
ar
X

iv
:1

90
4.

03
24

8v
3

 [
cs

.D
S]

 1
1

A
pr

 2
02

0

Average Sensitivity of Graph Algorithms

Nithin Varma

University of Haifa

nvarma@bu.edu

Yuichi Yoshida

National Institute of Informatics

yyoshida@nii.ac.jp

Abstract

In modern applications of graph algorithms, where the graphs of interest are large and
dynamic, it is unrealistic to assume that an input representation contains the full information
of a graph being studied. Hence, it is desirable to use algorithms that, even when provided with
only a (large) subgraph, output solutions that are close to the solutions output when the whole
graph is available. We formalize this feature by introducing the notion of average sensitivity of
graph algorithms, which is the average earth mover’s distance between the output distributions
of an algorithm on a graph and its subgraph obtained by removing an edge, where the average
is over the edges removed and the distance between two outputs is the Hamming distance.

In this work, we initiate a systematic study of average sensitivity. After deriving basic prop-
erties of average sensitivity such as composition, we provide efficient approximation algorithms
with low average sensitivities for concrete graph problems, including the minimum spanning for-
est problem, the global minimum cut problem, the minimum s-t cut problem, and the maximum
matching problem. In addition, we prove that the average sensitivity of our global minimum
cut algorithm is almost optimal, by showing a nearly matching lower bound. We also show
that every algorithm for the 2-coloring problem has average sensitivity linear in the number of
vertices. One of the main ideas involved in designing our algorithms with low average sensitivity
is the following fact; if the presence of a vertex or an edge in the solution output by an algorithm
can be decided locally, then the algorithm has a low average sensitivity, allowing us to reuse the
analyses of known sublinear-time algorithms and local computation algorithms. Using this fact
in conjugation with our average sensitivity lower bound for 2-coloring, we show that every local
computation algorithm for 2-coloring has query complexity linear in the number of vertices,
thereby answering an open question.

http://arxiv.org/abs/1904.03248v3

1 Introduction

In modern applications of graph algorithms, where the graphs of interest are large and dynamic,
it is unrealistic to assume that an input representation contains the full information of a graph
being studied. For example, consider a social network, where a vertex corresponds to a user of
the social network service and an edge corresponds to a friendship relation. It is reasonable to
assume that users do not always update new friendship relations on the social network service, and
that sometimes they do not fully disclose their friendship relations because of security or privacy
reasons. Hence, we can only obtain an approximation G′ to the true social network G. This
brings out the need for algorithms that can extract information on G by solving a problem on
G′. Moreover, as the solutions output by a graph algorithm are often used in applications such
as detecting communities [35, 36], ranking nodes [39], and spreading influence [22], the solutions
output by an algorithm on G′ should be close to those output on G.

We assume that the n-vertex input graph G′ at hand is a randomly chosen (large) subgraph of
an unknown true graph G. Intuitively, a deterministic algorithm A is said to be stable-on-average
if the Hamming distance dHam

(
A(G),A(G′)

)
is small, where A(G) and A(G′) are outputs of A on

G and G′, respectively. Here, outputs are typically vertex sets or edges sets and we assume that
they are represented appropriately using binary strings. More specifically, for an integer k ≥ 1, we
say that the k-average sensitivity of a deterministic algorithm A is

E
{e1,...,ek}∼(Ek)

[
dHam

(
A(G),A(G − {e1, . . . , ek})

)]
(1)

for every graph G = (V,E), where {e1, . . . , ek} is sampled uniformly at random from
(E
k

)
, the set

of all subsets of E of cardinality k, and where G−F for a set of edges F ⊆ E denotes the subgraph
obtained from G by removing F . When k = 1, we call the k-average sensitivity simply average
sensitivity. We say that algorithms with low average sensitivity are stable-on-average. Although we
focus on graphs here, we note that our definition can also be extended to the study of combinatorial
objects other than graphs such as strings and constraint satisfaction problems.

An algorithm that outputs the same solution regardless of the input has the least possible
average sensitivity, even though it is definitely useless. Hence, the key question in a study of
average sensitivity is to reveal trade-offs between solution quality and average sensitivity for various
problems.

Example 1.1. Consider the algorithm that, given a graph G = (V,E) on n vertices, outputs the
set of vertices of degree at least n/2. As removing an edge changes the degree of exactly two
vertices, the sensitivity of this algorithm is at most 2.

Example 1.2. Consider the s-t shortest path problem, where given a graph G = (V,E) and two
vertices s, t ∈ V , we are to output the set of edges in a shortest path from s to t. Since the length
of a shortest path is always bounded by n, where n is the number of vertices, every deterministic
algorithm has average sensitivity O(n). Indeed, there exists a graph for which this trivial upper
bound is tight. Think of a cycle of even length n and two vertices s, t in diametrically opposite
positions. Consider an arbitrary deterministic algorithm A, and assume that it outputs a path P
(of length n/2) among the two shortest paths from s to t. With probability half, an edge in P is
removed, and A must output the other path Q (of length n/2) from s to t. Hence, the average
sensitivity must be 1/2 · (n/2) = Ω(n). In this sense, there is no deterministic algorithm with
nontrivial average sensitivity for the s-t shortest path problem.

1

We also generalize our definition of average sensitivity to apply to randomized algorithms. Let
A(G) denote the output distribution of A on G. Let dEM(A(G),A(G′)) denote the earth mover’s
distance between A(G) and A(G′), where the distance between two outputs is measured by the
Hamming distance. Specifically, dEM(A(G),A(G′)) is equal to minD

[
E(x,y)∼D [dHam(x, y)]

]
, where

D denotes a distribution over pairs (x, y) of outputs of A such that the left and right marginals of
D are equal to A(G) and A(G′), respectively. Then, for an integer k ≥ 1, the k-average sensitivity
of a randomized algorithm A is

E
{e1,...,ek}∼(Ek)

[
dEM

(
A(G),A(G − {e1, . . . , ek})

)]
(2)

where {e1, . . . , ek} is sampled uniformly at random from
(E
k

)
. Note that when the algorithm A is

deterministic, (2) matches the definition of the average sensitivity for deterministic algorithms.

Remark 1.3. The k-average sensitivity of an algorithm A with respect to the total variation
distance can be defined as E{e1,...,ek}∼(Ek)

[
dTV

(
A(G),A(G− {e1, . . . , ek})

)]
, where dTV(·, ·) denotes

the total variation distance between two distributions. It is easy to observe that, if the k-average
sensitivity of an algorithm with respect to the total variation distance is at most γ(G), then its
k-average sensitivity is bounded by H ·γ(G), where the H is the maximum over Hamming weights of
all solutions output (with nonzero probability) by running A on G = (V,E) and on all the graphs
in {G− {e1, . . . , ek} : {e1, . . . , ek} ∈

(
E
k

)
}.

Example 1.4. Randomness does not help improve the average sensitivity of algorithms for the
s-t shortest path problem. Think of the cycle graph given in Example 1.2, and suppose that
a randomized algorithm A outputs the s-t paths P and Q with probability p and q = 1 − p,
respectively. Then, the average sensitivity is p · 1/2 · (n/2) + q · 1/2 · (n/2) = Ω(n).

1.1 Basic properties of average sensitivity

Our definition of average sensitivity has many nice properties. In this section, we discuss some such
properties of average sensitivity that are useful in the design of our stable-on-average algorithms.
We denote by G the (infinite) set consisting of all graphs. Given a graph G = (V,E) and e ∈ E,
we use G − e as a shorthand for G − {e}. We use n and m to denote the number of vertices and
edges in the input graph, respectively.

Bounds on k-average sensitivity from bounds on average sensitivity. This is one of the
most important properties of our definition of average sensitivity. It essentially says that a bound on
the (1-)average sensitivity of an algorithm can be used to obtain a bound on the k-average sensitivity
of that algorithm for k ≥ 1. In other words, it is enough to analyze the average sensitivity of an
algorithm with respect to the removal of a single edge.

Theorem 1.5. Let A be an algorithm for a graph problem with average sensitivity at most f(n,m).
Then, for any integer k ≥ 1, the algorithm A has k-average sensitivity at most

∑k
i=1 f(n,m−i+1).

In particular, if the average sensitivity of an algorithm is bounded from above by a nondecreasing
function of the number of edges, then its k-average sensitivity is at most k times the upper bound
on its average sensitivity.

2

Sequential composition. Another useful feature of our definition of average sensitivity is that
one can obtain a stable-on-average algorithm by sequentially applying several stable-on-average
subroutines. The following two sequential composition theorems formalize this feature.

Theorem 1.6 (Sequential composition). Consider two randomized algorithms A1 : G → S1,A2 :
G ×S1 → S2. Suppose that the average sensitivity of A1 with respect to the total variation distance

is γ1(G) and the average sensitivity of A2(·, S1) is β
(S1)
2 (G) for any S1 ∈ S1. Let A : G → S2 be a

randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then, the

average sensitivity of A is H · γ1(G) + ES1∼A1(G)

[
β
(S1)
2 (G)

]
, where H denotes the maximum over

Hamming weights of all the solutions output (with nonzero probability) by running A on G and all
of the graphs in {G− e : e ∈ E}.

Our second composition theorem is for the average sensitivity with respect to the total variation
distance. This is also useful for analyzing the average sensitivity with respect to the earth mover’s
distance, as it can be bounded by the average sensitivity with respect to the total variation distance
times the maximum over Hamming weights of solutions output, as in Remark 1.3.

Theorem 1.7 (Sequential composition w.r.t. the TV distance). Consider ℓ randomized algorithms
Ai : G × ∏i−1

j=1 Sj → Si for i ∈ {1, . . . , ℓ}. Suppose that, for each i ∈ {1, . . . , ℓ}, the average
sensitivity of Ai(·, S1, . . . , Si−1) is γi(G) with respect to the total variation distance for every S1 ∈
S1, . . . , Si−1 ∈ Si−1. Consider a sequence of computations S1 = A1(G), S2 = A2(G,S1), . . . , Sℓ =
Aℓ(G,S1, . . . , Sℓ−1). Let A : G → Sℓ be a randomized algorithm that performs this sequence of
computations on input G and outputs Sℓ. Then, the average sensitivity of A with respect to the
total variation distance is at most

∑ℓ
i=1 γi(G).

Parallel composition. It is often the case that there are multiple algorithms that solve the same
problem albeit with different average sensitivity guarantees. Such stable-on-average algorithms can
be combined via parallel composition, where we run these algorithms according to a distribution
determined by the input graph. The advantage of parallel composition is that the average sensitivity
of the resulting algorithm might be better than that of the component algorithms.

Theorem 1.8 (Parallel composition). Let A1, . . . ,Aℓ be algorithms for a graph problem with av-
erage sensitivities β1(G), . . . , βℓ(G), respectively. Let A be an algorithm that, given a graph G,
runs Ai with probability ρi(G) for i ∈ {1, . . . , ℓ}, where

∑
i∈{1,...,ℓ} ρi(G) = 1. Let H denote the

maximum over Hamming weights of all solutions output (with nonzero probability) by running A
on G and on all the graphs in {G − e : e ∈ E}. Then the average sensitivity of A is at most
∑

i∈{1,...,ℓ} ρi(G) · βi(G) + H · Ee∼E

[∑
i∈{1,...,ℓ} |ρi(G) − ρi(G− e)|

]
.

In this paper, we use the above theorem extensively to combine algorithms with different average
sensitivities.

1.2 Connection to sublinear-time algorithms

We show a relationship between the average sensitivity of an algorithm and the query complexity
of a sublinear-time algorithm [37, 15, 46] that simulates oracle access to the solution output by
the former algorithm. Roughly speaking, we show, in Theorem 1.10, that the average sensitivity
of an algorithm A is bounded by the query complexity of another algorithm O, which we call a

3

solution oracle, where O queries the edges of the graph G and simulates oracle access to the solution
produced by A on input G. We first formalize the notion of a solution oracle.

Definition 1.9 (Solution Oracle). Consider a deterministic algorithm A : G → S for a graph
problem, where each solution output by A is a subset of the set of edges of the input graph. An
algorithm O is a solution oracle for A if O satisfies:

• O has access to a graph G = (V,E), which is represented as adjacency lists, via neighbor
queries, where each query is of the form (v, i) for v ∈ V and i ∈ [|V |] and the answer is the
i-th neighbor of vertex v in its adjacency list (and a special symbol if i is larger than the
degree of v),

• given an edge e ∈ E as input, O queries G and outputs whether e is contained in the solution
obtained by running A on G.

The solution oracle O of a randomized algorithm A first generates a random string π ∈ {0, 1}r(|V |)

and then runs the solution oracle Oπ of the deterministic algorithm Aπ obtained by fixing the
randomness of A to π.

Note that an analogous definition can be made for algorithms that output a subset of vertices.

Theorem 1.10 (Sublinearity implies low average sensitivity). Consider a randomized algorithm
A : G → S for a graph problem, where each solution output by A is a subset of the set of edges in the
input graph. Assume that there exists a solution oracle O for A such that O makes at most q(G)
queries to G in expectation, where this expectation is taken over the random coins of O and over
input edges e ∈ E. Then, A has average sensitivity at most q(G). Moreover, given the promise that
the input graphs satisfy |E| ≥ |V |, the statement applies also to algorithms for which each solution
is a subset of the set of vertices in the input graph.

We use Theorem 1.10 to design a stable-on-average matching algorithm (Theorem 6.5) based
on a sublinear-time matching algorithm due to Yoshida et al. [46].

Closely related to Theorem 1.10 is Corollary 1.12, which says that if a graph problem has a local
computation algorithm (LCA), then one can design a stable-on-average algorithm for that problem.
LCAs, whose definition we give below, were introduced by Rubinfeld et al. [43] and has been widely
studied ever since [1, 10, 16, 24, 26, 27, 28, 29, 30, 40, 42]. For more information on LCAs, we refer
the interested reader to an excellent survey on the topic by Levi and Medina [25].

Definition 1.11 (Local Computation Algorithm (LCA)). Consider a graph problem P : G → S,
where the output to the problem is a subset of edges of the input graph. Let δ : N → [0, 1] and
q, r : N→ N. A (q, r, δ)-LCA for P is an algorithm L that, given query access to a graph G = (V,E)
(as in Definition 1.9), first generates a random string π ∈ {0, 1}r(|V |), and satisfies:

• given an input e ∈ E, the algorithm L makes at most q(|V |) queries to G and answers whether
e is part of a solution to the problem P on graph G, and

• the answers of L to all possible input edges are consistent with a single feasible solution to P
on G.

For every graph G, the probability (over the choice of random string) that there exists an input
edge for which L makes more than q(|V |) queries is at most δ(|V |).

4

We mention that L is not allowed to perform any preprocessing on the graph. Additionally, the
same set of edges is queried by L when the same edge is given as input multiple times.

Note that one can have an analogous definition of LCAs for graph problems where each solution
is a subset of vertices. We have the following result which is a direct corollary of Theorem 1.10.

Corollary 1.12 (LCAs imply stable-on-average algorithms). Consider a graph problem P : G → S.
Let δ : N → [0, 1] and q, r : N → N. If P has a (q, r, δ)-LCA L, then, there exists an algorithm A
for P, that on input G = (V,E), has average sensitivity at most q(|V |) + |E| · δ(|V |).

Theorem 1.10 and Corollary 1.12 cement the intuition that strong locality guarantees for solu-
tions output by an algorithm imply that the removal of edges from a graph affects only the presence
of a few elements (edges or vertices) in the solution, which in turn implies low average sensitivity.
On the contrapositive side, Corollary 1.12 implies that a lower bound on the average sensitivity of
algorithms for a problem implies a lower bound on the query complexity of an LCA (with failure
probability o(1/n2)) for the same problem, where n denotes the number of vertices. Exploiting
this result, we show that every LCA for 2-coloring has query complexity Ω(n), thereby answering
an open question raised by Czumaj et al. [6]. We believe that this connection has the potential to
shed more light on fundamental limits of LCAs and is of independent interest.

1.3 Stable-on-average algorithms for concrete problems

We summarize, in Table 1, the average sensitivity bounds that we obtain for various concrete
problems. We use n, m, OPT to denote the number of vertices, the number of edges, and the
optimal value.

All of our algorithms run in polynomial time, and for k ≥ 1, upper bounds on k-average
sensitivity of these algorithms can be easily obtained using Theorem 1.5. Except in the case of
our algorithm for the minimum spanning forest problem, our stable-on-average algorithms are
all randomized. Our lower bounds hold for any (randomized) algorithm to solve the respective
problems with the specified approximation guarantee.

For the minimum spanning forest problem, we show that the classical Kruskal’s algorithm [23]
has average sensitivity O(n/m), which is at most 1, and is quite small considering that Kruskal’s
algorithm is deterministic and that the spanning forest can have Ω(m) edges. We also show a
matching lower bound of Ω(n/m) for the minimum spanning forest problem, implying that the
average sensitivity of Kruskal’s algorithm is optimal. In contrast, we show that Prim’s algorithm
can have average sensitivity Ω(m) for a natural (and deterministic) rule of breaking ties among
edges.

For the global minimum cut problem, we show that every algorithm that outputs the exact
mincut has to have average sensitivity Ω(n). However, by allowing for a multiplicative approx-
imation guarantee of 2 + ǫ for ǫ > 0, we design a global minimum cut algorithm with average
sensitivity nO(1

ǫOPT
). If OPT = Ω(log n), the average sensitivity of our algorithm is O(1), which is

quite small. We also prove a nearly tight lower bound on the average sensitivity of any algorithm
that guarantees a purely multiplicative approximation to the minimum cut size. In particular,
when OPT is o(log n), our lower bound matches, up to a polylogarithmic factor, our upper bound
for 3-approximating the minimum cut size.

Our lower bound of Ω(n) on the average sensitivity of algorithms that output the exact global
minimum cut also applies to the minimum s-t cut problem. In contrast, we show that it is possible

5

Table 1: Our results. Here n, m, OPT denote the number of vertices, the number of edges,
and the optimal value, respectively, and ǫ ∈ (0, 1) is an arbitrary constant. The notation Õ(·)
hides polylogarithmic factors in n. Approximation guarantees are multiplicative unless specified
otherwise.

Problem Output
Approximation Average

Reference
Guarantee Sensitivity

Minimum Spanning
Edge set

1 O(n
m) Sec. 3

Forest <∞ Ω(n
m) Sec. 3

Global Minimum Cut Vertex set
2 + ǫ nO(1

ǫOPT
) Sec. 4.1

1 Ω(n) Sec. 4.2

<∞ Ω

(
n

1
OPT

OPT
2

)
Sec. 4.2

Minimum s-t Cut Vertex set additive O(n2/3) O
(
n2/3

)
Sec. 5

Maximum Matching Edge set
1/2 1 Sec. 6.2

1− ǫ Õ

((
OPT

ǫ3

) 1
1+Ω(ǫ2)

)
Sec. 6.3

1 Ω(n) Sec. 6.4

Minimum Vertex Cover Vertex set 2 2 Sec. 6.2

2-Coloring Vertex set — Ω(n) Sec. 7

to achieve average sensitivity of O(n2/3) for the minimum s-t cut problem by allowing for an additive
O(n2/3) approximation.

We show that the average sensitivity of every algorithm that outputs the exact maximum match-
ing is Ω(n), implying that some approximation is essential to obtain nontrivial average sensitivity.
We also propose two stable-on-average approximation algorithms for maximum matching. Our first
algorithm has approximation ratio 1/2 and average sensitivity at most 1. This result immediately
implies a 2-approximation algorithm for the minimum vertex cover problem with average sensitivity
at most 2. Our second algorithm for maximum matching has approximation ratio 1−ε and average

sensitivity Õ
((

OPT/ε3
)1/(1+Ω(ε2))

)
for every constant ε ∈ (0, 1).

In the 2-coloring problem, given a bipartite graph, we are to output one part in the bipartition.
For this problem, we show a lower bound of Ω(n) for the average sensitivity, that is, there is no
algorithm with nontrivial average sensitivity.

Implications on the query complexity of LCAs. Recall that, by Corollary 1.12, the average
sensitivity lower bound for a problem implies an identical lower bound on the query complexity of
an LCA (with failure probability o(1/n2)) for the same problem. This implies that every LCA for
exact maximum matching, global minimum cut, and minimum s-t cut has query compleity Ω(n).
Additionally, every LCA giving a purely multiplicative approximation guarantee for the global

minimum cut has query complexity Ω

(
n

1
OPT

OPT
2

)
. Additionally, as mentioned earlier, every LCA for

2-coloring has query complexity Ω(n), which answers an open question raised by Czumaj et al. [6].

6

1.4 Discussions on average sensitivity

Output representation. Average sensitivity is dependent on the output representation. For
example, we can double the average sensitivity by duplicating the output. A natural idea for
alleviating this issue is to normalize the average sensitivity by the maximum Hamming weight H of
a solution. However, for minimization problems where the optimal value OPT could be much smaller
than H, such a normalization can diminish subtle differences in average sensitivity, e.g., O(OPT1/2)
vs O(OPT). It is an interesting open question whether there is a canonical way to normalize average
sensitivity so that the resulting quantity is independent of the output representation.

Sensitivity against adversarial edge removals. It is also natural to take the maximum,
instead of the average, over edges in definitions (1) and (2), which can be seen as sensitivity against
adversarial edge removals. Indeed a similar notion has been proposed to study algorithms for
geometric problems [33]. However, in the case of graph algorithms, it is hard to guarantee that the
output of an algorithm does not change much after removing an arbitrary edge. Moreover, by a
standard averaging argument, one can say that for 99% of arbitrary edge removals, the sensitivity
of an algorithm is asymptotically equal to the average sensitivity, which is sufficient in most cases.

Average sensitivity w.r.t. edge additions. As another variant of average sensitivity, it is
natural to consider incorporating edge additions in definitions (1) and (2). If an algorithm is
stable-on-average against edge additions, then in addition to the case of not knowing the true
graph as we have discussed earlier, it will be useful for the case that the graph dynamically changes
but we want to prevent the output of the algorithm from fluctuating too much. However, in contrast
to removing edges, it is not always clear how we should add edges to the graph in definitions (1)
and (2). A naive idea is sampling k pairs of vertices uniformly at random and adding edges between
them. This procedure makes the graph close to a graph sampled from the Erdős-Rényi model [9],
which does not represent real networks such as social networks and road networks well. To avoid
this subtle issue, in this work, we focus on removing edges.

Alternative notion of average sensitivity for randomized algorithms. Consider a ran-
domized algorithm A that, given a graph G on n vertices, generates a random string π ∈ {0, 1}r(n)
for some function r : N→ N, and then runs a deterministic algorithm Aπ on G, where the algorithm
Aπ has π hardwired into it. Assume that Aπ can be applied to any graph. It is also natural to
define the average sensitivity of A as

E
e∼E

[
E
π

[
dHam

(
Aπ(G),Aπ(G− e)

)]]
. (3)

In other words, we measure the expected distance between the outputs of A on G and G− e when
we feed the same string π to A, over the choice of π and edge e. Note that (3) upper bounds (2)
because, in the definition of the earth mover’s distance, we optimally transport probability mass
from A(G) to A(G− e) whereas, in (3), how the probability mass is transported is not necessarily
optimal.

We can actually bound (3) for some of our algorithms. In this work, however, we focus on the
definition (2) because the assumption that Aπ can be applied to any graph does not hold in general,
and bounding (3) is unnecessarily tedious and is not very enlightening.

7

1.5 Overview of our techniques

Global minimum cut. For the global minimum cut problem, our algorithm is inspired by a
differentially private algorithm1 for the same problem by Gupta et al. [14]. Our algorithm, given
a parameter ε > 0 and a graph G as input, first enumerates a list of cuts whose sizes are at most
(2+ ε) ·OPT; this enumeration can be done in polynomial time as shown by Karger’s theorem [18].
The algorithm then outputs a cut from the list with probability exponentially small in the product
of the size of the cut and O(1/ε ·OPT). The main argument in analyzing the average sensitivity of
the algorithm is that the aforementioned distribution is very close (in earth mover’s distance) to a
related Gibbs distribution on the set of all cuts in the graph. Therefore the average sensitivity of
the algorithm is of the same order as that of the average sensitivity of sampling a cut from such a
Gibbs distribution, where the latter sampling task requires exponential time. We finally show that
the average sensitivity of sampling a cut from this Gibbs distribution is at most nO(1/εOPT).

Minimum s-t cut. The first stage of our algorithm consists of solving an LP relaxation for the
minimum s-t cut problem in a stable way, for an appropriately defined notion of sensitivity. Given
a graph G = (V,E) and vertices s, t ∈ V , the relaxation contains variables d({u, v}) ∈ [0, 1] for
each {u, v} ∈

(
V
2

)
, where these variables can be thought of as representing a pseudometric over the

vertices. The constraints include triangle inequalities, and also a special constraint d({s, t}) = 1.
The objective is to minimize the sum of the variables associated with the edges in G. Intuitively,
if d({s, v}) is large in a solution to the linear program, then the vertex v falls on the t-side of the
s-t cut represented by the solution.

Our stable LP solving strategy works by solving a related LP that is identical to the original
LP, except for a regularization term added to the objective function. This regularization term is
n−1/3 times the ℓ2 norm of the vector of variables (d({s, v}) : v ∈ V), where we use ‖d‖s to denote
this norm. It is easy to show that the value of the optimal solution to the regularized LP is within
an additive O(n2/3) of the value of the optimal solution to the original LP. We also show that for
all e ∈ E, the solutions output by our LP solver graphs G and G − e are close to each other with
respect to ‖ · ‖s. Here, we use the fact that the regularized objective function is strongly convex
with respect to ‖ · ‖s.

Given a solution to the (regularized) LP relaxation, our rounding procedure samples a threshold
τ ∈ [0, 1] uniformly at random and outputs the set S consisting of all vertices u ∈ V such that
d({s, u}) ≤ τ . The approximation guarantee of this algorithm follows from the fact that we are
rounding based on a near optimal solution to the linear programming relaxation. To analyze the
average sensitivity of the algorithm, we first show that the earth mover’s distance (with respect

to Hamming distance) between the outputs of the rounding procedure for inputs d,d′ ∈ [0, 1](
V
2)

is bounded by the ℓ1 distance between the vectors (d({s, v}) : v ∈ V) and (d′({s, v}) : v ∈ V).
Combining this with the bound on the average sensitivity of our LP solving strategy, we obtain our
final bound on the average sensitivity for our algorithm to approximate the minimum s-t cut.

Maximum matching. Our stable-on-average 1
2 -approximation algorithm for the maximum match-

ing problem first considers a uniformly random ordering of the edges in the input graph, and then
greedily adds edges to the matching according to that ordering. In the context of dynamic dis-
tributed algorithms, Censor-Hillel et al. [5] showed that at most 1 edge changes in the matching

1We compare and contrast the definitions of average sensitivity and differential privacy in Section 1.6.

8

(in expectation) due to the removal of a uniformly random edge, where the expectation is taken
over the edge removed and the ordering of edges. This result immediately implies that the average
sensitivity of this randomized greedy matching algorithm is at most 1. In addition, it implies a
2-approximation algorithm for minimum vertex cover with average sensitivity at most 2.

There are several components to the design and analysis of our stable-on-average (1 − ε)-
approximation algorithm. Our starting point is the observation (Theorem 1.10) that the existence
of a sublinear-time solution oracle O (see Definition 1.9) for an algorithm A implies that A is stable-
on-average. We use Theorem 1.10 to bound the average sensitivity of a (1 − ε′)-approximation
algorithm A for the maximum matching problem, where ε′ = Ω(ε). Specifically, A constructs
a matching by considering augmenting paths of increasing length, and augmenting the (initially
empty) matching iteratively, where the paths of each length are considered in a uniformly random
order. Yoshida et al. [46] constructed a sublinear-time solution oracle that, given a uniformly

random edge e ∈ E as input, makes O
(
∆O(1/(ε′)2)

)
queries to G in expectation and answers

whether e is in the matching output by A on G, where the expectation is over the choice of input
e and the randomness in A, and ∆ is the maximum degree of G. Combined with Theorem 1.10,

this implies that the average sensitivity of A is O
(
∆O(1/(ε′)2)

)
.

Next, we transform A to also work for graphs of unbounded degree as follows. The idea is to
remove vertices of degree at least m

ε′OPT
from the graph and run A on the resulting graph. This

transformation affects the approximation guarantee only by an additive ε′OPT term, since the
number of such high degree vertices is small. However, this thresholding procedure might itself
have high average sensitivity, since the thresholds for G and G − e can be very different for all
e ∈ E.

We circumvent this issue by using a Laplace random variable L as the threshold, where the
distribution of L is tightly concentrated around m

ε′OPT
. We use our sequential composition theorem

(Theorem 1.6) in order to analyze the average sensitivity of the resulting procedure, where we con-
sider the instantiation of the Laplace random threshold as the first algorithm, and the remaining
steps in the procedure as the second algorithm. The first term in the expression given by Theo-
rem 1.6 turns out to be a negligible quantity and is easy to bound. The main task in bounding the
second term is to bound, for all x ∈ R, the average sensitivity of a procedure Ax that, on the input
graph G, removes all vertices of degree at least x from G and runs the augmenting paths-based
matching algorithm. The heart of the argument in bounding this average sensitivity is that given a
solution oracle O with query complexity q(∆) for an algorithm A, we can, for all x ∈ R, construct a
solution oracle Ox for the algorithm Ax. Moreover, the query complexity ofOx is at mostO(x2q(x)).
By Theorem 1.10, this is also a bound on the average sensitivity of Ax. Using this, we bound the

second term in the expression given by Theorem 1.6 as EL

[
O(L2q(L))

]
= O

((
m

ε′OPT

)O(1/(ε′)2)
)
.

An issue with the aforementioned matching algorithm is that its average sensitivity is poor for
graphs with small values of OPT. We observe that, in contrast to this, the algorithm that simply
outputs the lexicographically smallest maximum matching has average sensitivity O(OPT2/m),
since the output matching stays the same unless an edge in the matching is removed. We obtain
our final stable-on-average (1 − ε)-approximation algorithm for the maximum matching problem
by running these two algorithms according to a probability distribution determined by the input
graph. Using our parallel composition theorem, we bound the average sensitivity of the resultant

algorithm as Õ
((

OPT/ε3
)1/(1+Ω(ε2))

)
.

9

2-coloring. To show our Ω(n) lower bound on the average sensitivity for 2-coloring, consider the
set of all paths on n vertices and the set of all graphs obtained by removing exactly one edge from
these paths (called 2-part-paths). A path has exactly two ways of being 2-colored and a 2-path
has four ways of being 2-colored. A path and 2-part-path are neighbors if the latter is obtained
from the former by removing an edge. A 2-part-path has at most four neighbors. The output
distribution of any 2-coloring algorithm A on a 2-part-path can be close (in earth mover’s distance)
only to those of at most 2 of its neighboring paths. If A, however, has low average sensitivity, the
output distributions of A have to be close on a large fraction of pairs of neighboring graphs, which
gives a contradiction.

1.6 Related work

Average sensitivity of network centralities. (Network) centrality is a collective name for
indicators that measure importance of vertices or edges in a network. Notable examples are closeness
centrality [2, 3, 44], harmonic centrality [31], betweenness centrality [11], and PageRank [39]. To
compare these centralities qualitatively, Murai and Yoshida [34] recently introduced the notion of
average-case sensitivity for centralities. Fix a vertex centrality measure c; let cG(v) denote the
centrality of a vertex v ∈ V in a graph G = (V,E). Then, the average-case sensitivity of c on G is
defined as

Sc(G) = E
e∼E

E
v∼V

|cG−e(v) − cG(v)|
cG(v)

,

where e and v are sampled uniformly at random. They showed various upper and lower bounds for
centralities. See [34] for details.

Since a centrality measure assigns real values to vertices, they studied the relative change of the
centrality values upon removal of random edges. As our focus in this work is on graph algorithms,
our notion (2) measures the Hamming distance between solutions when one removes random edges.

Differential privacy. Differential privacy [7] is a notion closely related to average sensitivity.
Assuming the existence of a neighbor relation over inputs, the definition of differential privacy
requires that the distributions of outputs on neighboring inputs are similar. The variant of differ-
ential privacy closest to our definition of average sensitivity is edge differential privacy introduced
by Nissim et al. [38] and further studied by [17, 14, 20, 21, 19, 41]. Here, the neighbors of a graph
G = (V,E) are defined to be {G − e}e∈E . For ε > 0, we say that an algorithm is ε-differentially
private if for all e ∈ E,

exp(−ε) · Pr[A(G− e) ∈ S] ≤ Pr[A(G) ∈ S] ≤ exp(ε) · Pr[A(G− e) ∈ S] (4)

for any set of solutions S.
Differential privacy has stricter requirements than average sensitivity. Firstly, differential pri-

vacy is a worst-case sensitivity notion. Moreover, since differential privacy guarantees that the
probabilities of outputting a specific solution on G and G − e are close to each other, the total
variation distance between the two distributions A(G) and A(G − e) must be small. The earth
mover’s distance between two output distributions can be small even if the total variation distance
between them is large, and therefore, even if an algorithm is not differentially private, it could
still be stable-on-average. Despite these differences, our stable-on-average algorithm for the global
minimum cut problem is inspired by a differentially private algorithm for the same problem [14].

10

Generalization and stability of learning algorithms. Generalization [45] is a fundamental
concept in statistical learning theory. Given samples z1, . . . ,zn from an unknown true distribution
D over a dataset, the goal of a learning algorithm L is to output a parameter θ that minimizes
expected loss Ez∼D[ℓ(z; θ)], where ℓ(z; θ) is the loss incurred by a sample z with respect to a
parameter θ. As the true distribution D is unknown, a frequently used approach in learning is to
compute a parameter θ that minimizes the empirical loss 1

n ·
∑n

i=1 ℓ(zi; θ), which is an unbiased
estimator of the expected loss and is purely a function of the available samples. The generalization
error of a learner L is a measure of how close the empirical loss is to the expected loss as a function
of the sample size n.

One technique to reduce the generalization error is to add a regularization term to the loss
function being minimized [4]. This also ensures that the learned parameter θ does not change
much with respect to minor changes in the samples being used for learning. Therefore, in a sense,
learning algorithms that use regularization can be considered as being stable according to our
definition of sensitivity.

Bousquet and Elisseeff [4] defined a notion of stability for learning algorithms in relation to
reducing the generalization error. Their stability notion requires that the empirical loss of the
learning algorithm does not change much by removing or replacing any sample in the input data.
In contrast, in our definition of average sensitivity, we consider removing random edges from a
graph and measure the change in the output solution rather than that in the objective value.

1.7 Organization

We show our stable-on-average algorithms for the minimum spanning forest problem, the global
minimum cut problem, the minimum s-t cut problem, and the maximum matching problem prob-
lems in Sections 3, 4, 5, and 6, respectively. Our lower bounds on the average sensitivity of
algorithms for the global minimum cut problem and the maximum matching problem can also be
found in Sections 4, and 6, respectively. We show a linear lower bound for the 2-coloring problem
in Section 7. We discuss general properties of average sensitivity in Section 8.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let G = (V,E) be a graph whose vertex set is V
and edge set is E. We denote by G the (infinite) set consisting of all graphs. We often use the
symbols n, m, ∆ to denote the number of vertices, the number of edges, and the maximum degree
of a vertex, respectively, in the input graph. We use OPT(G) to denote the optimal value of a
graph G in the graph problem we are concerned with. We simply write OPT when G is clear from
the context. For an edge e ∈ E, we denote by G − e the graph obtained by removing e from G.
Similarly, for a subset of edges F ⊆ E, we denote by G− F the graph obtained by removing every
edge in F from G. For a subset of edges F ⊆ E, let V (F) denote the set of vertices incident to an
edge in F . For a positive integer k ≤ |E|, we use the notation

(
E
k

)
to denote the set of all subsets

of E of cardinality k. For a subset of vertices S, let G[S] be the subgraph of G induced by S. We
denote by R+ the set of non-negative real numbers. For vectors x,y ∈ Rn, we use 〈x,y〉 to denote
the inner product of x and y.

11

2.1 Exponential Mechanism

The exponential mechanism [32] is an algorithm that, given a vector x ∈ Rn and a real number
η > 0, returns an index i ∈ [n] with probability proportional to e−ηx(i). Just as the exponential
mechanism is useful to design differentially private algorithms, it is also useful to design stable-on-
average algorithms. Lemma 2.1 formalizes this statement.

Lemma 2.1. Let η > 0 and let A be the algorithm that, given a vector x ∈ Rn, applies the
exponential mechanism to x and η. Then for any t > 0, we have

Pr
i∼A(x)

[
x(i) ≥ OPT+

log n

η
+

t

η

]
≤ e−t,

where OPT = mini∈[n] x(i). Moreover, for all x′ ∈ Rn, we have

dTV(A(x),A(x′)) = O
(
η · ‖x− x′‖1

)
.

The proof of Lemma 2.1 is deferred to Appendix A. By setting η = log n/ǫ and replacing t with
t log n, we get the following:

Lemma 2.2. Let ǫ > 0. There exists an algorithm Aǫ such that, given a vector x ∈ Rn outputs
i ∈ [n] such that

Pr
i∼Aǫ(x)

[x(i) ≥ OPT+ ǫ(1 + t)] ≤ n−t,

for any t > 0, where OPT = mini∈[n] x(i). Moreover, for all x′ ∈ Rn, we have

dTV(Aǫ(x),Aǫ(x
′)) = O

(
‖x− x′‖1 ·

log n

ǫ

)
.

3 Warm Up: Minimum Spanning Forest

To get intution about average sensitivity of algorithms, we start with the minimum spanning forest
problem. In this problem, we are given a weighted graph G = (V,E,w), where w : E → R is a
weight function on edges, and we want to find a forest of the minimum total weight including all
the vertices.

Recall that Kruskal’s algorithm [23] works as follows: Iterate over edges in the order of increasing
weights, where we break ties arbitrarily. At each iteration, add the current edge to the solution if it
does not form a cycle with the edges already added. The following theorem states that this simple
and deterministic algorithm is stable-on-average.

Theorem 3.1. The average sensitivity of Kruskal’s algorithm is O(n/m).

Proof. Let G = (V,E) be the input graph and T be the spanning forest obtained by running
Kruskal’s algorithm on G. We consider how the output changes when we remove an edge e ∈ E
from G.

If the edge e does not belong to T , clearly the output of Kruskal’s algorithm on G− e is also T .
Suppose that the edge e belongs to T . Let T1 and T2 be the two trees rooted at the endpoints

of e obtained by removing e from T . If G − e is not connected, that is, e is a bridge in G, then
Kruskal’s algorithm outputs T1 ∪ T2 on G − e. If G − e is connected, then let e′ be the first edge

12

considered by Kruskal’s algorithm among all the edges connecting G[V (T1)] and G[V (T2)], where
V (Ti) is the vertex set of Ti for i ∈ [2]. Then, Kruskal’s algorithm outputs T1 ∪ T2 ∪ {e′} on G− e.
It follows that the Hamming distance between T and the output of the algorithm on G − e is at
most 2.

Therefore, the average sensitivity of Kruskal’s algorithm is at most

m− |T |
m

· 0 + |T |
m
· 2 = O

(n

m

)
.

Indeed, it is not hard to show a matching lower bound.

Theorem 3.2. The average sensitivity of a (possibly randomized) algorithm for the minimum
spanning forest problem is Ω(n/m).

Proof. Let A be an algorithm for the minimum spanning forest problem, and let G = (V,E) be a
connected graph with n vertices and m edges. For each e ∈ E, let µe be the probability distribution
over F(G) × F(G − e) such that dEM(A(G),A(G − e)) = E(F,Fe)∼µe

|F△Fe|, where F(G) is the
set of spanning forests of G. Note that the marginal distribution of µe on the first coordinate is
identical for all e ∈ E. Let µe,F be the distribution over F(G−e) defined as (the second coordinate
of) the distribution µe conditioned on the first coordinate being F . Then, we have

E
e∼E

[
dEM

(
A(G),A(G − e)

)]
= E

e∼E
E

(F,Fe)∼µe

|F△Fe| = E
F∼F(G)

E
e∼E

E
Fe∼µe,F

|F△Fe|

= E
F∼F(G)

[
1

m

∑

e∈E

E
Fe∼µe,F

|F△Fe|
]
≥ E

F∼F(G)

[
1

m

∑

e∈F

E
Fe∼µe,F

|F△Fe|
]
≥ E

F∼F(G)

[
1

m

∑

e∈F

E
Fe∼µe,F

1

]

=
n− 1

m
= Ω

(n

m

)
,

where in the second inequality we used the fact that e ∈ F and e 6∈ Fe.

In Appendix B, we show that Prim’s algorithm, another classical algorithm for the minimum
spanning forest problem, has average sensitivity Ω(m) for a certain natural tie breaking rule. We
mention that this lower bound holds even for unweighted graphs.

4 Global Minimum Cut

For a graph G = (V,E) and a vertex set S ⊆ V , we define cost(G,S) to be the number of edges in
E that cross the cut (S, V \S). Then in the global minimum cut problem, given a graph G = (V,E),
we want to compute a vertex set ∅ (S (V that minimizes cost(G,S). In this section, we discuss
upper and lower bounds on the average sensitivity for the global minimum cut problem.

4.1 Upper bound

In this section, we show the following.

Theorem 4.1. For ε > 0, there exists a polynomial time algorithm for the global minimum cut
problem with approximation ratio 2 + ε and average sensitivity nO(1/εOPT).

13

Algorithm 1: Stable Algorithm for Global Minimum Cut

Input: undirected graph G = (V,E), ε > 0
1 Compute the value OPT;

2 Let α← (2+1/ε) logn
OPT

denote a parameter;
3 Enumerate all cuts of size at most (2 + 7ε)OPT+ 2ε;
4 Sample a vertex set S (from among the cuts enumerated) with probability proportional to

exp(−α · cost(G,S));
5 return S.

Let OPT be the minimum size of a cut in G. Our algorithm enumerates cuts of small size and
then output a vertex set S with probability exp(−α · cost(G,S)) for a suitable α. See Algorithm 1
for details.

The approximation ratio of the Algorithm 1 is 2 + 9ε: It clearly holds when OPT ≥ 1, and it
also holds when OPT = 0 because we only output a cut of size zero (for ε < 1/2). The following
theorem due to Karger [18] directly implies that it runs in time polynomial in the input size for
any constant ε > 0.

Theorem 4.2 ([18]). Given a graph G on n vertices with the minimum cut size c and a parameter
α ≥ 1, the number of cuts of size at most α · c is at most n2α and can be enumerated in time
polynomial (in n) per cut.

We now show that Algorithm 1 is stable-on-average.

Lemma 4.3. The average sensitivity of Algorithm 1 is at most

β(G) =
n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT+ 2ε) + o(1).

As we have OPT ≤ 2m/n, the average sensitivity can be bounded by nO(1/εOPT), and Theo-
rem 4.1 follows by replacing ε with ε/9.

Proof. If OPT = 0, then the claim trivially holds because the right hand size is infinity. Hence in
what follows, we assume OPT ≥ 1.

Let A denote Algorithm 1. Consider an (inefficient) algorithm A′ that on input G, outputs a
cut S ⊆ V (from among all the cuts in G) with probability proportional to exp(−α · cost(G,S)).
For a graph G = (V,E), let A(G) and A′(G) denote the output distribution of algorithms A and
A′ on input G, respectively. For G = (V,E) and S ⊆ V , let pG(S) and p′G(S) be shorthands for
the probabilities that S is output on input G by algorithms A and A′, respectively.

We first bound the earth mover’s distance between A(G) and A′(G) for a graph G = (V,E).
To this end, we define

Z =
∑

S⊆V :cost(G,S)≤OPT+b

exp(−α · cost(G,S)), and Z ′ =
∑

S⊆V

exp(−α · cost(G,S))

where b = (1+7ε)OPT+2ε. Note that Z ≤ Z ′ and the quantity Z′−Z
Z′ is the total probability mass

assigned by algorithm A′ to cuts S ⊆ V such that cost(G,S) > OPT+ b.

14

Now, we start with A′(G). For each S ⊆ V such that cost(G,S) ≤ OPT + b, keep at least
Z
Z′ · p′G(S) mass with a cost of 0 and move a mass of at most p′G(S) − Z

Z′ · p′G(S) at a cost of
n · (p′G(S)− Z

Z′ · p′G(S)). For each S ⊆ V such that cost(G,S) > OPT+ b, we move a mass of p′G(S)
at a cost of n · p′G(S). The total cost of moving masses is then equal to:

dEM
(
A(G),A′(G)

)
≤ n ·

∑

S⊆V :cost(G,S)≤OPT+b

p′G(S)

(
1− Z

Z ′

)
+ n ·

∑

S⊆V :cost(G,S)>OPT+b

p′G(S)

=
n(Z ′ − Z)

Z ′

∑

S⊆V :cost(G,S)≤OPT+b

p′G(S) + 1

≤ 2n(Z ′ − Z)

Z ′
.

Let nt stand for the number of cuts of cost at most OPT + t in G. By Karger’s theorem
(Theorem 4.2), we have that nt ≤ n2+2t/OPT. Then, we have

Z ′ − Z

Z ′
≤
∑

t>b

exp(−αt) · (nt − nt−1) ≤ (exp(α)− 1) ·
∑

t>b

exp(−αt)nt

≤ (exp(α) − 1)n2 ·
∑

t>b

n2t/OPT · exp(−αt)

≤ (exp(α) − 1)n2 ·
∑

t>b

n−t/εOPT ≤ (exp(α) − 1)n2 · n
−(b+1)/εOPT

1− n−1/εOPT

=
(
n(2+1/ε)/OPT − 1

)
·
(
1 +

1

n1/εOPT − 1

)
· n2

n(b+1)/εOPT

≤ n(2+1/ε)/OPT ·
(
1 +

εn

log n

)
· n2

n(b+1)/εOPT

= O

(
εn3+(2+1/ε)/OPT

n(b+1)/εOPT

)
= O

(ε

n4+1/ε

)
.

The last inequality above follows from our choice of b. Therefore, the earth mover’s distance
between A(G) and A′(G) is dEM

(
A(G),A′(G)

)
≤ O(ε

n3+1/ε).
In addition, we can bound the expected size of the cut output by A′ on G as follows. The

total probability mass assigned by algorithm A′ to cuts of size larger than OPT + b is equal to
Z′−Z
Z′ = O

(
ε

n4+1/ε

)
. Hence, the expected size of the cut output by A′ on G is at most OPT+ b+

m ·O(ε
n4+1/ε) = (2 + 7ε)OPT+ 2ε+O(εm

n4+1/ε).
We now bound the earth mover’s distance between A′(G) and A′(G− e) for an arbitrary edge

e ∈ E. Let Z ′
e denote the quantity

∑
S⊆V exp(−α · cost(G− e, S)). Since the cost of every cut in

G− e is at most the cost of the same cut in G, we have that Z ′ ≤ Z ′
e and therefore,

p′G(S) =
exp(−α · cost(G,S))

Z ′
≤ exp(α · cost(G− e, S))

Z ′
e

· Z
′
e

Z ′
= p′G−e(S) ·

Z ′
e

Z ′
.

We transform A′(G) into A′(G− e) as follows. For each S ⊆ V , we leave a probability mass of
at most p′G−e(S) at S with zero cost and move a mass of max{0, p′G(S) − p′G−e(S)} to any other

15

point at a cost of at most n ·max{0, p′G(S)− p′G−e(S)} ≤ n ·
(
Z′

e
Z′ − 1

)
· p′G(S). Hence,

dEM
(
A′(G),A′(G− e)

)
≤ n ·

(
Z ′
e

Z ′
− 1

)
·
∑

S⊆V

p′G(S) = n ·
(
Z ′
e

Z ′
− 1

)
.

By the triangle inequality, the earth mover’s distance between A(G) and A(G − e) can be
bounded as

dEM
(
A(G),A(G − e)

)
≤ dEM

(
A(G),A′(G)

)
+ dEM

(
A′(G),A′(G− e)

)
+ dEM

(
A′(G− e),A(G − e)

)

≤ n ·
(
Z ′
e

Z ′
− 1

)
+O

(
2ε

n2+1/ε

)
.

Hence, the average sensitivity of A is bounded as:

β(G) = E
e∼E

dEM
(
A(G),A(G − e)

)
≤ O

(
2ε

n3+1/ε

)
+ n · E

e∼E

(
Z ′
e

Z ′
− 1

)

= O

(
2ε

n3+1/ε

)
+

n

mZ ′

∑

e∈E

(Z ′
e − Z ′)

= O

(
2ε

n3+1/ε

)
+

n

mZ ′

∑

e∈E

∑

S⊆V :e crosses S

exp(−α · cost(G− e, S)) − exp(−α · cost(G,S))

= O

(
2ε

n3+1/ε

)
+

n(exp(α)− 1)

mZ ′

∑

e∈E

∑

S⊆V :e crosses S

exp(−α · cost(G,S))

= O

(
2ε

n3+1/ε

)
+

n(exp(α)− 1)

m

∑

S⊆V

cost(G,S) · exp(−α · cost(G,S))

Z ′
.

The summation in the second term above is equal to the expected size of the cut output by
algorithm A′ on input G. We argued that it is at most (2 + 7ε)OPT+ 2ε+O(εm

n4+1/ε). Hence, the
average sensitivity of A is at most

n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT+ 2ε) +O

(
εn(2+1/ε)/OPT + 2

n3+1/ε

)

=
n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT+ 2ε) + o(1)

as OPT ≥ 1.

4.2 Lower bound

In this section, we show that the average sensitivity of the algorithm given in Section 4.1 is almost
tight. Specifically, we show the following.

Theorem 4.4. Any algorithm for the global minimum cut problem with no additive error (and
possibly an arbitrary large multiplicative error) has average sensitivity Ω(n1/OPT/OPT2) if OPT =
o(
√
n).

16

Proof. We first show a lower bound for the case OPT = 1. Let A be an arbitrary algorithm for the
global minimum cut problem with no additive error and let G = ([n + 1], E) be a path on n + 1
vertices, where E = {(i, i + 1) : i ∈ [n]}. Note that for any i ∈ [n], the graph G − (i, i + 1) is
disconnected and A must output a vertex set [i] or [n+1] \ [i]. For a vertex set S ⊆ [n+1], let pS
be the probability that A on G outputs S. Then, the average sensitivity of A on G is

E
e∼E

[dEM(A(G),A(G − e))] =
1

n

∑

i∈[n]

∑

S⊆[n+1]

pS ·min{dHam(S, [i]), dHam(S, [n + 1] \ [i])}. (5)

Note that if two sets S, T ⊆ [n+1] satisfy |S| ≤ |T | −n/10 or |S| ≥ |T |+ n/10, then dHam(S, T) ≥
n/10 holds. Hence, we have dHam(S, [i]) ≥ n/10 for at least a 4/5-fraction of i ∈ [n]. Similarly,
we have dHam(S, [n + 1] \ [i]) ≥ n/10 for at least a 4/5-fraction of i ∈ [n]. It follows that we have
min{dHam(S, [i]), dHam(S, [n + 1] \ [i])} ≥ n/10 for at least a 3/5-fraction of i ∈ [n]. Then, we have

(5) ≥ 3

5
· n
10
·
∑

S⊆[n]

pS =
3n

50
= Ω(n). (6)

We now consider the case t := OPT ≥ 2. Consider a multigraph Gt = ([n + 1], Et), where Et

contains t copies of the edge (i, i+ 1) for every i ∈ [n]. For k = (tn)1−1/t, the k-average sensitivity
of A on G without replacement is

E
{e1,...,ek}∼(Et

k)
[dEM(A(G),A(G − {e1, . . . , ek}))]

≥ E
{e1,...,ek}∼(Et

k)
[dEM(A(G),A(G − {e1, . . . , ek})) | A(G− {e1, . . . , ek}) has two components]×

Pr
{e1,...,ek}∼(Et

k)
[A(G− {e1, . . . , ek} has two components)] . (7)

The first factor of (7) is exactly equal to (5), which is Ω(n) by (6). Now we bound the second factor.
For every i ∈ [n], the probability that we cut all the edges between i-th and (i + 1)-th vertices
is
(k
t

)
/
(tn
t

)
from the property of the hypergeometric distribution. For every distinct i, j ∈ [n], the

probability that we cut all the edges between i-th and (i+1)-th vertices and all the edges between
j-th and (j + 1)-th vertices is

(
k
2t

)
/
(
tn
2t

)
. By the inclusion-exclusion principle, the probability that

G− {e1, . . . , ek} has exactly two components is at least

n

(
k
t

)
(tn
t

) −
(
n

2

)(k
2t

)
(tn
2t

) ≥ n

(
1− t2

k

)(
k

tn

)t

−
(
n

2

)
n

n− 4t

(
k

tn

)2t

(By
(
1− k2

n

)
nk

k! ≤
(n
k

)
≤ nk

k!)

= n

(
1− t2

k

)
1

tn
−
(
n

2

)
n

n− 4t

1

t2n2
≥ 3

4t
− 1

t2
≥ 1

4t
= Ω

(
1

t

)
,

where we used the fact that 2 ≤ t = o(
√
n). Hence, we have (7) = Ω(n/t). By Theorem 1.5, the

average sensitivity β of A on G must satisfy

β · (tn)1−1/t ≥ Ω
(n
t

)
,

which implies β ≥ Ω(n1/t/t2).

The proof of the following theorem is implicit in the first part of the proof of Theorem 4.4.

Theorem 4.5. Any algorithm that exactly outputs the global minimum cut has average sensitivity
Ω(n).

17

5 Minimum s-t Cut

In this section, we design a stable-on-average algorithm for the minimum s-t cut problem. We say
that a pair {u, v} ∈

(V
2

)
is cut by S ⊆ V if u ∈ S and v ∈ V \ S, or vice versa. The cut size of a

vertex set S ⊆ V in a graph G = (V,E) is the number of edges e ∈ E cut by S. In the minimum
s-t cut problem, given a graph G = (V,E) and two vertices s, t ∈ V , we want to find a minimum
s-t cut, that is, a vertex set S with s ∈ S and t 6∈ S that has the minimum cut size. We show the
following.

Theorem 5.1. There exists a polynomial time algorithm for the minimum s-t cut problem with
additive error O(n2/3) and average sensitivity O(n2/3).

In Section 5.1, we describe our LP relaxation for the minimum s-t cut problem and introduce a
notion of average sensitivity for algorithms that solve the LP. We then provide a stable-on-average
LP solver in Section 5.2 and discuss a rounding procedure in Section 5.3. We prove Theorem 5.1
in Section 5.4.

5.1 LP Relaxation and Average Sensitivity

Our algorithm is based on an LP relaxation for the minimum s-t cut problem. For each pair of
vertices {u, v} ∈

(V
2

)
, we introduce a variable d({u, v}), which we regard as a distance between u

and v. Roughly speaking, d({u, v}) is 1 if u and v are on different sides of an s-t cut. d({u, v}) is
0 otherwise. For notational simplicity, we often write d(u, v) to denote d({u, v}). Intuitively, the
distance between s and t should be at least one, and the distance d(·, ·) should satisfy the triangle
inequality. Our LP relaxation is the following.

minimize LPG(d) :=
∑

{u,v}∈E

d(u, v),

subject to d(s, t) = 1,

d(u, v) ≤ d(u,w) + d(w, v), ∀{u, v, w} ∈
(
V

3

)

0 ≤ d(u, v) ≤ 1. ∀{u, v} ∈
(
V

2

)
(8)

It is easy to check that LP (8) is indeed a relaxation for the minimum s-t cut problem. Let S ⊆ V
be an s-t cut. Then for each {u, v} ∈

(V
2

)
, we set d(u, v) = 1 if {u, v} is cut by S, and set d(u, v) = 0

otherwise. It is clear that
∑

{u,v}∈E d(u, v) = |{{u, v} ∈ E : {u, v} is cut by S}| is the cut size of S
and that d satisfies all the constraints.

Now, we introduce a notion of the average sensitivity of an algorithm for solving (8). First, for

a vertex s ∈ V , we define a norm ‖ · ‖s as ‖d‖s :=
√∑

v∈V d(s, v)2. Then, we define the average

sensitivity of a (deterministic) algorithm A for solving LP (8) as

E
e∼E
‖A(G)−A(G− e)‖s.

We use the norm ‖ · ‖s instead of the standard ℓ2 norm because our rounding procedure uses only
d(s, v) (v ∈ V) (see Section 5.3 for the details of the rounding procedure), and the former norm
gives a better approximation guarantee than the latter.

18

5.2 Stable-on-Average LP Solver

In this section, we give a stable-on-average solver for LP (8).

Theorem 5.2. For any η > 0, there exists a polynomial-time algorithm for solving LP (8) with

average sensitivity O(1/
√
η) such that the output d ∈ [0, 1](

V
2) satisfies

∑

e∈E

d(e) ≤ OPT+
ηn

2
,

where OPT is the optimal value of LP (8).

Given a parameter η > 0, our algorithm solves the following regularized LP and then returns
the optimal solution.

minimize LPη
G(d) :=

∑

{u,v}∈E

d(u, v) +
η

2
‖d‖2s

subject to d(s, t) = 1,

d(u, v) ≤ d(u,w) + d(w, v) ∀{u, v, w} ∈
(
V

3

)
,

0 ≤ d(u, v) ≤ 1 ∀{u, v} ∈
(
V

2

)
,

(9)

The only difference from LP (8) is that we have a regularization term η‖d‖2s/2 in the objective
function. Note that LPη

G is η-strongly convex with respect to the norm ‖ · ‖s. Theorem 5.2 follows
from Lemmas 5.3 and 5.4, given below.

Lemma 5.3. Let d∗,d ∈ [0, 1](
V
2) be the optimal solutions to LPs (8) and (9), respectively. Then,

we have

∑

{u,v}∈E

d(e) ≤
∑

{u,v}∈E

d∗(e) +
ηn

2
.

Proof. We have

∑

e∈E

d(e) −
∑

e∈E

d∗(e) =

(
∑

e∈E

d(e) +
η

2
‖d‖2s

)
−
(
∑

e∈E

d∗(e) +
η

2
‖d∗‖2s

)
+

η

2

(
‖d∗‖2s − ‖d‖2s

)

≤ η

2

(
‖d∗‖2s − ‖d‖2s

)
(by the optimality of d for LP (9))

≤ η

2
‖d∗‖2s

≤ ηn

2
, (by d∗(s, v) ≤ 1 for any v ∈ V)

as desired.

Lemma 5.4. Let G = (V,E) be a graph, {u, v} ∈ E be an edge, and let d and d′ be the optimal
solutions to LPs (9) for G and G′ := G− {u, v}, respectively. Then, ‖d− d′‖s = O(1/

√
η).

19

Algorithm 2: Rounding procedure for the minimum s-t cut problem

1 Procedure Thresh(x)

Input: x ∈ [0, 1]V

2 Sample τ from [0, 1] uniformly at random;
3 return the set {v ∈ V : x(v) ≥ τ}

Proof. By the η-strong convexity of LPη
G with respect to ‖ · ‖s, we have

LPη
G(d

′)− LPη
G(d) ≥ 〈∇LP

η
G(d),d

′ − d〉+ η‖d′ − d‖2s ≥ η‖d − d′‖2s,

where the second inequality holds because d is an optimal solution. Similarly for LPη
G′ , we have

LPη
G′(d) − LPη

G′(d
′) ≥ η‖d− d′‖2s.

Therefore, we have

2η‖d− d′‖2s ≤ LPη
G(d

′)− LPη
G(d) + LPη

G′(d)− LPη
G′(d

′)

=
∑

e∈E

(
d′(e)− d(e)

)
+

∑

e∈E\{u,v}

(
d(e) − d′(e)

)
= d′(u, v) − d(u, v) ≤ 1.

Hence, we have ‖d− d′‖s ≤ O(1/
√
η).

5.3 Rounding Procedure

Suppose we have obtained a solution d to LP (8). Then, we will round the vector z := (d(s, v))v∈V ∈
[0, 1]V using a thresholding procedure Thresh (Algorithm 2), which returns a set of vertices v ∈ V
such that d(s, v) is at least a threshold τ sampled from [0, 1] uniformly at random. We can also
interpret Thresh(z) as follows. Let v1, . . . , vn be the ordering of V such that z(vi) ≥ z(vi+1) for
every i ∈ [n − 1]. Then, Thresh(z) outputs the set {v1, . . . , vi} with probability z(vi) − z(vi+1)
for i ∈ [n+ 1], where we define z(vn+1) = 0 for a dummy vertex vn+1.

First, we analyze the solution quality of Thresh.

Lemma 5.5. We have

E[The cut size of Thresh(z)] ≤
∑

e∈E

d(e),

where z = (d(s, v))v∈V .

Proof. For each edge e ∈ E, the probability that it is cut by S is

|z(u) − z(v)| = |d(s, u) − d(s, v)| ≤ d(u, v),

where u, v ∈ V are the endpoints of e. The claim follows by the linearity of expectations.

Now, we bound the average sensitivity of Thresh when only one coordinate differs.

20

Lemma 5.6. Let x ∈ [0, 1]V and x′ ∈ [0, 1]V be such that

x′(u) =

{
x(u) + ∆ if u = v,

x(u) otherwise,

for some v ∈ V and 0 ≤ x(v) ≤ 1−∆. Then, dEM(Thresh(x),Thresh(x′)) ≤ 2∆.

Proof. We can assume ∆ ≥ 0 as otherwise we can switch the roles of x and x′. Starting with the
vector x0 = x, we iteratively construct xk ∈ [0, 1]V from xk−1 as

xk(u) =

min

{
x′(v), min

w∈V :xk−1(w)>xk−1(v)
{xk−1(w)}

}
if u = v,

xk−1(u) otherwise.

Let ℓ be the smallest integer such that xℓ(v) = x′(v). Note that for every k ∈ [ℓ], there is an
ordering v1, . . . , vn of V such that both xk−1(vi) ≥ xk−1(vi+1) and xk(vi) ≥ xk(vi+1) hold for
every i ∈ [n− 1]. Note that

∑
k∈[ℓ] ‖xk − xk−1‖1 = ∆.

Now we show that for each k ∈ [ℓ] we have dEM(Thresh(xk),Thresh(xk−1)) ≤ 2‖xk−xk−1‖1.
Let v1, . . . , vn be an ordering of V with the property mentioned above, and let S = {v1, . . . , vi−1}
and S′ = {v1, . . . , vi}, where i ∈ [n] is such that vi = v. Then, the only difference in the output
distributions of Thresh(xk) and Thresh(xk−1) is that the former outputs S with probability
xk(vi−1) − xk(vi) and S′ with probability xk(vi) − xk(vi+1) whereas the latter outputs S with
probability xk−1(vi−1)− xk−1(vi) and S′ with probability xk−1(vi)− xk−1(vi+1). It follows that

dEM(Thresh(xk),Thresh(xk−1)) ≤ 2
(
xk(vi)− xk−1(vi)

)
· dHam(S, S

′)

= 2
(
xk(v)− xk−1(v)

)
· dHam(S, S

′) = 2‖xk − xk−1‖1.

Then, we have

dEM(Thresh(x),Thresh(x′)) = dEM(Thresh(x0),Thresh(xℓ))

≤
∑

k∈[ℓ]

dEM(Thresh(xk),Thresh(xk−1)) ≤
∑

k∈[ℓ]

2‖xk − xk−1‖1 = 2∆.

Corollary 5.7. dEM(Thresh(x),Thresh(x′)) ≤ 2‖x− x′‖1 for x,x′ ∈ [0, 1]V .

Proof. The inequality can be obtained by iteratively applying Lemma 5.6 to each coordinate of the
vectors.

5.4 Putting Things Together

Our algorithm is given in Algorithm 3. It simply computes a solution d ∈ [0, 1](
V
2) to LP (8)

using the algorithm given in Theorem 5.2 with parameter η = n−1/3, and then rounds d using the
procedure Thresh.

21

Algorithm 3: Algorithm for the minimum s-t cut problem

1 Procedure MinCut(G, s, t, ǫ)
Input: A graph G = (V,E), two vertices s, t ∈ V .

2 Solve LP (8) using the algorithm given by Theorem 5.2 with parameter η = n−1/3, and

let d ∈ [0, 1](
V
2) be the solution obtained;

3 z ← (d(s, v))v∈V ;
4 return Thresh(z).

Proof of Theorem 5.1. Let A be Algorithm 3. First, we consider the approximation guarantee of

A. Let d∗ ∈ R(
V
2) be an optimal solution to LP (8). By Theorem 5.2, we get d ∈ [0, 1](

V
2) satisfying

the constraints in LP (8) such that

∑

e∈E

d(e) ≤ OPT+
ηn

2
= OPT+O

(
n2/3

)
.

By Lemma 5.5, the expected cut size of the output set is the same.

Now, we consider the average sensitivity of A. Let G = (V,E) be a graph, and let d ∈ [0, 1](
V
2)

be the solution to LP (8) computed by A on G. For each edge e ∈ E, let de ∈ [0, 1](
V
2) be the

solution to LP (8) computed by A on G− e. Then, we have

E
e∼E

dEM(A(G),A(G − e)) ≤ E
e∼E

dEM
(
Thresh((d(s, v))v∈V),Thresh((de(s, v))v∈V)

)

≤ 2 E
e∼E
‖(d(s, v))v∈V − (de(s, v))v∈V ‖1 (by Corollary 5.7)

= 2
√
n E

e∼E
‖d− de‖s

= O

(√
n

η

)
(by Theorem 5.2)

= O
(
n2/3

)
.

6 Maximum Matching

A vertex-disjoint set of edges is called a matching. In the maximum matching problem, given
a graph, we want to find a matching of the maximum size. In this section, we describe several
algorithms with low average sensitivity that approximate the maximum matching in a graph.

6.1 Lexicographically smallest matching

In this section, we describe an algorithm that computes a maximum matching in a graph with
average sensitivity at most OPT2/m and prove Theorem 6.1, where OPT is the maximum size of a
matching.

First, we define some ordering among vertex pairs. Then, we can naturally define the lexico-
graphical order among matchings by considering a matching as a sorted sequence of vertex pairs.
Then, our algorithm simply outputs the lexicographically smallest matching. Note that this can
be done in polynomial time using Edmonds’ algorithm [8].

22

Algorithm 4: Randomized Greedy Algorithm

Input: undirected unweighted graph G = (V,E)
1 Sample a uniformly random ordering π of edges in E;
2 Set M ← ∅;
3 Consider edges one by one according to π and add an edge (u, v) to M only if both u and v

are unmatched in M ;
4 return M .

Theorem 6.1. Let A be the algorithm that outputs the lexicographically smallest maximum match-
ing. Then, the average sensitivity of A is at most OPT2/m, where OPT is the maximum size of a
matching.

Proof. For a graph G = (V,E), let M(G) ⊆ E be its lexicographically smallest maximum matching.
As long as e 6∈ M , we have M(G) = M(G − e). Hence, the average sensitivity of the algorithm is
at most

OPT

m
· OPT+

(
1− OPT

m

)
· 0 =

OPT2

m
.

Remark 6.2. Consider the path graph Pn = ({1, . . . , n}, E), where E = {(i, i + 1) : i ∈ [n − 1]}.
The average sensitivity of the above algorithm on Pn is Ω(OPT

2

m). Hence the above analysis of the
average sensitivity is tight.

6.2 Greedy matching algorithm

In this section, we analyze the average sensitivity of the randomized greedy algorithm (Algorithm 4)
that outputs a maximal matching. It is evident that Algorithm 4 runs in polynomial time and that
the matching it outputs has size at least 1

2 the size of a maximum matching in the input graph.

Theorem 6.3. Algorithm 4 is a 1
2-approximation algorithm for the maximum matching problem

and has average sensitivity at most 1.

Proof. For a permutation π of edges in E, let Mπ(G) denote the matching obtained by running
Algorithm 4 on a graph G. Using [5, Theorem 1], we get that for every e ∈ E(G), it holds that

Eπ [Ham(Mπ(G),Mπ(G− e))] ≤ 1. This implies that the average sensitivity of Algorithm 4 is at
most 1.

A vertex set S ⊆ V in a graph G = (V,E) is called a vertex cover if every edge in E is incident
to a vertex in S. In the minimum vertex cover problem, given a graph G, we want to compute a
vertex cover of the minimum size. It is well known that, for any maximal matching M , the vertex
set consisting of all endpoints of edges in M is a 2-approximate vertex cover. The following theorem
is immediate from Theorem 6.3.

Theorem 6.4. There exists a 2-approximation algorithm for the minimum vertex cover problem
with average sensitivity at most 2.

23

6.3 Matching algorithm based on augmenting paths

In this section, we describe a (1− ε)-approximation algorithm for the maximum matching problem

with average sensitivity Õ
(
OPT

c
c+1/ε

3c
c+1

)
for c = O(1/ε2) in Theorem 6.11. The basic building

block is a (1− ε)-approximation algorithm (Algorithm 5) for maximum matching that is based on
iteratively augmenting a matching with greedily chosen augmenting paths of increasing lengths. In
Theorem 6.5, we show that the average sensitivity of this algorithm is ∆O(1/ε2), where ∆ is the
maximum degree of the input graph. We obtain Theorem 6.5 by applying Theorem 1.10 to a result
by Yoshida et al. [46].

We then apply Theorem 6.6 to Theorem 6.5 in order to get rid of the dependence of the average
sensitivity on the maximum degree and obtain Theorem 6.10. We then combine (using Theorem 1.8,
the parallel composition theorem) the algorithm guaranteed by Theorem 6.10 with the algorithm
guaranteed by Theorem 6.1 to obtain Theorem 6.11.

6.3.1 Greedy matching algorithm based on augmenting paths

In this section, we present an approximation algorithm that starts with an empty matching and
then iteratively improves its size with augmenting paths of increasing lengths. We show that the
average sensitivity of this algorithm can be bounded using Theorem 1.10.

Algorithm 5: Greedy Augmenting Paths Algorithm

Input: undirected unweighted graph G = (V,E), parameter ε ∈ (0, 1)
1 M0 ← ∅;
2 for i ∈ {1, 2, . . . ⌈1ε − 1⌉} do
3 Let Ai denote the set of augmenting paths of length 2i− 1 for the matching Mi−1;
4 Let A′

i denote a maximal set of disjoint paths from Ai, where A′
i is made from a random

ordering of Ai;
5 Mi ←Mi−1△A′

i.

6 return M⌈ 1
ε
−1⌉.

Theorem 6.5. Algorithm 5 with parameter ε > 0 has approximation ratio 1 − ε and average
sensitivity ∆O(1/ε2), where ∆ is the maximum degree of the input graph.

Proof. For all k ≥ 0, it is known that |Mk| ≥ k
k+1 · |M∗| [13], where M∗ denotes a maximum

matching in G. Hence, the matching M⌈ 1
ε
−1⌉ is a (1− ε)-approximation to M∗.

Yoshida et al. [46, Theorem 3.7] show that for all k ≥ 0, determining whether a uniformly
random edge e ∼ E belongs to Mk can be done by querying at most ∆O(k2) edges in expectation,
where ∆ is the maximum degree of G. Applying Theorem 1.10 to this result, we can see that the
average sensitivity of Algorithm 5 with parameter ε > 0 and input G is ∆O(1/ε2), where ∆ is the
maximum degree of G.

6.3.2 Stable-on-average thresholding transformation

In this section, we show a transformation from matching algorithms whose average sensitivity is a
function of the maximum degree to matching algorithms whose average sensitivity does not depend

24

on the maximum degree. This is done by adding to the algorithm, a preprocessing step that removes
vertices from the input graph, where the removed vertices have degree at least an appropriate
random threshold. Such a transformation helps us to design stable-on-average algorithms for graphs
with unbounded degree. Let Lap(µ, φ) denote the Laplace distribution with a location parameter
µ and a scale parameter φ.

Theorem 6.6. Let A′ be a randomized algorithm for the maximum matching problem such that
the size of the matching output by A′ on a graph G is always at least a · OPT for some a ≥ 0. In
addition, assume that there exists a solution oracle O (see Definition 1.9) for A′ makes at most
q(∆) queries to G in expectation, where ∆ is the maximum degree of G, and the expectation is
taken over the random coins of A′ and edges e ∈ E. Let δ > 0 and τ be a non-negative function
on graphs. Then, there exists an algorithm A for the maximum matching problem with average
sensitivity

β(G) ≤ O

(
KG

δ(τ(G) −KG)
+ exp

(
−1

δ

))
·OPT+ E

L

[
(2L− 2)2q(L)

]
,

where L is a random variable distributed as Lap(τ(G), δτ(G)) and KG = maxe∈E(G) |τ(G)−τ(G−e)|.
Moreover, the expected size of the matching output by A is at least

a · OPT− am

(1− δ ln(OPT/2)) · τ(G)
− a.

The following fact will be useful in the proof of Theorem 6.6.

Proposition 6.7. Let L be a random variable distributed as Lap(µ, φ). Then, Pr[L < (1− ε)µ] ≤
exp(−εµ/φ)/2. Similarly, Pr[L > (1 + ε)µ] ≤ exp(−εµ/φ)/2.

Proof of Theorem 6.6. The algorithm A is given below.

Algorithm A: On input G = (V,E),

1. Sample a random variable L according to the distribution Lap(τ(G), δτ(G)).

2. Let [G]L be the graph obtained after removing from G all vertices of degree at least L.

3. Run A′ on [G]L.

We first bound the average sensitivity of A. We can think of A as being sequentially composed
of two algorithms, where the first algorithm takes in a graph G = (V,E) and outputs a number
L ∼ Lap(τ(G), δτ(G)). The second algorithm takes both L and G and runs A′ on [G]L.
Let Le for e ∈ E denote a Laplace random variable distributed as Lap(τ(G− e), δτ(G− e)). Using
Theorem 1.6, we get that the average sensitivity of A is bounded by

OPT · E
e∼E

[dTV(L,Le)] + E
L

[
E

e∼E

[
dEM(A′([G]L),A′([G− e]L))

]]
.

Claim 6.8. For x ∈ R, Ee∼E

[
dEM

(
A′([G]x),A′([G− e]x)

)]
≤ (2x− 2)2q(x).

25

Proof. Fix x ∈ R. In order to bound the term Ee∼E

[
dEM

(
A′([G]x),A′([G− e]x)

)]
, consider

the following algorithm A′
x. On input G = (V,E), the algorithm A′

x first removes every ver-
tex of degree at least x from G and then runs A′ on the resulting graph. Hence, the quantity

Ee∼E

[
dEM

(
A′([G]x),A′([G − e]x)

)]
denotes the average sensitivity of A′

x.
In order to bound the average sensitivity of A′

x, construct a solution oracle Ox for A′
x as follows.

The oracle Ox, when given access to a graph G = (V,E) and input e sampled uniformly at random
from E, does the following. It first checks whether at least one of the endpoints of e has degree
at least x. If so, it returns that e does not belong to the solution obtained by running A′

x on G.
Otherwise, it runs O with access to [G]x and e as input and outputs the answer of O.

We can analyze the query complexity of Ox as follows. Call an edge e ∈ E alive if both the
endpoints of e have degree less than x. Otherwise, e is dead.

The oracle Ox can check whether an edge e = (u, v) is alive or not by querying at most 2x− 2
edges incident to e. In particular Ox examines the neighbors of u and v one by one, and, as soon
Ox encounters x − 1 distinct neighbors (excluding u or v themselves) for either u or v, Ox can
declare e to be a dead edge.

If the edge e ∈ E input to Ox is a dead edge, therefore, Ox queries at most 2x − 2 edges and
returns that e cannot be part of a solution to running A′

x on G.
If the input edge e ∈ E is alive, then we know that it is a uniformly random alive edge. By the

guarantee on O, we then know that O makes at most q(x) queries to the alive edges in expectation
over the randomness of A′ and the choice of the input alive edge, since the maximum degree of
[G]x is at most x. In order for the oracle Ox to simulate oracle access to [G]x for the purpose of
answering queries made by oracle O, for each alive edge e queried by O, the oracle Ox has to query
each edge incident to e in G and determine which among these are alive. Since e is alive, both
endpoints of e have degrees less than x. Hence, Ox need only check whether at most 2x− 2 edges
incident to e are alive or not. This can be done by querying (2x− 2)2 edges in E in total.

Combining all of the above, the expected query complexity of Ox is at most (2x− 2)2q(x),
where the expectation is taken over the edges of e ∈ E and the randomness in Ax.

Therefore, by Theorem 1.10, we get that the average sensitivity of algorithm Ax is bounded by
(2x− 2)2q(x).

We now bound the quantity Ee∼E [dTV(L,Le)].

Claim 6.9. For any e ∈ E, we have

dTV(L,Le) ≤ O

(
K

δ(τ −K)
+ exp

(
−1

δ

))
.

Proof. Let fL, fLe : R→ R be the probability density functions of the Laplace random variables L
and Le, respectively. Let τ = τ(G), τe = τ(Ge), and K = KG. Then

fL(x)

fLe(x)
=

1
2δτ exp

(
− |x−τ |

δτ

)

1
2δτe

exp
(
− |x−τe|

δτe

) =
τe
τ
exp

(|x− τe|
δτe

− |x− τ |
δτ

)

=

(
1− τ − τe

τ

)
exp

(
τ |x− τe| − τe|x− τ |

δττe

)
.

26

A direct calculation shows that for 0 ≤ x ≤ 2max{τ, τe}, we have

(
1− K

τ

)
exp

(−2K
δ(τ −K)

)
≤ fL(x)

fLe(x)
≤
(
1 +

K

τ

)
exp

(
2K

δ(τ −K)

)
.

This implies that for all S ⊆ [0, 2max{τ, τe}],
(
1− K

τ

)
exp

(−2K
δ(τ −K)

)
− 1 ≤ Pr[L ∈ S]− Pr[Le ∈ S] ≤

(
1 +

K

τ

)
exp

(
2K

δ(τ −K)

)
− 1.

By Proposition 6.7, the probability that L (and Le as well) falls in the range [−∞, 0]∪[2max{τ, τe},∞]
is bounded by exp(−1/δ). Hence, total variation distance between L and Le is

(
1 +

K

τ

)
exp

(
2K

δ(τ −K)

)
−
(
1− K

τ

)
exp

(−2K
δ(τ −K)

)
+ 2exp

(
−1

δ

)

=

(
1 +

K

τ

)(
1 +

2K

δ(τ −K)
+O

(
K2

δ2(τ −K)2

))

−
(
1− K

τ

)(
1− 2K

δ(τ −K)
−O

(
K2

δ2(τ −K)2

))
+ 2exp

(
−1

δ

)

=
2K

τ
+

4K

δ(τ −K)
+O

(
K2

δ2(τ −K)2

)
+ 2exp

(
−1

δ

)

≤ 6K

δ(τ −K)
+ 2 exp

(
−1

δ

)
+O

(
K2

δ2(τ −K)2

)
.

= O

(
K

δ(τ −K)
+ exp

(
−1

δ

))
.

Therefore, the average sensitivity of A is bounded as

β(G) = E
e∼E

dEM
(
A(G),A(G − e)

)

≤ O

(
K

δ(τ −K)
+ exp

(
−1

δ

))
· OPT+ E

L

[
(2x− 2)2q(x)

]
.

We now bound the approximation guarantee of A. By Proposition 6.7,

Pr

[
L <

(
1− δ ln

(
OPT

2

))
· τ(G)

]
≤ 1

OPT
.

Therefore, with probability at least 1 − 1/OPT, only those vertices with degree at least (1 −
δ ln(OPT/2)) ·τ(G) are removed from G. The number of such vertices is at most m

(1−δ ln(OPT/2))·τ(G) .

Therefore, with probability at least 1 − 1/OPT, the size of a maximum matching in the resulting
graph is at most m

(1−δ ln(OPT/2))·τ(G) smaller than that of G. With probability at most 1/OPT, the
size of a maximum matching in the resulting instance could be smaller by an additive term of at
most OPT. Hence, the expected size of a maximum matching in the new instance is at least

OPT− m

(1− δ ln(OPT(G)/2)) · τ(G)
− 1.

The statement on approximation guarantee follows.

27

6.3.3 Average sensitivity of the greedy augmenting paths algorithm with thresholding

Theorem 6.10. Let ε ∈ (0, 1) be a parameter. There exists an algorithm with approximation ratio
1− ε and average sensitivity

O

(
ε

1− ε
log n

)
+
(m

ε3OPT

)O(1/ε2)
.

Proof. The algorithm guaranteed by the theorem statement is as follows.

Algorithm Aε: On input G = (V,E),

1. Compute OPT.

2. If OPT ≤ 2
ε + 1 or m ≤ 1

3ε , then output an arbitrary maximum matching.

3. Otherwise, run the algorithm obtained by applying Theorem 6.6 with the setting τ := τ(G) =
m

ε′OPT
and δ := 1

2 lnn to Algorithm 5 run with parameter ε′, where ε′ = ε
3 − 1

3OPT
.

Approximation guarantee: If OPT ≤ 1
ε + 1 or m ≤ 1

2ε , the approximation guarantee is clear.
Otherwise, since Algorithm 5 outputs a maximal matching whose size is always at least (1−ε′)·OPT,
the size of the matching output by Aε is at least (1 − ε′) · OPT− ε′·(1−ε′)·OPT

1−
ln(OPT/2)

2 lnn

− (1 − ε′), which is

at least (1− ε) ·OPT by the setting of ε′ and the fact that ln(OPT/2)
2 lnn ≤ 1

2 .

Average sensitivity : If OPT ≤ 2
ε + 1 or m ≤ 1

3ε , the average sensitivity of Aε is bounded by O(1ε),
since the size of maximum matching in G is small and it can decrease only by at most 1 by the
removal of an edge.

We now analyze the average sensitivity of Aε for the case that OPT > 2
ε + 1 and m > 1

3ε .
Let c = O(1/ε2). The average sensitivity of the algorithm resulting from applying Theorem 6.6 to
Algorithm 5 is bounded as:

O

(
KG

δ(τ −KG)
+ exp

(
−1

δ

))
·OPT+

∫ ∞

0
(2x− 2)2 · xc · 1

2δτ
· exp

(
−|x− τ |

δτ

)
dx. (10)

To obtain the above expression, we used the fact (from [46, Theorem 3.7]) that q(x) ≤ xc when
x > 0 and q(x) = 0 otherwise.

The second term of (10) can be bounded as:

∫ ∞

0
(2x− 2)2xc

1

2δτ
exp

(
−|x− τ |

δτ

)
dx = 4

∫ ∞

τ
xc+2 1

δτ
exp

(
−x− τ

δτ

)
dx

= exp

(
1

δ

)
(δτ)c+2Γ

(
c+ 3,

1

δ

)
= (δτ)c+2(c+ 2)!

c+2∑

k=0

(1/δ)k

k!
=
(m

ε3OPT

)O(1/ε2)

where Γ(·, ·) is the incomplete Gamma function and we have used the fact that Γ(s + 1, x) =
s! exp(−x)∑s

k=0 x
k/k! if s is a non-negative integer. Moreover, each term in the summation δc+2 ·

(c+ 2)!
∑c+2

k=0
(1/δ)k

k! is o(1). Hence, the summation is O(1
ε2).

In order to bound the first term of (10), note that

KG = max
e∈E
|τ(G)− τ(G− e)|

28

= 3max
e∈E

∣∣∣∣
m

εOPT(G)− 1
− m− 1

εOPT(G− e)− 1

∣∣∣∣

≤ 3max

{
m

εOPT(G)− 1
− m− 1

εOPT(G)− 1
,

m− 1

ε(OPT(G) − 1)− 1
− m

εOPT(G) − 1

}

= 3max

{
1

εOPT(G)− 1
,

ε(m− OPT(G)) + 1

(ε(OPT(G)− 1)− 1) · (εOPT(G)− 1)

}

=
3

εOPT(G)− 1
max

{
1,

ε(m−OPT(G)) + 1

ε(OPT(G)− 1)− 1

}
.

The inequality above uses the fact that for numbers u, v, w ≥ 0 such that u ≤ v and w(v−1)−1 ≥ 0,
we have that u

wv−1 ≤ u−1
w(v−1)−1 .

Since ε(m−OPT)+1
ε(OPT−1)−1 is a nonincreasing function of OPT and OPT > 2

ε + 1, we have that

ε(m− OPT) + 1

ε(OPT− 1)− 1
< εm.

Hence, KG < 3
εOPT−1 max {1, εm} = 9εm

εOPT−1 , since m > 1
3ε and therefore, we have that τ −KG ≥

τ(1− 9ε). Hence, the first term of (10) can be upper bounded by

O

(
KG

δτ(1 − 9ε)
+ exp

(
−1

δ

))
·OPT = O

(
9εm

εOPT− 1
· 1

1− 9ε
· 2 lnn

m
εOPT−1

+
OPT

n2

)

= O

(
ε

1− ε
· log n

)
.

Hence, the average sensitivity of the algorithm obtained can be bounded by:

β(G) = max

{
O

(
1

ε

)
, O

(
ε

1− ε
· log n

)
+
(m

ε3OPT

)O(1/ε2)
}

= O

(
ε

1− ε
log n

)
+
(m

ε3OPT

)O(1/ε2)
.

6.3.4 Average sensitivity of a combined matching algorithm

In this section, we combine the algorithms guaranteed by Theorems 6.1 and 6.10 in order to get a
matching algorithm with improved sensitivity.

Theorem 6.11. Let ε ∈ (0, 1) be a parameter. There exists an algorithm with approximation ratio
1− ε and average sensitivity

OPT(G)
c

c+1 · O
((

ε

1− ε
· log n

) 1
c+1

+
1

ε
3c
c+1

)

for c = O(1/ε2).

29

Algorithm 6: Combined Algorithm to (1− ε)-Approximate Maximum Matching

Input: undirected unweighted graph G = (V,E)
1 Compute OPT.;
2 if OPT < 2c or m < 2c then

3 return an arbitrary maximum matching in G.

4 else

5 Let f(G)← OPT
2

m and g(G)← ε
(1−ε) · log n+

(
m

ε3OPT

)c
;

6 Run the algorithm given by Theorem 6.1 with probability g(G)
f(G)+g(G) and run the

algorithm given by Theorem 6.10 with the remaining probability.

Proof. Let c = O(1/ε2). The algorithm guaranteed by the theorem is given as Algorithm 6.
The bounds on approximation guarantee and average sensitivity are both straightforward when
OPT < 2c or m < 2c.

The approximation guarantee in the case when OPT ≥ 2c and m ≥ 2c is also straightfor-
ward since Algorithm 6 is simply a distribution over algorithms guaranteed by Theorem 6.1 and
Theorem 6.10.

We now bound the average sensitivity of Algorithm 6 when OPT ≥ 2c and m ≥ 2c. Let ρ(G)

denote the probability g(G)
f(G)+g(G) . By Theorem 8.2, the average sensitivity is at most

O(f(G)) · g(G) +O(g(G)) · f(G)

f(G) + g(G)
+ 2OPT · E

e∼E
[|ρ(G)− ρ(G− e)|] . (11)

We first bound the quantity Ee∼E [|ρ(G) − ρ(G− e)|].
Claim 6.12. For every graph G = (V,E) such that OPT ≥ c+ 1, and for every e ∈ E,

(
1− c

m

)
· g(G) ≤ g(G − e) ≤

(
1 +

c

OPT− c

)
· g(G).

Proof. We first prove the upper bound. We know that

g(G− e)

g(G)
≤

1 +

(
m−1

ε3(OPT−1)

)c
−
(

m
ε3OPT

)c

ε logn
(1−ε) +

mc

ε3cOPT
c

 ≤

1 +

(
m−1

ε3(OPT−1)

)c
−
(

m
ε3OPT

)c

mc

ε3cOPT
c

=

(
1− 1

m

)c

·
(
1 +

1

OPT− 1

)c

≤
(
1 +

c

OPT− c

)
.

Note that the last inequality holds whenever OPT > c, because (1 + x)r ≤ 1 + rx
1−(r−1)x for

x ∈ [0, 1
r−1) and r > 1.

For the lower bound,

g(G − e)

g(G)
≥
(
1−

(
m

ε3OPT

)c −
(

m−1
ε3OPT

)c
ε logn
(1−ε) +

mc

ε3cOPT
c

)
≥
(
1−

(
m

ε3OPT

)c −
(

m−1
ε3OPT

)c
mc

ε3cOPT
c

)

=

(
1− 1

m

)c

≥ 1− c

m
.

30

Claim 6.13. For every graph G = (V,E) and every e ∈ E,

f(G) ·
(
1− 2

OPT

)
≤ f(G− e) ≤ f(G) ·

(
1 +

1

m− 1

)
.

Proof. To prove the upper bound,

f(G− e)

f(G)
≤
(

m

m− 1

)
=

(
1 +

1

m− 1

)
.

For the lower bound,

f(G− e)

f(G)
≥
(
OPT− 1

OPT

)2

·
(

m

m− 1

)2

≥
(
OPT− 1

OPT

)2

≥ 1− 2

OPT
.

Claim 6.14. For every graph G = (V,E) such that OPT ≥ 2c and m ≥ 2c, and for every e ∈ E,

ρ(G) ·
(
1− 2c

OPT− c

)
≤ ρ(G − e) ≤ ρ(G) ·

(
1 +

5c

OPT− c

)
.

Proof. Note that
(
1− 2

OPT

)−1 ≤ 1 + 4
OPT

and
(
1− c

m

)−1 ≤ 1 + 2c
m for OPT ≥ 4 and m ≥ 2c. We

also have
(
1 + c

OPT−c

)−1
≥ 1− c

OPT−c and
(
1 + 1

m−1

)−1
≥ 1− 1

m−1 for OPT ≥ 2c and m ≥ 2.

Combining all of the above,

ρ(G− e) =
g(G − e)

f(G− e) + g(G − e)

≤
g(G) ·

(
1 + c

OPT−c

)

(f(G) + g(G)) ·min
{
1− c

m , 1− 2
OPT

}

≤ ρ(G) ·
(
1 +

c

OPT− c

)
·max

{
1 +

2c

m
, 1 +

4

OPT

}

≤ ρ(G) ·
(
1 +

5c

OPT− c

)
.

Using similar calculations, we can see that

ρ(G− e) ≥ ρ(G) ·
(
1− c

m

)
·min

{
1− c

OPT− c
, 1− 1

m− 1

}
≥ ρ(G) ·

(
1− 2c

OPT− c

)
.

Thus, for all e ∈ E, we have that |ρ(G)− ρ(G− e)| ≤ max
{

2c
OPT−c ,

5c
OPT−c

}
·ρ(G) = 5cρ(G)

OPT−c . Hence,

Ee∼E[|ρ(G) − ρ(G− e)|] ≤ 5cρ(G)
OPT−c .

Therefore, the average sensitivity of Algorithm 6 is at most

O(f(G)) · g(G) +O(g(G)) · f(G)

f(G) + g(G)
+ 2OPT · E

e∼E
[|ρ(G) − ρ(G− e)|]

= O

 f(G)c/(c+1)g(G)1/(c+1)

g(G)1/(c+1)

f(G)1/(c+1) +
f(G)c/(c+1)

g(G)c/(c+1)

+O

(
OPTcρ(G)

OPT

)

31

= O
(
f(G)c/(c+1)g(G)1/(c+1)

)
+O(1/ε2)

= O

((
OPT2

m

)c/(c+1)

·
(
(

ε

1− ε
log n)1/(c+1) +

(
mc

ε3cOPTc

)1/(c+1)
))

+O(1/ε2)

= O

((
OPT2c/(c+1)

mc/(c+1)

(
ε

1− ε

)1/(c+1)

log1/(c+1) n+
OPT2c/(c+1)

mc/(c+1)

mc/(c+1)

ε3c/(c+1)OPTc/(c+1)

))
+O(1/ε2)

= O

(
OPTc/(c+1)

(
ε

1− ε

)1/(c+1)

log1/(c+1) n+
OPTc/(c+1)

ε3c/(c+1)

)
+O(1/ε2)

= O

(
OPTc/(c+1)

((
ε

1− ε

)1/(c+1)

log1/(c+1) n+
1

ε3c/(c+1)

))
.

To obtain the first term of the expression resulting from the first equality, we divide both the

numerator and denominator by f(G)
1

c+1 · g(G)
c

c+1 . The second term of the first equality above
follows since OPT

OPT−c ≤ 2 as OPT ≥ 2c.

6.4 Lower bound

In this section, we show a lower bound of Ω(n) for the problem of exactly computing the maximum
matching in a graph.

Theorem 6.15. Every algorithm that exactly computes the maximum matching in a graph has
average sensitivity Ω(n).

Proof. Let n ∈ N be even. Consider the cycle Cn on n vertices. Cn has exactly two maximum
matchings M1 and M2 of size n/2 each. Both M1 and M2 consist of alternating edges of the cycle.
Let A be an algorithm that outputs M1 with probability p and M2 with probability 1−p. Assume,
without loss of generality, that p ≥ 1

2 . For every edge e ∈ M1, the unique maximum matching in
the odd-length path G− e has Hamming distance n− 1 from M1. Thus, for each e ∈M1, the earth
mover’s distance between A(G) and A(G − e) is at least n−1

2 . Hence, the average sensitivity of A
is at least 1

n

∑
e∈M1

n−1
2 = Ω(n).

7 2-Coloring

In the 2-coloring problem, given a bipartite graph G = (V,E), we are to output a (proper) 2-coloring
on G, that is, an assignment f : V → {0, 1} such that f(u) 6= f(v) for every edge (u, v) ∈ E. Clearly
this problem can be solved in linear time. In this section, however, we show that there is no stable-
on-average algorithm for the 2-coloring problem.

Theorem 7.1. Any (randomized) algorithm for the 2-coloring problem has average sensitivity Ω(n).

Proof. Suppose that there is a (randomized) algorithm A whose average sensitivity is at most βn
for β < 1/256. In what follows, we assume that n, that is, the number of vertices in the input
graph, is a multiple of 16.

Let Pn be the family of all possible paths on n vertices, and let Qn be the family of all possible
graphs on n vertices consisting of two paths. Note that |Pn| = n!/2 and |Qn| = (n − 1)n!/4.

32

Consider a bipartite graph H = (Pn,Qn;E), where a pair (P,Q) is in E if and only if Q can be
obtained by removing an edge in P . Note that each P ∈ Pn has n − 1 neighbors in H and each
Q ∈ Qn has four neighbors in H.

We say that an edge (P,Q) ∈ E is intimate if dEM
(
A(P),A(Q)

)
≤ 8βn. We observe that for

every P ∈ Pn, at least a 7/8-fraction of the edges incident to P are intimate; otherwise

E
e∼E(P)

[
dEM

(
A(P),A(P − e)

)]
>

1

8
· 8βn = βn,

which is a contradiction, where E(P) denotes the set of edges in P .
We say that a graph Q ∈ Qn is heavy if both components of Q have at least n/16 vertices, and

say that an edge (P,Q) ∈ E is heavy if Q is heavy. We observe that for every P ∈ Pn, at least a
7/8-fraction of the edges incident to P are heavy.

We say that an edge (P,Q) ∈ E is good if it is intimate and heavy. Observe that for every
P ∈ Pn, by the union bound, at least a 3/4-fraction of the edges incident to P are good. In
particular, this means that the fraction of good edges in H is at least 3/4. Hence, there exists
Q∗ ∈ Qn that has at least three good incident edges; otherwise the fraction of good edges in H is
at most 2/4 = 1/2, which is a contradiction.

Let f1, . . . , f4 be the four 2-colorings of Q
∗. As Q∗ has three good incident edges, without loss of

generality, there are adjacent paths P1, P2 ∈ Pn such that both (P1, Q
∗) and (P2, Q

∗) are good, and
there is no assignment that is a 2-coloring for both P1 and P2. Without loss of generality, we assume
that f1, f2 are 2-colorings of P1, and f3, f4 are 2-colorings of P2. Note that dHam(fi, fj) ≥ n/16 for
i 6= j because Q is heavy. Let qi = Pr[A(Q∗) = fi] for i ∈ [4]. As the edge (P1, Q

∗) is intimate, we
have

8βn ≥ dEM
(
A(P1),A(Q∗)

)
≥ n

16

(∣∣Pr[A(P1) = f1]− q1
∣∣+
∣∣Pr[A(P1) = f2]− q2

∣∣+ q3 + q4
)

=
n

16

(∣∣Pr[A(P1) = f1]− q1
∣∣+
∣∣Pr[A(P1) = f2]− q2

∣∣+ 1− q1 − q2
)

and hence we must have q1 + q2 ≥ 1 − 128β. Considering dEM
(
A(P2),A(Q∗)

)
, we also have

q3 + q4 ≥ 1− 128β. However,

1 = q1 + q2 + q3 + q4 ≥ (1− 128β) + (1− 128β) = 2− 256β > 1

as β < 1/256, which is a contradiction.

8 General Results on Average Sensitivity

In this section, we state and prove some basic properties of average sensitivity and show that locality
guarantees of solutions output by an algorithm imply low average sensitivity for that algorithm.

8.1 Bounds on k-average sensitivity from bounds on average sensitivity

In this section, we prove Theorem 1.5, which says that, if an algorithm is stable-on-average against
deleting a single edge, it is also stable-on-average against deleting multiple edges. We restate the
theorem here.

33

Theorem 1.5. Let A be an algorithm for a graph problem with average sensitivity at most f(n,m).
Then, for any integer k ≥ 1, the algorithm A has k-average sensitivity at most

∑k
i=1 f(n,m−i+1).

Proof. We have

E
{e1,...,ek}∼(Ek)

[
dEM

(
A(G),A(G − {e1, . . . , ek})

)]

≤ E
{e1,...,ek}∼(Ek)

[
k∑

i=1

dEM
(
A(G− {e1, . . . , ei−1}),A(G − {e1, . . . , ei})

)
]

= E
e1∼E

[
dEM

(
A(G),A(G − {e1})

)
+ E

e2∼E\{e1}

[
dEM

(
A(G− {e1}),A(G− {e1, e2})

)
+ · · ·

+ E
ek∼E\{e1,...,ek−1}

[
dEM

(
A(G− {e1, . . . , ek−1}),A(G − {e1, . . . , ek})

)
. . .
]]]

≤f(n,m) + E
e1∼E

[
β(G− {e1}) + E

e2∼E\{e1}

[
β(G− {e1, e2}) + · · ·

+ E
ek−1∼E\{e1,...ek−2}

[
β(G− {e1, . . . , ek−1}) . . .

]]]

≤
k∑

i=1

f(n,m− i+ 1).

Here, the first inequality is due to the triangle inequality.

8.2 Sequential composition

In this section, we state and prove our two sequential composition theorems Theorem 1.6 and
Theorem 1.7.

Theorem 1.6 (Sequential composition). Consider two randomized algorithms A1 : G → S1,A2 :
G ×S1 → S2. Suppose that the average sensitivity of A1 with respect to the total variation distance

is γ1(G) and the average sensitivity of A2(·, S1) is β
(S1)
2 (G) for any S1 ∈ S1. Let A : G → S2 be a

randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then, the

average sensitivity of A is H · γ1(G) + ES1∼A1(G)

[
β
(S1)
2 (G)

]
, where H denotes the maximum over

Hamming weights of all the solutions output (with nonzero probability) by running A on G and all
of the graphs in {G− e : e ∈ E}.

Proof. Consider G = (V,E) and let e ∈ E. We bound the earth mover’s distance between A(G)
and A(G− e) as follows. For a distribution D, we use fD to denote its probability mass function.
We know that for all S1 ∈ S1 and S2 ∈ S2

f(A1(G),A2(G,S1))(S1, S2) = fA1(G)(S1) · fA2(G,S1)(S2),

where (A1(G),A2(G,S1)) denotes the joint distribution of A1(G) and A2(G,S1). Fix S1 ∈ S1.
For each S2 ∈ S2, we transform probabilities of the form f(A1(G),A2(G,S1))(S1, S2) to fA1(G)(S1) ·
fA2(G−e,S1)(S2). This incurs a total cost of fA1(G)(S1) · dEM(A2(G,S1),A2(G − e, S1)). We can
now, for each S1 ∈ S1 and S2 ∈ S2, transform the probability fA1(G)(S1) · fA2(G−e,S1)(S2) into
fA1(G−e)(S1) · fA2(G−e,S1)(S2) at a cost of at most dTV(A1(G),A1(G− e)) ·H, where H denotes the

34

maximum Hamming weight among those of solutions obtained by running A on G and {G−e}e∈E .
Thus, the earth mover’s distance between A(G) and A(G− e) is at most

dTV(A1(G),A1(G− e)) · H+

∫

S1

fA1(G)(S1) · dEM
(
A2(G,S1),A2(G− e, S1)

)
dS1.

Hence, the average sensitivity of A can be bounded as:

E
e∼E

[dEM(A(G),A(G − e))] ≤ H · E
e∼E

[dTV(A1(G),A1(G− e))]

+ E
e∼E

[∫

S1∈S1

fA1(G)(S1) · dEM(A2(G,S1),A2(G− e, S1)) dS1

]

≤ Hγ1(G) + E
S1∼A1(G)

[dEM(A2(G,S1),A2(G− e, S1))]

= Hγ1(G) + E
S1∼A1(G)

[
E

e∼E
dEM(A2(G,S1),A2(G− e, S1))

]

= Hγ1(G) + E
S1∼A1(G)

[
β
(S1)
2 (G)

]
.

We are able to interchange the order of expectations because of Fubini’s theorem [12].

The following theorem states the composition of average sensitivity with respect to the total vari-
ation distance.

Theorem 1.7 (Sequential composition w.r.t. the TV distance). Consider ℓ randomized algorithms
Ai : G × ∏i−1

j=1 Sj → Si for i ∈ {1, . . . , ℓ}. Suppose that, for each i ∈ {1, . . . , ℓ}, the average
sensitivity of Ai(·, S1, . . . , Si−1) is γi(G) with respect to the total variation distance for every S1 ∈
S1, . . . , Si−1 ∈ Si−1. Consider a sequence of computations S1 = A1(G), S2 = A2(G,S1), . . . , Sℓ =
Aℓ(G,S1, . . . , Sℓ−1). Let A : G → Sℓ be a randomized algorithm that performs this sequence of
computations on input G and outputs Sℓ. Then, the average sensitivity of A with respect to the
total variation distance is at most

∑ℓ
i=1 γi(G).

Theorem 1.7 can be immediately obtained by iteratively applying Lemma 8.1.

Lemma 8.1. Consider two randomized algorithms A1 : G → S1,A2 : G × S1 → S2 for a graph
problem. Suppose that the average sensitivity of A1 is γ1(G) and the average sensitivity of A2(·, S1)
is γ2(G) for any S1 ∈ S1, both with respect to the total variation distance. Let A : G → S2 be a
randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then, the
average sensitivity of A is γ1(G) + γ2(G) with respect to the total variation distance.

Proof. For a distribution D, we use fD to denote its probability mass function. Consider a graph
G = (V,E). Note that

fA(G)(S2) =

∫

S1

fA2(G,S1)(S2)fA1(G)(S1) dS1.

Then we have that, for e ∈ E,

dTV

(
A(G),A(G − e)

)

35

=
1

2

∫

S2

∣∣∣∣
∫

S1

fA2(G,S1)(S2)fA1(G)(S1) dS1 −
∫

S1

fA2(G−e,S1)(S2)fA1(G−e)(S1) dS1

∣∣∣∣ dS2

=
1

2

∫

S2

∣∣∣∣
∫

S1

fA2(G,S1)(S2)
(
fA1(G)(S1)− fA1(G−e)(S1)

)
dS1−

∫

S1

(
fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

)
fA1(G−e)(S1) dS1

∣∣∣∣ dS2

≤ 1

2

∫

S1

∣∣∣∣fA1(G)(S1)− fA1(G−e)(S1)

∣∣∣∣ dS1 ·
∫

S2

fA2(G,S1)(S2) dS2+

∫

S1

fA1(G−e)(S1) dS1 ·
1

2

∫

S2

∣∣∣∣fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

∣∣∣∣ dS2

=
1

2

∫

S1

∣∣∣∣fA1(G)(S1)− fA1(G−e)(S1)

∣∣∣∣ dS1+

∫

S1

fA1(G−e)(S1) dS1 ·
1

2

∫

S2

∣∣∣∣fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

∣∣∣∣ dS2

= dTV

(
A1(G),A1(G− e)

)
+

∫

S1

fA1(G−e)(S1) · dTV

(
A2(G,S1),A2(G− e, S1)

)
dS1.

Hence, the average sensitivity of A with respect to the total variation distance can be bounded
as,

E
e∼E

[
dTV

(
A(G),A(G − e)

)]
≤ E

e∼E

[
dTV

(
A1(G),A1(G− e)

)]
+

E
e∼E

[∫

S1

fA1(G−e)(S1) · dTV

(
A2(G,S1),A2(G− e, S1)

)
dS1

]

≤ γ1(G) +

∫

S1

fA1(G−e)(S1) dS1 · γ2(G) = γ1(G) + γ2(G).

8.3 Parallel composition

In this section, we prove Theorem 1.8, which bounds the average sensitivity of an algorithm obtained
by running different algorithms according to a distribution in terms of the average sensitivities of
the component algorithms. We restate the theorem here.

Theorem 1.8 (Parallel composition). Let A1, . . . ,Aℓ be algorithms for a graph problem with av-
erage sensitivities β1(G), . . . , βℓ(G), respectively. Let A be an algorithm that, given a graph G,
runs Ai with probability ρi(G) for i ∈ {1, . . . , ℓ}, where

∑
i∈{1,...,ℓ} ρi(G) = 1. Let H denote the

maximum over Hamming weights of all solutions output (with nonzero probability) by running A
on G and on all the graphs in {G − e : e ∈ E}. Then the average sensitivity of A is at most
∑

i∈{1,...,ℓ} ρi(G) · βi(G) + H · Ee∼E

[∑
i∈{1,...,ℓ} |ρi(G) − ρi(G− e)|

]
.

Proof. Consider a graph G = (V,E). For a solution S, let pG(S) denote the probability that S is
output on input G by A. Let pGi (S) denote the probability that S is output on input G by Ai. For
every solution S, we know that pG(S) =

∑
i∈[ℓ] ρi(G) · pGi (S).

Let A(G) denote the output distribution of A on G. Fix e ∈ E. We first bound the earth
mover’s distance between A(G) and A(G− e). In order to transform A(G) into A(G− e), we first

36

transform pG(S), for each solution S, into
∑

i∈[ℓ] ρi(G) · pG−e
i (S). This can be done at a cost of at

most
∑

i∈[ℓ] ρi(G) · dEM(Ai(G),Ai(G− e)).

We now convert
∑

i∈[ℓ] ρi(G) · pG−e
i (S), for each solution S, into

∑
i∈[ℓ] ρi(G − e) · pG−e

i (S) at

a cost of at most 2H · 12
∑

i∈[ℓ] |ρi(G) − ρi(G − e)|, where 1
2

∑
i∈[ℓ] |ρi(G) − ρi(G − e)| is the total

variation distance between the probability distributions with which A selects the algorithms on
inputs G and G− e. Hence, the average sensitivity of A is at most

∑

i∈[ℓ]

ρi(G) · βi(G) + H · E
e∼E

∑

i∈[ℓ]

|ρi(G)− ρi(G− e)|

 .

We separately state the special case of Theorem 1.8 for ℓ = 2.

Theorem 8.2. Let A1 and A2 be two algorithms for a graph problem with average sensitivities
β1(G) and β2(G), respectively. Let A be an algorithm that, given a graph G, runs A1 with probability
ρ(G) and runs A2 with the remaining probability. Let H denote the maximum Hamming weight
among those of solutions obtained by running A on G and {G−e}e∈E. Then the average sensitivity
of A is at most ρ(G) · β1(G) + (1− ρ(G)) · β2(G) + 2H · Ee∼E [|ρ(G) − ρ(G− e)|].

8.4 Sublinearity implies low average sensitivity

In this section, we prove Theorem 1.10, which show that the existence of a sublinear-time solution
oracle (Definition 1.9) for an algorithm A implies that the average sensitivity of A is bounded by
the query complexity of that oracle.

Theorem 1.10 (Sublinearity implies low average sensitivity). Consider a randomized algorithm
A : G → S for a graph problem, where each solution output by A is a subset of the set of edges in the
input graph. Assume that there exists a solution oracle O for A such that O makes at most q(G)
queries to G in expectation, where this expectation is taken over the random coins of O and over
input edges e ∈ E. Then, A has average sensitivity at most q(G). Moreover, given the promise that
the input graphs satisfy |E| ≥ |V |, the statement applies also to algorithms for which each solution
is a subset of the set of vertices in the input graph.

Proof. We prove the theorem for the case that solutions output by A are subsets of edges of the
input graph. It can be easily modified to work for the case that the solutions output by A are
subsets of vertices of the input graph in which case, we will use the technical condition that n ≤ m.

Without loss of generality, assume that A uses r(n) random bits when run on graphs of n
vertices2. Consider a graph G = (V,E) that O gets access to. For e ∈ E and a string π ∈ {0, 1}r(n),
let Qe,π denote the set of edges in E queried by O on input e, while simulating the run of A with
π as the random string. The set Qe,π denotes the set of edges e′ such that the status of e in the
solutions output by A with randomness π on inputs G and G− e′ could be different. For each edge
e′ ∈ E and string π ∈ {0, 1}r(n), define Re′,π as the set of edges e ∈ E such that e′ ∈ Qe,π.

By definition, for each π ∈ {0, 1}r(n), we have
∑

e∈E |Re,π| =
∑

e∈E |Qe,π|. Hence we have:

∑

π∈{0,1}r(n)

∑

e∈E

|Re,π| =
∑

π∈{0,1}r(n)

∑

e∈E

|Qe,π|,

2If r(G) is the length of the random string used for G, we can simply set r(n) = max{r(G) : G = (V,E), |V | = n}.
If we do not need r(n) bits for some particular graph G on n vertices, we can just throw away the unused bits.

37

and

E
π∼{0,1}r(n)

E
e∼E
|Re,π| = E

π∼{0,1}r(n)
E

e∼E
|Qe,π| ≤ q(G),

where the last inequality follows from our assumption on O.
For π ∈ {0, 1}r(n) and e ∈ E, the set Re,π contains the set of edges whose presence in the

solution could be affected by the removal of e from G. Therefore, it is a superset of the set of edges
contained in the symmetric difference between the outputs of A on inputs G and G− e when run
with π as the random string.

Let HA,π(G,G′) denote the Hamming distance between the outputs of the algorithm A on
inputs G and G′ when run with π as the random string. As per this notation, for each e ∈ E,

E
π∈{0,1}r(n)

HA,π(G,G − e) ≤ E
π∈{0,1}r(n)

|Re,π|.

The following claim relates the quantity on the left hand side of the above inequality with the
average sensitivity of A.
Claim 8.3. The average sensitivity of A is bounded as

β(G) ≤ E
e∈E(G)

E
π∈{0,1}r(n)

HA,π(G,G − e).

Proof. Fix G ∈ G and e ∈ E(G). We first bound the earth mover’s distance between A(G) and
A(G − e), where A(G) and A(G − e) are the output distributions of A on inputs G and G − e,
respectively. For S ∈ S, let pG(S) and pG−e(S) denote the probabilities that A outputs S on G
and G − e, respectively. We start with A(G). Consider a string π ∈ {0, 1}r(n). Let S ∈ S denote
the output of A on input G when using the string π as its random string. Let S′ denote the output
that is generated when running A on input G− e with π as the random string. We move a mass of

1
2r(n) (corresponding to the string π) from pG(S) to pG(S

′) at a cost of dHam(S,S′)

2r(n) . Moving masses

corresponding to every string π ∈ {0, 1}r(n) this way, we can transform A(G) to A(G − e). The
total cost incurred during this transformation is Eπ∈{0,1}r(n) HA,π(G,G − e). Therefore the earth
mover’s distance between A(G) and A(G− e) is at most Eπ∈{0,1}r(n) HA,π(G,G− e). Therefore the
average sensitivity of A is β(G) ≤ Ee∈E(G) Eπ∈{0,1}r(n) HA,π(G,G − e).

Therefore, the average sensitivity of A is:

β(G) ≤ E
e∼E

E
π∈{0,1}r(n)

HA,π(G,G − e) ≤ E
e∼E

E
π∈{0,1}r(n)

|Re,π| ≤ q(G).

We now prove Corollary 1.12 which says that the existence of an LCA (Definition 1.11) for a
graph problem implies the existence of a stable-on-average algorithm for the same problem.

Corollary 1.12 (LCAs imply stable-on-average algorithms). Consider a graph problem P : G → S.
Let δ : N → [0, 1] and q, r : N → N. If P has a (q, r, δ)-LCA L, then, there exists an algorithm A
for P, that on input G = (V,E), has average sensitivity at most q(|V |) + |E| · δ(|V |).
Proof. Assume without loss of generality that each solution in S is a subset of edges of its preimage
with respect to P. Consider the algorithm A that, on input G = (V,E), constructs a solution to P
by running L on each edge e ∈ E and combining the outputs of L. It is clear that L is a solution
oracle (Definition 1.9) for the algorithm A. Hence, the average sensitivity of A is upper bounded
by the expected number of queries made by L, which is at most q(|V |) + |E| · δ(|V |).

38

Acknowledgments. We are grateful to anonymous reviewers for suggesting a major improve-
ment to the average sensitivity analysis of Algorithm 4. We thank Tasuku Soma and Samson
Zhou for several helpful discussions. We extend our gratitude to Sofya Raskhodnikova for helpful
comments that improved the presentation of this article.

References

[1] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms.
In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1132–1139, 2012.

[2] A. Bavelas. Communication patterns in task-oriented groups. The Journal of the Acoustical
Society of America, 22(6):725–730, 1950.

[3] M. A. Beauchamp. An improved index of centrality. Behavioral Science, 10(2):161–163, 1965.

[4] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning
Research, pages 499–526, 2002.

[5] K. Censor-Hillel, E. Haramaty, and Z. S. Karnin. Optimal dynamic distributed MIS. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC),
pages 217–226, 2016.

[6] A. Czumaj, Y. Mansour, and S. Vardi. Sublinear graph augmentation for fast query imple-
mentation. In Proceedings of the 16th International Workshop on Approximation and Online
Algorithms (WAOA), pages 181–203, 2018.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the 3rd Theory of Cryptography Conference (TCC), pages
265–284, 2006.

[8] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, pages 449–467,
1965.

[9] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.

[10] G. Even, M. Medina, and D. Ron. Best of two local models: Centralized local and distributed
local algorithms. Inf. Comput., 262(Part):69–89, 2018.

[11] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41,
1977.

[12] G. Fubini. Sugli integrali multipli. Accademia dei Lincei, Rendiconti, 16(1):608–614, 1907.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[14] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differentially private combina-
torial optimization. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1106–1125, 2010.

39

[15] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 22–31, 2009.

[16] A. Hassidim, Y. Mansour, and S. Vardi. Local computation mechanism design. ACM Trans.
Economics and Comput., 4(4):21:1–21:24, 2016.

[17] M. Hay, C. Li, G. Miklau, and D. D. Jensen. Accurate estimation of the degree distribution
of private networks. In Proceedings of the 9th IEEE International Conference on Data Mining
(ICDM), pages 169–178, 2009.

[18] D. R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 21–30, 1993.

[19] V. Karwa, S. Raskhodnikova, A. D. Smith, and G. Yaroslavtsev. Private analysis of graph
structure. ACM Transactions on Database Systems, 39(3):22:1–22:33, 2014.

[20] V. Karwa and A. B. Slavkovic. Differentially private graphical degree sequences and synthetic
graphs. In Proceedings of the International Conference on Privacy in Statistical Databases
(PSD), pages 273–285, 2012.

[21] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. D. Smith. Analyzing graphs
with node differential privacy. In Proceedings of the 10th Theory of Cryptography (TCC),
pages 457–476, 2013.

[22] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 137–146, 2003.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[24] C. Lenzen and R. Levi. A centralized local algorithm for the sparse spanning graph problem. In
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming,
(ICALP), pages 87:1–87:14, 2018.

[25] R. Levi and M. Medina. A (centralized) local guide. Bulletin of the EATCS, 122, 2017.

[26] R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. Algorithmica,
82(4):747–786, 2020.

[27] R. Levi, R. Rubinfeld, and A. Yodpinyanee. Local computation algorithms for graphs of
non-constant degrees. Algorithmica, 77(4):971–994, 2017.

[28] Y. Mansour, B. Patt-Shamir, and S. Vardi. Constant-time local computation algorithms.
Theory Comput. Syst., 62(2):249–267, 2018.

[29] Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting online algorithms to local
computation algorithms. In Proceedings of the 39th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 653–664, 2012.

40

[30] Y. Mansour and S. Vardi. A local computation approximation scheme to maximum matching.
In Proceedings of 16th International Workshop on Approximation Algorithms for Combinato-
rial Optimization (APPROX), pages 260–273, 2013.

[31] M. Marchiori and V. Latora. Harmony in the small-world. Physica A: Statistical Mechanics
and its Applications, 285(3-4):539–546, 2000.

[32] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103,
2007.

[33] W. Meulemans, B. Speckmann, K. Verbeek, and J. Wulms. A framework for algorithm stability
and its application to kinetic euclidean MSTs. In Proceedings of the 13th Latin American
Symposium on Theoretical Informatics (LATIN), pages 805–819, 2018.

[34] S. Murai and Y. Yoshida. Sensitivity analysis of centralities on unweighted networks. In
Proceedings of the 2019 World Wide Web Conference (WWW), pages 1332–1342, 2019.

[35] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical
Review E, 69(6):066133, 2004.

[36] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

[37] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 327–336, 2008.

[38] K. Nissim, S. Raskhodnikova, and A. D. Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), pages 75–84, 2007.

[39] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

[40] M. Parter, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee. Local computation algorithms
for spanners. In Proceedings of 10th Innovations in Theoretical Computer Science Conference
(ITCS), pages 58:1–58:21, 2019.

[41] S. Raskhodnikova and A. D. Smith. Lipschitz extensions for node-private graph statistics and
the generalized exponential mechanism. In Proceedings of the IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 495–504, 2016.

[42] O. Reingold and S. Vardi. New techniques and tighter bounds for local computation algorithms.
J. Comput. Syst. Sci., 82(7):1180–1200, 2016.

[43] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In Pro-
ceedings of the 1st Symposium on Innovations in Computer Science (ICS), pages 223–238,
2011.

[44] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.

41

[45] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning. From Theory to
Algorithms. Cambridge University Press, Cambridge, 2009.

[46] Y. Yoshida, M. Yamamoto, and H. Ito. Improved constant-time approximation algorithms
for maximum matchings and other optimization problems. SIAM Journal on Computing,
41(4):1074–1093, 2012.

A Average Sensitivity of Exponential Mechanism

In this section, we prove Lemma 2.1.

Proof of Lemma 2.1. Let t > 0 be a parameter. Note that any index i ∈ [n] with x(i) > OPT +
log n/η + t/η has probability at most e−t/n of being sampled by A. Hence, by a union bound, for
every t > 0

Pr
i∼A(x)

[
x(i) ≥ OPT+

log n

η
+

t

η

]
≤ e−t.

Next, we analyze the distance between the output distributions. Let x,x′ ∈ Rn be vectors, and
let Z =

∑
i∈[n] e

−ηx(i) and Z ′ =
∑

i∈[n] e
−ηx′(i). Without loss of generality, we assume that Z ≥ Z ′.

First, note that for all i ∈ [n] such that x(i) ≥ x′(i), we have

0 ≤ e−ηx′(i) − e−ηx(i) = e−ηx′(i)
(
1− e−η(x(i)−x

′(i))
)
≤ ηe−ηx′(i)(x(i)− x′(i)).

Hence for any i ∈ [n], we have

|e−ηx(i) − e−ηx′(i)| ≤ max
{
ηe−ηx(i)(x′(i) − x(i)), ηe−ηx′(i)(x(i) − x′(i))

}

≤ η|x(i) − x′(i)|max{e−ηx(i), e−ηx′(i)} ≤ η|x(i) − x′(i)|
(
e−ηx(i) + e−ηx′(i)

)
.

Then, we have

1

Z

∑

i∈[n]

|e−ηx(i) − e−ηx′(i)| ≤ η

Z

∑

i∈[n]

|x(i)− x′(i)|
(
e−ηx(i) + e−ηx′(i)

)

≤ η

Z
max
i∈[n]
|x(i)− x′(i)|

∑

i∈[n]

(
e−ηx(i) + e−ηx′(i)

)
=

η(Z + Z ′)

Z
max
i∈[n]
|x(i) − x′(i)|

≤ 2η‖x− x′‖1. (12)

Then, the total variation distance between A(x) and A(x′) is at most

∑

i∈[n]

∣∣∣∣
exp(−ηx(i))

Z
− exp(−ηx′(i))

Z ′

∣∣∣∣ =
∑

i∈[n]

∣∣∣∣
exp(−ηx(i))

Z
− exp(−ηx′(i))

Z

(
Z − Z ′ + Z ′

Z ′

)∣∣∣∣

=
∑

i∈[n]

∣∣∣∣
exp(−ηx(i))

Z
− exp(−ηx′(i))

Z
− exp(−ηx′(i))

Z

(
Z − Z ′

Z ′

)∣∣∣∣

≤ 1

Z

∑

i∈[n]

∣∣∣e−ηx(i) − e−ηx′(i)
∣∣∣+

Z − Z ′

Z

1

Z ′

∑

i∈[n]

exp(−ηx′(i))

≤ 2

Z

∑

i∈[n]

∣∣∣e−ηx(i) − e−ηx′(i)
∣∣∣ ≤ 4η‖x − x′‖1.

42

B Average Sensitivity of Prim’s algorithm

In this section, we show that Prim’s algorithm (with a simple tie-breaking rule, as described in
Algorithm 7) has high average sensitivity even on unweighted graphs. This is in contrast to the
low average sensitivity of Kruskal’s algorithm that we discussed in Section 3.

Algorithm 7: Prim’s Algorithm

Input: undirected graph G = ([n], E)
1 Let T ← {1};
2 while there exists a vertex not spanned by T do

3 Let E′ be the set of edges with the smallest weight among all the edges in E that have
exactly one endpoint in T ;

4 Add to T , an edge from E′ that has lexicographically smallest T -endpoint among all
edges in E′, breaking further ties arbitrarily.

5 return Output T .

n=2

n=2− 1

n− 1

n− 2

n=2 + 1

n

1

2

n=2− 3

n=2− 2

Figure 1: The graph family {Gn}n∈2N.

Lemma B.1. The average sensitivity of Prim’s algorithm is Ω(m).

Proof. Consider the graph family {Gn}n∈2N in Figure 1. For a large enough n ∈ 2N, consider
running Algorithm 7 on Gn. The tree T output will consist of the edges (i, i+1) for all i ∈ [n/2−2],
the edges (n/2 − 1, j) for all j ∈ {n/2 + 1, . . . n}, and the edge (n/2, 1).

If we remove an edge (i′, i′ +1) for i′ ∈ [n/2− 2] from Gn and run Algorithm 7 on the resulting
graph, the tree, say Ti′ , output will consist of all edges of the form (i, i+1) for i ∈ [n/2− 1] \ {i′},
all edges of the form (n/2, j) for all j ∈ {n/2 + 1, . . . n}, and the edges (n/2 + 1, n/2 − 1) and
(n/2, 1). The Hamming distance of Ti′ from T is equal to n/2.

Since a uniformly random edge removed from Gn is of the form (i, i + 1) for i ∈ [n/2− 2] with

probability n/2−2
3n/2−1 , the average sensitivity of Algorithm 7 is at least n

2 ·
n/2−2
3n/2−1 , which is at least

n
6 − 1 = Ω(m) for the family {Gn}n∈2N.

43

	1 Introduction
	1.1 Basic properties of average sensitivity
	1.2 Connection to sublinear-time algorithms
	1.3 Stable-on-average algorithms for concrete problems
	1.4 Discussions on average sensitivity
	1.5 Overview of our techniques
	1.6 Related work
	1.7 Organization

	2 Preliminaries
	2.1 Exponential Mechanism

	3 Warm Up: Minimum Spanning Forest
	4 Global Minimum Cut
	4.1 Upper bound
	4.2 Lower bound

	5 Minimum s-t Cut
	5.1 LP Relaxation and Average Sensitivity
	5.2 Stable-on-Average LP Solver
	5.3 Rounding Procedure
	5.4 Putting Things Together

	6 Maximum Matching
	6.1 Lexicographically smallest matching
	6.2 Greedy matching algorithm
	6.3 Matching algorithm based on augmenting paths
	6.3.1 Greedy matching algorithm based on augmenting paths
	6.3.2 Stable-on-average thresholding transformation
	6.3.3 Average sensitivity of the greedy augmenting paths algorithm with thresholding
	6.3.4 Average sensitivity of a combined matching algorithm

	6.4 Lower bound

	7 2-Coloring
	8 General Results on Average Sensitivity
	8.1 Bounds on k-average sensitivity from bounds on average sensitivity
	8.2 Sequential composition
	8.3 Parallel composition
	8.4 Sublinearity implies low average sensitivity

	A Average Sensitivity of Exponential Mechanism
	B Average Sensitivity of Prim's algorithm

