
Hitting minors on bounded treewidth graphs.
IV. An optimal algorithm1

Julien Baste2,3 Ignasi Sau3 Dimitrios M. Thilikos3

Abstract

For a fixed finite collection of graphs F , the F-M-Deletion problem asks, given an n-vertex input
graph G, for the minimum number of vertices that intersect all minor models in G of the graphs in F . by
Courcelle Theorem, this problem can be solved in time fF (tw) ·nO(1), where tw is the treewidth of G, for
some function fF depending on F . In a recent series of articles, we have initiated the programme of opti-
mizing asymptotically the function fF . Here we provide an algorithm showing that fF (tw) = 2O(tw · log tw)

for every collection F . Prior to this work, the best known function fF was double-exponential in tw .

In particular, our algorithm vastly extends the results of Jansen et al. [SODA 2014] for the particular
case F = {K5, K3,3} and of Kociumaka and Pilipczuk [Algorithmica 2019] for graphs of bounded genus,
and answers an open problem posed by Cygan et al. [Inf Comput 2017]. We combine several ingredi-
ents such as the machinery of boundaried graphs in dynamic programming via representatives, the Flat
Wall Theorem, Bidimensionality, the irrelevant vertex technique, treewidth modulators, and protrusion
replacement. Together with our previous results providing single-exponential algorithms for particular
collections F [Theor Comput Sci 2020] and general lower bounds [J Comput Syst Sci 2020], our algorithm
yields the following complexity dichotomy when F = {H} contains a single connected graph H, assuming
the Exponential Time Hypothesis: fH(tw) = 2Θ(tw) if H is a contraction of the chair or the banner, and
fH(tw) = 2Θ(tw · log tw) otherwise.
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1 Introduction
Let F be a finite non-empty collection of non-empty graphs. In the F-M-Deletion problem, we are given
a graph G and an integer k, and the objective is to decide whether there exists a set S ⊆ V (G) with |S| ≤ k
such that G \ S does not contain any of the graphs in F as a minor. This problem belongs to the family of
graph modification problems and has a big expressive power, as instantiations of it correspond, for instance,
to Vertex Cover (F = {K2}), Feedback Vertex Set (F = {K3}), and Vertex Planarization
(F = {K5,K3,3}). Note that if F contains a graph with at least one edge, then F-M-Deletion is NP-
hard [36].

We study the parameterized complexity of F-M-Deletion in terms of the treewidth of the input graph
(while the size of k may be unbounded). Since the property of containing a graph as a minor can be
expressed in monadic second-order logic [32], by Courcelle Theorem [13], F-M-Deletion can be solved in
time1 O∗(fF (tw)) on graphs with treewidth at most tw, where fF is some computable function depending
on F . As the function fF (tw) given by Courcelle Theorem is typically enormous, our goal is to determine,
for a fixed collection F , which is the best possible such function fF that one can (asymptotically) hope for,
subject to reasonable complexity assumptions. Besides being an interesting objective in its own, optimizing
the running time of algorithms parameterized by treewidth has usually side effects. Indeed, black-box
subroutines parameterized by treewidth are nowadays ubiquitous in parameterized [14], exact [19], and
approximation [49] algorithms.

Previous work. This line of research has attracted considerable attention in the parameterized complexity
community during the last years. For instance, Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic programming techniques, and no algorithm with running
time O∗(2o(tw)) exists, unless the Exponential Time Hypothesis (ETH) fails [26]. (The ETH implies that
3-Sat on n variables cannot be solved in time 2o(n); see [26] for more details.) For Feedback Vertex
Set, standard dynamic programming techniques give a running time of O∗(2O(tw · log tw)), while the lower
bound under the ETH [26] is again O∗(2o(tw)). This gap remained open for a while, until Cygan et al. [16]
presented an optimal (randomized) algorithm running in time O∗(2O(tw)), introducing the celebrated Cut &
Count technique. This article triggered several other (deterministic) techniques to obtain single-exponential
algorithms for so-called connectivity problems on graphs of bounded treewidth, mostly based on algebraic
tools [10,20].

Concerning Vertex Planarization, Jansen et al. [27] presented an algorithm running in time
O∗(2O(tw · log tw)) as a crucial subroutine in an algorithm running in time O∗(2O(k·log k)) where k is the
solution size. Marcin Pilipczuk [39] proved afterwards that this running time is optimal under the ETH, by
using the framework introduced by Lokshtanov et al. [37] for proving superexponential lower bounds.

Generalizing the above algorithm, the main technical contribution of the recent paper of Kociumaka
and Pilipczuk [33] is an algorithm running in time O∗(2O((tw +g)·log(tw +g))) to solve the Genus Vertex
Deletion problem, which consists in deleting the minimum number of vertices from an input graph in
order to obtain a graph embeddable on a surface of Euler genus at most g.

Cygan et al. [15] studied the problem of hitting subgraphs (instead of minors), and proved that the
problem of hitting all copies of a fixed path as a subgraph can be solved in time O∗(2O(tw · log tw)). As a path
occurs as a subgraph if and only if it occurs as a minor, their result implies that {Ph}-M-Deletion can
be solved in time O∗(2O(tw · log tw)) for every fixed integer h ≥ 2, where Ph is the path on h vertices. They
left as an open problem whether the algorithm in time O∗(2O(tw · log tw)) of Jansen et al. [27] for Vertex
Planarization could be generalized to more minor-closed graph classes, other than planar graphs.

In a recent series of three papers [6–8], we initiated a systematic study of the complexity of F-M-
1The notation O∗(·) suppresses polynomial factors depending on the size of the input graph.
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Deletion, parameterized by treewidth2. Before stating these results, we say that a collection F is connected
if it contains only connected graphs.

In [6] we showed that, for every fixed collection F , F-M-Deletion can be solved in time O∗
(

22O(tw · log tw)
)

by a natural dynamic programming algorithm, and that if F contains a planar graph, the running time can
be improved3 to O∗(2O(tw · log tw)). If the input graph G is planar or, more generally, embedded in a surface
of bounded genus, then we showed that the running time can be further improved to O∗(2O(tw)).

In [7] we provided single-exponential algorithms for {H}-M-Deletion when H is either P4, C4, the claw,
the paw, the chair, or the banner; see Figure 17 in Appendix A for an illustration of these graphs.

In [8] we focused on lower bounds under the ETH. We proved that for any connected F containing
graphs on at least two vertices, F-M-Deletion cannot be solved in time O∗(2o(tw)), even if the input graph
G is planar. More notably, we proved that F-M-Deletion cannot be solved in time O∗(2o(tw · log tw)) for
collections F satisfying some generic conditions. In particular, these conditions apply when F contains a
single connected graph H that is not a contraction of the chair or the banner. Note that the connected graphs
H with |V (H)| ≥ 2 that are a contraction of the chair or the banner are those on the left in Figure 17, and
for each of them {H}-M-Deletion can be solved in (optimal) single-exponential time [7, 8].

Our results. In this article we present an algorithm to solve F-M-Deletion in time O∗(2O(tw · log tw)) for
every collection F , thus making a significant step towards a complete classification of the complexity of the
F-M-Deletion problem parameterized by treewidth. That is, we drop the condition that F contains a
planar graph, which was critically needed in the algorithm presented in [6] in order to bound the treewidth
of an F-minor-free graph. Our algorithm can be interpreted as an exponential “collapse” of the natural
dynamic programming algorithm running in time O∗

(
22O(tw · log tw)

)
given in [6]. Besides largely improving

our previous results [6], this algorithm generalizes the ones for F = {K5,K3,3} given by Jansen et al. [27]
and for the Genus Vertex Deletion problem given by Kociumaka and Pilipczuk [33], which are based
on embeddings, and answers positively the open problem of Cygan et al. [15] for every minor-closed graph
class. Since the algorithm is quite involved, we provide an overview of it in Section 2.

This algorithm in time O∗(2O(tw · log tw)) for every collection F , together with the lower bounds under
the ETH given in [8], the single-exponential algorithms given in [7], and the known cases F = {P2} [14, 26],
F = {P3} [4, 48], and F = {C3} [10, 16], imply the following complexity dichotomy when F consists of a
single connected graph H, which we suppose to have at least one edge.

Theorem 1. Let H be a connected graph. Under the ETH, {H}-M-Deletion is solvable in time4

• 2Θ(tw) · nO(1), if H is a contraction of the chair or the banner, and
• 2Θ(tw · log tw) · nO(1), otherwise.

This dichotomy is depicted in Figure 17, containing all connected graphs H with 2 ≤ |V (H)| ≤ 5; note
that if |V (H)| ≥ 6, then H is not a contraction of the chair or the banner, and therefore the second item
above applies. Note also that K4 and the diamond are the only graphs on at most four vertices for which
the problem is solvable in time O∗(2Θ(tw · log tw)) and that the chair and the banner are the only graphs on at
least five vertices for which the problem is solvable in time O∗(2Θ(tw)).

The crucial role played by the chair and the banner in the complexity dichotomy may seem surprising
at first sight. In fact, we realized a posteriori that the “easy” cases can be succinctly described in terms of
the chair and the banner by taking a look at Figure 17. Note that the “easy” graphs can be equivalently

2In these papers [6–8], in some results we also considered the version of the problem where the graphs in F are forbidden as
topological minors; in the current paper we focus exclusively on the minor version.

3In the conference version of [6] we additionally required F to be connected; in the journal version we proved this result
without this assumption.

4We use n and tw for the number of vertices and the treewidth of the input graph, respectively.
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characterized as those that are minors of the banner, with the exception of P5. Nevertheless, there is some
intuitive reason for which excluding the chair or the banner constitutes the horizon on the existence of
single-exponential algorithms. Namely, focusing on the banner, every connected component (with at least
five vertices) of a graph that excludes the banner as a minor is either a cycle (of any length) or a tree in
which some vertices have been replaced by triangles; both such types of components can be maintained by
a dynamic programming algorithm in single-exponential time [7]. A similar situation occurs when excluding
the chair. It appears that if the characterization of the allowed connected components is enriched in some
way, such as restricting the length of the allowed cycles or forbidding certain degrees, the problem becomes
inherently more difficult, inducing a transition from time O∗(2Θ(tw)) to O∗(2Θ(tw · log tw)).

Organization of the paper. In Section 2 we provide a high-level overview of the algorithm running in time
O∗(2O(tw · log tw)). In Section 3 we give some preliminaries. In Section 4 we deal with flat walls, in Section 5
we apply the irrelevant vertex technique in the context of boundaried graphs, and in Section 6 we use this in
order to bound the size of the dynamic programming tables. We conclude the article in Section 7 with some
open questions for further research. In Appendix B we present an estimation of the constants depending on
the (fixed) collection F in our algorithm (cf. Corollary 36).

2 Overview of the algorithm
In order to obtain our algorithm of time O∗(2O(tw · log tw)) for every collection F , our approach can be
streamlined as follows. We use the machinery of boundaried graphs, equivalence relations, and representatives
originating in the seminal work of Bodlaender et al. [11] and subsequently used, for instance, in [6,21,22,32].
Let h be a constant depending only on the collection F (to be defined in the formal description of the
algorithm) and let t be a positive integer that is at most the treewidth of the input graph plus one. Skipping
several technical details, a t-boundaried graph is a graph with a distinguished set of vertices –its boundary–
labeled bijectively with integers from the set [t]. We say that two t-boundaried graphs are h-equivalent if for
any other t-boundaried graph that we can “glue” to each of them, resulting in graphs G1 and G2, and every
graph H on at most h vertices, H is a minor of G1 if and only if it is a minor of G2 (cf. Section 3 for the
precise definitions). Let R(t)

h be a set of minimum-sized representatives of this equivalence relation. Since
h-equivalent (boundaried) graphs have the same behavior in terms of eventual occurrences of minors of size
up to h, there is a generic dynamic programming algorithm (already used in [6]) to solve F-M-Deletion on
a rooted tree decomposition of the input graph, via a typical bottom-up approach: at every bag B of the tree
decomposition, naturally associated with a t-boundaried graph GB , and for every representative R ∈ R(t)

h ,

store the minimum size of a set S ⊆ V (GB) such that the graph GB\S is h-equivalent to R (cf. Subsection 6.2
for some more details5). This yields an algorithm running in time O∗(|R(t)

h |2), and therefore it suffices to
prove that |R(t)

h | = 2Oh(t·log t), where the notation ‘Oh(·)’ means that the hidden constants depend only on
h. Since we may assume that the graphs in R(t)

h exclude some graph on at most h vertices as a minor (as
all those that do not are h-equivalent), hence they have a linear number of edges [38], it is enough to prove
that, for every R ∈ R(t)

h , it holds that

|V (R)| = Oh(t). (1)

Note that this is indeed sufficient in order to obtain an algorithm within the claimed running time, as
there are at most

(|V (R)|2
|E(R)|

)
= 2Oh(|V (R)|·log |V (R)||) representatives, and t! = 2O(t·log t) possible labelings for

5This step was the only reason for which in the conference version of this article we required the collection F to be connected.
As mentioned in Section 1, in the full version of [6] we dropped the connectivity assumption, which implies that in the current
article we can drop it as well.
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the vertices in the boundary. In order to prove Equation 1, we combine a number of different techniques,
which we proceed to discuss informally, and that are schematically summarized in Figure 1:

t ≤ tw(G) + 1
h = f(F)
R ∈ R(t)

h

Embedding
with dispersed

vertices
[Lemma 16]

Confinement of
models inside

a railed annulus
[Proposition 13]

Collapse of
topological minor

models inside a wall
[Theorem 17]

Flat Wall Theorem
[30,42,45]

[Theorem 5]

Large
h-homogeneous

subwall
[Proposition 9]

R contains
no irrelevant vertex

[Theorem 23]

ph,r(R) ≤ t

[Corollary 25]

ph,r is
bidimensional
[Lemma 10]

ph,r is
separable

[Lemma 11]

R has a treewidth modulator
of size Oh(t)

containing the boundary

[Lemma 27]

Linear protrusion
decomposition of R

[Lemma 29]

|V (R)| = Oh(t)

[Lemma 30]

|R(t)
h | = 2Oh(t·log t)

[Corollary 32]

Algorithm in time
O∗(2Oh(tw · log tw))

for any collection F

[Theorem 2]

[32]

Reduce
protrusions [6]

Sparsity
of the

representatives
DP algorithm

from [6]

Figure 1: Diagram of the algorithm in time O∗(2O(tw · log tw)) for any collection F .

I We use the Flat Wall Theorem of Robertson and Seymour [42], in particular a version (Theorem 5)
that has been recently proved in [45] (and is based on the framework of Kawarabayashi et al. [30]), which
incorporates the so-called regularity property. In a nutshell, this theorem says that every Kh-minor-free
graph G has a set of vertices A ⊆ V (G) –called apices– with |A| = Oh(1) such that G \ A contains a flat
wall of height Ωh(tw(G)). Here, the definition of “flat wall” is quite involved and is detailed in Section 4;
it essentially means a subgraph that has a bidimensional grid-like structure, separated from the rest of the
graph by its perimeter, and that is “close” to being planar, in the sense that it can be embedded in the plane
in a way that its potentially non-planar pieces, called flaps, have a well-defined structure along larger pieces
called bricks.
I A subwall of a flat wall is h-homogeneous if for every brick of the subwall, the flaps within that brick have
the same variety of h-folios, that is, the same sets of “boundaried” minors of detail at most h (the detail of

4



a boundaried graph is the maximum between its number of edges and its number of non-boundary vertices).
This notion is inspired (but is not the same) by the one defined by Robertson and Seymour in [42]. Using
standard “zooming” arguments, we can prove that, given a flat wall, we can find a large h-homogeneous
subwall inside it (Proposition 9). Homogeneous subwalls are very useful because, as we explain below, they
permit the application of the irrelevant vertex technique adapted to our purposes.

I We say that a vertex set S affects a flat wall if some vertex within the wall has a neighbor in S that
is not an apex. With these definitions at hand, we define a parameter, denoted by ph,r in this informal
description, mapping every graph G to the smallest size of a vertex set that affects all h-homogeneous flat
walls with at most h apices and height at least r in G. It is not hard to prove that the parameter ph,r has a
“bidimensional” behavior [17, 18, 21], in the sense that its value on a flat wall depends quadratically on the
height of the wall (Lemma 10) and it is separable [11, 18,21] (Lemma 11).

I The most complicated step towards proving Equation 1 is to find an “irrelevant” vertex inside a sufficiently
large (in terms of h) flat wall of a boundaried graph that is not affected by its boundary (Theorem 23).
Informally, here “irrelevant” means a non-boundary vertex of R that can be avoided by any minor model of
a graph on at most h vertices and edges that traverses the boundary of R, no matter the graph that may be
glued to it and no matter how this model traverses the boundary of R; see Section 5 for the precise definition.
The irrelevant vertex technique originated in the seminal work of Robertson and Seymour [42, 43] and has
become a very useful tool used in various kinds of linkage and cut problems [1, 27, 33, 34, 40]. Nevertheless,
given the nature of our setting, it is critical that the size of the flat wall where the irrelevant vertex appears
does not depend on the boundary size. To the best of our knowledge, this property is not guaranteed by
the existing results on the irrelevant vertex technique (such as [42, (10.2)] and its subsequent proof in [43]).
To achieve it and, moreover, in order to make an estimation of the parametric dependencies, we develop a
self-reliant theoretical framework that uses the following ingredients:

◦ With a flat wall W we associate a bipartite graph W̃ , which we call its leveling as defined in [45];
cf. Subsection 5.3 for the precise definition. In particular, this graph has a vertex for every flap of the
flat wall, and can be embedded in a disk in a planar way.

◦ It turns out to be more convenient to work with topological minor models instead of minor models;
we can afford it since for every graph H there are at most f(H) different topological minor minimal
graphs that contain H as a minor (Observation 3). The reason for this is that it is easier to deal with
the branch vertices of a topological minor model in the analysis. Given a topological minor model, we
say that a flap of a wall is dirty if it contains a branch vertex of the model, or there is an edge from
the flap to an apex vertex of the wall. We also define the leveling of a topological minor model, and we
equip its dirty flaps with colors that encode their h-folios. We now proceed to explain how to reroute
the colored leveling of a topological minor model.

◦ In order to reroute (colored levelings of) topological minor models, it will be helpful to use railed annuli,
a structure introduced in [28] that occurs as a subgraph inside a flat wall (Proposition 12) and that has
the following nice property, recently proved in [25] (Proposition 13): if a railed annulus is large enough
compared to h, every topological minor model of a graph on at most h vertices traversing it can be
rerouted so that the branch vertices are preserved and such that, more importantly, the intersection of
the new model with a large prescribed part of the railed annulus is confined, in the sense that it is only
allowed to use a well-defined set of paths in that part, which does not depend on the original model.

◦ We also need a technical result with a graph drawing flavor (Lemma 16) guaranteeing that large
enough railed annuli contain topological minor models of every graph of maximum degree three with
the property, in particular, that certain vertices are pairwise far apart in the embedding. Using this
result and the one proved in [25] mentioned above, we can finally prove (Theorem 17) that every
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topological minor model of a graph H inside a graph with a large flat wall W can be “collapsed” inside
the wall, in the following sense: G contains another topological minor model of a graph H ′, such that
H is a minor of H ′, and such that the new model avoids the central part of the annulus; here is where
the irrelevant vertex will be found.

◦ To conclude, it just remains to “lift” the constructed embedding of the colored leveling of the topological
minor to an embedding of the “original” minor in the flat wall (Theorem 23). For that, we exploit the
fact that we have rerouted the model inside an h-homogeneous subwall not affected by the boundary,
which allows to mimic the behavior of the original minor inside the flaps of the wall, using that all
bricks have the same variety of h-folios.

The above arguments, incorporated in the proof of Theorem 23, imply that if R ∈ R(t)
h is a minimum-

sized representative, then its boundary affects all large enough h-homogeneous flat walls, as otherwise we
could remove an irrelevant vertex and find a smaller equivalent representative. In particular, it follows that,
for every R ∈ R(t)

h , we have ph,r(R) ≤ t (Corollary 25).

I Combining that the parameter ph,r is “bidimensional” and separable along with the fact that ph,r(R) ≤ t
for every R ∈ R(t)

h , we prove in Lemma 27 that every representative R ∈ R(t)
h has a vertex subset S containing

its boundary, with |S| = Oh(t), whose removal leaves a graph of treewidth bounded by a function of h; such
a set is called a treewidth modulator. (In Appendix B we provide an improved version of Lemma 27, namely
Lemma 34, by adapting the proof of [21, Lemma 3.6].)

I Once we have a treewidth modulator of size Oh(t) of a representative R, all that remains is to pipeline
it with known techniques to compute an appropriate protrusion decomposition [32] (Lemma 29) and to
reduce protrusions to smaller equivalent ones of size bounded by a function of h –we use the version given
in [6] adapted to the F-M-Deletion problem– (Lemma 30), implying that |V (R)| = Oh(t) for every every
R ∈ R(t)

h and concluding the proof of Equation 1.

It should be noted that all the items above do not need to be converted into an algorithm, they are just
used in the analysis: the conclusion is that if R ∈ R(t)

h is a minimum-sized representative, then |V (R)| =
Oh(t), as otherwise some reduction rule could be applied to it (either by removing an irrelevant vertex or
by protrusion replacement), thus obtaining an equivalent representative of smaller size and contradicting its
minimality. Our main result can be formally stated as follows.

Theorem 2. Let F be a finite non-empty collection of non-empty graphs. There exists a constant cF such
that the F-M-Deletion problem is solvable in time ctw · log tw

F ·n on n-vertex graphs of treewidth at most tw .

In Appendix B we provide an estimation of the constant cF in the above theorem based on the parametric
dependencies of the Unique Linkage Theorem [31,43].

3 Preliminaries

3.1 Basic definitions
Sets and integers. We denote by N the set of non-negative integers. Given two integers p, q, where p ≤ q,
we denote by [p, q] the set {p, . . . , q}. For an integer p ≥ 1, we set [p] = [1, p] and N≥p = N \ [0, p− 1]. Given
a non-negative integer p, we denote by odd(p) the minimum odd number that is not smaller than p. For a
set S, we denote by 2S the set of all subsets of S and by

(
S
2
)

the set of all subsets of S of size two. If S is a
collection of objects where the operation ∪ is defined, then we denote

⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X.

6



Basic concepts on graphs. As a graph G we denote any pair (V,E) where V is a finite set and E ⊆
(
V
2
)
,

that is, all graphs of this paper are undirected, finite, and without loops or multiple edges. We also define
V (G) = V and E(G) = E. Unless stated otherwise, we denote by n and m the number of vertices and edges,
respectively, of the graph under consideration. We say that a pair (L,R) ∈ 2V (G) × 2V (G) is a separation of
G if L ∪ R = V (G) and there is no edge in G between L \ R and R \ L. The order of a separation (L,R)
is |L ∩ R|. Given a vertex v ∈ V (G), we denote by NG(v) the set of vertices of G that are adjacent to v

in G. Also, given a set S ⊆ V (G), we set NG(S) =
(⋃

v∈S NG(v)
)
\ S. A vertex v ∈ V (G) is isolated if

NG(v) = ∅. For S ⊆ V (G), we set G[S] = (S,E ∩
(
S
2
)
) and use G \ S to denote G[V (G) \ S]. Given an edge

e = {u, v} ∈ E(G), we define the subdivision of e to be the operation of deleting e, adding a new vertex w,
and making it adjacent to u and v. Given two graphs H,G, we say that H is a subdivision of G if H can be
obtained from G by subdividing edges. The contraction of an edge e = {u, v} of a simple graph G results
in a simple graph G′ obtained from G \ {u, v} by adding a new vertex uv adjacent to all the vertices in the
set NG(u) ∪NG(v) \ {u, v}. A graph G′ is a minor of a graph G if G′ can be obtained from a subgraph of
G after a series of edge contractions. The distance between two vertices x and y of a graph G is the number
of edges of a shortest path between x and y in G.

Treewidth. Let G = (V,E) be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T )) where T
is a tree and X is a collection of subsets of V such that

•
⋃
t∈V (T )Xt = V,

• ∀e = {u, v} ∈ E, ∃t ∈ V (T ) : {u, v} ⊆ Xt, and
• ∀v ∈ V , T [{t | v ∈ Xt}] is connected.

We call the vertices of T nodes and the sets in X bags of the tree decomposition (T,X ). The width of (T,X ) is
equal to max{|Xt|−1 | t ∈ V (T )} and the treewidth of G is the minimum width over all tree decompositions
of G. We denote the treewidth of a graph G by tw(G).

For t ∈ N, we say that a set S ⊆ V (G) is a t-treewidth modulator of G if tw(G \ S) ≤ t.

3.2 Formal definition of the problem
Let F be a finite non-empty collection of non-empty graphs; we call such a collection proper. We extend the
minor relation to F such that, given a graph G, F �m G if and only if there exists a graph H ∈ F such that
H �m G. We also denote excm(F) = {G | F �m G}, i.e., excm(F) is the class of graphs that do not contain
any graph in F as a minor.

Let F be a proper collection. We define the graph parameter mF as the function that maps graphs to
non-negative integers as follows:

mF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ excm(F)}.

The main objective of this paper is to study the problem of computing the parameter mF for graphs of
bounded treewidth. The corresponding decision problem is formally defined as follows.

F-M-Deletion
Input: A graph G and an integer k ∈ N.
Parameter: The treewidth of G.
Output: Is mF (G) ≤ k?
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3.3 Boundaried graphs, folios, and representatives
Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is a graph,
B ⊆ V (G), |B| = t, and ρ : B → [t] is a bijection. We say that two t-boundaried graphs G1 = (G1, B1, ρ1)
and G2 = (G2, B2, ρ2) are isomorphic if there is an isomorphism from G1 to G2 that extends the bijection
ρ−1

2 ◦ρ1. The triple (G,B, ρ) is a boundaried graph if it is a t-boundaried graph for some t ∈ N. As in [42], we
define the detail of a boundaried graph G = (G,B, ρ) as detail(G) := max{|E(G)|, |V (G) \ B|}. We denote
by B(t) the set of all (pairwise non-isomorphic) t-boundaried graphs and by B(t)

h the set of all (pairwise
non-isomorphic) t-boundaried graphs with detail at most h. We also set B =

⋃
t∈N B(t).

Minors and topological minors of boundaried graphs. We say that a t-boundaried graph G1 =
(G1, B1, ρ1) is a minor of a t-boundaried graph G2 = (G2, B2, ρ2), denoted by G1 �m G2, if there is
a sequence of removals of non-boundary vertices, edge removals, and edge contractions in G2, disallowing
contractions of edges with both endpoints in B2, that transforms G2 to a boundaried graph that is isomorphic
to G1 (during edge contractions, boundary vertices prevail). Note that this extends the usual definition of
minors in graphs without boundary.

We say that (M,T ) is a tm-pair if M is a graph, T ⊆ V (M), and all vertices in V (M) \ T have degree
two. We denote by diss(M,T ) the graph obtained from M by dissolving all vertices in V (M) \T, that is, for
every vertex v ∈ V (M) \ T, with neighbors u and w, we delete v and, if u and w are not adjacent, we add
the edge {u,w}. A tm-pair of a graph G is a tm-pair (M,T ) where M is a subgraph of G.

Given two graphs H and G, we say that a tm-pair (M,T ) of G is a topological minor model of H in G

if H is isomorphic to diss(M,T ). We denote this isomorphism by σM,T : V (H) → T. We call the vertices
in T branch vertices of (M,T ). We call each path in M between two distinct branch vertices and with no
internal branch vertices a subdivision path of (M,T ) and the internal vertices of such paths, i.e., the vertices of
V (M)\T, are the subdivision vertices of (M,T ). We also extend σM,T so to also map each e = {x, y} ∈ E(H)
to the subdivision path of M with endpoints σM,T (x) and σM,T (y). Furthermore, we extend σM,T so to also
map each subgraph H ′ of H to the subgraph of M consisting of the vertices of σM,T (T ) and the paths in
σM,T (e), e ∈ E(H ′).

If M = (M,B, ρ) ∈ B and T ⊆ V (M) with B ⊆ T and such that all vertices in V (M) \ T have
degree two, we call (M, T ) a btm-pair and we define diss(M, T ) = (diss(M,T ), B, ρ). Note that we do not
permit dissolution of boundary vertices, as we consider all of them to be branch vertices. If G = (G,B, ρ) is a
boundaried graph and (M,T ) is a tm-pair of G where B ⊆ T, then we say that (M, T ), where M = (M,B, ρ),
is a btm-pair of G = (G,B, ρ). Let Gi = (Gi, Bi, ρi), i ∈ [2]. We say that G1 is a topological minor of G2,

denoted by G1 �tm G2, if G2 has a btm-pair (M, T ) such that diss(M, T ) is isomorphic to G1.

Given a G = (G,B, ρ) ∈ B, we define ext(G) as the set containing every topological-minor-minimal
boundaried graph G′ = (G′, B, ρ) among those that contain G as a minor. Notice that we insist that B
and ρ are the same for all graphs in ext(G). Moreover, we do not consider isomorphic boundaried graphs
in ext(G) as different boundaried graphs. The set ext(G) helps us to express the minor relation in terms of
the topological minor relation because of the following simple observation. Note that this definition extends
naturally to graphs, seen as boundaried graphs with empty boundary.
Observation 3. If G1,G2 ∈ B, then G1 �m G2 ⇐⇒ ∃G ∈ ext(G2) : G1 �tm G. Moreover, if G is a
boundaried graph with detail h, then every graph in ext(G) has detail at most 3h.

Folios. We define the h-folio of G = (G,B, ρ) ∈ B as

h-folio(G) = {G′ ∈ B | G′ �tm G and G′ has detail at most h}.

Using the fact that an h-folio is a collection of Kh+1-minor-free boundaried graphs, it follows that the

8



h-folio of a t-boundaried graph has at most 2O((h+t)·log(h+t) elements. Therefore, the number of distinct
h-folios of t-boundaried graphs is given by the following lemma (also observed in [6]).

Lemma 4. There exists a function f1 : N2 → N such that for every t, h ∈ N, |{h-folio(G) | G ∈ B(t)
h }| ≤

f1(t, h). Moreover, f1(t, h) = 22O((h+t)·log(h+t))
.

Equivalent boundaried graphs and representatives. We say that two boundaried graphs G1 =
(G1, B1, ρ1) and G2 = (G2, B2, ρ2) are compatible if ρ−1

2 ◦ ρ1 is an isomorphism from G1[B1] to G2[B2].
Given two compatible boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we define G1 ⊕G2 as
the graph obtained if we take the disjoint union of G1 and G2 and, for every i ∈ [|B1|], we identify vertices
ρ−1

1 (i) and ρ−1
2 (i).

Given h ∈ N, we say that two boundaried graphs G1 and G2 are h-equivalent, denoted by G1 ≡h G2, if
they are compatible and, for every graph H on at most h vertices and h edges and every boundaried graph
F that is compatible with G1 (hence, with G2 as well), it holds that

H �m F⊕G1 ⇐⇒ H �m F⊕G2. (2)

Note that ≡h is an equivalence relation on B. A minimum-sized (in terms of number of vertices) element
of an equivalence class of ≡h is called representative of ≡h . For t ∈ N, a set of t-representatives for ≡h is
a collection containing a minimum-sized representative for each equivalence class of ≡h restricted to B(t).

Given t, h ∈ N, we denote by R(t)
h a set of t-representatives for ≡h .

At this point, we wish to stress that the folio-equivalence defined in Equation 2 is related but is not the
same as the one defined by “having the same h-folio”. Indeed, observe first that if G1 and G2 are compatible
t-boundaried graphs and h-folio(G1) = h-folio(G2) then G1 ≡h G2, therefore the folio-equivalence is a
refinement of ≡h . In fact, a dynamic programming procedure for solving F-M-Deletion can also be based
on the folio-equivalence, and this has already been done in the general algorithm in [6], which has a double-
exponential parametric dependence due to the bound of Lemma 4. In this paper we build our dynamic
programming on the equivalence ≡h and we essentially prove that ≡h is “coarse enough” so to reduce the
double-exponential parametric dependence of the dynamic programming to a single-exponential one. In
fact, this has already been done in [6] for the case where F contains some planar graph, as this structural
restriction directly implies an upper bound on the treewidth of the representatives. To deal with the general
case, the only structural restriction for the (non-trivial) representatives is the exclusion of H as a minor.
All the combinatorial machinery that we introduce in the next two sections is intended to deal with the
structure of this general and (more entangled) setting.

4 Flat walls
In this section we deal with flat walls. More precisely, in Subsections 4.1, 4.2, and 4.3 we give the definition
of a flat wall in the form of a flatness pair. In Subsection 4.4 we define the notion of regular flatness pair and
we give a version of the Flat Wall Theorem of Robertson and Seymour [42] that has been recently proved
in [45]. This version (Theorem 5) incorporates the regularity property and is based on the recent results
and the terminology of Kawarabayashi et al. [30]. In Subsection 4.5 we define a notion of homogeneity of
flat walls, also introduced in [45], that along with Theorem 5 will be the combinatorial framework for the
proofs of Section 5. We stress that the notion of homogeneity that we use is different from that defined
by Robertson and Seymour in [42] and can serve as an alternative for further applications based on the
technology of flat walls (see e.g. [44, 46, 47]). In Subsection 4.6 we define a graph parameter related to flat
walls and show that it enjoys a series of properties related to Bidimensionality (as introduced in [17] and
further developed in [21]).
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4.1 Walls and subwalls
We first introduce some basic concepts such as partially disk-embedded graphs, walls, subwalls, tilts, and
layers (for an example of all the concepts defined in this subsection, see Figure 2).

Partially disk-embedded graphs. A closed (resp. open) disk is a set homeomorphic to the set {(x, y) ∈
R2 | x2 + y2 ≤ 1} (resp. {(x, y) ∈ R2 | x2 + y2 < 1}). Let ∆ be an open or closed disk. We use bd(∆) to
denote the boundary of ∆ and, if ∆ is closed, we use int(∆) to denote the open disk ∆ \ bd(∆). Also, if ∆
is an open disk, we use ∆ = ∆∪ bd(∆) for the closure of ∆. When we embed a graph G in the plane or in a
disk, we treat G (both its vertex and edge sets) as a set of points. This permits us to make set operations
between graphs and sets of points.

If ∆ is a closed disk, we say that a graph G is ∆-embedded if G is embedded in ∆ without crossings such
that the intersection of bd(∆) and G (seen as a set of points of ∆) is a subset of V (G). We say that a graph
G is partially disk-embedded in some closed disk ∆, if there is some ∆-embedded subgraph, say K, of G such
that G∩∆ = K and (V (G)∩∆, V (G) \ int(∆)) is a separation of G. From now on, we use the term partially
∆-embedded graph G to denote that a graph G is partially disk-embedded in some closed disk ∆.

A circle of ∆ is any set homeomorphic to {(x, y) ∈ R2 | x2 + y2 = 1}. Given two distinct points x, y ∈ ∆,
an (x, y)-arc of ∆ is any subset of ∆ that is homeomorphic to the closed interval [0, 1].

Figure 2: An 13-wall W along with a choice of pegs and corners. The six layers of W are colored alternatively
in red and green and the central 5-subwall of W appears in grey. The pegs are the squared vertices while,
among them, those that are black are the corners. The original vertices that are not pegs are turquoise
circles while the subdivision vertices are the small yellow circles. the central vertices are the two 3-branch
vertices that are surrounded by white squares. Notice that W has 144 bricks and, among them, 100 are
internal.

Walls. Let k, r ∈ N. The (k × r)-grid is the graph whose vertex set is [k] × [r] and two vertices (i, j)
and (i′, j′) are adjacent if |i − i′| + |j − j′| = 1. An elementary r-wall, for some odd integer r ≥ 3, is the
graph obtained from a (2r× r)-grid with vertices (x, y) ∈ [2r]× [r], after the removal of the “vertical” edges
{(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree one. Notice that, as r ≥ 3,
an elementary r-wall is a planar graph that has a unique (up to topological isomorphism) embedding in the
plane R2 such that all its finite faces are incident to exactly six edges. The perimeter of an elementary r-wall
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is the cycle bounding its infinite face, while the cycles bounding its finite faces are called bricks. Also, the
vertices in the perimeter of an elementary r-wall that have degree two are called pegs, while the vertices
(1, 1), (2, r), (2r − 1, 1), and (2r, r) are called corners (notice that the corners are also pegs).

An r-wall is any graph W obtained from an elementary r-wall W̄ after subdividing edges. A graph W is
a wall if it is an r-wall for some odd r ≥ 3 and we refer to r as the height of W. Given a graph G, a wall of
G is a subgraph of G that is a wall. We insist that, for every r-wall, the number r is always odd.

We call the vertices of degree three of a wall W 3-branch vertices. The vertices that are created by
subdivisions are called subdivision vertices while the rest are called original vertices of W. A cycle of W is a
brick (resp. the perimeter) of W if its 3-branch vertices are the vertices of a brick (resp. the perimeter) of
W̄ . We use D(W ) in order to denote the perimeter of the wall W. A brick of W is internal if it is disjoint
from D(W ). Note that every wall W has a unique (up to homeomorphism) embedding in the plane whose
infinite face is bounded by the perimeter D(W ) of the wall. Each time we consider a plane-embedded wall,
we consider this embedding.

Given two vertices x and y of a plane graph G, we define their face-distance in G as the smallest integer
i such that there exists an arc of the plane (i.e., a subset homeomorphic to the interval [0, 1]) between x

and y that does not cross the infinite face of the embedding, crosses no vertices of G, and intersects at most
i faces of G. Note that two distinct vertices of a plane wall W are within face-distance one if and only if
they belong to the same brick. Given two vertex sets X,Y of a plane graph G, we define the face-distance
between X and Y as the minimum face-distance between a vertex in X and a vertex in Y.

Subwalls. Given an elementary r-wall W̄ , some i ∈ {1, 3, . . . , 2r − 1}, and i′ = (i+ 1)/2, the i′-th vertical
path of W̄ is the one whose vertices, in order of appearance, are (i, 1), (i, 2), (i+1, 2), (i+1, 3), (i, 3), (i, 4), (i+
1, 4), (i + 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i + 1, r − 1), (i + 1, r). Also, given some j ∈ [2, r − 1] the j-th
horizontal path of W̄ is the one whose vertices, in order of appearance, are (1, j), (2, j), . . . , (2r, j).

A vertical (resp. horizontal) path of W is one that is a subdivision of a vertical (resp. horizontal) path of
W̄ . Notice that the perimeter of an r-wall W is uniquely defined regardless of the choice of the elementary
r-wall W̄ . A subwall of W is any subgraph W ′ of W that is an r′-wall, with r′ ≤ r and such the vertical
(resp. horizontal) paths of W ′ are subpaths of the vertical (resp. horizontal) paths of W.

Tilts. The interior of a wall W is the graph obtained from W if we remove from it all edges of D(W ) and
all vertices of D(W ) that have degree two in W. Given two walls W and W̃ of a graph G, we say that W̃ is
a tilt of W if W̃ and W have identical interiors.

Layers. The layers of an r-wall W are recursively defined as follows. The first layer of W is its perimeter.
For i = 2, . . . , (r − 1)/2, the i-th layer of W is the (i− 1)-th layer of the subwall W ′ obtained from W after
removing from W its perimeter and removing recursively all occurring vertices of degree one. The central
vertices of an r-wall are its two 3-branch vertices that do not belong to any of its layers. See Figure 2 for
an illustration of the notions defined above. Given an r-wall W and an odd integer q, where 3 ≤ q ≤ r, the
central q-subwall of W is the subwall of W of height q whose central vertices are the central vertices of W.

4.2 Paintings and renditions
Before defining flat walls, we need to introduce paintings and renditions. Here we closely follow the termi-
nology of [30].
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Paintings. Let ∆ be a closed disk. A ∆-painting is a pair Γ = (U,N) where

• N is a finite set of points of ∆,

• N ⊆ U ⊆ ∆, and

• U \N has finitely many arcwise-connected components, called cells, where, for every cell c,

◦ the closure c̄ of c is a closed disk and
◦ |c̃| ≤ 3, where c̃ := bd(c) ∩N.

We use the notation U(Γ) := U, N(Γ) := N and denote the set of cells of Γ by C(Γ). For convenience, we
may assume that each cell of Γ is an open disk of ∆. See Figure 3 for an example of a ∆-painting.

Figure 3: A ∆-painting Γ = (U,N). The red circles are the points of N that are points of the boundary of
∆ (whose complement is drawn in grey) and the blue circles are those that lie in the interior of ∆. The set
U \N is depicted in green.

Notice that, given a ∆-painting Γ, the pair (N(Γ), {c̃ | c ∈ C(Γ)}) is a hypergraph whose hyperedges
have cardinality at most three and Γ can be seen as a plane embedding of this hypergraph in ∆.

Renditions. Let G be a graph, and let Ω be a cyclic permutation of a subset of V (G) that we denote by
V (Ω). By an Ω-rendition of G we mean a triple (Γ, σ, π), where

(a) Γ is a ∆-painting for some closed disk ∆,

(b) π : N(Γ)→ V (G) is an injection, and

(c) σ assigns to each cell c ∈ C(Γ) a subgraph σ(c) of G, such that

(1) G =
⋃
c∈C(Γ) σ(c),

(2) for distinct c, c′ ∈ C(Γ), σ(c) and σ(c′) are edge-disjoint,
(3) for every cell c ∈ C(Γ), π(c̃) ⊆ V (σ(c)),
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(4) for every cell c ∈ C(Γ), V (σ(c)) ∩
⋃
c′∈C(Γ)\{c} V (σ(c′)) ⊆ π(c̃), and

(5) π(N(Γ) ∩ bd(∆)) = V (Ω), such that the points in N(Γ) ∩ bd(∆) appear in bd(∆) in the same
ordering as their images, via π, in Ω.

Given an Ω-rendition (Γ, σ, π) of a graph G, we call a cell c of Γ trivial if π(c̃) = V (σ(c)).

Tight renditions. We say that an Ω-rendition (Γ, σ, π) of a graph G is tight if the following conditions
are satisfied:

(i) If there are two points x, y of N(Γ) such that e = {π(x), π(y)} ∈ E(G), then there is a cell c ∈ C(Γ)
such that σ(c) is the two-vertex connected graph (e, {e}),

(ii) for every c ∈ C(Γ), every two vertices in π(c̃) belong to some path of σ(c),

(iii) for every c ∈ C(Γ) and every connected component C of the graph σ(c) \ π(c̃), if Nσ(c)(V (C)) 6= ∅,
then Nσ(c)(V (C)) = π(c̃),

(iv) there are no two distinct non-trivial cells c1 and c2 such that π(c̃1) = π(c̃2), and

(v) for every c ∈ C(Γ) there are |c̃| vertex-disjoint paths in G from π(c̃) to the set V (Ω).

As proved in [45], it is possible to transform any Ω-rendition to a tight one. For this reason, in this paper,
we always assume that Ω-renditions are tight.

4.3 Flat walls and flatness pairs
We are now in position to define the notion of a flat wall. We further encode it into the concept of a flatness
pair of a graph.

Flat walls. Let G be a graph and let W be an r-wall of G, for some odd integer r ≥ 3. We say that a
pair (P,C) ⊆ D(W )×D(W ) is a choice of pegs and corners for W if W is the subdivision of an elementary
r-wall W̄ where P and C are the pegs and the corners of W̄ , respectively (clearly, C ⊆ P ). To get more
intuition, notice that a wall W can occur in several ways from the elementary wall W̄ , depending on the way
the vertices in the perimeter of W̄ are subdivided. Each of them gives a different selection (P,C) of pegs
and corners of W (see Figure 2 for an example of a choice of pegs and conrers (P,C) in a 13-wall W ).

We say that W is a flat r-wall of G if there is a separation (X,Y ) of G and a choice (P,C) of pegs and
corners for W such that:

• V (W ) ⊆ Y,

• P ⊆ X ∩ Y ⊆ V (D(W )), and

• if Ω is the cyclic ordering of the vertices X∩Y as they appear in D(W ), then there exists an Ω-rendition
(Γ, σ, π) of G[Y ].
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Figure 4: A graph G and a flatness pair (W,R) of G where W is a 5-wall and R = (X,Y, P,C,Γ, σ, π)
is a 7-tuple certifying the flatness of W in G. The edges of W are drawn in orange. In the corresponding
separation (X,Y ), the vertices of X are green and yellow while the vertices in Y are all the non-green vertices.
Consequently, the yellow vertices are the vertices in X ∩Y. The pegs and the corners are the squared vertices
where the pegs that are not corners are purple and the the corners are black. The ∆-painting of the
Ω-rendition (Γ, σ, π) of G′ = G[Y ] is the one depicted in Figure 3.

Flatness pairs. Given the above, we say that the choice of the 7-tuple R = (X,Y, P,C,Γ, σ, π) certifies
that W is a flat wall of G. We call the pair (W,R) a flatness pair of G and define the height of the pair
(W,R) to be the height of W. We use the term cell of R in order to refer to the cells of Γ (see Figure 4 for
an example of a flatness pair (W,R) of a graph).

We call the graph G[Y ] the R-compass of W in G, denoted by compassR(W ) (see Figure 5 for the R-
compass of W, corresponding to the flatness pair (W,R) of Figure 4). We define the flaps of the wall W in R

as flapsR(W ) := {σ(c) | c ∈ C(Γ)}. Given a flap F ∈ flapsR(W ), we define its base as ∂F := V (F )∩π(N(Γ)).
A flap F ∈ flapsR(W ) is trivial if |∂F | = 2 and F consists of one edge between the two vertices in ∂F. We
call the edges of the trivial flaps short edges of compassR(W ). A cell c of R is untidy if π(c̃) contains a vertex
x of W such that two of the edges of W that are incident to x are edges of σ(c). Notice that if c is untidy
then |c̃| = 3. A cell is tidy if it is not untidy (in Figure 4 untidy cells are marked by green stars).

4.4 Influence, regularity, and tilts of flatness pairs
We now introduce a classification of the cells of a flatness pair (W,R). This classification will be used in
order to define the concepts of regularity and W ′-tilts of flatness pairs that will be important for our proofs.

Cell classification. Given a cycle C of compassR(W ), we say that C is R-normal if it is not a subgraph
of a flap F ∈ flapsR(W ). Given an R-normal cycle C of compassR(W ), we call a cell c of R C-perimetric if
σ(c) contains some edge of C. Notice that if c is C-perimetric, then π(c̃) contains two points p, q ∈ N(Γ) such
that π(p) and π(q) are vertices of C where one, say P in

c , of the two (π(p), π(q))-subpaths of C is a subgraph
of σ(c) and the other, denoted by P out

c , (π(p), π(q))-subpath contains at most one internal vertex of σ(c),
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Figure 5: The R-compass of the 5-wall W for the flatness pair (W,R) depicted in Figure 4, and a subwall
W ′ of W whose edges are depicted in bold. The red curve is the curve KW ′ . The W ′-internal cells are
depicted in grey while the W ′-perimetric cells are depicted in green. W ′-marginal cells are marked with
orange stars. The set influenceR(W ′) contains all the flaps that are drawn inside the grey or the green cells
(the W ′-external cells are not depicted).

which should be the (unique) vertex z in ∂σ(c) \ {π(p), π(q)}. We pick a (p, q)-arc Ac in ĉ := c∪ c̃ such that
π−1(z) ∈ Ac if and only if P in

c contains the vertex z as an internal vertex.
We consider the circle KC =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Ac | c is a C-perimetric cell of R} and we denote by ∆C the closed disk

bounded by KC that is contained in ∆. A cell c of R is called C-internal if c ⊆ ∆C and is called C-external
if ∆C ∩ c = ∅. Notice that the cells of R are partitioned into C-internal, C-perimetric, and C-external cells.

Let c be a tidy C-perimetric cell of R where |c̃| = 3. Notice that c \ Ac has two arcwise-connected
components and one of them is an open disk Dc that is a subset of ∆C . If the closure Dc of Dc contains
only two points of c̃ then we call the cell c C-marginal.

Influence. For every R-normal cycle C of compassR(W ) we define the set

influenceR(C) = {σ(c) | c is a cell of R that is not C-external}.

A wall W ′ of compassR(W ) is R-normal if D(W ′) is R-normal. Notice that every wall of W (and
hence every subwall of W ) is an R-normal wall of compassR(W ). We denote by SR(W ) the set of
all R-normal walls of compassR(W ). Given a W ′ ∈ SR(W ) and a cell c of R we say that c is W ′-
perimetric/internal/external/marginal if c is D(W ′)-perimetric/internal/external/marginal (see Figure 5 for
an example). We also use KW ′ , ∆W ′ , influenceR(W ′) as shortcuts for KD(W ′), ∆D(W ′), influenceR(D(W ′)).

Regularity. Let (W,R) be a flatness pair of a graph G. We call a flatness pair (W,R) of a graph G regular
if none of its cells is W -external, W -marginal, or untidy. Notice that the flatness pair of Figure 4 is not
regular (for an example of a regular flatness pair of a graph that is a modification of the one in Figure 4,
see Figure 9). The notion of regularity has been defined in [45] and will be useful in Subsection 5.3. In fact,
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regularity permits the definition of a “well-allinged” ∆-embedded representation of the R-compass that will
be valuable in the proofs of Subsection 5.4. The precise definition of the notion of well-allinged flatness pairs
is given in Subsection 5.3.

The next result has been proved in [45]. It can be seen as a version of the Flat Wall Theorem incorporating
the concept of regularity, which is necessary for our proofs.

Theorem 5. There exist two functions f2, f3 : N→ N such that for every graph G, every odd integer r ≥ 3,
and every q ∈ N≥1, one of the following is true:

• Kq is a minor of G,

• tw(G) ≤ f2(q) · r, or

• there exist a set A ⊆ V (G), where |A| ≤ f3(q), and a regular flatness pair (W,R) of G \A of height r.

Moreover, f2(q) = 2O(q2 log q) and f3(q) = O(q24).

Tilts of flatness pairs. Let (W,R) and (W̃ ′, R̃′) be two flatness pairs of a graph G and let W ′ ∈ SR(W ).
We also assume that R = (X,Y, P,C,Γ, σ, π) and R̃′ = (X ′, Y ′, P ′, C ′,Γ′, σ′, π′). We say that (W̃ ′, R̃′) is a
W ′-tilt of (W,R) if

• R̃′ does not have W̃ ′-external cells,

• W̃ ′ is a tilt of W ′,

• the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-internal cells of R and their images via
σ′ and σ are also the same,

• compassR̃′(W̃ ′) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

influenceR(W ′), and

• if c is a cell in C(Γ′) \ C(Γ), then |c̃| ≤ 2.

The next observation follows from the definitions of regular flatness pairs and tilts.
Observation 6. If (W,R) is a regular flatness pair, then for every W ′ ∈ SR(W ), every W ′-tilt of (W,R) is
also regular.

We need one more observation, which follows from the third item above and the fact that the cells
corresponding to flaps containing a central vertex of W ′ are all internal (recall that the height of a wall is
always at least three).
Observation 7. The central vertices of W ′ belong to every W ′-tilt of (W,R).

The need to define W ′-tilts of flatness pairs emerges from the fact that not every subwall W ′ of a flat
wall W is necessarily flat, recently observed in [45]. The next proposition, proved in [45], suggests that there
is always a slight modification of W ′ in the R-compass of W that is indeed a flat wall. This “tilt” preserves
the internal cells, and therefore the “essential” part of the influence of W ′. That way, it permits us to define
a notion of compass relative to a subwall of a flat wall.

Proposition 8. For every flatness pair (W,R) of a graph G and every W ′ ∈ SR(W ), there exists a flatness
pair (W̃ ′, R̃′) of G that is a W ′-tilt of (W,R).
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4.5 Homogeneous walls
Homogeneous walls were a basic ingredient of the seminal algorithm of Robertson and Seymour for the
Disjoint Paths problem in [42]. This algorithm introduced the Irrelevant Vertex Technique that consisted
in the identification of a vertex in an instance of the Disjoint Paths problem that is irrelevant in the sense
that its removal does not change the Yes/No-status of the instance. The notion of wall homogeneity was
given in [42] and was based on the concept of the vision of an “internal” flap of a flat wall. It was proved
in [43] that the central vertices of a sufficiently big homogenous flat wall are indeed irrelevant with respect to
the Disjoint Paths problem and therefore they could safely discarded. Our results are following the same
technique. However, we need an alternative notion of homogeneity that we introduce in this subsection.

Let G be a graph, let A ⊆ V (G), and let (W,R) be a flatness pair of G\A, where R = (X,Y, P,C,Γ, σ, π)
and (Γ, σ, π) is an Ω-rendition of G[Y ]. Recall that Γ = (U,N) is a ∆-painting of the closed disk ∆.

Augmented flaps. For each flap F ∈ flapsR(W ) we consider a labeling `F : ∂F → {1, 2, 3} such that the
set of labels assigned by `F to ∂F is one of {1}, {1, 2}, {1, 2, 3}. We also consider a bijection ρA : A → [a],
where a = |A|. The labelings in L = {`F | F ∈ flapsR(W )} and the labeling ρA will be useful for defining a
set of boundaried graphs that we will call augmented flaps. We first need some more definitions.

Given a flap F ∈ flapsR(W ), we define an ordering Ω(F ) = (x1, . . . , xq), with q ≤ 3, of the vertices of ∂F
so that

• (x1, . . . , xq) is a counter-clockwise cyclic ordering of the vertices of ∂F as they appear in the corre-
sponding cell of C(Γ). Notice that this cyclic ordering is significant only when |∂F | = 3, in the sense
that (x1, x2, x3) remains invariant under shifting, i.e., (x1, x2, x3) is the same as (x2, x3, x1) but not
under inversion, i.e., (x1, x2, x3) is not the same as (x3, x2, x1), and

• for i ∈ [q], `F (xi) = i.

Notice that the second condition is necessary for completing the definition of the ordering Ω(F ), and this is
the reason why we set up the labelings in L.

For each F ∈ flapsR(W ) with tF = |∂F |, we fix ρF : ∂F → [a+1, a+tF ] such that (ρ−1
F (a+1), . . . , ρ−1

F (a+
tF )) = Ω(F ). Also, we define the boundaried graph

FA = (G[A ∪ F ], A ∪ ∂F, ρA ∪ ρF ) (3)

and we denote by FA the underlying graph of FA. We call FA an augmented flap of the flatness pair (W,R)
of G \A in G.

Palettes and homogeneity. For each cycle C of W, we define (A, `)-palette(C) = {`-folio(FA) | F ∈
influenceR(C)}. We say that the flatness pair (W,R) of G \ A is `-homogeneous with respect to the pair
(G,A) if every internal brick B of W (seen as a cycle of W ) has the same (A, `)-palette.

Apex-wall triples. Let G be a graph, let A ⊆ V (G) with |A| ≤ a, and let (W,R) be a regular flatness
pair of G \A such that W has height r and is `-homogenous with respect to (G,A) for some ` ∈ N. We call
such a triple (A,W,R) an (a, r, `)-apex-wall triple of G.

The next proposition, proved in [45], implies that it is possible to find an `-homogeneous flat wall inside
the compass of a sufficiently big flat wall.
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Proposition 9. There exists a function f4 : N2 → N such that if r ∈ N≥3, G is a graph, A ⊆ V (G),
and (W,R) is a flatness pair of G \ A of height f4(r, w), where w = f1(|A| + 3, `), then W contains some
subwall W ′ of height r such that every W ′-tilt of (W,R) is `-homogeneous with respect to (G,A). Moreover,
f4(r, w) = O(rw).

4.6 A parameter for affecting flat walls
We proceed to define a graph parameter that will be useful for our proofs. We prove that it satisfies some
properties related to Bidimensionality theory [17,18,21] that will be used later in Subsection 6.2.

Let G be a graph and let (A,W,R) be an (a, r, `)-apex-wall triple of G. We say that S affects (A,W,R)
if NG[V (compassR(W ))] ∩ (S \A) 6= ∅. For a, r, ` ∈ N, we define

pa,r,`(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ S affects every (a, r, `)-apex-wall triple of G}.

Using Theorem 5, Proposition 8, and Proposition 9, we prove that the above parameter grows quadrati-
cally with its treewidth.

Lemma 10. There is a function f5 : N3 → N such that if q, r, ` ∈ N>0, and G is a Kq-minor-free graph,
then tw(G) ≤ f5(q, r, `) ·max

{
1,
√

pf3(q),r,`(G)
}
. In particular, one may choose f5(q, r, `) = O(f2(q) · rw),

where w = f1(f3(q) + 3, `) = 22O((q24+`)·log(q24+`))
.

Proof. The lemma follows easily if we prove that, for every positive integer p, tw(G) > f2(q) ·
(
(rw + 2) ·

d
√
p+ 1e+ 2

)
implies that pf3(q),r,`(G) > p.

By Theorem 5, it follows that, for any q, r, ` ∈ N>0, if G is Kq-minor-free and tw(G) > f2(q) ·
(
(rw + 2) ·

d
√
p+ 1e + 2

)
, then G contains some vertex set A such that |A| ≤ f3(q) and G \ A has a regular flatness

pair (W,R) of height (rw + 2) · d
√
p+ 1e + 2. Let Ŵ1, . . . , Ŵ

′
p+1 ∈ SR(W ) be a collection of p + 1 pairwise

disjoint subwalls of W, each of height rw, such that there are no two vertices w1, w2 in W of face-distance at
most one such that w1 belongs to some Ŵi and w2 belongs either in D(W ) or in some other Ŵi′ , i

′ 6= i.

By Proposition 8, for every i ∈ [p + 1], there is a Ŵi-tilt of (W,R) that we denote by (Wi,Ri). Since
(W,R) is regular, Observation 6 implies that (Wi,Ri) is also regular for every i ∈ [p + 1]. Moreover, by
the definition of a Ŵi-tilt, it follows that, for every two distinct i, i′ ∈ [p + 1], NG[V (compassRi(Wi))] ∩
NG[V (compassRi(Wi′))] ⊆ A. Note that this is correct because the face-distance demand leaves a “buffer”
among the flat walls and the perimeter of W to guarantee that the neighborhoods of their compasses
do not intersect, except possibly at apex vertices. Let w = f1(|A| + 3, `). From Proposition 9, for
each regular flatness pair (Wi,Ri) of G \ A there is a subwall Ŵ ′i of height r such that every reg-
ular Ŵ ′i -tilt of (W,R) is `-homogeneous with respect to (G,A). We denote this Ŵ ′i -tilt by (W ′i ,R′i)
and we conclude that (A,W ′i ,R′i) is an (a, r, `)-apex-wall triple of G, for every i ∈ [p + 1]. As before,
NG[V (compassR′

i
(W ′i ))] ∩ NG[V (compassR′

i
(W ′i′))] ⊆ A for every i, i′ ∈ [p + 1], i 6= i′. Therefore, every set

S ⊆ V (G) affecting every (f3(q), r, `)-apex-wall triple of G needs to contain at least one vertex from each of
the sets {NG[V (compassR(Wi))] | i ∈ [p]}, implying that pf3(q),r,`(G) > p.

We now prove that the parameter pa,r,` is separable, that is, that when considering a separation of a
graph, the value of the parameter is “evenly” split along both sides of the separation, possibly with an offset
bounded by the order of the separation.

Lemma 11. Let a, r, ` ∈ N, let G be a graph, and let S ⊆ V (G) such that S affects every (a, r, `)-apex-wall
triple of G. Then, for every separation (L,R) of S in G, the set L ∩ (R ∪ S) affects every (a, r, `)-apex-wall
triple of G[L].

18



Proof. Suppose for contradiction that (A,W,R) is an (a, r, `)-apex-wall triple of G[L] that is not affected
by L ∩ (R ∪ S). In particular, it holds that V (compassR(W )) ⊆ L \ R. Since by assumption (A,W,R) is
affected by S but not by L ∩ (R ∪ S), there should exist a vertex v ∈ S ∩ (R \ L) with a neighbor in
V (compassR(W )) ⊆ L \R, contracting the hypothesis that (L,R) is a separation of G.

5 Finding an irrelevant vertex
In this section we show how to find inside a sufficiently large flat wall of a boundaried graph G = (G,B, ρ)
a flat subwall whose compass is “irrelevant” with respect to the presence of a graph H in F as a minor.
Here the term “irrelevant” is not only related to G but to every graph K ⊕ G that can be obtained by
gluing G with another boundaried graph K. For this we need a stronger notion of irrelevancy, defined in
Subsection 5.4, that takes into account only the “essential part” of a topological minor model (M,T ) of H
that is “invading” G.

We start in Subsection 5.1, by detecting in every wall a railed annulus. This structure, introduced
in [28] and reused later in [24, 25], turns out to be quite handy in order to guarantee a “taming property”
of topological minor models (cf. Proposition 13). In Subsection 5.2 we first use graph drawing tools to
prove that we can assume that our model is embedded “nicely” inside a railed annulus, in the sense that
certain vertices are sufficiently pairwise far apart (cf. Lemma 16); this will be helpful in order to reroute the
model of every “invading” topological minor model (M,T ) of H. With the help of Proposition 13, we prove
(cf. Theorem 17) that, given a partially disk-embedded graph that contains a railed annulus, the topological
minor model (M,T ) of a graph H can be rerouted so to obtain another topological minor model that can
be contracted back to H and such that a “large enough” central region of the railed annulus is avoided. The
rerouting of (M,T ) will be done so that a prescribed subset of degree-3 vertices of the original model will
not be affected by contractions.

Once we have all the above ingredients, we consider in Subsection 5.4 a boundaried graph G = (G,B, ρ)
and an apex wall triple (A,W,R) that is not affected by B and we show, in Theorem 23, how every topological
minor model (M,T ) of a graph H in G can be rerouted away from the compass of the central subwall W ′ of
W. This will permit us later to declare the whole compass of W ′ irrelevant and rule out the possibility that
W has size exceeding some function depending on the “intrusion” of H in G. The proof of Theorem 23 is the
most technical part of this paper. For this, we define an appropriate “flat” representation of the R-compass
of W, called its leveling, and a representation of the wall W in the leveling that is “well-aligned”. This well-
alignment property, defined in Subsection 5.3, emerges from the regularity of the flatness pair (W,R) and
permits the representation of (M,T ) by a topological minor model (M̃, T̃ ) of the leveling, accompanied with
a suitable encoding of the parts of (M,T ) that have been suppressed by the leveling. This will permit us to
obtain, using Theorem 17, a rerouting (M̂, T̂ ) of (M̃, T̃ ) inside the leveling. Finally, using the homogeneity
property, we will translate back (M̂, T̂ ) to a rerouting of (M,T ) that will avoid the compass of the central
subwall W ′.

5.1 A lemma for model taming
We introduce the concept of a railed annulus and present the main combinatorial result of [25].

Railed annuli. Let G be a partially ∆-embedded graph and let C = [C1, . . . , Cr], r ≥ 2, be a collection
of vertex-disjoint cycles of the compass of G. We say that the sequence C is a ∆-nested sequence of cycles of
G if every Ci is the boundary of an open disk Di of ∆ such that ∆ ⊇ D1 ⊇ · · · ⊇ Dr. From now on, each
∆-nested sequence C = [C1, . . . , Cr] will be accompanied with the sequence [D1, . . . , Dr] of the corresponding
open disks as well as the sequence [D1, . . . , Dr] of their closures. Given x, y ∈ [r] with x ≤ y, we call the set
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Figure 6: An example of a (5, 8)-railed annulus and its inner disk D5.

Dx \Dy (x, y)-annulus of C and we denote it by ann(C, x, y). Finally we say that ann(C, 1, r) is the annulus
of C and we denote it by ann(C).

Let r ∈ N≥3 and q ∈ N≥3 with r odd. An (r, q)-railed annulus of a ∆-partially-embedded graph G is
a pair A = (C,P) where C = [C1, . . . , Cr] is a ∆-nested collection of cycles of G and P = [P1, . . . , Pq] is a
collection of pairwise vertex-disjoint paths in G, called rails, such that

• for every j ∈ [q], Pj ⊆ ann(C), and

• for every (i, j) ∈ [r]× [q], Ci ∩ Pj is a non-empty path that we denote by Pi,j .

See Figure 6 for an example of a (5, 8)-railed annulus. The following proposition states that large railed
annuli can be found inside a modestly larger wall and will be used in the next section. A similar (but less
precise) statement can be found in [28].

Proposition 12. If x, z ≥ 3 are odd integers, y ≥ 1, and W is an odd(2x+ max{z, y4 − 1})-wall, then

• there is a collection P of y paths in W such that if C is the collection of the first x layers of W, then
(C,P) is an (x, y)-railed annulus of W where the first cycle of C is the perimeter of W, and

• the open disk defined by the x-th cycle of C contains the vertices of the compass of the central z-subwall
of W.

Proof. Let C = {C1, . . . , Cx} be the collection of the first x layers of W. Notice that the open disk defined by
Cx contains the vertices of the compass of the central w′-subwall, where w′ := w−2x = odd(max{z, y4−1}) ≥
z. On the other hand, W contains a collection P of at least 2w′ + 2(w′ + 2) pairwise vertex-disjoint paths
from C1 to Cx. Since 2w′ + 2(w′ + 2) = 4w′ + 4 ≥ y, the pair (C,P) is an (x, y)-railed annulus of W where
the first cycle of C is the perimeter of W (see Figure 7).

We define the annulus of A = (C,P) as the annulus of C. We call C1 and Cr the outer and the inner
cycle of A, respectively. Also, if (i, i′) ∈ [r]2 with i < i′ then we define Ai,i′ = ([Ci, · · · , Ci′ ],P ∩ann(C, i, i′)).
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w′ ≥ z

x

w′ + 2

Figure 7: A visualization of the proof of Proposition 12 in the 33-wall where x = 9, y = 64, and z = 15. For
simplicity, the paths in {Pi,j | (i, j) ∈ [33]2} are depicted as vertices.

The union-graph of an (r, q)-railed annulus A = (C,P) is defined as G(A) := (
⋃
i∈[r] Ci) ∪ (

⋃
i∈[q] Pi).

Clearly, G(A) is a planar graph and we always assume that its infinite face is the one whose boundary is the
first cycle of C.

Let A be a (r, q)-railed annulus of a partially ∆-embedded graph G. Let r = 2t+ 1, for some t ≥ 0. Let
also s ∈ [r] where s = 2t′ + 1, for some 0 ≤ t′ ≤ t. Given some I ⊆ [q], we say that a subgraph M of G is
(s, I)-confined in A if

M ∩ ann(C, t− t′, t+ t′) ⊆
⋃
i∈I

Pi.

The following proposition has been recently proved by Golovach et al. [25, Theorem 2.1], where it has
been dubbed as the “Model Taming Lemma”.

Proposition 13. There exist two functions f6, f7 : N≥0 → N≥0 such that the images of f7 are even and
such that if

• s is a positive odd integer,

• H is a graph on at most ` edges,

• G is a ∆-partially-embedded graph,

• A = (C,P) is an (r, q)-railed annulus of G, where r = f7(`) + 2 + s and q ≥ 5/2 · f6(`),

• (M,T ) is a topological minor model of H in G such that T ∩ ann(A) = ∅, and

• I ⊆ [q] where |I| > f6(`),

then G contains a topological minor model (M̃, T̃ ) of H in G such that

1. T̃ = T,

2. M̃ is (s, I)-confined in A, and

3. M̃ \ ann(A) ⊆M \ ann(A).

Moreover f7(`) = O((f6(`))2).
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Remark 14. It is worth mentioning here that the function f6(`) of Proposition 13 depends on the constants
involved in the Unique Linkage Theorem [31,43]; see Subsection B.2 for a more detailed discussion. At this
point we just remark that, according to the results of Adler and Krause [2], we have that f6(`) = 2Ω(`). This
permits us to henceforth make the (generous) assumption that ` = O(f6(`)).

5.2 Model rerouting in partially disk-embedded graphs
Using classic results on how to optimally draw planar graphs of maximum degree three into grids (see
e.g., [29]) one may easily derive the following.

Proposition 15. There exists a function f8 : N → N such that for every `-vertex planar graph H with
maximum degree three there is a tm-pair (M,T ) of the (f8(`)×f8(`))-grid, denoted by Γ, that is a topological
minor model of H in Γ. Moreover, it holds that f8(`) = O(`).

Let Γ be an (r× r)-grid for some r ≥ 3. We see a Γ-grid as the union of r horizontal paths and r vertical
paths. Given an i ∈ b r2c, we define the i-th layer of Γ recursively as follows: the first layer of Γ is its
perimeter, while, if i ≥ 2, the i-th layer of Γ is the perimeter of the (r−2(i−1)× r−2(i−1))-grid created if
we remove from Γ its i−1 first layers. When we deal with a (r×r)-grid Γ, we always consider its embedding
where the infinite face is bounded by the first layer of Γ.

Safely arranged models. Let G be a plane graph. Given two subgraphs of G, we define their face-distance
as the minimum face-distance between two of their vertices. We denote by F(i)

G (x) the set of all vertices of
G that are within face-distance at most i from vertex x.

Given a c ≥ 0 and a tm-pair (M,T ) of G, we say that (M,T ) is safely c-dispersed in G if

• every two distinct vertices t, t′ ∈ T are within face-distance at least 2c+ 1 in G, and

• for every t ∈ T of degree d in M, the graph M [F(c)
G (t) ∩ V (M)] consists of d paths with t as a unique

common endpoint.

With Proposition 15 at hand, we can prove the following useful lemma.

Lemma 16. There exists a function f9 : N3 → N such that the following holds. Let c, r, r′, ` ∈ N, r′ ≤ r, H
be a D-embedded (`+ r′)-vertex graph, and Z := {z1, . . . , zr′} ⊆ V (H) such that

• the vertices of H have degree at most three,

• Z is an independent set of H,

• all vertices of Z have degree one in H,

• bd(D) ∩H = Z, and

• (z1, . . . , zr′) is the cyclic ordering of the vertices of Z as they appear in the boundary of D.

Let also G be a ∆-embedded graph, A = (C,P) be an (x, y)-railed annulus of G, where x, y are integers such
that min{x, y} ≥ f9(c, r, `) ≥ r, and where C = [C1, . . . , Cx] and P = [P1, . . . , Py], wi be the endpoint of Pi
that is contained in C1, for i ∈ [r], and I := {i1, . . . , ir′} ⊆ [r]. Then the union-graph G(A) of A contains a
tm-pair (M,T ) that is a topological minor model of H in G(A) such that

• for each j ∈ [r′], σM,T (zj) = wij ,

• the tm-pair (M,T ) is safely c-dispersed in the union graph G(A), and
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• none of the vertices of T \ {wi1 , . . . , wir′} is within face-distance less than c from some vertex in C1 or
in Cr.

Moreover, it holds that f9(c, r, `) = O(cr(`+ r)).

Proof. Using H, we construct a new graph H ′ as follows: consider a copy H̃ of H where the copy of zi in H̃ is
denoted by z̃i, for each i ∈ [r′]. We take the disjoint union of H and H̃, add the edges {z1, z2}, . . . , {zr′ , z1},
forming a cycle C, subdivide the edges in C, add the edges {z̃1, z̃2}, . . . , {z̃r, z̃1}, forming a cycle C̃, subdivide
the edges in C̃, and, given that, for i ∈ [r′], xi (resp. x̃i) is the vertex created after the subdivision of {zi, zi+1}
(resp. {z̃i, z̃i+1}) (here r′ + 1 is interpreted as 1), add the edges {x1, x̃1}, . . . , {xr, x̃r′}. The resulting graph
H ′ has 2(` + r′) ≤ 2(` + r) vertices, is planar, and has maximum degree three. Let s = f8(2(` + r)). By
Proposition 15, there is a tm-pair (M ′, T ′) of the (s× s)-grid Γ that is a topological minor model of H ′ in Γ.
We now subdivide r = 2(c+ 1)r times each of the edges of Γ and see the resulting graph Γ′ as a subgraph of
a ((r+ 1)(s+ 2)× (r+ 1)(s+ 2))-grid Γ′′ in a way that none of the r first layers of Γ′′ intersects Γ′. By also
subdividing r times each of the edges of M ′ we construct a tm-pair (M ′′, T ′) of Γ′′ that is a a topological
minor model of H ′ in Γ′′.

Let w1, . . . , wr be the first r vertices of the lower path of Γ′′. Recall that H is a subgraph of H ′, therefore
we can define M = σM ′,T ′(H). Let also T = σM ′,T ′(V (H)). Notice that (M,T ) is a tm-pair of Γ′′ that is a
topological minor model of H. Let ẑi = σM,T (zi), i ∈ [r′]. We make two observations about the position of
these vertices in Γ′′. The first is that, because of the construction of H ′, ẑ1, . . . , ẑr′ appear, in this ordering,
on a cycle of Γ′ bounding a closed disk, say ∆, that contains the whole M. The second is that, as M is a
subgraph of Γ′, each pair ẑi, ẑj , i 6= j, is at distance at least r + 1 in the graph Γ′′′ := Γ′′ \ int(∆). It is now
easy to observe that the two previous observations permit to find in Γ′′′ pairwise disjoint paths joining ẑj
with wij , for j ∈ [r′]. By adding these paths in M and including in T the set {wi1 , . . . , wir′}, we construct
a tm-pair (M,T ) that is a topological minor model of H in Γ′ such that for each j ∈ [r′], the function σM,T

maps the vertex zj to w′ij and the intersection of V (M) and the upper path of Γ′′ is empty. Moreover, as we
applied at least r = (c+ 2)r subdivisions, it also holds that the set T is safely 2c-dispersed in Γ′′. Moreover,
it is easy to observe that none of the vertices of T \ {wi1 , . . . , wir′} is within face-distance less than c from
some vertex in the perimeter of Γ′′.

Consider now a (x, y)-railed annulus (C,P) of some ∆-embedded graph G, with min{x, y} ≥ q, where
q = (r + 1)(s + 2). Let C = [C1, . . . , Cx] and P = [P1, . . . , Py] as in the statement of the lemma. Let also
Γ̃ = G(A). For every i ∈ [q], we define F (i)

A as the edge set of the unique path in Ci with one endpoint in
Pi,q and the other in Pi,1, that does not contain internal vertices of the paths Pi,q or Pi,1, and does not
contain any vertex from P2. We denote by F e

A (resp. F v
A) the set of all edges (resp. internal vertices) of the

paths F (i)
A , i ∈ [q]. Notice that the grid Γ′′ occurs from (Γ̃ \ F e

A) \ F v
A if, for every (i, j) ∈ [q]2, we contract

the path Pi,j defined by the intersection of the i-th horizontal path and the j-th vertical path of W. It
is easy to see that if in Γ̃ we uncontract each vertex, say (i, j) of M to the path Pi,j , one can transform
(M,T ) to a tm-pair of W that is a topological minor model of H in W and additionally, for each i ∈ [r′],
the function σM,T maps the vertex zj to wij . This implies the first condition of the lemma. The second
condition follows directly from the fact that the pair (M,T ) was already safely 2c-dispersed before applying
the uncontractions and such uncontractions cannot reduce the distance to more than half of it. The third
condition is also an obvious consequence of the uncontraction procedure. Therefore, the lemma holds if we
set f9(c, r, `) := q = O(cr(`+ r)).

Let G be a partially ∆-embedded graph and let C = [C1, . . . , Cr] be a ∆-nested sequence of cycles of G
and let [D1, . . . , Dr] (resp. [D1, . . . , Dr]) be the sequences of the corresponding open (resp. closed) disks.

Let also (M,T ) be a tm-pair of G and p ∈ [r]. We define the p-crop of (M,T ) in C, denoted by (M,T )eDp,

as the tm-pair (M ′, T ′) where M ′ = M ∩Dp and T ′ = (T ∩Dp) ∪ (V (Cp ∩M)).
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Given a graph H a set Q ⊆ V (H) and a graph G, we say that φ : V (H) → 2V (G) is a Q-respecting
contraction-mapping of H to G if

•
⋃
x∈V (H) φ(x) = V (G),

• ∀x, y ∈ V (H), if x 6= y then φ(x) ∩ φ(y) = ∅,

• ∀x ∈ V (H), G[φ(x)] is connected,

• ∀{x, y} ∈ E(H), G[φ(x) ∪ φ(y)] is connected, and

• ∀x ∈ Q, |φ(x)| = 1.

The critical point in the above definitions is that vertices in Q are not “uncontracted” when transforming
H to G.

Intrusion of a topological minor model. Let G be a graph, let S ⊆ V (G), and let (M,T ) be a tm-pair
of G. We define the S-intrusion of (M,T ) in G as the maximum value between |S ∩ T | and the number of
subdivision paths of (M,T ) that contain vertices of S. It is important to notice that S can intersect many
times a subdivision path of (M,T ), however the value of the S-intrusion counts each such a path only once.

Using Proposition 12, Proposition 13, and Lemma 16 we prove the following.

Theorem 17. There exist three functions f10 : N2 → N, f11 : N2 → N, and f12 : N3 → N such that
the following holds. Let c, ` ∈ N, z ≥ 3 be an odd integer, and G be a partially ∆-embedded graph, whose
compass contains an f12(c, z, `)-wall W with bd(∆) as perimeter. Let also C = [C1, . . . , Cf10(c,`)] be the first
f10(c, `)-layers of W and D1, . . . , Df10(c,`) be the open disks of ∆ that they define. If (M,T ) is a tm-pair of
G whose ∆ ∩ V (G)-intrusion in G is at most ` and Q is a subset of T containing vertices of degree at most
three in M, then there is a tm-pair (M̂, T̂ ) of G and an integer b ∈ [f10(c, `)] such that

1. M̂ \Db is a subgraph of M \Db,

2. ann(C, b, b+ f11(c, `)− 1) ∩ (T ∪ T̂ ) = ∅,

3. (M̂, T̂ ) e Db+f11(c,`) is a tm-pair of W that is safely c-dispersed in W and none of the vertices of
T̂ ∩Db+f11(c,`) is within face-distance less than c in W from some vertex of Cb+f11(c,`) ∪ Cf10(c,`),

4. M̂ ∩Df10(c,`) = ∅,

5. the compass of the central z-subwall of W is a subset of Df10(c,`), and

6. there is a Q-respecting contraction-mapping of diss(M,T ) to diss(M̂, T̂ ).

Moreover, it holds that f10(c, `) = O(c·(f6(`))3), f11(c, `) = O(c·(f6(`))2), and f12(c, z, `) = O(c·(f6(`))3+z).

See Figure 8 for an illustration of the conditions guaranteed by Theorem 17.

Proof. Let r = f6(`) + 1, s = odd(f9(c, r, 3` + r)), x′ = odd(f7(`) + 2 + s), y = max{s, d5/2 · f6(`)e},
x = odd((` + 1) · x′), and w = odd(2x + max{z, y4 − 1}). We will prove the theorem for f10(c, `) = x,

f11(`) = x′−s
2 , and f12(c, z, `) = w. Let G be a partially ∆-embedded graph, whose compass contains a

w-wall W with bd(∆) as perimeter. Let also C = [C1, . . . , Cx] be the first x layers of W and let [D1, . . . , Dx]
(resp. [D1, . . . , Dx]) be the sequences of the corresponding open (resp. closed) disks of ∆ bounded by the
cycles in C. From Proposition 12 there is a collection P = {P1, . . . , Py} of paths in W such that A = (C,P)
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Cp

Figure 8: A visualization of how a tm-pair (M,T ) is rearranged to a new tm-pair (M̂, T̂ ) as in Theorem 17.
The figure depicts in red the part of the tm-pair (M̂, T̂ ) that intersects the disk ∆. The cycles correspond
to the first f10(c, `) layers of W. The black vertices are the vertices in Q, while the circled vertices inside
the turquoise area are the “new” branch vertices of T̃ that are vertices of W. The “green clouds” are the
non-singleton images of the Q-respecting contraction-mapping of diss(M,T ) to diss(M̂, T̂ ). We stress that in
this picture, the way the model enters the turquoise area does not reflect the fact M̃ that is (s, I)-confined
in A′, as it is argued in the proof. We opted not to reflect this fact in the figure as we prioritized the
visualization of other, more important, aspects of the proof.

is an (x, y)-railed annulus of W where the outer cycle of C is the perimeter of W and such that the vertices
of the compass of the central z-subwall of W belong to Dx, and Property 5 follows.

Let M̆ be the union of all subdivision paths of (M,T ) that intersect ∆∩V (G) and let T̆ be the endpoints
of these paths. Moreover, we denote H̆ = diss(M̆, T̆ ) and observe that H̆ is a subgraph of H. Intuitively, H̆ is
the subgraph of H whose topological minor model (M̆, T̆ ) is the part of (M,T ) that intersects the closed disk
∆. As the ∆∩V (G)-intrusion of (M,T ) in G is at most `, the same bound applies to the ∆∩V (G)-intrusion
of (M̆, T̆ ) in G. This in turn implies that |T̆ ∩∆| ≤ ` and that |E(H̆)| ≤ `.

Since, x = (` + 1) · x′, there is a b ≤ ` · x′ + 1 ≤ x such that A := ann(C, b, b + x′ − 1) does not contain
any vertex of T. We define T out = T̆ \Db and T in = T̆ ∩Db+x′−1. Clearly, {T out, T in} is a partition of T̆ .

We set A′ = ([Cb, . . . , Cb+x′−1],P ∩ A). By applying Proposition 13 on s, H̆, g := `, the ∆-boundaried
graph G, the (x′, y)-railed annulus A′, the tm-pair (M̆, T̆ ), and the set I = [r], we have that G contains a
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topological minor model (M̃, T̆ ) of H̆ in G such that M̃ is (s, I)-confined in A′ and M̃\ann(A′) ⊆ M̆\ann(A′).
We enhance M̃ by adding to it all subdivision paths of (M,T ) that are not intersecting ∆. That way,
we have that (M̃, T ) is a topological minor model of H in G such that M̃ is (s, I)-confined in A′ and
M̃ \ ann(A′) ⊆M \ ann(A′).

Let p = b + x′−s
2 and q = b + x′+s

2 − 1 and notice that q ≤ x. We set A′ := ann(C, p, q) and we define
A′′ := ([Cp, . . . Cq],P ′) where P ′ = P ∩ A′. Let P ′ = {P ′1, . . . , P ′y}. Observe that, from the second property
of Proposition 13, the connected components of M̃ ∩A′ are some of the first r paths in P ′. This means that
there is a subset of indices {i1, . . . , ir′} ⊆ I such that M̃ ∩ A′ = P ′i1 ∪ · · · ∪ P

′
ir′
. Let Z = {zi1 , . . . , zir′} be

the set of endpoints of the paths P ′i1 , . . . , P
′
ir′

that are contained in Cp.

Let M̃ in = M̃ ∩ Dp, M̃
out = (M̃ \ Dp) \ E(Cp), and observe that M̃ = M̃ in ∪ M̃out and that Z =

V (M̃ in) ∩ V (M̃out). Moreover, all vertices of Z have degree one in both M̃ in and M̃out. Let H̃ in (resp.
H̃out) be the graph obtained from M̃ in (resp. M̃out) by dissolving all vertices except from those in T in ∪ Z
(resp. T out ∪ Z). Note that (M̃ in, T in ∪ Z) (resp. (M̃out, T out ∪ Z)) is a topological minor model of H̃ in

(resp. H̃out).
Notice that H̃ in has vertex set T in ∪Z and can be seen as a D-embedded graph, for some closed disk D,

on at most `+ r edges where bd(D) ∩H = Z and (zi1 , . . . , zir′ ) is the ordering of the vertices of Z as they
appear in Cp. Observe now that H̃ in can be seen as the contraction of another D-embedded graph Ĥ in with
detail at most 3`+ r that has maximum degree at most three. Moreover, we can assume that the vertices of
H̃ in that have degree at most three are also vertices of Ĥ in that are not affected by the contractions while
transforming Ĥout to H̃out. This implies that there is a Q-respecting contraction-mapping of H̃out to Ĥout.

Again, in the embedding of Ĥ in in D, (zi1 . . . , zir′ ) is the ordering of the vertices of Z as they appear in
bd(D).

Keep in mind that H̃+ := H̃out ∪ H̃ in is a minor of Ĥ+ := H̃out ∪ Ĥ in and that, if we dissolve in H̃+ all
the vertices in Z, we obtain H. Also let Ĥ be the graph obtained if we dissolve in Ĥ+ all the vertices in Z.

Clearly, Ĥ is a minor of H.
We now apply Lemma 16 for c, r, r′, 3`, the D-embedded graph Ĥ in, the set Z, and the (s, y)-railed annulus

A′′ of the Dp-disk embedded graph G ∩Dp and obtain a tm-pair (M̂ in, T̂ in) of G(A′′) that is a topological
minor model of Ĥ in and such that for each j ∈ [r′], the function σM̂ in,T̂ in maps vertex zij to itself. Notice
that G(A′′) is a subgraph of W ∩ ann(C, p, q). From the second property of Lemma 16, (M̂ in, T̂ in) is safely
c-dispersed in W ∩ ann(C, p, q). From the third property of Lemma 16, it follows that none of the vertices of
T̂ in \ {wi1 , . . . , wir′} is within face-distance less than c from some vertex of Cp ∪ Cq in W ∩ ann(C, p, q).

We now consider the graph M̂ = M̂ in ∪ M̃out. Property 3 follows by the conclusions of the previous
paragraph. Moreover, M̂ does not intersect Dq and, as q ≤ x, it neither intersects Dx, hence Property 4
holds. Notice also that M̃ \ ann(A′) ⊆M \ ann(A′) implies M̃ \Db ⊆M \Db. This along with the fact that
M̂ \Db = M̃ \Db, yield Property 1.

Observe that (M̂, T̂ in∪T out∪Z) is a topological minor model of Ĥ+, which in turn implies that (M̂, T̂ in∪
T out) is a topological minor model of Ĥ. We now set T̂ = T̂ in ∪T out. As there is a Q-respecting contraction-
mapping of H̃out to Ĥout, we also have that there is a Q-respecting contraction-mapping of H = diss(M,T )
to Ĥ = diss(M̂, T̂ ) and Property 6 holds. As T̂ in ⊆ int(ann(A′′) ⊆ Dp = Db+f11(`) and T out ⊆ G \Db, we
deduce that T̂ ∈ G \ ann(C, b, b+ f11(`)− 1), which together with the fact that ann(C, b, b+ x′− 1)) does not
contain any vertex of T, yield Property 2.
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Figure 9: A graph G and a regular flatness pair (W,R) of G.

To conclude the proof, let us provide upper bounds on the claimed functions. By definition, it holds that

f10(c, `) = O(` · (f7(`) + f9(c, f6(`) + 1, 3`+ f6(`) + 1))),
f11(c, `) = O(f7(`) + f9(c, f6(`) + 1, 3`+ f6(`) + 1)), and

f12(c, z, `) = O(` ·
(
f7(`) + f9(c, f6(`) + 1, 3`+ f6(`) + 1)

)
+

z + f6(`) + f9(c, f6(`) + 1, 3`+ f6(`) + 1)).

Since by Proposition 13 we have that f7(`) = O((f6(`))2), by Lemma 16 we have that f9(c, r, `) = O(cr(`+r)),
and by Remark 14 we may assume that ` = O(f6(`)), the above can be simplified to

f10(c, `) = O(` ·
(
(f6(`))2 + c · (f6(`))2))

= O(c · (f6(`))3),
f11(c, `) = O(c · (f6(`))2), and

f12(c, z, `) = O(` ·
(
(f6(`))2 + c · (f6(`))2)+ z)

= O(c · (f6(`))3 + z),

and the theorem follows.

5.3 Levelings and well-aligned flatness pairs
Let G be a graph and let (W,R) be a flatness pair of G. Let also R = (X,Y, P,C,Γ, σ, π), where (Γ, σ, π) is an
Ω-rendition of G[Y ] and Γ = (U,N) is a ∆-painting. The ground set of W in R is groundR(W ) := π(N(Γ))
and we refer to the vertices of this set as the ground vertices of the R-compass of W in G. Notice that
groundR(W ) may contain vertices of compassR(W ) that are not necessarily vertices of W.

In the flatness pairs of Figure 9 and Figure 4 the ground vertices are the vertices on the boundaries of
the green cells. (Notice also that the flatness pair in Figure 9 is regular, while the one in Figure 4 is not.)
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Figure 10: The leveling WR corresponding to the regular flatness pair (W,R) in Figure 9. The ground-
vertices of WR are the circled vertices while the flap-vertices are the rhombic vertices. The representation
RW of W in WR is obtained from WR after removing the black squared vertices. The ground vertices in
bd(∆) ∩WR = bd(∆) ∩WR are depicted in red.

Levelings. We define the R-leveling of W in G, denoted by WR, as the bipartite graph where one part is
the ground set of W in R, the other part is a set vflapsR(W ) = {vF | F ∈ flapsR(W )} containing one new
vertex vF for each flap F of W in R, and, given a pair (x, F ) ∈ groundR(W )× flapsR(W ), the set {x, vF } is
an edge of WR if and only if x ∈ ∂F. We call the vertices of groundR(W ) (resp. vflapsR(W )) ground-vertices
(resp. flap-vertices) of WR. Notice that the incidence graph of the plane hypergraph (N(Γ), {c̃ | c ∈ C(Γ)})
is isomorphic to WR via an isomorphism that extends π and, moreover, bijectively corresponds cells to
flap-vertices. This permits us to treat WR as a ∆-embedded graph where bd(∆) ∩WR is the set X ∩ Y. As
an example, see Figure 10 for the R-leveling corresponding to the flatness pair (W,R) in Figure 9.

The following observation is a consequence of the definition of leveling and condition (v) of the tightness
property of a rendition.
Observation 18. Let G be a graph, let (W,R) be a flatness pair of G, and let WR be the leveling of W in G.
For every vF ∈ vflapsR(W ) of degree r in WR, there exist r internally vertex-disjoint paths in WR from vF
to r distinct ground-vertices of WR that belong to the perimeter of W.

Well-aligned flatness pairs. We denote by W • the graph obtained from W if we subdivide once every
edge of W that is short in compassR(W ). The graph W • is a “slightly richer variant” of W that is necessary
for our definitions and proofs, namely to be able to associate every flap-vertex of an appropriate subgraph
of WR (that we will denote by RW ) with a non-empty path of W •, as we proceed to formalize. We say that
(W,R) is well-aligned if the following holds:

WR contains as a subgraph an r-wall RW where D(RW ) = D(WR) and W • is isomorphic to
some subdivision of RW via an isomorphism that maps each ground vertex to itself.

Suppose now that the flatness pair (W,R) is well-aligned. We call the wall RW in the above condition a
representation of W in WR. Note that, as RW is a subgraph of WR, it is bipartite as well. The above property
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gives us a way to represent a flat wall by a wall of its leveling in a way that ground vertices are not altered.
The following proposition, proved in [45], indicates that such a representation is yielded by regularity.

Proposition 19. Every regular flatness pair (W,R) of a graph G is well-aligned.

Notice that both WR and its subgraph RW can be seen as ∆-embedded graphs where bd(∆) ∩WR =
bd(∆) ∩ RW ⊆ V (D(WR)) = V (D(RW )). This establishes a bijection from the set of cycles of W to the
set of cycles of RW , which allows to reinterpret the homogeneity property of a regular flatness pair in terms
of its representation, as stated in the following observation. This translation will be used in the proof of
Theorem 23. Given the ∆-embedded graph RW , we define, for every brick B of RW , vflapsRW (B) as the
flap-vertices of the leveling WR that belong to the closed disk of the plane bounded by B disjoint from the
infinite face. (Recall Equation 3 for the definition of the augmented flap FA corresponding to a flap-vertex
vF of the leveling WR.)
Observation 20. If (A,W,R) is an (a, r, `)-apex-wall triple of a graph G and RW is the representation of W
in WR, then for any two internal bricks B,B′ of RW , it holds that

{`-folio(FA) | vF ∈ vflapsRW (B)} = {`-folio(FA) | vF ∈ vflapsRW (B′)}.

Note that, in the above equation, a flap F is notationally associated with both FA and vF .

5.4 Rerouting minors of small intrusion
Let W be a plane-embedded r-wall and c ≥ 1. We call a cycle C of W c-internal if V (C) and V (D(W )) are
within face-distance at least c. Given a 1-internal cycle C of W, we define its internal pegs (resp. external
pegs) as its vertices that are incident to edges of W that belong to the interior (resp. exterior) of C with
respect to the embedding of the wall (we see edges as open sets). Notice that each vertex of C is either an
internal or an external peg.
Observation 21. Let W be an r-wall and let C1 and C2 be four cycles of W within face-distance at least four
and such that C2 is a subset of the closed disk bounded by C1. Let y ∈ [3], let p1, . . . , py be internal pegs
of C1 and p̄1, . . . , p̄y be external pegs of C2, assuming that both these sets of vertices are ordered as they
appear in their corresponding cycles in counter-clockwise order. Then there are y pairwise vertex-disjoint
paths P̂1, . . . , P̂y such that, for i ∈ [y], P̂i joins pi with p̄i, V (P̂i)∩V (C1) = {pi}, and V (P̂i)∩V (C2) = {p̄i}.

Given a 1-internal brick B of W, one can see the union of all bricks of W that have a common vertex
with B, as a subdivision of the graph in the left part of Figure 11. We call this subgraph X of W the
brick-neighborhood of B in W. The perimeter of a brick-neighborhood is defined in the obvious way.

The next lemma is based on Observation 18.

Lemma 22. Let (W,R) be a well-aligned flatness pair of a graph G and let RW be its representation in the
leveling WR of W. For every 2-internal brick B of RW and every flap vertex vF ∈ vflapsR(B), RW contains
|∂F | internally vertex-disjoint paths from vF to the external pegs of the perimeter of the brick-neighborhood of
B in RW . Moreover, these paths belong to the closed disk bounded by the perimeter of the brick-neighborhood
of B in RW .

Proof. Let r = |∂F |, X be the brick-neighborhood of B in RW , and P be the perimeter of X in RW . We
call frontier-path of X a subpath of P that joins two external pegs and does not contain any other external
peg. Notice that P is the union of the frontier-paths of X and that there are exactly 12 such paths. Notice
that for every frontier-path Q of X there is a path Q̂ of X such that

• its endpoints are in P but not in Q,
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FB

Figure 11: On the left: the base graph for the definition of a brick-neighborhood – the external pegs of the
perimeter of X are the black round vertices. On the right we depict a 2-internal brick B of an r-wall W,
r ≥ 6, contained as a subgraph in a plane graph G along with three internally vertex-disjoint paths from a
vertex F of G to the external pegs of the perimeter of the brick-neighborhood of B.

• it does not contain any internal vertex in P, and

• every path in WR from vF to a vertex of Q intersects some vertex of Q̂.

See Figure 12 for two indicative examples of the above correspondence.

B B

Q

Q̂

Q̂Q

Figure 12: Two indicative examples for the choice of Q̂ (in blue), depending on the choice of Q (in green).

From Observation 18, there are r internally vertex-disjoint paths P1, . . . , Pr in WR starting from vF and
finishing in vertices v1, . . . , vr of P. Moreover, we can assume that (P1 ∪ · · · ∪ Pr) ∩ P = {v1, . . . , vr}. The
lemma is trivial in case r < 3 as the paths P1, . . . , Pr can easily be extended so to finish in external pegs of P.
Moreover, the lemma also follows easily if r = 3 and v1, v2, v3 do not all belong to some of the frontier-paths
of X. It remains to examine the case where v1, v2, v3 are vertices of some frontier-path Q of X. Let Q̂ be as
defined above and let q̂ be one of its endpoints. Let zQ be the first vertex of P1 ∪ P2 ∪ P3 that is met while
following Q̂ starting from q̂ and moving towards its other endpoint. The vertex zQ exists because of the
definition of Q̂. W.l.o.g., we assume that zQ is an internal vertex of P1. We now define P ′1 by first removing
from P1 all vertices of its subpath from zQ to vi, except zQ and then taking the union of the resulting path
with the subpath of Q̂ between q̂ and zQ. It is now easy to see that P1 can be extended to some external
peg that is different from the endpoints of P2 and P3, while P2 and P3 can be extended towards the external
pegs that are endpoints of Q̂. This completes the proof of the lemma.

Irrelevant vertices in boundaried graphs. Let G be a graph, H be a minor of G, and S ⊆ V (G). We
define the S-minor-intrusion of H in G as the minimum S-intrusion in G over all tm-pairs (M,T ) of G such
that (M,T ) is a topological minor model in G where diss(M,T ) ∈ ext(H).

Let Z = (Z,B, ρ) be a t-boundaried graph and let ` ∈ N. We say that a vertex set S ⊆ V (Z) \ B is
`-irrelevant if for every boundaried graph K = (K,B, ρ) that is compatible with Z, every minor of K ⊕ Z
with (V (Z) \ B)-minor-intrusion at most `, is also a minor of K ⊕ (Z \ S,B, ρ). Informally, an `-irrelevant
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set of vertices can be removed without affecting the occurrences of any minor of minor-intrusion at most `,
where the intrusion is defined without taking into account the terminal vertices in the boundary.

Using Theorem 17, we can finally prove the main result of this section.

Theorem 23. There exist two functions f13 : N3 → N and f14 : N2 → N such that, for every a, z, ` ∈ N
and every boundaried graph Z = (Z,B, ρ), if (A,W,R) is an (a, f13(a, z, `), f14(a, `))-apex-wall triple of Z
that is not affected by B, then the vertex set of the compass of every W ′-tilt of (W,R), where W ′ is the
central z-subwall of W, is `-irrelevant. Moreover, it holds that f13(a, z, `) = O((f6(16a + 12`))3 + z) and
f14(a, `) = a+ 3 + `.

Proof. Let ˜̀ = 16a + 12`, ˆ̀ = a + 3 + `, r = f12(6, z, ˜̀), and r̃ = f10(6, ˜̀). We prove the theorem for
f13(a, z, `) = r and f14(a, `) = ˆ̀. Note that, by Theorem 17, f13(a, z, `) = O((f6(˜̀))3 + z). Let Z = (Z,B, ρ)
and let (A,W,R) be an (a, r, ˆ̀)-apex-wall triple of the graph Z that is not affected by B. Let W ′ be the
central z-subwall of W, and let (W̃ ′, R̃′) be a flatness pair of Z \A that is a W ′-tilt of (W,R). Our objective
is to prove that V (compassR̃′(W̃ ′)) is `-irrelevant.

Let K = (K,B, ρ) be a boundaried graph compatible with Z. As (A,W,R) is not affected by B, we
have that (A,W,R) is an (a, r, ˆ̀)-apex-wall triple of the graph G := K⊕ Z as well. Let now H be a minor
of G whose (V (Z) \ B)-minor-intrusion in G is at most `. Let also (M,T ) be a tm-pair in G that is a
topological minor model of a graph H ′ ∈ ext(H), such that |T \ V (K)| = |T ∩ (V (Z) \ B)| ≤ ` and with
at most ` subdivision paths intersecting V (Z) \ B. Our purpose is to find a tm-pair (M,T ) of G where
V (compassR̃′(W̃ ′)) ∩ V (M) = ∅ and such that H ′ = diss(M,T ) is a minor of diss(M,T ), which in turn
implies that H is a minor of G \ V (compassR̃′(W̃ ′)) = K⊕ (Z \ V (compassR̃′(W̃ ′)), B, ρ), as required.

Z

flap

∂F

B F

K

A

wall W

subwall W ′

= frontier of W

Figure 13: An illustration of the graph G = K ⊕ Z and a tm-model (M,T ) in it. The apex set A is cyan.
We also draw a single flap F and its magnification.

We proceed with the definition of a series of auxiliary graphs that will permit to work on a partially
planarized version of G. Suppose that R = (X,Y, P,C,Γ, σ, π). We first define the graph Gout as the graph
obtained from G if we remove all the vertices of compassR(W ), except from those in X ∩ Y. We then
define G̃ := Gout ∪WR where WR is the leveling of W. Since (W,R) is regular, it is also well-aligned by
Proposition 19, hence WR contains a representation RW of W, which is a subgraph of WR that is isomorphic
to some subdivision of W • via an isomorphism that maps each ground vertex to itself (recall that W • is

31



the graph obtained from W if we subdivide once every short edge in W ). Notice that G̃ is a partially
∆-embedded graph whose compass is WR that, in turn, is the compass in G̃ of the d-wall RW . Recall that
each flap F of W corresponds to a flap-vertex vF of WR.

We enhance (M,T ) by defining another tm-pair (MA, TA), where MA = (V (M) ∪ A,E(M)) and TA =
T ∪ A, i.e., (MA, TA) is obtained from (M,T ) by including all the apices in A. We set HA = diss(MA, TA)
and observe that H is a (topological) minor of HA. We set Tin = A ∪ (TA ∩ compassR(W )) and Tout =
A∪ (TA \ (compassR(W )\ (X ∩Y ))). As (A,W,R) is not affected by B, it follows that Tin∩ compassR(W ) ⊆
T \ (V (K) ∪B), hence |Tin ∩ compassR(W )| ≤ `.

We call a vertex v ∈ compassR(W ) an apex-jump vertex if there exists an edge {v, w} of MA with w ∈ A.
Notice that there are at most a+` apex-jump vertices. We define a set of (MA, TA)-dirty flaps of the flatness
pair (W,R) by applying the following definition: first we declare as (MA, TA)-dirty every flap F such that
V (F )\∂F contains an apex-jump vertex or a vertex in Tin. Second, for every apex-jump vertex v ∈ ground(W )
that is not in the boundary of some (MA, TA)-dirty flap, we arbitrarily pick a flap F with v ∈ ∂F and we
declare it (MA, TA)-dirty. Observe that (W,R) has at most a+ `+ |Tin ∩ compassR(W )| ≤ a+ 2` (MA, TA)-
dirty flaps.

Branch vertices of (MA, TA)

Subdivision vertices of (MA, TA)

Branch flap-vertices of M̃in

Subdivision flap-vertices of M̃in

Branch ground-vertices of M̃in

Subdivision ground-vertices of M̃in

Figure 14: An example of how part of the model (MA, TA) (in red edges) traverses the flaps of W along
with the model (M̃in, T̃in) of W̃ (i.e., the leveling of (MA, TA)). The dashed red edges are edges pointing to
apices. The orange flaps are the (MA, TA)-dirty flaps. The black vertices are the ground vertices that do
not belong to M.

We define M̃in as the subgraph of the leveling WR induced by the vertices in ground(W ) ∩ V (MA) and
all the flap-vertices vF of WR such that F is either (MA, TA)-dirty or contains an edge of M (in Figure 14,
these latter flaps are turquoise). Note that the induced edges may increase the degree of some, say w, of
the degree-2 ground vertices in V (MA) \ TA because of some edge e = {vF , w} between a flap-vertex vF of
WR and w; we then remove from M̃in all such edges (in Figure 14, these edges are the black dotted edges).
Actually this last modification could be avoided, however it facilitates the presentation of the last part of
the proof.

Notice that if a flap F is not (MA, TA)-dirty and contains an edge e of M, then this edge should belong
to a subpath P of a subdivision path of M such that the endpoints of P are two of the vertices of ∂F. We
call such flap-vertices of M̃in subdivision flap-vertices of M̃in. If a flap-vertex of M̃in is not a subdivision
flap-vertex, then we call it branch flap-vertex of M̃in. We denote by Q the set of all the branch flap-vertices of
M̃in, and as each branch flap-vertex corresponds to a (MA, TA)-dirty flap, we have that |Q| ≤ a+ 2`. Notice
that all vertices of Q have degree at most three in WR (and therefore in M̃in as well).
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The ground-vertices of M̃in that are apex-jump vertices or belong to Tin \ A are called branch ground-
vertices of M̃in, while the rest of the ground vertices of M̃in are called subdivision ground-vertices of M̃in.

Notice that there are at most a+ 2` branch ground-vertices in M̃in. Let Mout = MA ∩ Gout and M̃ =
Mout ∪ M̃in. We define T̃in as the union of the set of branch ground-vertices of M̃in and the set Q of the
branch flap-vertices of M̃in. Observe that |T̃in| ≤ 2a+ 4`. Moreover, we set Tout = TA ∩ V (Mout) and
T̃ = Tout ∪ T̃in.

Notice that (M̃, T̃ ) is a tm-pair of G̃; we refer to it as the leveling of the tm-pair (MA, TA) of G with
respect to (A,W,R). Clearly, M̃ is a partially ∆-embedded graph whose compass is M̃in, i.e., M̃in = ∆∩ M̃.

Also, as |T̃in| ≤ 2a+ 4`, the ∆ ∩ V (G)-intrusion of (M̃, T̃ ) in G̃ can be bounded, using the fact that M̃in is
a subgraph of the planar graph G̃in, by 3(2a+ 4`) = ˜̀.

Let us now give some intuition on the definition of (M̃, T̃ ). We see G̃ and its tm-pair (M̃, T̃ ) as a
“projection” of the graph G and its tm-pair (M,T ), respectively, in what concerns the leveling WR of W.
This projection is loosing some of the information of (M̃, T̃ ), however it will be valuable as now both G̃ and
M̃ are partially ∆-embedded graphs. The lost information is encoded, for every branch flap-vertex vF in
Q, by `-folio(FA). Recall that FA := (G[A ∪ F ], A ∪ ∂F, ρA ∪ ρF ). In what follows, we will use Theorem 17
in order to draw in G̃ a modification (M̂, T̂ ) of (M̃, T̃ ) so that (M̂, T̂ ) does not go “too deeply” in the
representation RW of W in WR, and the parts of (M̂, T̂ ) that are different from (M̃, T̃ ) are routed through
RW in a “dispersed enough” way. Moreover, again from Theorem 17, (M̃, T̃ ) can be seen as a contraction of
(M̂, T̂ ) that does not identify any of the vertices of Q. Maintaining the vertices in Q intact, while performing
contractions in (M̂, T̂ ), is important as we need to keep the information given by ˆ̀-folio(FA) for each branch
flap-vertex vF ∈ Q.

For each branch flap-vertex vF of Q we define MF = (G[A ∪ V (F )] ∩MA, A ∪ ∂F, ρA ∪ ρF ), where the
functions ρA and ρF are defined as explained in the beginning of Subsection 4.5, and TF = A∪∂F ∪(TA∩F ).
Notice that (MF , TF ) is a btm-pair of FA such that diss(MF , TF ) ∈ ˆ̀-folio(FA), given that ˆ̀ = a + 3 + `.

This means that if vF̄ is another flap-vertex of WR with ˆ̀-folio(FA) = ˆ̀-folio(F̄A), then there is a btm-pair
(MF̄ , TF̄ ) of F̄A such that diss(MF , TF ) = diss(MF̄ , TF̄ ).

Recall that G̃ is a partially ∆-embedded graph whose compass is G̃∩∆ = WR and that M̃ can be seen as
a partially ∆-embedded graph whose compass is M̃ ∩∆. Recall also that the ∆ ∩ V (G)-intrusion of (M̃, T̃ )
in G̃ is at most ˜̀.

Let C1, . . . , Cr̃ be the first r̃ layers of RW and let [D1, . . . , Dr̃] (resp. [D1, . . . , Dr̃]) be the sequences
of the corresponding open (resp. closed) disks. We can now apply Theorem 17 with input 6, ˜̀, z, G̃, the
r-wall RW , the tm-pair (M̃, T̃ ) of G̃, and the set Q of branch flap-vertices defined above. Let d = f11(6, ˜̀).
Theorem 17 guarantees the existence of a tm-pair (M̂, T̂ ) of G̃ and a b ∈ [r̃] such that

1. M̂ \Db is a subgraph of M̃ \Db,

2. ann(Cb,b+d−1) ∩ (T̃ ∪ T̂ ) = ∅,

3. (M̂, T̂ )eDb+d is a tm-pair of RW that is safely 6-dispersed in RW and none of the vertices of T̂ ∩Db+d
is within face-distance less than six in RW from some vertex of Cb+d ∪ Cr̃,

4. M̂ ∩Dr̃ = ∅,

5. the compass of the central z-subwall of W is a subset of Dr̃, and

6. there is a Q-respecting contraction-mapping φ of diss(M̃, T̃ ) to diss(M̂, T̂ ).
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Our next step is to modify the tm-pair (M̂, T̂ ) to obtain another tm-pair (M̂+, T̂+) so that, in addition
to Property 1 and Property 4 above (where M̂ is replaced by M̂+), (M̂+, T̂+) satisfies the following stronger
version of Property 6:

6+. there is a Q-respecting contraction-mapping φ+ of diss(M̃, T̃ ) to diss(M̂+, T̂+) such that for every
branch flap-vertex vF ∈ Q, if φ+(vF ) = {vF̂ }, then ˆ̀-folio(FA) = ˆ̀-folio(F̂A).

To force Property 6+, we will make strong use of the fact that the flatness pair (W,R) is ˆ̀-homogeneous
with respect to (G,A). This will permit us to modify the subdivision paths of (M̂, T̂ ) by pointing to images
of flaps in Q that have been displaced after the application of Theorem 17.

We proceed as follows: let vF ∈ Q be some flap-vertex, and let φ(vF ) = {w} be its image given by
the function φ guaranteed by Property 6. From Property 2, w cannot belong to ann(Cb,b+d−1). Also, from
Property 4, w cannot belong to Dr̃. If w ∈ ann(C1,b), it follows from Property 1 that w = vF and in this case
Property 6+ already holds trivially. The only remaining case is when w ∈ ann(Cb+d,r̃). In this case, from
Property 3, w is a vertex of RW ∩ ann(Cb+d,r̃) that is within face-distance at least six from both Cb+d and
Cr̃.

w

p3

p2
p2

p1

p3

p1

vF̂

Figure 15: Some part of RW ∩ ann(Cb+d,r̃) around a vertex w of T̂ . The interior of the brick R̂ is depicted
in yellow. The cycle Cw is depicted in blue.

Let R and R̂ be bricks of RW such that vF ∈ vflapsRW (R) and w ∈ vflapsRW (R̂), respectively. Certainly,
both R and R̂ are internal bricks of RW . Moreover, w is a vertex of the cycle R̂ (bounding the disk depicted
in bright yellow in Figure 15). By Observation 20, there exists a vertex vF̂ in R̂ such that ˆ̀-folio(FA) =
ˆ̀-folio(F̂A). Let y be the degree of w in M̂ (which equals the degree of vF in M̃) and let P1, . . . , Py be the
subdivided paths of the model (M̂, T̂ ) that have w as an endpoint, depicted as fat green lines in Figure 15.
Note than y ≤ 3.

Let Cw be the cycle of RW induced by the vertices that are within face-distance exactly six from w (in
Figure 15, this cycle is depicted with thick blue edges). From Property 3, Cw is within face-distance at least
(2 · 6 + 1) − 6 = 7 from any other vertex in T̂ ∩Db+d in RW . For i ∈ [y], we define P ′i as the unique path,
among the paths obtained from Pi by the removal the open disk bounded by Cw, that has only one endpoint
in the cycle Cw. For i ∈ [y], we denote by pi the endpoint of P ′i that is not an endpoint of Pi (depicted in
purple in Figure 15). Notice that p1, . . . , py are internal pegs of C ordered as they appear in the perimeter
in counter-clockwise order.

34



Consider now the brick-neighborhood, say X, of R̂. Notice that the face-distance between the perimeter
of X and Cw is at least four. From Lemma 22, there are y internally vertex-disjoint paths P̄1, . . . , P̄y from
vF̂ to the external pegs of the perimeter CX of X (depicted in red lines in Figure 15). Let these pegs
be p̄1, . . . , p̄y ordered as they appear in the perimeter in counter-clockwise order. We are now in position
to apply Observation 21 to Cw, CX , p1, . . . , py, and p̄1, . . . , p̄y and find y pairwise vertex-disjoint paths
P̂1, . . . , P̂y each joining pi with p̄i (depicted in orange lines in Figure 15). We now remove from M̂ the open
disk bounded by Cw and we add the graph P̄1 ∪ · · · ∪ P̄y ∪ P̂1 ∪ · · · ∪ P̂y. We also modify T̂ by substituting w
by vF̂ . By repeating this procedure for every flap-vertex of Q, and defining (M̂+, T̂+) as the updated tm-pair
obtained when this algorithm terminates, we enforce Property 6+. Namely the function φ+ is defined from
modifying φ so that, whenever φ(vF ) 6= {vF }, we set φ+(vF ) = {vF̂ } as above. Note that (M̂+, T̂+) indeed
satisfies, besides Property 6+, Properties 1 and 4.

Our next (and last) step is to further modify the tm-pair (M̂+, T̂+) of G̃ so to obtain a tm-pair (M,T )
of the original graph G so that diss(M,T ) is a minor of diss(M,T ). Notice that each edge of M̂+ that is an
edge of RW (resp. WR) has one endpoint that is a ground-vertex of RW (resp. WR) and another one that
is a flap-vertex of RW (resp. WR).

Let vF̂ be a flap-vertex of M̂+. We modify (T̂+, M̂+) by distinguishing the following cases:

• vF̂ 6∈ T̂+. Then the neighbors of vF̂ in RW are two ground-vertices g and g′. From tightness property (ii)
of a rendition, there is a path PF̂ in F̂ with g and g′ as endpoints. We substitute the edges {g, F̂} and
{F̂ , g′} of RW with PF̂ . Notice that PF̂ is a path of compassR(W ).

• vF̂ ∈ T̂+ and vF̂ ∈ φ+(x) for some x 6∈ Q. In this case, from tightness property (iii) of a rendition, F̂
has y ∈ [3] neighbors v1, . . . , vy, and a vertex zF̂ that is connected to v1, . . . , vy via y internally vertex-
disjoint paths. We substitute the edges {zF̂ , v1}, . . . , {zF̂ , vy} and the vertex zF̂ of RW with the union
of these y internally vertex-disjoint paths. Notice that these paths are also paths of compassR(W ). We
also update T̂+ := T̂+ \ {vF̂ } ∪ {zF̂ } and we call the vertex zF̂ replacement of vF̂ .

• vF̂ ∈ T̂+ and {vF̂ } = φ+(vF ) for some vF ∈ Q. Let MF = (F ∩M,∂F, ρA ∪ ρF ) and let TF = T ∩ F.
From Property 6+, ˆ̀-folio(F̂A) = ˆ̀-folio(FA), which implies that there is a btm-pair (MF̂ , TF̂ ) of
F̂A such that diss(MF̂ , TF̂ ) = diss(MF , TF ). We denote by MF̂ the underlying graph of MF̂ and
we substitute the vertex vF̂ and its incident edges in WR with the graph MF̂ (that is a subgraph
of compassR(W )), by identifying the boundary vertices according to the functions ρA ∪ ρF . We also
update T̂+ := T̂+ \ {vF̂ } ∪ TF̂ .

The above operations create a tm-pair of G that we denote henceforth by (M,T ). Since (M,T ) satisfies
Property 4 and r̃ ≥ z, M ∩

⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR(W ′) = ∅, and therefore (M,T ) is a tm-pair of G\V (compassR(W̃ ′)).

It is worth mentioning that Property 1 implies the strong property that, throughout the rerouting procedure,
the part of the topological minor model outside of the R-compass of W in G\A can only be reduced; formally,
M ∩X ⊆M ∩X (see Remark 24 after the end of this proof).

As H is a minor of H ′ = diss(M,T ), hence a minor of diss(MA, TA) as well, and G \V (compassR(W̃ ′)) =
K⊕ (Z \V (compassR(W̃ ′)), B, ρ), it remains to verify that diss(M,T ) contains diss(MA, TA) as a minor. For
this, consider every x ∈ T̃ \Q and construct the set Tx by taking Tx := φ+(x) and substituting each branch
flap-vertex vF̂ ∈ Tx with its replacement zF̂ defined as in the second case of the above case analysis. Notice
that each set Tx is a subset of T . We now construct (M?, T ?) as follows: M̃? is obtained by contracting,
for each x ∈ T̃ \Q, all subdivision paths in M that have as endpoints two vertices in Tx to a single vertex,
which we again call x. This operation identifies, for each x ∈ T̃ \ Q, all vertices of Tx into x, thus we set
T ? = (T \ (

⋃
x∈T̃\Q Tx)) ∪ (T̃ \Q). That way (M?, T ?) can be seen as the tm-pair (M̃, T̃ ) where each of its

branch flap-vertices has been substituted as in the third case of the above case analysis. This permits us to
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(MA, TA) (M̃, T̃ )

(M ∗, T ∗)

(M̂, T̂ )(M,T )

≈
(M,T )

Figure 16: The tm-pairs considered in the proof of Theorem 23. The cyan-shadowed pairs are tm-pairs of G
and the pink-shadowed pairs are tm-pairs of G̃.

verify that diss(MA, TA) and diss(M?, T ?) are isomorphic (see Figure 16 for the relation between the models
that we have defined). As diss(M?, T ?) is a minor of diss(M,T ), the theorem follows.

Remark 24. In the above proof, the rerouted topological minor model (M,T ) obtained from the original
model (M,T ) satisfies the following property: the part of the topological minor model outside of the R-
compass of W in G \ A can only be reduced with respect to the original one; formally, M ∩ X ⊆ M ∩ X,
where X is the “external” set corresponding to the separation of the considered apex-wall triple (A,W,R).

By definition of the set R(t)
h , its elements are of minimum size, and therefore a boundaried graph G =

(G,B, ρ) ∈ R(t)
h does not contain any 3h-irrelevant vertex. To see this, recall that in Equation 2 the

equivalence is defined in terms of graphs H with detail at most h (i.e., with at most h vertices and at
most h edges), and that by Observation 3 every graph in ext(H) has detail at most 3h. On the other hand,
Observation 7 implies that, in the setting of Theorem 23, there is a vertex belonging to the compass of every
W ′-tilt of (W,R), where W ′ is the central z-subwall of W. Thus, from Theorem 23 for the particular case
z = 3 and ` = 3h, B should affect every (a, f13(a, 3, 3h), f14(a, 3h))-apex-wall triple of G, for every value of
a. As |B| = t, we conclude the following.

Corollary 25. If t, h, a ∈ N and G = (G,B, ρ) is a boundaried graph in R(t)
h , then B affects every

(a, f13(a, 3, 3h), f14(a, 3h))-apex-wall triple of G, in particular, pa,f13(a,3,3h),f14(a,3h)(G) ≤ t.

6 Bounding the size of the representatives
In this section we use the results obtained in the previous sections to prove that every representative in R(t)

h

has size linear in t. For this, we first prove in Subsection 6.1 that every representative in R(t)
h has a set of

Oh(t) vertices containing its boundary whose removal leaves a graph with treewidth bounded by a constant
depending only on the collection F ; such a set is called a treewidth modulator.

Once we have the treewidth modulator, we can use known results from the protrusion machinery to
achieve our goal. Namely, in Subsection 6.2 we show how to obtain a linear protrusion decomposition of a
representative, and we reduce each of the linearly many protrusions in the decomposition to an equivalent
protrusion of constant size. Once we have this, a dynamic programming algorithm similar to that of [6]
yields Theorem 33.

6.1 Finding a treewidth modulator of linear size
Given a graph G and a set S ⊆ V (G), we say that a separation (L,R) of G is a 2/3-balanced separation of S
in G if |(L \R) ∩ S|, |(R \ L) ∩ S| ≤ 2

3 |S|. We need the following well-known property of graphs of bounded
treewidth (see e.g. [9, 14]).
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Lemma 26. Let G be a graph and let S ⊆ V (G). There is a 2/3-balanced separation (L,R) of S in G of
order at most tw(G) + 1.

Using Lemma 10, Lemma 11, Corollary 25, and Lemma 26 we prove the following result, whose proof
uses Akra-Bazzi Theorem [3], in particular its extended provided by Leighton [35]. We stress that p is not
a bidimensional parameter in the precise way that is defined in [17, 18, 21], therefore Lemma 27 cannot be
derived by directly applying the results of [21].

Lemma 27. There exist two functions f15, f16 : N2 → N such that if t, q, h ∈ N and G =
(G,B, ρ) is a Kq-minor-free boundaried graph in R(t)

h , then G contains an f15(q, h)-treewidth mod-
ulator that contains B and has at most f16(q, h) · t vertices. Moreover, it holds that f15(q, h) =
O((f5(q, f13(f3(q), 3, 3h), f14(f3(q), 3h)))2).

Proof. Let q, h ∈ N. We use q as a shortcut for the triple (f3(q), f13(f3(q), 3, 3h), f14(f3(q), 3h)) and we set
s = f5(q, f13(f3(q), 3, 3h), f14(f3(q), 3h)). Let t0 = max{min{t′ | s ·

√
t′ + s + 1 ≤ t′/ log2 t′}, 42534179953}

and let x = s ·
√
t0 + s. We define the function z : N→ N where

z(t) = min{z | ∀G ∀B ⊆ V (G) if G is Kq-minor-free, |B| ≤ t, and B affects every q-apex-wall triple of G,
then ∃Z ⊆ V (G) : |Z| ≤ z,B ⊆ Z, tw(G \ Z) ≤ x}.

Let G be a Kq-minor-free graph and let B ⊆ V (G) such |B| ≤ t and B affects every q-apex-wall triple of G.
From Lemma 10, tw(G) ≤ s ·max{1,

√
|B|} ≤ s ·max{1,

√
t} ≤ s ·

√
t + s. From Lemma 26, G has a 2/3-

balanced separator (L,R) of B where |L∩R| ≤ s·
√
t+s+1. This means that |(L\R)∩B|, |(R\L)∩B| ≤ 2

3 |B|.
We set GL = G[L], GR = G[R], BL = L ∩ (R ∪B) ⊆ V (GL), and BR = R ∩ (L ∪B) ⊆ V (GR) and observe
that B ⊆ BL ∪BR and that both GL and GR are Kq-minor-free. Notice that BL =

(
(L \R)∩B

)
∪ (L∩R)

and BR =
(
(R \ L) ∩B

)
∪ (R ∩ L), therefore there is some α ∈ [ 1

2 ,
2
3 ], such that |BL| ≤ α · t+ s ·

√
t+ s+ 1

and |BR| ≤ (1 − α) · t + s ·
√
t + s + 1. From Lemma 11, BL affects every q-apex-wall triple of GL and

BR affects every q-apex-wall triple of GR. This means that there exists some ZL ⊆ V (GL) such that
|ZL| ≤ z(α · t+ s ·

√
t+ s+ 1), BL ⊆ ZL, and tw(GL \ ZL) ≤ x. Also, there exists some ZR ⊆ V (GR) such

that |ZR| ≤ z((1−α) · t+ s ·
√
t+ s+ 1), BR ⊆ ZR, and tw(GR \ZR) ≤ x. We set Z = ZL ∪ZR and observe

that |Z| ≤ z(α · t+ s ·
√
t+ s+ 1) + z((1− α) · t+ s ·

√
t+ s+ 1). Moreover, B ⊆ BL ∪BR ⊆ ZL ∪ ZR = Z

and, since L ∩R ⊆ Z, it holds that tw(G \ Z) ≤ x. We obtain that

z(t) ≤ z(α · t+ s ·
√
t+ s+ 1) + z((1− α) · t+ s ·

√
t+ s+ 1). (4)

Let now f : N≥1 → N be the solution of the following recurrence:

f(t) =
{
f
(
t
3 + s ·

√
t+ s+ 1

)
+ f

( 2t
3 + s ·

√
t+ s+ 1

)
if t > t0

t0 if 1 ≤ t ≤ t0
By the choice of t0, it holds that t0 = Θs(1). Also, the choice of t0 is made so that the conditions for

applying the extended version of Akra-Bazzi Theorem [3] provided by Leighton [35] are satisfied6. Conse-
quently, the solution of the above recurrence is f(t) = Θs(tα) where α is the unique solution of the equation
(1/3)α + (2/3)α = 1. Therefore f(t) = Θs(t).

Note that, if 1 ≤ t ≤ t0, then from Lemma 10 we have that z(t) ≤ t ≤ t0 = f(t). On the other hand,
by convexity, the right part of (4) is upper-bounded by f(t), so for all t > t0 we have that z(t) ≤ f(t).
Summarizing, we have that z(t) ≤ f(t) for all t ≥ 1.

Let now G = (G,B, ρ) be a Kq-minor-free boundaried graph in R(t)
h . Applying Corollary 25 with a =

f3(q), we obtain that B affects every q-apex-wall triple of G. Therefore G contains a x-treewidth modulator
6We verified these conditions using an elementary MATLAB program, from which the number 42534179953 was generated.
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that contains B and has z(t) ≤ f(t) = Os(t) vertices, as required. Therefore, z(t) ≤ f16(q, h) · t for some
function f16 : N2 → N. Observe that t0 = O(s2), therefore x = O(s2) as well. The lemma follows with
f15(q, h) := x = O(s2).

Note that the above proof does not give any estimation on the function f16(q, h). In the Appendix
(Subsection B.1) we provide an improved version of Lemma 27, namely Lemma 34, with f16(q, h) = 2. This
will permit us to make a better estimation of the contribution of h in the running time of our algorithm
(cf. Subsection B.2). The proof of Lemma 34 is an adaptation to our setting of the one of [21, Lemma 3.6].

6.2 Finding a linear protrusion decomposition and reducing protrusions
Equipped with Lemma 34, the next step is to construct an appropriate protrusion decomposition of a
representative. We first need to define protrusions and protrusion decompositions of graphs and boundaried
graphs.

Protrusion decompositions of unboundaried graphs. Given a graph G, a set X ⊆ V (G) is a β-
protrusion of G if |∂(X)| ≤ β and tw(G[X]) ≤ β − 1. Given α, t ∈ N, an (α, β)-protrusion decomposition of
G is a sequence P = 〈R0, R1, . . . , R`〉 of pairwise disjoint subsets of V (G) such that

•
⋃
i∈[`] = V (G),

• max{`, |R0|} ≤ α,

• for i ∈ [`], N [Ri] is a β-protrusion of G, and

• for i ∈ [`], N(Ri) ⊆ R0.

We call the sets N [Ri] i ∈ [`], the protrusions of P and the set R0 the core of P.
The above notions can be naturally generalized to boundaried graphs, just by requiring that both bound-

aries –of the host graph and of the protrusion– behave as one should expect, namely that the intersection of
the protrusion with the boundary of the considered graph is a subset of the boundary of the protrusion.

Protrusions and protrusion decompositions of boundaried graphs. Given a boundaried graph
G = (G,B, ρ), a tree decomposition of G is any tree decomposition of G with a bag containing B. The
treewidth of a boundaried graph G, denoted by tw(G), is the minimum width of a tree decomposition of G.

A boundaried graph G′ = (G′, B′, ρ′) is a β-protrusion of G if

• V (G′) is a β-protrusion of G,

• tw(G′) ≤ β − 1,

• ∂(V (G′)) ⊆ B′, and

• B ∩ V (G′) ⊆ B′.

Given a boundaried graph G = (G,B, ρ) and α, t ∈ N, an (α, β)-protrusion decomposition of G is a
sequence P = 〈R0, R1, . . . , R`〉 of pairwise disjoint subsets of V (G) such that

•
⋃
i∈[`] = V (G),

• max{`, |R0|} ≤ α,

• B ⊆ R0,
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• for i ∈ [`], (G(N [Ri]), ∂(N [Ri]), ρ|∂(N [Ri])) is a β-protrusion of G, and

• for i ∈ [`], N(Ri) ⊆ R0.

As in the unboundaried case, we call the sets N [Ri] i ∈ [`], the protrusions of P and the set R0 the core of
P.

The following theorem is a reformulation using our notation of one of the main results of Kim et al. [32],
which is stronger than what we need, in the sense that also applies to topological-minor-graphs. It is worth
mentioning that, for H-minor-free-graphs, an appropriate protrusion decomposition can also be found using
the results in [21, Lemma 3.10].

Theorem 28. Let c, β, t be positive integers, let H be a q-vertex graph, and let G be an n-vertex H-topological-
minor-free graph. If we are given a set M ⊆ V (G) with |M | ≤ c · t such that tw(G −M) ≤ β, then we can
compute in time O(n) an ((αH · β · c) · t, 2β + q)-protrusion decomposition P of G with M contained in the
core of P, where αH is a constant depending only on H such that αH ≤ 40q225q log q.

Having stated the above definitions, the following lemma is an easy consequence of Lemma 34 and
Theorem 28.

Lemma 29. There exists a function f17 : N2 → N such that if t, q, h ∈ N and G = (G,B, ρ) is a Kq-minor-
free boundaried graph in R(t)

h , then G admits a (f17(q, h) · t, f17(q, h))-protrusion decomposition. Moreover,
it holds that f17(q, h) = f15(q, h) · f16(q, h) · 2O(q log q).

Proof. By Lemma 34, G contains an f21(q, h)-treewidth modulator M that contains B and has at most
2t vertices. We can now apply Theorem 28 to G and M with H = Kq, c = f16(q, h), and β = f15(q, h),
obtaining a (f17(q, h) · t, f17(q, h))-protrusion decomposition P of G with M contained in the core of P and
f17(q, h) := f15(q, h) · f16(q, h) · 40q225q log q. Since B ⊆M and M contained in the core of P, it can be easily
checked that P is also a (f17(q, h) · t, f17(q, h))-protrusion decomposition of G.

Once we have the protrusion decomposition given by Lemma 29, all that remains is to replace the
protrusions by equivalent ones of size depending only on the collection F . The protrusion replacement
technique, which is nowadays part of the basic toolbox of parameterized complexity, originated in the meta-
theorem of Bodlaender et al. [11], whose objective was to produce linear kernels for a wide family of problems
on graphs of bounded genus. This technique was later extended to graphs excluding a fixed minor by Fomin
et al. [21] and then to graphs excluding a fixed topological minor by Kim et al. [32]. We could directly apply
the results of Fomin et al. [21] to the protrusion decomposition of a representative given by Lemma 29, hence
reducing each protrusion to an equivalent one of size OF (1), yielding an equivalent representative of size
OF (t). However, the drawback of the results in [21] (and also in [11,32]) is that they do not provide explicit
bounds on the hidden constants. In order to be able to do so (cf. Subsection B.2), we apply the protrusion
replacement used by Baste et al. [6], which is suited for the F-M-Deletion problem. This yields explicit
constants because it uses ideas similar to the ones presented by Garnero et al. [22] (later generalized in [23])
for obtaining kernels with explicit constants.

Given a function ξ : N2 → N and a t-boundaried graph G, we say that G is ξ-protrusion-bounded
if, for every t′ ∈ N, all β-protrusions of G have at most ξ(β) vertices. The following lemma is again a
reformulation using our notation of one of the results of Baste et al. [6]. Namely, it is a consequence of the
proof7 of [6, Lemma 7.2].

7In the statement of [6, Lemma 7.2] it is required that the family F contains a planar graph, an assumption that is not true
anymore in our case. However, in the proof this fact is only used to guarantee that the considered protrusion has treewidth
bounded by a function depending only on F . Thanks to Lemma 29, we can assume that this also holds in our setting.
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Lemma 30. There exists a function f18 : N2 → N such that if t, q, h ∈ N and G = (G,B, ρ) is a
Kq-minor-free boundaried graph in R(t)

h , then G is f18(q, h)-protrusion-bounded. Moreover, f18(q, h) =
222O(f17(q,h)·log f17(q,h))

.

Using Lemma 29 and Lemma 30, we can easily prove Theorem 31, that is the main result on which the
algorithm of Theorem 2 is based (cf. Section 2). In particular, it implies Equation 1.

Theorem 31. There exists a function f19 : N2 → N such that, for every t ∈ N and q, h ∈ N≥1, if G =
(G,B, ρ) is a Kq-minor-free boundaried graph in R(t)

h , then |V (G)| ≤ f19(q, h) · t. Moreover, it holds that
f19(q, h) ≤ f17(q, h) · (f18(q, h) + 1).

Proof. By Lemma 29, G admits an (f17(q, h) · t, f17(q, h))-protrusion decomposition P. By Lemma 30, each
of the protrusions of P has at most f18(q, h) vertices. Therefore,

|V (G)| ≤ f17(q, h) · t+ f17(q, h) · f18(q, h) · t,

and the theorem follows with f19(q, h) := f17(q, h) · (f18(q, h) + 1).

Let h := maxF∈F{maxH∈ext(F ) detail(H)}. The following corollary is an immediate consequence of The-
orem 31, by using the fact that all t-representatives in R(t)

h , except one, are Kh-minor-free, hence they have
O(f19(h, h) ·h

√
log h) · t edges; see for instance [38]. Note that are at most

(
n2

m

)
= 2O(n logm) different graphs

on n vertices and m edges and that, if (G,B, ρ) ∈ R(t)
h , then Theorem 31 implies that |V (G)| ≤ f19(h, h) · t.

Note also that there are
(|V (G)|

t

)
= 2O(t log |V (G)|) choices for B, and t! = 2O(t log t) choices for ρ. Therefore,

|R(t)
h | = 2O

(
f19(h,h)·t·log(f19(h,h)·h

√
logh·t)+f19(h,h)·t log(f19(h,h)·t)+t log t

)
and we can conclude the following.

Corollary 32. There exists a function f20 : N → N such that for every t ∈ N≥1, |R(t)
h | ≤ 2f20(h)·t·log t. In

particular, the relation ≡h partitions B(t) into at most 2f20(h)·t·log t equivalence classes. Moreover, it holds
that f20(h) = O(f19(h, h) · log(f19(h, h) · h

√
log h)).

The dynamic programming algorithm. Having proved Corollary 32, we can apply [6, Theorem 8.1] to
compute the parameter mF (G) within the claimed running time.

For the sake of completeness, let us comment some details of this dynamic programming algorithm,
whose details can be found in [6, Section 8]. First of all, to run the algorithm we need to have the set R(t)

h

of representatives at hand. This can be done easily relying on Theorem 31, by generating all t-boundaried
graphs on at most f19(h, h) · t vertices and O(f19(h, h) ·h

√
log h) · t edges, partitioning them into equivalence

classes according to ≡h, and picking an element of minimum size in each of them; see [6, proof of Lemma
7.1] for more details. To simplify the description of the dynamic programming update operations, the main
algorithm in [6] is written in terms of branchwidth instead of treewidth. Without defining branchwidth here,
it is enough to say that it is linearly equivalent to treewidth, in the sense that both parameters differ by a
constant factor and whose corresponding decompositions can be easily transformed from one to the other [41].
Also, the main algorithm in [6] is written in terms of topological minors, that is, given a finite graph class
F ′ and a graph G, it computes tmF ′(G), that is the minimum-size set of vertices S ⊆ V (G) whose removal
leaves a graph without any of the graphs in a fixed collection F ′ as a topological minor. This works for
our purposes because of the translation of the question on minors to one on topological minors, provided by
Observation 3. The dynamic algorithm computes, in a typical bottom-up manner, at every bag separator B
of the branch decomposition associated with a t-boundaried graph GB and for every representative R ∈ R(t)

h ,

the minimum size of a set S ⊆ V (GB) such that GB \S ≡h R. These values can be computed in a standard
way by combining the values associated with the children of a given node; cf. [6, Theorem 8.1]. The overall
running time is bounded by O(|R(t)

h |2 · |E(G)|), and taking into account that |E(G)| ≤ tw(G) · |V (G)|, from
Corollary 32 we obtain the following theorem, which is a more precise reformulation of Theorem 2.
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Theorem 33. Let t, h ∈ N, F be a proper collection of size at most h, and G be an n-vertex graph of
treewidth at most t. Then mF (G) can be computed by an algorithm that runs in 2O(f20(h)·t log t) · n steps.

In Appendix B we give upper bounds on the constants depending on the collection F involved in our
algorithm. These upper bounds depend explicitly on the parametric dependencies of the Unique Linkage
Theorem [31,43].

7 Further research
We presented an algorithm for solving the F-M-Deletion problem in time O∗(2O(tw · log tw)) for every col-
lection F . This algorithm together with the single-exponential algorithms and lower bounds presented in
previous papers of this series [7, 8] yield a complete classification of the asymptotic complexity of F-M-
Deletion parameterized by treewidth assuming the ETH, when F = {H} and H is connected (Theorem 1).
However, we do not have a complete classification when |F| ≥ 2, even for connected F . To ease the presen-
tation, let us call a connected graph H easy (resp. hard) if {H}-M-Deletion is solvable in time O∗(2Θ(tw))
(resp. O∗(2Θ(tw · log tw))). Suppose that F = {H1, H2} with both H1 and H2 being connected. Using the
recent results of Baste [5], it is possible to prove that if both H1 and H2 are easy, then F is easy as well (eas-
iness of graph collections is defined in the obvious way). However, if both H1 and H2 are hard, then strange
things may happen. For instance, Bodlaender et al. [12] presented an algorithm running in time O∗(2O(tw))
for Pseudoforest Deletion, which consists in, given a graph G and an integer k, deciding whether one
can delete at most k vertices from G to obtain a pseudoforest, i.e., a graph where each connected component
contains at most one cycle. Note that Pseudoforest Deletion is equivalent to {diamond, butterfly}-M-
Deletion. While both the diamond and the butterfly are hard graphs (cf. Figure 17), {diamond, butterfly}
is an easy collection. The cases where H1 is easy and H2 is hard seem even trickier. Obtaining (tight) lower
bounds when F may contain disconnected graphs is another challenging avenue for further research.

It is also interesting to consider the version of the problem where the graphs in F are forbidden as
topological minors; we call this problem F-TM-Deletion. While most of the lower bounds that we presented
in [8] also hold for F-TM-Deletion, the algorithm in time O∗(2O(tw · log tw)) of this paper does not work
for topological minors. In this direction, the algorithm in time O∗(2O(tw · log tw)) for F-M-Deletion when F
contains a planar graph) given in [6] also works for F-TM-Deletion, if we additionally require F to contain
a subcubic planar graph (in order to bound the treewidth of the representatives). The main obstacle for
applying our approach in order to achieve a time O∗(2O(tw · log tw)) for every collection F , is that topological-
minor-free graphs do not enjoy the flat wall structure that is omnipresent in our proofs. Another reason is
that in our rerouting procedure, in order to find an irrelevant vertex (Theorem 17), we may find a different
topological minor model that corresponds to the same minor. Nevertheless, we think that this latter difficulty
can be overcome for planar graphs –or even minor-free graphs– by making use of the rerouting potential of
Proposition 13, as this is done in [25] for planar graphs.

Finally, it is worth mentioning that the algorithm presented in this paper, as well as the main combina-
torial result (Theorem 23), have been used in [44] (see [47] for the full version) to obtain a fixed-parameter
algorithm for the F-M-Deletion problem parameterized by k. Theorem 23 has also been used in [46] in
order to provide explicit upper bounds on the size of the minor-obstructions of the set of yes-instances of the
F-M-Deletion problem, as a function of F and k.
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A Illustration of the complexity dichotomy
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Figure 17: Classification of the complexity of {H}-M-Deletion for all connected simple graphs H with
2 ≤ |V (H)| ≤ 5, according to our results: for the nine graphs on the left, the problem is solvable in time
2Θ(tw) · nO(1) under the ETH. For the 21 graphs on the right and for all the connected graphs on at least six
vertices, the problem is solvable in time 2Θ(tw · log tw) · nO(1) under the ETH.

B An estimation of the constants depending on F in our algorithm
The main result of this paper is that the F-M-Deletion problem can be solved in time 2O(f(h)·tw · log tw) · n
on n-vertex graphs of treewidth at most tw, for some computable function f : N → N, where here h is
an upper bound on the size of the graphs in F . This appendix is dedicated to an estimation of an upper
bound on the function f. Notice that almost all the statements of the results in this paper are accompanied
with specific bounds on the involved functions, usually in terms of functions defined in previous statements.
However, there are two exceptions. The first one is the function f6 of Proposition 35, which we discuss
in Subsection B.2. The second one is Lemma 27, where no explicit bound for f16(q, h) is given. This is
because the existence of f16(q, h) follows by applying Akra-Bazzi Theorem [3] as a black box and this does
not provide any estimation of f16. To circumvent this issue, in Subsection B.1 we provide an improved
version of Lemma 27, namely Lemma 34, whose proof uses a direct induction, without invoking the Akra-
Bazzi Theorem [3, 35]. This alternative proof is strongly based on the proof of [21, Lemma 3.6]. Finally, in
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Subsection B.2 we provide an upper bound on the constants involving F in our algorithm. For this, we will
use the stronger version of Lemma 27 given in Subsection B.1.

B.1 An improved version of Lemma 27
In this section we provide an improved version of Lemma 27, whose proof is an adaptation of the proof
of [21, Lemma 3.6].

Lemma 34. There exists a function f21 : N2 → N such that if t, q, h ∈ N and G = (G,B, ρ) is a Kq-minor-
free boundaried graph in R(t)

h , then G contains an f21(q, h)-treewidth modulator that contains B and has at
most 2t vertices. Moreover, it holds that f21(q, h) = O((f5(q, f13(f3(q), 3, 3h), f14(f3(q), 3h)))2).

Proof. For simplicity, we use q as a shortcut for the triple (f3(q), f13(f3(q), 3, 3h), f14(f3(q), 3h)). We define
the constants s = f5(q, f13(f3(q), 3, 3h), f14(f3(q), 3h)), t0 = 256s2, and c = s ·

√
t0. We define the relation

≤◦ so that a ≤◦ b means that a ≤ max{0, b}. We first prove, by induction on t, the following statement.

Claim: For every non-negative integer t and every Kq-minor-free graph G, if pq(G) ≤ t then G has a
c-treewidth modulator Z with |Z| ≤◦ t− 16s ·

√
t.

Proof of claim: In the base case we consider any t with 0 ≤ t ≤ t0. As pq(G) ≤ t, Lemma 10 implies that
tw(G) ≤ s · max{

√
t, 1} ≤ s ·

√
t0. Thus G has a c-treewidth modulator of size 0 ≤◦ t − 16s ·

√
t, and the

claim follows.
For the inductive step, let t > t0 and suppose that the claim is true for every t′ with 0 ≤ t′ ≤ t − 1.

We prove that the claim holds also for t. Consider a graph G with pq(G) ≤ t and let S be a set of at
most t vertices affecting every q-apex-wall triple of G. Because of Lemma 10, pq(G) ≤ t implies that
tw(G) ≤ s ·max{

√
t, 1} = s ·

√
t.

By applying Lemma 26 to G and S, there is a 2/3-balanced separation (L,R) of S in G such that
|L∩R| ≤ tw(G) + 1 ≤ s ·

√
t+ 1 and there exists some α ∈ [ 1

3 ,
2
3 ] such that |(L \R)∩ S| ≤ α · |S| ≤ α · t and

|(R \ L) ∩ S| ≤ (1− α) · |S| ≤ (1− α) · t.
Since S affects every q-apex-wall triple of G, Lemma 11 gives that the set L ∩ (R ∪ S) affects every

q-apex-wall triple of G[L]. This implies

pq(G[L]) ≤ |L ∩ (R ∪ S)| = |(L \R) ∩ S|+ |L ∩R| ≤ α · t+ (s ·
√
t+ 1) ≤ α · t+ 2s ·

√
t.

Here the last inequality follows from the assumption that t ≥ t0 ≥ 1.

In order to apply the inductive hypothesis, note that t′ := α·t+2s·
√
t ≤ t−1 for t ≥ t0. This can be verified

by using the fact that s ≥ 1, α ≤ 2
3 , and checking that 2

3 t+ 2s ·
√
t ≤ t− 1 for t ≥ t0. Indeed, the inequality

holds whenever
√
t ≥ 3s+ 3

2

√
(2s)2 + 4

3 and this is the case as
√
t ≥
√
t0 = 16s ≥ 3 · s+ 3

2

√
(2s)2 + 4

3 .

Therefore we can apply the induction hypothesis to G[L] and t′ and obtain a c-treewidth modulator ZL
of G[L], such that

|ZL| ≤◦ t′ − 16s ·
√
t′ ≤◦ (α · t+ 2s ·

√
t)− 16s ·

√
α · t+ 2s ·

√
t ≤◦ (α · t+ 2s ·

√
t)− 16s ·

√
α · t.

A symmetric argument applied to G[R] yields a treewidth modulator ZR of G[R], such that

|ZR| ≤◦
(

(1− α) · t+ 2s ·
√
t
)
− 16s ·

√
(1− α) · t.

We now construct a c-treewidth modulator Z of G as follows by setting Z := ZL ∪ (L ∩ R) ∪ ZR. The
set Z is a c-treewidth-modulator of G because every connected component of G − Z is a subset of either
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(L \ (L ∩ R)) \ ZL or (R \ (L ∩ R)) \ ZR, and ZL and ZR are c-treewidth modulators for G[L] and G[R]
respectively. Finally we bound the size of Z.

|Z| ≤ |ZL|+ |ZR|+ |S|

≤◦ (α · t+ 2s ·
√
t)− 16s ·

√
t · α+

(
(1− α) · t+ 2s ·

√
t
)
− 16s ·

√
t · (1− α) + s ·

√
t+ 1

≤◦ (α · t+ 2s ·
√
t)− 16s ·

√
t · α+

(
(1− α) · t+ 2s ·

√
t
)
− 16s ·

√
t · (1− α) + 2s ·

√
t

≤◦ t−
(
16
(√
α+
√

1− α
)
− 6
)
· s ·
√
t

≤◦ t− 16s ·
√
t.

The last inequality uses the fact that 16
(√
α+
√

1− α
)
− 6 ≥ 16, for every α ∈ [ 1

3 ,
2
3 ]. The claim follows.

Suppose now that G = (G,B, ρ) is a Kq-minor-free boundaried graph in R(t)
h . From Corollary 25,

pq(G) ≤ t and, because of the above claim, G contains a c-treewidth modulator Z where |Z| ≤◦ t−16s·
√
t ≤ t.

This, in turn, implies that B ∪ Z is a c-treewidth modulator of G that contains B and has size 2t. Also
observe that c = 16s2. Therefore, the lemma holds for f21(q, h) = O(s2).

We stress that, as it is done in the proof of [21, Lemma 3.6], it is possible to find a modulator of size at
most (1 + ε) · t, for every positive real ε > 0. Nevertheless, we have provided the proof of Lemma 34 for the
particular case ε = 2, which is enough for our purposes.

B.2 Upper bounds on the constants depending on the excluded minors
In this section we provide an estimation on the function f20 in Theorem 33, or equivalently on the constant cF
in Theorem 2. We first provide some definitions in order to introduce the Unique Linkage Theorem [31,43].

A linkage in a graph G is a subgraph L of G whose connected components are all non-trivial paths. The
paths of a linkage L are its connected components and we denote them by P(L). The size of L is the number
of its paths and is denoted by |L|. The terminals of a linkage L, denoted by T (L), are the endpoints of the
paths in P(L), and the pattern of L is the set{

{s, t} | P(L) contains some (s, t)-path
}
.

Two linkages L1, L2 of G are equivalent if they have the same pattern and we denote this fact by L1 ≡ L2.

We say that a linkage L in a graph G is unique if for every linkage L′ that is equivalent to L it holds that
V (L′) = V (L).

According to the proof of Proposition 13 in [25], the function f6 emerges from the following result, known
as the Unique Linkage Theorem.

Proposition 35 ([31, 43]). There exists a function f6 : N≥0 → N≥0 such that if G is a graph and L is a
unique linkage of G, then tw(G) ≤ f6(|L|).

It is worth mentioning that [31,43] do not provide the precise number of exponentiations involved in the
function f6, and therefore we will express our upper bounds in terms of this function. Namely, in order to
provide an upper bound on f20(h), we backtrack the functions involved in the intermediate results of this
paper as follows:

• According to Corollary 32, f20(h) = O(f19(h, h) · log(f19(h, h) · h
√

log h)).

• By Theorem 31, f19(h, h) = O(f17(h, h) · f18(h, h)).

• By Lemma 30, f18(h, h) = 222O(f17(h,h)·log f17(h,h))

.

48



• By Lemma 29, f17(h, h) = f15(h, h) · f16(h, h) · 2O(h logh).

• By Lemma 34, we can take f16(h, h) = 2.

• By Lemma 27 (and Lemma 34 as well), f15(h, h) = O((f5(h, f13(f3(h), 3, 3h), f14(f3(h), 3h)))2).

• By Theorem 5, f3(h) = O(h24) = hO(1).

• By Theorem 23, f14(f3(h), 3h) = O(h24) = hO(1).

• By Theorem 23, f13(f3(h), 3, 3h) = O((f6(hO(1)))3).

• By Lemma 10, f5(h, r, ˆ̀) = f2(h) · r22O((h24+ˆ̀)·log(h24+ˆ̀))

, which is r22(h+ˆ̀)O(1)

by Theorem 5. If we set
r = f13(f3(h), 3, 3h) = O((f6(hO(1)))3) and ˆ̀= f14(f3(h), 3h) = hO(1), we have that

f15(h, h) = O((f5(h, r, ˆ̀))2) =
(
(f6(hO(1)))3)22(h+hO(1))O(1)

=
(
f6(hO(1))

)22h
O(1)

.

• We set λ = f6(hO(1)). Given that f17(h, h) = f15(h, h) · f16(h, h) · 2O(h logh) and that f16(h, h) = 2,

we obtain that f17(h, h) = λ22h
O(1)

. We now have that f18(h, h) = 222λ
22h
O(1)

, which implies that

f19(h, h) = 222λ
22h
O(1)

and thus f20(h) = 222λ
22h
O(1)

.

From Theorem 33 and the above discussion, we conclude the following corollary, which gives an explicit
upper bound on the contribution of the maximum size of the graphs in F in the complexity of our algorithm,
depending on the function f6 given by Proposition 35.

Corollary 36. Let F be a collection of graphs each of size at most h, and let G be a graph. Then the
parameter mF (G) can be computed in time

2

(
222λ

22h
O(1) )

·tw(G)·log(tw(G))
· |V (G)|, where λ = f6(hO(1)).
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