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MINNAERT RESONANCES FOR BUBBLES

IN SOFT ELASTIC MATERIALS

HONGJIE LI, HONGYU LIU, AND JUN ZOU

Abstract. Minnaert resonance is a widely known acoustic phenomenon and it has
many important applications, in particular in the effective realisation of acoustic meta-
materials using bubbly media in recent years. In this paper, motivated by the Minnaert
resonance in acoustics, we consider the low-frequency resonance for acoustic bubbles
embedded in soft elastic materials. This is a hybrid physical process that couples the
acoustic and elastic wave propagations. By delicately and subtly balancing the acoustic
and elastic parameters as well as the geometry of the bubble, we show that Minnaert
resonance can occur (at least approximately) for rather general constructions. Our
study poses a great potential for the effective realisation of negative elastic materials
by using bubbly elastic media.

Keywords: Minnaert resonance, bubbly elastic medium, hybrid Neumann-Poincaré
operator, spectral, negative elastic materials.
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1. Introduction

The oscillation of bubbles in media is a classical problem. In particular, when bub-
bles are immersed in liquids, even a very small volume fraction of bubbles can have a
significant influence on the effective velocity of waves in liquids [10, 19]. This is due to
the high oscillation of the bubbles caused by the high contrast in density between the
bubbles and the surrounding liquid [1,18]. In fact, at a particular low frequency known as
the Minnaert resonant frequency, the bubbles can be treated as acoustic resonators [25].
The exceptional acoustic properties mentioned above can have many important applica-
tions and in particular can be used to design new materials, such as phononic crystals.
In addition to many experimental progresses, the bubbly acoustic materials have been
systematically and comprehensively investigated recently in the mathematical literature.
Furthermore, based on the mathematical theory developed, novel applications were also
proposed, especially for the effective realisation of acoustic metamaterials. For the case
that a single bubble is immersed in liquids, the authors in [1] provided a rigorous treat-
ment of the Minnaert resonance and the monopole approximation. Later, they inves-
tigated the acoustic scattering by a large number of bubbles in liquids at frequencies
near the Minnaert resonant frequency in [2]. Thus by designing bubble metascreens, the
superabsorption effect can be achieved [3]. Around the Minnaert resonant frequency, an
effective medium theory was derived in [8]. Moreover, the opening of a sub-wavelength
phononic bandgap was demonstrated by considering a periodic arrangement of bubbles
and exploiting the corresponding Minnaert resonance in [4].

Nevertheless, as pointed out in [20, 29], the practical constructions of acoustic bublly
designs are very challenging. The major difficulty arises from making bubbles to have
a uniform size and letting them remain inside the liquids. In order to overcome those
challenges, substituting the host medium from liquids to soft elastic materials (the shear
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modulus is small) becomes a more practical scheme. In fact, the oscillation of a spherical
cavity in an elastic material was investigated many years ago [26]. When a spherical
bubble is immersed in a soft elastic material, it was shown in [11] that there also exists
a certain low-frequency resonance. Using such resonant properties, the bubbly elastic
structures have been used to the experimental design of new materials for strikingly new
applications. For examples, bubble phononic crystals were designed in [20], superab-
sorption of acoustic waves with bubble metascreens was achieved in [21] and reducing
underwater sound transmission was shown in [12] by microfabricating cavities into sili-
cone rubber (a soft elastic material).

Motivated by the aforementioned physical and mathematical studies, we consider in
this paper the low-frequency resonance for the case where a bubble is embedded in a
soft elastic medium. We aim to derive a systematic and comprehensive mathematical
understanding of the resonance phenomena caused by the acoustic and elastic interac-
tions. It turns out that the mathematical investigation on the resonance associated with
the elastic bubbly media is more challenging than that for the acoustic bubbly media.
Indeed, we note that, first, the wave scattering from an elastic bubbly medium is a hybrid
physical process which couples the acoustic wave propagation inside the bubble and the
elastic wave propagation outside the bubble. Second, since the shear modulus in the
elastic material is non-zero, thus the resonance heavily depends on the geometry of the
bubble [11]. This property is in a sharp contrast to the case of bubbles in liquids which
features weak shape dependence [1]. Therefore one can not expect an explicit expression
of the resonant frequencies (unless the geometry of the bubble is simple, say, a radial
one) as the case for bubbles in liquids that was derived in [1]. Third, the bubble-liquid
resonance only depends on the high contrast of the density between the bubble and the
liquid. However, for the bubble-elastic material resonance, in addition to the high con-
trast of the density, the high contrast of the shear modulus and the compression modulus
is required; see also [28] for a related discussion.

According to our discussion above, it is clear that the bubble-elastic resonance is of
a different physical nature to the bubble-liquid resonance. Nevertheless, in order to
reveal its origin of motivation as well as for the terminological convenience, we still
call it the Minnaert resonance in the present paper. In order to derive the resonance
results, following the spirit of the mathematical treatment in [1], we rely on the layer-
potential techniques, which boil down our study to the asymptotic and spectral analysis
of the layer-potential operators involved for the coupled PDE systems. By delicately
and subtly balancing the acoustic and elastic parameters as well as the geometry of the
bubble, we show that Minnaert resonance can (at least approximately) occur for a rather
general construction in the three-dimensional case. In the two-dimensional case, due to
the technical constraint, we can only deal with the case that the bubble is in the radial
geometry. Moreover, as also mentioned earlier, we only consider the case with a single
bubble embedded in a soft elastic material. We shall study the other case, e.g., the
scattering from multiple bubbles, in our forthcoming work. It is emphasized that similar
to the bubble-liquid case, our study poses a great potential for the effective realisation of
negative elastic materials by using bubbly elastic media, which we shall also investigate
in our near-future study.

The rest of the paper is organized as follows. In Section 2, we present the general
mathematical formulation of our study, especially the acoustic-elastic wave scattering
from an bubble-elastic structure and its integral reformulation. In Section 3, we discuss
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about the general requirements on the medium configuration and also derive some aux-
iliary results for the subsequent use. Sections 4 and 5 are respectively devoted to the
Minnaert resonances in three and two dimensions. Our study is concluded in Section 6
with some related remarks.

2. Mathematical setup

In this section, we present the general mathematical formulation of our study. Consider
an air bubbleD in our study, andD is assumed to be a bounded domain in R

N (N = 2, 3),
with a C2-regular boundary ∂D. Let ρb ∈ R+ and κ ∈ R+ signify the density and the
bulk modulus of the air inside the bubble, respectively. Assume that the background
R
N\D is occupied by a regular and isotropic elastic material parameterized by the Lamé

constants (λ̃, µ̃) satisfying the following strong convexity conditions

i) µ̃ > 0 and ii) Nλ̃+ 2µ̃ > 0. (2.1)

The density of the background material is set to be ρe ∈ R+. Let u
i be an incident elastic

wave, which is an entire solution to Lλ̃,µ̃u+ω2ρeu = 0 in R
N . Here, ω ∈ R+ denotes the

frequency of the elastic wave. The acoustic-elastic wave interaction is described by the
following coupled PDE system (cf. [27]):



































L
λ̃,µ̃

u(x) + ω2ρeu(x) = 0 x ∈ R
N\D,

△u(x) + k̃2u(x) = 0 x ∈ D,

u(x) · ν − 1
ρbω

2∇u(x) · ν = 0 x ∈ ∂D,

∂ν̃u(x) + u(x)ν = 0 x ∈ ∂D,

u(x)− ui(x) satisfies the radiation condition,

(2.2)

where u is the total elastic wave field outside the domain D, u is the pressure inside the
domain D, ω ∈ R+ is the angular frequency and k̃ = ω/cb with cb =

√

κ/ρb signifying the
velocity of the wave in D. In (2.2), the Lamé operator L

λ̃,µ̃
and the co-normal derivative

∂ν̃ , associated with the parameters (λ̃, µ̃), are respectively defined by

L
λ̃,µ̃

w := µ̃△w+ (λ̃+ µ̃)∇∇ ·w, (2.3)

and

∂ν̃w = λ̃(∇ ·w)ν + 2µ̃(∇sw)ν. (2.4)

Here ν represents the outward unit normal vector to ∂D and the operator ∇s is the
symmetric gradient

∇sw :=
1

2

(

∇w +∇wt
)

, (2.5)

with ∇w denoting the matrix (∂jwi)
N
i,j=1 and the superscript t signifying the matrix

transpose. In (2.2), the third condition denotes the continuity of the normal component
of the displacement on the boundary ∂D and the fourth condition is the continuity of
the stress across ∂D. Moreover, the radiation condition in (2.2) designates the following
condition as |x| → +∞ (cf. [22]),

(∇×∇× (u− ui))(x)× x

|x| − ik̃s∇× (u− ui)(x) =O(|x|−2),

x

|x| ·
(

∇(∇ · (u− ui))
)

(x)− ik̃p∇(u− ui)(x) =O(|x|−2),
(2.6)
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where i =
√
−1,

k̃s =
ω

c̃s
=

ω
√

µ̃/ρe
and k̃p =

ω

c̃p
=

ω
√

(λ̃+ 2µ̃)/ρe

, (2.7)

with λ̃ and µ̃ defined in (2.1).
Next we apply the potential theory to derive the integral representation of the solu-

tion to the system (2.2) and give the definition of the resonance. First, we introduce
the potential operators for the Helmholtz system and Lamé system. Let Gk(x) be the
fundamental solution of the operator △+ k2, namely

Gk(x) =















− i

4
H

(1)
0 (k|x|), N = 2,

− eik|x|

4π|x| , N = 3,

(2.8)

whereH
(1)
0 is the zeroth-order Hankel function of the first kind. The single layer potential

associated with the Helmholtz system is defined for ϕ(x) ∈ L2(∂D) by

Sk
∂D[ϕ](x) =

∫

∂D

Gk(x− y)ϕ(y)ds(y) x ∈ R
N . (2.9)

Then the conormal derivative of the single layer potential enjoys the jump formula

∇Sk
∂D[ϕ] · ν|±(x) =

(

±1

2
I +Kk,∗

∂D

)

[ϕ](x) x ∈ ∂D, (2.10)

where

Kk,∗
∂D[ϕ](x) = p.v.

∫

∂D

∇xG
k(x− y) · νxϕ(y)ds(y) x ∈ ∂D,

which is also known as the Neumann-Poincaré operator associated with Helmholtz sys-
tem. Here and also in what follows, p.v. stands for the Cauchy principal value. Moreover,

we introduce the following L2-adjoint of the operator Kk,∗
∂D:

Kk
∂D[ϕ](x) = p.v.

∫

∂D

∇yG
k(x− y) · νyϕ(y)ds(y) x ∈ ∂D.

In what follows, we denote Sk
∂D,K

k,∗
∂D and Kk

∂D by S∂D,0, K
∗
∂D,0 and K∂D,0 for k = 0.

We would like to point out that, the operators K∗
∂D,0 and K∂D,0 have the following

expressions in three dimensions:

K∗
∂D,0[ϕ](x) =

∫

∂D

〈x− y,νx〉
4π|x− y|3 ϕ(y)ds(y) x ∈ ∂D,

K∂D,0[ϕ](x) =

∫

∂D

〈y − x,νy〉
4π|x− y|3 ϕ(y)ds(y) x ∈ ∂D.

(2.11)

We refer to [9, 24] for the mapping properties of the operators introduced above.
Next we introduce the potential operators for the Lamé system. The fundamental

solution Γω = (Γω
i,j)

N
i,j=1 for the operator Lλ̃,µ̃ + ρeω

2 can be decomposed into shear and

pressure components (cf. [5]):
Γω = Γω

s + Γω
p , (2.12)

where

Γω
p = − 1

ρeω2
∇∇Gk̃p and Γω

s =
1

ρeω2
(k̃2sI+∇∇)Gk̃s ,
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with I denoting the N ×N identity matrix, Gk given in (2.8) and k̃s as well as k̃p defined
in (2.7). The single layer potential operator associated with the fundamental solution Γω

is defined by

Sω
∂D[ϕ](x) =

∫

∂D

Γω(x− y)ϕ(y)ds(y), x ∈ R
N , (2.13)

for ϕ ∈ L2(∂D)N . On the boundary ∂D, the conormal derivative of the single layer
potential satisfies the following jump formula

∂Sω
∂D[ϕ]

∂ν
|±(x) =

(

±1

2
I+ (Kω

∂D)
∗

)

[ϕ](x) x ∈ ∂D, (2.14)

where

K
ω,∗
∂D[ϕ](x) = p.v.

∫

∂D

∂Γω

∂ν(x)
(x− y)ϕ(y)ds(y), (2.15)

with the subscript ± indicating the limits from outside and inside D, respectively. The
operator K

ω,∗
∂D is called Neumann-Poincaré (N-P) operator of the Lamé system. In our

subsequent analysis, we also need the following single layer potential operators associated
with the p-wave (pressure wave) and s-wave (shear wave), respectively,

S
ω,i
∂D[ϕ](x) =

∫

∂D

Γω
i (x− y)ϕ(y)ds(y), x ∈ R

N\D, (2.16)

where ϕ(y) ∈ L2(∂D)N and the kernel functions Γω
i , i = p, s are defined in (2.12). We

refer to [5] for the mapping properties of the operators introduced above.
With the help of the potential operators introduced above, the solution to (2.2) can

be represented by the following integral ansatz:

u =

{

Sk̃
∂D[ϕb](x), x ∈ D,

Sω
∂D[ϕe](x) + ui, x ∈ R

N\D,
(2.17)

for some density functions ϕb ∈ L2(∂D) and ϕe ∈ L2(∂D)N . By matching the transmis-
sion conditions on the boundary ∂D, along with the help of the jump formulas (2.10) and
(2.14), it can be verified by some straightforward calculations that the density functions
ϕb,ϕe satisfy the following system of boundary integral equations:

Ã(ω, δ)[Φ](x) = F (x), x ∈ ∂D, (2.18)

where

Ã(ω, δ) =





1
ρbω

2

(

− I
2 +K k̃,∗

∂D

)

−ν · Sω
∂D

νSk̃
∂D

I
2 +K

ω,∗
∂D



 , Φ =

(

ϕb

ϕe

)

and F =

(

ν · ui

−∂νui

)

.

Then the Minnaert resonance of the system (2.2) is defined for all ω ∈ C such that the
following equation holds:

Ã(k, δ)[Φ](x) = 0, (2.19)

for a nontrivial solution Φ ∈ H. For notational convenience, we shall writeH := L2(∂D)×
L2(∂D)N . Moreover, in our subsequent study of the Minnaert resonance, we may weaken
the condition (2.19) by finding a solution Φ ∈ H with ‖Φ‖H = 1 such that for k ≪ 1,

‖Ã(ω, δ)[Φ](x)‖H ≪ 1. (2.20)

If the condition (2.20) is fulfilled, we say that the weak (Minnaert) resonance occurs for
the system (2.2). In contrast to the weak Minnaert resonance, when the condition (2.19)
is fulfilled, we say that the strong (Minnaert) resonance occurs.
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Finally, we give a remark on the definition of the Minnaert resonance introduced above.
In fact, the definition of the strong (Minnaert) resonance is similar to the one introduced
in [1] for the bubble-liquid resonance. For the weak resonance, let us assume that

Ã(ω, δ)[Φ](x) = Ψ̃.

According to (2.20), one has that

‖Ψ̃‖H ≪ 1.

Set Ψ = Ψ̃/‖Ψ̃‖H such that ‖Ψ‖H = 1. If F in (2.18) is properly chosen which has a
component being Ψ, one can easily conclude from (2.17) that the scattering wave will

blow up at the order 1/‖Ψ̃‖H.

3. General requirements on the medium configuration and auxiliary

results on the layer-potential operators

In this section, we first introduce some general requirements on the medium configu-
ration that are critical for the occurrence of the Minnaert resonances in our subsequent
constructions of the bubble-elastic structures in Sections 4 and 5. Then we derive some
auxiliary results for the subsequent use.

3.1. General requirements on the medium configuration. We will consider

δ = ρb/ρe = o(1), (3.1)

which states that the contrast of the densities of the bubble and the elastic material is
high. Moreover, we assume that the bulk modulus of the air κ and the compression
modulus λ̃ as well as the shear modulus µ̃ of the elastic material satisfy

κ/λ̃ = O(δ) and µ̃/λ̃ = o(1). (3.2)

Under these assumptions, we can easily derive

τ =
cb
c̃p

=

√

κ/ρb
√

(

λ̃+ 2µ̃
)

/ρe

= O(1), (3.3)

where cb and c̃p are defined in (2.2) and (2.7), respectively. Indeed, the assumptions in
(3.1) and (3.2) are reasonable and this is the case that air bubbles are embedded in the
polydimethylsiloxane, a soft elastic material (cf. [11]).

As a matter of fact, the low-frequency is mainly caused by the fact that the size of the
air bubble D is much smaller than the wavelength of the elastic wave. Since the elastic
wave can be decomposed into the compressional wave (p-wave) and the shear wave (s-
wave) [14], we are mainly concerned in this paper with the case that the wavelength of
the p-wave is much larger than the size of the bubble D and the wavelength of the s-wave
generically does not satisfy this requirement. That means that the Minnaert resonance
is mainly caused by the p-wave. Thus by the coordinate transformation, we may assume
that the size of the domain D is of order 1 and ω = o(1). Since cb is fixed, we further
have

k̃ = o(1) and k̃p = o(1),

where k̃ and k̃p are defined in (2.2) and (2.7), respectively.
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Let L be the typical length (average length) of the domain D. Then we introduce the
following non-dimensional parameters:

x′ = x/L, k = k̃L, u′ = u/L,

µ = µ̃/(λ̃+ 2µ̃), λ = λ̃/(λ̃+ 2µ̃), u′ = u/(ρbc
2
b).

(3.4)

Thus from the previous assumptions, one has that

k = o(1), δ = ρb/ρe = o(1), τ = O(1), µ = o(1) and λ = O(1). (3.5)

Substituting these parameters into equation (2.2) and dropping the primes, one can
obtain the following coupled PDE system for our subsequent study:



































Lλ,µu(x) + k2τ2u(x) = 0 x ∈ R
N\D,

△u(x) + k2u(x) = 0 x ∈ D,

u(x) · ν − 1
k2
∇u(x) · ν = 0 x ∈ ∂D,

∂νu(x) + δτ2u(x)ν = 0 x ∈ ∂D,

u(x)− ui(x) satisfies the radiation condition,

(3.6)

where τ is defined in (3.3). Here we would like to point out that in (3.6), the p-
wavenumber satisfies

kp =
kτ

cp
=

kτ√
λ+ 2µ

= o(1).

Following our earlier discussions in (2.17)–(2.19), the solution to the system (3.6) can
be given by

u =

{

Sk
∂D[ϕb](x), x ∈ D,

Skτ
∂D[ϕe](x) + ui, x ∈ R

N\D,
(3.7)

for some surface densities (ϕb,ϕe) ∈ H that satisfy:

A(k, δ)[Φ](x) = F (x), x ∈ ∂D, (3.8)

where

A(k, δ) =





1
k2

(

− I
2 +Kk,∗

∂D

)

−ν · Skτ
∂D

δτ2νSk
∂D

I
2 +K

kτ,∗
∂D



 , Φ =

(

ϕb

ϕe

)

and F =

(

ν · ui

−∂νui

)

.

Based on our earlier definitions of the strong and weak Minnaert resonances, we shall
establish the sufficient conditions for the occurrence of resonances associated with (3.7)–
(3.8), that is, it holds for the strong resonance of (3.6) that

A(k, δ)[Φ](x) = 0, (3.9)

while it holds for the weak resonance of (3.6) that

‖A(k, δ)[Φ](x)‖H ≪ 1 (3.10)

for a nontrivial Φ ∈ H with ‖Φ‖H = 1 and k ≪ 1,
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3.2. Some auxiliary results. We first introduce the following lemmas.

Lemma 3.1. If a vector field w ∈ H1(R3\D)3 satisfies the following three equations:

△w + k2w = 0, ∇×w = 0 and ∇ ·w = 0,

with k 6= 0, then w ≡ 0.

Proof. Direct calculations show that

∇×∇×w = ∇∇ ·w −△w = 0 + k2w = 0.

Thus one can obtain w ≡ 0 since k2 6= 0. �

Recall that the operator S
ω,s
∂D : L2(∂D)3 → H1(R3\D)3 is defined in (2.16). In what

follows, if ϕ ∈ L2(∂D)3 satisfies
∫

∂D

1

ρω2
(k2sI+∇∇)Gks(x− y)ϕ(y)ds(y) = 0, x ∈ R

3\D,

then we say that ϕ ∈ ker
(

S
ω,s
∂D

)

.

Lemma 3.2. For ϕ ∈ ker
(

S
ω,s
∂D

)

, one has that
∫

∂D

∇∇G0(x− y)ϕ(y)ds(y) = 0, x ∈ R
3\D,

where Gk(x− y) is defined in (2.8) with k = 0.

Proof. From the definition of the fundamental solution in (2.12), if ϕ ∈ ker
(

S
ω,s
∂D

)

, one
has that

∫

∂D

1

ρω2
(k2sI+∇∇)Gks(x− y)ϕ(y)ds(y) = 0, x ∈ R

3\D.

Thus one can further have that for x ∈ R
3\D,

−
∫

∂D

∇∇G0(x− y)ϕ(y)ds(y) =

∫

∂D

(

k2sG
ks +∇∇(Gks −G0)

)

(x− y)ϕ(y)ds(y).

(3.11)
From the expression

G0(x− y) = − 1

4π|x− y| ,

the integral possesses the following property
∫

∂D

∇∇G0(x− y)ϕ(y)ds(y) → 0 as |x| → ∞.

Therefore from the expansion of the fundamental solution Gks(x − y) and (3.11), one
can obtain that for x ∈ R

3\D

−
∫

∂D

∇∇G0(x−y)ϕ(y)ds(y) = − k2s
4π

∫

∂D

(

1

|x− y| +∇∇(|x− y|)
)

ϕ(y)ds(y). (3.12)

Taking the Laplace operator △ on both sides of the last equation gives that for x ∈ R
3\D

0 = − k2s
4π

∫

∂D

∇∇
(

1

|x− y|

)

ϕ(y)ds(y).

The proof is completed by noting that the function on the right side of the equation
(3.12) is continuous from R

3\D to R
3\D.

�
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Lemma 3.3. If ϕ ∈ ker
(

S
ω,s
∂D

)

does not depend on ks, then one has that

S
ω,p
∂D[ϕ](x) =

1

λ+ 2µ

∫

∂D

Gkp(x− y)ϕ(y)ds(y), x ∈ R
3\D,

where the operators S
ω,i
∂D (i = p, s) are defined in (2.16).

Proof. From the definition of the fundamental solution in (2.12), if ϕ ∈ ker
(

S
ω,s
∂D

)

, one
has that

∫

∂D

1

ρω2
(k2sI+∇∇)Gks(x− y)ϕ(y)ds(y) = 0, x ∈ R

3\D.

Replacing ks with kp in the last equation yields that for x ∈ R
3\D,

∫

∂D

−1

ρω2
(∇∇)Gkp(x− y)ϕ(y)ds(y) =

1

λ+ 2µ

∫

∂D

Gkp(x− y)ϕ(y)ds(y).

The proof is readily completed by noting that the operator S
kp
∂D is continuous from R

3\D
to R

3\D.
�

Remark 3.1. We can derive that ker
(

S
ω,s
∂D

)

6= ∅ and ν ∈ ker
(

S
ω,s
∂D

)

. Indeed, we set

w(x) =

∫

∂D

1

ρω2
(k2sI+∇∇)Gks(x− y)νyds(y), x ∈ R

3\D. (3.13)

It is directly verified that the function w defined in (3.13) satisfies the following two
equations in R

3\D:

△w + k2sw = 0 and ∇ ·w = 0.

With the help the identities

∇×∇ = 0 and ∇xG
ks(x− y) = −∇yG

ks(x− y),

one furthermore has for x ∈ R
3\D that

∇×w =

∫

∂D

1

ρω2
∇x × (k2sI+∇∇)Gks(x− y)νyds(y)

=
1

ρω2

∫

∂D

(k2s∇x × I+∇x ×∇∇)Gks(x− y)νyds(y)

=
−k2s
ρω2

∫

∂D

∇yG
ks(x− y)× νyds(y)

=
k2s
ρω2

∫

D

∇y ×∇yG
ks(x− y)dy = 0.

Finally, Lemma 3.1 shows that w defined in (3.13) vanishes in R
3\D and one can conclude

that ν ∈ ker
(

S
ω,s
∂D

)

and ν does not depend on ks.

Lemma 3.4. For the operators Sk
∂D : L2(∂D) → H1(∂D) and Kk,∗

∂D : L2(∂D) → L2(∂D)
defined in (2.9) and (2.10), respectively, we have the following asymptotic expansions in
three dimensions (cf. [1]):

Sk
∂D =

+∞
∑

j=0

kjS∂D,j, Kk,∗
∂D =

+∞
∑

j=0

kjK∗
∂D,j (3.14)
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where

S∂D,j[ϕ](x) = − i

4π

∫

∂D

(i|x− y|)j−1

j!
ϕ(y)ds(y),

and

K∗
∂D,j [ϕ](x) = − ij(j − 1)

4πj!

∫

∂D

|x− y|j−3(x− y) · νxϕ(y)ds(y).

Moreover, S∂D,j and K∗
∂D,jare uniformly bounded with respect to j, and the two series in

(3.14) are convergent in L(L2(∂D),H1(∂D)) and L(L2(∂D)), respectively.

As discussed earlier, only the wavelength of the p-wave is required to be asymptotically
larger than the size of the domain D and the wavelength of the s-wave is not required
to satisfy such a requirement, thus the low-frequency resonance is mainly caused by the
p-wave and the s-wave generically makes no contribution. Therefore, in the following
analysis for the low-frequency resonance, we choose to mainly consider the density func-
tion ϕ ∈ ker

(

S
ω,s
∂D

)

, which can be proved not depending on ks later. From Lemma 3.3,

we can focus ourselves on the operator Sω,p
∂D with the kernel δijG

kp/(λ+2µ) and the oper-

ator Kω,p,∗
∂D : L2(∂D)3 → L2(∂D)3 defined in (2.15) with the kernel function Γω replaced

by δijG
kp/(λ + 2µ). By straightforward calculations, we have the following asymptotic

expansions for the operators Sω,p
∂D and K

ω,p,∗
∂D for the density function ϕ ∈ ker

(

S
ω,s
∂D

)

that
does not depend on ks.

Lemma 3.5. For the density function ϕ ∈ ker
(

S
ω,s
∂D

)

does not depend on ks, the operators

S
ω,p
∂D from L2(∂D)3 to H1(∂D)3 and K

ω,p,∗
∂D from L2(∂D)3 to L2(∂D)3 enjoy the following

asymptotic expansions in three dimensions:

S
ω,p
∂D =

+∞
∑

j=0

kjpS
p
∂D,j, K

ω,p,∗
∂D =

+∞
∑

j=0

kjpK
p,∗
∂D,j, (3.15)

where

S
p
∂D,j[ϕ](x) = − i

4π

∫

∂D

(i|x − y|)j−1

j!
ϕ(y)ds(y),

and

K
p,∗
∂D,j[ϕ](x) =

λ

λ+ 2µ
R1,j [ϕ](x) +

µ

λ+ 2µ
R2,j [ϕ](x), (3.16)

with R1,j and R2,j given by

R1,j [ϕ](x) = − ij(j − 1)νx
4πj!

∫

∂D

|x− y|j−3〈x− y,ϕ(y)〉ds(y),

and

R2,j [ϕ](x) =− ij(j − 1)

4πj!

(∫

∂D

|x− y|j−3〈x− y,νx〉ϕ(y)ds(y)+
∫

∂D

|x− y|j−3(x− y)〈νx,ϕ(y)〉ds(y)
)

.

Moreover, Sp
∂D,j and K

p,∗
∂D,j are uniformly bounded with respect to j, and the two series

in (3.15) are convergent in L(L2(∂D)3,H1(∂D)3) and L(L2(∂D)3), respectively.
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Lemma 3.6. If ϕ ∈ ker
(

S
ω,s
∂D

)

, kp ≪ 1, µ ≪ 1 and λ = O(1), then one has that for
x ∈ ∂D,

K
ω,∗
∂D[ϕ](x) = R1,0[ϕ] +O(µ) +O(k2p),

where R1,0 is defined in (3.16).

Proof. From the definition of the fundamental solution in (2.12) and the fact ϕ ∈
ker
(

S
ω,s
∂D

)

, we only need to deal with the kernel function − 1
ω2∇∇Gkp . Moreover, the

traction operator ∂ν defined in (2.4) can also be written as

∂νw = 2µ∇w · ν + λ(∇ · u)ν + µν × (∇×w). (3.17)

From Lemma 3.2, has that
∫

∂D

2µ∇
(

− 1

ω2
∇∇Gkp(x− y)ϕ(y)

)

· νds(y)

=

∫

∂D

2µ∇
(

− 1

ω2
∇∇

(

Gkp −G0
)

(x− y)ϕ(y)

)

· νds(y)

=O(µ),

(3.18)

where the last identity follows from the Lemma 3.5. There also holds that

λν

∫

∂D

∇ ·
(

− 1

ω2
∇∇Gkp(x− y)ϕ(y)

)

ds(y)

=λν

∫

∂D

− 1

ω2
△∇Gkp(x− y) · ϕ(y)ds(y)

=ν

∫

∂D

∇Gkp(x− y) · ϕ(y)ds(y)

=R1,0[ϕ(y)] +O(k2p).

(3.19)

where R1,0 is defined in (3.16). Moreover, since ∇ × ∇ = 0, one finally concludes that
from (3.17), (3.18) and (3.19)

K
ω,∗
∂D[ϕ](x) = R1,0[ϕ] +O(µ) +O(k2p).

The proof is completed. �

Remark 3.2. Lemma 3.6 holds for any ϕ ∈ ker
(

S
ω,s
∂D

)

, which could depend on ks.

For the later convenience, we introduce an important subspace of L2(∂D):

L2
0(∂D) = {ϕ ∈ L2(∂D) :

∫

∂D

ϕds = 0}, (3.20)

and the following results that can be found in [6].

Lemma 3.7. Let ξ be a real number. The operator ξ −K∗
∂D,0 is invertible on L2

0(∂D)

if |ξ| ≥ 1/2, where K∗
∂D,0 is given in (2.11). Furthermore, the kernel of the operator

(

− I
2 +K∗

∂D,0

)

, restricted in the space L2(∂D), is one dimensional, and

ker

(

−I
2
+K∗

∂D,0

)

= span{S−1
∂D,0[1]},

where the operator S−1
∂D,0 is the inverse of the operator S∂D,0 defined in (2.9).

Lemma 3.8. All f ∈ L2(∂D) satisfying
(

− I
2 +K∂D,0

)

f = 0, with K∂D,0 defined in
(2.11), are constant.
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4. Minnaert resonances in three dimensions

In this section, we show the Minnaert resonances for the system (3.6) in R
3. We first

prove that the weak resonance always occurs provided that the parameters are properly
chosen. Then with a proper choice of the geometry of the domain D, we further show
that enhanced or even strong resonances can occur.

Theorem 4.1. Consider the system (3.6) in three dimensions. If the parameters are
chosen according to (3.1)–(3.2) (or equivalently (3.5)), then weak Minnaert resonance
occurs.

Proof. The proof is proceeded by construction. By the definition of the weak resonance
in (3.10) for the system (3.6), we construct in what follows a density function Φ ∈ H
with ‖Φ‖H = 1 such that the condition (3.10) is fulfilled.

Since we consider the low-frequency resonance, i.e. k ≪ 1, then the density function
Φ ∈ H should satisfy the following asymptotic expansion

Φ = Φ0 + kΦ1 + k2Φ2 + · · · ,
where

Φj =

(

ϕj

ϕj

)

, j = 0, 1, 2, · · ·

As we discussed earlier, the resonance is mainly caused by the p-waver in our study.
Therefore, we choose

ϕj ∈ ker
(

S
ω,s
∂D

)

, j = 0, 1, 2, · · ·.
From the assumption that δ ≪ 1 and the operator Sk

∂D is bounded, we can derive from
the definition of the operator A(k, δ) in (3.8) and Lemmas 3.4-3.6 that

A(k, δ)[Φ] =
1

k2

( (

− I
2 +K∗

∂D,0

)

[ϕ0]

0

)

+
1

k

( (

− I
2 +K∗

∂D,0

)

[ϕ1]

0

)

+





K∗
∂D,2[ϕ0]− ν · Skτ

∂D[ϕ0] +
(

− I
2 +K∗

∂D,0

)

[ϕ2]
(

I
2 +K

kτ,∗
∂D

)

[ϕ0]



+O(k) +O(δ).

(4.1)

Since k ≪ 1, the first two terms in (4.1) should vanish. Thus one can conclude from
Lemma 3.7 that

ϕ0, ϕ1 ∈ ker

(

−I
2
+K∗

∂D,0

)

= span{S−1
∂D,0[1]}. (4.2)

Next we deal with the third term in (4.1). Since ϕ0 ∈ ker
(

S
ω,s
∂D

)

, one has that form
Lemma 3.6

(

I

2
+K

kτ,∗
∂D

)

[ϕ0] =
1

2
ϕ0 +R1,0[ϕ0] +O(µ) +O(k2p),

where

R1,0[ϕ0] = νx

∫

∂D

〈x− y,ϕ0〉
4π|x− y|3 ds(y), (4.3)

and is bounded from L2(∂D)3 to L2(∂D)3. Therefore the leading term 1
2ϕ0 +R1,0[ϕ0]

should vanish. From (4.3), R1,0[ϕ0] contains only the normal component, therefore the
function ϕ0 should also contain only the normal component, namely

ϕ0 = ϕν,
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for some ϕ ∈ L2(∂D). Thus

1

2
ϕ0 +R1,0[ϕ0] = ν

(

1

2
ϕ−K∂D,0[ϕ]

)

and ϕ should be a constant thanks to Lemma 3.8. Hence one finally obtains that

ϕ0 = c0ν

for some constant c0, which will be further determined later. Since ϕ0 derived in the last
equation does not depend on ks, one has the following expansion from Lemma 3.5

Skτ
∂D[ϕ0] = S

ω,p
∂D[ϕ0] =

+∞
∑

j=0

kjpS
p
∂D,j [ϕ0],

and

K
kτ,∗
∂D [ϕ0] = K

ω,p,∗
∂D [ϕ0] =

+∞
∑

j=0

kjpK
p,∗
∂D,j[ϕ0].

We proceed to deal with the first component of the third term in (4.1) by solving the
following equation

(

−I
2
+K∗

∂D,0

)

[ϕ2] = c0ν · Sp
∂D,0[ν] −K∗

∂D,2[ϕ0]. (4.4)

Lemma 3.7 shows that the operator
(

− I
2 +K∗

∂D

)

is invertible on L2
0(∂D), thus c0 should

be chosen as

c0 =

∫

∂D
K∗

∂D,2[ϕ0](x)ds(x)
∫

∂D
ν · Sp

∂D,0[ν](x)ds(x)
(4.5)

such that the equation (4.4) is solvable. Thus

ϕ2 =

(

−I
2
+K∗

∂D,0

)−1 [

c0ν · Sp
∂D,0[ν]−K∗

∂D,2[ϕ0]
]

.

Following the same process above, one can construct

Φ =

(

ϕ0

c0ν

)

+ k

(

ϕ1

c1ν

)

+ k2
(

ϕ2

c2ν

)

+ k3
(

ϕ3

0

)

+ k4
(

ϕ4

0

)

, (4.6)

where ϕ0, ϕ1 are given in (4.2), c0 is given (4.5) and

c1 =

∫

∂D
K∗

∂D,2[ϕ1](x) +K∗
∂D,3[ϕ0](x)− (τ/cp)ν · Sp

∂D,1[c0ν](x)dx
∫

∂D
ν · Sp

∂D,0[ν](x)dx
,

ϕ3 =

(

−I
2
+K∗

∂D,0

)−1
[

c1ν · Sp
∂D,0[ν]−K∗

∂D,2[ϕ1] + (τ/cp)c0ν · Sp
∂D,1[ν] −K∗

∂D,3[ϕ0]
]

,

c2 =

∫

∂D
K∗

∂D,2[ϕ2](x) +K∗
∂D,3[ϕ1](x) +K∗

∂D,4[ϕ0](x)dx
∫

∂D
ν · Sp

∂D,0[ν](x)dx
−

∫

∂D
(τ/cp)ν · Sp

∂D,1[c1ν](x) + (τ/cp)
2
ν · Sp

∂D,2[c0ν](x)dx
∫

∂D
ν · Sp

∂D,0[ν](x)dx
,

ϕ4 =

(

−I
2
+K∗

∂D,0

)−1
[

c2ν · Sp
∂D,0[ν]−K∗

∂D,2[ϕ2](x)−K∗
∂D,3[ϕ1](x)+

(τ/cp)ν · Sp
∂D,1[c1ν](x) −K∗

∂D,4[ϕ0](x) + (τ/cp)
2
ν · Sp

∂D,2[c0ν](x)
]

.
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Then one can have that

A(ω, δ)[Φ] =

(

0

δτ2ν + µ
(

1
λ+2µ(R2,0 − 2R1,0)[c0ν]

)

+ k2(τ/cp)
2R1,2[c0ν]

)

+

(

O(k3)
O(k3) +O(δk) +O(µk)

)

,

(4.7)

with Φ defined in (4.6) and the operator Ri,j defined in Lemma 3.5. Finally one can
conclude that

‖A(ω, δ)[Φ](x)‖H = O(δ) +O(µ) +O(k2) ≪ 1,

which clearly shows that the weak resonance occurs. �

From the proof of Theorem 4.1, one readily sees that we can not enhance the resonance
by diminishing the parameter k only. The parameter k should be chosen in an appropriate
way that is correlated to the parameters δ and µ in order to achieve enhanced resonance
effects. In fact, we have the following results.

Proposition 4.1. Consider the same setup as that in Theorem 4.1. If the following
equation is solvable

δτ2ν + µ

(

1

λ+ 2µ
(R2,0 − 2R1,0)[c0ν]

)

+ k2(τ/cp)
2R1,2[c0ν] = 0, (4.8)

where R2,0, R1,0 and R1,2 are defined in Lemma 3.5, then one has that

‖A(ω, δ)[Φ](x)‖H = O(δk) +O(µk) +O(k3), (4.9)

which indicates that the enhanced resonance can be achieved. If (4.8) is solvable, the
parameter k should fulfil

k =
√

O(δ) +O(µ). (4.10)

Proof. If we take the density function Φ as in (4.6), and the equation in (4.8) is solvable,
then from (4.7), one has that

A(ω)[Φ] =

(

O(k3)
O(k3) +O(δk) +O(µk)

)

. (4.11)

Thus the estimate in (4.9) is proved. Moreover, by noting that the functions

(R2,0 − 2R1,0)[c0ν] and R1,2[c0ν]

are bounded in L2(∂D)3 and

τ = O(1) and λ = O(1),

one can show by direct computations that if the equation (4.8) is solvable then the
parameter k fulfils

k =
√

O(δ) +O(µ).

�

Remark 4.1. If the equation (4.8) is solvable, the function R2,0[ν] should also contain
only the normal component, since the functions R1,0[ν] and R1,2[ν] contain only the
normal components. Indeed, this is also physically justifiable. We can see from the fourth
equation in (3.6) that it is natural to require the leading term of the traction of the elastic
wave outside the bubble D to contain only the normal component in order to strengthen
the resonance, since the pressure in the bubble has only the normal component. This
property depends heavily on the geometry of the domain D.
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Remark 4.2. Since δ ≪ 1 and µ ≪ 1, we can readily see from (4.9) and (4.10) in
Proposition 4.1 that enhanced resonance effects can be achieved.

Remark 4.3. We apply Proposition 4.1 to the case when the bubble D is a unit ball. In
such a case, one has that for x ∈ ∂D,

S−1
∂D,0[1](x) = −1 and S∂D,0[ν](x) = −1

3
ν.

Thus we get from (4.2) that
ϕ0 = ϕ1 = −1.

We first calculate the parameter c0 defined in (4.5). A direct calculation shows that
∫

∂D

K∗
∂D,2[−1](x)ds(x) = −4π/3.

Hence, one obtains

c0 =

∫

∂D
K∗

∂D,2[ϕ0](x)ds(x)
∫

∂D
ν · Sp

∂D,0[ν](x)ds(x)
=

−4π/3

−4π/(3(λ + 2µ))
= λ+ 2µ.

From the proof in Theorem 4.1, we derive

R1,0[ν] = −ν/2.

Moreover, by some straightforward but rather tedious calculations, one can obtain that

R2,0[ν] = ν/3 and R1,2[ν] = −ν/3.

Therefore the equation (4.8) in Proposition 4.1 can be simplified to be

δτ2ν +
4

3
µν − 1

3
k2τ2ν = 0,

which shows that k should be chosen as

k =
√

3δ + 4µ/τ2. (4.12)

Substituting the parameters in (3.4) into the last equation shows that the resonance
frequency should be

ω =

√

3κ+ 4µ̃

ρe
,

which recovers the physical result in [7]. Definitely, (4.8) may be solvable in more gen-
eral scenarios, which then yield bubble-elastic structures that can produce enhanced
resonances.

As also discussed earlier, the geometry of the bubble shall also play a critical role in
the resonance in our study. We next show that if the domain D is properly chosen, then
resonance effects can also be significantly enhanced.

Proposition 4.2. Consider the same setup as that in Theorem 4.1. Furthermore, if the
following equation is solvable,

δν
m
∑

j=0

τ2kj
j
∑

i=0

S∂D,i[ϕj−i] +
k2τ2

c2p

m
∑

j=0

(

kτ

cp

)j j+2
∑

i=2

R1,i[cj+2−iν]+

µ

λ+ 2µ

m
∑

j=0

(

kτ

cp

)j j
∑

i=0

(R2,i − 2R1,i)[cj−iν] = 0,

(4.13)
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where ϕj is defined in (4.15), then one has that

‖A(ω, δ)[Φ](x)‖H = O(δkm+1) +O(µkm+1) +O(km+3). (4.14)

Proof. Following the proof of Theorem 4.1, one can construct

Φ =
∞
∑

j=0

kj
(

ϕj

ϕj

)

(4.15)

where ϕ0, ϕ1 are the same as those in (4.2) and

ϕj =

(

−I
2
+K∗

∂D

)−1
[

j−2
∑

m=0

(τ/cp)
m
ν · Sp

∂D,m[ϕj−2−m]−
j
∑

m=2

K∗
∂D,m[ϕj−m]

]

for j ≥ 2,

ϕj = cjν, for j ≥ 0,

with

cj =

∫

∂D

∑j+2
m=2K

∗
∂D,m[ϕj+2−m](x)−∑j

m=1(τ/cp)
m
ν · Sp

∂D,m[ϕj−m](x)ds(x)
∫

∂D
ν · Sp

∂D,0[ν]ds(x)
.

It is remarked here that when calculating Φ in (4.15), one should first calculate cj to

obtain ϕj and then calculate ϕj+2 for j = 0, 1, 2, . . ., since ϕ0, ϕ1 ∈ span{S−1
∂D,0[1]}.

Hence one has that

A(ω, δ)[Φ]1 = 0,

A(ω, δ)[Φ]2 =δν

∞
∑

j=0

τ2kj
j
∑

i=0

S∂D,i[ϕj−i] +
k2τ2

c2p

∞
∑

j=0

(

kτ

cp

)j j+2
∑

i=2

R1,i[cj+2−iν]+

µ

λ+ 2µ

∞
∑

j=0

(

kτ

cp

)j j
∑

i=0

(R2,i − 2R1,i)[cj−iν],

where A(ω, δ)[Φ]i denotes the i-th component of the vectorial function A(ω, δ)[Φ] and
the operators Ri,j with i = 1, 2 and j ≥ 0, are defined in (3.16). Thus, if the equation
(4.13) is solvable, one can conclude that

‖A(ω, δ)[Φ](x)‖H = O(δkm+1) +O(µkm+1) +O(km+3).

�

Remark 4.4. It is noted that if the equation (4.13) is solvable, then one should have

k =
√

O(δ) +O(µ)

and

R2,i[ν] = ψiν for 0 ≤ i ≤ m, (4.16)

with ψi ∈ L2(∂D). The identities (4.16) are unobjectionably reasonable as explained in
Remark 4.1.

Remark 4.5. Proposition 4.1 is a special case of Proposition 4.2 with m=0. Indeed, even
though the equation (4.13) could be solved for m > 0, it is enough to solve the equation
(4.13) with m = 0, namely the equation (4.8) in Proposition 4.1, to obtain the resonant
frequency. This is because that it gives the leading-order term of the resonant frequency.
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Remark 4.6. If the equation (4.13) is solvable for m = ∞, then the function Φ defined in
(4.15) belongs to the kernel of the operator A(ω, δ), namely the condition (3.9) is fulfilled.
In this case, condition (4.16) signifies that ν should be an eigenfunction of the operator
K

ω,∗
∂D. In fact, this is the case when the domain D is a ball. In [16], it was proved that ν

is an eigenfunction of the operator Kω,∗
∂D, namely

K
ω,∗
∂D[ν] = χ1ν, x ∈ ∂D, (4.17)

where

χ1 =
4iµRkp
(λ+ 2µ)

j1(kpR)h1(kpR)− iR2k2pj1(kpR)h0(kpR)−
1

2
,

with R being the radius of the ball D, and jn(|x|) and hn(|x|) respectively denoting the
spherical Bessel function and spherical Hankel function of the first kind and of order n.
Moreover, ν is also an eigenfunction of the operator Sω

∂D, namely

Sω
∂D[ν](x) =

−iR2kp
(λ+ 2µ)

h1(kpR)j1(kpR)ν, x ∈ ∂D. (4.18)

It was also proved in [23] that

Sk
∂D[1](x) = −ikR2h0(kR)j0(kR), x ∈ ∂D, (4.19)

and

Kk,∗
∂D[1](x) =

1

2
− ik2R2j′0(kR)h0(kR), x ∈ ∂D. (4.20)

Following the asymptotic expansions for the functions jn(|x|) and hn(|x|), n = 0, 1, with
|x| ≪ 1 (cf. [13]), one can obtain the expressions of S∂D,i[1], R1,i[ν] and R2,i[ν] for i ≥ 0,
respectively. Next we only present the first few terms,

δτ2 +
4

3
µ− ik

(

3τ3δ + 4τµ

3
√
λ+ 2µ

)

− k2
(

1

3
τ2 +

1

6
τ2δ

)

+ k3
iτ3δ

6
√
λ+ 2µ

+ · · · .

One can readily see the equation (4.13) is reduced to solving a polynomial equation
with respect to k of an infinity order. By a truncation and approximation, we solve the
following equation,

δτ2 +
4

3
µ− ik

(

3τ3δ + 4τµ

3
√
λ+ 2µ

)

− k2
(

1

3
τ2 +

1

6
τ2δ

)

= 0. (4.21)

whose roots are given by

kd3± =
±
√

(3τ2δ + 4µ)(4(λ + µ)− 3τ2δ)− (3τ2δ + 4µ)i

2τ
√
λ+ 2µ

. (4.22)

One can verify directly that the root (4.12) is the positive part of the roots (4.22) neglect-
ing the infinitesimal part. In fact, the critical values obtained in (4.22) exhibit excellent
accuracy for the resonant frequencies; see Remarks 5.1 and 5.2 in what follows.

5. Minnaert resonances in two dimensions

In this section, we derive the Minnaert resonances for the system (3.6) in two dimen-
sions when the domain D is a unit disk. The extension of the low-frequency analysis
from three dimensions to two dimensions is technically not straightforward. A major dif-
ficulty comes from the fact that the asymptotic expansions of the fundamental solutions
Gk(x) in 2D and 3D defined in (2.8) are of a different nature. In fact, the expansion of
the fundamental solution Gk(x) in 3D is the summation of ϕj(x)k

j with j = 0, 1, · · · .
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However in 2D the asymptotic expansion is the summation of φ(x)(cj + ln(k))kj , with
j = 0, 1, · · · (cf. [1]), which significantly increases the complexity of solving the counter-
part equation (3.9) in the 2D case. Hence, for this technical reason, we shall only derive
the Minnaert resonances for the system (3.6) in two dimensions for a disk domain D.
Indeed, as can be seen from Theorem 5.1, even the domain D is a disk in 2D, one can
not derive the explicit expression of the resonant frequency.

In what follows, we let Jn(|x|) and Hn(|x|) respectively denote the Bessel function of
order n and the Hankel function of the first kind of order n. When the argument k ≪ 1,
the functions Jn and Hn, n = 0, 1, enjoy the following asymptotic expansions (cf. [9]):

J0(k) = 1− k2

4
+
k4

64
+O(k6), J1(k) =

k

2
− k3

16
+O(k5), (5.1)

H0(k) =
i(γ + 2 ln(k))

π
+

i(−2 + γ + 2 ln(k))k2

4π
+O((1 + ln(k))k3), (5.2)

and

H1(k) = − 2i

kπ
+

i(−1 + γ + 2 ln(k))k

2π
+O((1 + ln(k))k3), (5.3)

with γ = 2Ec − iπ − 2 ln 2, and Ec being the Euler’s constant.
By the definition of the strong resonance in (3.9) for the system (3.6) , we next con-

struct a nontrivial solution Φ such that

A(k, δ)[Φ](x) = 0, (5.4)

where A(k, δ) is defined in (3.8). If the domain D is a unit disk, direction calculations
show that for x ∈ ∂D,

Skτ
∂D[ν](x) = ζ1ν and K

kτ,∗
∂D [ν](x) = ζ2ν, (5.5)

where

ζ1 =
−iπ

2(λ + 2µ)
J1(kp)H1(kp),

and

ζ2 =
−iπJ1(kp)

2(λ+ 2µ)

(

(λ+ 2µ)kpH
′
1(kp) + λH1(kp)

)

− 1

2
,

with kp = kτ/
√
λ+ 2µ. Moreover, one has that for x ∈ ∂D (cf. [17]),

Sk
∂D[1](x) = ζ3 and Kk,∗

∂D[1](x) = ζ4, (5.6)

where

ζ3 =
−iπ

2
J0(k)H0(k) and ζ4 =

1

2
− iπ

2
kJ ′

0(k)H0(k).

Hence the nontrivial solution to the equation (5.4) should have the following form

Φ =

(

b1
b2ν

)

.

Substituting the last equation into (5.4) yields that

Bb = 0, (5.7)

where

B =

(

1
k2

(

−1
2 + ζ4

)

−ζ1
δτ2ζ3

1
2 + ζ2

)

and b =

(

b1
b2

)

with ζi, i = 1, 2, 3, 4 defined in (5.5) and (5.6). To ensure that the equation (5.7) possesses
nontrivial solutions, the determinant det(B) of the matrix B should vanish. Through



MINNAERT RESONANCES FOR BUBBLES IN SOFT ELASTIC MATERIALS 19

some straightforward but rather tedious calculations and with the help of the asymptotic
expressions in (5.1), (5.2) and (5.3), we can obtain

det(B) =
1

k2

(

−1

2
+ ζ4

)(

1

2
+ ζ2

)

+ δτ2ζ1ζ3

= −(γ + 2 ln(k))

(

(µ + δτ2)

4(λ+ 2µ)
+
k2τ2λ(γ + 2 ln(kτ/

√
λ+ 2µ))

16(λ + 2µ)2

)

+

o(µ(γ + ln(k))) + o(δ(γ + ln(k))) + o(k2(γ + ln(k))),

where γ is defined in (5.2). Hence, we readily come to the following conclusion.

Theorem 5.1. Consider the system (3.6) in two dimensions with D being a central
disk. If the parameters are chosen according to (3.5), then the strong resonance occurs.
Moreover, the leading-order terms of the resonant frequencies are given by the roots of
the following equation

(γ + 2 ln(k))

(

(µ+ δτ2)

4(λ+ 2µ)
+
k2τ2λ(γ + 2 ln(kτ/

√
λ+ 2µ))

16(λ+ 2µ)2

)

= 0, (5.8)

where τ and γ are given in (3.3) and (5.2), respectively.

Remark 5.1. The method used above in deriving the resonances in two dimensions can
be applied to the three dimensions as well when the domain D is a central ball. From
(4.17) to (4.20), one can calculate in a similar manner the determinant of the matrix B

in three dimensions and determine the critical values k’s such that the following

det(B) = 0,

holds to ensure the occurrence of the strong resonance.

Remark 5.2. There exist critical values k’s such that det(B) vanishes in both two and
three dimensions, that is, the strong resonance occurs. Since the expression of det(B)
is nonlinear with respect to k, we can resort to computational algorithms to determine
these critical values, namely resonant frequencies. Next, for illustrations, we conduct
some numerical experiments to find out these critical values. We denote by kb2 and
kb3 for the critical values by directly solving the equation det(B) = 0 in two and three
dimensions, respectively. As comparisons, we also calculate kd3+ defined in (4.22) and
solve the equation (5.8). The root of the equation (5.8) is denoted by kd2. The parameters
in our numerical experiments are chosen as follows:

λ = 1, τ = 1, µ = δ = 10−i, i = 2, 3, 4.

Moreover, the bubble D is a unit disk in R2 and a unit ball in R3. It is remarked
that the case i = 3 almost indicates the experiment in [11]. The corresponding values,
kb2, kd2, kb3 and kd3+ with positive real parts, are presented in Table 1. From Table 1,
one can conclude that there indeed exist critical values k such that det(B) = 0 in both
two and three dimensions. Moreover, the roots of the equations (4.21) and (5.8) exhibit
an excellent accuracy agreement with the resonant frequencies. Finally, we would like to
point out the negative imaginary parts in the values computed in Table 1 are a physically
reasonable requirement (cf. [1]).
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i = 2 i = 3 i = 4

kb2 0.110087 − 0.040732i 0.030796 − 0.007347i 0.008681 − 0.001513i

kd2 0.109963 − 0.040294i 0.030790 − 0.007341i 0.008681 − 0.001513i

kb3 0.262065 − 0.034521i 0.083584 − 0.003495i 0.026454 − 0.000349i

kd3+ 0.262296 − 0.034655i 0.083592 − 0.003496i 0.026455 − 0.000349i

Table 1. The critical values of kb2, kd2, kb3 and kd3+ with positive real
parts.

6. Concluding remarks

We have studied the Minnaert resonances for bubble-elastic structures. By delicately
and subtly balancing the acoustic and elastic parameters as well as the geometry of the
bubble, we have shown that the Minnaert resonance can (at least approximately) occur
for rather general constructions. Our study opens up a new direction for the mathemat-
ical investigation on bubbly elastic mediums with many potential developments. In the
present paper, we have considered only the case that a single bubble is embedded in a
soft elastic material. It would be interesting to consider the case with multiple bubbles as
well as the corresponding application to the effective realisation of elastic metamaterials.
Moreover, we have investigated only the case that the resonance is mainly caused by the
p-wave, but it would be interesting to investigate more general bubbly elastic structures
with more general resonances. We shall consider these and other related topics in our
forthcoming work.
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