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STOCHASTIC LEARNING APPROACH TO BINARY OPTIMIZATION FOR
OPTIMAL DESIGN OF EXPERIMENTS*

AHMED ATTIAT, SVEN LEYFFER}, AND TODD MUNSONS$

Abstract. We present a novel stochastic approach to binary optimization for optimal experimental design
(OED) for Bayesian inverse problems governed by mathematical models such as partial differential equations. The
OED utility function, namely, the regularized optimality criterion, is cast into a stochastic objective function in the
form of an expectation over a multivariate Bernoulli distribution. The probabilistic objective is then solved by using
a stochastic optimization routine to find an optimal observational policy. The proposed approach is analyzed from
an optimization perspective and also from a machine learning perspective with correspondence to policy gradient
reinforcement learning. The approach is demonstrated numerically by using an idealized two-dimensional Bayesian
linear inverse problem, and validated by extensive numerical experiments carried out for sensor placement in a
parameter identification setup.
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1. Introduction. Optimal experimental design (OED) is the general mathematical formalism
for configuring an observational setup. This can refer to the frequency of data collection or the
spatiotemporal distribution of observational gridpoints for physical experiments. OED has seen a
recent surge of interest in the field sensor placement for applications of model-constrained Bayesian
inverse problems; see, for example, [1-5,8,9, 16, 22,2426, 28, 38, 40, 50].

Many physical phenomena can be simulated by using mathematical models. The accuracy
of the mathematical models is limited, however, by the level at which the physics of the true
system is captured by the model and by the numerical errors produced, for example, by computer
simulations. Model-based simulations are often corrected based on snapshots of reality, such as
sensor-based measurements. Such corrections involve first inferring the model parameter from the
noisy measurements, a problem referred to as the “inverse problem,” which can be solved by different
inversion or data assimilation methods; see e.g., [10,11,13,19,35]. These observations themselves
are noisy but in general follow a known probability distribution. The OED problem is concerned
with finding the most informative, and thus optimal, observational grid configuration out of a set
of candidates, which, when deployed, will result in a reliable solution of the inverse problem.

OED is most beneficial when there is a limit on the number of sensors that can be used, for
example, when sensors are expensive to deploy and/or operate. In order to solve an OED problem
for sensor placement, a binary optimization problem is formulated by assigning a binary design
variable (; for each candidate sensor location. The objective is often set to a utility function that
summarizes the uncertainty in the inversion parameter or the amount of information gained from
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the observations. The optimal design is then defined as the optimizer of this objective function. The
objective is constrained by the model evolution equations, such as partial differential equations, and
also by any regularity or sparsity constraints on the design. Here we focus on sparse and binary
designs. A popular choice of a penalty function to enforce a sparse and binary design is the £
penalty [3].

Solving such binary optimization problems is computationally prohibitive, and often the binary
optimization problem is replaced with a relaxation. In the relaxation of an OED problem, the design
variable is allowed to take any value in the interval [0, 1] and is often interpreted as an importance
weight of the candidate location. Once a solution of the relaxed problem is obtained numerically,
for example, by a gradient-based optimization procedure, a binarization (rounding) procedure is
required to transform the solution of the relaxed problem into an equivalent solution of the original
problem. In general, however, the numerical solutions of the two problems are not guaranteed to
be related or even similar.

Using a gradient-based approach to solve the relaxed OED problem requires many evaluations
of the simulation model in order to evaluate the objective function and its gradient. Moreover,
this approach requires the penalty function to be differentiable with respect to the design variables.
To this end, since ¢; is discontinuous, numerous efforts have been dedicated to approximating the
effect of ¢y sparsification with other approaches. For example, in [24], an ¢; penalty followed by a
thresholding method is used; however, ¢; is nonsmooth and hence is nondifferentiable. Continua-
tion procedures are used in [3,32], where a series of OED problems are solved with a sequence of
penalty functions that successively approximate £y sparsification. Another approach that can poten-
tially induce a binary design is the sum-up-rounding algorithm [53], which also provides optimality
guarantees.

Here we propose a new efficient approach for directly solving the original binary OED problem.
In this framework, the objective function, namely, the regularized optimality criterion, is cast into
an objective function in the form of an expectation over a multivariate Bernoulli distribution. A
stochastic optimization approach is then applied to solve the reformulated optimization problem in
order to find an optimal observational policy.

Related work on stochastic optimization for OED has been explored in [27], where the utility
function, in other words, the optimality criterion, is approximated by using Monte Carlo estimators.
A stochastic optimization procedure is then applied with the gradient of the utility function with
respect to the design being approximated by using Robbins—Monro stochastic approximation [42],
or sample average approximation [36,47].

The main differences from the standard OED approach and previous stochastic OED ap-
proaches, which highlight our main contributions in this work, are as follows. First, the proposed
methodology searches for an optimal probability distribution representing the optimal binary de-
sign; hence it does not require relaxation or binarization to follow the optimization step as in the
traditional OED formulation. Second, in our approach the penalized OED criterion is not required
to be differentiable with respect to the design. Thus, one can incorporate the ¢, regularization
norm to enforce sparsification without needing to approximate it with the ¢; penalty term or apply
a continuation procedure to retrieve a binary optimal design. Third, the proposed stochastic OED
formulation does not require formulating the gradient of the objective function with respect to the
design, thus implying a massive reduction in computation cost. Fourth, the proposed approach
and solution algorithms are completely independent from the specific choice of the OED optimality
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criterion and the penalty function and hence can be used with both linear and nonlinear problems.

In this work, for simplicity we provide numerical experiments for Bayesian inverse problems
constrained by linear forward operators, and we consider an A-optimal design, that is, a design
that minimizes the trace of the posterior covariances of the inversion parameter. The approach
proposed, however, extends easily to other OED optimality criteria, such as D-optimality. We
provide an analysis of the method from a mathematical point of view and an interpretation from a
machine learning (ML) perspective. Specifically, the proposed algorithm has a direct link to policy
gradient algorithms widely used in neuro-dynamic programming and reinforcement learning [14,
49, 51]. Numerical experiments using a toy example are provided to help with understanding
the problem; the proposed algorithm; and the relation between the binary OED problem, the
relaxed OED problem, and the proposed formulation. Moreover, extensive numerical experiments
are performed for optimal sensor placement for an advection-diffusion problem that simulates the
spatiotemporal evolution of the concentration of a contaminant in a bounded domain.

The paper is organized as follows. Section 2 gives a brief description of the Bayesian inverse
problem and the standard formulation of an optimal experimental design in the context of Bayesian
inversion. In Section 3, we describe our proposed approach for solving the binary OED problem
and present a detailed analysis of the proposed algorithms. An explanatory example and extensive
numerical experiments are given in Section 4. Discussion and concluding remarks are presented
in Section 5.

Throughout the paper, we use boldface symbols for vectors and matrices. diag (x) is a diagonal
matrix with diagonal entries set to the entries of the vector x. The ith cardinality vector in the
Euclidean space R™ is denoted by e; € R™. Subscripts refer to entries of vectors and matrices, and
square brackets are used to symbolize instances of a vector, for example, randomly drawn from a
particular distribution. Superscripts with round brackets are reserved for iterations in optimization
routines.

2. OED for Bayesian Inversion. Consider the forward model described by
(2.1) y=F()+9,

where 6 € RNstate is the discretized model parameter and y € RNebs is the observation, where
§ € RNebs is the observation error. Assuming Gaussian observational noise & ~ N(0, Tyoise), then
the data likelihood takes the form

1
(22) £0316) o oxp (3 1P(0) - vl )

where T'poise is the observation error covariance matrix (positive definite) and the matrix-weighted
norm is defined as HxHi =x"Ax.

An inverse problem refers to the retrieval of the model parameter 6 from the noisy observation
y, conditioned by the model dynamics. In Bayesian inversion, the goal is to study the probability

distribution of 8 conditioned by the observation y that is the posterior obtained by applying Bayes’
theorem,

(2.3) P (6ly) oc P (y|6) P(6)

where P(#) is the prior distribution of the inversion parameter §, which in many cases is assumed to
be Gaussian 6 ~ N (6py, Ty, ). If the parameter-to-observable map F is linear, the posterior P (6]y)
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is Gaussian N(67, Tpost) with

(2.4) Tpost = (FTA F+T50) 7 6% = Too (T3 00 + T y)

noise post — noise y

where F* is the forward operator adjoint. If the forward operator F is nonlinear, however, the
posterior distribution is no longer Gaussian. A Gaussian approximation of the posterior can be
obtained in this case by linearization of F around the maximum a posteriori (MAP) estimate,
which is inherently data dependent. For simplicity, we will focus on linear models; however, the
approach proposed in this work is not limited to the linear case. Further analysis for nonlinear
settings will follow in separate works.

In a Bayesian OED context (see, e.g., [1-3,8,9, 24, 25]), the observation covariance I'yise is
replaced with a weighted version Wr((), parameterized by the design ¢, resulting in the following
weighted data-likelihood L(y|6;¢) and posterior covariance I'pogt(€)-

23) L0 xexp (5 IFO) ¥l ) o Tomtl€) = (FW(OF +T5)

The exact form of the posterior covariance I'pos (¢) depends on how Wr(¢) is formulated. We
are interested mainly in binary designs ¢ € {0,1}"s, required, for example, in sensor placement
applications; see, for example, [1,9]. In this case, we assume a set of ny candidate sensor locations,
and we seek the optimal subset of locations. Note that selecting a subset of the observations is
equivalent to applying a projection operator onto the subspace spanned by the activated sensors.
This is equivalent to defining the weighed design matrix as Wrp := F;;QSWI‘;C}IQE, where W :=

diag (¢) is a diagonal matrix with binary values on its diagonal. The ith entry of the design is set
to 1 to activate a sensor and is set to 0 to turn it off.

The optimal design (°P* is the one that optimizes a predefined criterion ¥(-) of choice. The most
popular optimality criteria in the Bayesian inversion context are A- and D-optimality. Both criteria
define the optimal design as the one that minimizes a scalar summary of posterior uncertainty asso-
ciated with an inversion parameter or state of an inverse problem. Specifically, ¥(¢) := Tr (T'post(¢))
for an A-optimal design, and ¥(() := logdet (T'post(¢)) for a D-optimal design, i.e., the sum of the
eigenvalues of T',ost(¢), and the sum of the logarithms of the eigenvalues of T'post(€), respectively.

To prevent experimental designs that are simply dense, one typically adds a regularization term
®(¢) that promotes sparsity, for example. Thus, to find an optimal design (°P!, one needs to solve
the following binary optimization problem,

(2.6) ¢ = argmin J() = () +a®(C),

¢ef{o,1}ms

where the function ®(¢) promotes regularization or sparsity on the design and « is a user-defined
regularization parameter. For example, ® could represent a budget constraint on the form ®(¢) :=
I<llg < ks k € Zy or a sparsifying (possibly discontinuous) function, for example, ||¢]|, or ||C]];-

Traditional binary optimization approaches [52] for solving the optimization problem are ex-
pensive, rendering the exact solution of (2.6) computationally intractable. The optimization prob-
lem (2.7) is a continuous relaxation of (2.6) and is often used in practice as a surrogate for solv-
ing (2.6) with a suitable rounding scheme:

(2.7) Pt = argmin () == ¥(C) +aB(C).

¢elo,1]ms
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In sensor placement we seek a sparse design in order to minimize the deployment cost, and thus
we would utilize £y as a penalty function. Solving the relaxed optimization problem (2.7) follows a
gradient-based approach, and thus using ¢y as a penalty function is replaced with the nonsmooth
¢, norm; see [3] for more details.

The relaxed problem (2.7) provides a lower bound on (2.6), and any binary solution (°P* €
{0,1}2 of (2.7) is also an optimal solution of (2.6). Given a solution of (2.7) that is not binary, we
can obtain a binary solution by rounding; however, there is no guarantee that the resulting binary
solution is optimal, unless we use sum-up-rounding. In Section 3 we present a new approach for
directly solving the original OED binary optimization problem (2.6) without the need to relax the
design space or to round the relaxations.

3. Stochastic Learning Approach for Binary OED. Our main goal is to find the so-
lution of the original binary regularized OED problem (2.6) without solving a mixed-integer pro-
gramming problem or resorting to the relaxation approach widely followed in OED for Bayesian
inversion (as summarized in Section 2). We propose to reformulate and solve the binary optimiza-
tion problem (2.6) as a stochastic optimization problem defined over the parameters of a probability
distribution. Specifically, we assume ( is a random variable that follows a multivariate Bernoulli
distribution.

3.1. Stochastic formulation of the OED problem. We associate with each candidate

sensor location x; a probability of activation ;. Specifically, we assume that (;, ¢ = 1,2,...,ng
are independent Bernoulli random variables associated with the candidate sensor locations z;, i =
1,2,...,ns. The activation (success) probabilities of the respective sensors are 0;, i = 1,2,...,ny;

that is, P(¢; = 1) = 60;, P({; = 0) = 1 — ;. The probability associated with any observational con-
figuration is then described by the joint probability of all candidate locations. Note that assuming
independent activation variables (; does not interfere the correlation structure of the observational
errors, manifested by the observation error covariance matrix I'yoise. Conversely, setting (; to 0
corresponds to removing the ith row and column from the precision matrix I‘;;ise, while setting the
design variable value to 1 corresponds to keeping the corresponding row and column, respectively.
We let P (¢|f) denote the joint multivariate Bernoulli probability, with the following probability

mass function (PMF):

(3.1) P(§|9)::ﬂ0§i (1—6)"%, ¢efo,1}, 6;,€0,1].
i=1

We then replace the original problem (2.6) with the following stochastic optimization problem:

(3.2) (PP = argmin T(0) := Ec.op(cio) [j(g)} = Ecr(clo) [\If(g) fa @(g)] .
0€[0,1]ms

Because the support of the probability distribution is discrete, the possible values of ¢ € {0, 1}"=
are countable and can be assigned unique indexes. An index k is assigned to each possible realization

of ¢ :=((1,¢2,---,Cn,), based on the values of its components using the relation
Nng 4
(3.3) k=143 G271, Ge{o1}.

i=1
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Thus, all possible designs are labeled as ([k],k=1,2,...,2". With the indexing scheme (3.3), the
optimization problem (3.2) takes the following equivalent form:

ons

(3.4) 6°P* = arg min Y (6 Z J(¢ [k]]0) .

0€0,1]ms

To solve (3.4), one can follow a gradient-based optimization approach to find the optimal
parameter 6°P*. The gradient of the objective in (3.4) with respect to the distribution parameters
0 is

ons

(85)  VoT(0) = VoBeurco [T (O] = Vo Y TP (I0) = > () Vo P (CIH0)
¢

where VP (¢|0) is the gradient of the joint Bernoulli PMF (3.1) (see Appendix A for details):

(3.6) VgP(Q[kH&):iW’ 31yl chL 4 (1 _ gyyi-<iblg,

0, ;
Jj=1 Jj=1 #J

In Appendix A, we provide a detailed discussion of the multivariate Bernoulli distribution, with
identities and lemmas that will be useful for the following discussion.

Clearly, (3.4) and (3.5) are not practical formula, because their statement alone requires the
evaluation of all possible designs J(([k]), which is equivalent to complete enumeration of (2.6).
We show below how we can utilize stochastic gradient approaches to avoid complete enumeration.
Practical and efficient solution of (3.2) is discussed in Subsection 3.3. We first establish in Subsec-
tion 3.2 the connection between the solution of the two problems (2.6) and (3.2) and discuss the
benefits of the proposed approach.

3.2. Benefits of the stochastic formulation. The connections between the two problems
(2.6 and 3.2) and their respective solutions are summarized by Proposition 3.1 and Lemma 3.2. The
relation between the objective functions in these two problems, and their domains and codomains,
is sketched in Figure 1.

PROPOSITION 3.1. Consider the two functions J : Q¢ :={0,1}" - R and T : Qp := [0,1]"™ —
R, defined in (2.6) and (3.2), respectively. Let ¢ € ¢ be a random vector following the multivariate
Bernoulli distribution (3.1), with parameter 6 € Qq. Let C := {c€R|c:=T((), ¢ € Qc}, be the set
of objective values corresponding to all possible designs, ¢ € Q¢. Then:

a) Qg is the convezr hull of Q¢ in R™.
b) The values of T (3.2) form the convex hull of C in R, denoted by conv(C), with points
¢ € C being the extreme points of conv(C'); that is, conv(C) = {Y(0)|0 € Qy}.
¢) T(x) = J(x) vx € Q.
d) For any realization of 0 € Qy, it holds that min{C'} < Y(0) < max{C}; moreover, Y (6°P") =
min{C} = J(C).
Proof. a) This follows from the definition of Q¢ and Qg and the fact that Qy is the hy-
percube in R™ whose vertices formulate the set 2¢.
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b) For any realization 6, the function Y defines a convex combination of all points in C,
because the coefficients P ((|6) , ¢ € Q¢ are probabilities satisfying that 0 < P (¢]f) < 1 and
S cea, P(CIO) = 1.

c) Setting 6 to any x € Q¢ yields a degenerate multivariate Bernoulli distribution, which
is a Dirac measure d;({x}) defined on the set {x}. Thus, P({|0 =x) = d:({x}), and
T(x) = Yeen, PCO=%) T(C) = Yeen, 5c({xh) T(C) = T(x).

d) It follows from Carathéodory’s theorem that for any realization of 6 € Qy, the value of the
objective Y (0) falls on a line segment in R that connects at most two points in C. This
guarantees that min{C'} < Y(0) < max{C}. Additionally, from points a) and b) above, it
follows that Y (6°P*) = min{conv(C)} = min{C} = J(¢°*"). O

" Convex N
QC = {07 1} s —_— Hull Qg = [0, 1] s

| /

VA(Q T(6)

\L Convex \L

C={j1,J2,-- . Jons} —> g — conv(C) := min{C}, max{C}]

Fi1G. 1. Relation between problems 2.6 and 3.2 and their respective domains and codomains.

LEMMA 3.2. The optimal solutions of the two problems (2.6) and (3.2) are such that

argmin J(¢) C argmin Y (6) .
CeQe 0€2

Moreover, if the optimal solution (°P* of (2.6) is unique, then 6°P* = (°P' where 6°Pt is the unique
optimal solution of (3.2).

Proof. Proposition 3.1 guarantees that 30 € Qg, Y(0) < J(¢°P*). Additionally, from points a)

and c) in Proposition 3.1, it follows that arg min J(¢) C arg min T'(0) .
cen 0eQy

Assume (°P' is the unique optimal solution of (2.6); it follows that ¢°P* = (°P' is an optimal
solution of (3.2). Now assume 360 € gy such that 6 # 6°P*, T(9) = T(6°P') = F(¢°PY). If 6 is the
parameter of a degenerate Bernoulli distribution, then 6§ € Q; and J(0) = J(¢°P"), thus contra-
dicting the uniqueness of (°P*. Conversely, if 6 is the parameter of a nondegenerate multivariate
Bernoulli distribution, then there are at least two designs ¢,n € €¢ with nontrivial probabilities
€ (0,1), with J(¢) = ¢(n), again contradicting the uniqueness assumption of (°P. d

The stochastic formalism proposed in Subsection 3.1 is beneficial for multiple reasons. First, this
probabilistic formulation (3.2) to solving the original optimization problem (2.6) enables converting
a binary design domain into a bounded continuous domain, where the optimal solution of the
two problems (3.2) and (2.6) coincide. Second, the stochastic formulation (3.2) enables utilizing
efficient stochastic optimization algorithms to solve binary optimization problems, which are not
applicable for the deterministic binary optimization problem (2.6). Third, the solution of the
stochastic problem (3.2) is an optimal parameter °P* that can be used for sampling binary designs
¢ by sampling P (¢|6°P*) , even if only a suboptimal solution is found. Fourth, the stochastic
formulation (3.2) requires evaluating the derivative of T with respect to the parameter of the
probability distribution 8, instead of the design (. Thus, we do not need to evaluate the derivative of
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J with respect to the design . In OED for Bayesian inversion, as discussed in Section 2, evaluating
the gradient (with respect to the design) is very expensive since it requires many forward and
backward solves of expensive simulation models. Fifth, because 7 is not required to be differentiable
with respect to the design {, a nonsmooth penalty function ® can be utilized in defining 7, for
example to enforce sparsity or budget constraints, with the need to approximate this penalty with a
smoother penalty approximation. Note that in this case, as explained by (2.6 and 3.2), the penalty
is asserted on the design, rather than the distribution parameter 6.

3.3. Approximately solving the stochastic OED optimization problem. The objective
in (3.4) and the gradient (3.5) amount to evaluating a large finite sum, which can be approximated
by sampling. The simplest approach for approximately solving (3.4) is to follow a Monte Carlo
(MC) sample-based approximation to the objective T and the gradient VY, where the sample is
drawn from an appropriate probability distribution. However, the objective (3.2) is deterministic
with respect to 6. Nevertheless, one can add randomness by assuming a uniform random variable
(an index) over all terms of the objective and the associated gradient. This allows utilizing external
and internal sampling-based stochastic optimization algorithms; see, for example, [20,21,30,31, 34,
41,45,46]. These algorithms, however, are beyond the scope of this work.

Here, instead, we focus on efficient algorithmic procedures inspired by recent developments in
reinforcement learning [14,49,51]. Specifically, we view P ((|#) as a policy and the design ¢ as a
state, and we seek an optimal policy to configure the observational grid. The reward is prescribed
by the value of the original objective function, and we seek the optimal design that minimizes the
total expected reward. This is further explained below.

An alternative form of the gradient (3.5) can be obtained by using the “kernel trick”, which
utilizes the fact that Vglog(P (¢|6)) = P(%\@VGP (€|9), and thus VoP (¢|0) = P (¢|0) Velog(P (¢|0)).
Using this identity, we can rewrite the gradient (3.5) as

2ms

(B7) Vo) = Y (T(CIK) Vo logP (CIHI0) )P (CIK)I6) = Egricin[7(C) Vo logP (C16)]

k=1

We assume, without loss of generality, that 6 falls inside the open ball (0,1)"s, and thus both
the logarithm and the associated derivative of the log-probability are well defined. If any of the
components of # attain their bound, then the distribution becomes degenerate in this direction, and
the probability is set to either 0 or 1 and is thus taken out of the formulation since the gradient in
that direction is set to 0. This is equivalent to projecting 6 onto a lower-dimensional subspace.

The form of the gradient described by (3.7) is equivalent to (3.5). However, it shows that the
gradient can be written as an expectation of gradients. This enables us to approximate the gradient
using MC sampling by following a stochastic optimization approach. Specifically. given a sample
C[I] ~P(C|9),j=1,2,...,Nens, we can use the following MC approximation of the gradient,

Nens
(3:5) g = VoBro) [T(O)] ~ &= — Y TCLIDVe logP (CLlI).

where Vg logP (¢[4]|0) is the score function of the multivariate Bernoulli distribution (see Appen-
dix A for details). By combining (3.8) with (A.7), we obtain the following form of the stochastic
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gradient:

Nens Ng s 1A
59) B- g 2 Y (S 4T e

i=1

To solve the optimization problem (3.2), one can start with an initial policy, in other words,
an initial set of parameters 6, and iteratively follow an approximate descent direction until an
approximately optimal policy is obtained.

Because the optimization problems described here require box constraints, we introduce the
projection operator P, which maps an arbitrary point 6 onto the feasible region described by the
box constraints. One can apply projection by truncation (see [37, Section 16.7]):

0 if 0; <0,
(3.10) P(6;) == min{l,max{0,6,}} = ¢ 6, if 0; €[0,1],
1 it 6 >1,

where the projection P(6) is applied componentwise to the parameters vector 6. Alternatively, the
following metric projection operator can be utilized:

(3.11) P(0) := argmin ||0' — 6], .
0'e€0,1]ms

Note that the projection operator P is nonexpansive and thus is orthogonal. This guarantees
that for any P(0[1]), P(0]2]) € R, it follows that

(3.12) I1PO[1]) — POR2D)I < [16[1] — O[2]]| -

A stochastic steepest-descent step to solve (3.2) is approximated by the stochastic approxima-
tion of the gradient (3.9) and is described as

(3.13) pin+1) — P(g(”) _ n(n)g(n)) 7

where n(™) is the step size (learning rate) at the nth iteration. Equation (3.13) describes a stochastic
gradient descent approach, using the stochastic approximation (3.9) at each iteration in place of g(™),
where the sample is generated from P (C |0(")). One can choose a fixed step size or follow a decreasing
schedule to guarantee convergence or can do a line search using the sampled design to approximate
the objective function. Additionally, one can use approximate second-order information and create
a quasi-Newton-like step.

Algorithm 3.1 describes a stochastic descent approach for solving (2.6) by solving (3.2) followed
by a sampling step. Note that because ( is sampled from a multivariate Bernoulli distribution with
parameter 0, in Step 5 if 6; € {0, 1}, then {; = ;. Thus the corresponding term in the summation
vanishes.

Algorithm 3.1 is a stochastic gradient descent method with convergence guarantees in expecta-
tion only; see Subsection 3.4. In practice, the convergence test could be replaced with a maximum
number of iterations. Doing so, however, might not result in degenerate PMF. The output of



10 A. ATTIA, S. LEYFFER, AND T. MUNSON

Algorithm 3.1 Stochastic optimization algorithm for binary OED.

Input: Initial distribution parameter #(9), step size schedule 7™, Ny, m
Output: (°Pt

1: Initialize n =0

2: while Not Converged do

3: Update n < n—+1

4: Sample {([i];i =1,2,..., Nens} ~ P (¢|0™)

5 Caleulate 3 = £ SNy (F(CUD) Sy (S + <) ey
6: Update 01 = p(9(™) — p(mgn))

7: end while

8: Set 6Pt = 9(")

9: Sample {([j];5 =1,2,...,m} ~ P (¢|6°P"), and calculate J({[4])

10: return (°P*: the design ¢ with smallest value of 7 in the sample.

the algorithm ¢°P* = (@) is used for sampling binary designs ¢, by sampling P (¢|6°P*), even if
a suboptimal solution is found. Another potential convergence criterion is the magnitude of the
projected gradient HP(g(k)) H < pgtol. We also note that Algorithm 3.1 is equivalent to the vanilla
policy gradient REINFORCE algorithm [51]. The remainder of Section 3 is devoted to addressing
convergence guarantees, convergence analysis, and improvements of Algorithm 3.1.

3.4. Convergence analysis. Here, we show that the optimal solution of (3.4) is a degenerate
multivariate Bernoulli distribution and that the convergence of Algorithm 3.1 to such an optimal
distribution in expectation is guaranteed under mild conditions.

First, we study the properties of the exact objective defined by (3.4) and the associated exact
gradient (3.5). We then address the stochastic approximation and the performance of Algorithm 3.1.

3.4.1. Analysis of the exact stochastic optimization problem. Recall that the objective
function utilized in (3.4) and the associated gradient take the respective forms

27 2ms

(3.14) Y(0) =) JEKDPCKIG) . VoY (0) =g=) TK)VoP(C[K]0)
k=1 k=1

where 6 € Qg := [0,1]™, P(¢|0) is the multivariate Bernoulli distribution (3.1), and we use the
indexing scheme (3.3). Note that we are viewing the objective T explicitly as a function of the
PMF parameter 6, because all possible combinations of binary designs ([k]; k = 1,2,...,2" are
present in the expectation.

Here, we show that the exact gradient of T is bounded (Lemma 3.3) and that the Hessian of T
is bounded; hence, by following a steepest-descent approach, a locally optimal design is obtained.
This will set the ground for an analysis of Algorithm 3.1.

LEMMA 3.3. Let ¢ € Q¢ = {0,1}", and let C = ?é%lx{|j(§)|} Then the following bounds of
¢
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the gradient of the stochastic objective Y hold,

(3.15a) IV Y(O)] < \/ns || C, 0 €Qp,
(3.15D) IV Y(O11]) — Vo YORD] < 2¢/na 10|, 0[1],012] € 0y,

where |Q¢| = 2" is the cardinality of the design domain. Moreover, the Hessian is bounded by

’ %Y \/@C

00; 00

Proof. The first bound is obtained as follows:

(3.16)

2ms
Vo Y(6) ZJ Ve P (C[k]|0)
2ms
(3.17) < Z 17 (K Vo P ([K]|0)?
=Y (TCE)* Ve P KON < C* > Vo P ([E]IO)]*
k=1 k=1

In Appendix A, we derive a bound on Vo P (([k]|f), the gradient of log probability of the
multivariate Bernoulli distribution (3.1). Specifically, Lemma A.2 shows that ||[VgP (¢|0)| <
ns max min P (¢x|0k). Hence it follows from (3.17) that

Jj=1,...,ng k=1,...,ng
k#j
2ms

Ve ()| <n5022 max  min P (G[i]|0)

1,...,ns k=1,...,ng
(3.18) k#j
<n2™C? max  max  min P (([i]|0k) -

i=1,..., 2ns g=1,..., ns k=1,...,ng
k]

Because P (¢]0) < 1, it follows immediately that ||V T (0)]|> < ns 2" C2, and the bound (3.15a)
follows by taking the square root on both sides. The second bound (3.15b) follows immediately by
noting that

(3.19) Vo Y(6[1]) = Vo Y(ODI < [[Vo TOMDI + Vo Y(O2])]] < 2¢/7ns [2c|C.

The second-order derivative of the objective T is
gns

(3.20) HessyY = VoV = > J()VoVe P ((|0) = ZJ VoV P (C[K]|0) .
¢

Equation (3.20) shows that the (i, j)th entry of the Hessian (3.20) is Zi:l J (k) 8323?(52?- The

second-order derivative of the Bernoulli distribution is discussed in detail in Appendix A, and it
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follows from (A.6) that 2 (C‘G) < 1. This means that the entries of the Hessian (3.20) are bounded
as follows,

1\’ PEPEO o (PPEIRION o
221 —— L) < (C2™
(8:21) (aaiaej) (ZJ a6,00, | =€ ;( 96, 00, ) S
and the bound in (3.16) follows by taking square root of both sides. |

Lemma 3.3 is especially interesting because it shows that the gradient of Y(8) is bounded. On
the contrary, J(¢) does not have bounded gradients for ¢y regularization. Additionally, it follows
from Lemma 3.3 that the entries of the Hessian are bounded, implying that the Hessian is bounded.
Thus the objective T is Lipschitz smooth. Finding the Lipschitz constant, however, depends on the
value of the function J evaluated at all possible values of (, or at least the maximum value. This is
impossible to know a priori, without any prior knowledge about the problem in hand. Moreover, the
bound given above indicates that the Lipschitz constant decreases for higher dimensions, since it is
exponentially proportional to the cardinality of the design space §)¢. However, one can estimate the
Hessian matrix by using an ensemble of realizations and use it to estimate the Lipschitz constant.
This can be helpful for choosing a proper step size for a steepest-descent algorithm. Alternatively,
one can use a decreasing step-size sequence {1(k)}22, such that limj,_,c 7(k) = 0 and 3°, n'k) = oo
which guarantees convergence to a local optimum; see [15, Proposition 4.1].

)

3.4.2. Analysis of stochastic steepest-descent algorithm. Here we show that g(0) is an
unbiased estimator of the true gradient g(¢). This fact, along with Lemma 3.3 and the fact that
T is a convex combination, guarantees convergence, in expectation, of Algorithm 3.1 to a locally
optimal policy. At each iteration n of Algorithm 3.1, the gradient is approximated with a sample
from the respective conditional distribution P (( |9(")). First, we note that

R 1 Nens ' Nens ‘
(322) gl = ||x— d_ Tl VelogP (C[10)]|| < ZIJ DIIValog P (CLIO) -
ens j:1 enb .

which shows that the magnitude of g is bounded. Moreover, we will show next that g() is an
unbiased estimator of g(#) and that the variance of this estimator is bounded.

LEMMA 3.4. The stochastic estimator g defined by (3.8) is unbiased, with sampling total vari-
ance var(@), such that

(3.23) E [g} —g=V,T(0); var(g) - var(J(C)Vglog]P’(qe)) ,

ens

where the total variance operator evaluates the trace of the variance-covariance matriz of the random
vector. Moreover, the total variance of g is bounded, and there exist some positive constants K1, K,
such that

(3.24) £ (68| = B8’ < £ + o g = K + Kogs.
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Proof. For any realization of the random design ¢ ~ P (¢|6), it holds that

E[7()ValogP(l0)] = 22 T(QVelogP (GO (€10) = 32 QTP (10

(3.25)
— v, Z T(OP(C]8) = VoE [J(C)} — V,1(6).

Thus, unbiasedness of the estimator g follows because

Nens
E[g] = B[ D 7)o logP(CLj10)]
(3.26) 1 o | N
= 5 D E[T(lN Vo logP(C[110)] "= D Vo (0) = VaT(0).
ens j=1 ens =1

The total variance var(g) follows by definition of g as

(3.27) var(@)=var(Nins%J(C[j])veloglp(([j]9))= —var (7 (Q)Velog P (C]9))

To prove (3.24), we rewrite (3.27) as follows,

E[e"e] = var(g) + E[g] E &] = Nl var (7 (Q)Volog P (¢]0)) + &

< var(C’VglogIP’(dQ)) +g'g

(328) o Ncns
2

C?%ny 1 1 T
+tg8,

var(Vglog]P’(Cw)) +g'g<

— T
ens Neps | minf 1 —max¥
7

(2

where the last inequality follows by (A.15), and, as before, C' = én%x {I7()|}. From Lemma 3.3,
€8¢

the gradient is bounded. By setting K; = CPn, ( L4 17m1ax 9,_> and K3 = 1, one can guarantee

Nens \ min 6;

that E [ng} <K+ Kag'g. 0

The significance of Lemma 3.4 is that (3.24) guarantees that Assumption (d) of [15, Assumptions
4.2] is satisfied. This, along with the fact that g is unbiased, and given the boundedeness of entries of
the Hessian (Lemma 3.3), and by complying with the step-size requirement, guarantees convergence
of Algorithm 3.1 to a locally optimal policy ¢°P .

The sample-based approximation of the gradient described by (3.9) exhibits high variance,
however, and thus requires a prohibitively large number of samples in order to achieve acceptable
convergence behavior to a locally optimal policy. Alternatively, one can use importance sampling [6]
or antithetic variates [33] or can add a baseline to the objective, in order to reduce the variability
of the estimator. This issue is discussed next (Subsection 3.5).
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3.5. Variance reduction: introducing the baseline. The formulation of the stochastic es-
timator g defined by (3.8) provides limited control over its variability. The implication of Lemma 3.4
is that, while the gradient estimator is unbiased, large samples are required to reduce its variability.
Instead of increasing the sample size, one can reduce the estimator variability by introducing a
baseline b to the objective function. Specifically, it follows from (3.23) that var(g) = O(N;nls); thus,
to reduce the variability of the estimator, one would need to increase the sample size. In general,
MC estimators are known to suffer from high variance; thus this estimator, while unbiased, will be
impractical especially if ng is large and the sample size Ny is small. The objective function T can
be replaced with the following baseline version,

(3.20) T0(6) = Ecmrieio) [T(Q) — ]
where b is a baseline assumed to be independent from the parameter 6. Since b is independent
from T and by linearity of the expectation, it follows that TP(60) = E¢_p(c o) [j({)] — b, and thus

arg ming TP = argmin, T, and Vo TP = VY — Vyb = V,T . By applying the kernel trick again, we
can write the gradient of (3.29) as

(3.30) VoX®(8) = Ecurcio) [ (7(C) — b) Vo log P (19)]

which can be approximated by the sample estimator

Nens Nens

(33) 8= o > (U] ) Vo logP (CLI0) = & o ., Vo logB(C[j]0).

j=1

Note that (3.30) is also an unbiased estimator since E ['g\b} =FE ['g\} = g. The variance of such

an estimator, however, can be controlled by choosing an adequate baseline b. In Subsection 3.5.1,
we provide guidance for choosing the baseline. In what follows, however, we keep the baseline
as a user-defined parameter, opening the door for other choices. For example, as shown in the
numerical experiments, b = 1 (J(0) + J(1)) can be an utilized as a constant baseline, which avoids
the additional overhead of calculating (3.40) at each iteration. This empirical choice, however, is
suboptimal and is not guaranteed to provide acceptable results in all settings.

3.5.1. On the choice of the baseline. We define the optimal baseline to be the one that
minimizes the variability in the gradient estimator. We provide the following results that will help
us obtain an optimal baseline.

LEMMA 3.5. Letd = ﬁ ZT:l VologP (C[j]|60). Then the following identities hold:

(3.32a) E [d} =0,

I &1
(332b) Var(d) = Ncns 2 m .
Proof. The first identity follows from

NSHS

> VologP(C[jl6)] = x— D_E|VologB(C[jll0)] = 0.

Jj=1 Jj=1

1
NEHS

(3.33) E {d} - E[
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where the last equality follows from (A.10). Because E [d} = 0, and by utilizing Lemma A.1, the
second identity follows as

Nens

var(d) =K [de] —E {d}TE [d] =E [de] = i Z var(Vg log P (§[3]|0))
(3.34) ens j=1
Nins ]21219 —92 B Nemge —92

d
LEMMA 3.6. The ensemble estimator g° described by (3.31) is unbiased, with sampling total
variance var(?g\b), such that

o 1
Nens;&i_eg'

(3.35) ]E[gb] —g=V,T(0); var(gb) — var( ) —2E [ATd}

Proof. The estimator is unbiased because Vo TP () = VY (6), and

E[e"] =E[ ny(dﬂb)%m@(dﬂwﬂ

NEHS J:1
1 Nens
= 5 O E[I(Cli] ~b)VologP (c[7]1)
ens ] 1
(3.36) Nen Ner
- Z [CUDTstoP €010)] ~ - > B[ los (cl710)]
= VoY(0 Z [ ologP (¢ IG)}
=VyY(0),

where the last step follows by Lemma A.1. The total variance of the estimator g is given by
~ o\ T ~ PR LI SR T ~
(3.37) var(gb) - E[(gb) gb} —E[gb] E[gb} :E[(gb) gb} -g's,
where g = Vg YP = VY. The first term follows as
~b\T ~ ~ ~
E [(gb) gb} =E [(g —bd)" (& - bd)}

—E {ng} _9E {gde} +E {debd}
2le

(3.38) = var(g) ] [ ] — 2bE [gTd} + b2var(d) +b’E {d]TE [d]
= r(@) +g'g— QbE[ Td} —|—b2var( )
= var(g) +g'g— 2bE[ d} lens :: 91_193 )
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From (3.37, 3.38), the total variance follows as

(3.39) var(§b> = var(g) — 2bE [§Td} + sz ”Z ﬁ O
i=1 " i

ens

The variance of gP is described by Lemma 3.6. We can view (3.39) as a quadratic expression
in b and minimize it over b. Because Z?;l ﬁ > 0, the quadratic is convex, and the min in b
is obtained by equating the derivative of the estimator variance (3.39) to zero, which yields the

following optimal baseline:

Nens

(340) bOpt = —ns 1
2ili g

E [g\Td} .

The expectation in (3.40), however, depends on the value of the function T and can be estimated

by an ensemble of realizations g[j], d[j], 7 =1,2,...,m,
1 bWI,

(3.41) E [gTd} ~ = > gleldlel.,
m e=1

where gle] and d[e] are realizations of g and d, respectively. Thus, we propose to estimate the
optimal baseline &°P* as follows. Given a realization @ of the hyperparameter, a set of b,,, batches each
of size N5 are sampled from P (¢|0), resulting in the multivariate Bernoulli samples {(]e, j];e =
1,2,...,bm; 5 =1,2,...,Neps b The following function is then used to estimate ¥°P':

.
> (Nz T (Cle, 1) Volog P (¢le, |9)> (Nz Vg logP (de,ﬂlf)))
(3.42) PPt s TP = Sl C = '

Ns
1
Ncns bm Z 9@'_92
i=1 v

3.5.2. Complete algorithm statement. We conclude this section with an algorithmic de-
scription of the stochastic steepest-descent algorithm with the optimal baseline suggested here.
Algorithm 3.2 is a modification of Algorithm 3.1, where we added only the baseline (3.42).

Note that in both Algorithm 3.1 and Algorithm 3.2, the value of J is evaluated repeatedly at
instances of the binary design ¢. With the algorithm proceeding, it becomes more likely to revisit
previously sampled designs. One should keep track of the sampled designs and the corresponding
value of 7, for example, by utilizing the indexing scheme (3.3), to prevent redundant computations.
We remark that as noted in Algorithm 3.1, if §; € {0,1} in Step 6 or Step 16 of Algorithm 3.2, then
(; = 0;. Thus the corresponding term in the summation vanishes.

3.6. Computational considerations. Here, we discuss the computational cost of the pro-
posed algorithms and of standard OED approaches in terms of the number of forward F and adjoint
F* model evaluations. We assume J is set to the A-optimality criterion, that is, the trace of the
posterior covariance of the inversion parameter. This discussion extends easily to other OED opti-
mality criteria.
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Algorithm 3.2 Stochastic optimization for binary OED with the optimal baseline.

Input: Initial distribution parameter 8(9), step size schedule (™, sample sizes Neys, m, baseline
batch size b,,
Output: (°Pt
1: initialize n =0
2: while Not Converged do

3 Update n <+ n+1

4 Sample {¢[j];5 =1,2,...,Nens} ~ P (¢[0™)

5: Calculate b = OPTIMALBASELINE(G(") Nens, )

o Caleulate g = <1 SNy (7(C] — ) X0, (S + Bt e
7 Update §+1) = P(9(m) — () g(m)

8: end while

9: Set §°oPt = g(n)

S

10:  Sample {([j];7 = 1,2,...,m} ~ P (¢|6°P"), and calculate J({[j])

return (°P%: the design ¢ with smallest value of 7 in the sample.

11: function OPTIMALBASELINE(6, Nens, bin)

12: Initialize b <+ 0
13: for ¢ < 1 to b,, do
14: for j + 1 to Ngys do
15: Sample ([j] ~ P (¢|0)
16: Calculate r[j] = >, (CTM + %) €
17: end for
18: Calculate dle] = Nins Z;\Iel r[j]
19: Calculate gle] = N:m Z;\tl J(Cl5]) r(s]
20: Update b« b+ (gle])" dle]
21: end for
. _ News
22: Update b+ b x P S siisg
23: return b

24: end function

Standard OED approaches require solving the relaxed OED problem (2.7), which requires eval-
uating the gradient of the objective 7, namely, the optimality criterion, with respect to the relaxed
design, in addition to evaluating the objective itself J for line-search optimization. Formulating
the gradient requires one Hessian solve and a forward integration of the model F for each entry of
the gradient. The Hessian, being the inverse of the posterior covariance, is a function of the relaxed
design; see, for example, [8] for details. Hessian solves can be done by using a preconditioned con-
jugate gradient (CG) method. Each application of the Hessian requires a forward and an adjoint
model evaluation. If the prior covariance is employed as a preconditioner, and assuming r < Ngiate
is the numerical rank of the prior preconditioned data misfit Hessian (see [16,29]), then the cost
of one Hessian solve is O(r) CG iterations, that is, O(2r) evaluations of the forward model F. To
summarize, the cost of evaluating the optimality criterion J for a given design ¢ is O(27 Ngtate)
forward model solves. Moreover, the cost of evaluating the gradient of J with respect to the design
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is O(2 7 nsNgtate) model solves.

In contrast, with the proposed algorithms, we do not need to evaluate the gradient of [J
with respect to the design. At each iteration of Algorithm 3.1, the function J is evaluated for
each sampled design to evaluate the stochastic gradient. Assuming the size of the sample used to
formulate the stochastic gradient g is Neps, then the cost of each iteration is O(2 7 NensNgtate). The
cost of evaluating the gradient of the multivariate Bernoulli distribution (3.6) is negligible compared
with solving the forward model F.

Note that unlike the case with the relaxed OED formulation, in the proposed framework the de-
sign space is binary by definition; and as we will show later, as the optimization algorithm proceeds,
it reuses previously sampled designs. Moreover, the value of J can be evaluated independently,
and thus the stochastic gradient approximation is embarrassingly parallel.

4. Numerical Experiments. We start this section with a small illustrative model to clarify
the approach proposed and provide additional insight. Next, we present numerical experiments
using an advection-diffusion model.

4.1. Results for a two-dimensional problem. Here we discuss an idealized problem fol-
lowing the definition of the linear forward and inverse problem described in Section 2. Python code
for this set of experiments is available from [7]. We define the forward operator F as a short wide
matrix that projects model space into observation space. Moreover, we specify prior and observa-
tion covariance matrices and formulate the posterior covariance matrix I'pos and the objective J
accordingly. The forward operator and prior and observation noise covariances are

o5 05 0 0

(4.1) F:=10 0 05 05|

Iy, :=diag(4,1,0.25,1) ; T'yoise := diag (0.25,1) ,

which result in the following form of the objective J = Tr (T'post (€)):

G+025 G 0 0
_ G ¢G+1 0 0 _
(4.2) J(¢)="Tr 0 0 025644 0250 =20 +0.50 +6.25.
0 0 0.25¢,  0.25(s +1

Figure 2 (left) shows the surface of the two objective functions J and Y, respectively. The
objective functions are evaluated on a regular grid of 15 values equally spaced in each direction.
In the same plot we also display the progress of Algorithm 3.2 with various choices of the baseline
b. Specifically, we first set b to 0 (this corresponds to applying Algorithm 3.1). Next, we set the
baseline to an empirically chosen value

J(0)+ J(1)

2 )
where 0 corresponds to turning all sensors off and 1 corresponds to activating all sensors. This
gives an empirical estimate of the average value of the deterministic objective function J and

thus, in principle, may scale the gradient properly. We utilize the optimal baseline ¥°P* described
in Subsection 3.5.1. In all cases, we set the learning rate to 0.25.

(4.3) b=

The value of the objective function T evaluated at each iteration of the optimizer is shown
in Figure 2 (right). We note that, as explained in Subsection 3.2, the values of J(¢) and 6 coincide
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F1G. 2. Left: surface plot of the objective function J of the relaxed OED problem and the objective function Y of
the corresponding stochastic OED problem. In each direction 15 equally spaced points are taken to create the surface
plots. Iterations of the optimization algorithm are shown on the surface plot for various choices of the baseline b.
Right: value of the objective function T evaluated at each iteration of the algorithm until convergence. Brute-force
results are obtained by searching over all 4 possible values of the binary design ¢ € Q¢. The initial parameter 6 of
the optimizer is set to (0.5, 0.5)T, and the algorithm terminates when the magnitude of the projected gradient (pgtol)

is lower than 1078,

at the extremal points of the domain [0, 1]™. Moreover, unlike the surface of the stochastic objective
T, the surface of the original objective function 7, evaluated at the relaxed design, flattens out for
values of 0; greater than 0.5. This behavior makes applying a sparsification procedure challenging
when associated with traditional OED approaches.

While the performance varies slightly based on the choice of the baseline b, we note that, in
general, the optimizer initially moves quickly toward a lower-dimensional space corresponding to
lower values of the objective function T and then moves slowly toward a local optimum. We also
note that since both candidate parameter values (0,1)" and (1,1)" have similar objective values,
the optimizer moves slowly between them, since the value of the gradient in this direction is close
to zero. If the optimizer is terminated before convergence (say after the first iteration where 6, is
set to 1 here), the returned value of 65 is in the interval (0,1), which allows sampling estimates of
(3P from {0,1}, and the decision can be made based on the value of J or other decisions, such
as budget constraints. Alternatively, one could modify (4.2) by adding a regularization term to
enforce desired constraints. This will be explained further in Subsection 4.2.

Figure 3 shows the gradient of the stochastic objective function Y evaluated (or approximated)
at various choices of #. The top-left panel show results using the exact formulation of the gradi-
ent (3.5). The top-right panel shows the gradient evaluated using (3.8). The lower two panels show
evaluations of the gradient using (3.31) with an empirical choice baseline (4.3) and the estimate
of the optimal baseline (3.42), respectively. These results show that the stochastic approximations
of the gradient utilized in Algorithm 3.1 and Algorithm 3.2, better approximate the true gradient,
given any realization of the parameter . However, the estimates with the baseline (both empirical
choice and optimal estimate) exhibit much lower variability than the gradient evaluated without
the baseline. This is also reflected by the performance of the optimization results in Figure 2.
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FIiG. 3. EBwvaluation of the gradient of the objective YT(0) := E¢ p(¢|p) [J(f)], where J is defined by (4.1).

Gradients are evaluated (or approximated) at 15 equally spaced points in each direction. Top-left: gradient is
evaluated exactly using (3.5). Top-right: gradient is approzimated using (3.8). Bottom-left: gradient is approzimated
using (3.31), with b set to (4.3). Bottom-right: gradient is approzimated using (3.31), with b evaluated using (3.42).

4.2. Experimental setup for an advection-diffusion problem. In this subsection we
demonstrate the effectiveness of our proposed approach using an advection-diffusion model simu-
lation that has been used extensively in the literature; see, for example, [8,9,39] and references
therein.

The advection-diffusion model simulates the spatiotemporal evolution of a contaminant field
u = u(x,t) in a closed domain D. Given a set of candidate locations to deploy sensors to measure
the contaminant concentration, we seek the optimal subset of sensors that once deployed would
enable inferring the initial distribution of the contaminant with minimum uncertainty. To this end,
we seek the optimal subset of candidate sensors that minimized the A-optimality criterion, that is,
the trace of the posterior covariance matrix.

We carry out numerical experiments in two settings with varying complexities. Specifically, we
start with a setup where only 14 candidate sensor locations are considered inside the domain D.
The number of possible combinations of active sensors in this case is 2'* = 16, 384. Despite being
large, this allows us to carry out a brute-force search. The purpose of the brute-force search here
is to study the behavior of the proposed methodology and its capability in exploring the design
space and utilizing any constraints properly, while seeking the optimal design. In particular, we
can compare the quality of our solution with the global minimum in this case.
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Model setup: advection-diffusion. In both sets of experiments, we use the same model setup.
Specifically, the contaminant field u = u(x,t) is governed by the advection-diffusion equation

us —kAu+v-Vu=0 inD x [0,T],
(4.4) u(z,0) =60 in D,
kVu-n=0 ondD x[0,T],

where x > 0 is the diffusivity, T is the simulation final time, and v is the velocity field. The spatial
domain here is D = [0, 1]2, with two rectangular regions inside the domain simulating two buildings
where the flow is not allowed to enter. Here, 0D refers to the boundary of the domain, which
includes both the external boundary and the walls of the two buildings. The velocity field v is
assumed to be known and is obtained by solving a steady Navier—Stokes equation, with the side
walls driving the flow; see [39] for further details.

To create a synthetic simulation, we use the initial distribution of contaminant shown in Figure 4
(left) as the ground truth.

(o] o o o
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(e} o o e}

F1a. 4. Advection-diffusion model domain, discretization, candidate sensor locations, and the true model pa-
rameter, in other words, the true initial condition. Left: The physical domain D including outer boundary and the
two buildings, the model grid discretization, and the true model parameter. Right: Candidate observational sensor
locations.

Observational setup. We consider a set of uniformly distributed candidate sensor locations
(spatial observational gridpoints). Specifically, we consider ny = 14 candidate sensor locations as
described by Figure 4 (right), and we assume that the sensor locations do not change over time. An
observation vector y represents the concentration of the contaminant at the sensor locations, at a
set of predefined time instances {t1, t2, ..., tn, } C [0,T]. The observation times are set to t1+sAt,
with initial observation time ¢; =1; At=0.2 is the model simulation timestep; and s = 0,1, ..., 20.
The result is n; = 16 observation time instances, over the simulation window [0, T = 4]. The
dimension of the observation space is thus Ngps = ng X ny.

The observation error distribution is N(0, Tyeise), with Thoise € RNovsXNovs - describing spa-
tiotemporal correlations of observational errors. We assume that observation errors are time-
invariant and are calculated as follows. For simplicity, we assume that observation errors are
uncorrelated, with fixed standard deviation; that is, the observation error covariance matrix takes
the form T'pice = orngI, where I € RNopsXNobs is the identity matrix. Here, we set the observation



22 A. ATTIA, S. LEYFFER, AND T. MUNSON

error variances to oops = 2.482 x 1072, This specific value is obtained by considering a noise level
of 5% of the maximum value of the contaminant concentration captured at all observation points,
by running a simulation over [0, 7], using the ground truth of the model parameter; see Figure 4
(left).

Forward operator, adjoint operator, and the prior. The forward operator F maps the model
parameter 6, here the model initial condition, to the observation space. Specifically, F represents
a forward simulation over the interval [0, 7] followed by applying an observation operator (here, a
restriction operator), to extract concentrations at sensor locations at observation time instances.
The forward operator here is linear, and the adjoint is defined by using the Euclidean inner product
weighted by the finite-element mass matrix M as F* := M~1F"; see [17] for further details.

The prior distribution of the parameter 6 is modeled by a Gaussian distribution N (6, T'py),
where Ty, is a discretization of A™2, with A being a Laplacian (following [17]).

4.3. The OED optimization problem. Now we define the design space and formulate the
OED optimization problem. To find the best subset of candidate sensor locations, we assign a
binary design variable (; to each candidate sensor location x;, where ¢ = 1,2,...,ng, and hence
¢ € {0,1}™. We aim to find a binary A-optimal design, that is, the minimizer of the trace of the
posterior covariance matrix. Moreover, to promote sparsity of the design, we employ an ¢, penalty
term ®. We thus define the objective function J for this problem as

(4.5) J(Q) =T ((MlFTr;oﬁéidiag (OT e F + rp:)l) +a®(C),

where « is the user-defined penalty parameter. This parameter controls the level of sparsity that we
desire to impose on the design. Specifically, we set ®(¢) := ||(]|, to impose sparsity. On the other
hand, if we have a specific budget A, it would be more reasonable to define the penalty function
as D(C) := al|l¢llp = Al = «|X i, & — Al. We will discuss these two cases in the following and
in the numerical experiments. The stochastic optimization problem (3.2) is formulated given the
definition of J in (4.5) as

-1
(46) & = argminEc.p(cjg) | Tr ((M—lFTrm}ig,jdiag (OTliF +1,}) ) +ad(Q)],
0€[0,1]ms

where P (€|0) is the multivariate Bernoulli distribution with PMF given by (3.1).

4.4. Numerical results with advection-diffusion model. The main goal of this set of
experiments is to study the behavior of the proposed Algorithm 3.2 compared with the global
solution of (4.6).

Solution by enumeration (brute-force) is carried out for all 2!* = 16,384 possible designs, and
the corresponding value of J is recorded to identify the global solution of (4.6). In addition, we
run Algorithm 3.2 with the maximum number of iterations set to 20. We choose this tight number
to test the performance of the stochastic optimization algorithm upon early termination. We choose
the learning rate n = 0.25 and set the gradient tolerance PGTOL to 10~8. Each sensor is equipped
with an initial probability 0.5. This is employed by choosing the initial parameter #(®) of the
stochastic optimization algorithm to #(9) = (0.5,0.5,...,0.5)T. In all experiments, we set the batch
size for estimating the stochastic gradient to 32 and the number of epochs for the optimal baseline
to 10.
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The optimization algorithm returns samples from the multivariate Bernoulli distribution asso-
ciated with the parameter # at the final step. Then, it picks (°P* as the sampled design associated
with the smallest value of 7. We assume that the optimization procedure samples 10 designs upon
termination, from the final distribution. Note that all samples will be identical if the probability
distribution is degenerate. In the numerical results discussed next, we show not only the final
optimal design returned by the optimization procedure but also the sampled designs.

4.4.1. Results without penalty term. We start with numerical results obtained by setting
the penalty parameter o = 0. Figure 5 shows the results of the brute-force search, along with
results returned by Algorithm 3.1. Specifically, in Figure 5 (left), the value of J := Tr (Tpost(¢))
is evaluated at each possible binary design ¢ and is shown on the y-axis. Candidate binary designs
are grouped on the x-axis by the number of entries set to 1, that is, the number of active sensors.
In this setup, we have access to the value of J corresponding to all possible designs, and thus we

can in fact evaluate Y (0) = E¢p(c|o) [j (¢ )] exactly, for any choice of the parameter 6. Of course,

such an action is impossible in practice; however, we are interested in understanding the behavior
of the optimization algorithm. Figure 5 (right) shows the value of T evaluated at the kth step
of Algorithm 3.1.
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F1G. 5. Results of the policy gradient Algorithm 3.1 compared with brute-force search of all candidate binary
destgns. No penalty is used here; that is, we set the penalty parameters a = 0. Left: candidate designs are grouped by
the number of active sensors, on the x-axis, with the corresponding value of J displayed on the y-axis. Brute-force
results are shown as blue dots. The results of Step 9 of Algorithm 3.1 with m = 10 are shown as red stars, and the
optimal solution returned from the algorithm is shown as a green circle. Right: The value of the stochastic objective
Y(0) evaluated at the %) at each iteration k of Algorithm 3.1.

In this setup, without any constraints on the number of sensors, the global optimal minimum is
attained by (°P* = 1 € R™s, that is, by activating all sensors. However, we note that increasing the
number of sensors, say more than 8, would add little to information gain from data. The reason is
the similarity of the values of J for all designs with more than 8 active sensors. The designs sampled
from the final distribution obtained by Algorithm 3.1 are marked as red stars, which in this case
are identical, showing that the final probability distribution is degenerate. The algorithm moves
quickly toward a local minimum, but it fails to explore the space near the global optimum. This
action is expected because of sampling error and the high variability of the estimator. As discussed
in 3.5, improvements could be achieved by incorporating baseline in the objective function.

In Figure 6, we show results obtained by introducing baseline b to the stochastic gradient
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estimator, as described by Algorithm 3.2. We show results with both the heuristic baseline esti-
mate (4.3) (Figure 6 (top)) and the optimal baseline estimate (3.40) (Figure 6 (bottom)). Both Al-
gorithm 3.1 and Algorithm 3.2 result in probability distributions (defined by ) associated with small
values. However, Algorithm 3.2 with the optimal baseline (3.40) outperforms both Algorithm 3.1,
and Algorithm 3.2 with the heuristic baseline (4.3) and generates designs with significantly smaller
objective values. Specifically, as shown in Figure 6 (bottom), the objective value J evaluated at
the designs generated by Algorithm 3.2 are all similar and fall within 1% of the global optimum.
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Fi1Gc. 6. Same as Figure 5. Here, we show results of Algorithm 3.2, that is, stochastic optimization with the
baseline. The top panels show results with the heuristic baseline estimate (4.3). The bottom panels show results with
the optimal baseline estimate (3.40).

Evaluating the optimal baseline estimate, however, requires additional evaluations of 7. We
monitor the number of additional evaluations of J carried out at each iteration of the optimizer.
Note that we keep track of the values of J for each sampled design ¢ during the course of the
algorithm. By doing so, we avoid any computational redundancy due to recalculating the objective
function multiple times for the same design. Figure 7 shows the number of new function evaluations
carried out at each step of the optimization algorithm.

Figure 7 (left) suggests that, by using the heuristic baseline (4.3), the optimization algorithm
converges quickly to a suboptimal probability space and does not require many additional function
evaluations. A smaller step size 1, in this case, might result in better performance. Conversely,
comparing results in both Figure 7 (left) and Figure 7 (right), we notice that the computational
cost, explained by the number of function evaluations, is not significantly different, especially after
the first few iterations.
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Fic. 7. Number of new function evaluations carried out by the stochastic optimization algorithm. Left: re-
sults of Algorithm 3.1. Middle: results of Algorithm 3.2 with the heuristic baseline estimate (4.3). Right: results
of Algorithm 3.2 with the optimal baseline estimate (3.40).

4.4.2. Results with sparsity constraint. To study the behavior of the optimization pro-
cedures in the presence {y sparsity constraints, we set the penalty function to ®(¢) := ||¢]|, and
the regularization penalty parameter to a = 1.0. Here we do not concern ourselves with the choice
of «, and we leave it for the user to tune based on the application at hand and the required level

of sparsity. Results are shown in Figure 8 and Figure 9, respectively. For clarity we omit results
obtained by the heuristic baseline.
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FiG. 8. Results of the policy gradient procedures ( Algorithm 3.1, Algorithm 3.2), compared with the brute-force
search of all candidate binary designs. Here, we set the sparsity penalty parameter to oo = 1.0 and use a sparsity
constraint, defined by ®(¢) = |[C|lg. Top: results of Algorithm 3.1. Bottom: Algorithm 3.2) with the optimal

baseline estimate (3.40).

As suggested by Figure 8 (left), there is a unique global optimum design with only 3 active
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sensors. Both Algorithm 3.1, and Algorithm 3.2 result in degenerate probability distributions. The
global optimal design, however, is attained by utilizing the optimal baseline estimate as shown
in Figure 8 (bottom). The computational cost of both algorithms, explained by the number of
objective function evaluations, is shown in Figure 9.
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Fic. 9. Similar to Figure 7. Here, we set the sparsity penalty parameter to o = 1.0 and use sparsity constraint,
defined by ®(C) := [[Cllo-

4.4.3. Results with fixed-budget constraint. To study the behavior of the optimization
algorithms in the presence of an exact budget constraint ||C||, = A, we carry out the same procedure,
with the penalty function set to ®(¢) := |||(||, — A| and the regularization penalty parameter set to
a = 1.0, and we set the budget to A = 8 sensors. Results are shown in Figure 10 and Figure 11,
respectively. For clarity we omit results obtained by the heuristic baseline.

We note that the performance of both Algorithm 3.1, and Algorithm 3.2 is consistent with
and without sparsity constraints. Moreover, by incorporating the optimal baseline estimate (3.40)
in Algorithm 3.2, at slight additional computational cost, the global optimum design is more likely
to be discovered by the optimization algorithm.

4.4.4. Results with various learning rates. We conclude this section of experiments with
results obtained by different learning rates. We use the setup in Subsection 4.4.3; that is, we assume
an exact budget of A = 8 sensors and enforce it by setting the penalty function ®(¢) := ||¢||, and
the penalty parameter a = 1. Figure 12 shows results obtained by varying the learning rate n in
the optimization algorithm. Specifically, we show results obtained from Algorithm 3.2, with the
optimal baseline estimate (3.40) and note that similar behavior was observed for the other settings
used earlier in the paper.

Figure 12 (left) shows the value of the stochastic objective function corresponding to the pa-
rameter #*) at the kth iteration of the optimization algorithm for various choices of the learning
rate. Figure 12 (right) shows the number of new calls to the function J made at each iteration
of the algorithm. We note that by increasing the learning rate 7, the algorithm tends to con-
verge quickly and explore the space of probability distributions near the global optimal policy very
quickly. However, this action is also associated with the risk of divergence. We note that n = 0.5
is the best learning rate among the tested values.

In general, one can choose a small learning rate or even a decreasing sequence and run the
optimization algorithm long enough to guarantee convergence to an optimal policy. Doing so,
however, will likely increase the computational cost manifested in the number of evaluations of J.
This problem is widely known as the exploration-exploitation trade-off in the reinforcement learning
literature. Finding an analytically optimal learning rate is beyond the scope of this paper and will
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Fic. 10. Results of the policy gradient procedures ( Algorithm 3.1 and Algorithm 3.2), compared with the brute-
force search of all candidate binary designs. Here, we set the sparsity penalty parameter to o = 1.0 and use budget

constraint, defined by ®(¢) := ||¢ — Ally, where A = 8. Top: results of Algorithm 3.1. Bottom: Algorithm 3.2) with
the optimal baseline estimate (3.40).
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Fic. 11. Similar to Figure 7. Here we set the sparsity penalty parameter to o = 1.0 and use the penalty
constraint defined by ®(¢) := |HC||0 — A|, where A = 8.

be explored in separate work.

5. Discussion and Concluding Remarks. In this work, we presented a new approach for
the optimal design of experiments for Bayesian inverse problems constrained by expensive mathe-
matical models, such as partial differential equations. The regularized utility function is cast into
a stochastic objective defined over the parameters of multivariate Bernoulli distribution. A policy
gradient algorithm is used to optimize the new objective function and thus yields an approximately
optimal probability distribution, that is, policy from which an approximately optimal design is
sampled. The proposed approach does not require differentiability of the design utility function
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Fic. 12. Similar to Figure 7. Here, we set the sparsity penalty parameter to a = 1.0 and use the budget
constraint defined by ®(¢) := ||[Cllg — A|, where A = 8.

nor the penalty function generally employed to enforce sparsity or regularity conditions on the
design. Hence, the computational cost of the proposed methods, in terms of the number of forward
model solves, is much less than the cost required by traditional gradient-based approach for optimal
experimental design. The decrease in computational cost is due mostly to the fact that the pro-
posed method does not require evaluation of the simulation model for each entry of the gradient.
Sparsity-enforcing penalty functions such as ¢y can be used directly, without the need to utilize a
continuation procedure or apply a rounding technique.

The main open issue pertains to the optimal selection of the learning rate parameter. While
using a decreasing sequence satisfying the Robbins—Monro conditions guarantees convergence of the
proposed algorithm almost surely, such a choice may require many iterations before convergence to
a degenerate optimal policy. This issue will be addressed in detail in separate work.

Note that the proposed stochastic formulation can be solved by other sample-based optimiza-
tion algorithms, including sample average approximation [36,42,47]. The performance of these
algorithms compared with that of the proposed algorithms will be also considered in separate
works.

We note that utilizing traditional cost-reduction methods, including randomized matrix meth-
ods [12,43,44], and other reduced-order modeling approaches (see, e.g., [11,18,23,48]), to reduce
the cost of the OED criterion J apply to both the relaxed approach and our proposed approach
equally. This shows that the proposed algorithms introduce massive computational savings to the
OED solution process, compared with the traditional relaxation approach.

Acknowledgments. This material is based upon work supported by the U.S. Department of
Energy, Office of Science, under contract number DE-AC02-06CH11357.

Appendix A. Multivariate Bernoulli Distribution. @ The probabilities of a Bernoulli
random variable ¢ € {0, 1} are described by

0 ;o v=1,

(A1) P((:v|€)::{10 =0

where 0; € [0,1] can be thought of as the probability of success in a one-trial experiment. The
probability mass function (PMF) of this variable takes the compact form P (¢|6) = 6¢ (1 — 6)(1=<),
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Moreover, the following identity holds:

IP (¢l9)
A2 = (-1)}79.
(42) S = (-
Assuming (;, i = 1,2,...,ng are mutually independent Bernoulli random variables with respec-
tive success probabilities 0;, i = 1,2, ..., ng, then the joint probability mass function of the random

variable ¢ = ({1, (o, - - -, (. )", parameterized by 6 = (61,602, ...,60,.)", takes the form

(A.3) P (¢|0) = He@ —0)'" <l—ﬂ(9i<i+(1_9i)(1—ci)), ¢ €{0,1}.

i=1

By using (A.2), the first-order derivative of (A.3) w.r.t the parameters 6; is described by

aP(cle) 0 G )G G ( s | = c1yeo G ( =
(A.4) 26, = o0, 0; He = He :

Z#J %75]

Thus, the gradient can be written as

= OP (C|0 e
(A5) VGHD(C|0) = # — Z 1 C] H9<7 _ 1 Cl
j=1 J j=1 7&
1#]

Note that the derivative given by (A.4) is the (signed) conditional probability of ¢ conditioned
by ¢; and 6;, respectively. The second-order derivatives follow as

PP (C1) _ Voo TT 66 NG
(A.6) W—(lf%)(fl) IT o5 a0,

i=1
i¢{j,k}
where dy; is the standard Kronecker delta function. The gradient of the log-probabilities, that is,
the score function, of the multivariate Bernoulli PMF (A.3), is given by

VglogIP’(dQ):VglogHGf* (1—6,)¢ ZVglogGC‘—i-ZVglog (1—0;) ¢

(A7) =t =t =
~ (¢ | G—1
i;C,LVQIOge +Z 1-¢; Vglog(le);<9i+1_0i) e;.

It follows immediately from (A.7) that

VoVelogP(Cl0) = (;g _ (11_—0@)2> eiel

=1
S 126G
>(9j 1—0;) %

(A.8)

Voo (¢l (Valog P16 = Y- 3 (5 -

=1 j=1
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In the rest of this Appendix, we prove some identities essential for convergence analysis of the
algorithms proposed in this work. We start with the following basic relations. First note that

E [QCJ = cov (Ci, Q) +E {Q}E {(J} = 0;;0;(1—6;)+0;0;. This means that E [C?} =E {Q} =0, and
E [ciqj] = 0,0;Vi # j. Similarly, E [gi(gj - 1)] ) [cigj] ) [g] = 0,;0;(1 — 0;) + 0,0, — 0; , and
E [(Cz = 1)(¢G — 1)} =E {QCJ} —0;,—0;+1=20;;0;(1 —6;) +6;,0; —0; — 6; + 1. We can summarize
these identities as follows:

1 o 0i7 7’:.7
E[G¢;)| = {%7 itg
(A.9) B[ -1 = {gke-_l) #i ’
- 1\Yj ’
7 . 179@, Z:]
E[(Ci_l)(gj_l)_ _{(1_02)(1_0j)7 Z?éj ’

LEMMA A.l. Let ¢ € Q¢ :={0,1}" be a random variable following the joint Bernoulli distri-
bution (A.3), and assume that var(C) is the total variance operator that evaluates the trace of the
variance-covariance matrix of the random variable (. Then the following identities hold:

N

(A.10) E[velogp(qa) = 0; var(Vglog]P’ <|9) Ze _92
Proof. The first identity follows as

(A11) [Vglog]P <|9} ZVglogIP (C|O)P (¢|0) = ZWP (<18) = Vo S P(clo) = 0.
¢

By definition of the covariance matrix, and since E |:V9 log P (C|9)] = 0, then

var(Vg log P (g\a)) =T (cov(Vg log P (C|0), Vg logIF’(C|9)))
= Tr (IE [(vg log P (]6)) (Vo log P (C|6) TD
= E[T&r ((ve log P (C|0)) (Vo log P (C|6)) T)}
= E|(VologP (c|6))' (Vo logP (cl6)]

(A.12)

where we utilized the circular property of the trace operator and the fact that the matrix trace is
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a linear operator. Thus,

var(Vg log P (§|9)) -E {(ve log P (¢]6))T (Vo log P (g|9))}

5 (PR ] e[S (5 + 451 ]

B3 (§ a2
o R
=3 <el+<11—_90>>_z<91 1—191-)_;@»—193’

i=1 =1

|
=

(A.13)

where we used the fact that E [Cﬂ = 0;, as shown by (A.9). This is also obvious since ¢(? =¢. O

LEMMA A.2. Let ¢ € Q¢ := {0,1}" be a random variable following the joint Bernoulli distri-
bution (A.3). Then for any ¢ € Q¢, the following bounds hold:

(A.14) Ve P (ClO)[| < \/T _max - min P (G[6;)
B i
2 Ny N
. = < .
(A.15) Ec|IIVologP (¢10)]*| = var(Volog P (¢10)) < VIR gy
Proof.
2
IV PO = || So(-11o TT o8 (1 - 6y~
=t k;]
2
(A'16) Z 1 CJ H efi (1 _ gi)lf(:z‘
=t [
Mg
< _min (P (G0 ) < ng _max  min (P (Gil0:))
= A k%ﬁjnb Jj=1,...,ng sz;é.;ns

which prove the first inequality (A.14). By utilizing (A.7), we have

g oG-y |
;<9i 1—9i>ei N

Ve logP (¢|0)|]° =

S (G G-1\?
> (5 i)

i=1

(GGG G- (G G—1
& (0‘2+20i(1_9i) " (1—9i)2> _Z @+ (1—0¢)2> '

(A.17)
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where the last relation follows given the fact that ¢; € {0,1}, and hence CZZ =(,Vi=1,2,... ns.
Taking the expectation of both sides, we get

JEM —1

* (1—6;)

B[V log P (CI0)I7] = Ec[> ey [=3 ELC]
=1 \ i i im1 i

(A.18) ISV UNNUSS SN . <1+ 1 )
; 07 (1-0,)° Z; 0, (1-6;)

1=

71‘:191' “~ (1-6;) ~ minf 1-maxf’

which completes the proof of (A.15). |
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