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Abstract. We present a three dimensional, time dependent model for bone regeneration in the pres-

ence of porous scaffolds to bridge critical size bone defects. Our approach uses homogenized quanti-

ties, thus drastically reducing computational cost compared to models resolving the microstructural
scale of the scaffold. Using abstract functional relationships instead of concrete effective material

properties, our model can incorporate the homogenized material tensors for a large class of scaf-

fold microstructure designs. We prove an existence and uniqueness theorem for solutions based on
a fixed point argument. We include the cases of mixed boundary conditions and multiple, interact-

ing signalling molecules, both being important for application. Furthermore we present numerical

simulations showing good agreement with experimental findings.
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1. Introduction

In this work, we are concerned with the development and well-posedness of a simple and efficient model
for bone regeneration in the presence of a bioresorbable porous scaffold. The essential processes are
an interplay between the mechanical and biological environment which we model by a coupled system
of PDEs and ODEs. The mechanical environment is represented by a linear elastic equation and the
biological environment through reaction-diffusion equations as well as as logistic ODEs, modelling sig-
nalling molecules and cells/bone respectively. Material properties are incorporated using homogenized
quantities not resolving any scaffold microstructure. This makes the model efficient in computations,
thus suitable as a forward equation in optimization algorithms and opening up the possibility of patient
specific scaffold design in the sense of precision medicine.

We analyze the model mathematically, proving well-posedness. We stress that we allow data that is
realistic for applications, i.e., non-smooth domains and mixed Dirichlet-Neumann boundary conditions.

The article is organized as follows. Next, we give an introduction into tissue engineering for the treat-
ment severe bone defects and present our computational model. Then, we discuss its weak formulation
in section 2 and prove an existence and uniqueness result in section 3. Finally, numerical simulations
are presented in 4. Appendix A is concerned with regularity results for Dirichlet-Neumann boundary
value problems and Appendix B contains results on Banach space valued ODEs. We include the latter
because, even though the results are folklore, we are not aware of any references.

1.1. Scaffold Mediated Bone Growth. The regeneration and restoration of skeletal functions of
critical-sized bone defects (>25 mm) are very challenging despite a multitude of treatment options
[34]. The main problem is the phenomenon of non-union where the bone defect fails to become bridged
after >9 months and does not show healing progression for 3 months [9]. With 1.9%, the prevalence
of non-union per fracture is relatively low [33], yet the financial burden is high, for example, in the
UK, the healthcare cost is estimated to be £320 million annually [47]. Moreover, the risk of non-union
increases drastically with comorbidities such as diabetes as in this case the regenerative capability of
bone tissue is compromised [32].

Critical-sized defects may not heal and require in-depth planning of their treatment. Currently used
therapeutic approaches include bone grafting, distraction osteogenesis, and the so-called “Masquelet”
technique, in which a periosteal membrane is formed to induce bone defect healing [34]. Despite having
a general guideline for treatment of critical-sized bone defects, healing outcomes vary highly, depen-
dent on the site and size of the defect and patient-related aspects, e.g., age, lifestyle and comorbid
metabolic/systemic disorders [42].

Over the years, research illustrated the potential of using porous, possibly bio-resorbable support
structures, so-called scaffolds, as supporting devices to promote bone defect regeneration. Initially, a
scaffold is placed in the defect site, acting as a temporary support structure allowing for vascular-
ization while guiding new bone formation. This has recently shown promising results in vivo and in
clinical cases, for example [36] showed that the architecture of the scaffold can guide the endochondral
healing of bone defects in rats. In this study, collagen-based scaffolds with cylindrical pores aligned
along the principle stress axis were used. In [14, 35], 3D-printed scaffolds made from a composite of
polycaprolactone (PCL, a slowly degrading, bio-resorbable synthetic thermoplastic) and β-tricalcium
phosphate (β-TCP) were used in an ovine experiment. In the studies [36, 14, 35] no relevant bridging of
the bone defect was achieved without the addition of exogenous growth factors or cells. However, [38]
illustrated that clinically relevant bone formation for scaffold mediated bone regeneration is possible
without exogenous growth factors. In this experiment a 3D-printed titanium scaffold with optimized
mechanobiological properties was used and displayed clinically relevant functional bridging of a major
bone defect in a large animal model. Concluding, these studies [36, 14, 35, 38] indicate the possibility
of using a scaffold-mediated bone growth approach for critical-size bone defect healing. Furthermore
they indicate that the design and choice of materials are critical questions not yet fully understood.

There are several objectives to be considered when designing a scaffold, such as (a) the porosity, pore
size and shape, influencing cell proliferation and differentiation as well as the vascularization process;
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(b) the overall stability and elastic properties guaranteeing a proper transfer of loads, as mechanical
stimulus is indispensable for bone growth; (c) patient specific information such as reduced bone healing
capacities, caused for example by diabetes [32]. Therefore, the patient dependent optimal scaffold
design is of fundamental importance and with the advent of additive manufacturing technologies the
production of personalized scaffolds is – in theory – fully feasible.

However, the design of scaffolds has been dominated by trial-and-error approaches – modifying an
existing scaffold architecture based on experimental outcomes, a very costly workflow unsuitable for
patient specific design. Over the years, with the help of evolving computer aided design tools, topology
optimization techniques have shown potential to address the optimal design question computationally.

This strategy has already been applied to design scaffolds meeting elastic optimality conditions with a
given porosity or fluid permeability [17, 16, 30, 23, 10, 25, 50, 19]. Yet, a common limitation to these
models is that they do not resolve the time dependence of the bone regeneration process, as scaffold
mediated bone regeneration crucially depends on the varying elastic moduli over time.

Highly accurate, fine scale models for bone formation exist (see, e.g., [28, 43, 2, 11]). A central issue in
most such micro-scale models is that their use in optimization routines for scaffold design is impeded
by too high computational cost. Ideally, a bone regeneration scaffold design should be patient specific,
i.e., depend on the individual patient’s defect site and its biomechanical loading conditions, geometry,
and regenerative ability as influenced by, e.g., comorbitities such as type 2 diabetes mellitus. Such an
optimization of course relies on the availability of highly efficient models for bone regeneration that
nevertheless take into account mechanics and biological signalling.

Based on a previous, one-dimensional study [39], we thus propose a model based on homogenized
quantities suitable for scaffold optimization in the sense of the first step in the “Shape Optimization
by the Homogenization Method” [3]. This means that our model does not resolve the micro-structure
of the scaffold design, but uses coarse-grained values instead. In a scaffold based on a unit cell design,
the scaffold volume fraction (or equivalently, the porosity) changes on a larger length-scale than the
unit cell design. We use this fact to simplify our model, working with meso-scale averages of the
volume fraction instead of the precise micro-structure. Likewise, the other quantities of the model can
be viewed as locally averaged values. However, it should be made clear that using such an approach
implies that only the averaged quantities can be tracked over the regeneration process and no prediction
on how the micro-structure changes over time can be made. Rather, this is required as an input to
provide the correct homogenized material properties. Our central assumption is that one can describe
the time-evolution of the homogenized quantities in terms of their averages at the initial time-point.
Compared to the aforementioned one-dimensional approach, our model can resolve important issues
such as bone mass loss due to stress shielding in orthopaedic implants, see section 4 for an explicit
example.

As our model is designed for computational efficiency we include only key events in the course of the
bone healing process. We keep track of the mechanical environment at every point in time and space,
depending on the current state of bone formation and scaffold degradation in terms of its molecular
weight. Here we focus on additively manufactured scaffolds made out of PCL, a very promising material
for this specific application. Of course, extensions to other materials (e.g., non-degrading titanium) are
possible. The biological environment is represented via a concentration of endogenous angiogenic and
osteoinductive factors (e.g., intrinsic growth factors/cytokines) which we call bio-active or signalling
molecules and a concentration of osteoblasts, a type of bone forming cell. The coupling of the mechan-
ical and biological properties is assumed to be driven through the local strain caused by mechanical
loading of the scaffold-bone composite, i.e., mechanical loading leads to stimulus for the biological
environment which in turn leads to bone growth and hence changes the mechanical properties.

This results in a coupled system of evolution equations composed of a linear elastic equilibrium equa-
tion for every point in time, diffusion equations for the bio-active molecules and ordinary differential
equations for the concentration of osteoblasts and the volume fraction of bone. As our main mathemat-
ical result we prove that this system admits a unique solution in a certain weak sense, see Theorem 3.2.
This shows that our model is well-posed, a necessary requirement for a reasonable biological model.
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The strategy used to prove Theorem 3.2 is to apply a fixed-point theorem on a map associated with
the coupled system of equations, see the beginning of section 3 for a precise description. The main
difficulty we encounter is the notorious low regularity of mixed Dirichlet-Neumann boundary value
problems [44, 26, 21] which one is forced to consider when one desires to allow for realistic boundary
conditions See Appendix A where we collect results from the literature that are helpful in our case.

As our main focus lies on the existence and uniqueness results, we do not use concrete homogenized
tensors in the equations, but abstract functional relationships. This has the advantage of proving the
result for a wide class of imaginable scaffold architectures at once. The concrete micro-structure can
then be taken into account when one performs numerical simulations. In the same spirit we keep
the rest of the equations abstract, preferring functional relationships over concrete formulas. This
constitutes also a perspective for future research: derive concrete homogenized quantities for certain
scaffold details, compare the outcome to experimental results, and employ the model in an optimization
routine analogous to the one presented in [39]. The 3-dimensionality of the model makes an optimization
of the scaffold porosity considerably more challenging from a numerical viewpoint – but due to the
efficient, homogenized, model it is within reach to provide patient specific optimal scaffold designs that
depend on the individual’s defect site and geometry, as well as their regeneration capacity.

1.2. The System of Equations. Let Ω ⊂ R3 be the domain of computation, i.e., the bone defect site,
and let I = [0, T ] be some finite time interval. On the defect site we keep track of the local scaffold
volume fraction called ρ(x), with x ∈ Ω. Equivalently, the relation to the local scaffold porosity θ
is given by θ(x) = 1 − ρ(x), but we work with ρ exclusively. Note that we do not assume a time
dependency for ρ as experimental findings [37] have shown that, in the time-window relevant for us,
PCL degrades via bulk erosion. However, the molecular mass decreases and we keep track of this by
introducing the exponential decay σ(t) = e−k1t, making the product ρ(x) · σ(t) the quantity encoding
the mechanical properties of PCL over time and space. Furthermore, we denote the local bone density
by b(t, x) and the three quantities b, σ and ρ together determine the mechanical material properties
of the bone-scaffold composite. We model this composite in the linear elastic regime using an elastic
tensor C(ρ, σ, b) to capture the material properties.

In the spirit of the homogenization approach we assume little on the concrete properties of this tensor,
in particular we do not assume isotropy. For a particular choice of micro-structure C(ρ, σ, b) can be
made explicit. In order to quantify the elastic stimulus throughout the bone-scaffold composite we
introduce a displacement field u(t, x) satisfying the equation of mechanical equilibrium (1.1). The
corresponding strain is denoted by ε(u), with ε(u) = 1

2 (Du+DTu) the symmetrized derivative.

For the biological environment we introduce N bio-active molecules denoted by a1(t, x), . . . , aN (t, x),
these are endogenous angiogenic and osteoinductive factors which we assume to diffuse depending
on the scaffold density ρ. This is captured by Di(ρ) in the equation (1.2) and is left as an abstract
functional relationship for the same reasoning as the elastic tensor. Furthermore, we assume the bio-
active molecules to decay at a certain rate and to be produced in the presence of strain and a local
density of specific cells (e.g., osteoblasts) which we denote by c(t, x). The essential quantity for the
production of bio-active molecules is |ε(u)|δ, where | · |δ is a functional relationship which we propose
to view as a usual Euclidean norm or a truncated version thereof, see also (2.12). The concentrations of
bio-active molecules are normalized to unity in healthy tissue and the choice of decay and production
rate should reflect this in a concrete simulation.

Equation (1.3) governing the production of bone forming cells (here: osteoblasts) is modeled by lo-
gistic growth and a functional relationship H(a1, . . . , aN , c, b) allowing driving factors for osteoblast
production to be the concentrations of bio-active molecules (causing differentiation of stem cells to
osteoblasts), the proliferation of osteoblasts and the maturity of the bone present. Note that we do
not model diffusion in this equation as we assume that osteoblasts diffuse on a significantly lower level
than the bio-active molecules. Of course, more than one cell type is present and responsible for bone
growth. For simplicity we only include osteoblasts in this model, but an extension is easily feasible here.
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Finally, the equation modelling bone growth (1.4) follows the same pattern as the one for osteoblast
concentration. In summary, our system of equations reads

0 = div
(
C(ρ, σ, b)ε(u)

)
(mechanical equilibrium)(1.1)

dtai = div
(
Di(ρ)∇ai

)
+ k2,i|ε(u)|δc− k3,iai

(diffusion, generation, and decay of i =
1 . . . N bio-molecules)

(1.2)

dtc = H(a1, . . . , aN , c, b)

(
1− c

1− ρ

)
(osteoblast generation)(1.3)

dtb = K(a1, . . . , aN , c, b)

(
1− b

1− ρ

)
(bone regeneration driven by a, b and c).(1.4)

In the above system k1, k2,i, k3,i ≥ 0, i = 1, . . . , N are constants that need to be determined from
experiments, compare to the section 4 where we discuss certain choices. The functional relationships
C, Di(ρ), | · |δ, H and K are all required to satisfy certain technical assumptions that guarantee the
well-posedness of the above system. We discuss this in detail in section 2.

Finally, we need to specify boundary conditions. For the elastic equilibrium equation we allow mixed
boundary conditions including the limiting cases of a pure displacement boundary condition and a pure
stress boundary condition. As for the bio-active molecules we assume that these are in saturation, i.e.,
a(t, x) = 1 adjacent to bone and on the rest of the boundary of Ω we assume no-flux boundary
conditions. For the initial time-point we propose ai(0, x) = ai,0 = 0 inside of Ω. This choice reflects the
scenario of a scaffold that is not preseeded with exogenous growth factors. However, different choices of
ai,0 are admissible and allow the model to cover e.g., pre-seeding with osteoinductive factors. Finally, at
the initial time we assume that no osteoblasts and no regenerated bone are present inside the domain
of computation. In formulas, it holds for all i = 1, . . . , N

ai(0, x) = 0 for all x ∈ Ω(1.5)

ai(t, x) = 1 for all t ∈ I, x adjacent to bone(1.6)

Dρ
i∇ai(t, x) · η = 0 for all t ∈ I, x not adjacent to bone(1.7) (

C(ρ, σ, b)ε(u(t, x))
)
· η = gN (x) on the Neumann boundary of Ω(1.8)

u(t, x) = gD(x) on the Dirichlet boundary of Ω(1.9)

c(0, x) = b(0, x) = 0 for all x ∈ Ω.(1.10)

The model allows for a time dependent choice of the mechanical loading gD and gN . Due to the long
regeneration time horizon of approximately 12 months, however, it is not expedient to resolve very
short time-scales of, e.g., the mechanics of physical therapy. Instead, we consider suitably time-averaged
loading conditions here.

1.3. Concrete Examples. We provide a number of possibilities for choosing the functional relation-
ships C, D,H and K and boundary conditions for the mechanical equilibrium equation 1.1. For an
easy example of the elastic tensor that does not need to be derived by a complicated homogenization
procedure we simply use the Voigt bound. If we denote by Cb and Cρ the elastic tensors of matured
bone and intact PCL respectively (in their simplest form modelled as isotropic materials) we thus
choose

C(ρ, σ, b) = bCb + ρσCρ.

This is in accordance with [39] where the same idea was used in a model with only one spatial variable.
Note that this C naturally is time-dependent as the quantities b and σ vary in time. While this example
may serve as a first choice, one could also fix a concrete scaffold micro-structure, such as a gyroid design,
and derive the explicit homogenized material properties (see, e.g., [3]).
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For the diffusivities Di(ρ) we propose a dependence on the scaffold density ρ, for example

Di(ρ) = ki(1− ρ) Id

where ki are constants that measure the diffusivity of the bio-active molecule ai without the presence
of the scaffold ρ. The term (1−ρ) accounts for reduced diffusivity for high PCL volume fractions. It is
heuristically clear, yet interesting to note, that a too dense scaffold impairs bone regeneration. This is
reflected in our model through the diffusivity above, since the amount of bioactive molecules is linked
to bone regeneration via the ODE (1.4). One could also imagine to derive the tensor Di(ρ) through
a homogenization process which would then again reflect the choice of a specific micro-structure. For
mathematical well-posedness reasons we are unable to allow the diffusivity Di(ρ) to depend on the
bone density b. Furthermore, we also assume that Di(ρ) does not depend on time.

Finally, we consider the functional relationships H and K inducing the production and proliferation
of osteoblasts and bone. To be covered by our mathematical analysis, in the realization of H and K
not more than two of the bio-active molecules should be multiplied. This is a technical mathematical
issue due to a possible lack of integrability. Compare also to Assumption 3.1 where we discuss this
issue rigorously. Consequently, we provide an example involving two bio-active molecules a1 and a2.
These can be assumed to have different production rates and half-lives. Then we set

H(a1, a2, c, b) = H(a1, a2, c) = k6a1a2(1 + k7c)(1.11)

hence bone growth only takes place when the full bio-environment, i.e., both molecules a1 and a2 are
present. Furthermore the proliferation of osteoblasts is represented by the term (1 + k7c). Again k6

and k7 are some constants that need to be chosen in accordance with experiments.

For K we propose a similar equation, modelling that bone growth takes place given the presence of
osteoblasts and a suitable biological environment, represented in the choice of K through the factor
a1. More precisely we set

K(a1, a2, c, b) = K(a1, c) = k4a1c.(1.12)

Another choice for K reflecting that different bio-active molecules are responsible for different stages
of bone formation and maturation is possible. This makes the functional relationship dependent of b.
We set

K(a, b) = f1(b)a1c+ f2(b)a2c.(1.13)

Now, f1 can be chosen with support on small values of b, such that in this stage molecule a1 is driving
the growth, and f2 with support on larger b, thus requiring a2 in later stages of regeneration. We
remark that empirically many different bio-molecules are observed and it is assumed that these are
linked to different biological processes [27].

2. Mathematical Formulation

In this section we describe the mathematical setting in which we prove the existence of a solution to
the system of equations (1.1) – (1.4). We also state the assumptions the functional relationships C,
Di, | · |δ H and K are required to satisfy.

2.1. The Domain. Fix a time interval I = [0, T ] with T > 0. The spatial domain Ω ⊂ Rn, with
n = 1, 2, 3 is assumed to be open, bounded and connected and for every equation we split the boundary
∂Ω into a Dirichlet part and a Neumann part. For the elastic equation we write ΓeD and ΓeN for Dirichlet
and Neumann boundary respectively, here ΓeD = ∅ is allowed. For the diffusion equations we write ΓdD
and ΓdN . To simplify notation we do not treat the case of different Dirichlet-Neumann partitions for
different diffusion equations, though this does not lead to further mathematical complications. Finally
we need to assume some regularity on Ω and the partition ∂Ω = ΓdD ∪ ΓdN for the diffusion equations,
namely the set Ω ∪ ΓdN needs to be Gröger regular which is a concept introduced in [22], see also
[24]. These regularity assumptions are tailored to provide a certain regularity of the solutions of the
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diffusion equations which we discuss in detail in Appendix A. These assumptions are very general and
cover the cases one wants to use in practice.

2.2. Admissible Data. The admissible scaffold volume fractions ρ are given as

(2.1) P := {ρ ∈ C0(Ω) | cP ≤ ρ(x) ≤ CP }

with some fixed constants 0 < cP < CP < 1, excluding unreasonable scaffold designs. To a scaffold
volume fraction ρ ∈ P we assign the set Wρ of admissible cell and bone volume fractions, consisting
of tuples of continuous functions in time and space

(2.2) Wρ := {(c, b) ∈ C0(I × Ω)2 | 0 ≤ c(t, x), b(t, x) ≤ 1− ρ(x)}.

2.3. The Elastic Equation. We begin with the Hookean law C. It depends on the scaffold and bone,
i.e., on ρ, σ and b and varies therefore in space and time. We assume that the map

(2.3) Wρ → L∞(I, L∞(Ω,L(Ms))) with b 7→ (t 7→ (x 7→ C(ρ, σ, b)(t, x)))

is Lipschitz continuous with Lipschitz constant LC independent of ρ ∈ P . Remember that σ is a fixed ex-
ponential decay. HereMs denotes the symmetric n×n matrices and L(Ms) is the space of linear maps
fromMs into itself, usually called the space of fourth order tensors. The space L∞(I, L∞(Ω,L(Ms)))
denotes a Bochner space, i.e., a Banach-space valued Lebesgue space, see, e.g., [18, 7]. In the follow-
ing we will often omit the cumbersome notation of dependencies on x and t for C. Spelling out the
definitions of the norms in (2.3) this Lipschitz continuity means that for all M ∈Ms it holds

(2.4) |C(ρ(x), σ(t), b1(t, x))M − C(ρ(x), σ(t), b2(t, x))M | ≤ LC ‖b1 − b2‖C0 |M |

for all (c1, b1), (c2, b2) ∈ Wρ and uniformly in ρ ∈ P and uniformly on the complement of a set of
measure zero in I ×Ω. Furthermore we assume that there are constants 0 < cC <∞ and 0 < CC <∞
such that

(2.5) sup
ρ,c,b
‖C(ρ, σ, b)‖L∞(I,L∞(Ω,L(Ms)))

≤ CC and inf
ρ,c,b

C(ρ, σ, b)M : M ≥ cC|M |2

where the supremum and infimum run over ρ ∈ P and b ∈ Wρ and A : B = trABT denotes the
full contraction of matrices. We now discuss the weak formulation of equation (1.1). Let ρ ∈ P and
(c, b) ∈ Wρ be some admissible functions. We first address the case where ΓeD has non-vanishing
measure and comment on the pure Neumann problem later. The strong form

− div
(
C(ρ, σ, b)ε(u)

)
= 0 in Ω, u|ΓeD = geD,

(
C(ρ, σ, b)ε(u)

)
η|ΓeN = geN

encodes that at every point in time mechanical equilibrium is achieved, making the equation time
dependent. The function space for the weak formulation is: L2(I,H1,2(Ω,Rn)) with H1,2(Ω,Rn) being
the Sobolev space of Rn-valued, square integrable functions with square integrable derivatives, see for
example [8, 21, 1] for a detailed account of such spaces. If the context is clear, we will usually write
H1(Ω) instead of H1,2(Ω,Rn). The space of test functions is L2(I,H1

De
(Ω)), where H1

De
(Ω) is the

subspace of H1(Ω) whose members vanish on ΓeD. For the Dirichlet boundary values we require geD to

be in L2(I,H1/2(ΓeD,Rn)), with H1/2(Γ), for some Γ ⊂ ∂Ω, being the trace space of H1(Ω), see for

example [1, 21]. The Neumann boundary values can be given as an element of L2(I,H1/2(ΓeN ,Rn)′).

Denoting by 〈·, ·〉H1/2 the dual pairing of H1/2(ΓeN ,Rn) the weak formulation of (1.1) is∫
I

∫
Ω

C(ρ, σ, b)ε(u) : ε(·) dxdt =

∫
I

〈geN , ·〉H1/2 dt in L2(I,H1
De(Ω))′(2.6)

u = geD in L2(I,H1/2(ΓeD)).

The left hand side of (2.6) equation defines an operator

T : L2(I,H1(Ω))→ L2(I,H1(Ω))′ with T u =

∫
I

∫
Ω

C(ρ, σ, b)ε(u) : ε(·) dxdt.



8 PATRICK DONDL, PATRINA S. P. POH, AND MARIUS ZEINHOFER

Note that the isometry L2(I,H1(Ω))′ =̃L2(I,H1(Ω)′) implies that the equation (2.6) can be under-
stood to hold almost everywhere in time, which is precisely what we want for our model. Furthermore,
Korn’s inequality can be used to show that T is coercive, see [13]. The advantage of the abstract for-
mulation is that it makes the Lax-Milgram Lemma applicable. Now we comment on the pure Neumann
boundary value problem, i.e., the case ΓeN = ∂Ω. We define the spaces W := ker(ε) ⊂ H1(Ω) and the
quotient H1(Ω)/W . Note that W consists of the functions of the form w(x) = Ax+ b, where A is an
anti-symmetric matrix and b ∈ Rn, see for example [12]. For the pure Neumann problem consider the
operator

T : L2(I,H1(Ω)/W )→ L2(I,H1(Ω)/W )′

using the induced map ε̂ : H1(Ω)/W → L2(Ω,Ms) in its definition

T (u) =

∫
I

∫
Ω

C(ρ, σ, b)ε̂(u) : ε̂(·) dxdt.

The codomain of this operator is L2(I,H1(Ω)/W )′ =̃L2(I, (H1(Ω)/W )′), which encodes a compat-
ibility condition. We assume that our Neumann boundary condition is given as a function geN ∈
L2(I,H1/2(∂Ω)′) that satisfies almost everywhere in I

(2.7) 〈geN (t), ·〉H1/2 = 0 for all w ∈W.

This guarantees that ∫
I

〈geN , · 〉H1/2 dt ∈ L2(I,H1(Ω)/W )′

is an admissible right hand side. The pure Neumann problem consists then of finding u ∈ L2(I,H1(Ω)/W )
such that ∫

I

∫
Ω

C(ρ, σ, b)ε̂(u) : ε̂(·) dxdt =

∫
I

〈geN , · 〉H1/2 dt ∈ L2(I,H1(Ω)/W )′,

Finally, let us remark that one can treat the Dirichlet, the Neumann and the mixed boundary value
problem at once by always passing to the quotient H1

De
(Ω)/W . In the case of a proper Dirichlet

boundary condition we then have W ∩ H1
De

(Ω) = {0}, which implies H1
De

(Ω)/W = H1
De

(Ω), hence
recovers the Dirichlet or mixed case, and if ΓeN = ∂Ω we retrieve the pure Neumann case.

2.4. Diffusion Equations. Before we state the weak formulation of the diffusion equations, for the
reader’s convenience, we recall the concept of the time derivative we are using – namely a regular
Banach space valued distribution with a dense embedding j ∈ L(X,X ′) just as in [7]. Let (i,X,H)
be a Gelfand triple, i.e., X is a Banach space, H is a Hilbert space and i ∈ L(X,H) has dense range.
Then we set j to be j = i′ ◦R ◦ i where R : H → H ′ is the Riesz isometry and i′ denotes the Banach
space adjoint of i. We say a function a ∈ L2(I,X) possesses a time derivative dta ∈ L2(I,X ′) if it
holds ∫

I

(j ◦ a)(t)∂tϕ(t) dt = −
∫
I

dta(t)ϕ(t) dt ∀ϕ ∈ D(I).

The integrals are X ′ valued Bochner integrals and we set D(I) := C∞c (I) as usual. This is used to
define a generalized Sobolev space built on the triple (i,X,H) as

H1,2,2(I,X,X ′) = {a ∈ L2(I,X) | dta ∈ L2(I,X ′)}.

See in [7, Chapter II, section 5] for more information. We only remark that functions in this Sobolev
space have representatives in C0(I,H), hence initial value problems can be formulated.

To get to our concrete diffusion equations we let ρ ∈ P , (c, b) ∈ Wρ and, depending on the boundary
conditions for the elastic equation, u ∈ L2(I,H1(Ω)) or u ∈ L2(I,H1(Ω)/W ) be some fixed functions.
In order to work with homogeneous Dirichlet boundary conditions in space we write

ai(t) = ãi(t) + 1 with ãi(t) ∈ H1
Dd

(Ω) for i = 1, . . . , N.
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Here H1
Dd

(Ω) denotes the subspace of H1(Ω) with vanishing trace on ΓdD. We can thus seek ãi in the

space H1,2,2(I,H1
Dd

(Ω), H1
Dd

(Ω)′) built around the triple (id|H1
Dd

, H1
Dd
, L2) satisfying the equation∫

〈dtãi, ·〉H1
Dd

+

∫∫
Dρ
i∇ãi∇ ·+k

3
i ãi · dxdt =

∫∫
(k2
i |ε(u)|δc− k3

i ) · dxdt(2.8)

ãi(0) = −1.(2.9)

The first equation is an equality in the space L2(I,H1
Dd

(Ω))′, i.e., it is required to hold when tested

with all members of L2(I,H1
Dd

(Ω)). In the second equation, the initial conditions is an equality in the

space L2(Ω). For every i = 1, . . . , N we have different constants k2
i and k3

i and also different diffusivities
Dρ
i . Note that the quantity |ε(u)|delta is well defined, even though the solution of the elastic equation

is only unique up to rigid body motions. We assume furthermore that the Dρ
i are time-independent,

measurable, essentially bounded and coercive, precisely

Dρ
i ∈ L

∞(Ω,Ms)(2.10)

〈Dρ
i ξ, ξ〉 ≥ cD|ξ|

2 ∀ξ ∈ Rn(2.11)

whereMs again denotes the symmetric n×n matrices and the inequality in (2.11) is to be understood
uniformly in x ∈ Ω, ρ ∈ P and i = 1, . . . , N . Finally the function | · |δ : Rn×n → [0,∞) is required to
to be globally Lipschitz and to satisfy an estimate of the form

(2.12) |A|δ ≤ C1|A|+ C2 for all A ∈ Rn×n

where C1, C2 > 0 and |A| denotes the Euclidean norm of a matrix.

2.5. Ordinary Differential Equations. We treat the ordinary differential equations in the vector
valued sense and focus here on the cell equation (1.3), the bone equation (1.4) being treated analogously.
For each x ∈ Ω, we thus seek a function cx satisfying the ODE

c′x(t) = H(a1(t, x), . . . , aN (t, x), cx(t), b(t, x))

(
1 +

cx(t)

1− ρ(x)

)
with cx(0) = 0. If there is a solution for all x ∈ Ω we obtain a function c in time and space, i.e.,
c : I ×Ω→ R with c(t, x) := cx(t). As H(a1, . . . , aN , c, b) can not generally assumed to be continuous,
a reasonable space to work in is

W 1,p(I,X) = {c ∈ Lp(I,X) | dtc ∈ Lp(I,X)},
similar to the space for the diffusion equation, but without the identification j : X ↪→ X ′. An existence
and uniqueness result in this setting can be found in the appendix, see Theorem B.2.

In our concrete case we choose X = C0(Ω), p = 2, so for fixed ρ ∈ P and a = (a1, . . . , aN ) ∈
H1,2,2(I,H1(Ω), H1

Dd
(Ω)′)N we seek c ∈W 1,2(I, C0(Ω)) satisfying

(2.13) dtc = H(a1, . . . , aN , c, b)

(
1− c

1− ρ

)
with c(0) = 0.

We assume that H is a Nemytskii operator induced by a function which we again denote by H,

(2.14) H : RN+2 → R with (a1, . . . , aN ) = a 7→ H(a)

such that H(a, c, b) ≥ 0 whenever a1, . . . , aN , b, c ≥ 0. Furthermore we assume that H is locally
Lipschitz continuous. Note that by some abuse of notation we denote by a, b and c both a function in
a Sobolev space and a vector in Euclidean space.

For the bone ODE we work in the same space and seek b ∈W 1,q(I, C0(Ω)) satisfying

(2.15) dtb = K(a1, . . . , aN , c, b)

(
1− b

1− ρ

)
with b(0) = 0.

We assume the functional relationship K is induced by

K : RN+2 → R with (a, b, c) = (a1, . . . , aN , b, c) 7→ K(a, b, c)
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that satisfies K(a1, . . . , aN , b, c) ≥ 0 for a1, . . . , aN , b, c ≥ 0 and that K is locally Lipschitz continuous
as a map K : RN+2 → R. Finally, we need another assumption on H and K that is connected to the
integrability and the regularity properties of the solutions to the diffusion equations, see assumption
3.1. We summarize our setting.

Assumption 2.1. We assume domain regularity as discussed in subsection 2.1, define the admissible
scaffold densities P in (2.1) and the set Wρ in (2.2). The material tensor C satisfies (2.3) and (2.5) and
admissible boundary conditions for the elastic equation are given in (2.6) and (2.7). For the diffusion we
assume (2.10) and (2.11) and | · |δ must satisfy (2.12). The functional relationships H and K need to be
locally Lipschitz, preserve positivity and satisfy the technical assumption 3.1 concerning integrability.

3. Existence and Uniqueness

In this section we will prove that there exists a unique solution to the system (1.1)–(1.4) in the weak
sense, i.e., there are functions u∗ = ũ∗+ugeD with ũ∗ ∈ L2(I,H1

De
(Ω)/W ) and ugeD|ΓeD = geD, a∗ = ã∗+1

with ã∗ ∈ H1(I,H1
Dd

(Ω), H1
Dd

(Ω)′), c∗ ∈W 1,p(I, C0(Ω)) and b∗ ∈W 1,q(I, C0(Ω)) satisfying∫
I

∫
Ω

C(ρ, σ, b∗)ε̂(ũ∗ + ugeD ) : ε̂(·) dxdt =

∫
I

〈geN , · 〉H1/2(ΓeN )dt(3.1) ∫
〈dtã∗i , ·〉+

∫∫
Dρ
i∇ã

∗
i∇ ·+k3

i ã
∗
i · dxdt =

∫∫
(k2
i |ε(u∗)|δc∗ − k3

i ) · dxdt(3.2)

ã∗i (0) = −1, with i = 1, . . . , N,(3.3)

dtc
∗ = H(a∗1, . . . , a

∗
N , c

∗, b∗)

(
1− c∗

1− ρ

)
with c∗(0) = 0,(3.4)

dtb
∗ = K(a∗1, . . . , a

∗
N , c

∗, b∗)

(
1− b∗

1− ρ

)
with b∗(0) = 0.(3.5)

The proof of this result relies essentially on the elementary fixed point theorem of Banach which we
will employ for the complete metric space Wρ. The strategy is to fix ρ ∈ P , then start with some
arbitrary admissible functions (c, b) ∈ Wρ and to solve the equations successively. More precisely, the
elastic equation will yield u = u(c, b), the diffusion equations ai = ai(c, u), the cell equation will be
solved with data ai and b yielding an updated cell function c = c(ai, b) and finally the bone equation
will be solved with data ai and c to get an updated bone function b = b(ai, c). This procedure gives
rise to an operator I which we will refer to as the iteration operator, formally

I : Wρ →Wρ with (c, b) 7→ (c, b).

It is easy to see that all possible solutions to (3.1)–(3.5) correspond to all possible fixed-points of I. The
crucial part of the proof consists of establishing regularity for the solutions of the diffusion equations,
see also Appendix A for a discussion of results known in the literature serving our purpose.

Finally, the whole strategy discussed above does only work on a short time interval I = [0, T ], i.e., T
small enough. However, by a continuation argument we can afterwards extend this solution to span
any finite time interval. We will need a technical assumption on the ODEs in connection with the
iteration operator I. This is due to the fact that we cannot guarantee an L∞(I × Ω) bound on the
solutions to the diffusion equations. See also Remark 3.3 on when the following assumption holds.

Assumption 3.1. Let ρ ∈ P and (c, b) ∈Wρ and denote by u ∈ L2(I,H1(Ω)/W ), a ∈ L2(I, C0(Ω)N )

and c ∈ C0(I × Ω) the functions produced by solving the equations successively as in the definition
of the iteration operator I. The existence and regularity of these solutions is discussed in the main
theorem. Assume there exists p ∈ [1,∞] such that for every bounded set B ⊂ C0(Ω) there are functions
mH
B ∈ Lp(I) and LHB ∈ L1(I) such that it holds

‖H(a(t), c̃, b(t)‖C0(Ω) ≤ m
H
B (t) for all c̃ ∈ B, a.e. in I,(3.6) ∥∥H(a(t), c̃, b(t))−H(a(t), ˜̃c, b(t))

∥∥
C0(Ω)

≤ LHB (t) for all c̃, ˜̃c ∈ B, a.e. in I.(3.7)
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Furthermore assume that there are functions λH and βH in L1(I) and αH ∈ L2(I) such that we can
estimate, independently of the choice of (c, b) ∈Wρ (and consequently a and c),

‖H(a(t), c(t), b(t))‖C0(Ω) ≤ λ
H(t).(3.8)

Additionally, uniformly for any (c1, b1), (c2, b2) ∈Wρ and corresponding a1, a2, c1, c2, we have∥∥H(a1(s), b1(s), c1(s))−H(a2(s), b2(s), c2(s))
∥∥
C0(Ω)

≤ βH(t) ‖c1(s)− c2(s)‖C0(Ω)

+αH(t)
[ ∥∥a1(s)− a2(s)

∥∥
C0(Ω)N

+ ‖b1(s)− b2(s)‖C0(Ω)

]
.(3.9)

For K we assume analogous properties, i.e., there is q ∈ [1,∞] such that for every bounded B ⊂ C0(Ω)
there are mK

B ∈ Lq(I) and LKB ∈ L1(I) as well as λK , βK ∈ L1(I) and αK ∈ L2(I) satisfying estimates
as above.

Theorem 3.2 (Existence & Uniqueness). Let ρ ∈ P be fixed and let the Assumptions 2.1 and 3.1 be
fulfilled. Then there exist unique functions u∗ = ũ∗ + ugeD with ũ∗ ∈ L2(I,H1

De
(Ω)/W ) and ugeD|ΓeD =

geD, a∗ = ã∗ + 1 with ã∗ ∈ H1(I,H1
Dd

(Ω), H1
Dd

(Ω)′), c∗ ∈ W 1,p(I, C0(Ω)) and b∗ ∈ W 1,q(I, C0(Ω))
solving the system (3.1) – (3.5).

Proof. We need to establish the contraction and self-mapping property of I. Let us thus fix two tuples
(c1, b1) and (c2, b2) ∈Wρ. We aim to show an estimate of the form

‖I(c1, b1)− I(c2, b2)‖C0(I×Ω)2 = ‖c1 − c2‖C0(I×Ω) +
∥∥b1 − b2∥∥C0(I×Ω)

≤ C(I)
(
‖c1 − c2‖C0(I×Ω) + ‖b1 − b2‖C0(I×Ω)

)
,

where C(I)→ 0 with |I| → 0, making I the desired self-mapping for T small enough.

The Elastic Equation. We will treat a pure Neumann and a mixed boundary value problem simul-
taneously. We endow the space H1

De
(Ω)/W with the norm ‖ε(·)‖L2(Ω), which by Korn’s inequality is

equivalent to the natural one on H1
De

(Ω)/W , see for example [13]. By definition of geD, there is a func-

tion ugeD ∈ L
2(I,H1(Ω)/W ) such that ugeD|ΓeD = geD. In the weak formulation of the elastic equation

we seek ũi ∈ L2(I,H1
De

(Ω)/W ) satisfying

(3.10)

∫
I

∫
Ω

C(ρ, σ, bi)ε̂(ũi + ugeD ) : ε̂(·) dxdt =

∫
I

〈geN , · 〉H1/2(ΓeN )dt

in the space L2(I,H1
De

(Ω)/W )′. Then ui := ũi + ugeD is the solution we are interested in. Note that if

ΓeD has vanishing measure, we can choose ugeD = 0 and H1
De

(Ω)/W = H1(Ω)/W . On the other hand,

if ΓeD has positive measure, then W ∩ H1
De

(Ω) = 0 and H1
De

(Ω)/W = H1
De

(Ω). The equation (3.10)
leads to the operators

Tbi : L2(I,H1
De(Ω)/W )→ L2(I,H1

De(Ω)/W )′

with

Tbiv =

∫
I

∫
Ω

C(ρ, σ, bi)ε̂(v) : ε̂(·) dxdt

and right hand sides

fbi =

∫
I

〈geN , · 〉H1/2(ΓeN )dt︸ ︷︷ ︸
=:fN

−
∫
I

∫
Ω

C(ρ, σ, bi)ε̂(ugeD ) : ε̂(·) dxdt︸ ︷︷ ︸
=:fDbi

.

By our assumption (2.5) and Korn’s inequality the operators Tbi are coercive with coercivity con-
stant cC. Applying the Lax-Milgram Lemma we find that there are unique solutions ũ1 and ũ2 ∈
L2(I,H1

De
(Ω)/W ) to Tbi ũi = fbi . By the duality

L2(I,H1(Ω)/W )′ = L2(I, (H1(Ω)/W )′)
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we know that almost everywhere in I the function ui(t) = ũi(t) + ugeD (t) satisfies∫
Ω

C(ρ, σ, bi)(t)ε̂(ũi)(t) : ε̂(·) dx = 〈geN (t)〉H1/2(ΓeN )

−
∫

Ω

C(ρ, σ, bi)ε̂(ugeD (t)) : ε̂(·) dx

in the space H1(Ω)/W . Using Lax-Milgram again we get using the boundedness and coercivity con-
stants from (2.5)

‖ui(t)‖H1(Ω)/W ≤ c
−1
C

[
‖geN (t)‖H1/2(ΓeN )′ + CC

∥∥ugeD (t)
∥∥
H1(Ω)/W

]
.

As the above estimate is independent of ρ, ci and bi it holds

sup
ρ,c,b
‖u(ρ, b)‖L2(I,H1(Ω)/W ) ≤ C(I),(3.11)

where u(ρ, c, b) denotes the solution of the elastic problem to the data ρ ∈ P and (c, b) ∈Wρ. To show
that C(I) tends to zero with |I| → 0 we employ the dominated convergence theorem of Lebesgue.
Finally we come back to estimate the difference u1 − u2. We claim that

(3.12) ‖u1 − u2‖L2(I,H1(Ω)/W ) ≤ C(I) ‖b1 − b2‖C0(I×Ω)

where again C(I)→ 0 with |I| → 0. To establish this, note that ũ1 − ũ2 = u1 − u2 and compute

fb1 − fb2 = fDb1 − f
D
b2 = Tb1 ũ2 − Tb2 ũ2 = Tb1(ũ1 − ũ2) + Tb1 ũ2 − Tb1 ũ2 − Tb2 ũ2.

Hence Tb1(u1 − u2) = (Tb2 ũ2 − Tb1 ũ2) + (fDb1 − f
D
b2

) and using
∥∥T −1

b1

∥∥ ≤ c−1
C we find

‖u1 − u2‖L2(I,H1(Ω)/W ) ≤ c
−1
C ‖Tb2 ũ2 − Tb1 ũ2‖L2(I,H1(Ω)/W )′

+ c−1
C
∥∥fDb1 − fDb2∥∥L2(I,H1(Ω)/W )′

.

We estimate the terms of the right hand side using the Lipschitz continuity of C which we assumed in
(2.4), combining it with (3.11) to find

‖Tb2 ũ2 − Tb1 ũ2‖L2(I,H1(Ω)/W )′ ≤ LC ‖b1 − b2‖C0(I×Ω) ‖ũ2‖L2(I,H1(Ω)/W )

≤ LCC(I) ‖b1 − b2‖C0(I×Ω)

= C(I) ‖b1 − b2‖C0(I×Ω)

and ∥∥fDb1 − fDb2∥∥L2(I,H1(Ω)/W )′
≤ LC

∥∥ugeD∥∥L2(I,H1(Ω)/W )
‖b1 − b2‖C0(I×Ω)

= C(I) ‖b1 − b2‖C0(I×Ω) .

The Diffusion Equations. Given the functions ci, ui with i = 1, 2 and ρ, we turn to the diffusion
equations. We seek functions ai = ãi + 1 where the ãi are members of H1(I,H1

Dd
(Ω), H1

Dd
(Ω)′)N , that

means ai = (ai1, . . . , a
i
N ) = (ãi1 + 1, . . . , ãiN + 1), i = 1, 2, denoting the components of ai with lower

indices. For j = 1, . . . , N the ãij are sought to satisfy the following equation in L2(I,H1
Dd

(Ω))′∫
I

〈dtãij , · 〉H1
D
dt︸ ︷︷ ︸

=:dtãij

+

∫∫
Dρ
j∇ã

i
j∇ · +k3

j ã
i
j · dxdt︸ ︷︷ ︸

=:Mj(ρ)ãij

=

∫∫
(k2
j |ε(ui)|ci − k3

j ) · dxdt︸ ︷︷ ︸
=:fjui,ci

and initial value ãj(0) = −1 in L2(Ω). The operators

(dt +Mj(ρ), ev0) : H1(I,H1
Dd

(Ω), H1
Dd

(Ω)′)→ L2(I,H1
Dd

(Ω))′ × L2(Ω)

are linear homeomorphisms, see for example [20] for a proof, which essentially relies on the coercivity of
Mj(ρ). This explains why we assumed (2.11) and hence we can guarantee the existence of the ãij . We
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state two important properties of the solutions aij and their differences a1
j − a2

j , to which references or
proofs can be found in the Appendix A. The first is a lower pointwise bound, it holds for j = 1, . . . , N
and i = 1, 2

0 ≤ 1 + ãij(t, x) = aij(t, x) almost everywhere in I × Ω.(3.13)

This is due to the positivity of the right hand sides f jui,ci . Secondly, we look at the equations satisfied

by the differences a1
j − a2

j . These equations possess right hand sides f ju1,c1 − f ju2,c2 in L2(I, L2(Ω))

and with (a1
j − a2

j )(0) = 0 smooth initial conditions. Then, using regularity for mixed boundary value
problems, see Theorem A.1, there is α > 0 such that∥∥a1

j − a2
j

∥∥
L2(I,Cα(Ω))

≤ C
∥∥f ju1,c1 − f

j
u2,c2

∥∥
L2(I,L2(Ω))

.(3.14)

The constant C is uniform in the data ρ ∈ P , (c, b) ∈ Wρ and u(ρ). We claim now that we get the
following estimate for the difference a1 − a2∥∥a1 − a2

∥∥
L2(I,Cα(Ω))N

≤ C
(
‖c1 − c2‖C0(I×Ω) + ‖u1 − u2‖L2(I,H1/W )

)
(3.15)

with C not blowing up as |I| → 0. This estimate is obtained, using (3.14) and estimating the difference
f ju1,c1 − f

j
u2,c2 . It holds

f jc1,u1
− f jc2,u2

= kj2|ε(u1)|δ(c1 − c2) + kj2(|ε(u1)|δ − |ε(u2)|δ)c2.

Using the fact that c1 takes values in the unit interval and the assumptions on | · |δ, see 2.12, it follows∥∥f jc1,u1
− f jc2,u2

∥∥
L2(I,L2(Ω))

≤ C
(
‖ε(u1)‖L2(I,L2(Ω)) + 1

)
‖c1 − c2‖C0(I×Ω)

+ C ‖ε(u1 − u2)‖L2(I,L2(Ω)) .

Invoking (3.11) we know that ‖ε(u1)‖L2(I,L2(Ω)) is bounded uniformly in the data ρ ∈ P and (c, b) ∈Wρ.

Combining this with the identity

‖ε(u1 − u2)‖L2(I,L2(Ω)) = ‖u1 − u2‖L2(I,H1/W )

we conclude.

The Cell ODE. We turn now to the Cell ODE and solve this equation twice, once with data ρ, a1
1, . . . , a

1
N

and b1, producing a function c1, and once with ρ, a2
1, . . . , a

2
N and b2 yielding c2. The solutions c1 and c2

are members of the space W 1,p(I, C0(Ω)) and consequently of C0(I×Ω) satisfying 0 ≤ c(t, x) ≤ 1−ρ(x)
solving the ODE

dtci = H(ai1, . . . , a
i
N , bi, ci)

(
1− ci

1− ρ

)
with ci(0) = 0.

These facts are proven as Lemma B.6 in the Appendix. Our goal is to estimate the difference c1 − c2
and we claim that it holds

(3.16) ‖c1 − c2‖C0(I×Ω) ≤ C(I)
(∥∥a1 − a2

∥∥
L2(I,Cα(Ω)N )

+ ‖b1 − b2‖C0(I×Ω)

)
where C(I) tends to zero with |I| → 0. To prove the estimate 3.16 we use the fundamental theorem of
the space W 1,p(I, C0(Ω)) and write

ci(t) =

∫ t

0

H(ai(s), bi(s), ci(s))

(
1− ci(s)

1− ρ

)
︸ ︷︷ ︸

=:γi(s)

ds.
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By Assumption 3.1 the expression γ1(s)− γ2(s) can be estimated

‖γ1(s)− γ2(s)‖C0(Ω) ≤
∥∥H(a1, b1, c1)(s)−H(a2, b2, c2)(s)

∥∥
C0(Ω)

∥∥∥∥1− c1(s)

1− ρ

∥∥∥∥
C0(Ω)

+
∥∥H(a2, b2, c2)(s)

∥∥
C0(Ω)

∥∥(1− ρ)−1
∥∥ ‖c1(s)− c2(s)‖C0(Ω)

≤ CαH(s)
[ ∥∥a1(s)− a2(s)

∥∥
C0(Ω)N

+ ‖b1(s)− b2(s)‖C0(Ω)

]
+ C(βH(s) + λH(s)) ‖c1(s)− c2(s)‖C0(Ω) .

Now we can apply Grönwall’s and Hölder’s inequality, using that αH ∈ L2(I) and βH , λH ∈ L1(I) to
obtain

‖c1(t)− c2(t)‖C0(Ω) ≤ C
∫
I

αH(s)
[ ∥∥a1(s)− a2(s)

∥∥
C0(Ω)N

+ ‖b1(s)− b2(s)‖C0(Ω)

]
≤ C

∥∥αH∥∥
L2(I)

[
‖a1 − a2‖L2(I,C0(Ω)N ) + ‖b1 − b2‖L2(I,C0(Ω))

]
≤ C(I)

[ ∥∥a1 − a2
∥∥
L2(I,Cα(Ω))

+ ‖b1 − b2‖C0(I×Ω)

]
.

Here we used that
∥∥αH∥∥

L2(I)
→ 0 with |I| → 0, which follows from Lebesgue’s dominated convergence

theorem. As the right side of the estimate is independent of t ∈ I, this shows that (3.16) holds.

The Bone ODE. Finally we treat the Bone ODE. Again we solve it twice, with data ai1, . . . , a
i
N , ci

and ρ producing bi with i = 1, 2. The functions b1 & b2 are members of W 1,q(I, C0(Ω)) and conse-
quently of C0(I × Ω) satisfying 0 ≤ bi(t, x) ≤ 1− ρ(x) and

dtbi = K(ai1, . . . a
i
N , bi, ci)

(
1− bi

1− ρ

)
This means that bi ∈ Wρ, hence making the iteration map I a self mapping. All these properties are
established as in the case of the Cell ODE. Repeating our computations for c1 − c2 we find∥∥b1 − b2∥∥C0(I×Ω)

≤ C(I)
(∥∥a1 − a2

∥∥
L2(I,Cα(Ω)N )

+ ‖c1 − c2‖C0(I×Ω)

)
.(3.17)

and the constant C(I) tends to zero as |I| → 0.

Contraction Property of I. We collect all estimates to see that I is a contractive self-mapping for
|I| small enough. Use (3.17), (3.16), (3.15), and (3.12) to conclude∥∥b1 − b2∥∥C0(I×Ω)

≤ C(I)
(∥∥a1 − a2

∥∥
L2(I,Cα(Ω)N )

+ ‖c1 − c2‖C0(I×Ω)

)
≤ C(I)

(∥∥u1 − u2
∥∥
L2(I,H1(Ω)/W )

+ ‖c1 − c2‖C0(I×Ω)

)
≤ C(I)

(
‖b1 − b2‖C0(I×Ω) + ‖c1 − c2‖C0(I×Ω)

)
.

and the estimate for ‖c1 − c2‖C0(I×Ω) works identically. Consequently, it holds

‖I(c1, b1)− I(c2, b2)‖C0(I×Ω)2 ≤ C(I)
[
‖c1 − c2‖C0(I×Ω) + ‖b1 − b2‖C0(I×Ω)

]
As C(I) → 0 with |I| → 0, the contraction map principle implies that I : (c, b) 7→ (c, b) possesses a
unique fix point for |I| small enough.

Long-Time Existence. We established the existence of a solution (u∗, a∗, c∗, b∗) on an interval [0, T ]
where T > 0 is chosen to make I a contraction. Now we use the well defined functions c∗(T, · )
and b∗(T, · ) ∈ C0(Ω) as initial data for the ODEs and as a∗ ∈ C0([0, T ], L2(Ω)N ) the function
a∗(T ) ∈ L2(Ω)N serves as start value for the diffusion equations. Repeating the computations we find
that there exists a unique solution (u∗∗, a∗∗, c∗∗, b∗∗) to the system on the interval [T − ε, 2T − ε] for
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some small ε > 0. On the overlap [T − ε, T ] the solutions (u∗∗, a∗∗, c∗∗, b∗∗) and (u∗, a∗, c∗, b∗) agree
and thus we found the unique solution on the interval [0, 2T − ε]. As T does not depend on the initial
values of neither a∗, c∗ nor b∗ this iterates to span every finite time interval. �

Remark 3.3. We discuss the validity of Assumption 3.1, which is given in an implicit form. We treat
roughly two cases. Either, only treating pure Dirichlet problems for the diffusion equations or assuming
strong properties for | · |δ, one can establish an L∞(I × Ω) bound on the solutions of the diffusion
equations and can then apply Lemma 3.4, or one is allowed to only multiply at most two different
components of a in order not to violate the integrability. Furthermore we will always assume that we
are in the setting of section 2.

(i) Assume that | · |δ : Rn×n → R is a bounded function. Then the solution to the diffusion
equations lie in L∞(I × Ω) with a bound on the uniform norm not depending on ρ ∈ P and
b ∈Wρ. In view of Lemma 3.4 this implies that Assumption 3.1 holds.

(ii) Assume that we consider a pure Dirichlet problem for the diffusion equations and that the
Dirichlet data on the parabolic boundary lies in the space L∞(I, L∞(∂Ω)). Theorem 7.1 and
Corollary 7.1 in [29] show that the solutions of the diffusion equations are members of L∞(I×Ω)
with a uniform bound on their norms. Here one crucially needs the Dirichlet information on
the parabolic boundary, thus the assumptions. We currently do not know whether a similar
result is available in the case of mixed boundary conditions.

(iii) If we do not assume anything besides the setting of section 2, in the choice of H and K not
more than two of the components of a should be multiplied. In particular the choice | · |δ = | · |
is covered. A concrete example is given in section 4.

Lemma 3.4. Let Assumption 2.1 hold and assume that for any choice of ρ and b ∈ Wρ the function
a ∈ H1(I,H1

Dd
(Ω), H1

Dd
(Ω)′)N produced by the iteration operator I is a member of L∞(I×Ω)N with a

bound on the L∞(I×Ω) norm that is uniform in ρ ∈ P and b ∈Wρ. Then Assumption 3.1 is satisfied.

Proof. For a fixed bounded set B ⊂ C0(Ω) the following subset of RN+2

{(a(t, x), c̃(t, x), b(t, x)) | c̃ ∈ B, (t, x) ∈ I × Ω}

is relatively compact. By the continuity of H we can choose mH
B to be a constant function, i.e., a

member of L∞(I). Using the Lipschitz continuity of H on the set defined above, we are able to
establish property (3.7). Now let b1 and b2 ∈Wρ be given and correspondingly a1, a2, c1 and c2. Using
that the set

{(ai(t, x), ci(t, x), bi(t, x)) | i = 1, 2 and (t, x) ∈ I × Ω}
is bounded independently of ρ, b1, b2 etc. we may use again the above reasoning and obtain that (3.1)
holds with a constant function λH and (3.1) with constant functions βH and αH . The remaining
requirements in assumption 3.1 are satisfied likewise. �

4. Numerical Experiments

In [15] porous PCL scaffolds with a periodic honeycomb structure and 87% porosity were used as a
treatment strategy for 30mm tibial defects in an ovine model. This experiment was conducted in two
groups, one preseeding the scaffold with a special bio-active molecule (BMP) and the second group
without such preseeding. Here, we aim to numerically recreate the experiment without preseeding,
using a concrete instance of our computational model.

As usual, the experimental setup in [15] includes the use of a so-called fixateur – a titanium or steel
plate that is fixed to the bone surrounding the defect site using screws. This fixateur is used to provide
additional mechanical stability. We include this device in a simplistic manner in our simulations,
neglecting the effect of screws. From a modeling perspective, the fixateur acts as a stress shield on one
side of the defect and thus influences bone growth significantly.
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As a concrete instance of our model we use two bioactive molecules and consider the following system
of equations

0 = div
(
C(ρ, σ, b)ε(u)

)
dta1 = div

(
D(ρ)∇a1

)
+ k2,1|ε(u)|c− k3,1a1

dta2 = div
(
D(ρ)∇a2

)
+ k2,2|ε(u)|c− k3,2a2

dtc = k6a1a2(1 + k7c)

(
1− c

1− ρ

)
dtb = k4a1c

(
1− b

1− ρ

)
.

We use mixed boundary values for the elastic equilibrium equation, with a surface traction stemming
from a force of 0.3kN on the top of the cylinder in the model with fixateur. The bottom of the
computational domain is assumed to be fixed, i.e., subjected to zero Dirichlet boundary conditions
and the remaining part of the boundary is subject to zero stress boundary conditions. These boundary
conditions are chosen to represent the maximal stress that repeatedly occurs, having an ovine model in
mind, where a specimen can weigh between 45–160kg. For a healthy individual without bone defect, we
assume a force of 2.25kN. This difference is important as it will influence the choice of the generation
and decay rate of the bio-active molecules that are normalized for healthy bone. For the bio-active
molecules we assume that they are present in saturation, i.e. a1(t, x) = a2(t, x) = 1, adjacent to bone
and otherwise we assume a non-flux boundary condition. Osteoblast and bone density is set to zero at
the initial time-point. Note that the concrete choice of boundary conditions here should be considered
a proof of concept. Further, more detailed numerical studies are forthcoming.

4.1. Model Parameters. We report the choices for the constants and functional relationships in
table 1. Some comments are in order.

(a) In a healthy individual, given appropriate clinical interventions, bone defects should be com-
pletely bridged with low to medium weight-bearing capacity after 6 months, see [52]. The
bone remodelling process to follow can take 3 to 5 years until the full function of the bone is
restored. We therefore consider a time span of 12 months for our model, which we identified
as the critical phase for scaffold mediated bone healing.

(b) The PCL decay parameter, k1, is based on the experimental studies in [37], which shows that
after one year 30% of the molecular mass remains.

(c) The surface traction is set to 0.001gPa corresponding to a force of 0.3kN over a surface of
300 mm2. We propose to view this time-constant surface traction as an averaged maximal stress.
Furthermore we assume that due to the injury this averaged maximal stress is considerably
lower than what is to be expected in a healthy individual, where we set it to 0.0075gPa
corresponding to the aforementioned 2.25kN.

(d) The constants k2,i, k3,i, i = 1, 2 governing the generation and decay of bioactive molecules are
difficult to obtain from the literature compare for example to the discussion in [39]. The values
for k3,1 and k3,2 correspond to a half-life of 31 and 62 hours respectively and are chosen to
achieve a realistic model outcome. Consequently generation rate constants k2,1 and k2,2 are
chosen such that a surface traction of 0.0075gPa – corresponding to a force of 2.25 kN over a
surface of 300mm2 – results in an equilibrium state for a1 = a2 = 1 when c = 1, that is when
the concentration of osteoblast equals that of healthy bone.

(e) The diffusivity D(ρ) = k5(1− ρ) is controlled by the porosity 1− ρ and the constant k5. With
k5 = 260mm2/month we set it to a standard value for the diffusion of bioactive molecules that
is measured for soluble proteins, see [5] and [51].

(f) We use Voigt’s bound as an approximation of the material properties of the bone-scaffold
composite. More precisely, we model bone and PCL as linear isotropic materials with material
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Figure 1. Experiment including fixateur. Shown is a vertical section through the
cylindrical defect site. Fixateur domain is colored in gold. From left to right: regen-
erated bone at 3 months, 12 months and a view on top of the defect site. The grey
colored areas illustrate the top and bottom cylinder/fixateur caps.

constants chosen as collected in Table 1. The effective properties of the compositum are then
obtained by adding the weighted tensors.

(g) The constant k4 drives the rate of bone regeneration, k6 is related to the overall osteoblast
production and k7 influences the effect of osteoblast proliferation. These values are fitted to
achieve realistic outcome in the simulations.

Table 1. Parameters for the bone regeneration model

Param. Value Description

T 12 months Period of bone regeneration
Ω L = 30mm, r = 10mm Cylinder with length L, radius r
ρ ρ ≡ 0.13 Scaffold volume fraction

C(ρ, σ, b) bCb + ρσCρ Voigt bound for composites
D(ρ) k5(1− ρ) Diffusivity of bioactive molecules

(λb, µb) (2.88GPa, 1.92GPa) Derived from (Eb, νb) = (5 GPa, 0.3)
(λρ, µρ) (1.97GPa, 0.17GPa) Derived from (Eρ, νρ) = (0.5 GPa, 0.46)
Cb CbA = λb tr(A) Id +2µbA Material tensor of healthy bone
Cρ CρA = λρ tr(A) Id +2µρA Material tensor of PCL
k1 0.1 per month PCL absorbation rate constant
k2,1 10500 Generation rate first molecule
k2,2 5250 Generation rate second molecule
k3,1 16 Decay rate first molecule
k3,2 8 Decay rate second molecule
k4 0.2 Bone regeneration constant
k5 260 mm2 /month Diffusivity of the ai w/o scaffold
k6 0.5 Osteoblast generation constant
k7 0.07 Proliferation constant for osteoblasts

4.2. Numerical Implementations. We use a simple first-order implicit in time Euler scheme to solve
the equations displayed in the order displayed above. The fact that an implicit approach is feasible
is due to the simple structure of the ODEs and the linearity of the diffusion equation. It is worth
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Figure 2. Experiment excludig fixateur. Shown is a vertical section through the
cylindrical defect site. From left to right: regenerated bone at 3 months, 12 months
and a view on top of the defect site. The grey colored areas illustrate the top and
bottom cylinder caps.

mentioning that this reduces the computational cost of solving the system drastically as only very few
time steps are needed to achieve acceptable accuracy in the simulations. The elastic and the diffusion
equation are discretized using P1 elements and the meshes were generated using the Computational
Geometry Algorithms Library CGAL [6].

4.3. Discussion of Numerical Simulations. In Figure 1 the domain of computation with an added
fixateur is shown. Here we assume the material of the fixateur to be titanium with Young’s modulus
chosen to 100GPa and a Poisson’s ratio of 0.31. Bone growth and osteoblast production is disabled
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Figure 3. Relative bone density averaged
over horizontal slices after 3 and 12 months
in the experiment including the fixateur.

in the space occupied by the fixateur. In Figure
3 we present the relative bone density averaged
over horizontal slices in the fixateur experiment
at 3 and 12 months. We observe that both the re-
generated bone after 3 and after 12 months agree
well with the experimental results shown in [15,
Figure 2, ‘Scaffold only’]. There, the same shape
of regenerated bone, with a flat area in the mid-
dle of the defect site and a significant gradient
towards the proximal and distal interface, is ob-
served.

In Figure 1, the result of the stress shielding ef-
fect of the fixateur is clearly visible, with little
regenerated bone in the central part of the defect
site close to the fixateur. Comparing to [49, Figs
4C, 5C] or [41, Figures 3a, 3b] we see that this
is also observed in experiments. Bone mass loss
due to stress shielding is indeed a long recognized,
major issue in orthopaedic surgery [45, 48].

The computation excluding the fixateur is per-
formed using a reduced surface traction that is
set to 70% of the surface traction in the fixateur

model to account for the stress shielding of the fixateur. This experiment is the direct analogon of
the 1D model in [39]. Naturally, we see that bone regenerates symmetrically and that the result is
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essentially a one dimensional distribution of bone comparable to the results in [39]. Note that the
asymmetries encountered in the more realistic model including the fixateur can not be resolved by
a one-dimensional simplification. This has important implications for the porosity optimization of
scaffolds where a three dimensional simulation can thus help to achieve a more appropriate optimal
design.
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Appendix A. Properties of Diffusion Equation

This section provides the regularity results needed in the existence proof of Theorem 3.2. We begin by
stating the regularity results in section A.1, then discuss the notion of Gröger regular sets in section
A.2 and conclude with the proofs in section A.3.

A.1. Regularity Results. Let Ω be a Lipschitz domain with a Dirichlet-Neumann partition of
the boundary ∂Ω = ΓN ∪ ΓD. Both ΓD and ΓN are allowed to have vanishing measure. Let D ∈
L∞(Ω,Rn×n) be uniformly elliptic, k > 0, f1, f2 ∈ L2(I, L2(Ω)) and a0 ∈ L∞(Ω), then we are in-
terested in L2(I, C0(Ω)), L∞(I, L∞(Ω)) and L2(I, Cα(Ω)) regularity of ai ∈ H1(I,H1

D(Ω), H1
D(Ω)′),

i = 1, 2 solving ∫
I

〈dtai, · 〉H1
D(Ω) dt+

∫
I

∫
Ω

D∇a∇ · +ka · dxdt =

∫
I

∫
Ω

fi · dxdt(A.1)

ai(0) = a0.(A.2)

We are also interested in the regularity of the difference a1−a2. Note that a1−a2 has better regularity
properties as the initial value a1(0)−a2(0) = 0 is smooth. We will need varying assumptions in addition
to the ones stated above, depending on the regularity we are after. Note that the main difficulty stems
from the mixed boundary conditions as in this case the usual elliptic H2(Ω) regularity fails, see for
example [44, 26, 21]. Let us now state our main theorems.

Theorem A.1 (L2(I, Cα(Ω)) Regularity). Assume that Ω ⊂ Rn with n = 1, 2, 3 is a Lipschitz domain,
ΓN ∪ΓD = ∂Ω and assume that Ω∪ΓN is Gröger regular, see A.4. Furthermore, let fi ∈ L2(I, L2(Ω)),
D ∈ L∞(Ω,Ms), k > 0 and a0 ∈ L∞(Ω). Then there is α > 0 such that it holds a1−a2 ∈ L2(I, Cα(Ω))
and

(A.3) ‖a1 − a2‖L2(I,Cα(Ω)) ≤ C ‖f1 − f2‖L2(I,L2(Ω)) ,

In addition, for every ε > 0 it holds ai ∈ L2([ε, T ], Cα(Ω)) and ai ∈ L2(I, C0(Ω)).

Theorem A.2. Assume that f ∈ L∞(I × Ω), a0 ∈ L∞(Ω) and the assumptions of the beginning of
the section. Then it holds that ai ∈ L∞(I × Ω).

The above regularity theorems apply to ãi of the main body of the article, where ãi is the part of the
solution corresponding to homogeneous boundary conditions. Clearly all the results still hold true for
ãi+ 1. To conclude we need positivity of ãi+ 1, therefore we consider a slightly different equation than
(A.1).

Theorem A.3 (Positivity). Assume a function a ∈ H1(I,H1
D(Ω), H1

D(Ω)′) satisfies the following
equality in the space L2(I,H1

D(Ω))′∫
I

〈dta, · 〉H1
D(Ω)dt+

∫
I

∫
Ω

D∇a∇ · + k(a+ 1) · dxdt =

∫
I

∫
Ω

f · dxdt,

and a(0) + 1 = 0. Furthermore suppose that f ∈ L2(I, L2(Ω)) is non-negative and the remaining
assumptions stated at the beginning of the appendix hold true. Then a+ 1 ≥ 0.
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A.2. Boundary Regularity. We say a bounded, open set Ω ⊂ Rn is a Lipschitz domain if Ω is a
Lipschitz manifold with boundary, see [21, Definition 1.2.1.2]. In the following we will denote the cube
[−1, 1]n ⊂ Rn by Q. The following definition is due to Gröger, see [22].

Definition A.4 (Gröger Regular Sets). Let Ω ⊂ Rn be bounded and open and Γ ⊂ ∂Ω a relatively
open set. We call Ω ∪ Γ Gröger regular, if for every x ∈ ∂Ω there are open sets U, V ⊂ Rn with
x ∈ U , and a bijective, bi-Lipschitz map φ : U → V , such that φ(x) = 0 and φ(U ∩ (Ω ∪ Γ)) is either
{x ∈ Q | xn < 0}, {x ∈ Q | xn ≤ 0} or {x ∈ Q | xn < 0} ∪ {x ∈ Q | xn = 0, xn−1 < 0}.

It can easily be seen that a Gröger regular set Ω (no matter the choice Γ ⊂ ∂Ω) is a Lipschitz
domain, see [24, Theorem 5.1]. The next two theorems characterize Gröger regular sets in two and
three dimension. We cite the results from [24].

Theorem A.5 (Gröger Regular Sets in 2D). Let Ω ⊂ R2 be a Lipschitz domain and Γ ⊂ ∂Ω be
relatively open. Then Ω ∪ Γ is Gröger regular if and only if Γ ∩ (∂Ω \ Γ) is finite and no connected
component of ∂Ω \ Γ consists of a single point.

Theorem A.6 (Gröger Regular Sets in 3D). Let Ω ⊂ R3 be a Lipschitz domain and Γ ⊂ ∂Ω be
relatively open. Then Ω ∪ Γ is Gröger regular if and only if the following two conditions hold

(i) ∂Ω \ Γ is the closure of its interior.
(ii) For any x ∈ Γ ∩ (∂Ω \ Γ) there is an open neighborhood Ux of x and a bi-Lipschitz map

φ : Ux ∩ Γ ∩ (∂Ω \ Γ)→ (−1, 1).

A.3. Proofs of the Regularity Results. We will begin with the L2(I, Cα(Ω)) results, i.e., the proof
of theorem A.1. To this end we need two results from the literature, one, [24, Theorem 3.3] on mixed
elliptic boundary value problems that will yield the Cα(Ω) information as well as a maximal L2(Ω)
regularity result from [4] to transfer this to the solution of the associated parabolic equation.

Theorem A.7 (Hölder Regularity). Let Ω ⊂ Rn for n = 2, 3, 4 be open, bounded and connected and
assume that Ω ∪ ΓN is Gröger regular. Assume further, that D ∈ L∞(Ω,Rn×n) is uniformly elliptic,
k > 0 and let q > n and denote by q′ its adjoint exponent, i.e., 1/q + 1/q′ = 1. Define the operator

M : H1
D(Ω)→ H1

D(Ω)′ with Mv =

∫
Ω

D∇v∇ · +kv · dx.

Then there is α > 0 such that

M−1 : W 1,q′

D (Ω)′ → Cα(Ω)

is well defined and continuous.

Proof. See [24, Theorem 3.3]. �

In particular, in dimensions n = 2, 3 we can choose q = 4 and by the Sobolev embedding theorems,

see [21], it holds that L2(Ω) ↪→W 1,q′

D (Ω)′ and hence for f ∈ L2(Ω) a solution v ∈ H1
D(Ω) to∫

Ω

D∇v∇ · +kv · dx =

∫
Ω

f · dx in H1
D(Ω)′

lies in Cα(Ω) and satisfies the estimate

‖v‖Cα(Ω) ≤ C ‖f‖L2(Ω) .

In order to amplify this elliptic regularity result to the parabolic setting, we will use an L2(Ω) maximal
regularity result. In our particular case this is a statement of the form: f ∈ L2(I, L2(Ω)) implies that
the solution a ∈ H1(I,H1

D(Ω), H1
D(Ω)′) of

dta+Ma = f and a(0) = a0

is of regularity H1(I, L2(Ω)). Consequently f , dta and Ma are members of the space L2(I, L2(Ω)),
hence the term maximal regularity. Depending on the operator M, problems of this form can be
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delicate, we refer to [31] for certain results and to [4] for a recent discussion. In our case M is self-
adjoint and does not depend on time and therefore L2(Ω) maximal regularity holds

Theorem A.8 (Maximal L2(Ω) Regularity). Let Ω ⊂ Rn be a Lipschitz domain, ∂Ω = ΓN ∪ ΓD,
D ∈ L∞(Ω,Ms) uniformly elliptic and symmetric and k > 0. Define

M : H1
D(Ω)→ H1

D(Ω)′ with Mv =

∫
Ω

D∇v∇ · +kv · dx.

and also its part in L2(Ω) which we will denote by M , i.e.,

dom(M) := {v ∈ H1
D(Ω) | Mv ∈ L2(Ω)} with Mv =Mv

Then set
X := H1

0 (I, L2(Ω)) ∩ L2(I,dom(M))

endowed with the norm

‖a‖X := ‖dta‖L2(I,L2(Ω)) + ‖Ma(·)‖L2(I,L2(Ω)) .

Here H1
0 (I, L2(Ω)) shall denote the functions in H1(I, L2(Ω)) with vanishing initial value. Then the

space X is a Hilbert space and the map

dt +M : X → L2(I, L2(Ω)) with a 7→ dta+Ma

is a linear homeomorphism.

Addendum. Furthermore, if we consider the problem as above but arbitrary initial value in H1
D(Ω),

i.e.,
dta+Ma = f and a(0) = a0 ∈ H1

D(Ω),

the solution a lies in H1(I, L2(Ω)).

Proof. This is discussed in [4, Section 4]. The Addendum requires a0 to lie in trace space (the space
of initial values) of H1(I, L2(Ω))∩L2(I, dom(M)). As we assume D to be symmetric we have thatM
is self-adjoint and hence H1

D(Ω) = dom(M1/2) which coincides with the trace space, see [4], sections 2
and 4. �

Proof of Theorem A.1. We will first show that a1 − a2 ∈ L2(I, Cα(Ω)) and that the estimate (A.3) is
satisfied. Note that a := a1− a2 satisfies an equation of type (A.1) with right hand side f := f1− f2 ∈
L2(I, L2(Ω)) and zero initial condition, namely

dta+Ma = f in L2(I,H1
D(Ω))′ and a(0) = 0.

by Theorem A.8 a lies in the space X and satisfies almost everywhere in I the equation dta(t)+Ma(t) =
f(t). Using Theorem A.7 we can estimate

(A.4) ‖a(t)‖Cα(Ω) ≤ C ‖f(t)− dta(t)‖L2(Ω) .

It follows
‖a‖L2(I,Cα(Ω)) ≤ C(‖f‖L2(I,L2(Ω)) + ‖dt‖L(X ,L2(I,L2(Ω))) ‖a‖X )

and using the continuity of (dt + M)−1 established in Theorem A.8 we get the estimate ‖a‖X ≤
C ‖f‖L2(I,L2(Ω)) which yields combined with the previous estimates

‖a1 − a2‖L2(I,Cα(Ω)) ≤ C ‖f‖L2(I,L2(Ω)) .

Now we show that ai is a member of L2(I, C0(Ω)). We decompose ai into ai = a0
i + a1

i where a0
i solves

dta
0
i +Ma0

i = fi and a0
i (0) = 0

and a1
i solves

dta
1
i +Ma1

i = 0 and ai(0) = a0.

By repeating our previous computations it is clear that a0
i ∈ L2(I, Cα(Ω)). To conclude we will prove

that for every ε > 0 it holds
a1
i ∈ L2([ε, T ], Cα(Ω)) ∩ L∞(I × Ω).
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Let us begin with a1
i ∈ L2([ε, t], Cα(Ω)). As a1

i ∈ C0(I, L2(Ω)) ∩ L2(I,H1
D(Ω)) point evaluations are

well defined and there is a sequence (εn) of real numbers with εn → 0 such that a1
i (εn) ∈ H1

D(Ω) for
all n ∈ N. For given ε > 0 choose εn such that εn ≤ ε. Then apply the Addendum of Theorem A.8 to
obtain

a1
i ∈ H1([εn, T ], L2(Ω)) ∩ L2([εn, T ],dom(M)).

Repeating the computations in the beginning of this proof we arrive at (A.4) with a1
i instead of a. It

is then clear that a1
i ∈ L2([ε, T ], Cα(Ω)). The L∞(I ×Ω) part of the theorem holds more generally for

right hand sides in L∞(I × Ω) and is addressed in the following proof of Theorem A.2. �

Proof of Theorem A.2. We will use Stampacchias truncation method [46], that is for a real number ā
we will test the PDE with

(ai − ā)+ := max(0, ai − ā) and (ai + ā)− := −min(0, ai + ā).

One can show that (ai− ā)+ and (ai + ā)− are members of H1(I,H1
D(Ω), H1

D(Ω)′) if ai is itself in that
space and that it holds∫ t

0

〈dtai, (ai − ā)+〉H1
D(Ω) dt =

1

2

∥∥(ai − ā)+(t)
∥∥2

L2(Ω)
− 1

2

∥∥(a0 − ā)+
∥∥2

L2(Ω)

and ∫
Ω

D∇ai(t)∇(ai − ā)+(t) dx =

∫
Ω

D∇(ai − ā)+(t)∇(ai − ā)+(t) dx

such as ∫
Ω

ai(t)(ai − ā)+(t) dx =
∥∥(ai − ā)+(t)

∥∥2

L2(Ω)
+

∫
Ω

ā(ai − ā)+(t) dx

Hence it follows for every t ∈ I and ā ≥ max(‖f‖L∞(I×Ω) , ‖a0‖L∞(Ω))

1

2

∥∥(ai − ā)+(t)
∥∥2

L2(Ω)
≤
∫ t

0

∫
Ω

(f − ā)(ai − ā)+dxds+
1

2

∥∥(a0 − ā)+
∥∥2

L2(Ω)

≤ 0.

This implies that ai ≤ ā almost everywhere in I × Ω. Similarly one establishes ā ≤ ai using the test
function (ai + ā)−. �

Proof of Theorem A.3. One can check that (a+1)− = −min(0, a+1) is a member ofH1(I,H1
D(Ω), H1

D(Ω)′)
and that it holds for all t ∈ I∫ t

0

〈dta, (a+ 1)−〉H1
D
ds =

1

2

(∥∥(a+ 1)−(0)
∥∥2

L2(Ω)
−
∥∥(a+ 1)−(t)

∥∥2

L2(Ω)

)
and ∫ t

0

∫
Ω

〈D∇a,∇(a+ 1)−〉+ k(a+ 1)(a+ 1)−dxds

=−
∫ t

0

∫
Ω

〈D∇
[
(a+ 1)−

]
,∇
[
(a+ 1)−

]
〉+ k

[
(a+ 1)−

]2
dxds ≤ 0.

Testing the full equation with (a+ 1)− and using these computations one finds

1

2

∥∥(a+ 1)−(t)
∥∥2

L2(Ω)
≤ −

∫ t

0

∫
Ω

f · (a+ 1)− dxds ≤ 0.

�
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Appendix B. Ordinary Differential Equations

The plan for this section is as follows. We recall Grönwall’s inequality in Theorem B.1 and will thereafter
provide a Banach space valued ODE existence theorem in Theorem B.2. The version of our ODE
theorem guarantees existence and uniqueness of short-time solutions. We also show that the solutions
depend continuously on the initial value with a common short-time existence interval, at least locally
around a fixed initial value. This will come in handy for analyzing pointwise properties of certain ODEs
in Lemma B.5. Finally we prove the existence and uniqueness of the cell ODE in Lemma B.6 and the
bone ODE in (B.7)

Lemma B.1 (Grönwall Variant). Let X be a Banach space and I = [0, T ] an interval. Let x0, y0 ∈ X
and assume that γ1, γ2 are members of L1(I,X). Define x and y to be the integral curves

x(t) = x0 +

∫ t

0

γ1(s) ds and y(t) = y0 +

∫ t

0

γ2(s) ds.

Now assume that we can estimate the integrants γ1, γ2 in the following form

‖γ1(t)− γ2(t)‖ ≤ α(t) + β(t) ‖x(t)− y(t)‖ for all t ∈ I,

where α, β ∈ L1(I) are non-negative functions. Then it holds that

‖x(t)− y(t)‖ ≤ C
(
‖x0 − y0‖+ ‖α‖L1(I)

)
for all t ∈ I

and the constant C can be chosen to be C = 1 + ‖β‖L1(I) exp(‖β‖L1(I)).

Proof. Just write out the estimate that the difference ‖x(t)− y(t)‖ satisfies due to the assumptions
and then use the usual integral formulation of Grönwall’s inequality, see for example [40, Theorem
1.2.8]. �

Theorem B.2 (Local Existence). Let X be a Banach space, I = [a, b] a bounded interval and F :
I × X → X a Carathéodory function, i.e., F (·, x) is Bochner measurable for all x ∈ X and F (t, ·)
is continuous almost everywhere in I. Assume that for every bounded set B ⊂ X there are functions
mB ∈ Lp(I), p ∈ [1,∞] and LB ∈ L1(I), possibly depending on B, such that

‖F (t, x)‖X ≤ mB(t) a.e. in I, ∀x ∈ B,(B.1)

‖F (t, x)− F (t, y)‖X ≤ LB(t) ‖x− y‖ a.e. in I, ∀x, y ∈ B.(B.2)

Let furthermore t0 ∈ I, x0 ∈ X and R > 0 be arbitrary, then there exists a time interval Iδ :=
[t0− δ, t0 + δ]∩ I such that for any initial value y0 ∈ BR(x0) ⊂ X there is a unique short time solution
x ∈W 1,p(Iδ, X) of the ODE

dtx(t) = F (t, x(t)) and x(t0) = y0.

Moreover the map y0 7→ x(y0) taking the initial value to its solution seen as a map BR(x0) ⊂ X →
C0(Iδ, X) is continuous.

Remark B.3. Note that the Lipschitz assumption (B.2) implies that x 7→ F (t, x) is continuous. There-
fore, to establish the Carathéodory regularity of F it is enough to provide the Bochner measurability
of the maps F (·, x) : I → X for all x ∈ X.

Proof. First we clarify the dependence of δ; we choose it to satisfy∫
Iδ

mB2R(x0)(s) ds ≤ R and

∫
Iδ

LB2R(x0)(s) ds < 1.(B.3)

Then we consider the complete metric space E ⊂ C0(Iδ, X) given by

E := {x ∈ C0(Iδ, X) | sup
t∈Iδ
‖x(t)− x0‖ ≤ 2R}



24 PATRICK DONDL, PATRINA S. P. POH, AND MARIUS ZEINHOFER

and define the map

Φ : E → E with Φ(x)(t) = y0 +

∫ t

t0

F (s, x(s)) ds.

We now proceed by showing the following facts

(i) For all x ∈ E the map t 7→ F (t, x(t)) is Bochner integrable as a map Iδ → X. In fact it is a
member of Lp(Iδ, X).

(ii) The function Φ is a self-mapping and a contraction.
(iii) The fix-point of Φ is a member of W 1,p(Iδ, X) and corresponds to the solution of the ODE.
(iv) The solution depends continuously on the initial data.

To establish (i) note that the assumption of Carathéodory regularity of F implies that t 7→ F (t, x(t))
is Bochner measurable as a map Iδ → X for all maps x : Iδ → X that are itself Bochner measurable,
which clearly holds for members of E. We are left to show the integrability, so we estimate for x ∈ E∫

Iδ

‖F (t, x(t))‖pX dt ≤
∫
Iδ

|mB2R(x0)(t)|p dt <∞,

which shows the assertion. Now to (ii). Let again x ∈ E and estimate

sup
t∈Iδ
‖Φ(x)(t)− x0‖X ≤ ‖x0 − y0‖+

∫
Iδ

‖F (t, x(t))‖X dt

≤ R+

∫
Iδ

mB2R(x0)(t) dt

≤ 2R.

To see that Φ is a contraction compute for x, y ∈ E

sup
t∈Iδ
‖Φ(x)(t)− Φ(y)(t)‖X ≤ sup

t∈Iδ

∫
Iδ

‖F (t, x(t))− F (t, y(t))‖X dt

≤
∥∥LB2R(x0)

∥∥
L1(Iδ)︸ ︷︷ ︸

<1

‖x− y‖E

The claim (iii) follows as the unique fix-point x of Φ is, by the fundamental theorem, a solution to the
ODE. As dtx(t) = F (t, x(t)) the Lp integrability of the derivative of this fix-point follows from the one
of F (·, x(·)) which was established in (i).

Finally to (iv), where we will employ Grönwall’s lemma. Let y0 and y0 be in BR(x0), then the according
solutions are given by

y(t) = y0 +

∫ t

t0

F (s, y(s)) ds and y(t) = y0 +

∫ t

t0

F (s, y(s)) ds.

The difference in the integrands can be estimated by

‖F (t, y(t))− F (t, y(t))‖X ≤ CLB2R(x0)(t) ‖y(t)− y(t)‖X .

So applying Lemma B.1 with α = 0 and β = LB2R(x0) yields

‖y(t)− y(t)‖X ≤ C ‖y0 − y0‖X .

�

Remark B.4. It is often of interest to show the existence of long-time solutions. A particularly simple
case in the setting of the above theorem is encountered if it holds that for any initial value y0 ∈
BR(x0) ⊂ X the solution takes values only in BR(x0). Then one glues together multiple short-time
solutions with the guarantee of δ not deteriorating.
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Lemma B.5 (Pointwise Properties of Solutions). Let I = [a, b] be an interval and K : I × R → R a
Carathéodory function such that x ≥ 0 implies K(t, x) ≥ 0 for all t ∈ I. For fixed t0 ∈ I consider the
ODE

x′(t) = K(t, x(t))

(
1− x(t)

θ

)
and x(t0) = x0,

where θ > 0 and λ ≥ 0 are fixed numbers and x0 ∈ [0, θ]. Assume that there is an interval Iδ =
[t0 − δ, t0 + δ] ∩ I such that for any choice of x0 ∈ [0, θ] we have a solution x ∈ W 1,1(Iδ) of the ODE
which we assume to continuously depend on the initial data x0, i.e., we assume that for every x0 ∈ [0, θ]
there is a neighborhood Nx0

around x0 such that x0 7→ x is continuous as a map Nx0
→ C0(Iδ), where

x is the solution to the ODE with initial value x0. Then it holds

0 ≤ x(t) ≤ θ for all t ∈ Iδ.

Proof. We know that x satisfies the identity

x(t) = x0 +

∫ t

t0

K(s, x(s))

(
1− x(s)

θ

)
ds for all t ∈ Iδ

Upper Barrier. We prove this by contradiction. Suppose there was s0 ∈ Iδ with x(s0) > θ, then on a
neighborhood of s0 solution must be non-increasing which can be seen as follows: Due to the continuity
of x there is ε > 0 such that

x(t) ≥ θ for all t ∈ (s0 − ε, s0 + ε).

If x was not non-increasing on (s0 − ε, s0 + ε) then there exist t1 < t2 in that interval such that
x(t2) > x(t1) and therefore

0 < x(t2)− x(t1) =

∫ t2

t1

K(s, x(s))︸ ︷︷ ︸
≥0

(
1− x(s)

θ

)
︸ ︷︷ ︸

≤0

ds ≤ 0,

which settles the claim. Now, by judicious Zornification we produce a maximal interval Z around s0

on which x is non-increasing. Then t∗ := inf Z = t0 (if it was not t0, repeat the above reasoning and
find that Z was not maximal) and hence θ < x(t∗) = x(t0) ≤ θ clearly is a contradiction.

Lower Barrier. With an analogue reasoning as in the proof for the upper barrier we can establish
the following: If x(s0) ∈ (0, θ] for some s0 ∈ Iδ then x(t) ∈ [x(s0), θ] for all t ≥ s0. This yields the claim
for all initial values strictly larger than zero. We need x(s0) to exceed zero to guarantee the existence
of a small interval (s0 − δ, s0 + δ) where x ≥ 0 still holds, to be able to use K(s, x(s)) ≥ 0 on this
interval. For x(t0) = 0 we approximate the solution by considering initial values xn(t0) = 1/n, i.e., we
find solutions xn to

x′n(t) = K(s, xn(s))

(
1− xn(s)

θ

)
with xn(t0) = n−1.

As shown before we then know that xn(t) ∈ [1/n, θ] for all t ∈ Iδ. By the continuity we assumed we
can pass to the limit in n and obtain 0 ≤ x(t) ≤ θ for all t ∈ Iδ. �

We continue by explaining the connection between Banach space valued ODEs and the formulation
as a family of real valued ODEs in our examples (2.13), (2.15). A moments reflection reveals that we
only need to guarantee that for every fixed x ∈ Ω it holds

t 7→ dtb(t, x) =
d

dt
(t 7→ b(t, x)),

where on the right hand side we talk about the usual, real valued, weak derivative. Therefore let
b ∈W 1,2(I, C0(Ω)), then for dtb it holds by definition∫

I

dtb(t)ϕ(t) dt = −
∫
I

b(t)∂tϕ(t) dt ∀ϕ ∈ D(I).
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The integral used above is the C0(Ω) valued Bochner integral, thus using that point evaluation is a
linear and continuous map on the space of continuous functions we find that for every x ∈ Ω it holds∫

I

dtb(t)(x)ϕ(t) dt = −
∫
I

b(t)(x)∂tϕ(t) dt ∀ϕ ∈ D(I),

meaning that for every fixed x ∈ Ω the function t 7→ b(t)(x) satisfies the real valued ODE as desired.
If we additionally assume that both, the Banach space valued ODE and the scalar one have unique
solutions, we obtain that both settings are equivalent. This means that the above Lemma is applicable
to deduce pointwise properties of the solutions to the Banach space valued ODEs.

Lemma B.6 (Solveability of the Cell ODE). Assume H : RN+2 → R is locally Lipschitz continuous
and that H is non-negative if all its arguments are non-negative. Further, let the assumptions 3.1 be
satisfied. Then there is a unique solution c ∈W 1,p(I, C0(Ω)) of the equation

dtc = H(a1, . . . , aN , b, c)

(
1− c

1− ρ

)
with c(0) = 0.

Furthermore the solution satisfies 0 ≤ c(t, x) ≤ 1− ρ(x) for all t ∈ I and x ∈ Ω.

Proof. To begin with, define the auxiliary function

H̃ : RN+2 × [cP , CP ]→ R with H̃(a, b, c, ρ) = H(a, b, c)

(
1− c

1− ρ

)
.

Then H̃ is locally Lipschitz continuous. Now note that the ODE is induced by

F : I × C0(Ω)→ C0(Ω) with F (t, c) = x 7→ H̃(a(t, x), b(x), c(x), ρ(x)).

We aim to apply Theorem B.2 to produce a short-time solution, hence we need to guarantee

(i) F (t, c) ∈ C0(Ω) for all t ∈ I and c ∈ C0(Ω),
(ii) F ( · , c) : I → C0(Ω) is Bochner measurable for all c ∈ C0(Ω),
(iii) F satisfies (B.1) and (B.2).

The statement (i) is clear as F (t, c) is a composition of continuous functions. To prove (ii) we write a as
a pointwise almost everywhere limit of finitely valued, measurable functions (sk) ⊂ S(I, C0(Ω)N ). Then

t 7→ H̃(sk(t), b, c, ρ) is still a member of S(I, C0(Ω)N ). As sk(t)→ a(t) in C0(Ω) almost everywhere in
I, for fixed t ∈ I the set⋃

k∈N
{(sk(t, x), b(x), c(x), ρ(x)), (a(t, x), b(x), c(x), ρ(x)) | x ∈ Ω} ⊂ RN+3

is relatively compact in RN+3. Hence it holds∥∥∥H̃(sk(t), b, c, ρ)− H̃(a(t), b, c, ρ)
∥∥∥
C0(Ω)

≤ C ‖sk(t)− a(t)‖C0(Ω) .

This establishes the Bochner measurability in (ii). To show (iii) let B ⊂ C0(Ω) be bounded and
compute

‖F (t, c̃)‖C0(Ω) ≤ ‖H(a(t), b(t), c̃)‖C0(Ω)

∥∥∥∥1− c̃

1− ρ

∥∥∥∥
C0(Ω)

≤ mH
B (t)

(
1 + max

x∈Ω
[1/(1− ρ(x))] ‖c̃‖C0(Ω)

)
≤ CmH

B (t).
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In a similar way we estimate∥∥F (t, c̃)− F (t, ˜̃c)
∥∥
C0(Ω)

≤
∥∥H(a(t), b(t), c̃)−H(a(t), b(t), ˜̃c)

∥∥
C0(Ω)

∥∥∥∥1− c̃

1− ρ

∥∥∥∥
+ ‖H(a(t), b(t), c̃)‖C0(Ω)

∥∥∥∥ c̃

1− ρ
−

˜̃c

1− ρ

∥∥∥∥
C0(Ω)

≤ CLHB (t)
∥∥c̃− ˜̃c

∥∥
C0(Ω)

+ CmH
B (t)

∥∥c̃− ˜̃c
∥∥
C0(Ω)

≤ C max(LHB (t),mH
B (t))︸ ︷︷ ︸

=ζ

∥∥c̃− ˜̃c
∥∥
C0(Ω)

and ζ is a member of L1(I). To establish a long-time solution note that by our pointwise lemma B.5
we have

0 ≤ c(t, x) ≤ 1− ρ(x) ≤ 1.

Remember that we discussed the connection between Banach space valued ODEs and R valued ODEs
in the section 2. Finally using the remark following Theorem B.2 we conclude. �

Clearly the bone ODE can now be treated identically, provided one assumes the same for K as one
did for H.

Lemma B.7 (Solveability of the Bone ODE). Assume K : RN+2 → R is locally Lipschitz continuous
and that K is non-negative if all its arguments are non-negative. Further, let the assumptions 3.1 be
satisfied. Then there is a unique solution b ∈W 1,q(I, C0(Ω)) of the equation

dtb = H(a1, . . . , aN , b, c)

(
1− b

1− ρ

)
with b(0) = 0.

Furthermore the solution satisfies 0 ≤ b(t, x) ≤ 1− ρ(x) for all t ∈ I and x ∈ Ω.
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Roth, K.-D. Schaser, et al. Mechanobiologically optimized 3d titanium-mesh scaffolds enhance bone regeneration in

critical segmental defects in sheep. Science translational medicine, 10(423), 2018.
[39] P. S. Poh, D. Valainis, K. Bhattacharya, M. van Griensven, and P. Dondl. Optimization of bone scaffold porosity

distributions. Scientific Reports, 9(1):9170, 2019.
[40] Y. Qin. Analytic inequalities and their applications in PDEs. Springer, 2017.
[41] J. C. Reichert, M. E. Wullschleger, A. Cipitria, J. Lienau, T. K. Cheng, M. A. Schütz, G. N. Duda, U. Nöth, J. Eulert,
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[51] S. R. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrášek, S. Scholpp, P. Schwille, and M. Brand. FGF8 morphogen
gradient forms by a source-sink mechanism with freely diffusing molecules. Nature, 461(7263):533–536, 2009.

[52] G. Zimmermann and A. Moghaddam. Trauma: non-union: new trends. In European instructional lectures, pages

15–19. Springer, 2010.

(Patrick Dondl) Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-

Herder-Strasse 10, 79104 Freiburg i. Br.

Email address: patrick.dondl@mathematik.uni-freiburg.de

URL: https://aam.uni-freiburg.de/agdo/

(Patrina S. P. Poh) Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –
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