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A STRUCTURE-PRESERVING PARAMETRIC FINITE ELEMENT
METHOD FOR SURFACE DIFFUSION

WEIZHU BAO* AND QUAN ZHAOf

Abstract. We propose a structure-preserving parametric finite element method (SP-PFEM)
for discretizing the surface diffusion of a closed curve in two dimensions (2D) or surface in three
dimensions (3D). Here the “structure-preserving” refers to preserving the two fundamental geometric
structures of the surface diffusion flow: (i) the conservation of the area/volume enclosed by the closed
curve/surface, and (ii) the decrease of the perimeter/total surface area of the curve/surface. For
simplicity of notations, we begin with the surface diffusion of a closed curve in 2D and present a weak
(variational) formulation of the governing equation. Then we discretize the variational formulation
by using the backward Euler method in time and piecewise linear parametric finite elements in
space, with a proper approximation of the unit normal vector by using the information of the curves
at the current and next time step. The constructed numerical method is shown to preserve the
two geometric structures and also enjoys the good property of asymptotic equal mesh distribution.
The proposed SP-PFEM is “weakly” implicit (or almost semi-implicit) and the nonlinear system at
each time step can be solved very efficiently and accurately by the Newton’s iterative method. The
SP-PFEM is then extended to discretize the surface diffusion of a closed surface in 3D. Extensive
numerical results, including convergence tests, structure-preserving property and asymptotic equal
mesh distribution, are reported to demonstrate the accuracy and efficiency of the proposed SP-PFEM
for simulating surface diffusion in 2D and 3D.
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1. Introduction. Surface diffusion is a general process involving the motion
of adatoms, molecules, and atomic clusters at solid material surfaces [29]. Tt is an
important transport mechanism or kinetic pathway in epitaxial growth, surface phase
formation, heterogeneous catalysis and other areas in surface sciences [30]. In fact,
surface diffusion has found broader and significant applications in materials science
and solid-state physics, such as the crystal growth of nanomaterials [20, [19] and solid-
state dewetting [31] [32] [24].

To describe the evolution of microstructure in polycrystalline materials, Mullins
firstly developed a mathematical formulation for surface diffusion [28]. As is shown
in Fig. [T}, the motion by surface diffusion for a closed curve in two dimensions (2D)
or a closed surface in three dimensions (3D) is governed by the following geometric
evolution equations [28] [10]

(1.1a) Ossk, 1in 2D,
Uy =

(1.1b) A H, in 3D,

where v,, is the normal velocity, s represents the curvature of the 2D curve with s
being the arc length parameter, H represents the mean curvature of the 3D surface
with A, denoting the Laplace-Beltrami operator on the surface, i.e. Ay =V -V,
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Fic. 1.1. A schematic illustration of surface diffusion of a closed curve I'(t) in 2D (left panel)
and a closed surface S(t) in 3D (right panel), where n is the outward unit normal vector, and T
represents the unit tangential vector of the curve in 2D.

with V denoting the surface gradient operator. It is well-known that surface diffusion
has the following two essential geometric properties:

(1) the area of the region enclosed by the 2D curve and the volume of the region

enclosed by the 3D surface are conserved;

(2) the perimeter of the 2D curve and the total surface area of the 3D surface

decrease in time.
More precisely, motion by surface diffusion is the H ~'-gradient flow of the perimeter
or surface area functional [27]. Theoretical investigations of surface diffusion flow
about the regularity and well-posedness of solutions can be found in [I6] I8 [17] and
references therein. For numerical approximations, it is desirable to preserve the two
fundamental geometric properties.

Much numerical effort has been devoted for simulating the evolution of a 2D curve
or 3D surface under surface diffusion flow. Most of the early works were focused on
the surface diffusion of graphs, in which the curve/surface is represented by a height
function. In [I1], a space-time finite element method for axially symmetric surfaces
is developed, and the method conserves the volume and decreases the surface area.
In [I], Bénsch, Morin and Nochetto presented a weak formulation for graphs together
with priori error estimates for the semi-discrete discretization. In particular, the
fully discrete approximation satisfies the conservation of the enclosed volume and
the decrease of the surface area. This work was later extended to the anisotropic
case by Deckelnick, Dziuk and Elliott in [I2]. In [34], Xu and Shu presented a local
discontinuous Galerkin finite element method.

Recently different numerical methods have been proposed and analyzed for gen-
eral curves/surfaces via different formulations and/or parametric variables. Numer-
ical approximations in the framework of finite difference method can be found in
33, 27, [32] and references therein, and the property of area/volume conservation is
not considered for the corresponding discretized solution. Numerical approximation
based on parametric formulation of surface diffusion of closed curves are considered
in [I5]. In [2], Bénsch, Morin and Nochetto developed a finite element method for
surface diffusion flow via a complicated variational formulation and proper paramet-
ric variables. The numerical method decreases the surface area in time, but does
not preserve the enclosed volume in the full discretization. In these numerical works,
mesh regularisation/smoothing algorithms or artificial tangential velocities are gen-
erally required to prevent the possible mesh distortion. Based on the previous works
[13, O], Barrett, Garcke, and Niirnberg (denoted as BGN) introduced a novel weak
formulation for surface diffusion equation and presented an elegant semi-implicit para-
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metric finite element method (PFEM) [5] [0 [8]. The PFEM is unconditionally stable
by decreasing the perimeter/surface area and has the good property with respect to
the mesh points distribution. Nevertheless, the fully discretized approximation fails
to conserve the enclosed volume. Very recently, an area-conserving and perimeter-
decreasing PFEM is proposed in [23] for a closed curve in 2D. In the PFEM, the unit
normal and tangential vector are approximated on average in order to preserve the
two geometric properties for the discretized solutions. However, the method is fully
implicit and the mesh quality is not well preserved during time evolution. For more
related works, we refer the readers to [4], 211 [14] B] B6] B5] 25] and references therein.

The main aim of this paper is to design a structure-preserving parametric finite
element method (SP-PFEM) for the surface diffusion flow so that the two underly-
ing geometric properties are well preserved in the discretized approximation. The
work is based on the discretization of the weak formulation in [5l [6]. We follow the
previous works by adopting the backward Euler method with an explicit treatment
of the surface integrals in time and piecewise linear elements in space, except in the
numerical treatment of the unit normal vector. Precisely, in a similar manner to
the discretization in [23], we approximate the unit normal vector semi-implicitly by
using the information at the current and next time step. With this treatment, the
obtained PFEM not only inherits the good properties of the original PFEMs by BGN
in [5 6] such as the unconditional stability and the good mesh distribution, but also
achieves the exact conservation of the area/volume in 2D/3D. The proposed method
is “weakly” implicit (or almost semi-implicit). That is, there is only one nonlinear
term in each equation of the system, and in particular this nonlinear term is a poly-
nomial of degree up to two and three in 2D and 3D, respectively. Thus the SP-PFEM
can be solved very efficiently by the Newton’s method.

The rest of the paper is organized as follows. In section Bl we begin with the
surface diffusion flow of a closed curve in 2D, review a weak formulation, propose
a SP-PFEM with detailed proof of its area conservation and perimeter dissipation,
and finally present an iterative method for solving the resulting nonlinear system. In
section Bl we extend our SP-PFEM to the surface diffusion of a closed surface in 3D.
Extensive numerical results are reported in sectiond] and finally some conclusions are
drawn in section

2. For closed curve evolution in 2D. In this section, we are focused on the
surface diffusion flow of a closed curve in 2D (cf. Fig. [[T]left). We parameterize the
evolution curves I'(t) as

X(ps t) = (21(p, t), 22(p, t))T 1% [0,T] — R2,

where I = R/Z = [0, 1] is the periodic unit interval. The arc length parameter s is
then computed by s(p,t) = [ |9,X| dq with 8,5 = |9,X|. We then rewrite (LTal) into
the following coupled second-order nonlinear geometric partial differential equations
(PDEs)

(2.1a) n- X = Jgk,
(2.1b) kn = —05sX,
where n := —(9;X)? is the outward unit normal vector with (-) being the clockwise

rotation by Z, ie., [(a, b)T]* = (=b, a)”. We recall that surface diffusion in 2D
is the H~' gradient flow of the perimeter of the 2D curve, and has two essential
geometric structures, i.e. area conservation and perimeter dissipation. Specifically,
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let A(t) be the area of the enclosed region by I'(t) and L(¢) be the perimeter, then
the two geometric structures for the dynamic system imply

(2.2a) gA(t) = / (kX -n)ds = / Ossds =0, t>0,
di () (1)
d

(2.2b) —L(t) = / (X -n)kds = —/ 06> ds <0, t>0.
dt r() r()

2.1. The weak formulation. To obtain the weak formulation, we define the
function space with respect to I'(t) as

(2.3) LX) := {u 1R, and/

lu(s)|?ds = /|u(s(p, )|?0,sdp < —i—oo},
() 1

equipped with the L?-inner product

(2.4) (u,v)r(t) = /F(t) u(s)v(s)ds = /u(s(p,t))v(s(p,t))aps dp,

I

for any scalar (or vector-valued) functions u,v € L?(I). We define the Sobolev spaces

(2.5) H'(I) := {u:1 >R, and u € L*(I), d,u € L*()}.

The weak formulation of Eq. (ZI]) can be stated as follows [B]: Given the initial
curve I'(0) = X(I, 0), for ¢t > 0, we find the evolution curves I'(t) = X(-, t) € [H(I))?
and the curvature (-, t) € H'(I) such that

(2.6a) (00X, ¢)F(t) + (05 am)m —0, WyeHN),
(2.6b) (FL, n- w) . (8SX, Bsw)r(t) =0, Ywe[H' (D]

Note here Eq. (Z6al) is obtained by taking inner product of ([2Ial) with a test function
1, and applying the integration by parts. Similar approach to ([2IB) with a vector
test function w, we obtain (2.60]).

2.2. The discretization. Take 7 > 0 as the uniform time step size and denote
the discrete time levels as ¢,, = m7 for m > 0. Let N > 3 be a positive integer
and denote h = 1/N. Then a uniform partition of the reference domain I is given by
I=UL, I, where I; = [pj_1, p;] for j = 1,2,..., N with p; = jhfor j =0,1,...,N.
Define the finite element space as

Vi) :={ueCl): ul,e P (L), Vi=1,2,...,N} € H\(I),

where P!(I;) denotes the space of polynomials with degree at most 1 over the subin-
terval I;. Let I'™ := X"™(p) = (2™ (p), y™(p))T € [V"(I)]? be the numerical approx-
imation of the solution X(-,¢,,). Then {I'"™},,>0 are a sequence of polygonal curves
consisting of connected line segments. In order to have non-degenerate meshes, we
shall assume that the polygonal curves satisfy

(2.7) fin (b >0, with hi = X"(p;) - X™(pj-1), m 20,
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where [h’"| is the length of hY* for j =1,2,..., N.
For two piecewise continuous functions w,v defined on the interval I with pos-

sible jumps at the nodes {p; };-V:l, we define the mass lumped inner product (-, -);m
(composite trapezoidal rule):

N
1 _
(2.8) (1, 0) o 2= 5 D[] [ 0) (07) + (- 0) (0]
j=1
where u(p]i) = lim wu(p) are the one-sided limits.

p—p}

Let k™*1 € V() be the numerical approximation of the curvature of T™*!. We
propose the full discretization of the weak formulation in (Z8]) as follows: Given the
initial curve I'0 := X°(-) € [V"(I))?, for m > 0, we seek the evolution curves ['"*+1 :=
XmHL() € [VM(I))? and the curvature s™*1(-) € V(I) such that the following two
equations hold

Xm+l _Xm

(2.9a) ( = "t wh);m + (aswﬂ, aswh)Fm =0, Vohe Vi),

h
m—+1 m+L . h _ m-+1 h _ h h 2
(2.9D) (Ii , n™tE )Fm (85X | Dyw )Fm 0, Ve VD)2

where s is the arc length of I'™ and n™"2 is defined as
(2.10) n™tz = -5 (0:X™ + 9, X)) = —§|apx |71 (9,X™ 4+ 9,X™ ) T

and for any f € V"(I), we compute its derivative with respect to the arc length
parameter on I'™ as 9, f = [0,X™|710,f.

We will show in section that the approximation of n using (2I0) contributes
to the property of area conservation. The discretization is “weakly implicit” with
only one nonlinear term introduced in (29a) and (2.9h), respectively. In particular,
the nonlinear term is a polynomial function of degree at most two with respect to the
components of X" *1 and x™*1. We note that in [5], the unit normal is approximated
explicitly by n™ := —(9,X™)1, which leads to a system of linear algebraic equations.
Besides, a fully implicit PFEM for surface diffusion of closed curves is studied in [7].
However, these two methods do not preserve the enclosed area in the discretized level,
e.g. the error to the area is at first-order accurate with respect to the time step size
7 and is at second-order accurate with respect to the mesh size h.

REMARK 2.1. The first terms in ([29al) and 29D) are approzimated using the
mass lumped inner product (Z8) in order to maintain the asymptotic equal mesh
distribution [3, [35]]. Therefore, no re-meshing for the polygonal curve is needed during
the time evolution.

REMARK 2.2. In [23], Jiang and Li proposed a new variational formulation for
surface diffusion of a 2D curve and approximated the unit normal using a similar for-
mulation in (ZI0) so that the property of area conservation is achieved. Nevertheless,
their numerical method is fully implicit and the mesh quality is not well preserved
during the time evolution.

2.3. Area conservation and perimeter dissipation. For simplicity, denote
X" (p;) = (¢, yi")" for j =0,1,---,N. We let A™ be the total enclosed area and
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L™ be the perimeter of I, then they can be written as
1 N
@11) A" =S e ) by, L= Y] m o,
j=1

where h7" is defined in (2.1
Similar to the work in [23], we can prove the exact area conservation for the
numerical method (Z9)).

THEOREM 2.1 (Area conservation). Let (XmH(-), Km+1(-)) be a numerical
solution of the numerical method [29). Then it holds

(2.12) AT = Am =AY, m > 0.

Proof. We define the approximate solution I'"*(a) = X"(p, ) via a linear inter-
polation of X™*! and X™:

(213)  X"(p, @) := (1 —a)X™(p) + aX™H(p), 0<p<l1

Denote by n” the outward unit normal vector of I'"(a) and A(a) the area enclosed
by I'*(a). Applying the Reynolds transport theorem to A(«) yields

iA(a) = / Do X" - n"ds
da '’ ()

(2.14) = / X7 =X [(1 - @)g, X" — ad, X" dp,
I

where we revoke Eq. (213) and the identities:
(2.15) Dp X = XM+ _ Xm™, n" = —|9, X" (9,X")*.

Integrating ([2.I4]) with respect to « from 0 to 1 and noting (ZI0), we arrive at

A(1) — A(0) = /H[X’”*l _xm. [—%(apxm + a,,xm“)} y

h
2.16 — (XMl _xXm).pmtE 1) |
(2.16) ( )t )

Now setting ¢ = 7 in (2.9a) and noting the above equation, we obtain A(1) = A(0).
Thus A™H =A™, 00

Similar to the previous work in [5], we establish the unconditional stability of the
numerical method (Z9) by showing the perimeter decreases in time.

THEOREM 2.2 (Unconditional stability). Let (X’”“(-), Km+1(-)) be a numerical
solution of (29). Then it holds

m N
2.17 L™ 4+ 1 (asnl, as,d) <r°=S" R0,  m>1.
(2.17) ; - ;I 2|
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Proof. Setting ¢ = 7x™*! in (Z0a)) and w” = X™*+! — X™ in (2.9h), and then
combining the two equations, we get

(2.18) T(asnm“, 8514”“) + (asxmﬂ, By (X + —Xm)) ~0.

I'm

I'm

Since 0; is the derivative with respect to the arc length of '™, we can compute

N m—+1 m+1 m
b’ b’ b
X", 9, (X = X)) =3 [ = | |
( e A RN I

2

N m-+1
1 [ |h; m
- Zi pr | )
J=1 J
N erl
J m
>3 (B 1) w
j=1 J
(2.19) =rmtt—m,

where we have used the fact a(a —b) > 5 (a? — b?) for the first inequality and % >

a — 1 for the second inequality.

Plugging ([2.19) into [2I8]), we obtain
(2.20) L+ oy T(aslierl, asnm“) <™  m>0.

Tm

1
2

Replacing m by [ in Eq. ([2.20), and then summing up it for [ from 0 to m — 1 gives

EID). 0

Define the mesh ratio indicator (MRI) U™ of the polygonal curve I'™ as

maxlgjgN ’h;n’

(2.21) U= m > 0.

minlngN |h;n|,
We then have
PROPOSITION 2.1 (Asymptotic equal mesh distribution). Let (Xm(-), Hm(-))

be a solution of the numerical method (Z9), and when m — +o0o0, X™(-) and ™ ()
converge to the equilibrium T¢ = X¢(p) € [V*(I)]? and r°(p) € V'(I), respectively,
satisfying mini<j<n |[h§| > 0 with h$ := X¢(p;) — X(pj-1) for 1 <j < N. Then we
have

(2.22a) kS(p) =K, 0<p<1,

maxi<j<y [hf[

2.22b lim O™ = Q¢ .= — =I=F L
( ) m—+o00 mini<;<n |h§|
2
(2.22¢) lim L™ = L = 2VA%% (1 + %fﬁ + O(h4)> .
m——+00

Proof. Eqs. [222a) and (222D)) follow directly from the Proposition 3.3 in [35],
thus we omit the proof here. This implies that the equilibrium shape is a regular
N-sided polygon. By noting the area conservation in Theorem 2.1 we can derive

(2.23) L° =2, /AONtan(%), h=1/N,

which gives Eq. (Z22d) with a simple application of the Taylor expansion. O
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2.4. The iterative solver. For the resulting nonlinear system in (23], we use
the Newton’s iterative method for computing (X™*+1, x™*1). In the i-th iteration,

given (Xm“’i(-), Iim+1’i(')) € ([Vv™D]?, V™(I)), we compute the Newton direction
(X5(~), /@5(-)) € ([V™(@)]?, V(1)) such that the following two equations hold

X6 L h Xm+li _ xm (—3 XJ)L h
2 amtgst h . 14 h a ) a h)
(T n 2,¢)Fm+( T 2|8pX’”|’¢)Fm+(SH’ =Y rm
Xm-i—l,i _Xm . h .
(224&) == _(7 : nm+%717 wh) - (as"{/m-‘rl)lu aswh) )
T rm rm
SyL
(. nm%,i,wh)h £ (we, (=9,X%) _wh>h - (0.x%, 0.0")
rm 210,X™| rm rm
) ) h )
(2.24b) - —(nm“ﬂ, n" 5 ""h)p + (aSXm+“, aswh)r ,

for any (wh, wh) € ([Vh(]l)]Q, Vh(]I)>, where n2: is defined as

1

) 1 _
nmtat . — _§|apXm|*1 (apxm + 8pxm+1,z)L'
We then set
(2.25) Xt — xmAli 4 X9 AL omLi g6

For each m > 0, we typically choose the initial guess X™+1:0 = X™  m+1.0 — m,
and then repeat the iteration ((224) and (225))) until the following two conditions
hold

HXm-i-l,i-i-l _ Xm-l-l,iHoo — max yxm-i-l,i-l-l (pj) _ Xm+1’i(pj)} < tOl,

HHerl,erl _ I{erl,lH o
o]

= max [ () — )] < tol,

where tol is the chosen tolerance.

REMARK 2.3. As discussed in [23], Eq. 224) is obtained by using the first-order
Taylor expansion of the nonlinear system [2.9) at the point (Xerl*i, Iim+1’i), and
then setting X0 = XM+l _ Xmtli 0 — gmHl _ gmtlii

REMARK 2.4. One may consider the Picard iteration method as an alternative
solver. In the i-th iteration, we find (X’”“’”l(-), mm“’”l(-)) e (Vvhm)?, vMD)
so that the following two equations hold

Xm-l—l,i—i—l _Xm ] h .
(2.26&) (f ,nm+%71, wh)rm + (aslim-i-l,z-l-l7 65¢h)rm _ 0,
) , h .
(226b) (mm+1’l+1, nm+%,z .wh> _ (6sxm+l,z+17 aswh) _ O7
F’V?‘L Fm

for any pair element (w", ") € ([V™(D)]?, V*(T)). Similar to the previous work in
[3], it is easy to show that the linear system ([226) admits a unique solution under
some weak assumptions on n™t2:i. Note that the Picard iteration method does not
require an initial guess of the curvature during the iterations.
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3. For closed surface evolution in 3D. In this section, we are devoted to
the surface diffusion of a closed surface in 3D (cf. Fig. [l right). We consider the
evolving closed surface S(t) with a mapping given by

X(p, t) = (z1(p,t), z2(p,t), w3(p, )7 8 x [0, T] = R,
where S := S(0) is the initial surface. Then the velocity of S(t) at point X is
(3.1) v(X, t) = aX(,1), VX eS).

Similar to the 2 D case, we can rewrite (LID) into the following coupled second-order
nonlinear geometric PDEs

(3.2a) n- 0, X = AgsH,
(3.2b) Hn=-AX,

We recall that surface diffusion in 3D is the H~' gradient flow of the total surface
area and has two essential geometric structures, i.e. volume conservation and surface
area dissipation. Specifically, let V' (t) denote the volume of the enclosed region by

S(t) and W(t) denote the total surface area. Then the two geometric properties imply
that

(3.3a) V(t) = / n-9,XdA = AHAA=0, t>0,
S(t)

d

dt S(t)

(3.3b) Ly = / (n-0,X)HdA = —/ V.HPAA <0, t>0.
b S(t) S(t)

3.1. The weak formulation. We define the function space

L2(S(t) = {¢ L S(t) = R, PP dA < oo},
S(t)
equipped with the L2-inner product over S(t)
(3.4) (U, V) g = / uwv dA, u,ve L*(S(t)),
5()

and the associated L?-norm [lul|s() := | /(u, u)g(,- The Sobolev space H'(S(t)) can
be naturally defined as

(3.5) HY(S(t)) == {¢ € L2(S(t)), and D, € L2(S(t)),i = 1,2,3},

where we denote V ¢ = (D¢, Dy, Dyip)” (cf. Ref. [14]).

Then the weak formulation for the surface diffusion [B2]) can be stated as fol-
lows [6]: Given the initial surface S(0), for ¢ > 0, we use the velocity equation ([B.1),

then find v(-, t) € [H*(S(1))] ® and the mean curvature H(-, t) € HY(S(t)) such that

(3.62) (»u .m, 1/;) . (VSH, vsw)s(t) —0, Ve HY(S®)),

(3.6b) (H, n~w)s(t) - (vsx, vsw)s(t) =0, Vwe [H'(S®)]’,

where (V, X, V,w)gq) = S Jswy Vs @ VgwidA for w = (w1, wa, ws)T.
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3.2. The discretization. Analogous to the 2D case, we take 7 > 0 as the
uniform time step size and denote the discrete time levels as t,, = m 7 for m > 0.
We then approximate the evolution surface S(t,,) by the polygonal surface mesh S™

with a collection of K vertices {q}’ } r—; and J mutually disjoint triangles. That is,

J
U’”
]7

where we assume o}" (j = 1,2,...,J) are non-degenerate triangles in 3D. We define
the finite element space

(3.7) K™ = {ueC(s™) : ul €PUof), VI<j<},

where P! ( ™) denotes the spaces of all polynomials with degrees at most 1 on ol
Denote X™ := [K™]3. We follow the idea in [I3] and parameterize S™*! over S™ a;
SmHl .= Xm+l(.) € X™. In particular, X™(-) is the identity function in X".

We take 0" := AN {q;’; }2:1 to indicate that {q;-’f, qj,, q;Z} are the three vertices
of the triangle ¢ and in the anti-clockwise order on the outer surface of S™. Let n™
denote the outward unit normal vector to S™. It is a constant vector on each triangle

™ and can be defined as

T {o}"}

J
(3.8) n;’ Xom with nf" -
; “ Tl

where x is the usual characteristic function, and J {a}”} is the orientation vector of
o given by

(3.9) TJ{om} = (a =) x (af —q}) .

To approximate the inner product (-, -)Sm, we define the mass lumped inner product

(3.10) (r.9) = 1S bt () o (@) ).

j=1k=1
where [07"| = 1|T {07} | is the area of ¢7", and f((q;’;)_) denotes the one-sided
limit of f(x) when x approaches towards qj’ from triangle oj", ie., f ((q;’Z)*) =
lim X).
cr;"Sx‘)q;.’; f( )

Let H™+! € K™ denote the numerical approximation of the mean curvature of
S™+1 We propose the full discretization of the weak formulation (B.6]) as follows:
Given the polygonal surface SV := X°(-) € X™, for m > 0, find the evolution surfaces
SmHl .= Xm+1(.) € X" and the mean curvature H™+1(-) € K™ such that

m—+1 m
Xm X

h
(3.11a) ( - +3, w) + (vs}tm“, vsw)sm =0, Vyh € K™,
Sm

(3.11b) (Hm+1, nm+%-wh) —(vsxm“, szh) —0, VwhexXm

Sm
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where n™*3 is a semi-implicit approximation of n given by

oy +4710] "+ T (o))
6 [T (o7")] ’

<

J
1 +l +l
(3.12) n™tz = E n;n QXU;nv n"? =
Jj=1

m m—+1
with 0" = A {qﬁ}izl, U;nJr% = A{%}Z:{
The approximation of n using ([I2) leads to the conservation of the total vol-
ume, although such treatment introduces a nonlinear term in (BI1Ia) and (311D,
respectively. Specially, the nonlinear term is a third-degree polynomial function with
respect to the components of X™ 1 and H™*1. V_ is the operator defined on S™.
That is, Vf € K™, we can compute V, f on a typical triangle o = A{qy}i_, of S™
as

(@2 —q1) xn
T {o}] 7

(1 —q3) xn
|T {o}]

(@3 —q2) xn
|T {o}]

(3.13) (Vsh) e = h + f2 + fs

where n = |g%ﬁ|, and f; = f(q).

REMARK 3.1.  The numerical method introduces an implicit tangential veloc-
ity for the polygonal mesh points. Here we apply the trapezoidal rule for numerical
integrations of the first terms in [B.11a) and (3.11bl). This helps to obtain the good
property with respect to the mesh distribution [6]. Therefore, no re-meshing for the
polygonal surface is needed during the time evolution.

3.3. Volume conservation and surface area dissipation. For the polygonal
surface S™ := X"™(-), we denote V™ and W™ as the enclosed volume and the total
surface area of S™, respectively. They can be written as

1 < 3 J
(3.14) ‘ﬂn:i§§:§:qg-j{qr},lyms:E:bTL m >0,
: =~

m m 3 m m m 3
where 07" 1= A {qjk}kzl, lof| = %|j{aj } and J {aj } is defined by (@9).
We have the following theorem which mimics the geometric property in (3.3al).

THEOREM 3.1 (Volume conservation). Let (XmH(-), Hm+1(~)) be a numerical
solution of the numerical method in BII). Then it holds

(3.15) ymtl —ym Vm >0,

where V™ defined in (B14]) represents the enclosed volume by S™.
Proof. We introduce an approximate solution between S™ and S™*! via the
linear interpolation:

(3.16) z(p, a) = (1 —a)X™(p) + aX"™ ! (p), pesS™, 0<a<l.

This gives a sequence of polygonal surfaces S"(a) := szl a;?(oz), where a;?(a) =
JAN {z(q;»’z,a)}izl. In particular, $"(0) = S™ and S"(1) = §™+1.

We denote by n"(z) the outward unit normal vector to S”(a) and Vol(S”(a)) the
volume enclosed by S"(a). Taking the derivative of Vol(S”(«)) with respect to o and
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applying the Reynolds transport theorem, we have
d h .k
EVOI(S () = /Sh(a) Oz -1"(z) dA,

J h

=17y ’*7{0 H |~7{0’ }|

J

J {0} ()}

3.17 = / Xl _xmy. 2 22D 4,
(317) 2] N2y

[T {oi (@)}

where in the second equality TT{ serves as the Jacobian determinant, and we
i

have used the following identities

_ m+1 _ ~ym h _
(3.18) Oz = X" =X, 0@ = [ R

Integrating Eq. (317) on both sides with respect to « from 0 to 1, we arrive at

Vol(S"(1)) — Vol(S"(0))

(1) -
/ ;/Unxmﬂ X . ‘Gz }|}dA do
>

m—+1 xXm 1
/m (X|j{am}| ) /0 J{o?(a)} dadA,

J

(3.19)

where we have changed the order of integration and used the fact that both X+ —-X™
and |J {07} are independent of a.

By B3) and B.I6), we note that J {o/ ()} is a quadratic function with respect
to a. Therefore applying the Simpson’s rule to the integration yields

(3.20) /0 J{ol(a)} da= é (J {ol(0)} +4J{0§‘(%)} —I—J{U?(l)}) :

1
By noting the definition of n;n+2 in (312) as well as (3:20), Eq. (319) could be recast
as

J
Vm+1 B g Z/ (Xm-i-l _ Xm) . n;n'i‘% dA

(3.21) - ([X’”+1 _ XM ™t 1)h

where we invoke the mass lumped inner product in (B.10).
On the other hand, setting ¢" = 7 in (B.I1a) yields

h
([X’”+1 ~ XM n™ 1)S —0.

Therefore we obtain V! = V™ by noting (3.21)). O
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Similar to the previous work in [6], we can establish the unconditional stability
of the numerical method (B.I1]), which mimics the geometric property in (3.30).

THEOREM 3.2 (Unconditional stability). Let (Xm“(-), HmH(-)) be a numer-
ical solution of the numerical method in BI1)), then it holds

(3.22) Wm+rzm:(vs7{l, vSHl) <W° = Z|a°| m> 1.

=1

Proof. Setting ¢" = 7H™*! in @I1a) and w” = X™*! — X™ in [B.IIH), com-
bining these two equations yields

(3.23) T(VS’H,’”“, VSHmH)Sm i (VSXmH, v, (XM - Xm))sm —o.

By a(a —b) > 1(a® — b?), we have VA = (a;;), B = (b;;) € R3*3:

33 33
:Zzaw aij = bij) > ZZ(a?j_b?j):

i=1 j=1 i=1 j=1

(14 - 181)

DO —
DO —

with ||-||r representing the Frobenius norm. Then we can compute

J
(VX v xmt -xm)) = Z/ VXML (VXM v X" dA
>Z/ (VX1 = 19X 2)
> Z m+1| ml)

(3.24) = Wm+1 —-wm,
where the last inequality is due to the fact (see Lemma 2.1 in [0])

1 m2 m 1 m 2 m
5 [ VXt aa=topl, g [ VX a2 oy
j 73

Combining (323)) and [B24]), we immediately obtain

(3.25) WL T(VSHm+1, vSHmH)Sm < W

Replacing m by [ in (328) and summing up it for [ from 0 to m — 1 yields (8:222). O

3.4. The iterative solver. In a similar manner, by using the first-order Taylor
expansion of [BII) at point (X’"H’i, ’Hm“’i), we obtain the Newton’s iterative
method for the computation of (Xm+1, Hm+1) as follows: Given the initial guess
Xm0y € Xm and H™HO(:) € K™, for i > 0, we seek the Newton direction
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(X‘S(-), 7-[,5(-)) € (Xm, Km) such that the following two equations hold

X6 ) h Xm-i—l,i _Xm matd i h
(—T AR wh> + (77 G wh) + (v vt
Ssm sm
Xm+1,i _xm

(3.26a) = —( nmtE ¢h)};m _ (VsHerl’i, V5¢h)5m’

T
h 1 h
1., 1 m-+3,t
7!67 nm+2,z. ,h 7!m+1,17 g i PR ,h vsx67 vs h
X
Sm Sm Sm

) ) h .
(3:26b) = —(H"H W) s (VX vt
SW‘L Sm

X
vectors over S™. That is, on each triangle 07", 1 < j < J, we define them as follows:

1y 43 . .
for any (wh, wh) € (Xm, Km), where n”t2% and Go, 2" are piecewise constant

T{op) +a7(e] ) 4 7 {0

nmta J
oy 6 [7{o7")]| ’
grtiil g% x X%(q) + g°! x X°(q) + 8" x X°(q]!)
x 6T {07}

. 3 1 . m m-41,1/_ m 3
. m—+s,1 q; +X (aj?)
where ¢ T = AL XmALi(gm) yo, 2= ANy Tk and
j gi) [ _q2 9 2 1

gt = 2X"H Q) + XM (g) = 22X (a)) - XM (a)), 1< Lk <3
We then update
(3.27) Xmtlitl _ xmtli | xé gL gyl | g6
For each m > 0, we can choose the initial guess X100 = Xm m+1.0 — 3ym
and then repeat the iterations in (3:20) and B27) until the following conditions hold

”Xerl,iJrl _ Xerl,i”OO — 1%8;(}( ‘Xerl,iJrl(q;n) _ Xerl,i(q;n)‘ S tOl,

HHerl,erl o erJrl,zHoo _ 12%}(}( |er+1,z+1(q§n) _ Herl,z(q;n)‘ S tol.

REMARK 3.2. Although it seems not easy to prove the well-posedness of the lin-
ear system ([B20), we observe in practice the iteration method performs well with a
very fast convergence provided that the computational meshes don’t deteriorate. For-
tunately, this is guaranteed by the good mesh property of our method, as discussed in
Remark[311

REMARK 3.3. It is also possible to consider the Picard iteration for comput-
ing the resulting nonlinear system in Eq. BI0). In the i-th iteration, we directly

seek (Xerl’”l(-), HmL ”1(-)) € (Xm, Km) such that for any pair element
(wh, wh) e (Xm, Km) it holds

XmALitl _ xm _ h .
. Il’mﬁ‘r%,z7 1/}]1) 4 (vs’Hm+17l+17 VS1/}h) o — O7
Sm

(3.28a) (

T

) . h )
(3.28b) (H’”*““, nm+%ﬂ-wh) - (vsxmﬂﬂﬂ, sz")s —0.
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Similar to the previous work in [6]], it is easy to show that the linear system B28) ad-
mits a unique solution under some weak assumptions on n™ 20 Unlike the proposed
Newton’ iterative method above, the Picard iterative’s method only require an initial
guess X0 during the iterations.

4. Numerical results. We present several numerical experiments, including a
convergence study, to test the SP-PFEM [2.9]) for 2D in section [f1]and (BT for 3D
in section [£2] respectively.

In the Newton iterations, the two linear systems in (Z24) and 28] are directly
solved via the sparse LU decomposition or the GMRES with preconditioner based on
the incomplete LU factorization, and the iteration tolerance is chosen as tol = 10719,

TABLE 4.1
Error ey, and the rate of convergence at three different times by using @3). The initial shapes

2
are chosen as a (5.6,0.8) rectangle (upper panel) and an ellipse: % + Oy? =1 (lower panel). In
the coarse mesh, h = hg = 275, 79 = 0.02.

(h, 7) | enr(t=0.2) order | ep-(t=0.5) order | ey (t=2.0) order
(ho, 70) | 5.23E-2 - 1.05E-1 - L.I2E-1 -
(%, 2) 1.33E-2 1.97 2.66E-2 1.97 2.80E-2 2.00
(Z—S, 2) 3.16E-3 2.07 6.53E-3 2.03 7.01E-3 2.00
(g—g, #) 7.38E-4 2.10 1.59E-3 2.04 1.75E-3 2.00

(h, 7) | en-(t=0.2) order | e;.(t=0.5) order | e, (t=2.0) order
(ho, 70) | 3.50E-2 - 5.59E-2 - 2.12E-2 -
(%, 2) 7.88E-3 2.15 1.36E-2 2.04 5.30E-3 2.00
(’;—g, 2) 1.78E-3 2.14 3.27E-3 2.05 1.33E-3 2.00
(Z—g, 2) 4.20E-4 2.08 7.97E-4 2.04 3.32E-4 2.00

4.1. For closed curves in 2D. We test the convergence rate of the numerical
method in (Z9) by carrying out simulations using different mesh sizes and time step
sizes. To measure the difference between two different closed curves I'y and I's, we
adopt the manifold distance in [36]. Let ©; and Qs be the inner regions enclosed
by Iy and I's, respectively, then the manifold distance is given by the area of the
symmetric difference region between 1 and Qs [36]:

(4.1) M(T'1, T2) == | (Q1\Q2) U (Q2\ ) | = 2[Q1 U Qo — Q1] — [,

where || denotes the area of Q.

We denote by X7 the numerical approximation of the curve I'(t,,) using mesh
size h and time step size 7.  We use the time step size 7 = O(h?) due to that
the discretization is first order in temporal discretiztion and second order in spatial
discretization, and the numerical errors are computed based on the manifold distance

in @) as

(4.2) en,r(tm) == M(X}",, g ), m > 0.

B

Initially, two different closed curves are considered:

e “Shape 17: arectangle curve with (5.6, 0.8) representing its length and width.
2

e “Shape 2”: an ellipse curve given by % +E =1
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Numerical errors are reported in Table[£I]l where we observe the order of convergence
can reach about 2 in spatial discretization.

R %101

1f g
) 064y
L (b)
Al AN
09 \ \"\»,v'\
S N 0.62 LAY
N o8k W RSN
~ N\, "’v.\'\.
= Y N
= 07 Y 6 AN
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= 107r
B2
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11§
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1t . . . N — 1010
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Fic. 4.1. The time history of (a) the relative area loss AA(t), (b) the normalized perimeter
L(t)/L(0) and (c) the mesh ratio indicator ¥(t) obtained by using different mesh sizes h with T =
20.48h2. (d) The log-log plot of AL$ and AL§ versus the mesh size h.

To further assess the performance of our numerical method, we define the relative
area change AA(t), the mesh ratio indicator ¥(¢) and the perimeter errors AL§, AL§
at equilibrium:

Am A .
AA(t)|t:tm = 40 \I’(t)lt:tm =,
v/ A0 2
ALS = lim (L™ — 2VA%7), ALS := ALS — %hz, m >0,
m—r00

where A™ and L™ are given by (2II), and U™ is given by (Z2I]) for the polygo-
nal curve I'". We show the time evolution of AA(t) and the normalized perimeter
L(t)/L(0) in Fig. EIia),(b), respectively. It can be seen that the total area is con-
served up to the machine precision under different mesh sizes, and the perimeter
decreases in time. This numerically substantiates Theorem 2.1] and Theorem

To examine the mesh quality during the simulations, we plot the mesh ratio
indicator W(¢) versus time in Fig. @l(c). It is found that the mesh ratio indicator
first increases to a small critical value and then gradually decreases to approximate 1.
This implies the mesh points on the polygonal curve tend to be equally distributed in
the long time limit. Besides, from Fig. E(d), we observe that by refining the mesh
size h, the perimeter errors AL{ and AL§ can achieve second-order and fourth-order
convergence, respectively, as expected by Proposition 211

The evolutions of the curves by using the two initial shapes are depicted in Fig.
We observe the two curves form the circle as the equilibrium shapes. We also assess the
performance of the Picard iteration (220 and the Newton’s iteration ([224]) during
the simulations. We recall that the two linear systems are solved directly with sparse
LU decomposition, therefore the difference between the CPU time for each iteration
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Xo r
x

Fi1G. 4.2. Morphological evolutions of the closed curves towards their equilibrium shapes (blue
solid line) using different initial shapes (red solid line): (a) “Shape 17, and (b) “Shape 27.

is negligible. The iteration numbers for the two iterative methods are compared in
Fig. A3l The Newton’s method is observed to outperform the Picard iteration, since
less number of iterations is needed for the former one.

14

5 12 — — — -Newton iteration 7
o 10} Picard iteration i
IS

2 st

S of .
=

E 4 - 1 -
[ e e e e e e e
= 5| i

O Il Il Il Il Il Il Il Il Il

F1a. 4.3. A comparison between the number of iterations used in each time step by the Newton’s
method in @24) and the Picard iteration in [Z20)), where we choose h =277, 7 = 1.25 x 1073, and
“Shape 17 is used.

We next conduct a comparison of our SP-PFEM and the PFEM by BGN in [5],
and the numerical results are reported in Fig. 4l Based on the observation, we can
draw the following conclusions: (i) the time evolutions of the normalized perimeter
show very good agreement between the two methods; (ii) the equal mesh distribution
is achieved in the long time limit for both methods; and (iii) unlike the SP-PFEM, the
PFEM by BGN in [5] fails to conserve the area exactly and suffers an area loss up to
one percent for h = 277, 7 = 1.25 x 1072 or smaller, and a more detailed investigation
of the area loss for the PFEM by BGN has been conducted in [5] [35].

We end this subsection by applying our SP-PFEM to two more complex shapes
give by:

Case 1. “Shape of a flower” with six petals:

— 2+ cos(66)] cos 6,
(4.3) @ = 2+ cos(66)] cos 6o, 2nl.
y = [2+ cos(66)] sin 6,
Case II. “Shape of an astroid” with four cusps:
= 2 [3cosf + cos(30)],
(4.4) v 13 cos 6 4 cos(36)] 6 e o, 2nl.
y = 5 [3sin6 — sin(30)],
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F1c. 4.4. Comparison between the SP-PFEM [239) and the PFEM by BGN in [5]: (a) the
relative area loss AA(t), (b) the normalized perimeter L(t)/L(0), and (c) the mesh ratio indicator
U(t); where we choose h =277, 7 = 1.25 x 1073, (d) The relative area loss AA(t) for the PFEM
by BGN in [5] with different mesh sizes h and time step sizes T = 20.48h%. Here “Shape 17 is used.

@ (b) ©
2 2 2
0 0 0
-2 -2 -2
2 0 2 2 0 2 2 0 2
(d) (e) ®
2 2 2
0 0 0
-2 -2 -2
2 0 2 2 0 2 2 0 2

F1c. 4.5. Several snapshots in the evolution of an initially non-conver curve towards the equi-
librium, where (a) t = 0; (b) t = 0.01; (¢) t = 0.03; (d) t = 0.06; (e) t = 0.08; (f) t = 0.15.
Parameters are chosen as h =279, 7 =10"%, and the initial curve is given by Eq. .

The discretization of the initial curve results from a uniform partition of the polar
angle §. This yields polygonal curve with non-uniform distribution with respect to
the arc length. In the simulations, we use parameters h = 279 7 = 1074, Fig.
depicts the curve evolution for the initial flower shape in ([@3]). It can be seen that the
six petals gradually disappear in order to form a final circle as the equilibrium shape.
The time evolution of several numerical quantities are shown in Fig. L6 where we
observe the decrease of perimeter, the conservation of area as well as the long time
equal mesh distribution.

Analogous numerical results for the astroid are depicted in Fig. 47 and Fig.
Due to the presence of cusps, we find the mesh ratio indicator ¥(t) begins with a large
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F1a. 4.6. (a) The iteration number in each time step by using the Newton’s method in (Z24]).
(b) The normalized perimeter L(t)/L(0). (c) The relative area loss AA(t). (d) The mesh ratio
indicator U(t). Parameters are chosen as h = 279 7 = 1074, and the initial curve is given by

Eq. &3).
(@) (b) (c)
2 2 2
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(d) (e) ®
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2 2 2
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Fic. 4.7. Several snapshots in the evolution of an initially non-convexr curve towards the equi-
librium, where (a) t = 0; (b) t = 0.01; (¢) t = 0.03; (d) t = 0.06; (e¢) t = 0.08; (f) t = 0.50.
Parameters are chosen as h =279 7 = 10"%, and the initial curve is given by Eq. [@4).

value. As time evolves, the decease of W(t) is still observed and the equal distribution
is reached finally. These two numerical examples demonstrate the applicability and
reliability of our proposed numerical method SP-PFEM.

4.2. For closed surfaces in 3D. We test the convergence rate of the numerical
method SP-PFEM @BII) by using the example of an initial (4,1,1) cuboid with
(4,1,1) representing its length, width, and height. We note the manifold distance
in ([@I) can be readily extend to 3D. However, practical computations involving two
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F1a. 4.8. (a) The iteration number in each time step by using the Newton’s method in (Z24]).
(b) The normalized perimeter L(t)/L(0). (c) The relative area loss AA(t). (d) The mesh ratio
indicator U(t). Parameters are chosen as h = 279 7 = 1074, and the initial curve is given by

Eq. @3).

TABLE 4.2
Error ey, . and the rate of convergence for the dynamic surface at three different times. The
numerical results are obtained using BII) with initial shape given by a (4,1,1) cuboid, and ho =
0.25, 10 = 0.01.

(h, T) en,-(t =0.08) order | €,,(t=0.2) order | €,,(t=0.3) order
(hos T0) 3.72E-2 - 5.30E-2 - 3.91E-2 -
(%, %) 1.06E-2 1.81 1.34E-2 1.98 9.92E-3 1.98
(g—”, 2—3) 2.99E-3 1.83 3.53E-3 1.92 2.81E-3 1.82

polygonal surfaces can be rather complicated and tedious. Therefore, given
S:=U/_,5; with vertices {qk}szl ,
S = Uj;la_;- with vertices  {q}}r_, ,

we consider the manifold distance in L°°-norm

1
N . . ’ . . . /
(4.5) M(S, S) = 5 (13%?}(' in, dist (qy, oj) + IISI}CaSXK  Inin dist (qx, crj)),
where dist(q, o) = infpe, ||p — gl represents the distance of the vertex q to the

triangle o. Analogous to Eq. ([{2]), the numerical errors are computed by comparing
Xp,r and X

h
o)

ISE

(46) ghﬂ'(t = tm) = M( ;7,”;7’7 ZI e )7 m Z O

274
In these expressions, the mesh size h is defined according to the initial discretization
S = U;_ 09 such that h = max;]_; y/ ‘0’?‘, and X} represents the numerical solution
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of S(tm) obtained using mesh size h and time step size 7. In the convergence test,
the numerical solutions are obtained on different meshes:

(K, J, h) = (146,288,27%), (578,1152,27%), (2306, 4608,2~ %), (9218,18432,27°).

Numerical errors are reported in Table It can be seen that the order of the
convergence for the numerical solutions can achieve around 2 in spatial discretization.

AV(2)

0O 005 01 015 02 025 03 0O 005 01 015 02 025 03
t t

Fi1G. 4.9. Time history of the relative volume loss AV (t) (left panel) and the normalized surface
area W (t)/W(0) (right panel) by using different mesh sizes h with 7 = %h? The initial shape is
chosen as a (4, 1, 1) cuboid.

Fia. 4.10. Ewolution of the polygonal mesh for an initial (4, 1, 1) cuboid. (a) t = 0; (b)
t=0.01; (c) t =0.1; (d) t = 0.35, where h =2"* and 7 = 3.125 x 10~%.

The time evolution of the relative volume loss and the normalized surface area
are depicted in Fig. The relative volume loss is defined as
vm VO
AV(t)|,y, = —v0 m > 0,
with V™ given by (BI4). We observe the exact conservation of the volume and
decrease of the surface area for the numerical solutions using different mesh sizes and
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time steps. Furthermore, the dynamic convergence of the normalised surface area is
confirmed by refining the mesh size.

The evolution of the surface mesh with (K, J) = (2306, 4608) are shown in
Fig. We observe that the sharp corners of the initial cuboid become rounded,
and finally, the cuboid forms a spherical shape as the equilibrium. In particular, we
observe the good mesh quality of the polygonal surface even though the re-meshing
procedure is not applied. We also assess the performance of the Picard iteration ([3.28))
and the Newton’s iteration (8.26) during the simulations. Similar to the 2D case, the
Newton method is observed to outperform the Picard iteration, as shown in Fig. L1l

25 . .
———-Newton iteration
o 20 Picard iteration
Q
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S 15
c
c
QO 10r 1
=]
©
o
g Sk 7
____________________ Ve
o \ \ \ \ \ \
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fia. 4.11. A comparison between the number of iterations used in each time step by the Newton’s
method in [B.28) and the Picard iteration in (3.28]), where h =273 and 7 = 1.25 x 1073,
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Fic. 4.12. Several snapshots in the evolution of an initial (8, 1, 1) cuboid until its pinch-off.
(a) t=0; (b) t=0.01; (¢) t=0.1; (d) t =0.3; (e) t = 0.365; (f) t =0.370.
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Fic. 4.13. (a) The iteration number in each time step by using the Newton’s method (3.20]).
(b) The relative volume loss AV (t). (c¢) The normalized surface area W (t)/W (0).

We next consider the shape evolution of an initial (8,1,1) cuboid. Due to the
presence of sharp corners, the shape evolves very fast at the very beginning stage (see
[2,6]). Therefore adaptive time steps are usually required for the simulations in order
to accurately predict the pinch-off time. In the current example, we discretize the
cuboid into J = 2176 triangles with K = 1090 vertices, and choose a uniform time
step 7 = 1072 for the simulation. Fig. depicts the morphological evolution of
the cuboid, where we observe the pinch-off event happens at the time ¢ = 0.370. This
shows a high level of consistency with previous result obtained by using adaptive time
steps (see [6]). In Fig. T3 we plot the iteration number used in each time step, the
relative volume loss and the normalized surface area versus time. We find in most
time steps, only 4 iterations are required in the Newton’s method, thus it is efficient.
We also observe the exact conservation of the volume and decrease of the surface area,
as expected by Theorem B.1] and Theorem

In the last example, we apply our numerical method SP-PFEM to the evolution of
a long cuboid of size (16,1, 1). We use the computational parameters: K = 2114, J =
4224 and 7 = 10~3. The numerical results are reported in Fig. .14}, where we observe
the formulations of two singularities during the evolution. We note here the pinch-off
time is ¢ = 0.630, which differs slightly from the previous result in [2] (¢ = 0.669).
The discrepancy may be due to the mesh regularization errors or the volume loss for
their numerical solutions.

5. Conclusions. We proposed a structure-preserving parametric finite element
method (SP-PFEM) for the surface diffusion flow of a 2D curve and 3D surface. The
numerical method was based on the discretization of a weak formulation that allows
the tangential velocity [5]. We adopted a “weakly” implicit (or almost semi-implicit)
discretization in time and piecewise linear elements in space. The key ingredient is
that we defined a new vector on average to approximate the unit normal by using the
information at the current and next time step. In this sense, the numerical method
yielded the good properties of area/volume conservation, unconditional stability and
good mesh quality. The numerical discretization is “weakly” nonlinear in the sense
that only one nonlinear term of polynomial form is introduced in each equation of
the discrete system, which can be efficiently and accurately solved by the Newton’s
iterative method.

We assessed the accuracy and convergence of the SP-PFEM by numerical tests
and it is illustrated that the order of convergence in spatial discretization can reach
about 2 as the mesh size is refined. Various numerical experiments were carried out
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Fic. 4.14. Several snapshots in the evolution of an initial (16, 1, 1) cuboid until its pinch-off.
(a) t=0; (b) t =0.01; (c) t =0.4; (d) t = 0.63.

to verify the good properties of the SP-PFEM. In all, our numerical method provides
a reliable and powerful tool for the simulation of surface diffusion flow for 2D curve
and 3D surface.

We remark here that the SP-PFEM (2.9)) in 2D and (8I1) in 3D can be straight-
forwardly extended to the anisotropic surface diffusion flow based on the works in
[9, [36] 26], the volume-preserving mean curvature flows [22], and other curvature
driven flows that preserve the volume. Of course, these extensions are required fur-
ther investigation in terms of preserving the mesh quality, especially the asymptotic

equal mesh distribution.
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