Planar Turán Number of the 6-Cycle

Debarun Ghosh ${ }^{1} \quad$ Ervin Győri ${ }^{1,2} \quad$ Ryan R. Martin ${ }^{3}$ Addisu Paulos ${ }^{1} \quad$ Chuanqi Xiao ${ }^{1}$
${ }^{1}$ Central European University, Budapest
chuanqixm@gmail.com, ghosh_debarun@phd.ceu.edu, addisu_2004@yahoo.com
${ }^{2}$ Alfréd Rényi Institute of Mathematics, Budapest
gyori.ervin@renyi.mta.hu
${ }^{3}$ Iowa State University, Ames, IA, USA
rymartin@iastate.edu

Abstract

Let $\operatorname{ex}_{\mathcal{P}}(n, T, H)$ denote the maximum number of copies of T in an n-vertex planar graph which does not contain H as a subgraph. When $T=K_{2}, \operatorname{ex}_{\mathcal{P}}(n, T, H)$ is the well studied function, the planar Turán number of H, denoted by $\operatorname{ex}_{\mathcal{P}}(n, H)$. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both $\operatorname{ex}_{\mathcal{P}}\left(n, C_{4}\right)$ and $\operatorname{ex}_{\mathcal{P}}\left(n, C_{5}\right)$. Later on, Y. Lan, et al. continued this topic and proved that $\operatorname{ex}_{\mathcal{P}}\left(n, C_{6}\right) \leq \frac{18(n-2)}{7}$. In this paper, we give a sharp upper bound $\operatorname{ex}_{\mathcal{P}}\left(n, C_{6}\right) \leq \frac{5}{2} n-7$, for all $n \geq 18$, which improves Lan's result. We also pose a conjecture on $\exp \left(n, C_{k}\right)$, for $k \geq 7$.

Keywords Planar Turán number, Extremal planar graph

1 Introduction and Main Results

In this paper, all graphs considered are planar, undirected, finite and contain neither loops nor multiple edges. We use C_{k} to denote the cycle on k vertices and K_{r} to denote the complete graph on r vertices.

One of the well-known results in extremal graph theory is the Turán Theorem [5], which gives the maximum number of edges that a graph on n vertices can have without containing
a K_{r} as a subgraph. The Erdős-Stone-Simonovits Theorem [2, 3] then generalized this result and asymptotically determines $\operatorname{ex}(n, H)$ for all non-bipartite graphs $H: \operatorname{ex}(n, H)=$ $\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)$, where $\chi(H)$ denotes the chromatic number of H. Over the last decade, a considerable amount of research work has been carried out in Turán-type problems, i.e., when host graphs are K_{n}, k-uniform hypergraphs or k-partite graphs, see [3, 6].

In 2016, Dowden [1 initiated the study of Turán-type problems when host graphs are planar, i.e., how many edges can a planar graph on n vertices have, without containing a given smaller graph? The planar Turán number of a graph $H, \operatorname{ex}_{\mathcal{P}}(n, H)$, is the maximum number of edges in a planar graph on n vertices which does not contain H as a subgraph. Dowden [1] obtained the tight bounds $\operatorname{ex}_{\mathcal{P}}\left(n, C_{4}\right) \leq \frac{15(n-2)}{7}$, for all $n \geq 4$ and $\operatorname{ex}_{\mathcal{P}}\left(n, C_{5}\right) \leq \frac{12 n-33}{5}$, for all $n \geq 11$. Later on, Y. Lan, et al. [4] obtained bounds $\operatorname{ex}_{\mathcal{P}}\left(n, \Theta_{4}\right) \leq \frac{12(n-2)}{5}$, for all $n \geq 4, \operatorname{ex}_{\mathcal{P}}\left(n, \Theta_{5}\right) \leq \frac{5(n-2)}{2}$, for all $n \geq 5$ and $\operatorname{ex}_{\mathcal{P}}\left(n, \Theta_{6}\right) \leq \frac{18(n-2)}{7}$, for all $n \geq 7$, where Θ_{k} is obtained from a cycle C_{k} by adding an additional edge joining any two non-consecutive vertices. They also demonstrated that their bounds for Θ_{4} and Θ_{5} are tight by showing infinitely many values of n and planar graph on n vertices attaining the stated bounds. As a consequence of the bound for Θ_{6} in the same paper, they presented the following corollary.

Corollary 1 (Y. Lan, et al.[4]).

$$
\operatorname{ex}_{\mathcal{P}}\left(n, C_{6}\right) \leq \frac{18(n-2)}{7}
$$

for all $n \geq 6$, with equality when $n=9$.
In this paper we present a tight bound for $\operatorname{ex}_{\mathcal{P}}\left(n, C_{6}\right)$. In particular, we prove the following two theorems to give the tight bound.

We denote the vertex and the edge sets of a graph G by $V(G)$ and $E(G)$ respectively. We also denote the number of vertices and edges of G by $v(G)$ and $e(G)$ respectively. The minimum degree of G is denoted $\delta(G)$. The main ingredient of the result is as follows:

Theorem 2. Let G be a 2 -connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq$ 3. Then $e(G) \leq \frac{5}{2} n-7$.

We use Theorem 2, which considers only 2 -connected graphs with no degree 2 (or 1) vertices and order at least 6 , in order to establish our desired result, which bounds gives the desired bound of $\frac{5}{2} n-7$ for all C_{6}-free plane graphs with at least 18 vertices.

Theorem 3. Let G be a C_{6}-free plane graph on $n(n \geq 18)$ vertices. Then

$$
e(G) \leq \frac{5}{2} n-7
$$

Indeed, there are 17-vertex graphs on 17 vertices with 36 edges, but $\frac{5}{2}(17)-7=35.5<36$. One such graph can be seen in Figure 1 .

Figure 1: Example of G on 17 vertices such that $e(G)>(5 / 2) v(G)-7$.

We show that, for large graphs, Theorem 3 is tight:
Theorem 4. For every $n \cong 2(\bmod 5)$, there exists a C_{6}-free plane graph G with $v(G)=$ $\frac{18 n+14}{5}$ and $e(G)=9 n$, hence $e(G)=\frac{5}{2} v(G)-7$.

For a vertex v in G, the neighborhood of v, denoted $N_{G}(v)$, is the set of all vertices in G which are adjacent to v. We denote the degree of v by $d_{G}(v)=\left|N_{G}(v)\right|$. We may avoid the subscripts if the underlying graph is clear. The minimum degree of G is denoted by $\delta(G)$, the number of components of G is denoted by $c(G)$. For the sake of simplicity, we may use the term k-cycle to mean a cycle of length k and k-face to mean a face bounded by a k-cycle. A k-path is a path with k edges.

2 Proof of Theorem 4: Extremal Graph Construction

First we show that for a plane graph G_{0} with n vertices $(n \cong 7(\bmod 10))$, each face having length 7 and each vertex in G_{0} having degree either 2 or 3 , we can construct G, where G is a C_{6}-free plane graph with $v(G)=\frac{18 n+14}{5}$ and $e(G)=9 n$. We then give a construction for such a G_{0} as long as $n \cong 7(\bmod 10)$.

Using Euler's formula, the fact that every face has length 7 and every degree is 2 or 3 , we have $e\left(G_{0}\right)=\frac{7(n-2)}{5}$ and the number of degree 2 and degree 3 vertices in G_{0} are $\frac{n+28}{5}$ and $\frac{4 n-28}{5}$, respectively.

Given G_{0}, we construct first an intermediate graph G^{\prime} by step (1).
(1) Add halving vertices to each edge of G_{0} and join the pair of halving vertices with distance 2, see an example in Figure 2, Let G^{\prime} denote this new graph, then $v\left(G^{\prime}\right)=$ $v\left(G_{0}\right)+e\left(G_{0}\right)=\frac{12 n-14}{5}$ and the number of degree 2 and degree 3 vertices in G^{\prime} is equal to the number of degree 2 and degree 3 vertices in G_{0}, respectively.

Figure 2: Adding a halving vertex to each edge of G_{0}.

To get G, we apply the following steps (2) and (3) on the degree 2 and 3 vertices in G^{\prime}, respectively.
(2) For each degree 2 vertex v in G_{0}, let $N(v)=\left\{v_{1}, v_{2}\right\}$, and so $v_{1} v v_{2}$ forms an induced triangle in G^{\prime}. Fix v_{1} and v_{2}, replace $v_{1} v v_{2}$ with a K_{5}^{-}by adding vertices $v_{1}^{\prime}, v_{2}^{\prime}$ to $V\left(G^{\prime}\right)$ and edges $v_{1}^{\prime} v, v_{1}^{\prime} v_{2}^{\prime}, v_{1}^{\prime} v_{1}, v_{1}^{\prime} v_{2}, v_{2}^{\prime} v_{1}, v_{2}^{\prime} v_{2}$ to $E\left(G^{\prime}\right)$. See Figure 3,

Figure 3: Replacing a degree-2 vertex of G_{0} with a K_{5}^{-}.
(3) For each degree 3 vertex v in G_{0}, such that $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, the set of vertices $\left\{v, v_{1}, v_{2}, v_{3}\right\}$ then forms an induced K_{4} in G^{\prime}. Fix v_{1}, v_{2} and v_{3}, replace this K_{4} with a K_{5}^{-}by adding a new vertex v^{\prime} to $V\left(G^{\prime}\right)$ and edges $v^{\prime} v, v^{\prime} v_{1}, v^{\prime} v_{2}$ to $E\left(G^{\prime}\right)$. See Figure 4 .

Figure 4: Replacing a degree-3 vertex of G_{0} with a K_{5}^{-}.

For each integer $k \geq 0$, and $n=10 k+7$ we present a construction for such a G_{0}, call it G_{0}^{k} : Let v_{i}^{t} and $v_{i}^{b}(1 \leq i \leq k+1)$ be the top and bottom vertices of the heptagonal grids with 3 layers and k columns, respectively (see the red vertices in Figure 5) and v be the extra vertex in G_{0}^{k} but not in the heptagonal grid. We join $v_{1}^{t} v, v v_{1}^{b}$ and $v_{i}^{t} v_{i}^{b}(2 \leq i \leq k+1)$. Clearly, G_{0}^{k} is a $(10 k+7)$-vertex plane graph and each face of G_{0}^{k} is a 7 -face. Obviously e $\left(G_{0}^{k}\right)=14 k+7$, and the number of degree 2 and 3 vertices are $2 k+7=\frac{n+28}{5}$ and $8 k=\frac{4 n-28}{5}$ respectively.

After applying steps (1), (2), and (3) on G_{0}^{k}, we get G. It is easy to verify that G is a C_{6}-free plane graph with

$$
\begin{aligned}
& v(G)=v\left(G_{0}^{k}\right)+e\left(G_{0}^{k}\right)+2(2 k+7)+8 k=(10 k+7)+(14 k+7)+12 k+14=36 k+28 \\
& e(G)=9 v\left(G_{0}^{k}\right)=90 k+63
\end{aligned}
$$

Thus, $e(G)=\frac{5}{2} v(G)-7$.
Remark 1. In fact, for $k \geq 1$ and $n=10 k+2$, there exists a graph H_{0}^{k} which is obtained from G_{0}^{k} by deleting vertices (colored green in Figure (5) $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and adding the edge $v_{1}^{t} y$. Clearly, H_{0}^{k} is an $10 k+2$-vertex plane graph such that all faces have length 7 . Moreover, $e\left(H_{0}^{k}\right)=14 k$, the number of degree-2 and degree-3 vertices are $2 k+6=\frac{n+28}{5}$ and

Figure 5: The graph $G_{0}^{k}, k \geq 1$, in which each face has length 7. The graph H_{0}^{k} (see Remark (1) is obtained by deleting x_{1}, \ldots, x_{5} and adding the edge $v_{1}^{t} y$.
$8 k-4=\frac{4 n-28}{5}$, respectively. After applying steps (1), (2), and (3) to H_{0}^{k}, we get a graph H that is a C_{6}-free plane graph with $e(H)=(5 / 2) v(H)-7$.

Thus, for any $k \cong 2(\bmod 5)$, we have the graphs above such that each face is a 7-gon and we get a C_{6}-free plane graph on n vertices with $(5 / 2) n-7$ edges for $n \cong 10(\bmod 18)$ if $n \geq 28$.

3 Definitions and Preliminaries

We give some necessary definitions and preliminary results which are needed in the proof of Theorems 2 and 3 .

Definition 5. Let G be a plane graph and $e \in E(G)$. If e is not in a 3-face of G, then we call it a trivial triangular-block. Otherwise, we recursively construct a triangular-block in the following way. Start with H as a subgraph of G, such that $E(H)=\{e\}$.
(1) Add the other edges of the 3-face containing e to $E(H)$.
(2) Take $e^{\prime} \in E(H)$ and search for a 3-face containing e^{\prime}. Add these other edge(s) in this 3-face to $E(H)$.
(3) Repeat step (2) till we cannot find a 3-face for any edge in $E(H)$.

We denote the triangular-block obtained from e as the starting edge, by $B(e)$.
Let G be a plane graph. We have the following three observations:
(i) If H is a non-trivial triangular-block and $e_{1}, e_{2} \in E(H)$, then $B\left(e_{1}\right)=B\left(e_{2}\right)=H$.
(ii) Any two triangular-blocks of G are edge disjoint.
(iii) If B is a triangular-block with the unbounded region being a 3 -face, then B is a triangulation graph.

Let \mathcal{B} be the family of triangular-blocks of G. From observation (ii) above, we have

$$
e(G)=\sum_{B \in \mathcal{B}} e(B),
$$

where $e(G)$ and $e(B)$ are the number of edges of G and B respectively.
Next, we distinguish the types of triangular-blocks that a C_{6}-free plane graph may contain. The following lemma gives us the bound on the number of vertices of triangular-blocks.

Lemma 6. Every triangular-block of G contains at most 5 vertices.

Proof. We prove it by contradiction. Let B be a triangular-block of G containing at least 6 vertices. We perform the following operations: delete one vertex from the boundary of the unbounded face of B sequentially until the number of vertices of the new triangular block B^{\prime} is 6 . Next, we show that B^{\prime} is not a triangular-block in G. Suppose that it is. We consider the following two cases to complete the proof.

Case 1. B^{\prime} contains a separating triangle.
Let $v_{1} v_{2} v_{3}$ be the separating triangle. Without loss of generality, assume that the inner region of the triangle contains two vertices say, v_{4} and v_{5}. The outer region of the triangle
contains one vertex, say v_{6}. Since the unbounded face is a 3 -face, the inner structure is a triangulation. Without loss of generality, let the inner structure be as shown in Figure 6(a). Now consider the vertex v_{6}. If $v_{1}, v_{2} \in N\left(v_{6}\right)$, then $v_{3} v_{4} v_{5} v_{2} v_{6} v_{1} v_{3}$ is a 6 -cycle in G, a contradiction. Similarly for the cases when $v_{1}, v_{3} \in N\left(v_{6}\right)$ and $v_{2}, v_{3} \in N\left(v_{6}\right)$.

Case 2. B^{\prime} contains no separating triangle.
Consider a triangular face $v_{1} v_{2} v_{3} v_{1}$. Let v_{4} be a vertex in the triangular-block such that $v_{2} v_{3} v_{4} v_{2}$ is a 3 -face. Notice that $v_{1} v_{4} \notin E\left(B^{\prime}\right)$, otherwise we get a separating triangle in B^{\prime}. Let v_{5} be a vertex in B^{\prime} such that $v_{2} v_{4} v_{5} v_{2}$ is a 3 -face. Notice that v_{6} cannot be adjacent to both vertices in any of the pairs $\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{4}\right\}$, or $\left\{v_{4}, v_{5}\right\}$. Otherwise, $C_{6} \subset G$. Also $v_{3} v_{5} \notin E\left(B^{\prime}\right)$, otherwise we have a separating triangle. So, let $v_{1} v_{5} \in E\left(B^{\prime}\right)$ and $v_{1}, v_{5} \in N\left(v_{6}\right)$ (see Figure 6(b)). In this case $v_{1} v_{6} v_{5} v_{2} v_{4} v_{3} v_{1}$ results in a 6 -cycle, a contradiction.

(a)

(b)

Figure 6: The structure of B^{\prime} when it contains a separating triangle or not, respectively.

Now we describe all possible triangular-blocks in G based on the number of vertices the block contains. For $k \in\{2,3,4,5\}$, we denote the triangular-blocks on k vertices as B_{k}.

Triangular-blocks on 5 vertices.

There are four types of triangular-blocks on 5 vertices (see Figure (7). Notice that $B_{5, a}$ is a K_{5}^{-}.

Figure 7: Triangular-blocks on 5 vertices.

Triangular-blocks on 4, 3, and 3 vertices.

There are two types of triangular-blocks on 4 vertices. See Figure 8. Observe that $B_{4, a}$ is a K_{4}. The 3-vertex and 2-vertex triangular-blocks are simply K_{3} and K_{2} (the trivial triangular-block), respectively.

B_{2}
Figure 8: Triangular-blocks on 4,3 and 2 vertices.

Definition 7. Let G be a plane graph.
(i) A vertex v in G is called a junction vertex if it in at least two distinct triangularblocks of G.
(ii) Let B be a triangular-block in G. An edge of B is called an exterior edge if it is on a boundary of non-triangular face of G. Otherwise, we call it an interior edge. An endvertex of an exterior edge is called an exterior vertex. We denote the set of all exterior and interior edges of B by $\operatorname{Ext}(B)$ and $\operatorname{Int}(B)$ respectively. Let $e \in \operatorname{Ext}(B)$, a non-triangular face of G with e on the boundary is called the exterior face of e.

Notice that an exterior edge of a non-trivial triangular-block has exactly one exterior face. On the other hand, if G is a 2-connected plane graph, then every trivial triangularblock has two exterior faces. For a non-trivial triangular-block B of a plane graph G, we
call a path $P=v_{1} v_{2} v_{3} \ldots v_{k}$ an exterior path of B, if v_{1} and v_{k} are junction vertices and $v_{i} v_{i+1}$ are exterior edges of B for $i \in\{1,2, \ldots, k-1\}$ and v_{j} is not junction vertex for all $j \in\{2,3, \ldots, k-1\}$. The corresponding face in G where P is on the boundary of the face is called the exterior face of P.

Next, we give the definition of the contribution of a vertex and an edge to the number of vertices and faces of C_{6}-free plane graph G. All graphs discussed from now on are C_{6}-free plane graph.

Definition 8. Let G be a plane graph, B be a triangular-block in G and $v \in V(B)$. The contribution of v to the vertex number of B is denoted by $n_{B}(v)$, and is defined as

$$
n_{B}(v)=\frac{1}{\# \text { triangular-blocks in } G \text { containing } v} .
$$

We define the contribution of B to the number of vertices of G as $n(B)=\sum_{v \in V(B)} n_{B}(v)$.
Obviously, $v(G)=\sum_{B \in \mathcal{B}} n(B)$, where $v(G)$ is the number of vertices in G and \mathcal{B} is the family of triangular-blocks of G.

Let $B_{K_{5}^{-}}$be a triangular-block of G isomorphic to a $B_{5, a}$ with exterior vertices v_{1}, v_{2}, v_{3}, where v_{1} and v_{3} are junction vertices, see Figure 9 for an example. Let F be a face in G such that $V(F)$ contains all exterior vertices $v_{1,1}, \ldots, v_{1, m}, v_{2,1}, \ldots, v_{2, m}, v_{3,1}, \ldots, v_{3, m}$ of m $(m \geq 1)$ copies of $B_{K_{5}^{-}}$, such that $v_{1, i}, v_{2, i}, v_{3, i}$ are the exterior vertices of the i-th $B_{K_{5}^{-}}$and $v_{1, i}, v_{3, i}(1 \leq i \leq m)$ are junction vertices. Let C_{F} denote the cycle associated with the face F. We alter $E\left(C_{F}\right)$ in the following way:

$$
E\left(C_{F}^{\prime}\right):=E\left(C_{F}\right)-\left\{v_{1,1} v_{2,1} v_{3,1}\right\}-\cdots-\left\{v_{1, m} v_{2, m} v_{3, m}\right\} \cup\left\{v_{1,1} v_{3,1}\right\} \cup \ldots \cup\left\{v_{1, m}, v_{3, m}\right\}
$$

Hence, the length of F as $\left|E\left(C_{F}^{\prime}\right)\right|=\left|E\left(C_{F}\right)\right|-m$. For example, in Figure 9, $\left|E\left(C_{F}\right)\right|=11$ but $\left|E\left(C_{F}^{\prime}\right)\right|=9$.

Now we are able to define the contribution of an "edge" to the number of faces of C_{6}-free plane graph G.

Definition 9. Let F be a exterior face of G and $C_{F}:=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the cycle associated with F. The contribution of an exterior edge e to the face number of the exterior face F, is denoted by $f_{F}(e)$, and is defined as follows.

Figure 9: An example of a face containing all the exterior vertices of at least one $B_{K_{5}^{-}}$.
(i) If e_{1} and e_{2} are adjacent exterior edges of $B_{K_{5}^{-}}$, then $f_{F}\left(e_{1}\right)+f_{F}\left(e_{2}\right)=\frac{1}{\left|C_{F}^{\prime}\right|}$, and $f_{F}\left(e_{i}\right)=\frac{1}{\left|C_{F}^{\prime}\right|}$, where $i \in\{3,4, \ldots, k\}$.
(ii) Otherwise, $f_{F}(e)=\frac{1}{\left|C_{F}\right|}$.

Note that $\sum_{e \in E(F)} f_{F}(e)=1$. For a triangular-block B, the total face contribution of B is denoted by f_{B} and defined as $f_{B}=(\#$ interior faces of $B)+\sum_{e \in \operatorname{Ext}(B)} f_{F}(e)$, where F is the exterior face of B with respective to e. Obviously, $f(G)=\sum_{B \in \mathcal{B}} f(B)$, where $f(G)$ is the number of faces of G.

4 Proof of Theorem 2

We begin by outlining our proof. Let f, n, and e be the number of faces, vertices, and edges of G respectively. Let \mathcal{B} be the family of all triangular-blocks of G.

The main target of the proof is to show that

$$
\begin{equation*}
7 f+2 n-5 e \leq 0 \tag{1}
\end{equation*}
$$

Once we show (1), then by using Euler's Formula, $e=f+n-2$, we can finish the proof of Theorem 2. To prove (1), we show the existence of a partition $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}$ of \mathcal{B} such that
$7 \sum_{B \in \mathcal{P}_{i}} f(B)+2 \sum_{B \in \mathcal{P}_{i}} n(B)-5 \sum_{B \in \mathcal{P}_{i}} e(B) \leq 0$, for all $i \in\{1,2,3 \ldots, m\}$. Since $f=\sum_{B \in \mathcal{B}} f(B)$, $n=\sum_{B \in \mathcal{B}} n(B)$ and $e=\sum_{B \in \mathcal{B}} e(B)$ we have

$$
\begin{aligned}
7 f+2 n-5 e & =7 \sum_{i}^{m} \sum_{B \in \mathcal{P}_{i}} f(B)+2 \sum_{i}^{m} \sum_{B \in \mathcal{P}_{i}} n(B)-5 \sum_{i}^{m} \sum_{B \in \mathcal{P}_{i}} e(B) \\
& =\sum_{i}^{m}\left(7 \sum_{B \in \mathcal{P}_{i}} f(B)+2 \sum_{B \in \mathcal{P}_{i}} n(B)-5 \sum_{B \in \mathcal{P}_{i}} e(B)\right) \leq 0 .
\end{aligned}
$$

The following proposition will be useful in many lemmas.

Proposition 10. Let G be a 2-connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq 3$.
(i) If B is a nontrivial triangular-block (that is, not B_{2}), then none of the exterior faces can have length 5.
(ii) If B is in $\left\{B_{5, a}, B_{5, b}, B_{5, c}, B_{4, a}\right\}$, then none of the exterior faces can have length 4 .
(iii) If B is in $\left\{B_{5, d}, B_{4, b}\right\}$ and an exterior face of B has length 4 , then that 4 -face must share a 2-path with B (shown in blue in Figures 13 and 14) and the other edges of the face must be in trivial triangular-blocks.
(iv) No two 4-faces can be adjacent to each other.

Proof. (i) Observe that any pair of consecutive exterior vertices of a nontrivial triangularblock has a path of length 2 (counted by the number of edges) between them and any pair of nonconsecutive exterior vertices has a path of length 3 between them. So having a face of length 5 incident to this triangular-block would yield a C_{6}, a contradiction.
(ii) If B is in $\left\{B_{5, a}, B_{5, b}, B_{5, c}, B_{4, a}\right\}$, then any pair of consecutive exterior vertices of the listed triangular-blocks has a path of length 3 between them. It remains to consider nonconsecutive vertices for $\left\{B_{5, b}, B_{5, c}\right\}$. For $B_{5, b}$ each pair of nonconsecutive exterior vertices has a path of length 3 between them. In the case where B is $B_{5, c}$, this is true for all pairs without an edge between them. As for the other pairs, if they are in the
same 4 -face, then at least one of the degree- 2 vertices in B must have degree 2 in G, a contradiction.
(iii) In both $B_{5, d}$ and $B_{4, b}$, any pair of consecutive exterior vertices has a path of length 3 between them. For $B_{5, d}$, in Figure 13, we see that there is a path of length 4 between v_{2} and v_{4} and so the only way a 4 -face can be adjacent to B is via a 2 -path with endvertices v_{1} and v_{3}. In fact, because there is no vertex of degree 2 , the path must be $v_{1} v_{4} v_{3}$. For $B_{4, b}$, in Figure [13, we see that because B cannot have a vertex of degree 2 , the 4 -face and B cannot share the path $v_{2} v_{1} v_{4}$ or the path $v_{2} v_{3} v_{4}$. Thus the only paths that can share a boundary with a 4 -face are $v_{1} v_{4} v_{3}$ and $v_{1} v_{2} v_{3}$.

As to the other blocks that form edges of such a 4 -face. In Figure 10, we see that if, say, $v_{1} u$ is in a nontrivial triangular-block, then there is a vertex w in that block, in which case $w v_{1} x v_{4} v_{3} u w$ forms a 6-cycle, a contradiction.
(iv) If two 4 -faces share an edge, then there is a 6 -cycle formed by deleting that edge. If two 4 -faces share a 2 -path, then the midpoint of that path is a vertex of degree 2 in G. In both cases, a contradiction.

Figure 10: Proposition 1q(iii): The blocks defined by blue edges must be trivial.

To show the existence of such a partition we need the following lemmas.
Lemma 11. Let G be a 2 -connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq 3$. If B is a triangular-block in G such that $B \notin\left\{B_{5, d}, B_{4, b}\right\}$, then $7 f(B)+2 n(B)-5 e(B) \leq 0$.

Proof. We separate the proof into several cases.

Case 1: B is $B_{5, a}$.

Let v_{1}, v_{2} and v_{3} be the exterior vertices of K_{5}^{-}. At least two of them must be junction vertices, otherwise G contains a cut vertex. We consider 2 possibilities to justify this case.
(a) Let B be $B_{5, a}$ with 3 junction vertices (see Figure 11(a)). By Proposition 10, every exterior edge in B is contained in an exterior face with length at least 7. Thus, $f(B)=(\#$ interior faces of $B)+\sum_{e \in E x t(B)} f_{F}(e) \leq 5+3 / 7$. Moreover, every junction vertex is contained in at least 2 triangular-blocks, so we have $n(B) \leq 2+3 / 2$. With $e(B)=9$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$.
(b) Let B be $B_{5, a}$ with 2 junction vertices, say v_{2} and v_{3} (see Figure 11(b)). Let F and F_{1} are exterior faces of the exterior edge $v_{2} v_{3}$ and exterior path $v_{2} v_{1} v_{3}$ of the triangularblock respectively. Notice that $v_{1} v_{2}$ and $v_{2} v_{3}$ are the adjacent exterior edges in the same face F_{1}, hence $\left|C\left(F_{1}\right)\right| \geq 8$. By Definition 9, we have $f_{F_{1}}\left(v_{1} v_{2}\right)+f_{F_{1}}\left(v_{1} v_{3}\right) \leq 1 / 7$. Because there can be no C_{6}, one can see that regardless of the configuration of the $B_{K_{5}^{-}}$, it is the case that $f_{F}\left(v_{2} v_{3}\right) \leq 1 / 7$. Thus, $f(B) \leq 5+2 / 7$. Moreover, since v_{1} and v_{3} are contained in at least 2 triangular-blocks, we have $n(B) \leq 3+2 / 2$. With $e(B)=9$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$.

(a)

(b)

Figure 11: A $B_{5, a}$ triangular-block with 3 and 2 junction vertices, respectively.

Case 2: B is in $\left\{B_{4, a}, B_{5, b}, B_{5, c}\right\}$.
(a) Let B be a $B_{4, a}$. By Proposition 10, each face incident to this triangular-block has length at least 7. So, $f(B) \leq 3+3 / 7$. Because there is no cut-vertex, this triangularblock must have at least two junction vertices, hence $n(B) \leq 2+2 / 2$. With $e(B)=6$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$.
(b) Let B be a $B_{5, b}$. There are 4 faces inside the triangular-block and each face incident to this triangular-block has length at least 7. So, $f(B) \leq 4+4 / 7$. Because there is no cut-vertex, this triangular-block must have at least two junction vertices, hence $n(B) \leq 3+2 / 2$. With $e(B)=8$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$, as seen in Table 2.
(c) Let B be a $B_{5, c}$. Similarly, $f(B) \leq 3+5 / 7$ and because there are at least two junction vertices, $n(B) \leq 3+2 / 2$. With $e(B)=7$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-1$.

Case 3: B is B_{3}.
Let v_{1}, v_{2} and v_{3} be the exterior vertices of triangular-block B. Each of these three must be junction vertices since there is no degree 2 vertex in G, which implies that each is contained in at least 2 triangular-blocks. We consider two possibilities:
(a) Let the three exterior vertices be contained in exactly 2 triangular-blocks. By Proposition 1q(i), the length of each exterior face is either 4 or at least 7. We want to show that at most one exterior face has length 4.

If not, then let x_{1} be a vertex that is in two such faces. Consider the triangular-block incident to B at x_{1}, call it B^{\prime}. By Proposition 10, B^{\prime} is not in $\left\{B_{5, a}, B_{5, b}, B_{5, c}, B_{4, a}\right\}$.

If B^{\prime} is in $\left\{B_{5, d}, B_{4, b}, B_{3}\right\}$, then the triangular-block has vertices ℓ_{2}, ℓ_{3}, each adjacent to x_{1} and the length- 4 faces consist of $\left\{v_{1}, \ell_{2}, m_{2}, v_{2}\right\}$ and $\left\{v_{1}, \ell_{3}, m_{3}, v_{3}\right\}$. Either $\ell_{2} \sim \ell_{3}$ (in which case $\ell_{2} m_{2} v_{2} v_{3} m_{3} \ell_{3} \ell_{2}$ is a 6 -cycle, see Figure 12(a)) or there is a ℓ^{\prime} distinct from v_{1} that is adjacent to both ℓ_{2} and ℓ_{3} (in which case $\ell^{\prime} \ell_{2} m_{2} v_{2} v_{1} \ell_{3} \ell_{2}$ is a 6 -cycle, see Figure 12(b)).

If B^{\prime} is B_{2}, then the trivial triangular-block is $\left\{v_{1}, \ell\right\}$, in which case $\left\{\ell, m_{2}, v_{2}, v_{1}, v_{3}, m_{3}\right\}$ is a C_{6}, see Figure 12(c). Thus, we may conclude that if each of the three exterior vertices are in exactly 2 triangular-blocks, then $f(B) \leq 1+2 / 7+1 / 4$ and $n(B) \leq 3 / 2$. With $e(B)=3$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-5 / 4$.

(a)

(a)

(a)

Figure 12: A B_{3} triangular-block, B and the various cases of what must occur if B is incident to two 4 -faces.
(b) Let at least one exterior vertex be contained in at least 3 triangular-blocks and the others be contained at least 2 triangular-blocks. In this case, we have $f(B) \leq 1+3 / 4$ and $n(B) \leq 2 / 2+2 / 3$. With $e(B)=3$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-1 / 12$.

Case 4: B is B_{2}.
Note that the fact that there is no vertex of degree 2 gives that if an endvertex is in exactly two triangular-blocks, then the other one cannot be a B_{2}. We consider three possibilities:
(a) Let each endvertex be contained in exactly 2 triangular-blocks. Since neither of the triangular-blocks incident to B can be trivial, they cannot be incident to a face of length 5 by Proposition 1q(i). Thus, B cannot be incident to a face of length 5. Moreover, the two faces incident to B cannot both be of length 4 , again by Proposition 1q)(iv). Hence, $f(B) \leq 1 / 4+1 / 7$. Clearly $n(B) \leq 2 / 2$ and with $e(B)=1$, we obtain $7 f(B)+$ $2 n(B)-5 e(B) \leq-1 / 4$.
(b) Let one endvertex be contained in exactly 2 triangular-blocks and the other endvertex be contained in at least 3 triangular-blocks. This is similar to case (a) in that neither
face can have length 5 and they cannot both have length 4 . The only difference is that $n(B) \leq 1 / 2+1 / 3$ and so $7 f(B)+2 n(B)-5 e(B) \leq-7 / 12$.
(c) Let each endvertex be contained in at least 3 triangular-blocks. The two faces cannot both be of length 4 by Proposition 10.(iv). Hence, $f(B) \leq 1 / 4+1 / 5$ and $n(B) \leq 2 / 3$. With $e(B)=1$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-31 / 60$.

Lemma 12. Let G be a 2 -connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq 3$. If B is $B_{5, d}$, then $7 f(B)+2 n(B)-5 e(B) \leq 1 / 2$. Moreover, $7 f(B)+2 n(B)-5 e(B) \leq 0$ unless B shares a 2-path with a 4-face.

(a)

(b)

Figure 13: A $B_{5, d}$ triangular-block and how a 4 -face must be incident to it.

Proof. Let B be $B_{5, d}$ with vertices $v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5}, as shown in Figure 13(a). By Proposition 10[(i), no exterior face of B can have length 5. By Proposition 1q[(iii), if there is an exterior face of B that has length 4 , this 4 -face must contain the path $v_{1} v_{4} v_{3}$.

Moreover, since there is no vertex of degree $2, v_{2}$ is a junction vertex. Because G has no cut-vertex, there is at least one other junction vertex. We may consider the following cases:
(a) Let v_{4} be a junction vertex. This prevents an exterior face of length 4 . Thus, each exterior face has length at least 7. Hence, $f(B) \leq 4+4 / 7$ and $n(B) \leq 3+2 / 2$. With $e(B)=8$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$.
(b) Let v_{4} fail to be a junction vertex and exactly one of v_{1}, v_{3} be a junction vertex. Without loss of generality let it be v_{3}. In this case, again, each exterior face has length ${ }^{1}$ at least 7. Again, $f(B) \leq 4+4 / 7$ and $n(B) \leq 3+2 / 2$. With $e(B)=8$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq 0$.
(c) Let v_{4} fail to be a junction vertex and both v_{1} and v_{3} be junction vertices. Here either the exterior path $v_{1} v_{4} v_{3}$ is part of an exterior face of length at least 4 or each edge must be in a face of length at least 7. If the exterior face is of length at least 7, then $f(B) \leq 4+4 / 7$, otherwise $f(B) \leq 4+2 / 4+2 / 7$. In both cases, $n(B) \leq 2+3 / 2$ and $e(B)=8$. Hence we obtain $7 f(B)+2 n(B)-5 e(B) \leq-1$ in the first instance and $7 f(B)+2 n(B)-5 e(B) \leq 1 / 2$ in the case where B is incident to a 4 -face.

Lemma 13. Let G be a 2 -connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq 3$. If B is $B_{4, b}$, then $7 f(B)+2 n(B)-5 e(B) \leq 4 / 3$. Moreover, $7 f(B)+2 n(B)-5 e(B) \leq 1 / 6$ if B shares a 2-path with exactly one 4-face and $7 f(B)+2 n(B)-5 e(B) \leq 0$ if B fails to share a 2-path with any 4-face.

Figure 14: A $B_{4, b}$ triangular-block and how a 4 -face must be incident to it.

Proof. Let B be with vertices v_{1}, v_{2}, v_{3}, and v_{4}, as shown in Figure 14(a). By Proposition 1q(i), no exterior face of B can have length 5 . If there is an exterior face of B that has

[^0]length 4 , it is easy to verify that being C_{6}-free and having no vertex of degree 2 means that the junction vertices must be v_{1} and v_{3}. We may consider the following cases.
(a) Let either v_{2} or v_{4} be a junction vertex and, without loss of generality, let it be v_{2}. All the exterior faces have length at least 7 except for the possibility that the path $v_{1} v_{4} v_{3}$ may form two sides of a 4 -face. Hence, $f(B) \leq 2+2 / 4+2 / 7$ and $n(B) \leq 1+3 / 2$. With $e(B)=5$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-1 / 2$.
(b) Let neither v_{2} nor v_{4} be a junction vertex. Because there is no cut-vertex, this requires both v_{1} and v_{3} to be junction vertices. Hence, there are two exterior faces: One that shares the exterior path $v_{1} v_{4} v_{3}$ and the other shares the exterior path $v_{1} v_{2} v_{3}$. Each exterior face has length either 4 or at least 7 . We consider several subcases:
(i) If both faces are of length at least 7 , then $f(B) \leq 2+4 / 7$, and $n(B) \leq 2+2 / 2$. With $e(B)=5$, we obtain $7 f(B)+2 n(B)-5 e(B) \leq-1$.
(ii) If only one of the exterior faces is of length 4 , then $f(B) \leq 2+2 / 7+2 / 4$. Moreover, at least one of v_{1}, v_{3} must be a junction vertex for more than two triangular-blocks, otherwise either $v(G)=5$ or the vertex incident to two blue edges in Figure 14(b) is a cut-vertex. Hence, $n(B) \leq 2+1 / 3+1 / 2$ and with $e(B)=5$, we have $7 f(B)+2 n(B)-5 e(B) \leq 1 / 6$.
(iii) Both exterior faces are of length 4 . Thus $f(B) \leq 2+4 / 4$. By Proposition 1d(iii), the blocks represented by the blue edges in Figure 14(c) are each trivial. Hence $n(B) \leq 2+2 / 3$. With $e(B)=5$, we get $7 f(B)+2 n(B)-5 e(B) \leq 4 / 3$.

Tables 2 and 3 in Appendix A give a summary of Lemmas 11, 12, and 13,
Lemma 14. Let G be a 2-connected, C_{6}-free plane graph on $n(n \geq 6)$ vertices with $\delta(G) \geq$ 3. Then the triangular-blocks of G can be partitioned into sets, $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}$ such that $7 \sum_{B \in \mathcal{P}_{i}} f(B)+2 \sum_{B \in \mathcal{P}_{i}} n(B)-5 \sum_{B \in \mathcal{P}_{i}} e(B) \leq 0$ for all $i \in[m]$.

Proof. As it can be seen from Tables 2 and 3 in Appendix A, there are three possible cases where $7 f(B)+2 n(B)-5 e(B)$ assumes a positive value. We deal with each of these blocks as follows.

Figure 15: Structure of a $B_{5, d}$ if it is incident to a 4 -face, as in Lemma 14. The triangularblocks B^{\prime} and $B^{\prime \prime}$ are trivial.
(1) Let B be a $B_{5, d}$ triangular-block as described in the proof of Lemma 12(c). See Figure 15.

By Proposition (iii), the edges $v_{1} u$ and $v_{3} u$ are trivial triangular-blocks. Denote these triangular-blocks as B^{\prime} and $B^{\prime \prime}$. Consider B^{\prime}. One of the exterior faces of B^{\prime} has length 4 whereas by Proposition 10(iv), the other has length at least 5. It must have length at least 7 because if it had length 5 , then the path $v_{1} v_{3} u$ would complete it to a 6 -cycle. Thus, $f\left(B^{\prime}\right) \leq 1 / 4+1 / 7$. Since the vertex u cannot be of degree 2 , then this vertex is shared in at least three triangular-blocks. Thus, $n\left(B^{\prime}\right) \leq 1 / 2+1 / 3$. With $e\left(B^{\prime}\right)=1$, we obtain $7 f\left(B^{\prime}\right)+2 n\left(B^{\prime}\right)-5 e\left(B^{\prime}\right) \leq-7 / 12$ and similarly, $7 f\left(B^{\prime \prime}\right)+2 n\left(B^{\prime \prime}\right)-5 e\left(B^{\prime \prime}\right) \leq$ $-7 / 12$. Define $\mathcal{P}^{\prime}=\left\{B, B^{\prime}, B^{\prime \prime}\right\}$. Thus, $7 \sum_{B^{*} \in \mathcal{P}^{\prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime}} n\left(B^{*}\right)-5 \sum_{B^{*} \in \mathcal{P}^{\prime}} e\left(B^{*}\right) \leq$ $1 / 2+2(-7 / 12)=-2 / 3$.

Therefore, for each triangular-block in G as described in Lemma 12)(c), it belongs to a set \mathcal{P}^{\prime} of three triangular-blocks such that $7 \sum_{B^{*} \in \mathcal{P}^{\prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime}} n\left(B^{*}\right)-5 \sum_{B^{*} \in \mathcal{P}^{\prime}} e\left(B^{*}\right) \leq$ 0 . Denote such sets as $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m_{1}}$ if they exist.
(2) Let B be a $B_{4, b}$ triangular-block as described in the proof of Lemma 13)(b) (ii). See Figure 16(a).

Figure 16: Structure of a $B_{4, b}$ triangular-block if it is incident to a 4-face, as in Lemma 14. The triangular-blocks $B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$, and $B^{\prime \prime \prime \prime}$ are all trivial.

By Proposition 10(iii), the edges $v_{1} u_{1}$ and $v_{3} u_{1}$ are trivial triangular-blocks. Denote them as B^{\prime} and $B^{\prime \prime}$, respectively. Consider B^{\prime}. One of the exterior faces of B^{\prime} has length 4 and by Proposition 1q(iv), the other has length at least 5. Thus, $f\left(B^{\prime}\right) \leq$ $1 / 4+1 / 5$. Since the vertex u_{1} cannot be of degree 2 , then this vertex is shared in at least three triangular-blocks. Thus, $n\left(B^{\prime}\right) \leq 1 / 2+1 / 3$. With $e\left(B^{\prime}\right)=1$, we obtain $7 f\left(B^{\prime}\right)+2 n\left(B^{\prime}\right)-5 e\left(B^{\prime}\right) \leq-11 / 60$ and similarly, $7 f\left(B^{\prime \prime}\right)+2 n\left(B^{\prime \prime}\right)-5 e\left(B^{\prime \prime}\right) \leq-11 / 60$. Define $\mathcal{P}^{\prime \prime}=\left\{B, B^{\prime}, B^{\prime \prime}\right\}$. Thus, $7 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} n\left(B^{*}\right)-5 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} e\left(B^{*}\right) \leq 1 / 6+$ $2(-11 / 60)=-1 / 5$.

Therefore, for each triangular-block in G as described in Lemma (13)(b)(ii), it belongs to a set $\mathcal{P}^{\prime \prime}$ of three triangular-blocks such that $7 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} n\left(B^{*}\right)-$ $5 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} e\left(B^{*}\right) \leq 0$. Denote such sets as $\mathcal{P}_{m_{1}+1}, \mathcal{P}_{m_{1}+2}, \ldots, \mathcal{P}_{m_{2}}$ if they exist.
(3) Let B be a $B_{4, b}$ triangular-block as described in the proof of Lemma (b) (iii). See Figure 16(b).

By Proposition 1q(iii), the edges $v_{1} u_{1}, v_{3} u_{1}, v_{1} u_{2}$, and $v_{3} u_{2}$ are trivial triangular-blocks. Denote them as $B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$ and $B^{\prime \prime \prime \prime}$ respectively. Consider B^{\prime}. One of the exterior faces of B^{\prime} has length 4 whereas the other has length at least 5 . Thus, $f\left(B^{\prime}\right) \leq 1 / 4+1 / 5$. Since the vertex u_{1} cannot be of degree 2, then this vertex is shared in at least three triangular-blocks. Clearly v_{1} is in at least three triangular-blocks. Thus, $n\left(B^{\prime}\right) \leq 2 / 3$. With $e\left(B^{\prime}\right)=1$, we obtain $7 f\left(B^{\prime}\right)+2 n\left(B^{\prime}\right)-5 e\left(B^{\prime}\right) \leq-31 / 60$ and the same inequality
holds for $B^{\prime \prime}, B^{\prime \prime \prime}$, and $B^{\prime \prime \prime \prime}$.
Define $\mathcal{P}^{\prime \prime \prime}=\left\{B, B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}, B^{\prime \prime \prime \prime}\right\}$. Thus, $7 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} n\left(B^{*}\right)-5 \sum_{B^{*} \in \mathcal{P}^{\prime \prime}} e\left(B^{*}\right) \leq$ $4 / 3+4(-31 / 60)=-11 / 15$.

Therefore, for each triangular-block in G as described in Lemma 13)(b)((iii), it belongs to a set \mathcal{P}^{\prime} of three triangular-blocks such that $7 \sum_{B^{*} \in \mathcal{P}^{\prime \prime \prime}} f\left(B^{*}\right)+2 \sum_{B^{*} \in \mathcal{P}^{\prime \prime \prime}} n\left(B^{*}\right)-$ $5 \sum_{B^{*} \in \mathcal{P}^{\prime \prime \prime}} e\left(B^{*}\right) \leq 0$. Denote such sets as $\mathcal{P}_{m_{2}+1}, \mathcal{P}_{m_{2}+2}, \ldots, \mathcal{P}_{m_{3}}$ if they exist.

Now define $\mathcal{P}_{m_{3}+1}=\mathcal{B}-\bigcup_{i=1}^{m_{3}} \mathcal{P}_{i}$, where \mathcal{B} is the set of all blocks of G. Clearly, for each block $B \in \mathcal{P}_{m_{3}+1}, 7 f(B)+2 n(B)-5 e(B) \leq 0$. Thus, $7 \sum_{B \in \mathcal{P}_{m_{3}+1}} f(B)+2 \sum_{B \in \mathcal{P}_{m_{3}+1}} n(B)-$ $5 \sum_{B \in \mathcal{P}_{m_{3}+1}} e(B) \leq 0$. Putting $m:=m_{3}+1$ we got the partition $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}$ of \mathcal{B} meeting the condition of the lemma.

This completes the proof of Theorem 2.

5 Proof of Theorem 3

Let G be a C_{6}-free plane graph. We will show that either $5 v(G)-2 e(G) \geq 14$ or $v(G) \leq 17$.
If we delete a vertex x from G, then

$$
\begin{aligned}
5 v(G-x)-2 e(G-x) & =5(v(G)-1)-2(e(G)-\operatorname{deg}(x)) \\
& =5 v(G)-2 e(G)-5+2 \operatorname{deg}(x) \\
& \geq 5 v(G)-2 e(G)-1 .
\end{aligned}
$$

So, graph G has an induced subgraph G^{\prime} with $\delta(G) \geq 3$ with

$$
\begin{equation*}
5 v(G)-2 e(G) \geq 5 v\left(G^{\prime}\right)-2 e\left(G^{\prime}\right)+\left(v(G)-v\left(G^{\prime}\right)\right) \tag{2}
\end{equation*}
$$

In line with usual graph theoretic terminology, we call a maximal 2-connected subgraph a block. Let \mathcal{B}^{\prime} denote the set of blocks of G^{\prime} with the $i^{\text {th }}$ block having n_{i} vertices and e_{i} edges. Let b be the total number of blocks of G^{\prime}. Specifically, let b_{2}, b_{3}, b_{4}, and b_{5} denote

	min of $5 n-2 e-5$	
$n \geq 6$	$14-5 \geq 9$	Theorem 2]
$n=5$	$5(5)-2(9)-5 \geq 2$	$B_{5, a}$, Figure 7
$n=4$	$5(4)-2(6)-5 \geq 3$	$B_{4, a}$, Figure 8$]$
$n=3$	$5(3)-2(3)-5 \geq 4$	B_{3}, Figure 8
$n=2$	$5(2)-2(2)-5 \geq 3$	B_{2}, Figure 8

Table 1: Estimates of $5 n-2 e-5$ for various block sizes.
the number of blocks of size $2,3,4$, and 5 , respectively. Let b_{6} denote the number of blocks of size at least 6 . Then we have $b=b_{6}+b_{5}+b_{4}+b_{3}+b_{2}$ and, using Table 1:

$$
\begin{align*}
5 v\left(G^{\prime}\right)-2 e\left(G^{\prime}\right) & =5\left(\sum_{i=1}^{b} n_{i}-(b-1)\right)-2 \sum_{i=1}^{b} e_{i} \\
& =\sum_{i=1}^{b}\left(5 n_{i}-2 e_{i}-5\right)+5 \\
& \geq 9 b_{6}+2 b_{5}+3 b_{4}+4 b_{3}+3 b_{2}+5 \tag{3}
\end{align*}
$$

Combining (2) and (3), we obtain

$$
\begin{equation*}
5 v(G)-2 e(G) \geq 9 b_{6}+2 b_{5}+3 b_{4}+4 b_{3}+3 b_{2}+5+\left(v(G)-v\left(G^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

If $b_{6} \geq 1$, then the right-hand side of (4) is at least 14 , as desired.
So, let us assume that $b_{6}=0$ and $b=b_{5}+b_{4}+b_{3}+b_{2}$. Furthermore,

$$
\begin{align*}
v\left(G^{\prime}\right) & =5 b_{5}+4 b_{4}+3 b_{3}+2 b_{2}-(b-1) \\
& =4 b_{5}+3 b_{4}+2 b_{3}+b_{2}+1 \tag{5}
\end{align*}
$$

So, substituting $2 b_{5}$ from (5) into (4), we have

$$
\begin{aligned}
5 v(G)-2 e(G) & \geq 2 b_{5}+3 b_{4}+4 b_{3}+3 b_{2}+5+\left(v(G)-v\left(G^{\prime}\right)\right) \\
& =\left(\frac{1}{2} v\left(G^{\prime}\right)-\frac{3}{2} b_{4}-b_{3}-\frac{1}{2} b_{2}-\frac{1}{2}\right)+3 b_{4}+4 b_{3}+3 b_{2}+5+\left(v(G)-v\left(G^{\prime}\right)\right) \\
& =v(G)-\frac{1}{2} v\left(G^{\prime}\right)+\frac{3}{2} b_{4}+3 b_{3}+\frac{5}{2} v_{2}+\frac{9}{2} \\
& \geq \frac{1}{2} v(G)+\frac{9}{2}
\end{aligned}
$$

which is strictly larger than 13 if $v(G) \geq 18$. Since $5 v(G)-2 e(G)$ is an integer, it is at least 14 and this completes the proof of Theorem 3.

Remark 2. Observe that for $n \geq 17$, the only graphs on n vertices with e edges such that $e>(5 / 2) n-7$ have blocks of order 5 or less and by (4), there are at most 4 such triangular blocks. A bit of analysis shows that the maximum number of edges is achieved when the number of blocks of order 5 is as large as possible.

6 Conclusions

We note that the proof of Theorem 2, particularly Lemma 14, can be rephrased in terms of a discharging argument.

We believe that our construction in Theorem 4 can be generalized to prove $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right)$ for ℓ sufficiently large. That is, for certain values of n, we try to construct G_{0}, a plane graph with all faces of length $\ell+1$ with all vertices having degree 3 or degree 2 .

If such a G_{0} exists, then the number of degree-2 and degree-3 vertices are $\frac{(\ell-5) n+4(\ell+1)}{\ell-1}$ and $\frac{4(n-\ell-1)}{\ell-1}$, respectively. We could then apply steps similar to (1), (2), and (3) in the proof of Theorem 4 in that we add halving vertices and insert a graph $B_{\ell-1}$ (see Figure 17) in place of vertices of degree 2 and 3 . For the resulting graph G,

$$
\begin{aligned}
v(G) & =v\left(G_{0}\right)+e\left(G_{0}\right)+(\ell-4) \frac{(\ell-5) n+4(\ell+1)}{\ell-1}+(\ell-5) \frac{4(n-\ell-1)}{\ell-1} \\
& =n+\frac{\ell+1}{\ell-1}(n-2)+\frac{\left(\ell^{2}-5 \ell\right) n+2(\ell+1)}{\ell-1} \\
& =\frac{\ell^{2}-3 \ell}{\ell-1} n+\frac{2(\ell+1)}{\ell} \\
e(G) & =(3 \ell-9) v\left(G_{0}\right)=(3 \ell-9) n
\end{aligned}
$$

Therefore, $e(G)=\frac{3(\ell-1)}{\ell} v(G)-\frac{6(\ell+1)}{\ell}$. We conjecture that this is the maximum number of edges in a C_{ℓ}-free planar graph.

Conjecture 15. Let G be an n-vertex C_{ℓ}-free plane graph $(\ell \geq 7)$, then there exists an integer $N_{0}>0$, such that when $n \geq N_{0}, e(G) \leq \frac{3(\ell-1)}{\ell} n-\frac{6(\ell+1)}{\ell}$.

Figure 17: $B_{\ell-1}$ is used in the construction of a C_{ℓ}-free graph.

7 Acknowledgements

Győri's research was partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, K116769, and K126853. Martin's research was partially supported by Simons Foundation Collaboration Grant \#353292 and by the J. William Fulbright Educational Exchange Program.

References

[1] C. Dowden, Extremal C_{4}-free/ C_{5}-free planar graphs, J. Graph Theory 83 (2016), 213230.
[2] P. Erdős. On the structure of linear graphs. Israel Journal of Mathematics 1 (1963) 156-160.
[3] P. Erdős. On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hung. Acad. Sci. 7 (1962) 459-464.
[4] Y. Lan, Y. Shi, Z. Song. Extremal theta-free planar graphs. Discrete Mathematics $342(12)$ (2019), Article 111610.
[5] P. Turán. On an extremal problem in Graph Theory. Mat. Fiz. Lapok (in Hungarian). 48 (1941) 436-452.
[6] A. Zykov. On some properties of linear complexes. Mat. Sb. (N.S.) 24(66) (1949) 163188.

A Tables

The following tables give a summary of the results from Lemmas 11, 12, and 13 ,
A red edge incident to a vertex of a triangular-block indicates the corresponding vertex is a junction vertex. Moreover, if a vertex has only one red edge, it is to indicate the vertex is shared in at least two triangular-blocks. Whereas if a vertex has two red edges, it means that the vertex is shared in at least three blocks.

A pair of blue edges indicates the boundary of a 4 -face.

Case	B	Diagram	$f(B) \leq$	$n(B) \leq$	$e(B)=$	$7 f+2 n-5 e \leq$
$\begin{gathered} \text { Lemma } 11 \\ 1(\mathrm{a}) \end{gathered}$	$B_{5, a}$		$5+\frac{3}{7}$	$2+\frac{3}{2}$	9	0
$\begin{gathered} \text { Lemma } 11 \\ 1(\mathrm{~b}) \end{gathered}$	$B_{5, a}$		$5+\frac{2}{7}$	$3+\frac{2}{2}$	9	0
$\begin{gathered} \text { Lemma } 11 \\ 2(\mathrm{~b}) \end{gathered}$	$B_{5, b}$		$4+\frac{4}{7}$	$3+\frac{2}{2}$	8	0
$\begin{gathered} \text { Lemma } 11 \\ 2(\mathrm{c}) \end{gathered}$	$B_{5, c}$		$3+\frac{5}{7}$	$3+\frac{2}{2}$	7	-1
$\begin{gathered} \text { Lemma } 12 \\ \text { (a) } \end{gathered}$	$B_{5, d}$		$4+\frac{4}{7}$	$3+\frac{2}{2}$	8	0
$\begin{gathered} \text { Lemma } 12 \\ \text { (b) } \end{gathered}$	$B_{5, d}$		$4+\frac{4}{7}$	$3+\frac{2}{2}$	8	0
$\begin{gathered} \text { Lemma } 12 \\ (\mathrm{c}) \end{gathered}$	$B_{5, d}$		$4+\frac{2}{4}+\frac{2}{7}$	$2+\frac{3}{2}$	8	$\frac{1}{2} \star$

Table 2: All possible B_{5} blocks in G and the estimation of $7 f(B)+2 n(B)-5 e(B)$.

Table 3: All possible B_{4}, B_{3} and B_{2} blocks in G and the estimate of $7 f(B)+2 n(B)-5 e(B)$.

[^0]: ${ }^{1}$ In fact, it can be shown that the length of the exterior face containing the path $v_{2} v_{1} v_{4} v_{3}$ is at least 9 . This yields $f(B) \leq 4+1 / 7+3 / 9$ and $7 f(B)+2 n(B)-5 e(B) \leq-2 / 3$. However, this precision is unnecessary.

