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Abstract

In this note we consider a system of financial institutions and study systemic risk measures

in the presence of a financial market and in a robust setting, namely, where no reference

probability is assigned. We obtain a dual representation for convex robust systemic risk

measures adjusted to the financial market and show its relation to some appropriate no-

arbitrage conditions.

1 Introduction

In a system composed of N financial institutions, a traditional approach to evaluate the risk of each

institution j ∈ {1, . . . , N} is to apply a univariate monetary risk measure ηj to the single financial

position Xj. Once the risk ηj(Xj) of each institution has been determined, a naive assessment of

the risk of the entire system X = (X1, . . . , XN ) could be given as the sum of the individual risks.

However, such a procedure would probably not capture the risk of complex systems and the urge

for more satisfactory measures of systemic risk originated, in the recent years, a vast literature. [8]

and [13] studied under which conditions a systemic risk measure ρ could be written in the form

ρ(X) = η(Λ(X)) = inf{m ∈ R | Λ(X) +m ∈ A}, (1)

for some univariate monetary risk measure η with acceptance set A and some aggregation rule

Λ : RN → R that transforms the N -dimensional risk factors into a univariate risk factor. In

this case, ρ(X) is the minimal cash amount that secures the system when it is added to the total

aggregated loss Λ(X). Note that in (1) such a minimal capital is added after aggregating individual

risks. An alternative approach, see [3, 5, 10], proposes to add capital into the single institutions

before aggregating their individual risks leading to risk measures of the form:

ρ(X) := inf







N
∑

j=1

mj | m = [m1, · · · ,mN ] ∈ RN , Λ(X +m) ∈ A







. (2)

As one can see from (2), the difference to (1) is that each mj ∈ R is added to the financial position

Xj of institution j ∈ {1, · · · , N} before the corresponding aggregated loss Λ(X +m) is calculated.

We refer the interested reader to [5] for more references on systemic risk measures. We point
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out that in the above literature X = (X1, . . . , XN) is a vector of random variables defined on a

probability space (Ω,F ,P) and consequently the acceptance set A is a subset of L0(Ω,F ,P).

In this paper we depart from this literature in two respects. First, the agents are allowed to

operate in a financial market composed of J + 1 assets S0, S1, . . . , SJ and finitely many trading

periods t = 0, . . . , T − 1. We make use of an abstract set G to describe all possible positions that

are achievable by self-financing trading strategies with zero initial cost. Second, no assumptions

are made on the probabilities of future events. The sample space is a non-empty subset Ω ⊆

((0,+∞)× RJ)T , endowed with the usual Euclidean metric. This approach is robust in the sense

that we do not impose a priori any statistical/historical probability measure on Ω but we rather

work in a pointwise manner.

The financial position of the N ∈ N agents or financial institutions is represented by X =

(X1, . . . , XN) ∈ B, where B := B(RN) is the set of all Borel measurable functions Ω → RN . Note

that we also assume that G is contained in B, namely G is a set of vectors. This allows us to model

the case where the agents cannot achieve the same class of terminal payoffs or the case where

they even trade in different markets. We are interested in the risk of the entire system that we

evaluate in terms of an aggregate univariate position. To achieve this we consider an acceptance

set A ⊆ B(R) and an aggregation function Λ : RN → R. We then evaluate the risk of the financial

system by means of the following functional ρ : B → [−∞,+∞]

ρ(X) := inf

{

N
∑

i=1

mi | m ∈ RN , ∃g ∈ G : Λ(m+X + g) ∈ A

}

, (3)

with ρ(X) = ∞ if the set on the right hand side is empty. This risk measure (3) is market-adjusted,

meaning that every agent is allowed to trade in the underlying market, in a self-financing way and

according to achievable payoffs, in order to obtain an acceptable aggregate terminal position. We

observe that this measure of risk, that we label of the type first allocate and adjust, then aggregate,

is in the same spirit of the risk measures (2), even though it has the additional market adjustment

feature and is specified in a robust framework.

Our aim is to prove a dual representation for the systemic risk measure (3) and to understand

its interplay with possible notions of arbitrage (see Theorem 2.5).

To develop this theory, we will follow the same approach that [9] adopted for the analysis

of the robust pricing-hedging duality in one dimension and extend it to the present multivariate

(systemic) setting. We address this problem and make precise statements in Section 2. We refer

the interested reader to [9] for more references on robustness in a non systemic framework.

An alternative way of measuring market-adjusted systemic risk employs the use of a second

aggregation function Γ : RN → R for the payoffs of the trading strategies, i.e., by means of the

following functional ρΓ : B → [−∞,+∞]

ρΓ(X) := inf

{

N
∑

i=1

mi | m ∈ RN , ∃g ∈ G : Λ(m+X) + Γ(g) ∈ A

}

. (4)

The interpretation is similar to the one above but it is different in spirit. In (3) the agents are

operating as N different units both in terms of the financial position X and market payoff g. In

(4) the acceptability of the aggregate position Λ(m+X) can be influenced by an aggregate market
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payoff Γ(g). We can think of (4) as the risk metric of a single firm composed of N different units

and a trading desk operating independently of the N units1. The total risk of the firm is assessed

by aggregating the static financial position of the firm and the market position separately.

From a mathematical point of view there is very little difference in treating the two cases and

we present analogous results in Section 2.1.

2 The Main Results

Notation 2.1. We let 1 := (1, . . . , 1) be the N -dimensional vector with entries all equal to 1,

so that, if x is a univariate variable, x := x1 = (x, . . . , x) is the N -dimensional vector with all

components equals to x. When comparing multivariate positions, all the inequalities are to be

intended componentwise, in particular, B+ = B+(RN ) is the set of functions in B = B(RN) with

values in [0,+∞)N . A set A ⊆ B(R) is called monotone if x ≥ y ∈ A ⇒ x ∈ A.

Unless otherwise specified, in the remainder of the paper the following assumption holds true.

Assumption 2.2. 1. A ⊆ B(R) is monotone and 0 ∈ A; G ⊆ B with 0 ∈ G.

2. The aggregation function Λ : RN → R is increasing, with respect to the componentwise order,

concave and Λ(0) = 0.

3. The set Λ−1(A)− G = {X ∈ B | Λ(X + g) ∈ A for some g ∈ G} is convex.

The monotonicity of the acceptance set A is standard in the context of univariate risk measures

and the conditions on Λ are also typical in the theory of multivariate risk measures. Notice that

the aggregation function is not required to be strictly increasing nor strictly concave. Given the

first two, the third condition holds when both A and G are convex.

Example 2.3. Consider concave increasing functions u, ui : R → R satisfying u(0) = ui(0) =

0 ∀i ∈ {1, . . . , N}. The aggregation functions

Λ(x) : = αu

( N
∑

i=1

xi

)

+
N
∑

i=1

αiui(x
i), for α, αi ≥ 0 ∀i ∈ {1, . . . , N}, (5)

Λ(x) : = −

N
∑

i=1

αi(x
i)−, for αi ≥ 0 ∀i ∈ {1, . . . , N}, (6)

Λ(x) : = max
y∈RN

−
,b∈RN

−
: xi≥bi+yi−

∑
N
j=1 Πjiyj

{

N
∑

i=1

yi + γ

N
∑

i=1

bi

}

, for γ > 1 (7)

satisfy Assumption 2.2. The function in (5) has been frequently used in the literature on systemic

risk measures with either α = 0 or αi = 0 ∀i ∈ {1, . . . , N}, see e.g. [3, 5]. The function in (6)

corresponds to considering the aggregate position as the sum of the debts of the single units, if

αi = 1 ∀i ∈ {1, . . . , N}. Finally, the function in (7) is derived from a network model where Πji is

the fraction of the total debt of firm j owed to firm i and γ > 1 is a parameter balancing the trade

off between capital injection and reduction of mutual debts, see [8] for more details and examples.

1For ease of notation we continue to assume that g and X have the same dimension but, in principle, they could

now be different.
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We now introduce the functional analytic setting that allows us to prove a robust dual rep-

resentation for ρ. Let Z : Ω → [1,+∞) be a continuous function with compact sublevel sets

{ω ∈ Ω : Z(ω) ≤ z} for all z ∈ R. Let BZ be the set of functions X = (X1, . . . , XN) ∈ B

such that Xi

Z
is bounded for all i = 1, . . . , N . The set of continuous functions in BZ is called

CZ , while UZ is the set of upper semicontinuous functions in BZ . Their univariate counterparts

are BZ(R), CZ(R), UZ(R). We let caZ be the space of N -dimensional vectors of Borel measures

µ = (µ1, . . . , µN ) such that
∫

Ω Zdµi < +∞, for every i = 1, . . . , N . We finally form a dual pair

(BZ , caZ , 〈 , 〉) with

〈X,µ〉 :=

N
∑

i=1

∫

Ω

X idµi, X ∈ BZ , µ ∈ caZ .

We let ca+Z be the positive cone in caZ and observe that ca+Z contains the subset PZ of N -

dimensional vectors of probability measures P = (P1, . . . ,PN ) such that EPi

Z < +∞ for i =

1 . . . , N . For a functional f on CZ we define

f∗(µ) := sup
X∈CZ

{〈X,µ〉 − f(X)} , µ ∈ caZ , (8)

which is the convex conjugate of f with respect to the dual system (CZ , caZ).

In Theorem 2.5 below, we prove that ρ admits a dual representation if and only if a certain no

arbitrage condition holds. The theorem holds under the following assumption, which is essentially

requiring that the set of achievable market payoffs G is rich enough.

Assumption 2.4. There exists γ ≤ 0 such that

∀n ∈ N, ∃z ∈ [0,+∞), ∃g ∈ G such that Λ

([

γ

N
+

1

n
− n(Z − z)+

]

1+ g

)

∈ A. (A)

This condition is a multivariate version of condition (2.1) in [9]; it is satisfied for example

when Ω is compact or when, in the market described by G, options which are sufficiently out-of-

the-money are available at a sufficiently small price. We give some other sufficient conditions in

Proposition 2.8 below. By definition of ρ, condition (A) implies that for all n ∈ N there exists

zn ∈ R+ such that ρ(−n(Z − zn)
+1) ≤ N

n
+ γ.

Theorem 2.5. Under Assumption 2.4 the following are equivalent:

1. m ∈ RN ,
∑

mi < γ ⇒ ∄g ∈ G : Λ(m+ g) ∈ A.

2. There exists Q = (Q1, . . . ,QN) ∈ PZ such that
∑N

i=1 E
Qi [X i] − γ ≥ 0 for all X ∈ CZ

satisfying Λ(X + g) ∈ A for some g ∈ G.

3. ρ is real valued on BZ , ρ(0) = γ and

ρ(X) = max
Q=(Q1,...,QN )∈PZ

{

N
∑

i=1

EQi [−X i]− ρ∗(−Q)

}

, X ∈ CZ .

If in addition one has

ρ(X) = inf
Y ∈CZ,Y≤X

ρ(Y ) for all X ∈ UZ , (9)

then 1–3 are also equivalent to each one of the following two conditions:
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4. There exists Q = (Q1, . . . ,QN ) ∈ PZ such that
∑N

i=1 E
Qi [X i] − γ ≥ 0 for all X ∈ UZ

satisfying Λ(X + g) ∈ A for some g ∈ G.

5. ρ is real valued on BZ , ρ(0) = γ and

ρ(X) = max
Q=(Q1,...,QN )∈PZ

{

N
∑

i=1

EQi [−X i]− ρ∗(−Q)

}

, X ∈ UZ .

Before giving the proof of Theorem 2.5, whose technical parts are postponed to Section 3, we

comment on its statement. Recall that γ ≤ 0 is given and fixed.

Condition 1 excludes a situation that we call a regulatory arbitrage opportunity, namely a

situation where it is possible to make an initial position m ∈ RN such that
∑N

i=1 m
i < γ acceptable

by simply adding an achievable payoff g ∈ G that is obtained by trading at zero cost in the financial

market. In particular, absence of regulatory arbitrage opportunities implies that none of the N

agents can achieve a (model independent) market arbitrage opportunity, namely, that the set of

achievable payoffs G cannot contain elements of the form (0, · · · , gi, · · · , 0) with gi(ω) ≥ ε > 0 for

every ω ∈ Ω.

Condition 2 provides information regarding the existence of an evaluation measure Q. If it is

possible to make a position X ∈ CZ acceptable by adding an achievable payoff g ∈ G, then the

evaluation of X given by Q (and adjusted by γ) must be non negative. In particular, for the case

γ = 0 such an evaluation of X must be non-negative without adjustments. When G is a linear space

of functions in CZ , we can write Λ(kg + (−kg)) = Λ(0) = 0 ∈ A for any k ∈ R and g ∈ G ∩ CZ .

Then, condition 2 implies that

∑

EQi

[gi] = 0 for all g ∈ G ∩ CZ .

Using the terminology of [6], the probability vector Q is called fair. If, in addition, G contains

vectors with only one non-zero components then Q is a vector of martingale measures, i.e., EQi [gi] =

0 for every (0, · · · , gi, · · · , 0) ∈ G.

Finally, condition 3 is the usual dual representation of the Fenchel-Moreau type. Following the

original interpretation of [4] each Q ∈ PZ is a plausible model for the risk X and it is called a

generalized scenario. The term ρ∗(−Q) has the role to penalize scenarios which are less plausible,

possibly by an infinite amount. The value ρ(X) is then the worst-case expectation across all

plausible scenarios, suitably penalized. We refer to [11, Chapter 4] and [14, Chapter 8], for more

details on the relevance of the dual representation for the univariate case and to [1] and [2] for a

comprehensive study of dual representations for systemic risk measures in the non-robust setting.

Remark 2.6. Using an argument similar to [12, Proposition 3.9 and 3.11], the dual representation

in item 3 could be reformulated as

ρ(X) = max
Q=(Q1,...,QN )∈PZ∩BarΛ−1(A)∩(−BarG)

{

N
∑

i=1

EQi [−X i]− σΛ−1(A)(Q)− σG(−Q)

}

, X ∈ CZ ,

where BarA :=
{

Q ∈ca+Z | σA(Q) < +∞
}

is the domain of finiteness of the support function

σA(Q) := supW∈A

∑N

i=1 E
Qi [−W i] of a set A⊆ B(RN ). Such a formula emphasizes the role of

the defining ingredients of ρ in the penalty function ρ∗. A thorough and extensive analysis - in the

non robust setting - of such decomposition of ρ∗ can be found in [2, Section 3.3]
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We next prove Theorem 2.5. On the technical side we need to adapt some results of [9] to

the multivariate case and we provide them in Section 3. Note that, differently from [9] we allow

A to contain purely negative acceptable position. This is important in the context of systemic

risk in order to include examples of aggregation functions which always yield non-positive random

variables, as in Example 2.3 equation (6). We start with an easy observation.

Lemma 2.7. The map ρ : B → [−∞,+∞] defined in (3) is monotone decreasing, convex and

(systemically) cash additive, namely

ρ(X + c) = ρ(X)−
N
∑

i=1

ci, for all X ∈ B and c ∈ RN .

Proof. Since Λ is increasing and A is monotone, the set Λ−1(A)− G is monotone and then mono-

tonicity of ρ is easily checked. Regarding convexity, for m,n ∈ RN such that m + X, n + Y ∈

Λ−1(A) − G, one gets λm + (1 − λ)n + (λX + (1− λ)Y ) ∈ Λ−1(A) − G, for all λ ∈ [0, 1], by the

convexity of Λ−1(A)− G . Hence,

ρ (λX + (1− λ)Y ) ≤ λ
N
∑

i=1

mi + (1 − λ)
N
∑

i=1

ni

and convexity now follows by taking the infimum overm and n satisfyingm+X, n+Y ∈ Λ−1(A)−G

on the right-hand side. The cash additivity property is trivial.

Proof of Theorem 2.5. 3 =⇒ 2. Let X ∈ CZ ∩ (Λ−1(A) − G). As Λ(X + g) ∈ A for some g ∈ G,

the definition of ρ implies that ρ(X) ≤ 0. By the dual formula for ρ in item 3, one obtains

γ = ρ(0) = max
Q∈PZ

−ρ∗(−Q) = − min
Q∈PZ

ρ∗(−Q),

implying the existence of Q̂ ∈ PZ such that ρ∗(−Q̂) = −γ. Using the definition of ρ∗ and ρ(X) ≤ 0,

we have

−γ = ρ∗(−Q̂) ≥ sup
X∈CZ∩(Λ−1(A)−G)

{

N
∑

i=1

EQ̂i

[−X i]− ρ(X)

}

≥ sup
X∈CZ∩(Λ−1(A)−G)

{

N
∑

i=1

EQ̂i

[−X i]

}

,

from which item 2 follows readily.

2 =⇒ 1. Let m ∈ RN , g ∈ G such that Λ(m + g) ∈ A. By item 2, there exists Q ∈ PZ such

that
∑N

i=1 m
i − γ =

∑N

i=1 E
Qi [mi]− γ ≥ 0, from which item 1 follows.

1 =⇒ 3. Set Φ(X) := ρ(−X) and notice that Φ is monotone increasing and convex. By the cash

additivity property of Lemma 2.7, Φ(m) = Φ(0) +
∑N

i=1 m
i, for all m ∈ RN . We now show that

Φ(0) = γ. By item 1, if m ∈ RN and Λ(m+g) ∈ A then
∑

mi ≥ γ, which implies Φ(0) = ρ(0) ≥ γ.

Moreover, by Condition (A), for all n ∈ N and z = z(n) large enough the following holds

γ ≤ Φ(0) ≤ Φ
(

n(Z − z)+1
)

≤
N

n
+ γ.

This implies ρ(0) = Φ(0) = γ. We now show that Φ is real valued on BZ . Let X ∈ BZ and k ∈ N

such that − 1
2kZ1 ≤ X ≤ 1

2kZ1. Using (A), there exists z = z(k) ∈ R+ large enough such that
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Φ(k(Z − z)+1) ≤ N
k
+ γ < ∞. By cash additivity, Φ(kz1) = Nkz < ∞. By monotonicity and

convexity of Φ we then deduce

Φ(X) ≤ Φ

(

k

2
Z1

)

= Φ

(

1

2
k(Z − z)1+

1

2
kz1

)

≤
1

2
Φ (k(Z − z)1) +

1

2
Φ(kz1)

≤
1

2
Φ
(

k(Z − z)+1
)

+
1

2
Φ(kz1) < ∞.

By convexity, for any Y we have γ = Φ(0) ≤ 1
2 (Φ(Y ) + Φ(−Y )), hence Φ(X) ≥ Φ(−k

2Z1) ≥

2γ−Φ(k2Z1) > −∞. The conclusion now follows as in the univariate case. Using [9, Lemma A.2],

Condition (A) implies that also Condition (12) in Theorem 3.1 below holds. Using Theorem 3.1

we obtain the representation ρ(X) = Φ(−X) = maxµ∈ca
+
Z
{〈−X,µ〉 − Φ∗(µ)} for all X ∈ CZ . It

is now sufficient to note that Φ(m[i]) = m + γ, where m[i] is the vector with the i-th coordinate

equals to m ∈ R and all the others are zero, to observe that Φ∗(µ) = +∞ for µ ∈ ca+Z\PZ. The

desired dual representation in item 3 follows from ρ∗(−µ) =Φ∗(µ), µ ∈ ca+Z .

This proves 1 ⇐⇒ 2 ⇐⇒ 3. Suppose now Condition (9) holds. The implications 5 =⇒ 4 and

4 =⇒ 2 are easily seen and similar to above. We conclude by proving 3 =⇒ 5. Consider once

again Φ(X) := ρ(−X). By (9), Φ satisfies condition 3 of Theorem 3.3 below. From item 3 and

Condition (A), Φ is a real-valued, increasing convex functional on BZ that satisfies Condition (16)

below. The desired representation follows from Theorem 3.3 Condition 1 and the fact that Φ∗(µ) =

+∞ for µ ∈ ca+Z\PZ , as in 1 =⇒ 3.

We end this section by discussing when the assumptions of Theorem 2.5 are satisfied. A trivial

case for (A) is when Ω is a compact subset of RT (J+1), as Z is a continuous function. On the other

hand, Assumption (9) is verified if ρ is continuous from below, since for all X ∈ UZ , there exists a

sequence (Yn)n∈N in CZ such that Yn ↑ X . We next present another sufficient condition for (A).

Proposition 2.8. Consider a continuous and strictly increasing aggregation function Λ and α :

PZ → R+ ∪ {+∞} satisfying:

1. infP∈PZ
α(P) = 0.

2. α(P) ≥ 1
N

∑N
i=1 E

Pi

β(Z) for all P ∈ PZ , where β : [1,+∞) → R is an increasing function

with the property limx→+∞
β(x)
x

= +∞.

Condition (A) holds for the following acceptance set:

A :=

{

X ∈ BZ(R) :
N
∑

i=1

EPi

[X ] + α(P) ≥ 0 for all P ∈ PZ

}

+ B+(R). (10)

Proof. The proof is similar to that of [9, Proposition 2.2] so we only present the main differences.

By passing to the lower convex hull, β in 2 can be assumed convex and Jensen’s inequality yields

α(P) ≥
1

N

N
∑

i=1

EPi

β(Z) ≥ β

(

N
∑

i=1

EPi

Z

)

.

Consider now the sets Ta :=
{

P ∈ PZ :
∑N

i=1 E
Pi

β(Z) ≤ a
}

, a ∈ R. By using that β is increasing

and Z ≥ 1, we deduce that, for each Pi with P ∈ Ta, it holds EP
i

β(Z) ≤ a − (N − 1)β(1) for

7



all i = 1, . . . , N . We deduce that the one-dimensional projections πi(Ta) are σ(PZ , CZ)-compact.

Hence, by identifying (CZ(R), ca
+
Z (R)) with (Cb(R), ca+(R)), one can use Prokhorov’s theorem to

obtain the compactness of πi(Ta). It follows that the sets {P ∈ PZ : α(P) ≤ a} , a ∈ R are relatively

σ(PZ , CZ)-compact. Define now τ : BZ(R) → R as

τ(X) := sup
P∈PZ

(

N
∑

i=1

EPi

[−X ]− α(P)

)

,

so that one can rewrite A = {X ∈ BZ(R) : τ(X) ≤ 0} + B+(R). Fix n ∈ N and take Xz :=

( 1
n
− n(Z − z)+)1 ∈ BZ . Using that Λ is continuous and non-decreasing, −Λ(Xz) ↓ −Λ( 1

n
1) as

z → ∞. Using the compactness of the sets {P ∈ PZ : α(P) ≤ a}, we can now apply [9, LemmaA.4],

which readily extends to the multivariate case, to deduce that τ(Λ(Xz)) ↓ τ(Λ( 1
n
1)) = −NΛ( 1

n
1).

The last equality follows from 1 and, using that Λ is strictly increasing in this proposition, we

have −NΛ( 1
n
1) < 0. We deduce that for z large enough, Λ(Xz) is acceptable. Since n ∈ N was

arbitrary, Condition (A) is satisfied with the choice of γ = 0.

2.1 Different aggregation functions

As discussed in the introduction, an alternative way of measuring market-adjusted systemic risk

consists in the use of a second aggregation function Γ : RN → R for the payoffs of the trading

strategies. In this scenario, ρΓ is defined as in (4) and Theorem 2.5 changes consequently. In

particular, in this subsection the following Assumption replaces Assumption 2.2:

Assumption 2.9. 1. A ⊆ B(R) is monotone and 0 ∈ A ; G ⊆ B with 0 ∈ G.

2. The aggregation functions Λ : RN → R and Γ : RN → R are increasing with respect to the

componentwise order, concave and Λ(0) = Γ(0) = 0.

3. The set Λ−1(A− Γ(G)) = {X ∈ B | Λ(X) + Γ(g) ∈ A for some g ∈ G} is convex.

As in the previous case, ρΓ is still a monotone decreasing, convex and (systematically) cash

additive map, and the same functional analytic setting is considered.

Assumption 2.10. There exists γ ≤ 0 such that

∀n ∈ N, ∃z ∈ [0,+∞), ∃g ∈ G such that Λ

([

γ

N
+

1

n
− n(Z − z)+

]

1

)

+ Γ(g) ∈ A. (A)

Theorem 2.11. Under Assumption 2.10 the following are equivalent:

1. m ∈ RN ,
∑

mi < γ ⇒ ∄g ∈ G : Λ(m) + Γ(g) ∈ A.

2. There exists Q = (Q1, . . . ,QN) ∈ PZ such that
∑N

i=1 E
Qi [X i] − γ ≥ 0 for all X ∈ CZ

satisfying Λ(X) + Γ(g) ∈ A for some g ∈ G.

3. ρΓ is real valued on BZ , ρΓ(0) = γ and

ρΓ(X) = max
Q=(Q1,...,QN )∈PZ

{

N
∑

i=1

EQi [−X i]− ρ∗Γ(−Q)

}

, X ∈ CZ .
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If, in addition, one has

ρΓ(X) = inf
Y ∈CZ,Y≤X

ρΓ(Y ) for all X ∈ UZ , (11)

then 1–3 are also equivalent to each one of the following two conditions:

4. There exists Q = (Q1, . . . ,QN ) ∈ PZ such that
∑N

i=1 E
Qi [X i] − γ ≥ 0 for all X ∈ UZ

satisfying Λ(X) + Γ(g) ∈ A for some g ∈ G.

5. ρΓ is real valued on BZ , ρΓ(0) = γ and

ρΓ(X) = max
Q=(Q1,...,QN )∈PZ

{

N
∑

i=1

EQi [−X i]− ρ∗Γ(−Q)

}

, X ∈ UZ .

The proof of this theorem is analogous to the one of Theorem 2.5 and is omitted.

3 Multivariate analytical results and proofs

This section is dedicated to the extension of the analytical results in Section A.1 of [9]. The space

CZ of continuous functions X : Ω → RN such that each component of X/Z is bounded forms

a Stone vector lattice, with the partial order given by X ≤ Y ⇐⇒ X i(ω) ≤ Y i(ω) ∀ω ∈

Ω, ∀i = 1, . . . , N . In [9] the cone ca+Z (R) is endowed with the weak convergences topology

σ
(

ca+Z (R), CZ(R)
)

, derived by the one described in Chapter 8 of [7]. Since a sequence of mul-

tivariate measures
(

µn = (µ1
n, . . . , µ

N
n )
)

n
weakly converges (⇀) to a multivariate measure µ =

(µ1, . . . , µN) if and only if µi
n ⇀ µi for all i = 1, . . . , N , it is natural to endow ca+Z =

(

ca+Z (R)
)N

with the product topology. This choice allows for easy extensions of the analytical results to the

multivariate case, since compactness and metrizability are preserved for a finite product of topo-

logical spaces. In fact ca+Z (R) endowed with σ
(

ca+Z (R), CZ(R)
)

is metrizable, as stated in the

proof of [9, Lemma A.4]: since Ω is a separable metric space, this follows by results in [7, Sec-

tion 8.3]. Given a convex increasing functional Ψ : CZ → R∪{+∞}, its convex conjugate function

Ψ∗ : caZ → R ∪ {+∞} is defined in (8).

We first seek for a dual representation formula for general increasing convex functionals on CZ .

Theorem 3.1 (Multivariate version of [9, Theorem A.1]). Let Ψ : CZ → RN be an increasing

convex functional with the property that for every X ∈ CZ there exists a constant ε > 0 such that

lim
z→+∞

Ψ
(

X + ε(Z − z)+1
)

= Ψ(X). (12)

Then

Ψ(X) = max
µ∈ca+

Z

{〈X,µ〉 −Ψ∗(µ)} . (13)

Proof. Fix X ∈ CZ . By the definition of Ψ∗ it is obvious that

Ψ(X) ≥ sup
µ∈ca

+
Z

{〈X,µ〉 −Ψ∗(µ)} . (14)

We extend the approach of [9, Theorem A.1] to this setting. The Hahn-Banach extension

theorem applied to the null functional on the trivial subspace {0} ⊆ CZ implies the existence of an
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increasing linear functional ζX : CZ → R dominated by ΨX(Y ) := Ψ(X + Y ) − Ψ(X). Moreover,

one can define N increasing linear functionals ζiX : CZ(R) → R as follows: For ϕ ∈ CZ(R) and

ϕ[i] := (0, . . . , 0, ϕ, 0, . . . , 0) ∈ CZ , i. e. ϕ
[i] is the N -dimensional functional with the i-th component

equals to ϕ and all the others are zero, we set

ζiX(ϕ) := ζX(ϕ[i]). (15)

Hence, since ζX is linear, for all Y = (Y 1, . . . , Y N ) ∈ CZ we have ζX(Y ) =
∑N

i=1 ζ
i
X(Y i). It will

now be sufficient to prove that, for (Xn)n in CZ satisfying Xn ↓ 0, there exists a constant η > 0

such that ΨX(ηXn) ↓ 0. This would imply that ζX(Xn) ↓ 0, as ζX is linear and dominated by

ΨX . So, given (ϕn)n in CZ(R) satisfying ϕn ↓ 0, by (15) it follows that ζiX(ϕn) = ζX(ϕ
[i]
n ) ↓ 0 for

all i = 1, . . . , N , since (ϕ
[i]
n )n is a sequence going to 0 in CZ . Hence, as in the univariate case, the

Daniell-Stone theorem implies that there exists µi
X ∈ ca+Z (R) such that ζiX(ϕ) =

〈

ϕ, µi
X

〉

for all

ϕ ∈ CZ(R). Defining µX := (µ1
X , . . . , µN

X) ∈ ca+Z , one has, for all Y ∈ CZ ,

ζX(Y ) =

N
∑

i=1

ζiX(Y i) =

N
∑

i=1

〈

Y i, µi
X

〉

= 〈Y, µX〉 .

Since ΨX(Y ) ≥ ζX(Y ) for all Y ∈ CZ , by the identity Y = X + Y − X it follows that

〈X,µX〉 − Ψ(X) ≥ 〈X + Y, µX〉 − Ψ(X + Y ). Moreover, as for any W ∈ CZ , Y := W −X is still

in CZ , it follows that

〈X,µX〉 −Ψ(X) ≥ 〈W,µX〉 −Ψ(W )

for all W ∈ CZ . Hence, Ψ∗(µX) = 〈X,µX〉 − Ψ(X). This implies, along with (14), the dual

representation in (13) and the maximum is attained by µX . From now on the proof is identical

to the one of [9, Theorem A.1], we provide it for completeness. Fix (Xn)n in CZ satisfying

Xn ↓ 0, ε > 0 such that (12) holds and m > 0 so that X1 ≤ mZ1. Set η = ε
4m and δ > 0.

Assumption 12 implies the existence of a z > 0 such that ΨX(ε(Z − z)+1) < δ, and the set

{Z ≤ 2z} is compact. It is important to note that each component of Xn is continuous for all n.

So, there are no difficulties in the application of Dini’s lemma, which implies that

xn := (x1
n, . . . , x

N
n ), for xi

n := max
ω∈{Z≤2z}

X i
n(ω),

are the elements of a sequence in RN decreasing to 0. Also, for x ∈ RN , x 7→ ΨX(x) is a continuous

function since it is convex from RN to R, and so there exists n0 such that ΨX(2ηxn) ≤ δ for all

n ≥ n0. Now,

Xn ≤ Xn1{Z≤2z} +X11{Z>2z} ≤ xn1{Z≤2z} +mZ11{Z>2z} ≤ xn + 2m(Z − z)+12

implies that Xn−xn

2m ≤ (Z − z)+1, and therefore, since ΨX is increasing,

ΨX(2η(Xn − xn)) = ΨX

(

ε
Xn − xn

2m

)

≤ δ for all n.

This gives, by the convexity of ΨX and the fact that ΨX(0) = 0, that

ΨX(ηXn) ≤
ΨX(2ηxn) + ΨX(2η(Xn − xn))

2
≤ δ for all n ≥ n0,

implying that ΨX(ηXn) ↓ 0. This completes the proof.

2It is trivial to verify mZ1{Z>2z} ≤ 2m(Z − z)+, since if ω /∈ {Z > 2z}, then 0 ≤ 2m(Z − z)+ and, if

ω ∈ {Z > 2z}, then mZ ≤ 2m(Z − z) ⇐⇒ Z > 2z.
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A sufficient condition for Condition (12) is the following:

lim
z→+∞

Ψ
(

n(Z − z)+1
)

= Ψ(0) for every n ∈ N. (16)

As stated in [9, Lemma A.2], that is trivially valid in a multivariate case, Condition (16)

implies Condition (12) for an increasing convex functional Ψ : CZ → R. We next extend the dual

representation to UZ ,

Lemma 3.2 (Multivariate version of [9, Lemma A.3]). Let Ψ : CZ → R be an increasing convex

functional. The following hold.

1. There exists an increasing convex function ϕ : R+ → R ∪ {+∞} satisfying limx→+∞
ϕ(x)
x

=

+∞ such that Ψ∗(µ) ≥ ϕ (〈Z1, µ〉) for all µ ∈ ca+Z .

2. If Ψ satisfies (16), the sublevel sets Ta :=
{

µ ∈ ca+Z : Ψ∗(µ) ≤ a
}

, a ∈ R, are σ(ca+Z , CZ)-

compact.

Proof. Defining ϕ(x) := supy∈R+ {xy −Ψ(yZ1)}, item 1 follows as in [9, Lemma A.3]. By defini-

tion, Ψ∗ is a σ(ca+Z , CZ)-lower semicontinuous function. Hence, the sets Ta are σ(ca+Z , CZ)-closed.

Every µ ∈ Ta satisfies

m
〈

(Z − z)+1, µ
〉

−Ψ
(

m(Z − z)+1
)

≤ Ψ∗(µ) ≤ a for all m, z ∈ R+.

Hence, by the definition of Ψ∗ and Assumption (16) one has that, for every m ∈ R+, there exists

a z ∈ R+ such that
〈

(Z − z)+1, µ
〉

≤
a+Ψ(0) + 1

m
for all µ ∈ Ta.

Let us now consider, for i ∈ {1, . . . , N}, the projection map πi : ca+Z → ca+Z (R), π
i : (µ1, ..., µN ) 7→

µi and the set πi(Ta). It obviously holds that
〈

(Z − z)+, µi
〉

≤ 〈(Z − z)+1, µ〉, leading to the fol-

lowing inequality (that is Condition (A.5) in the proof of [9, Lemma A.3]):

lim
z→+∞

sup
µi∈πi(Ta)

〈

Z1{Z<2z}, µ
i
〉

≤ lim
z→+∞

sup
µ∈Ta

〈

Z1{Z<2z}, µ
〉

≤ lim
z→+∞

sup
µ∈Ta

〈

2(Z − z)+1, µ
〉

= 0.

From item 1, it follows that
〈

Z, µi
〉

≤ 〈Z1, µ〉 ≤ ϕ−1(a) < +∞ ∀µ ∈ Ta (and so ∀µi ∈ πi(Ta))

that is condition (A.6) in [9] for πi(Ta). Identifying CZ with the space of N -dimensional vectors of

continuous bounded functions Cb by the function f : X 7→ X
Z
and ca+Z with the set ofN -dimensional

vectors of finite Borel measures ca+ by the function g : µ 7→ Zdµ, conditions (A.5) and (A.6)

imply that πi(g(Ta)) = h(πi(Ta)) is tight, where h : ca+Z(R) → ca+, µ1 7→ Zdµ1. So one obtains

from Prokhorov’s theorem that h(πi(Ta)) is σ
(

ca+(R), Cb(R)
)

-compact, that is equivalent to πi(Ta)

being σ
(

ca+Z (R), CZ(R)
)

-compact. Clearly, since Ta is a closed subset of π1(Ta) × · · · × πN (Ta),

which is a σ(ca+Z , CZ)-compact set as product of compact sets, Ta is σ(ca+Z , CZ)-compact.

Theorem 3.3 (Multivariate version of [9, Theorem A.5]). Let Ψ(X) : UZ → R be an increasing

convex functional satisfying Condition (16). Then the following are equivalent:

1. Ψ(X) = maxµ∈ca
+
Z
{〈X,µ〉 −Ψ∗(µ)} for all X ∈ UZ

11



2. Ψ(X) ↓ Ψ(X) for all X ∈ UZ and every sequence (Xn)n in CZ such that Xn ↓ X

3. Ψ(X) = infY ∈CZ ,Y≥X Ψ(Y ) for all X ∈ UZ

4. Ψ∗(µ) = supX∈UZ
{〈X,µ〉 −Ψ(X)} for all µ ∈ ca+Z .

Proof. The proof follows from Theorem 3.1 and Lemma 3.2 as in the univariate case and we thus

omit that. This is because the convergence is intended componentwise and the results can be

applied on each coordinate.
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