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Abstract

In this work, we propose an adaptive sparse learning algorithm
that can be applied to learn the physical processes and obtain a sparse
representation of the solution given a large snapshot space. Assume
that there is a rich class of precomputed basis functions that can be
used to approximate the quantity of interest. For instance, in the
simulation of multiscale flow system, one can adopt mixed multiscale
methods to compute velocity bases from local problems and apply the
proper orthogonal decomposition (POD) method to construct bases
for the saturation equation. We then design a neural network ar-
chitecture to learn the coefficients of solutions in the spaces which
are spanned by these basis functions. The information of the basis
functions are incorporated in the loss function, which minimizes the
differences between the downscaled reduced order solutions and refer-
ence solutions at multiple time steps. The network contains multiple
submodules and the solutions at different time steps can be learned si-
multaneously. We propose some strategies in the learning framework
to identify important degrees of freedom. To find a sparse solution
representation, a soft thresholding operator is applied to enforce the
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sparsity of the output coefficient vectors of the neural network. To
avoid over-simplification and enrich the approximation space, some
degrees of freedom can be added back to the system through a greedy
algorithm. In both scenarios, that is, removing and adding degrees of
freedoms, the corresponding network connections are pruned or reac-
tivated guided by the magnitude of the solution coefficients obtained
from the network outputs. The proposed adaptive learning process are
applied to some toy case examples to demonstrate that it can achieve
a good basis selection and accurate approximation. More numerical
tests are successfully performed on two-phase multiscale flow problems
to show the capability and interpretability of the proposed method on
complicated applications.

1 Introduction

Dynamical systems of flow and transport process in heterogeneous media
are naturally existing in diverse science and engineering applications, such as
groundwater flow, reservoir management, and so on. These physical problems
are usually formulated in domains containing multiple scales, such as frac-
tures at multiple length scales, or pores ranging from centimeters to meters.
Numerical simulations for these problems are challenging since recovering all
scale information will result in heavy computational burden. Furthermore,
due to the lack of finest scale information, there are usually uncertainties in
the computational model. It is necessary to develop model reduction tech-
niques [14, 22, 21, 9, 1, 3] and construct fast alternatives to perform efficient
simulations. The reduced order model can represent the physical proper-
ties of the full problem and can speed up the computations for the forward
problem, which eventually helps to quantify the uncertainties in the model.
There are many model reduction methods including local and global ap-
proaches and have achieved significant success in numerous applications. In
the family of local approaches, one can formulate appropriate local problems
on coarse grid regions, construct effective properties or local multiscale basis
functions, and further develop global systems on the coarse grid level. For in-
stance, numerical upscaling, multiscale methods, and generalized multiscale
methods [16, 15, 13, 11, 12, 10]. For global approaches[17, 2, 6, 37], such
as the proper orthogonal decomposition method, one computes snapshots
by solving several global problems and performs spectral decomposition to
select the dominant modes. It has been extensively applied for numerical
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simulations of dynamical systems but still encounters difficulties for nonlin-
ear problems. The objective of our work is to propose a framework which
combines advanced deep learning techniques and multiscale basis construc-
tion methods, to obtain multiscale solutions with a sparse representation in
the snapshot space.
Deep learning has become a quite popular approach for numerical approxima-
tion of nonlinear differential equations in recent days. Applications include
developing surrogate models based on the properties of classical numerical
solvers, such as constructing a multiscale neural network based on hierar-
chical multigrid solvers and encoder-decoder neural networks for solutions
of heterogeneous elliptic PDEs [18, 39, 24, 26, 4]. Physics-informed neural
networks [32, 31, 27, 28] were proposed to incorporate physical laws in the
loss function and limited data to train the neural network, and then get
approximations of solutions in the whole temporal-spatial domain. How-
ever, learning full fine-scale solutions is challenging due to the extremely
large number of parameters in the neural networks, some algorithms were
established to design sparse neural network models to learn flow dynamics
with high dimensional stochastic input coefficients [36, 35]. Some other ap-
proaches include learning coarse grid effective properties using the nonlocal
multicontinuum upscaling method or coefficients in the proper orthogonal
decomposition (POD) projections [34, 8]. Furthermore, a deep neural net-
work combined with multiscale model reduction techniques was investigated
[33] where the forward operators of the flow problem were learned in a re-
duced way without using POD approaches. In these works, the coefficients
in the reduced order model are designed to have physical meanings, thus
learning these quantities can provide important physical information with-
out downscaling the coarse scale solution vector. In a more general setting,
the coefficients of the basis functions are not directly related to the quantities
of interest, then one may incorporate the basis functions as prior information
in the training process. Some prior task-dependent dictionaries are incorpo-
rated to PINN method [30], and an algorithm is proposed to take advantage
of the features provided by dictionaries and achieve faster convergence.
In this work, we are interested in the multiscale two-phase problem in subsur-
face flow applications, where the equations are nonlinear and time dependent.
One can parameterize the nonlinear equations and compute suitable basis
functions for a set of sample parameters. However, the formed dictionaries
may be too large and only a sparse selection of the bases in the dictionaries
are needed for the solution approximation. Some model reduction techniques
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such as reduced basis method or greedy algorithm [5, 29, 23, 20, 19, 25, 38]
has been applied to solve parameterized elliptic PDEs. We aim to design an
adaptive sparse learning algorithm with the help of precomputed basis func-
tions as the prior dictionary, and apply it to the coupled two-phase flow sys-
tems. To be specific, for the construction of the prior dictionary for the flow
equation where the model coefficient has high-contrast multiscale features,
we adopt the mixed generalized multiscale finite element method [11, 7] for
velocity multiscale basis construction. Given a specific source configuration,
we first solve the system at several time instances in a small time interval.
The fine scale saturation profiles at these time instances are used to form
relative permeabilities in the flow equation. With this parameterization of
the permeability, one can solve appropriate local problems on the coarse re-
gions to get the velocity basis. Combining the local solutions in all coarse
regions for each permeability configuration, we obtain a dictionary of basis
functions which can be used to approximate the solutions of flow equations
for different source terms. As for the saturation solution, we again use the
saturation solutions described before as snapshots, and perform POD on the
snapshot space. The dictionary for saturation approximation consists of all
POD bases. It can be used to seek for solutions in later time steps given
different source terms. We will then design suitable neural networks to learn
the coefficients of the solutions in the reduced order spaces which are spanned
by the bases of the prior dictionaries. However, due to the predefined dic-
tionaries provide high-dimensional spaces, and only parts of basis functions
are needed in the solution representation. We aim to reduce the solution
space by an adaptive sparse learning approach. The idea is to first adopt the
soft-thresholding technique to enforce the sparsity of the coefficient vectors
learned from the neural network. Next, the network connections are pruned
according to the sparsity of the coefficient output. This procedure helps to
get rid of the less important basis functions in the solution representation and
simplify the connections in the network architecture. However, if too many
basis functions are dropped, the approximation space will not be sufficient to
produce good approximations. We will further add some bases back through
a greedy algorithm to enrich the approximation space, and the correspond-
ing network connections will be reactivated simultaneously. The number of
bases one would like to include in the approximation space can be fixed in
advance, or the accuracy of the approximation can be prespecified. By an
adaptive learning process, we expect to achieve a good basis selection and
accurate approximation. Moreover, in our network architecture, submodules
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are designed to approximate the map from input to the first time step, and
from previous time steps to later time steps. The final network is the compo-
sition of several submodules, and we are learning the entire dynamics, i.e, the
solutions at all time steps, simultaneously. The loss functions are designed
to minimize the differences between the downscaled reduced order solutions
and fine scale solutions over all time steps.
The main contributions of our work are:

• Network functionality. We design a neural network architecture with
an adaptive sparse learning algorithm, which can be applied to learn
the map in the physical problem from the source term to the expansion
coefficients of the multiscale basis in the solutions at many time steps.
It learns the dynamics and identifies the sparse patterns simultaneously.

• Adaptivity. The sparsity of the basis expansion coefficient is enforced
via soft thresholding. It can remove a large number of less impor-
tant degrees of freedom during the training. On the other hand, to
improve the accuracy, we can add some overdropped degrees of free-
dom back adaptively based on a greedy process. We observe that our
proposed method achieves better accuracy compared to the projection
solutions computed using the basis selected from the standard greedy
algorithm/POD algorithm in some cases.

• Interpretability. Besides the accuracy benefits, the proposed adaptive
learning algorithm can discover an active set of bases and select impor-
tant degrees of freedom for the quantities of interest. We show that the
sparsity patterns of the network output are potentially interpretable in
some applications.

The paper is organized as follows. In Section 2, we describe the preliminaries
of the model problem. The main methodology is discussed in Section 3 where
we show the detailed construction of dictionary and the main algorithm. The
numerical tests are demonstrated in Section 4 to illustrate the capability
of the proposed network. The numerical results show the efficiency and
accuracy of our method. A conclusion is presented in Section 5.
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2 Problem Setup

We consider the problem
Lu = f (1)

where L is a nonlinear time-dependent differential operator which contains
multiscale features.

We would like to seek the solution in an N dimensional space

VH = span{φ1, φ2, · · · , φN},

where φi-s are precomputed snapshot bases. Denote by uj the solution at
time step j, and suppose it has a sparse representation in this space, that is

uj =
N∑
i=1

cjiφi (2)

where cj = [cj1, · · · , c
j
N ]T are sparse vectors.

Let N (·; Θ) be a deep neural network parameterized by Θ, with given
different realizations of source term f , we aim to use N to approximate the
physical process, and realize sparse learning at the same time, that is

{un} ≈ N (f ; Θ, φ1, φ2, · · · , φN). (3)

for all time step n.

3 Methodology

In this section, we will first present preliminaries for the problem of interest
and the snapshot basis construction methods. Then we introduce our DNN
architecture and training algorithm.
We consider two-phase incompressible flow problem in heterogeneous porous
media. The flows follow Darcy’s law, and we neglect the capillary pressure
and gravity effects in the model. The flow equation can be written as

u = −λ(S)κ∇p in Ω

div(u) = r in Ω

u · n = 0 on ∂Ω

(4)
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where κ is the absolute permeability field. The total mobility

λ(S) =
κrw(S)

µw
+
κro(S)

µo

and κrw, κro are the relative permeability, µw is the viscosity for water, µo is
the viscosity of oil. In real applications, κrw, κro nonlinearly depends of S.

With a simplified notation, we abbreviate Sw to be S for the water phase
. The saturation equation of S reads

∂S

∂t
+ u · ∇f(S) = q (5)

where f(S) =
κrw(S)/µw

κrw(S)/µw + κro(S)/µo
, and q is the source term.

The saturation solution can be computed using the finite volume method
on the fine grid, and a backward Euler scheme can be used for the time
discretization. For each fine block Ti, the solution Si at time step n+ 1 can
be obtained by

Sn+1
i = Sni +

dt

|Ti|
[−

∑
ej∈∂Ki

Fij(S
n+1) + f(Sn+1)q−i + q+

i ] (6)

where q−i = min(0, qi), q
+
i = max(0, qi). ej is the face between fine block Ti

and Tj. Denote by uij the velocity on the face ej, then Fij is

Fij(S
n+1) =

{ ∫
ej

(un+1
ij · n)fw(Sn+1

i ) if un+1
ij · n ≥ 0∫

ej
(un+1

ij · n)fw(Sn+1
j ) if un+1

ij · n < 0
(7)

which is the upwinding flux.

3.1 Dictionary construction

We will consider two cases (1) learning the velocity dynamics, (2) learning
the saturation dynamics, separately. In the first case, we will apply the
mixed GMsFEM method [11] to construct the local velocity basis. In the
second case, we can use POD to perform global model reduction to obtain
snapshots for saturation approximation. Those basis functions constitute the
dictionary and will be used in the corresponding training tasks.
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3.1.1 Local model reduction: Mixed GMsFEM basis for velocity

Let St be the saturation profiles at a few time instances t = 1, · · · , T , ob-
tained by solving the problem with a specific configuration of f . Then for
each St, we compute the mobilities λ(St) and use

κ̃t := λ(St)κ

as different permeability profiles to compute basis functions.
Denote by TH the coarse grid of the computational domain Ω. Let EH be the
set containing all coarse scale edges on the grid. In mixed GMsFEM, define
the local region ωi as

ωi =

{
K+
i ∪K−i if Ei ∈ EH\∂Ω

Ki if Ei ∈ ∂Ω

which is a union of two coarse grid blocks sharing the edge Ei, with i =
1, · · · , Ne, and Ne is the total number of coarse edges. The basis functions
for the velocity fields are constructed for each ωi.
To begin with, one constructs the snapshot space by solving local problems
with a set of boundary conditions on ωi associated with a coarse edge. The
normal traces of each basis with respect to the coarse edge are resolved up
to the fine level. Specifically, denote by Ei =

⋃Li

j=1 ej, where ej is a fine edge
on Ei, Li is the number of fine edges on Ei. For each j = 1, 2, · · · , Li, we
seek for local solutions ψωi

j by solving

κ̃−1
t ψωi

j,t +∇pωi
j,t = 0 in ωi,

div(ψωi
j,t) = αωi

j in ωi

ψωi
j,t · ni = δωi

j on ∂ωi

where δωi
j is defined by

δωi
j =

{
1 on ej,

0 on ∂ωi\ej,

with ni is the outward normal unit vector on Ei. Moreover, αi,j satisfies the
compatibility condition ∫

ωi

αωi
j =

∫
∂ωi

ψωi
j · ni
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At this point, we obtain the snapshot space

V ωi
snap,t = span{ψωi

j,t, j = 1, · · · , Li},

where i = 1, · · · , Nω, t = 1, · · · , T , and Nω is the number of coarse edges in
the computational domain.

Next, one needs to propose a local spectral problem to perform model
reduction for each V ωi

snap,t. The problem is to find eigenvalues λ and eigen-
functions v ∈ V ωi

snap,t such that

ai(v, w) = λsi(v, w), ∀w ∈ V ωi
snap,t,

where ai and si are symmetric positive definite bilinear operators. As shown
in [11], we can let

ai(v, w) =

∫
Ei

κ−1
t (v · ni)(w · ni),

si(v, w) =

∫
ωi

κ−1
t v · w + div(v)div(w).

(8)

Denote by (λωi
j,t, φ

ωi
j,t) be the eigen-pairs solved from (8), where the eigenvalues

are sorted in an ascending order. Then the first li dominant modes are
selected to form the offline space V ωi

off,t. Finally, we take the union of all V ωi
off,t

as our dictionary. That is,

Dvel = {φωi
j,t, j = 1, · · · , li; i = 1, · · · , Nω; t = 1, · · · , T}. (9)

3.1.2 Global model reduction of the saturation equation: POD
basis construction

In another perspective, we would like to learn saturation profiles and consider
velocity as some hidden variables. Again, given some specific configuration
of the source term f , we solve the system (4)-(6) sequentially. Denote by St
be the saturation profiles at a few time instances t = 1, · · · , T0 ≤ T . These
functions Φ = [S1, · · · , ST0 ] form the snapshot space, and we will perform the
proper orthogonal decomposition (POD) on it. To be specific, one performs
SVD on Φ,

Φ = V ΛW T

where Λ is a diagonal matrix with singular values of Φ, V and W are the
left and right singular matrices. Arrange the singular values in a decreasing
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order σ1 ≥ σ2 ≥ σT0 , one can then choose the corresponding first few singular
vectors in V which capture the important modes in the dynamic process. Let
φj, j = 1, · · · ,m be the vectors we chose, the POD space for saturation is
then

Vsat = span{φj, j = 1, · · · ,m}
Dsat = {φj, j = 1, · · · ,m}

(10)

and we will use it as our dictionary for the approximation of saturation
solutions. For a newly given configuration of the source term, one can seek
Sred
t ≈ St in the POD space.

3.2 Network ingredients

In this section, we present the main ingredients in our network architecture.
Inputs and labels: We consider a two-dimensional input f ∈ Rd×d which
can be arbitrary source terms in the equation, and a set of labels

(
y1; · · · ; yT

)
,

where T is the total number of time steps, and yj ∈ Rn. Here the labels yj

can be velocity fields or saturation profile at time step j.
Network outputs: The output of the network is denoted by

(
c1, · · · , cT

)
,

where each cj = (cj1, · · · c
j
N)T is a solution coefficient vector at time step j,

with cj ∈ RN .
Network architecture: For the neural network N , we will divide it into T
submodules

N = NT ◦ NT−1 ◦ · · ·N1 (11)

For the first submodule, we aim to learn a map N1 from input f to c1. Let m
be the number of layers in N1, which consists of some convolutional layers,
an average pooling layer, and fully connected layers, that is

N1 := Sγ1 ◦ L1,m ◦ σ ◦ L1,m−1 ◦ σ ◦ L1,1.

Let Kj be an appropriate pooling kernel or convolution kernel,

L1,j(x) = Kj ∗ x, j = 1, · · · ,m− 2

L1,m−1(x) = W 1,m−1 (vec(x)) + b1,m−1

L1,m(x) = W 1,mx.

(12)

Moreover, we write the intermediate output from N1(f) as c1.
For the other submodules Nt, t = 2, ·, T , we have

Nt := Sγt ◦ Lt,m ◦ σ ◦ Lt,m−1 ◦ σ ◦ Lt,1 (13)
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where

Lt,j(x) = W j,m−1x+ bj,m−1

L1,m(x) = W 1,mx,
(14)

Here, σ is a nonlinear activation function, for example, leaky RELU, which
is defined as

σ(x) =

{
x if t > 0

αx otherwise
(15)

for some constant α ∈ (0, 1).
Sγt is a soft-thresholding function, defined as

Sγt(x) = sign(x)(|x| − γt)+ (16)

with some constant threshold γt. The soft-thresholding function will help us
to enforce sparsity on the predicted solution coefficient vectors c.
Similarly, we denote by ct the intermediate output from Nt(f).

The architecture of the network can be illustrated as in Figure 1.

3.3 Loss function with basis functions

Given a set of training pairs
{fk, (y1

k, ·, ynk )}, our goal is then to find Θ∗ for the network N (·; Θ) by solving
an optimization problem

Θ∗ = argminΘL
(
N (f ; Θ); {yj}Tj=1

)
= argminΘ

1

K

K∑
k=1

T∑
j=1

||yjk − Φcjk||
2
2, (17)

where Φ = [φ1 φ2 · · · φN ] is the matrix formed by the precomputed
bases. K is the number of the samples, N is the number of bases in the
dictionary. We apply the preconditioned SGD to solve the optimization
problem in (17).

3.4 Adaptive sparse learning algorithm

In this section, we will propose our main algorithm, the adaptive sparse learn-
ing algorithm. The algorithm consists of two parts: removing basis/pruning
connections (as illustrated in 3.4.1 and 3.4.2), and adding basis/reactivating
connections (as illustrated in 3.4.3).
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Figure 1: An illustration of the network architecture.The network’s input
is the realization of a random source, the outputs contain the prediction
of expansion coefficients cj for multiscale basis in the solutions at multiple
time steps (j = 1, · · · , T ). The basis funtions Φ are incorporated in the loss
function.

3.4.1 To reduce model order with sparse output coefficients

To ensure the sparsity of the the model output, we apply the soft thresholding
function (16), which can be further written as

Sγt(x) =


x− γt if x ≥ γt

0 if −γ<x < γt

x+ γt if x ≤ −γt.
(18)

After the action of Sγt , we obtain the output coefficients ct. The soft thresh-
olding function will cut off those coefficients with small magnitudes. Then
the sparse coefficient vector will be multiplied by the normalized basis func-
tion matrix Φ. This procedure results in a removal of some unimportant
basis functions during the training.

We remark that the soft-thresholding process is commonly involved in l1
minimization algorithms. One of the ways to view this process is that the
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soft-thresholding function defines an active set in the optimization process.
During the training, we observe that the gradient vector corresponding to
the ith entry in the soft thresholding layer will vanish once the coefficient
output in that layer is smaller than the thresholding parameter.

3.4.2 Pruning network connections

In our framework, we also want to enforce sparsity on the network connections
based on the sparse pattern of intermediate network outputs ct. At this point,
denote by Θ = Θs ∪Θd the network parameters, where

Θs = {W t,m,W t+1,1, for all t = 1, · · · , T − 1}

corresponds to the parameters in the sparse layer, and Θd corresponds to the
parameters in the rest of layers. The weight matrix W can be referred to
(12) and (14).
We would like to cut connections to and from ct, based on the magnitude of
ctj during the training. To be specific, if at the current training epoch, the
ctj,k ≤ γremove

t (one can just take γremove
t = 0) for the k-th entry, then we will

let
W t,m(k, :) = 0, W t+1,1(:, k) = 0.

3.4.3 Adaptively enrich the solution space

During the training, the sparse pruning procedure may overly drop some
components, one can then adaptively add the basis back to the training by
reactivating some previously pruned network connections. To illustrate the
idea, denote by ytrue ∈ Rn×Bn the reference solutions, ypred ∈ Rn×Bn the cor-
responding predictions from the neural network, where Bn is the number of
samples in a batch. Let Pu ∈ Rmu×n be the matrix containing the unselected
bases in the current stage, where mu is the number of bases left in the pool.
One first computes the differences between the true and prediction solutions

Rt = yttrue − ytpred.

One then computes the inner product of the error Rt with the unselected
basis

Et = PuR
t. (19)

Since a batch of samples is used when computing Rt, we need to compute
the absolute mean of Et across these samples, denoted by Ēt. We then sort
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the absolute mean Ēt in a descending manner. Denote by [it1, i
t
2, · · · , itmu

] the
sorted indices which specifies how the elements of the absolute mean of Et

were rearranged. Recall that the total number of bases in the dictionary is
N , then the current number of selected bases is N −mu.
There are two ways to add degrees of freedom back.

• Fix the number of bases. The first approach is to set a target M
as the total number of bases we want to include in the final solution
representation. Then, if N − mu < M , we will select the first mc =
M − (N −mu) bases corresponds to [it1, i

t
2, · · · , itmc

], add them back in
the solution representation, and remove them from the unselected pool
Pu.

• Fix a threshold parameter. The second approach is to set the thresh-
olding parameters δadd. That is, if [Ēt]j < γadd

t , then we let mc = j
and add bases correspond to the columns with indices [it1, i

t
2, · · · , itmc

],
and remove them from the pool Pu.

If one fixes the target number of bases in advance, it can have a control on the
number of bases selected during the training process and produce a desired
dimension for the reduced order model. This works for the case when we have
an approximate bound for the number of important bases. More generally,
without the knowledge of the exact number of bases are needed, we usually
want to control the accuracy of the approximation. Then we can use the
thresholding parameter γadd

t to determine the number of bases to add in
the process. The relationship between the threshold γaddt and the error is
presented by the following lemma.

Lemma 1. Let γaddt be a given threshold for adding bases. Assume the itera-
tion process is converged to a static state where no basis will be added to the
system in the iteration process. For any unselected basis φ ∈ Rd, we have

1

Bn

Bn∑
i=1

‖yttrue,i − ytpred,i‖2 −
1

Bn

Bn∑
i=1

min
(c1,...cBn )∈RBn

‖yttrue,i − ytpred,i − φci‖2 < γaddt

(20)
where yttrue,i and ytpred,i are the i-th column of yttrue and ytpred, and i = 1, · · · , Bn,
Bn is the batch size.

Proof. If no bases are added to the system in the iteration process, we have

[Ēt]j < γaddt ∀j = 1, · · · ,mu; t = 1, · · · , T. (21)
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where Ēt ∈ Rmu is the mean of Et over all samples as defined in (19). Thus,
for any unselected basis φ ∈ Rd

Bn∑
i=1

|φT (yttrue,i − ytpred,i)| < γaddt . (22)

Since φTφ = ‖φ‖2
2 = 1, we have

‖ytture,i − ytpred,i‖2 − |φT (yttrue,i − ytpred,i)|
≤ ‖ytture,i − ytpred,i − φφT (ytture,i − ytpred,i)‖2

≤ ‖ytture,i − ytpred,i − φci‖2

for any ci ∈ R. Therefore, we obtain

1

Bn

Bn∑
i=1

(
‖ytture,i − ytpred,i‖2 − ‖ytture,i − ytpred,i − φci‖2

)
≤

1

Bn

Bn∑
i=1

|φT (yttrue,i − ytpred,i| < γaddt

for any (c1, . . . cBn) ∈ RBn . This completes the proof.

By this lemma, we can see that using the threshold γaddt to control the
number of bases can give us a control on the error, in the sense that adding
any unselected basis can only make a small improvement to the average l2
error using the training data set.
Furthermore, the corresponding rows or columns in the weight matrix will
be reactivated,

W t,m(j, :) = z, W t+1,1(:, j) = z, j = it1, i
t
2, · · · , itmc

where z are vectors with i.i.d samples generated from uniform distributions.
The sparse procedures described above will be performed on an adaptive
basis. Denote by Θ0 the initial model parameters, nb the number of burning
in steps, ne the total number of epochs, η the learning rate. Suppose we would
like to update the sparsity information every other nn steps. Let γremove

t be
the thresholding parameters for removing bases, γadd

t be the thresholding
parameter for adding bases. I tu is the unselected bases indices, I tc are the
indices of bases we would like to add. M is the target number of bases, N
is the total number of bases in the dictionary. The algorithm is summarized
in Algorithm 1.
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Algorithm 1 Adaptive Multiscale Sparse Neural Network for Basis Expan-
sion Learning

1: procedure AMS-Net(Θ0, nb, ne, m, γremove
t , γadd

t )
2: for all i = 1 : ne do
3: if i > nb and mod (i, nn) = 0 then
4: ct ← output from Nt, where Nt is defined in (13)
5: I tu ← {j} such that |ctj| < γremove

t

6: mu ← length(I tu)
7: Set weight parameters

{
W t,m(I tu, :), W t+1,1(:, I tu)

}
to zero in Θi

8: Ēt ← 1
Bn

∑Bn

i=1 |Puyttrue,i − ytpred,i|
9: I ← descending ordered indices of Ēt

10: if Set target number of bases M and N −mu < M then
11: mc ←M − (N −mu)
12: else if Set adding threshold γadd

t and [Ēt]1 < γadd
t then

13: mc ← j where [Ēt]j < γadd
t

14: end if
15: I tc ← I(1 : mc)
16: Reactivate weight parameters

{
W t,m(I tc, :), W t+1,1(:, I tc)

}
from Θi.

17: end if
18: Update Θi+1 by stochastic gradient based algorithms
19: end for
20: return Θi

21: end procedure
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4 Numerical example

4.1 Toy example

We first test the sparse learning algorithm with a dictionary on a simple static
example. Consider the two-dimensional elliptic equation on Ω = [0, 1]× [0, 1]

−div(k(u)∇u) = f(x, y;α)

u = 0 on ∂Ω

where the ground truth for u is

u(x, y;α) = α1 sin(πx) sin(πy) + α2 sin(2πx) sin(2πy)

+ α3 sin(3πx) sin(πy) + α4 sin(4πx) sin(2πy)

and α = [α1, α2, α3, α4], with αi i.i.d samples generated from normal distri-
bution. For α1, we have mean 1 and standard deviation 2. For α2, we have
mean 0 and standard deviation 3. For α3, we have mean −2 and standard
deviation 3. For α4, we have mean 5 and standard deviation 2,

We create the dictionary D1,2 with

D1 = {1, sin(πx), sin(2πx), · · · , sin(Mπx)}
D2 = {1, sin(πy), sin(2πy), · · · , sin(Mπy)}
D1,2 = {d1d2 | d1 ∈ D1, d2 ∈ D2}.

where M = 9, thus we have 100 basis function in the set D1,2.

4.1.1 Linear case

In the linear case, we take k(u) = 1, and

f(x, y;α) = 2π2α1 sin(πx) sin(πy) + 8π2α2 sin(2πx) sin(2πy)

+ 10π2α3 sin(3πx) sin(πy) + 20π2α4 sin(4πx) sin(2πy)

We assume the dataset for training is small, and there are 100 sample pairs.
The network to be trained has only a submodule N1 as described in Section
3.2. Among all samples, 80 percents are used for training, and 20 percents
are used for testing. In this example, the bases included in the solutions are
known exactly, so we only prune the network and remove some bases (the
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thresholding parameter is chosen to be 0.5), and do not add basis functions.
The purpose is to see whether the adaptive pruning can choose the correct
set of basis in the end. The numerical results indicate that, applying the
adaptive sparse algorithm, the network can identify the 4 basis functions
which constitute the ground truth u automatically. The number of bases
selected during training is presented in Figure 2. In this example, we start
the sparse pruning after 100 epochs and record the number of bases every
100 epochs. We can see that the number of bases drops very fast and the
network can find the correct set of basis after 1700 epochs.
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Figure 2: (Section 4.1.1) Toy example, linear case, the number of selected
bases v.s. training epochs. The number of training samples is 80. The total
number of basis functions is 100. After 200 epochs, the sparsity reaches 90%.
The network identifies the correct sparsity pattern and finds the true basis
functions in epoch 1700.

The training and testing history are presented in 3. We compare the case
(1) when we do adaptive pruning during the training (“AMS-net (p)”)and
(2) do not prune the network during the training. It shows that our proposed
adaptive pruning method can achieve faster training and produce better pre-
diction results.
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Figure 3: (Section 4.1.1) Toy example, linear case. Left: training error his-
tory, right: testing error history. Comparison between the results using our
proposed pruning algorithm and without pruning. The number of train-
ing/testing samples is 80/20. It shows that training with pruning is more
efficient.

4.1.2 Nonlinear case

In the linear case, we take k(u) = u, and

f(x, y;α) = −(α1 cos(πx) sin(πy) + 2πα2 cos(2πx) sin(2πy)

+ 3πα3 cos(3πx) sin(πy) + 4πα4 cos(4πx) sin(2πy))2

− (α1 sin(πx) cos(πy) + 2πα2 sin(2πx) cos(2πy)

+ 3πα3 sin(3πx) cos(πy) + 4πα4 cos(4πx) sin(2πy))2

− (+α1 sin(πx) sin(πy) + α2 sin(2πx) sin(2πy)

+ α3 sin(3πx) sin(πy) + α4 sin(4πx) sin(2πy))

− (2π2α1 sin(πx) sin(πy) + 8π2α2 sin(2πx) sin(2πy)

+ 10π2α3 sin(3πx) sin(πy) + 20π2α4 sin(4πx) sin(2πy))

In this nonlinear case, we generate more sample pairs, 1000 in total, to
train the neural network. Among them, 800 samples are used for training,
and 200 samples are used for testing. In this example, similar as before, we
only perform pruning without adding. We choose the thresholding parameter
to be 0.3. The number of bases selected during training is presented in Figure
4. Here we record the number of bases every 20 epochs. Again, we observe
that the number of bases drops very fast in the beginning of our algorithm,
and the network can identify the correct basis sets after 760 epochs.
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Figure 4: (Section 4.1.2) Toy example, nonlinear case, the number of selected
bases v.s. training epochs. The number of training samples is 800. The total
number of basis functions is 100. After 200 epochs, the sparsity reaches 90%.
The network identifies the correct sparsity pattern and chose the true basis
functions in epoch 760.

The training and testing history are presented in 5. We obtain similar
results as shown in the linear case, where both the training and testing errors
obtained from the proposed adaptive pruning method outperform the non-
pruning case.
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Figure 5: (Section 4.1.2) Toy example, nonlinear case. Left: training error
history, right: testing error history. the number of training/testing samples
is 800/200. Comparison between the results using our proposed pruning
algorithm and without pruning. It shows that the sparse network training is
more efficient.
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4.2 Flow dynamics

4.2.1 Velocity sparse approximation in multiscale space

We will generate samples by solving the system (4) and (5) sequentially on
the fine grid with different source terms. We take

fi(x, y) =



r1 if 1−H < x < 1 & 0 < y < H

r2 if 0 < x < H & 1−H < y < 1

r3 if 0 < x < H & 0 < y < H

r3 if 1−H < x < 1 & 1−H < y < 1

−(r1 + r2 + r3 + r4) if 5H < x < 6H & 5H < y < 6H

0 otherwise

where ri are randomly chosen in [0, 1], i = 1, · · · , 1500. The absolute perme-
ability κ is set to be a layer in SPE10 model. An illustration of the source
f and κ are shown in Figure 6. The simulation is performed on the time
interval [0, 16], with time step size 4t = 4. Thus, for each fi, we have fine
scale velocity solutions [v0

i , v
1
i , · · · , v2

i ] at time steps t = 0, t = 8, t = 16,
respectively. Our goal is to use fi as input, (v0

i , v
1
i , · · · , v2

i ) as labels to train
the neural network using the loss function (17). The dictionary Dvel (9) is
constructed as described in section 3.1.1. In our example, the computational
area is [0, 1] × [0, 1], the fine grid mesh size is h = 1

50
, and the coarse grid

mesh size is H = 1
10

. There are 5400 fine edges and 220 coarse edges. For
each interior coarse edge, we compute 5 multiscale bases, resulting 900 bases
at each time instance. We note that we let r1 = r2 = r3 = r4 = 1 in the
source f to generate offline basis functions, and only the bases obtained at
time instances t = 0, t = 8, t = 16 are included in the dictionary. Thus, we
get 2700 bases in the dictionary D. Each input is a 100 × 1 vector which
represents a coarse grid level source, and each vji (j = 0, · · · , 3) is a 5100× 1

vector. We define the error e1 =
‖upred−utrue‖

L2

‖utrue‖L2
.

We use 80% of samples for training and the rest for testing. The total number
of training epochs is 2000. We compare the results when we use the proposed
algorithm 1, with the results when we only apply pruning at the last epoch.
We use the notation “ AMS-net (p+a)” as a short for our proposed adaptive
sparse method with both removing and adding bases, “ AMS-net (p)” for
our proposed adaptive sparse method with only removing bases. We also use
the greedy algorithm to select bases based on the fine solution samples, and
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Figure 6: (Section 4.2.1) An illustration of the source term f (left) and
absolute permeability κ in log scale (right).

compute the projections of the fine scale solutions on the greedily selected
space, and use them as a reference.
We first set the target number of bases we would like to include in the
training. The comparison of the errors obtained from these three approaches
are presented in Table 1. The degrees of freedom (dof) in the table are
the average of the degrees of freedom among solutions at all 6 time steps.
We observe that with the similar size of the degrees of freedom, “ AMS-
net (p+a)” outperforms “ AMS-net (p)”. When the dof is less than 1000,
“ AMS-net (p+a)” also produces better results compared with the greedy
projection error. As the degrees of freedom increases, the mean prediction
error decreases consistently.
We also test the approach with a given threshold γadd

t to guide the proce-
dure of adding bases, the results are presented in Figure 8. We note that
γadd
t = γadd

0
100

(100+t)0.75
is a decreasing sequence. It shows that as γadd

0 decreases,
the algorithm selects more degrees of freedom and the error of prediction de-
creases too. The decreasing rate is almost linear. This demonstrates that
with the threshold γadd

t , we can control the training error of the network
and thus obtain better prediction results. When γadd

t approach 0, the mean
prediction error is 0.95%, which is some irreducible snapshot error.
We also present the prediction errors using the adaptive sparse method with
both pruning and adding bases at each time step in Figure 7. Two random
test cases are shown in Figure 12 and 13, where we see good matches between
the reference solutions and network predictions.

Remark : In this work, we assume the dictionary can be built in advance.
The basis functions in the dictionary are found by solving some local prob-
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lems corresponding to various permeabilities based on developed numerical
techniques. Once computed, the dictionary won’t be reconstructed when the
permeability field changes. Given this large dictionary, one may first employ
some preselection techniques such as clustering to narrow down the search of
basis functions for a given application. Then our proposed method will be
beneficial to find a much sparse representation for the quantities of interest.
The focus of our paper is to develop an efficient and stable algorithm to ob-
tain a fast and computational cheap solver given the dictionary. After the
sparse network is trained given the data, we can apply it to evaluate the test
cases in a very fast manner.

dofs (approximate) AMS-net (p) AMS-net (p+a) Greedy projection error
400 9.37 7.23 7.51
500 7.00 4.78 5.00
600 5.48 3.05 3.84
700 4.29 1.88 2.82
800 3.04 1.23 2.10
900 2.31 1.07 1.44
1000 1.78 0.95 0.94

Table 1: (Section 4.2.1) Learning velocity fields. Mean errors between the
true and predicted velocity solution among 200 testing samples. Column 2
shows the results when we just use pruning strategy without adding basis.
Column 3 shows the results when we use the adaptive strategy with both
pruning and adding basis. In column 4, we use the greedy algorithm to select
bases based on the training samples, and compute the mean of projection
error for the testing cases in the greedily selected space. The errors are in
percentage.

4.2.2 Saturation sparse approximation in POD space

In this example, we take similar source configurations as described in the
previous section. We first solve the system with a specific source term on
the time interval [0, 4] with time step size 4t = 0.1. Gather the saturation
solutions on these 40 time instances together, we will perform POD on it and
select the resulting bases to form Vsat, and Dsat in (10).
Next, for each source fi (i = 1, · · · , 1000), we have solve for fine saturation
solutions on the time interval [0, 6] with time step size 4t = 0.1. However,
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Figure 7: (Section 4.2.1) Learning velocity fields. Mean prediction errors
among 200 testing samples, at different time steps and different dofs. With
a increasing number of basis selected in AMS-net, the prediction errors will
decrease. Left: mean errors over all time steps. Our algorithm produces
better results consistently when the dof is less than 1000, and it converges to
the snapshot error when the dof become larger. Right: mean errors at each
time step.

0.05 0.1 0.15 0.2 0.25 0.3

Threshold for adding basis 
t

add

1

2

3

4

5

6

7

8

9

10

m
e

a
n

 e
rr

o
r 

(%
)

Pruning threshold =0.5

Pruning threshold=1

Pruning threshold= 1.2

Figure 8: (Section 4.2.1) Learning velocity fields. Using given thresholding
parameters γadd

t to adaptively add bases in AMS-net. Mean errors between
the true and predicted velocity among 200 testing samples. It shows that de-
creasing the value of thresholding parameter can help to control the accuracy
of AMS-net predictions.

we only take the solutions every 10 time steps to train the neural network,
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i.e, [S1
i , S

10
i , · · · , S60

i ]. Again, we use fi as input, (S1
i , S

10
i , · · · , S60

i ) as labels,
and the previously mentioned dictionary to train the neural network. In
this case, the fine degree of freedom for the saturation solution is 10000,
and the reduced order space has dimension 40. We define the error e1 =
‖Spred−Strue‖

L2

‖Strue‖L2
. The total number of training epochs is 2500.

We compare the results when we use the proposed algorithm 1 with both
pruning and adding bases, the algorithm with only pruning and the POD
projection error. The errors using these three approaches are listed in Table 2.
The dofs in the first column of the table are the mean dofs at all 6 time steps.
We observe that, AMS-net (with both pruning and adding bases) produces
similar results when dof is equal to 40, and achieve better predictions when
the dof is equal to 6, 8, 10, 12. It actually converges to the snapshot error
when all bases are used (dof = 40). A random test case is shown in Figure
9, where we see good matches between the reference and network prediction.

dofs AMS-net (p) AMS-net (p+a) POD projection
6 2.21 1.96 2.10
8 1.72 1.62 1.67
10 1.45 1.35 1.40
12 1.23 1.18 1.22
40 0.95 0.95 0.95

Table 2: (Section 4.2.2) Learning saturation profile. Fix the number of bases
in the adaptive process. Mean errors between the true and predicted satu-
ration among 200 testing samples. AMS-net (with both pruning and adding
bases) produces better results when the dof is equal to 6, 8, 10, 12, and it
converges to the projection error when all the bases are used (dof = 40). The
errors are in percentage.

Remark : Our method can be extended naturally to practical applications
with more complicated physics, such as permeability variations, compressible
fluids or the case with gravitational effects. First of all, we assume the
dictionary is precomputed and contains enough basis functions which can
capture the features of the underlying media for a wide range of cases. The
construction of basis functions is discussed in many existing works and is
beyond the scope of this paper. The key of our method is to adaptively
select important basis functions from the known large dictionary through
the proposed sparse learning algorithm and obtain reduced order models for
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Figure 9: (Section 4.2.2) Learning saturation profile. Test case illustration:
saturation at all the first, third and last time steps. The predicted results
matches the reference solution well.

the dynamical system.
In the case of compressible fluids, for example, the two phase flow with gas

and oil, the basis functions we need might be different at different time steps.
If the gravity is also considered, extra bases are needed to approximate the
gravity force. In such cases, our method can automatically choose suitable
sets of basis from the dictionary at corresponding time instances and capture
the complex physical properties. Since the dictionary can be very large to
cover complicated applications, our method is more beneficial to obtain the
sparse representation and achieve an efficient approximation. For the more
complex nonlinear system, one may also consider employing a larger neural
network to approximate the dynamics, this will cause more difficulties for the
learning process. Our algorithm enforces sparsity in the network connections
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and can help training.

4.2.3 Saturation sparse approximation: a simple illustration of
interpretibility

In this section, we will use simple basis functions to approximate the sat-
uration solution to illustrate the interpretibility of the proposed method.
Consider the 10-by-10 coarse mesh in the domain [0, 1] × [0, 1], the abso-
lute permeability is a fractured media and the source term f has a two-spot
well configuration, as shown in Figure 10. To simplify, we will use piecewise
constant basis functions. That is, for each coarse block and each fracture
segment inside the coarse block, we will have a degree of freedom associated
with it. Each basis function has a value equal to 1 in the coarse block or
the fracture segment, and has value equal to 0 elsewhere. The degrees of
freedom (dof) with respect to fracture segments are labeled from dof1 to dof
21 as presented in Figure 10. We perform simulations on the time interval
T = (0, 60], with time step size 4t = 1, and only select the solutions at
time instances t = 10, 20, 30, 40, 50, 60 to train the neural network with the
proposed method. Let r = 2 be the injection rate in the source term, the
solutions at time steps t = 10, 30, 60 are shown in Figure 11. We observe
that the saturation hardly goes into the fracture associated with dof 2, dof 4,
dof 6, and dof 8. Moreover, at the early time steps, the fluid did not saturate
into the fracture associated with dof 15 - dof 21, but was fully saturated in
the last time step. Now, we choose a set of 100 random injection rates in
[1.5, 2.5], and use their corresponding solutions to train the network. Our
purpose is to observe how the network chooses basis functions to represent
fractures and matrices. The results are shown in Table 3. We see that the
network can identify important dofs correctly. This shows the potential of
interpretibility of our proposed method.

5 Conclusion

We present a scalable sparse learning framework, which incorporates some
precomputed basis functions in the learning objective. The network aims to
learn the flow dynamics where the parameters in the flow model contain mul-
tiscale properties. The inputs are random source terms, and the labels are
fine scale solutions at different time steps. The outputs of the neural network
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Figure 10: (Section 4.2.3) The background shows the 10-by-10 coarse mesh.
The absolute permeability κ takes value 1 in the background, and takes value
1000 in the maroon-colored channels. The source function f takes value 0in
the background, f = r(r > 0) in the red region in the bottom left corner,
and f = −r in the red region in the top right corner. The degrees of freedom
(dof) with respect to channels are labeled from dof1 to dof 21.

Figure 11: (Section 4.2.3) From left to right: saturation at t = 10, t = 30,
and t = 60.
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Time step The unselected dofs resulted from AMS-net
t=10 2, 4, 6, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21
t=20 2, 4, 6, 8, 13, 14, 18, 19, 20, 21
t=30 2, 4, 6, 8, 14, 19, 20, 21
t=40 2, 4, 6, 14, 19, 21
t=50 2, 4, 6, 19, 21
t=60 2, 4, 19, 21

Table 3: (Section 4.2.3) The unselected dofs resulted from AMS-net at all
time steps. The saturation hardly goes into the fracture associated with
dof 2, dof 4, dof 6 and dof 8. Moreover, the fluid didn’t saturated into the
fracture associated with dof 15 - dof 21 at the early time steps, but was
fully saturated in the last time step. The desired dofs are identified by our
algorithm.

are coefficients of the solutions corresponding to the basis functions at these
time instances. The predicted solutions are then formed by the product of
the coefficient vectors and basis functions. The objective is to minimize the
differences between the predicted solutions and fine scale reference solutions
over all time steps. The algorithm can adaptively choose important basis
functions from a large pool of different source inputs. The sparsity in the
solution coefficient vector is enforced through a built-in thresholding oper-
ator, which is implemented as an activation function in some layers of the
network. The sparsity of layer connections in the network is achieved by
cutting the connections to coefficients with small magnitude. To avoid drop-
ping too many basis functions and enrich the approximation space during the
training, one can also add some degrees of freedom back through a greedy
procedure. Through adaptive training, one can obtain a sparse set of impor-
tant basis functions and an accurate approximation to the flow dynamics.
Several numerical tests are performed to demonstrate sparse and accurate
approximations to the solutions using the proposed algorithm.
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Figure 12: (Section 4.2.1) Learning velocity fields, test case 1. AMS-net
predictions produces accurate predictions using 1000 basis. The relative l2
error is 1.58% at the last time step.
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