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Abstract

Let exp(n, T, H) denote the maximum number of copies of T in an n-vertex planar
graph which does not contain H as a subgraph. When T' = K, exp(n,T, H) is the
well studied function, the planar Turan number of H, denoted by exp(n,H). The
topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp
upper bound for both exp(n,Cy) and exp(n,C5). Later on, Y. Lan, et al. continued

. . 18(n—2
this topic and proved that exp(n,Cg) < #

a conjecture on exp(n, Cy), for k > 7.

Keywords Planar Turdn number, Extremal planar graph

1 Introduction and Main Results

In this paper, all graphs considered are planar, undirected, finite and contain neither loops
nor multiple edges. We use C} to denote the cycle on k vertices and K, to denote the
complete graph on r vertices.
One of the well-known results in extremal graph theory is the Turdn Theorem [5], which

gives the maximum number of edges that a graph on n vertices can have without containing

1

. In this paper, we give a sharp upper
bound exp(n, Cs) < %n — 7, for all n > 18, which improves Lan’s result. We also pose
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a K, as a subgraph. The Erdds-Stone-Simonovits Theorem [2, [3] then generalized this
result and asymptotically determines ex(n, H) for all non-bipartite graphs H: ex(n, H) =
(1—%) (5)+0(n?), where x(H) denotes the chromatic number of H. Over the last decade,
a considerable amount of research work has been carried out in Turdn-type problems, i.e.,
when host graphs are K,,, k-uniform hypergraphs or k-partite graphs, see [3], [6].

In 2016, Dowden [I] initiated the study of Turdn-type problems when host graphs are
planar, i.e., how many edges can a planar graph on n vertices have, without containing a given
smaller graph? The planar Turdn number of a graph H, exp(n, H), is the maximum number

of edges in a planar graph on n vertices which does not contain H as a subgraph. Dowden

[1] obtained the tight bounds exp(n,Cy) < 15(7;_2), for all n > 4 and exp(n,Cs) < 12258

for all n > 11. Later on, Y. Lan, et al. [4] obtained bounds exp(n,©4) < w, for all

n >4, exp(n,05) < 5("2_2), for all n > 5 and exp(n, Og) < 18("7_2), for all n > 7, where Oy,

is obtained from a cycle C} by adding an additional edge joining any two non-consecutive
vertices. They also demonstrated that their bounds for ©4 and ©5 are tight by showing
infinitely many values of n and planar graph on n vertices attaining the stated bounds. As a

consequence of the bound for ©¢ in the same paper, they presented the following corollary.

Corollary 1 (Y. Lan, et al.[4]).

18(n — 2)

exp(n, Cg) < 7

for all m > 6, with equality when n = 9.

In this paper we present a tight bound for exp(n, Cg). In particular, we prove the following
two theorems to give the tight bound.

We denote the vertex and the edge sets of a graph G by V(G) and E(G) respectively.
We also denote the number of vertices and edges of G by v(G) and e(G) respectively. The

minimum degree of G is denoted §(G). The main ingredient of the result is as follows:

Theorem 2. Let G be a 2-connected, Cg-free plane graph on n (n > 6) vertices with 6(G) >
3. Then e(G) < 2n—T.



We use Theorem 2, which considers only 2-connected graphs with no degree 2 (or 1)
vertices and order at least 6, in order to establish our desired result, which bounds gives the

desired bound of gn — 7 for all Cg-free plane graphs with at least 18 vertices.
Theorem 3. Let G be a Cy-free plane graph on n (n > 18) vertices. Then
5

Indeed, there are 17-vertex graphs on 17 vertices with 36 edges, but 2(17) —7=35.5 < 36.

One such graph can be seen in Figure [l

Figure 1: Example of G on 17 vertices such that e(G) > (5/2)v(G) — 7.

We show that, for large graphs, Theorem [3 is tight:

Theorem 4. For every n = 2 (mod 5), there exists a Cg-free plane graph G with v(G) =

% and e(G) = 9n, hence e(G) = %U(G) -7

For a vertex v in G, the neighborhood of v, denoted Ng(v), is the set of all vertices in G
which are adjacent to v. We denote the degree of v by dg(v) = |Ng(v)|. We may avoid the
subscripts if the underlying graph is clear. The minimum degree of G is denoted by §(G),
the number of components of G is denoted by ¢(G). For the sake of simplicity, we may use
the term k-cycle to mean a cycle of length k£ and k-face to mean a face bounded by a k-cycle.

A k-path is a path with k edges.

2 Proof of Theorem [4: Extremal Graph Construction

First we show that for a plane graph G, with n vertices (n = 7 (mod 10)), each face having
length 7 and each vertex in Gy having degree either 2 or 3, we can construct GG, where G is

a Cg-free plane graph with v(G) = £24

and e(G) = 9n. We then give a construction for

such a Gy as long as n = 7 (mod 10).



Using Euler’s formula, the fact that every face has length 7 and every degree is 2 or 3,

@ and the number of degree 2 and degree 3 vertices in Gy are 2£2 and

we have e(Gg) = =

4An—28
5

, respectively.

Given Gy, we construct first an intermediate graph G’ by step |(1)]

(1) Add halving vertices to each edge of G and join the pair of halving vertices with
distance 2, see an example in Figure 2 Let G’ denote this new graph, then v(G’) =

v(Go) +e(Go) = 121 and the number of degree 2 and degree 3 vertices in G’ is equal

to the number of degree 2 and degree 3 vertices in G, respectively.

(-0

Figure 2: Adding a halving vertex to each edge of Gj.

To get G, we apply the following steps and on the degree 2 and 3 vertices in
G', respectively.

(2) For each degree 2 vertex v in Gy, let N(v) = {vy,v2}, and so vyvve forms an induced
triangle in G’. Fix v; and vy, replace vjvv, with a K by adding vertices v;, vy to

/ ’ / / ’ / ’ .
V(G") and edges vyv, v1vy, U1U1, V102, VyV1, Vyvs to E(G'). See Figure Bl

/N AA

Figure 3: Replacing a degree-2 vertex of G with a K .



(3) For each degree 3 vertex v in Gy, such that N(v) = {vy,vs,v3}, the set of vertices
{v,v1, v, v3} then forms an induced K, in G'. Fix vy, v9 and vs, replace this K4 with a

K by adding a new vertex v’ to V(G’) and edges v'v, v'vy, v'vy to E(G"). See Figure[dl

U3 U3

(%1 V2 (%1 V2

Figure 4: Replacing a degree-3 vertex of G with a K .

For each integer k > 0, and n = 10k+7 we present a construction for such a Gy, call it G§:
Let vf and v? (1 <i < k+ 1) be the top and bottom vertices of the heptagonal grids with 3
layers and k columns, respectively (see the red vertices in Figure[) and v be the extra vertex
in G but not in the heptagonal grid. We join viv, vo} and viv? (2 <i < k+1). Clearly, G¥
is a (10k + 7)-vertex plane graph and each face of G¥ is a 7-face. Obviously e (G’g) = 14k+7,

and the number of degree 2 and 3 vertices are 2k + 7 = %28 and 8k = @ respectively.

After applying steps , and on G% we get G. It is easy to verify that G is a
Cg-free plane graph with

v(G) = v(GE) + e(GE) + 2(2k +7) + 8k = (10k + 7) + (14k +7) + 12k + 14 = 36k + 28
e(G) = 9(GE) = 90k + 63.

Thus, e(G) = 3v(G) — 7.

Remark 1. In fact, for k > 1 and n = 10k + 2, there exists a graph HY which is obtained
from GE by deleting vertices (colored green in Figure [d) x1, x3, x3, 14, x5 and adding the
edge viy. Clearly, HY is an 10k + 2-vertex plane graph such that all faces have length 7.

Moreover, e(HY) = 14k, the number of degree-2 and degree-3 vertices are 2k + 6 = %28 and



Figure 5: The graph Gf, k > 1, in which each face has length 7. The graph HE (see
Remark [I) is obtained by deleting z1, ..., x5 and adding the edge viy.

8k —4 = 4”g28, respectively. After applying steps (1), (2), and (3) to HY, we get a graph H
that is a Cg-free plane graph with e(H) = (5/2)v(H) — 7.

Thus, for any k = 2 (mod 5), we have the graphs above such that each face is a 7-gon
and we get a Cg-free plane graph on n vertices with (5/2)n —7 edges for n = 10 (mod 18) if
n > 28.

3 Definitions and Preliminaries

We give some necessary definitions and preliminary results which are needed in the proof of

Theorems 2] and Bl

Definition 5. Let G be a plane graph and e € E(G). If e is not in a 3-face of G, then we call
it a trivial triangular-block. Otherwise, we recursively construct a triangular-block in

the following way. Start with H as a subgraph of G, such that E(H) = {e}.
(1) Add the other edges of the 3-face containing e to E(H).
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(2) Take ¢ € E(H) and search for a 3-face containing €'. Add these other edge(s) in this
3-face to E(H).

(3) Repeat step (2) till we cannot find a 3-face for any edge in E(H).
We denote the triangular-block obtained from e as the starting edge, by B(e).
Let G be a plane graph. We have the following three observations:
(i) If H is a non-trivial triangular-block and e, es € E(H), then B(e;) = B(es) = H.
(ii) Any two triangular-blocks of G are edge disjoint.

(iii) If B is a triangular-block with the unbounded region being a 3-face, then B is a

triangulation graph.

Let B be the family of triangular-blocks of G. From observation above, we have

BeB
where e(G) and e(B) are the number of edges of G and B respectively.
Next, we distinguish the types of triangular-blocks that a Cs-free plane graph may con-

tain. The following lemma gives us the bound on the number of vertices of triangular-blocks.
Lemma 6. Fvery triangular-block of G contains at most 5 vertices.

Proof. We prove it by contradiction. Let B be a triangular-block of G' containing at least 6
vertices. We perform the following operations: delete one vertex from the boundary of the
unbounded face of B sequentially until the number of vertices of the new triangular block B’
is 6. Next, we show that B’ is not a triangular-block in GG. Suppose that it is. We consider

the following two cases to complete the proof.
Case 1. B’ contains a separating triangle.

Let v1v9v3 be the separating triangle. Without loss of generality, assume that the inner

region of the triangle contains two vertices say, vy and vs. The outer region of the triangle



contains one vertex, say vg. Since the unbounded face is a 3-face, the inner structure is
a triangulation. Without loss of generality, let the inner structure be as shown in Figure
[B(a). Now consider the vertex vg. If vy, v9 € N(vg), then vsv v5v9v6v1v3 1S & 6-cycle in G, a

contradiction. Similarly for the cases when vy, v3 € N(vg) and vy, v3 € N(vg).
Case 2. B’ contains no separating triangle.

Consider a triangular face vivov3v1. Let vy be a vertex in the triangular-block such that
v9U3V4v9 is a 3-face. Notice that vivy ¢ E(B’), otherwise we get a separating triangle in B’.
Let v5 be a vertex in B’ such that vvsvsv9 is a 3-face. Notice that vg cannot be adjacent to
both vertices in any of the pairs {vy, va}, {v1,v3}, {ve,vs5}, {vs,v4}, or {vg,v5}. Otherwise,
Cs C G. Also v3vs ¢ E(B'), otherwise we have a separating triangle. So, let vjv; € E(B’)
and vi,vs € N(vg) (see Figure B(b)). In this case vivsusv2v4v3v1 results in a 6-cycle, a

contradiction. O

U1 Ve

(%1 Us

V4

V2 U3 U3 Uy

(a) (b)
Figure 6: The structure of B’ when it contains a separating triangle or not, respectively.
Now we describe all possible triangular-blocks in G based on the number of vertices the

block contains. For k € {2,3,4,5}, we denote the triangular-blocks on k vertices as By.

Triangular-blocks on 5 vertices.

There are four types of triangular-blocks on 5 vertices (see Figure [7). Notice that B, is a

K .



A L

Figure 7: Triangular-blocks on 5 vertices.

Triangular-blocks on 4, 3, and 3 vertices.

There are two types of triangular-blocks on 4 vertices. See Figure [§ Observe that By,
is a Ky. The 3-vertex and 2-vertex triangular-blocks are simply K3 and K, (the trivial

triangular-block), respectively.

B,

Figure 8: Triangular-blocks on 4,3 and 2 vertices.

Definition 7. Let G be a plane graph.

(i) A vertex v in G is called a junction vertex if it is in at least two distinct triangular-

blocks of GG.

(ii) Let B be a triangular-block in G. An edge of B is called an exterior edge if it is on
a boundary of non-triangular face of G. Otherwise, we call it an interior edge. An
endvertex of an exterior edge is called an exterior vertex. We denote the set of all
exterior and interior edges of B by Ext(B) and Int(B) respectively. Let e € Ext(B),

a non-triangular face of G with e on the boundary is called the exterior face of e.

Notice that an exterior edge of a non-trivial triangular-block has exactly one exterior
face. On the other hand, if GG is a 2-connected plane graph, then every trivial triangular-

block has two exterior faces. For a non-trivial triangular-block B of a plane graph G, we



call a path P = vjv9vs...v, an exterior path of B, if v; and v, are junction vertices and
v;v;41 are exterior edges of B for i € {1,2,...,k — 1} and v; is not junction vertex for all
j€{2,3,...,k—1}. The corresponding face in G where P is on the boundary of the face
is called the exterior face of P.

Next, we give the definition of the contribution of a vertex and an edge to the number
of vertices and faces of Cg-free plane graph GG. All graphs discussed from now on are Cg-free

plane graph.

Definition 8. Let G be a plane graph, B be a triangular-block in G and v € V(B). The

contribution of v to the vertex number of B is denoted by ng(v), and is defined as

1
4 triangular-blocks in G containing v’
We define the contribution of B to the number of vertices of G asn(B) = > ng(v).
veV(B)

Obviously, v(G) = > n(B), where v(G) is the number of vertices in G and B is the
BeB
family of triangular-blocks of G.

np(v)

Let B K be a triangular-block of G isomorphic to a Bs , with exterior vertices vy, v, vs,
where v; and w3 are junction vertices, see Figure [0 for an example. Let F' be a face in G
such that V(F) contains all exterior vertices vy 1,...,01m, V21, .., V2m;V31,--.,VUsm Of m
(m > 1) copies of B Ko such that vy ;,v9,,v3; are the exterior vertices of the i-th B Ko and
U1, v3; (1 <@ <'m) are junction vertices. Let Cr denote the cycle associated with the face

F. We alter E(CF) in the following way:

E(C}:) = E(CF) — {U171U271’U371} — e = {U17m'l}27m’1137m} U {U171U371} Uu...u {'Ul,ma 'U3,m}~
Hence, the length of I as |[E(C%)|= [E(Cr)|—m. For example, in Figure @ |E(Cr)|= 11
but |E(C%)|= 9.

Now we are able to define the contribution of an “edge” to the number of faces of

Cg-free plane graph G.

Definition 9. Let F' be a exterior face of G and Cr := {ey, ea, ..., ex} be the cycle associated
with F'. The contribution of an exterior edge e to the face number of the exterior face F', is

denoted by fr(e), and is defined as follows.
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AN

U2 U3
Figure 9: An example of a face containing all the exterior vertices of at least one B Ko

1

(1) If ey and ey are adjacent exterior edges of By, then fr(ei) + fr(es) = W, and
7 F
1
fr(e;) = ——=, where i€ {3,4,... k}.
CFl
. , 1
(ii) Otherwise, fr(e) = —.
Cr|
Note that > fr(e) = 1. For a triangular-block B, the total face contribution of B
e€cE(F)
is denoted by fp and defined as fp = (# interior faces of B) + >  fr(e), where F is
e€Ext(B)
the exterior face of B with respective to e. Obviously, f(G) = Y. f(B), where f(G) is the
BeB

number of faces of G.

4 Proof of Theorem

We begin by outlining our proof. Let f, n, and e be the number of faces, vertices, and edges
of G respectively. Let B be the family of all triangular-blocks of G.
The main target of the proof is to show that

7f +2n —5e < 0. (1)

Once we show ([II), then by using Euler’s Formula, e = f+n—2, we can finish the proof of

Theorem 21 To prove ({I), we show the existence of a partition Py, Pa, ..., P, of B such that

11



7> f(B)+2 > n(B)—5 > e(B)<0,forallie{1,2,3...,m}. Since f = > f(B),

BeP; BeP; BeP; BeB
n= > n(B)and e= > e(B) we have
BeB BeB
Tf+2n—5e=T7Y > f(B)+2) Y n(B)=5) Y ebB)
i BeP; i BeP; i BeP;
:Z (72 f(B)+2 Z n(B) =5 Z e(B)) <0.
7 BeP; BeP; BeP;

The following proposition will be useful in many lemmas.

Proposition 10. Let G be a 2-connected, Cg-free plane graph on n (n > 6) vertices with
i(G) > 3.

(i) If B is a nontrivial triangular-block (that is, not Bs), then none of the exterior faces

can have length 5.
(i1) If B is in {Bs, Bsp, Bs.c, Bia}, then none of the exterior faces can have length 4.

(i11) If B is in {Bsq, Bap} and an exterior face of B has length 4, then that 4-face must
share a 2-path with B (shown in blue in Figures[I3 and[1]]) and the other edges of the

face must be in trivial triangular-blocks.
(iv) No two 4-faces can be adjacent to each other.

Proof. Observe that any pair of consecutive exterior vertices of a nontrivial triangular-
block has a path of length 2 (counted by the number of edges) between them and any
pair of nonconsecutive exterior vertices has a path of length 3 between them. So having

a face of length 5 incident to this triangular-block would yield a Cg, a contradiction.

If Bisin {Bsg, Bsp, Bs, Bao}, then any pair of consecutive exterior vertices of the
listed triangular-blocks has a path of length 3 between them. It remains to consider
nonconsecutive vertices for {Bs, Bs.}. For Bs; each pair of nonconsecutive exterior
vertices has a path of length 3 between them. In the case where B is Bs ., this is true

for all pairs without an edge between them. As for the other pairs, if they are in the

12



same 4-face, then at least one of the degree-2 vertices in B must have degree 2 in G,

a contradiction.

(iii)| In both Bs 4 and By, any pair of consecutive exterior vertices has a path of length 3
between them. For Bj 4, in Figure [I[3] we see that there is a path of length 4 between
vy and vy and so the only way a 4-face can be adjacent to B is via a 2-path with
endvertices v; and vs. In fact, because there is no vertex of degree 2, the path must be
v1v4v3. For Byy, in Figure [[3] we see that because B cannot have a vertex of degree
2, the 4-face and B cannot share the path vsvv4 or the path vovzvy. Thus the only

paths that can share a boundary with a 4-face are vyv4v3 and vvov3.

As to the other blocks that form edges of such a 4-face. In Figure [I0, we see that if,
say, viu is in a nontrivial triangular-block, then there is a vertex w in that block, in

which case wvixvavsuw forms a 6-cycle, a contradiction.

If two 4-faces share an edge, then there is a 6-cycle formed by deleting that edge. If
two 4-faces share a 2-path, then the midpoint of that path is a vertex of degree 2 in

G. In both cases, a contradiction.

Figure 10: Proposition [[0iii); The blocks defined by blue edges must be trivial.

To show the existence of such a partition we need the following lemmas.

Lemma 11. Let G be a 2-connected, Cg-free plane graph onn (n > 6) vertices with 6(G) > 3
If B is a triangular-block in G such that B ¢ {Bs 4, Bay}, then Tf(B) +2n(B) — 5e(B) < 0.

Proof. We separate the proof into several cases.
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Case 1: B is Bs,.

Let vy, vo and vs be the exterior vertices of K. At least two of them must be junction

vertices, otherwise G contains a cut vertex. We consider 2 possibilities to justify this case.

(a)

Let B be B;, with 3 junction vertices (see Figure [[Ifa)). By Proposition [I0, every
exterior edge in B is contained in an exterior face with length at least 7. Thus,

f(B) = (# interior faces of B) + Y. fr(e) < 5+ 3/7. Moreover, every junction
ecExt(B)

vertex is contained in at least 2 triangular-blocks, so we have n(B) < 2 + 3/2. With
e(B) =9, we obtain 7f(B) + 2n(B) — 5e(B) < 0.

Let B be Bs, with 2 junction vertices, say v, and vz (see Figure [[T[(b)). Let F" and F}
are exterior faces of the exterior edge vov3 and exterior path vov vz of the triangular-
block respectively. Notice that v;v, and vovs are the adjacent exterior edges in the
same face Iy, hence |C(F7)|> 8. By Definition @ we have fp, (v1v2) 4+ fr (v1v3) < 1/7.
Because there can be no Cg, one can see that regardless of the configuration of the
By, it is the case that fr(vous) < 1/7. Thus, f(B) < 5+ 2/7. Moreover, since v;
and v3 are contained in at least 2 triangular-blocks, we have n(B) < 3 + 2/2. With
e(B) =9, we obtain 7f(B) + 2n(B) — be(B) < 0.

SR S U1 N
' rd ~ A}
. N 1 Fio
¢ N f 1 '
’ i\ '
’ \ !
} \ “ !
1 ]
1 “ ’
’
\ '
. ’
. 4
~ -
. N
Vo Uz IIU2 F Uz
1 1 1 1
\ ’ |\ ’
. 4 . 4
~ ’ ~ ’
D D
(a) (b)

Figure 11: A Bs , triangular-block with 3 and 2 junction vertices, respectively.
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Case 2: B is in {By,, Bsp, Bs.c}-

(a)

(c)

Let B be a B;,. By Proposition [10, each face incident to this triangular-block has
length at least 7. So, f(B) < 3+ 3/7. Because there is no cut-vertex, this triangular-
block must have at least two junction vertices, hence n(B) < 2 +2/2. With e(B) = 6,
we obtain 7f(B) + 2n(B) — 5e(B) < 0.

Let B be a Bs;. There are 4 faces inside the triangular-block and each face incident
to this triangular-block has length at least 7. So, f(B) < 4 + 4/7. Because there
is no cut-vertex, this triangular-block must have at least two junction vertices, hence
n(B) < 34 2/2. With ¢(B) = 8, we obtain 7f(B) + 2n(B) — 5e(B) < 0, as seen in
Table 2

Let B be a Bj,.. Similarly, f(B) < 3+5/7 and because there are at least two junction
vertices, n(B) < 3+ 2/2. With e(B) = 7, we obtain 7f(B) + 2n(B) — 5e(B) < —1.

Case 3: B is Bs.

Let vy, v, and v3 be the exterior vertices of triangular-block B. Each of these three must be

junction vertices since there is no degree 2 vertex in GG, which implies that each is contained

in at least 2 triangular-blocks. We consider two possibilities:

(a)

Let the three exterior vertices be contained in exactly 2 triangular-blocks. By Propo-
sition Iﬂm the length of each exterior face is either 4 or at least 7. We want to show

that at most one exterior face has length 4.

If not, then let z; be a vertex that is in two such faces. Consider the triangular-block

incident to B at x1, call it B’. By Proposition [I0, B’ is not in {B; 4, Bs, Bs ¢, Baa}-

If B"is in {Bs 4, Bas, B3}, then the triangular-block has vertices (o, £3, each adjacent to
x1 and the length-4 faces consist of {vy, £3, mo,v2} and {vy, l3, m3,v3}. Either o ~ (3
(in which case fomavovgmslsly is a 6-cycle, see Figure [[2[(a)) or there is a ¢ distinct
from vy that is adjacent to both ¢ and /3 (in which case ¢'lomovauil3ls is a 6-cycle,

see Figure T2(b)).
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If B is By, then the trivial triangular-block is {vy, £}, in which case {¢, mo, va, vy, v3, m3}
is a Cg, see Figure [[2(c). Thus, we may conclude that if each of the three exterior
vertices are in exactly 2 triangular-blocks, then f(B) <1+2/7+1/4 and n(B) < 3/2.
With e(B) = 3, we obtain 7f(B) + 2n(B) — 5e(B) < —5/4.

g/
’ . ’ .
’ . ’ .
II U1 ‘\ II U1 ‘\
’ \ ’ \
’ . ’ .
)y M ms e em ms e
.s 2 3 . N 2 3 .
N . N .
N . N .
A Y 4 A Y 4
) U3 ) U3

Figure 12: A Bj triangular-block, B and the various cases of what must occur if B is incident
to two 4-faces.

(b) Let at least one exterior vertex be contained in at least 3 triangular-blocks and the
others be contained at least 2 triangular-blocks. In this case, we have f(B) <1+ 3/4
and n(B) < 2/24 2/3. With e(B) = 3, we obtain 7f(B) + 2n(B) — 5e(B) < —1/12.

Case 4: B is Bs.

Note that the fact that there is no vertex of degree 2 gives that if an endvertex is in exactly

two triangular-blocks, then the other one cannot be a By. We consider three possibilities:

(a) Let each endvertex be contained in exactly 2 triangular-blocks. Since neither of the
triangular-blocks incident to B can be trivial, they cannot be incident to a face of length
5 by Proposition EII]E] Thus, B cannot be incident to a face of length 5. Moreover,
the two faces incident to B cannot both be of length 4, again by Proposition .
Hence, f(B) <1/4+1/7. Clearly n(B) < 2/2 and with e(B) = 1, we obtain 7f(B) +
2n(B) — be(B) < —1/4.

(b) Let one endvertex be contained in exactly 2 triangular-blocks and the other endvertex

be contained in at least 3 triangular-blocks. This is similar to case @ in that neither
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face can have length 5 and they cannot both have length 4. The only difference is that
n(B) <1/241/3 and so 7f(B) + 2n(B) — be(B) < —7/12.

(c) Let each endvertex be contained in at least 3 triangular-blocks. The two faces cannot
both be of length 4 by Proposition [0(iv)] Hence, f(B) <1/4+ 1/5 and n(B) < 2/3.
With e(B) = 1, we obtain 7f(B) + 2n(B) — be(B) < —31/60.

O

Lemma 12. Let G be a 2-connected, Cg-free plane graph onn (n > 6) vertices with 6(G) > 3.
If B is Bs g4, then Tf(B) + 2n(B) — be(B) < 1/2. Moreover, 7f(B) + 2n(B) — 5e(B) < 0

unless B shares a 2-path with a 4-face.

(o (%1

U2 Uy U2 >

(a) (b)

Figure 13: A Bj; 4 triangular-block and how a 4-face must be incident to it.

Proof. Let B be Bs, with vertices vy, va, vs, v4, and vs, as shown in Figure [3[a). By
Proposition IT(i)} no exterior face of B can have length 5. By Proposition if there is
an exterior face of B that has length 4, this 4-face must contain the path v,v4vs.

Moreover, since there is no vertex of degree 2, v, is a junction vertex. Because G has no

cut-vertex, there is at least one other junction vertex. We may consider the following cases:

(a) Let vy be a junction vertex. This prevents an exterior face of length 4. Thus, each
exterior face has length at least 7. Hence, f(B) <4+ 4/7 and n(B) < 3+ 2/2. With
e(B) = 8, we obtain 7f(B) + 2n(B) — be(B) < 0.
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(b) Let vy fail to be a junction vertex and exactly one of vy,v3 be a junction vertex.
Without loss of generality let it be vs. In this case, again, each exterior face has
lengt at least 7. Again, f(B) <44 4/7 and n(B) < 3+ 2/2. With e(B) = 8, we
obtain 7f(B) + 2n(B) — be(B) < 0.

(c) Let vy fail to be a junction vertex and both v; and v3 be junction vertices. Here either
the exterior path vivsvs is part of an exterior face of length at least 4 or each edge
must be in a face of length at least 7. If the exterior face is of length at least 7, then
f(B) <4+ 4/7, otherwise f(B) <4+2/4+2/7. In both cases, n(B) < 2+ 3/2 and
e(B) = 8. Hence we obtain 7f(B) + 2n(B) — be(B) < —1 in the first instance and
7f(B) +2n(B) — 5e(B) < 1/2 in the case where B is incident to a 4-face.

O

Lemma 13. Let G be a 2-connected, Cg-free plane graph onn (n > 6) vertices with §(G) > 3.
If B is By, then Tf(B) + 2n(B) — be(B) < 4/3. Moreover, 7f(B) 4 2n(B) — 5e(B) < 1/6
if B shares a 2-path with exactly one 4-face and 7f(B) + 2n(B) — 5¢(B) < 0 if B fails to
share a 2-path with any 4-face.

e

() (b) ()

Figure 14: A B, triangular-block and how a 4-face must be incident to it.

Proof. Let B be with vertices vy, vq, v3, and vy, as shown in Figure [4(a). By Proposi-

tion [I0(i)} no exterior face of B can have length 5. If there is an exterior face of B that has

In fact, it can be shown that the length of the exterior face containing the path vovv4vs is at least 9.
This yields f(B) < 4+1/7+3/9and 7f(B)+2n(B)—5e(B) < —2/3. However, this precision is unnecessary.
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length 4, it is easy to verify that being Cs-free and having no vertex of degree 2 means that

the junction vertices must be v; and v3. We may consider the following cases.

(a) Let either vy or vy be a junction vertex and, without loss of generality, let it be vy. All
the exterior faces have length at least 7 except for the possibility that the path vv4v3
may form two sides of a 4-face. Hence, f(B) < 2+2/4+42/7 and n(B) < 1+ 3/2.
With e(B) = 5, we obtain 7f(B) + 2n(B) — 5e(B) < —1/2.

(b) Let neither vy nor vy be a junction vertex. Because there is no cut-vertex, this requires
both v; and v3 to be junction vertices. Hence, there are two exterior faces: One that
shares the exterior path v;v4v3 and the other shares the exterior path vyvovs. Each

exterior face has length either 4 or at least 7. We consider several subcases:

(i) If both faces are of length at least 7, then f(B) <2+ 4/7, and n(B) <2+ 2/2.
With e(B) = 5, we obtain 7f(B) + 2n(B) — be(B) < —1.

(ii) If only one of the exterior faces is of length 4, then f(B) < 2 + 2/7 + 2/4.
Moreover, at least one of vy, v3 must be a junction vertex for more than two
triangular-blocks, otherwise either v(G) = 5 or the vertex incident to two blue
edges in Figure [[4(b) is a cut-vertex. Hence, n(B) < 2+ 1/3 + 1/2 and with
e(B) =5, we have 7f(B) + 2n(B) — 5e(B) < 1/6.

(iii) Both exterior faces are of length 4. Thus f(B) < 2+ 4/4. By Proposition [I0[iii)]

the blocks represented by the blue edges in Figure [[4](c) are each trivial. Hence
n(B) <2+ 2/3. With e(B) =5, we get 7f(B) + 2n(B) — 5e(B) < 4/3.

Tables 2 and Bl in Appendix [A] give a summary of Lemmas [IT], 12, and I3l

Lemma 14. Let G be a 2-connected, Cg-free plane graph on n (n > 6) vertices with 6(G) >
3. Then the triangular-blocks of G can be partitioned into sets, Py, Pa,..., P such that

7> f(B)+2 > n(B)—=5 > e(B) <0 forallie |[m).

BeP; BePp; BePp;
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Proof. As it can be seen from Tables [2] and [3]in Appendix [Al there are three possible cases

where 7f(B) + 2n(B) — 5e(B) assumes a positive value. We deal with each of these blocks

as follows.

U1

B’
/ "

U3

Figure 15: Structure of a Bj 4 if it is incident to a 4-face, as in Lemma [I4l The triangular-
blocks B’ and B” are trivial.

(1)

Let B be a Bj 4 triangular-block as described in the proof of Lemma [I2(c)| See Fig-
ure I3

By Proposition , the edges v,u and vsu are trivial triangular-blocks. Denote these
triangular-blocks as B’ and B”. Consider B’. One of the exterior faces of B’ has length
4 whereas by Proposition the other has length at least 5. It must have length at
least 7 because if it had length 5, then the path v;v3u would complete it to a 6-cycle.
Thus, f(B') <1/4+1/7. Since the vertex u cannot be of degree 2, then this vertex is
shared in at least three triangular-blocks. Thus, n(B’) < 1/2+4 1/3. With e(B’) = 1,
we obtain 7f(B')+2n(B’)—5e(B’) < —7/12 and similarly, 7f(B")+2n(B")—5e(B") <
—7/12. Define P’ = {B, B, B"}. Thus, 7 Y. f(B*)+2 Y, n(B*)=5 > e(B*) <
1/2 4+ 2(—7/12) = —2/3. v v v

Therefore, for each triangular-block in G as described in Lemma , it belongs to a

set P’ of three triangular-blocks such that 7 Y~ f(B*)4+2 Y. n(B*)—5 >  e(B*) <
B*E’P/ B*E’P/ B*E’P/
0. Denote such sets as Py, Pa, ..., Pn, if they exist.

Let B be a By, triangular-block as described in the proof of Lemma [I3(b)jii)} See
Figure [I6(a).
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U1

B/
U
Vg

U3

(a)

Figure 16: Structure of a By, triangular-block if it is incident to a 4-face, as in Lemma [I4]
The triangular-blocks B’, B”, B"”, and B"" are all trivial.

By Proposition the edges viu; and wvzu; are trivial triangular-blocks. Denote
them as B’ and B”, respectively. Consider B’. One of the exterior faces of B’ has
length 4 and by Proposition [[(J(iv)} the other has length at least 5. Thus, f(B’) <
1/4 +1/5. Since the vertex u; cannot be of degree 2, then this vertex is shared in at
least three triangular-blocks. Thus, n(B’) < 1/2 + 1/3. With e(B’) = 1, we obtain
Tf(B')+2n(B")—5e(B’") < —11/60 and similarly, 7f(B")+2n(B")—5e(B") < —11/60.
Define P = {B,B',B"}. Thus,7 Y f(B)+2 3 n(B)—-5 Y e(B*)<1/6+
B*ep” B*ep” B*ep"
2(—11/60) = —1/5.

Therefore, for each triangular-block in G as described in Lemma [I3(b)|(ii), it be-
longs to a set P” of three triangular-blocks such that 7 >~ f(B*)+2 >, n(B*) —
B*ep B*ep
5 > e(B*) <0. Denote such sets as Py, 41, Pimyt2; - - - » P, if they exist.
B*eP”
Let B be a By, triangular-block as described in the proof of Lemma [I3(b)jiii)l See

Figure [IG(b).

By Proposition the edges viuq, v3uq, v1usg, and vsuy are trivial triangular-blocks.
Denote them as B, B”, B” and B"" respectively. Consider B’. One of the exterior faces
of B’ has length 4 whereas the other has length at least 5. Thus, f(B’) < 1/4+ 1/5.
Since the vertex u; cannot be of degree 2, then this vertex is shared in at least three
triangular-blocks. Clearly v, is in at least three triangular-blocks. Thus, n(B’) < 2/3.
With e(B’) = 1, we obtain 7f(B’)+2n(B’) —5e(B’) < —31/60 and the same inequality
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holds for B”, B”, and B"".

Define P” = {B, B, B",B"”,B"}. Thus, 7 > f(B*)+2 . n(B*)—5 >, e(B*) <
B*e’PN B*e’PN B*EPII

4/3 + 4(—31/60) = —11/15.

Therefore, for each triangular-block in G as described in Lemma [I3(b)[iii)| it be-

longs to a set P’ of three triangular-blocks such that 7 >~ f(B*)+2 >  n(B*)—

B*EPIII B*EPIII
5 > e(B*) <0. Denote such sets as Pryi1; Pmgt2s - - - » Py if they exist.
B*e’P///

Now define Py,41 = B — Lj P;, where B is the set of all blocks of GG. Clearly, for each
i=1
block B € Ppyi1, 7f(B) +2n(B) — 5e(B) < 0. Thus, 7 >, f(B)+2 >, n(B)-—

BEPms+1 BEPmg+1

5 > e(B) <0. Putting m := ms3 + 1 we got the partition Py, P,, ..., P, of B meeting
BEPmg+1

the condition of the lemma. O

This completes the proof of Theorem

5 Proof of Theorem [3

Let G be a Cg-free plane graph. We will show that either 5v(G) — 2¢e(G) > 14 or v(G) < 17.

If we delete a vertex x from G, then

50(G — z) — 2e(G — x) =5(v(G) — 1) — 2(e(G) — deg(z))
= 50(G) — 2¢(G) — 5 + 2 deg(x)
> 50(G) — 2¢(G) — 1.

So, graph G has an induced subgraph G’ with 6(G) > 3 with
50(G) — 2¢(G) > 50(G') — 2e(G') + (v(G) — v(G")) (2)

In line with usual graph theoretic terminology, we call a maximal 2-connected subgraph a
block. Let B’ denote the set of blocks of G’ with the i*" block having n; vertices and e;
edges. Let b be the total number of blocks of G'. Specifically, let by, bs, by, and bs denote
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‘ ‘minof5n—26—5 ‘

n>6 14—-5 > 9| Theorem [2
n=>5|505)—29) -5 > 2| Bs,, Figure[l
n=41|54)—2(6)—5 > 3| By, Figure§
n=3|53)—2(3)—5 > 4| Bz, Figure
n=2]502)—202) -5 > 3| B,, Figued

Table 1: Estimates of 5n — 2e — 5 for various block sizes.

the number of blocks of size 2, 3, 4, and 5, respectively. Let bg denote the number of blocks
of size at least 6. Then we have b = bg + bs + by + b3 + by and, using Table [Tk

5 (Zni—(b—1)> —2) e

50(G") — 2e(G')

|
E

i=1

> 9bg + 2b5 + 3by + 4b3 + 3bs + 5 (3)

-
I

Combining (2) and (3)), we obtain
5U(G) — 26(G) Z 9b6 + 2b5 + 364 + 463 + 362 + 5+ (’U(G) - U(G,)) (4)

If bg > 1, then the right-hand side of () is at least 14, as desired.
So, let us assume that bg = 0 and b = b5 + by + b3 + by. Furthermore,

U(G/) = 5b5 + 4b4 + 3b3 + 2b2 - (b — 1)
— Abs + 3by + 2by + by + 1. (5)
So, substituting 2b; from (B into (@), we have

50(G) — 2e(G) > 2bs + 3by + 4b3 + 3by + 5 + (v(G) — v(G"))

1 3 1 1
= (iv(G/) — §b4 — b3 — §b2 — 5) + 3b4 + 4b3 -+ 3b2 + 5 + (’U(G) — ’U(G/))
1, 3 5 9
= 'U(G) — iv(G) + 5[)4 + 3b3 + 51)2 + 5
1 9
> Z -z
> 2U(G) +3

which is strictly larger than 13 if v(G) > 18. Since 5v(G) — 2¢(G) is an integer, it is at least

14 and this completes the proof of Theorem [3
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Remark 2. Observe that for n > 17, the only graphs on n vertices with e edges such that
e > (5/2)n — 7 have blocks of order 5 or less and by (), there are at most 4 such triangular
blocks. A bit of analysis shows that the maximum number of edges is achieved when the

number of blocks of order 5 is as large as possible.

6 Conclusions

We note that the proof of Theorem 2], particularly Lemma [14] can be rephrased in terms of
a discharging argument.

We believe that our construction in Theorem [ can be generalized to prove exp(n,C))
for ¢ sufficiently large. That is, for certain values of n, we try to construct Gy, a plane graph
with all faces of length ¢ + 1 with all vertices having degree 3 or degree 2.

If such a Gy exists, then the number of degree-2 and degree-3 vertices are %

4(n—0—1)
/-1

and , respectively. We could then apply steps similar to (1), (2), and (3) in the proof
of Theorem Ml in that we add halving vertices and insert a graph By,_; (see Figure [IT) in

place of vertices of degree 2 and 3. For the resulting graph G,

(@) :U(G0)+6(Go>+(£—4>(£_5)fo(£+l) +(€—5)%
S (2 —50n+2(0+1)
_n—|—m(n—2)+ /—1
P30 20+1)
1"t

e(G) = (3¢ — 9 (Go) = (3¢ — 9)n

Therefore, e(G) = @v(G) — @. We conjecture that this is the maximum number

of edges in a Cy-free planar graph.

Conjecture 15. Let G be an n-vertex Cy-free plane graph (¢ > 7), then there exists an

integer Ny > 0, such that when n > Ny, e(G) < 3(2—1)n — 6(421)_
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Figure 17: By_; is used in the construction of a Cy-free graph.
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A Tables

The following tables give a summary of the results from Lemmas [I1] 12 and I3

A red edge incident to a vertex of a triangular-block indicates the corresponding vertex
is a junction vertex. Moreover, if a vertex has only one red edge, it is to indicate the vertex

is shared in at least two triangular-blocks. Whereas if a vertex has two red edges, it means

that the vertex is shared in at least three blocks.

A pair of blue edges indicates the boundary of a 4-face.

Case B Diagram f(B)< | n(B) < | e(B) 7f +2n—be <
Lerﬁgﬁﬂ] Bs. % 5+§ 2+g 9 0
Cim | A s+ | oy | 0 :
e D[] o]
i Db [ i |
LerErZ;lz'a@] Bsa ,_<>_‘ 4+$ 3+§ 8 0
— ,_<> N T :
Lerrzz;a Bs ,_<>_ 4+§+§ 2+g 8 %*

Table 2: All possible Bs blocks in G and the estimation of 7f(B) + 2n(B) — be(B).
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Case B Diagram f(B) < n(B) < |e(B)=| 7f+2n—5e<
LemmallTl 3 2
By, 3+ = 24+ — 6 0
(O A 7 "2
Lemmal(l3l 2 2
B 2+ 4+ 142 5 =
&l 1 »—% +5t +5 :
Lemmal[l3 4 2
- B 2+ = 2+ — 5 -1
ory | P % 7 5
Lemmal[l3l 2 2 1 1 1
— B 24 —-—+=-12+ -4+ = — %
(O] 4b @ + 1 + - + 3 + 5 5
Lemmal[l3l 2 2 2 4
B 24—+ - 24+ — 5 — %
o | P ‘@‘ *ITI] 2 ;
Lemmal(3l 2 1 3 5
B 14+24° ° 3 2
i(a) ’ A Tt 2 4
Lemmal(l3l 3 2 1 1
B 142 Z 4z 3 -
(b)) ’ .A *1 2t3 12
Lemmal[l3l 1 1 2 1
B —eo—o—o -+ = — 1 ——
4(a) 2 177 2 4
Lemmal[l3 1 1 1 1 7
B Sz Sz 1 -
AD) 2 ’_’_<: 1t7 | 2t3 12
Lemmal[l3 B 1 n 1 2 ] 31
A, 2 4 5 3 60

Table 3: All possible By, B3 and Bs blocks in G and the estimate of 7f(B) 4 2n(B) — be(B).
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