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Abstract

Let exP(n, T,H) denote the maximum number of copies of T in an n-vertex planar
graph which does not contain H as a subgraph. When T = K2, exP(n, T,H) is the
well studied function, the planar Turán number of H, denoted by exP(n,H). The
topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp
upper bound for both exP(n,C4) and exP(n,C5). Later on, Y. Lan, et al. continued

this topic and proved that exP(n,C6) ≤
18(n−2)

7 . In this paper, we give a sharp upper
bound exP(n,C6) ≤

5
2n− 7, for all n ≥ 18, which improves Lan’s result. We also pose

a conjecture on exP(n,Ck), for k ≥ 7.

Keywords Planar Turán number, Extremal planar graph

1 Introduction and Main Results

In this paper, all graphs considered are planar, undirected, finite and contain neither loops

nor multiple edges. We use Ck to denote the cycle on k vertices and Kr to denote the

complete graph on r vertices.

One of the well-known results in extremal graph theory is the Turán Theorem [5], which

gives the maximum number of edges that a graph on n vertices can have without containing
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a Kr as a subgraph. The Erdős-Stone-Simonovits Theorem [2, 3] then generalized this

result and asymptotically determines ex(n,H) for all non-bipartite graphs H : ex(n,H) =

(1− 1
χ(H)−1

)
(

n

2

)

+o(n2), where χ(H) denotes the chromatic number ofH . Over the last decade,

a considerable amount of research work has been carried out in Turán-type problems, i.e.,

when host graphs are Kn, k-uniform hypergraphs or k-partite graphs, see [3, 6].

In 2016, Dowden [1] initiated the study of Turán-type problems when host graphs are

planar, i.e., how many edges can a planar graph on n vertices have, without containing a given

smaller graph? The planar Turán number of a graph H , exP(n,H), is the maximum number

of edges in a planar graph on n vertices which does not contain H as a subgraph. Dowden

[1] obtained the tight bounds exP(n, C4) ≤
15(n−2)

7
, for all n ≥ 4 and exP(n, C5) ≤

12n−33
5

,

for all n ≥ 11. Later on, Y. Lan, et al. [4] obtained bounds exP(n,Θ4) ≤ 12(n−2)
5

, for all

n ≥ 4, exP(n,Θ5) ≤
5(n−2)

2
, for all n ≥ 5 and exP(n,Θ6) ≤

18(n−2)
7

, for all n ≥ 7, where Θk

is obtained from a cycle Ck by adding an additional edge joining any two non-consecutive

vertices. They also demonstrated that their bounds for Θ4 and Θ5 are tight by showing

infinitely many values of n and planar graph on n vertices attaining the stated bounds. As a

consequence of the bound for Θ6 in the same paper, they presented the following corollary.

Corollary 1 (Y. Lan, et al.[4]).

exP(n, C6) ≤
18(n− 2)

7

for all n ≥ 6, with equality when n = 9.

In this paper we present a tight bound for exP(n, C6). In particular, we prove the following

two theorems to give the tight bound.

We denote the vertex and the edge sets of a graph G by V (G) and E(G) respectively.

We also denote the number of vertices and edges of G by v(G) and e(G) respectively. The

minimum degree of G is denoted δ(G). The main ingredient of the result is as follows:

Theorem 2. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥

3. Then e(G) ≤ 5
2
n− 7.
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We use Theorem 2, which considers only 2-connected graphs with no degree 2 (or 1)

vertices and order at least 6, in order to establish our desired result, which bounds gives the

desired bound of 5
2
n− 7 for all C6-free plane graphs with at least 18 vertices.

Theorem 3. Let G be a C6-free plane graph on n (n ≥ 18) vertices. Then

e(G) ≤
5

2
n− 7.

Indeed, there are 17-vertex graphs on 17 vertices with 36 edges, but 5
2
(17)−7 = 35.5 < 36.

One such graph can be seen in Figure 1.

Figure 1: Example of G on 17 vertices such that e(G) > (5/2)v(G)− 7.

We show that, for large graphs, Theorem 3 is tight:

Theorem 4. For every n ∼= 2 (mod 5), there exists a C6-free plane graph G with v(G) =

18n+14
5

and e(G) = 9n, hence e(G) = 5
2
v(G)− 7.

For a vertex v in G, the neighborhood of v, denoted NG(v), is the set of all vertices in G

which are adjacent to v. We denote the degree of v by dG(v) = |NG(v)|. We may avoid the

subscripts if the underlying graph is clear. The minimum degree of G is denoted by δ(G),

the number of components of G is denoted by c(G). For the sake of simplicity, we may use

the term k-cycle to mean a cycle of length k and k-face to mean a face bounded by a k-cycle.

A k-path is a path with k edges.

2 Proof of Theorem 4: Extremal Graph Construction

First we show that for a plane graph G0 with n vertices (n ∼= 7 (mod 10)), each face having

length 7 and each vertex in G0 having degree either 2 or 3, we can construct G, where G is

a C6-free plane graph with v(G) = 18n+14
5

and e(G) = 9n. We then give a construction for

such a G0 as long as n ∼= 7 (mod 10).
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Using Euler’s formula, the fact that every face has length 7 and every degree is 2 or 3,

we have e(G0) =
7(n−2)

5
and the number of degree 2 and degree 3 vertices in G0 are

n+28
5

and

4n−28
5

, respectively.

Given G0, we construct first an intermediate graph G′ by step (1):

(1) Add halving vertices to each edge of G0 and join the pair of halving vertices with

distance 2, see an example in Figure 2. Let G′ denote this new graph, then v(G′) =

v(G0)+ e(G0) =
12n−14

5
and the number of degree 2 and degree 3 vertices in G′ is equal

to the number of degree 2 and degree 3 vertices in G0, respectively.

=⇒

Figure 2: Adding a halving vertex to each edge of G0.

To get G, we apply the following steps (2) and (3) on the degree 2 and 3 vertices in

G′, respectively.

(2) For each degree 2 vertex v in G0, let N(v) = {v1, v2}, and so v1vv2 forms an induced

triangle in G′. Fix v1 and v2, replace v1vv2 with a K−

5 by adding vertices v
′

1, v
′

2 to

V (G′) and edges v
′

1v, v
′

1v
′

2, v
′

1v1, v
′

1v2, v
′

2v1, v
′

2v2 to E(G′). See Figure 3.

v1 v2

v

=⇒

v1 v2

v

v′1

v′2

Figure 3: Replacing a degree-2 vertex of G0 with a K−

5 .
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(3) For each degree 3 vertex v in G0, such that N(v) = {v1, v2, v3}, the set of vertices

{v, v1, v2, v3} then forms an induced K4 in G′. Fix v1, v2 and v3, replace this K4 with a

K−

5 by adding a new vertex v′ to V (G′) and edges v′v, v′v1, v
′v2 to E(G′). See Figure 4.

v1 v2

v3

v =⇒

v1 v2

v3

v

v′

Figure 4: Replacing a degree-3 vertex of G0 with a K−

5 .

For each integer k ≥ 0, and n = 10k+7 we present a construction for such a G0, call it G
k
0:

Let vti and vbi (1 ≤ i ≤ k + 1) be the top and bottom vertices of the heptagonal grids with 3

layers and k columns, respectively (see the red vertices in Figure 5) and v be the extra vertex

in Gk
0 but not in the heptagonal grid. We join vt1v, vv

b
1 and vtiv

b
i (2 ≤ i ≤ k+1). Clearly, Gk

0

is a (10k+7)-vertex plane graph and each face of Gk
0 is a 7-face. Obviously e

(

Gk
0

)

= 14k+7,

and the number of degree 2 and 3 vertices are 2k + 7 = n+28
5

and 8k = 4n−28
5

respectively.

After applying steps (1), (2), and (3) on Gk
0, we get G. It is easy to verify that G is a

C6-free plane graph with

v(G) = v(Gk
0) + e(Gk

0) + 2(2k + 7) + 8k = (10k + 7) + (14k + 7) + 12k + 14 = 36k + 28

e(G) = 9v(Gk
0) = 90k + 63.

Thus, e(G) = 5
2
v(G)− 7.

Remark 1. In fact, for k ≥ 1 and n = 10k + 2, there exists a graph Hk
0 which is obtained

from Gk
0 by deleting vertices (colored green in Figure 5) x1, x2, x3, x4, x5 and adding the

edge vt1y. Clearly, Hk
0 is an 10k + 2-vertex plane graph such that all faces have length 7.

Moreover, e(Hk
0 ) = 14k, the number of degree-2 and degree-3 vertices are 2k+ 6 = n+28

5
and
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· · ·

· · ·

· · ·

v

vt1

vt2 vtk−2 vtk−1 vtk

vtk+1

vb1

vb2 vb3 vbk−1
vbk

vbk+1

x1

x5

x4 y
x2

x3

Figure 5: The graph Gk
0, k ≥ 1, in which each face has length 7. The graph Hk

0 (see
Remark 1) is obtained by deleting x1, . . . , x5 and adding the edge vt1y.

8k− 4 = 4n−28
5

, respectively. After applying steps (1), (2), and (3) to Hk
0 , we get a graph H

that is a C6-free plane graph with e(H) = (5/2)v(H)− 7.

Thus, for any k ∼= 2 (mod 5), we have the graphs above such that each face is a 7-gon

and we get a C6-free plane graph on n vertices with (5/2)n− 7 edges for n ∼= 10 (mod 18) if

n ≥ 28.

3 Definitions and Preliminaries

We give some necessary definitions and preliminary results which are needed in the proof of

Theorems 2 and 3.

Definition 5. Let G be a plane graph and e ∈ E(G). If e is not in a 3-face of G, then we call

it a trivial triangular-block. Otherwise, we recursively construct a triangular-block in

the following way. Start with H as a subgraph of G, such that E(H) = {e}.

(1) Add the other edges of the 3-face containing e to E(H).
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(2) Take e′ ∈ E(H) and search for a 3-face containing e′. Add these other edge(s) in this

3-face to E(H).

(3) Repeat step (2) till we cannot find a 3-face for any edge in E(H).

We denote the triangular-block obtained from e as the starting edge, by B(e).

Let G be a plane graph. We have the following three observations:

(i) If H is a non-trivial triangular-block and e1, e2 ∈ E(H), then B(e1) = B(e2) = H .

(ii) Any two triangular-blocks of G are edge disjoint.

(iii) If B is a triangular-block with the unbounded region being a 3-face, then B is a

triangulation graph.

Let B be the family of triangular-blocks of G. From observation (ii) above, we have

e(G) =
∑

B∈B

e(B),

where e(G) and e(B) are the number of edges of G and B respectively.

Next, we distinguish the types of triangular-blocks that a C6-free plane graph may con-

tain. The following lemma gives us the bound on the number of vertices of triangular-blocks.

Lemma 6. Every triangular-block of G contains at most 5 vertices.

Proof. We prove it by contradiction. Let B be a triangular-block of G containing at least 6

vertices. We perform the following operations: delete one vertex from the boundary of the

unbounded face of B sequentially until the number of vertices of the new triangular block B
′

is 6. Next, we show that B′ is not a triangular-block in G. Suppose that it is. We consider

the following two cases to complete the proof.

Case 1. B′ contains a separating triangle.

Let v1v2v3 be the separating triangle. Without loss of generality, assume that the inner

region of the triangle contains two vertices say, v4 and v5. The outer region of the triangle
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contains one vertex, say v6. Since the unbounded face is a 3-face, the inner structure is

a triangulation. Without loss of generality, let the inner structure be as shown in Figure

6(a). Now consider the vertex v6. If v1, v2 ∈ N(v6), then v3v4v5v2v6v1v3 is a 6-cycle in G, a

contradiction. Similarly for the cases when v1, v3 ∈ N(v6) and v2, v3 ∈ N(v6).

Case 2. B′ contains no separating triangle.

Consider a triangular face v1v2v3v1. Let v4 be a vertex in the triangular-block such that

v2v3v4v2 is a 3-face. Notice that v1v4 /∈ E(B′), otherwise we get a separating triangle in B′.

Let v5 be a vertex in B′ such that v2v4v5v2 is a 3-face. Notice that v6 cannot be adjacent to

both vertices in any of the pairs {v1, v2}, {v1, v3}, {v2, v5}, {v3, v4}, or {v4, v5}. Otherwise,

C6 ⊂ G. Also v3v5 /∈ E(B′), otherwise we have a separating triangle. So, let v1v5 ∈ E(B′)

and v1, v5 ∈ N(v6) (see Figure 6(b)). In this case v1v6v5v2v4v3v1 results in a 6-cycle, a

contradiction.

v2

v1

v3

v5

v4

(a)

v1 v2

v3 v4

v5

v6

(b)

Figure 6: The structure of B′ when it contains a separating triangle or not, respectively.

Now we describe all possible triangular-blocks in G based on the number of vertices the

block contains. For k ∈ {2, 3, 4, 5}, we denote the triangular-blocks on k vertices as Bk.

Triangular-blocks on 5 vertices.

There are four types of triangular-blocks on 5 vertices (see Figure 7). Notice that B5,a is a

K−

5 .
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B5,a B5,b B5,c B5,d

Figure 7: Triangular-blocks on 5 vertices.

Triangular-blocks on 4, 3, and 3 vertices.

There are two types of triangular-blocks on 4 vertices. See Figure 8. Observe that B4,a

is a K4. The 3-vertex and 2-vertex triangular-blocks are simply K3 and K2 (the trivial

triangular-block), respectively.

B4,a B4,b B3 B2

Figure 8: Triangular-blocks on 4,3 and 2 vertices.

Definition 7. Let G be a plane graph.

(i) A vertex v in G is called a junction vertex if it is in at least two distinct triangular-

blocks of G.

(ii) Let B be a triangular-block in G. An edge of B is called an exterior edge if it is on

a boundary of non-triangular face of G. Otherwise, we call it an interior edge. An

endvertex of an exterior edge is called an exterior vertex. We denote the set of all

exterior and interior edges of B by Ext(B) and Int(B) respectively. Let e ∈ Ext(B),

a non-triangular face of G with e on the boundary is called the exterior face of e.

Notice that an exterior edge of a non-trivial triangular-block has exactly one exterior

face. On the other hand, if G is a 2-connected plane graph, then every trivial triangular-

block has two exterior faces. For a non-trivial triangular-block B of a plane graph G, we
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call a path P = v1v2v3 . . . vk an exterior path of B, if v1 and vk are junction vertices and

vivi+1 are exterior edges of B for i ∈ {1, 2, . . . , k − 1} and vj is not junction vertex for all

j ∈ {2, 3, . . . , k − 1}. The corresponding face in G where P is on the boundary of the face

is called the exterior face of P .

Next, we give the definition of the contribution of a vertex and an edge to the number

of vertices and faces of C6-free plane graph G. All graphs discussed from now on are C6-free

plane graph.

Definition 8. Let G be a plane graph, B be a triangular-block in G and v ∈ V (B). The

contribution of v to the vertex number of B is denoted by nB(v), and is defined as

nB(v) =
1

# triangular-blocks in G containing v
.

We define the contribution of B to the number of vertices of G as n(B) =
∑

v∈V (B)

nB(v).

Obviously, v(G) =
∑

B∈B

n(B), where v(G) is the number of vertices in G and B is the

family of triangular-blocks of G.

Let BK−

5
be a triangular-block of G isomorphic to a B5,a with exterior vertices v1, v2, v3,

where v1 and v3 are junction vertices, see Figure 9 for an example. Let F be a face in G

such that V (F ) contains all exterior vertices v1,1, . . . , v1,m, v2,1, . . . , v2,m, v3,1, . . . , v3,m of m

(m ≥ 1) copies of BK−

5
, such that v1,i, v2,i, v3,i are the exterior vertices of the i-th BK−

5
and

v1,i, v3,i (1 ≤ i ≤ m) are junction vertices. Let CF denote the cycle associated with the face

F . We alter E(CF ) in the following way:

E(C ′

F ) := E(CF )− {v1,1v2,1v3,1} − · · · − {v1,mv2,mv3,m} ∪ {v1,1v3,1} ∪ . . . ∪ {v1,m, v3,m}.

Hence, the length of F as |E(C ′
F )|= |E(CF )|−m. For example, in Figure 9, |E(CF )|= 11

but |E(C ′
F )|= 9.

Now we are able to define the contribution of an “edge” to the number of faces of

C6-free plane graph G.

Definition 9. Let F be a exterior face of G and CF := {e1, e2, . . . , ek} be the cycle associated

with F . The contribution of an exterior edge e to the face number of the exterior face F , is

denoted by fF (e), and is defined as follows.
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v1

v2 v3

v4

v5

Figure 9: An example of a face containing all the exterior vertices of at least one BK−

5
.

(i) If e1 and e2 are adjacent exterior edges of BK−

5
, then fF (e1) + fF (e2) =

1

|C ′
F |
, and

fF (ei) =
1

|C ′
F |
, where i ∈ {3, 4, . . . , k}.

(ii) Otherwise, fF (e) =
1

|CF |
.

Note that
∑

e∈E(F )

fF (e) = 1. For a triangular-block B, the total face contribution of B

is denoted by fB and defined as fB = (# interior faces of B) +
∑

e∈Ext(B)

fF (e), where F is

the exterior face of B with respective to e. Obviously, f(G) =
∑

B∈B

f(B), where f(G) is the

number of faces of G.

4 Proof of Theorem 2

We begin by outlining our proof. Let f , n, and e be the number of faces, vertices, and edges

of G respectively. Let B be the family of all triangular-blocks of G.

The main target of the proof is to show that

7f + 2n− 5e ≤ 0. (1)

Once we show (1), then by using Euler’s Formula, e = f+n−2, we can finish the proof of

Theorem 2. To prove (1), we show the existence of a partition P1,P2, . . . ,Pm of B such that

11



7
∑

B∈Pi

f(B) + 2
∑

B∈Pi

n(B)− 5
∑

B∈Pi

e(B) ≤ 0, for all i ∈ {1, 2, 3 . . . , m}. Since f =
∑

B∈B

f(B),

n =
∑

B∈B

n(B) and e =
∑

B∈B

e(B) we have

7f + 2n− 5e = 7

m
∑

i

∑

B∈Pi

f(B) + 2

m
∑

i

∑

B∈Pi

n(B)− 5

m
∑

i

∑

B∈Pi

e(B)

=

m
∑

i

(

7
∑

B∈Pi

f(B) + 2
∑

B∈Pi

n(B)− 5
∑

B∈Pi

e(B)

)

≤ 0.

The following proposition will be useful in many lemmas.

Proposition 10. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with

δ(G) ≥ 3.

(i) If B is a nontrivial triangular-block (that is, not B2), then none of the exterior faces

can have length 5.

(ii) If B is in {B5,a, B5,b, B5,c, B4,a}, then none of the exterior faces can have length 4.

(iii) If B is in {B5,d, B4,b} and an exterior face of B has length 4, then that 4-face must

share a 2-path with B (shown in blue in Figures 13 and 14) and the other edges of the

face must be in trivial triangular-blocks.

(iv) No two 4-faces can be adjacent to each other.

Proof. (i) Observe that any pair of consecutive exterior vertices of a nontrivial triangular-

block has a path of length 2 (counted by the number of edges) between them and any

pair of nonconsecutive exterior vertices has a path of length 3 between them. So having

a face of length 5 incident to this triangular-block would yield a C6, a contradiction.

(ii) If B is in {B5,a, B5,b, B5,c, B4,a}, then any pair of consecutive exterior vertices of the

listed triangular-blocks has a path of length 3 between them. It remains to consider

nonconsecutive vertices for {B5,b, B5,c}. For B5,b each pair of nonconsecutive exterior

vertices has a path of length 3 between them. In the case where B is B5,c, this is true

for all pairs without an edge between them. As for the other pairs, if they are in the

12



same 4-face, then at least one of the degree-2 vertices in B must have degree 2 in G,

a contradiction.

(iii) In both B5,d and B4,b, any pair of consecutive exterior vertices has a path of length 3

between them. For B5,d, in Figure 13, we see that there is a path of length 4 between

v2 and v4 and so the only way a 4-face can be adjacent to B is via a 2-path with

endvertices v1 and v3. In fact, because there is no vertex of degree 2, the path must be

v1v4v3. For B4,b, in Figure 13, we see that because B cannot have a vertex of degree

2, the 4-face and B cannot share the path v2v1v4 or the path v2v3v4. Thus the only

paths that can share a boundary with a 4-face are v1v4v3 and v1v2v3.

As to the other blocks that form edges of such a 4-face. In Figure 10, we see that if,

say, v1u is in a nontrivial triangular-block, then there is a vertex w in that block, in

which case wv1xv4v3uw forms a 6-cycle, a contradiction.

(iv) If two 4-faces share an edge, then there is a 6-cycle formed by deleting that edge. If

two 4-faces share a 2-path, then the midpoint of that path is a vertex of degree 2 in

G. In both cases, a contradiction.

v1

v3

v4x u

w v1

x

v3

v4 u

w

Figure 10: Proposition 10(iii): The blocks defined by blue edges must be trivial.

To show the existence of such a partition we need the following lemmas.

Lemma 11. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is a triangular-block in G such that B /∈ {B5,d, B4,b}, then 7f(B) + 2n(B)− 5e(B) ≤ 0.

Proof. We separate the proof into several cases.

13



Case 1: B is B5,a.

Let v1, v2 and v3 be the exterior vertices of K−

5 . At least two of them must be junction

vertices, otherwise G contains a cut vertex. We consider 2 possibilities to justify this case.

(a) Let B be B5,a with 3 junction vertices (see Figure 11(a)). By Proposition 10, every

exterior edge in B is contained in an exterior face with length at least 7. Thus,

f(B) = (# interior faces of B) +
∑

e∈Ext(B)

fF (e) ≤ 5 + 3/7. Moreover, every junction

vertex is contained in at least 2 triangular-blocks, so we have n(B) ≤ 2 + 3/2. With

e(B) = 9, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(b) Let B be B5,a with 2 junction vertices, say v2 and v3 (see Figure 11(b)). Let F and F1

are exterior faces of the exterior edge v2v3 and exterior path v2v1v3 of the triangular-

block respectively. Notice that v1v2 and v2v3 are the adjacent exterior edges in the

same face F1, hence |C(F1)|≥ 8. By Definition 9, we have fF1
(v1v2) + fF1

(v1v3) ≤ 1/7.

Because there can be no C6, one can see that regardless of the configuration of the

BK−

5
, it is the case that fF (v2v3) ≤ 1/7. Thus, f(B) ≤ 5 + 2/7. Moreover, since v1

and v3 are contained in at least 2 triangular-blocks, we have n(B) ≤ 3 + 2/2. With

e(B) = 9, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

v1

v2 v3

K−

5

(a)

v1

v2 v3

F1

F

K−

5

(b)

Figure 11: A B5,a triangular-block with 3 and 2 junction vertices, respectively.
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Case 2: B is in {B4,a, B5,b, B5,c}.

(a) Let B be a B4,a. By Proposition 10, each face incident to this triangular-block has

length at least 7. So, f(B) ≤ 3 + 3/7. Because there is no cut-vertex, this triangular-

block must have at least two junction vertices, hence n(B) ≤ 2 + 2/2. With e(B) = 6,

we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(b) Let B be a B5,b. There are 4 faces inside the triangular-block and each face incident

to this triangular-block has length at least 7. So, f(B) ≤ 4 + 4/7. Because there

is no cut-vertex, this triangular-block must have at least two junction vertices, hence

n(B) ≤ 3 + 2/2. With e(B) = 8, we obtain 7f(B) + 2n(B) − 5e(B) ≤ 0, as seen in

Table 2.

(c) Let B be a B5,c. Similarly, f(B) ≤ 3+5/7 and because there are at least two junction

vertices, n(B) ≤ 3 + 2/2. With e(B) = 7, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1.

Case 3: B is B3.

Let v1, v2 and v3 be the exterior vertices of triangular-block B. Each of these three must be

junction vertices since there is no degree 2 vertex in G, which implies that each is contained

in at least 2 triangular-blocks. We consider two possibilities:

(a) Let the three exterior vertices be contained in exactly 2 triangular-blocks. By Propo-

sition 10(i), the length of each exterior face is either 4 or at least 7. We want to show

that at most one exterior face has length 4.

If not, then let x1 be a vertex that is in two such faces. Consider the triangular-block

incident to B at x1, call it B
′. By Proposition 10, B′ is not in {B5,a, B5,b, B5,c, B4,a}.

If B′ is in {B5,d, B4,b, B3}, then the triangular-block has vertices ℓ2, ℓ3, each adjacent to

x1 and the length-4 faces consist of {v1, ℓ2, m2, v2} and {v1, ℓ3, m3, v3}. Either ℓ2 ∼ ℓ3

(in which case ℓ2m2v2v3m3ℓ3ℓ2 is a 6-cycle, see Figure 12(a)) or there is a ℓ′ distinct

from v1 that is adjacent to both ℓ2 and ℓ3 (in which case ℓ′ℓ2m2v2v1ℓ3ℓ2 is a 6-cycle,

see Figure 12(b)).
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If B′ isB2, then the trivial triangular-block is {v1, ℓ}, in which case {ℓ,m2, v2, v1, v3, m3}

is a C6, see Figure 12(c). Thus, we may conclude that if each of the three exterior

vertices are in exactly 2 triangular-blocks, then f(B) ≤ 1+2/7+1/4 and n(B) ≤ 3/2.

With e(B) = 3, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −5/4.

v1

v2 v3

ℓ2 ℓ3

m2 m3
B

B′

(a)

v1

v2 v3

ℓ2 ℓ3

ℓ′

m2 m3
B

B′

(a)

v1

v2 v3

ℓ

m2 m3

B

B′

(a)

Figure 12: A B3 triangular-block, B and the various cases of what must occur if B is incident
to two 4-faces.

(b) Let at least one exterior vertex be contained in at least 3 triangular-blocks and the

others be contained at least 2 triangular-blocks. In this case, we have f(B) ≤ 1 + 3/4

and n(B) ≤ 2/2 + 2/3. With e(B) = 3, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1/12.

Case 4: B is B2.

Note that the fact that there is no vertex of degree 2 gives that if an endvertex is in exactly

two triangular-blocks, then the other one cannot be a B2. We consider three possibilities:

(a) Let each endvertex be contained in exactly 2 triangular-blocks. Since neither of the

triangular-blocks incident to B can be trivial, they cannot be incident to a face of length

5 by Proposition 10(i). Thus, B cannot be incident to a face of length 5. Moreover,

the two faces incident to B cannot both be of length 4, again by Proposition 10(iv).

Hence, f(B) ≤ 1/4 + 1/7. Clearly n(B) ≤ 2/2 and with e(B) = 1, we obtain 7f(B) +

2n(B)− 5e(B) ≤ −1/4.

(b) Let one endvertex be contained in exactly 2 triangular-blocks and the other endvertex

be contained in at least 3 triangular-blocks. This is similar to case (a) in that neither
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face can have length 5 and they cannot both have length 4. The only difference is that

n(B) ≤ 1/2 + 1/3 and so 7f(B) + 2n(B)− 5e(B) ≤ −7/12.

(c) Let each endvertex be contained in at least 3 triangular-blocks. The two faces cannot

both be of length 4 by Proposition 10(iv). Hence, f(B) ≤ 1/4 + 1/5 and n(B) ≤ 2/3.

With e(B) = 1, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −31/60.

Lemma 12. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B5,d, then 7f(B) + 2n(B) − 5e(B) ≤ 1/2. Moreover, 7f(B) + 2n(B) − 5e(B) ≤ 0

unless B shares a 2-path with a 4-face.

v1

v4v5

v3

v2

(a)

v1

v4v5

v3

v2

(b)

Figure 13: A B5,d triangular-block and how a 4-face must be incident to it.

Proof. Let B be B5,d with vertices v1, v2, v3, v4, and v5, as shown in Figure 13(a). By

Proposition 10(i), no exterior face of B can have length 5. By Proposition 10(iii), if there is

an exterior face of B that has length 4, this 4-face must contain the path v1v4v3.

Moreover, since there is no vertex of degree 2, v2 is a junction vertex. Because G has no

cut-vertex, there is at least one other junction vertex. We may consider the following cases:

(a) Let v4 be a junction vertex. This prevents an exterior face of length 4. Thus, each

exterior face has length at least 7. Hence, f(B) ≤ 4 + 4/7 and n(B) ≤ 3 + 2/2. With

e(B) = 8, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.
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(b) Let v4 fail to be a junction vertex and exactly one of v1, v3 be a junction vertex.

Without loss of generality let it be v3. In this case, again, each exterior face has

length1 at least 7. Again, f(B) ≤ 4 + 4/7 and n(B) ≤ 3 + 2/2. With e(B) = 8, we

obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(c) Let v4 fail to be a junction vertex and both v1 and v3 be junction vertices. Here either

the exterior path v1v4v3 is part of an exterior face of length at least 4 or each edge

must be in a face of length at least 7. If the exterior face is of length at least 7, then

f(B) ≤ 4 + 4/7, otherwise f(B) ≤ 4 + 2/4 + 2/7. In both cases, n(B) ≤ 2 + 3/2 and

e(B) = 8. Hence we obtain 7f(B) + 2n(B) − 5e(B) ≤ −1 in the first instance and

7f(B) + 2n(B)− 5e(B) ≤ 1/2 in the case where B is incident to a 4-face.

Lemma 13. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B4,b, then 7f(B) + 2n(B)− 5e(B) ≤ 4/3. Moreover, 7f(B) + 2n(B)− 5e(B) ≤ 1/6

if B shares a 2-path with exactly one 4-face and 7f(B) + 2n(B) − 5e(B) ≤ 0 if B fails to

share a 2-path with any 4-face.

v1

v2

v3

v4

(a)

v1

v2

v3

v4

(b)

v1

v2

v3

v4

(c)

Figure 14: A B4,b triangular-block and how a 4-face must be incident to it.

Proof. Let B be with vertices v1, v2, v3, and v4, as shown in Figure 14(a). By Proposi-

tion 10(i), no exterior face of B can have length 5. If there is an exterior face of B that has

1In fact, it can be shown that the length of the exterior face containing the path v2v1v4v3 is at least 9.
This yields f(B) ≤ 4+1/7+3/9 and 7f(B)+2n(B)−5e(B) ≤ −2/3. However, this precision is unnecessary.
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length 4, it is easy to verify that being C6-free and having no vertex of degree 2 means that

the junction vertices must be v1 and v3. We may consider the following cases.

(a) Let either v2 or v4 be a junction vertex and, without loss of generality, let it be v2. All

the exterior faces have length at least 7 except for the possibility that the path v1v4v3

may form two sides of a 4-face. Hence, f(B) ≤ 2 + 2/4 + 2/7 and n(B) ≤ 1 + 3/2.

With e(B) = 5, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1/2.

(b) Let neither v2 nor v4 be a junction vertex. Because there is no cut-vertex, this requires

both v1 and v3 to be junction vertices. Hence, there are two exterior faces: One that

shares the exterior path v1v4v3 and the other shares the exterior path v1v2v3. Each

exterior face has length either 4 or at least 7. We consider several subcases:

(i) If both faces are of length at least 7, then f(B) ≤ 2 + 4/7, and n(B) ≤ 2 + 2/2.

With e(B) = 5, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1.

(ii) If only one of the exterior faces is of length 4, then f(B) ≤ 2 + 2/7 + 2/4.

Moreover, at least one of v1, v3 must be a junction vertex for more than two

triangular-blocks, otherwise either v(G) = 5 or the vertex incident to two blue

edges in Figure 14(b) is a cut-vertex. Hence, n(B) ≤ 2 + 1/3 + 1/2 and with

e(B) = 5, we have 7f(B) + 2n(B)− 5e(B) ≤ 1/6.

(iii) Both exterior faces are of length 4. Thus f(B) ≤ 2+ 4/4. By Proposition 10(iii),

the blocks represented by the blue edges in Figure 14(c) are each trivial. Hence

n(B) ≤ 2 + 2/3. With e(B) = 5, we get 7f(B) + 2n(B)− 5e(B) ≤ 4/3.

Tables 2 and 3 in Appendix A give a summary of Lemmas 11, 12, and 13.

Lemma 14. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥

3. Then the triangular-blocks of G can be partitioned into sets, P1, P2,. . . , Pm such that

7
∑

B∈Pi

f(B) + 2
∑

B∈Pi

n(B)− 5
∑

B∈Pi

e(B) ≤ 0 for all i ∈ [m].
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Proof. As it can be seen from Tables 2 and 3 in Appendix A, there are three possible cases

where 7f(B) + 2n(B)− 5e(B) assumes a positive value. We deal with each of these blocks

as follows.

v1

v2

v3

v4v5
u

B′

B′′

Figure 15: Structure of a B5,d if it is incident to a 4-face, as in Lemma 14. The triangular-
blocks B′ and B′′ are trivial.

(1) Let B be a B5,d triangular-block as described in the proof of Lemma 12(c). See Fig-

ure 15.

By Proposition 10(iii), the edges v1u and v3u are trivial triangular-blocks. Denote these

triangular-blocks as B′ and B′′. Consider B′. One of the exterior faces of B′ has length

4 whereas by Proposition 10(iv),the other has length at least 5. It must have length at

least 7 because if it had length 5, then the path v1v3u would complete it to a 6-cycle.

Thus, f(B′) ≤ 1/4+ 1/7. Since the vertex u cannot be of degree 2, then this vertex is

shared in at least three triangular-blocks. Thus, n(B′) ≤ 1/2 + 1/3. With e(B′) = 1,

we obtain 7f(B′)+2n(B′)−5e(B′) ≤ −7/12 and similarly, 7f(B′′)+2n(B′′)−5e(B′′) ≤

−7/12. Define P ′ = {B,B′, B′′}. Thus, 7
∑

B∗∈P ′

f(B∗)+2
∑

B∗∈P ′

n(B∗)−5
∑

B∗∈P ′

e(B∗) ≤

1/2 + 2(−7/12) = −2/3.

Therefore, for each triangular-block in G as described in Lemma 12(c), it belongs to a

set P ′ of three triangular-blocks such that 7
∑

B∗∈P ′

f(B∗)+2
∑

B∗∈P ′

n(B∗)−5
∑

B∗∈P ′

e(B∗) ≤

0. Denote such sets as P1,P2, . . . ,Pm1
if they exist.

(2) Let B be a B4,b triangular-block as described in the proof of Lemma 13(b)(ii). See

Figure 16(a).
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v1

v2

v3

v4
u1

B′

B′′

(a)

v1

v2

v3

v4
u1u2

B′

B′′

B′′′

B′′′′

(b)

Figure 16: Structure of a B4,b triangular-block if it is incident to a 4-face, as in Lemma 14.
The triangular-blocks B′, B′′, B′′′, and B′′′′ are all trivial.

By Proposition 10(iii), the edges v1u1 and v3u1 are trivial triangular-blocks. Denote

them as B′ and B′′, respectively. Consider B′. One of the exterior faces of B′ has

length 4 and by Proposition 10(iv), the other has length at least 5. Thus, f(B′) ≤

1/4 + 1/5. Since the vertex u1 cannot be of degree 2, then this vertex is shared in at

least three triangular-blocks. Thus, n(B′) ≤ 1/2 + 1/3. With e(B′) = 1, we obtain

7f(B′)+2n(B′)−5e(B′) ≤ −11/60 and similarly, 7f(B′′)+2n(B′′)−5e(B′′) ≤ −11/60.

Define P ′′ = {B,B′, B′′}. Thus, 7
∑

B∗∈P ′′

f(B∗)+2
∑

B∗∈P ′′

n(B∗)−5
∑

B∗∈P ′′

e(B∗) ≤ 1/6+

2(−11/60) = −1/5.

Therefore, for each triangular-block in G as described in Lemma 13(b)(ii), it be-

longs to a set P ′′ of three triangular-blocks such that 7
∑

B∗∈P ′′

f(B∗) + 2
∑

B∗∈P ′′

n(B∗)−

5
∑

B∗∈P ′′

e(B∗) ≤ 0. Denote such sets as Pm1+1,Pm1+2, . . . ,Pm2
if they exist.

(3) Let B be a B4,b triangular-block as described in the proof of Lemma 13(b)(iii). See

Figure 16(b).

By Proposition 10(iii), the edges v1u1, v3u1, v1u2, and v3u2 are trivial triangular-blocks.

Denote them as B′, B′′, B′′′ and B′′′′ respectively. Consider B′. One of the exterior faces

of B′ has length 4 whereas the other has length at least 5. Thus, f(B′) ≤ 1/4 + 1/5.

Since the vertex u1 cannot be of degree 2, then this vertex is shared in at least three

triangular-blocks. Clearly v1 is in at least three triangular-blocks. Thus, n(B′) ≤ 2/3.

With e(B′) = 1, we obtain 7f(B′)+2n(B′)−5e(B′) ≤ −31/60 and the same inequality
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holds for B′′, B′′′, and B′′′′.

Define P ′′′ = {B,B′, B′′, B′′′, B′′′′}. Thus, 7
∑

B∗∈P ′′

f(B∗)+2
∑

B∗∈P ′′

n(B∗)−5
∑

B∗∈P ′′

e(B∗) ≤

4/3 + 4(−31/60) = −11/15.

Therefore, for each triangular-block in G as described in Lemma 13(b)(iii), it be-

longs to a set P ′ of three triangular-blocks such that 7
∑

B∗∈P ′′′

f(B∗) + 2
∑

B∗∈P ′′′

n(B∗)−

5
∑

B∗∈P ′′′

e(B∗) ≤ 0. Denote such sets as Pm2+1,Pm2+2, . . . ,Pm3
if they exist.

Now define Pm3+1 = B −
m3
⋃

i=1

Pi, where B is the set of all blocks of G. Clearly, for each

block B ∈ Pm3+1, 7f(B) + 2n(B) − 5e(B) ≤ 0. Thus, 7
∑

B∈Pm3+1

f(B) + 2
∑

B∈Pm3+1

n(B) −

5
∑

B∈Pm3+1

e(B) ≤ 0. Putting m := m3 + 1 we got the partition P1,P2, . . . ,Pm of B meeting

the condition of the lemma.

This completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be a C6-free plane graph. We will show that either 5v(G)− 2e(G) ≥ 14 or v(G) ≤ 17.

If we delete a vertex x from G, then

5v(G− x)− 2e(G− x) = 5(v(G)− 1)− 2(e(G)− deg(x))

= 5v(G)− 2e(G)− 5 + 2 deg(x)

≥ 5v(G)− 2e(G)− 1.

So, graph G has an induced subgraph G′ with δ(G) ≥ 3 with

5v(G)− 2e(G) ≥ 5v(G′)− 2e(G′) + (v(G)− v(G′)) (2)

In line with usual graph theoretic terminology, we call a maximal 2-connected subgraph a

block. Let B′ denote the set of blocks of G′ with the ith block having ni vertices and ei

edges. Let b be the total number of blocks of G′. Specifically, let b2, b3, b4, and b5 denote
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min of 5n− 2e− 5

n ≥ 6 14− 5 ≥ 9 Theorem 2
n = 5 5(5)− 2(9)− 5 ≥ 2 B5,a, Figure 7
n = 4 5(4)− 2(6)− 5 ≥ 3 B4,a, Figure 8
n = 3 5(3)− 2(3)− 5 ≥ 4 B3, Figure 8
n = 2 5(2)− 2(2)− 5 ≥ 3 B2, Figure 8

Table 1: Estimates of 5n− 2e− 5 for various block sizes.

the number of blocks of size 2, 3, 4, and 5, respectively. Let b6 denote the number of blocks

of size at least 6. Then we have b = b6 + b5 + b4 + b3 + b2 and, using Table 1:

5v(G′)− 2e(G′) = 5

(

b
∑

i=1

ni − (b− 1)

)

− 2
b
∑

i=1

ei

=

b
∑

i=1

(5ni − 2ei − 5) + 5

≥ 9b6 + 2b5 + 3b4 + 4b3 + 3b2 + 5 (3)

Combining (2) and (3), we obtain

5v(G)− 2e(G) ≥ 9b6 + 2b5 + 3b4 + 4b3 + 3b2 + 5 + (v(G)− v(G′)) (4)

If b6 ≥ 1, then the right-hand side of (4) is at least 14, as desired.

So, let us assume that b6 = 0 and b = b5 + b4 + b3 + b2. Furthermore,

v(G′) = 5b5 + 4b4 + 3b3 + 2b2 − (b− 1)

= 4b5 + 3b4 + 2b3 + b2 + 1. (5)

So, substituting 2b5 from (5) into (4), we have

5v(G)− 2e(G) ≥ 2b5 + 3b4 + 4b3 + 3b2 + 5 + (v(G)− v(G′))

=

(

1

2
v(G′)−

3

2
b4 − b3 −

1

2
b2 −

1

2

)

+ 3b4 + 4b3 + 3b2 + 5 + (v(G)− v(G′))

= v(G)−
1

2
v(G′) +

3

2
b4 + 3b3 +

5

2
v2 +

9

2

≥
1

2
v(G) +

9

2
,

which is strictly larger than 13 if v(G) ≥ 18. Since 5v(G)− 2e(G) is an integer, it is at least

14 and this completes the proof of Theorem 3.
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Remark 2. Observe that for n ≥ 17, the only graphs on n vertices with e edges such that

e > (5/2)n− 7 have blocks of order 5 or less and by (4), there are at most 4 such triangular

blocks. A bit of analysis shows that the maximum number of edges is achieved when the

number of blocks of order 5 is as large as possible.

6 Conclusions

We note that the proof of Theorem 2, particularly Lemma 14, can be rephrased in terms of

a discharging argument.

We believe that our construction in Theorem 4 can be generalized to prove exP(n, Cℓ)

for ℓ sufficiently large. That is, for certain values of n, we try to construct G0, a plane graph

with all faces of length ℓ+ 1 with all vertices having degree 3 or degree 2.

If such a G0 exists, then the number of degree-2 and degree-3 vertices are (ℓ−5)n+4(ℓ+1)
ℓ−1

and 4(n−ℓ−1)
ℓ−1

, respectively. We could then apply steps similar to (1), (2), and (3) in the proof

of Theorem 4 in that we add halving vertices and insert a graph Bℓ−1 (see Figure 17) in

place of vertices of degree 2 and 3. For the resulting graph G,

v(G) = v(G0) + e(G0) + (ℓ− 4)
(ℓ− 5)n+ 4(ℓ+ 1)

ℓ− 1
+ (ℓ− 5)

4(n− ℓ− 1)

ℓ− 1

= n +
ℓ+ 1

ℓ− 1
(n− 2) +

(ℓ2 − 5ℓ)n+ 2(ℓ+ 1)

ℓ− 1

=
ℓ2 − 3ℓ

ℓ− 1
n +

2(ℓ+ 1)

ℓ

e(G) = (3ℓ− 9)v(G0) = (3ℓ− 9)n

Therefore, e(G) = 3(ℓ−1)
ℓ

v(G)− 6(ℓ+1)
ℓ

. We conjecture that this is the maximum number

of edges in a Cℓ-free planar graph.

Conjecture 15. Let G be an n-vertex Cℓ-free plane graph (ℓ ≥ 7), then there exists an

integer N0 > 0, such that when n ≥ N0, e(G) ≤ 3(ℓ−1)
ℓ

n− 6(ℓ+1)
ℓ

.
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B6 B7 B8

Figure 17: Bℓ−1 is used in the construction of a Cℓ-free graph.

7 Acknowledgements
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A Tables

The following tables give a summary of the results from Lemmas 11, 12, and 13.

A red edge incident to a vertex of a triangular-block indicates the corresponding vertex

is a junction vertex. Moreover, if a vertex has only one red edge, it is to indicate the vertex

is shared in at least two triangular-blocks. Whereas if a vertex has two red edges, it means

that the vertex is shared in at least three blocks.

A pair of blue edges indicates the boundary of a 4-face.

Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 11
1(a)

B5,a
K−

5

5 +
3

7
2 +

3

2
9 0

Lemma 11
1(b)

B5,a K−

5
5 +

2

7
3 +

2

2
9 0

Lemma 11
2(b)

B5,b 4 +
4

7
3 +

2

2
8 0

Lemma 11
2(c)

B5,c 3 +
5

7
3 +

2

2
7 −1

Lemma 12
(a)

B5,d 4 +
4

7
3 +

2

2
8 0

Lemma 12
(b)

B5,d 4 +
4

7
3 +

2

2
8 0

Lemma 12
(c)

B5,d 4 +
2

4
+

2

7
2 +

3

2
8

1

2
⋆

Table 2: All possible B5 blocks in G and the estimation of 7f(B) + 2n(B)− 5e(B).
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Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 11
2(a)

B4,a 3 +
3

7
2 +

2

2
6 0

Lemma 13
(a)

B4,b 2 +
2

4
+

2

7
1 +

3

2
5 −

1

2

Lemma 13
(b)(i)

B4,b 2 +
4

7
2 +

2

2
5 −1

Lemma 13
(b)(ii)

B4,b 2 +
2

4
+

2

7
2 +

1

3
+

1

2
5

1

6
⋆

Lemma 13
(b)(iii)

B4,b 2 +
2

4
+

2

4
2 +

2

3
5

4

3
⋆

Lemma 13
3(a)

B3 1 +
2

7
+

1

4

3

2
3 −

5

4

Lemma 13
3(b)

B3 1 +
3

4

2

2
+

1

3
3 −

1

12

Lemma 13
4(a)

B2
1

4
+

1

7

2

2
1 −

1

4

Lemma 13
4(b)

B2
1

4
+

1

7

1

2
+

1

3
1 −

7

12

Lemma 13
4(c)

B2
1

4
+

1

5

2

3
1 −

31

60

Table 3: All possible B4, B3 and B2 blocks in G and the estimate of 7f(B)+2n(B)−5e(B).
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