively independent
samples” is approximately NL/λmax(C−1 · IAC) for each of our chains of length NL.

It is quite standard to quantify statistical error in Markov chain Monte Carlo
simulations by using the integrated autocovariance [28,47]. In the literature, it is also
common to determine an effective sample size by checking to see where autocovari-
ances cross a certain threshold – such as a small percentage of its initial value – as
we have done in Figure 3.1 above, where we used a threshold of 1%.

REFERENCES

[1] B. M. Adams et al., Dakota, a multilevel parallel object-oriented framework for design opti-
mization, parameter estimation, uncertainty quantification, and sensitivity analysis: Ver-
sion 6.13 user’s manual, Tech. Report SAND2020-12495, Sandia National Laboratories,
2020.

[2] O. Aguilar, M. Allmaras, W. Bangerth, and L. Tenorio, Statistics of parameter estimates:
A concrete example, SIAM Review, 57 (2015), pp. 131–149.

[3] M. Allmaras, W. Bangerth, J. M. Linhart, J. Polanco, F. Wang, K. Wang, J. Webster,
and S. Zedler, Estimating parameters in physical models through bayesian inversion: A
complete example, SIAM Review, 55 (2013), pp. 149–167.

[4] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heis-
ter, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak,
I. Thomas, B. Turcksin, Z. Wang, and D. Wells, The deal.II library, version 9.2,
Journal of Numerical Mathematics, 28 (2020), pp. 131–146.

[5] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier,
J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II finite element library: design,
features, and insights, Computers & Mathematics with Applications, 81 (2021), pp. 407–
422.

[6] Y. F. Atchadé and J. S. Rosenthal, On adaptive Markov Chain Monte Carlo algorithms,
Bernoulli, 11 (2005), pp. 815–828.

[7] J. M. Bardsley, Computational Uncertainty Quantification for Inverse Problems, SIAM, 2018.
[8] J. M. Bardsley, A. Seppänen, A. Solonen, H. Haario, and J. Kaipio, Randomize-then-

optimize for sampling and uncertainty quantification in electrical impedance tomography,
SIAM/ASA J. Uncertainty Quantification, 3 (2015), pp. 1136–1158.

[9] J. M. Bardsley, A. Solonen, H. Haario, and M. Laine, Randomize-then-optimize: A
method for sampling from posterior distributions in nonlinear inverse problems, SIAM
J. Sci. Comput., 36 (2014), pp. A1895–A1910.

[10] M. Bédard, Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234,
Stochastic Processes and their Applications, 118 (2008), pp. 2198–2222.

[11] J. Bierkens, P. Fearnhead, and G. O. Roberts, The zig-zag process and super-efficient
sampling for Bayesian analysis of big data, The Annals of Statistics, 47 (2019), pp. 1288–
1320.

[12] T. Bui-Thanh and O. Ghattas, Analysis of the hessian for inverse scattering problems: II.
Inverse medium scattering of acoustic waves, Inverse Problems, 28 (2012), p. 055002.

[13] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance reduction for PDE-
constrained optimal control under uncertainty, Journal of Computational Physics, 385
(2019), pp. 163–186.

27

[14] J. A. Christen and C. Fox, Markov chain monte carlo using an approximation, Journal of
Computational and Graphical Statistics, 14 (2005), pp. 795–810.

[15] I. Craig and J. Brown, Inverse problems in astronomy, in Bayesian Astrophysics, A. Asensio
Ramos and I. Arregui, eds., Cambridge University Press, 1986, pp. 31–61.

[16] E. Darve, D. Rodŕıguez-Gómez, and A. Pohorille, Adaptive biasing force method for scalar
and vector free energy calculations, The Journal of chemical physics, 128 (2008), p. 144120.

[17] M. Dashti and A. M. Stuart, The bayesian approach to inverse problems, 2015.
[18] T. A. Davis, Algorithm 832, ACM Transactions on Mathematical Software, 30 (2004), pp. 196–

199.
[19] B. Debusschere, K. Sargsyan, C. Safta, and K. Chowdhary, Uncertainty quantification

toolkit (UQTk), in Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and
H. Owhadi, eds., Springer International Publishing, Cham, 2017, pp. 1807–1827.

[20] T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup, A hierarchical multilevel
Markov Chain Monte Carlo algorithm with applications to uncertainty quantification in
subsurface flow, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), pp. 1075–
1108.

[21] A. B. Duncan, T. Lelievre, and G. A. Pavliotis, Variance reduction using nonreversible
Langevin samplers, Journal of Statistical Physics, 163 (2016), pp. 457–491.

[22] H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghat-
tas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse
problems based on low-rank partial Hessian approximations, SIAM Journal on Scientific
Computing, 33 (2011), pp. 407–432.

[23] C. M. Fleeter, G. Geraci, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden, Multilevel
and multifidelity uncertainty quantification for cardiovascular hemodynamics, Computer
Methods in Applied Mechanics and Engineering, 365 (2020), p. 113030.

[24] Daniel Foreman-Mackey, David W Hogg, Dustin Lang, and Jonathan Goodman, emcee:
the mcmc hammer, Publications of the Astronomical Society of the Pacific, 125 (2013),
p. 306.

[25] C. Fox and G. Nicholls, Sampling conductivity images via MCMC, in Proceedings of the
Leeds Annual Statistical Research Workshop (LASR), K.V. Mardia, C.A. Gill, and R.G.
Aykroyd, eds., 1997, pp. 91–100.

[26] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using Bayesian networks to analyze
expression data, Journal of Computational Biology, 7 (2000), pp. 601–620.

[27] A. Gelman, W. R. Gilks, and G. O. Roberts, Weak convergence and optimal scaling of
random walk Metropolis algorithms, Annals of Applied Probability, 7 (1997), pp. 110–120.

[28] C. J. Geyer, Practical Markov Chain Monte Carlo, Statistical science, (1992), pp. 473–483.
[29] Jonathan Goodman and Jonathan Weare, Ensemble samplers with affine invariance, Com-

munications in applied mathematics and computational science, 5 (2010), pp. 65–80.
[30] H. Haario, M. Laine, A. Mira, and E. Saksman, DRAM: efficient adaptive MCMC, Statistics

and Computing, 16 (2006), pp. 339–354.
[31] H. Haario, E. Saksman, and J. Tamminen, An adaptive Metropolis algorithm, Bernoulli, 7

(2001), pp. 223 – 242.
[32] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,

Biometrika, 57 (1970), pp. 97–109.
[33] Y. Jiang and A. D. Woodbury, A full-Bayesian approach to the inverse problem for steady-

state groundwater flow and heat transport, Geophysical Journal International, 167 (2006),
pp. 1501–1512.

[34] G. L. Jones, On the Markov chain central limit theorem, Probability surveys, 1 (2004), pp. 299–
320.

[35] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer-
Verlag, 2005.

[36] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, A stochastic newton MCMC
method for large-scale statistical inverse problems with application to seismic inversion,
SIAM Journal on Scientific Computing, 34 (2012), pp. A1460–A1487.

[37] D. McDougall, N. Malaya, and R. D. Moser, The parallel C++ statistical library for
Bayesian inference: QUESO, in Handbook of Uncertainty Quantification, R. Ghanem,
D. Higdon, and H. Owhadi, eds., Springer International Publishing, Cham, 2017, pp. 1829–
1865.

[38] R. Neal, MCMC using Hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo,
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, eds., CRC Press, 2011, pp. 113–162.

[39] R. M. Neal, Bayesian learning via stochastic dynamics, in Advances in neural information
processing systems, 1993, pp. 475–482.

28

[40] M. Parno, A. Davis, P. Conrad, and Y. M. Marzouk, Mit uncertainty quantitification
(muq) library. http://muq.mit.edu/, 2021.

[41] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in
uncertainty propagation, inference, and optimization, SIAM Review, 60 (2018), pp. 550–
591.

[42] N. Petra, J. Martin, G. Stadler, and O. Ghattas, A computational framework for infinite-
dimensional bayesian inverse problems, part II: Stochastic Newton MCMC with application
to ice sheet flow inverse problems, SIAM Journal on Scientific Computing, 36 (2014),
pp. A1525–A1555.

[43] G. O. Roberts and J. S. Rosenthal, Examples of adaptive MCMC, Journal of Computational
and Graphical Statistics, 18 (2009), pp. 349–367.

[44] G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and
their discrete approximations, Bernoulli, 2 (1996), pp. 341–363.

[45] J. Seo, C. Fleeter, A. M. Kahn, A. L. Marsden, and D. E. Schiavazzi, Multi-fidelity esti-
mators for coronary artery circulation models under clinically-informed data uncertainty,
International Journal for Uncertainty Quantification, 10 (2020), pp. 449–466.

[46] C. Sherlock and G. O. Roberts, Optimal scaling of the random walk Metropolis on elliptically
symmetric unimodal targets, Bernoulli, 15 (2009), pp. 774–798.

[47] A. Sokal, Monte Carlo methods in statistical mechanics: foundations and new algorithms, in
Functional Integration, Springer, 1997, pp. 131–192.

[48] A. M. Stuart, Inverse problems: A bayesian perspective, Acta Numerica, 19 (2010), pp. 451–
559.

[49] A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam, New York, 1987.
[50] , Inverse Problem Theory and Methods for Model Parameter Estimation, Society for

Industrial and Applied Mathematics, Jan. 2005.
[51] C. J. F. Ter Braak, A Markov Chain Monte Carlo version of the genetic algorithm Dif-

ferential Evolution: easy Bayesian computing for real parameter spaces, Statistics and
Computing, 16 (2006), pp. 239–249.

[52] C. J. F. ter Braak and J. A. Vrugt, Differential Evolution Markov Chain with snooker
updater and fewer chains, Statistics and Computing, 18 (2008), pp. 435–446.

[53] L. Tierney and A. Mira, Some adaptive Monte Carlo methods for Bayesian inference, Statis-
tics in Medicine, 18 (1999), pp. 2507–2515.

[54] P. Vanetti, A. Bouchard-Côté, G. Deligiannidis, and A. Doucet, Piecewise-deterministic
Markov Chain Monte Carlo, arXiv preprint arXiv:1707.05296, (2017).

[55] U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An extensible software framework for large-
scale inverse problems governed by PDEs. Part I: Deterministic inversion and linearized
bayesian inference, ACM Transactions on Mathematical Software, (2021, accepted).

[56] J. A. Vrugt, C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and
D. Higdon, Accelerating Markov Chain Monte Carlo simulation by differential evolution
with self-adaptive randomized subspace sampling, International Journal of Nonlinear Sci-
ences and Numerical Simulation, 10 (2009), pp. 273–290.

[57] D. Watzenig and C. Fox, A review of statistical modelling and inference for electrical capac-
itance tomography, Measurement Science and Technology, 20 (2009), p. 052002.

[58] K. Wolter, Introduction to variance estimation, Springer Science & Business Media, 2007.
[59] J. Worthen, G. Stadler, N. Petra, M.l Gurnis, and O. Ghattas, Towards adjoint-based

inversion for rheological parameters in nonlinear viscous mantle flow, Physics of the Earth
and Planetary Interiors, 234 (2014), pp. 23–34.

29

http://muq.mit.edu/

