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Abstract

We study Dirichlet boundary control of Stokes flows in 2D polygonal domains. We
consider cost functionals with two different boundary control regularization terms: the L2

norm and an energy space seminorm. We prove well-posedness and regularity results for
both problems, develop finite element discretizations for both problems, and prove finite
element error estimates for the latter problem. The motivation to study the energy space
problem follows from our analysis: we prove that the choice of the control space L2(Γ)
can lead to an optimal control with discontinuities at the corners, even when the domain
is convex. We observe this phenomenon in numerical experiments. This behavior does not
occur in Dirichlet boundary control problems for the Poisson equation on convex polygonal
domains, and may not be desirable in real applications. For the energy space problem,
we derive the first order optimality conditions, and show that the solution of the control
problem is more regular than the solution of the problem with the L2(Γ) regularization. We
also prove a priori error estimates for the control in the energy norm, and present several
numerical experiments for both control problems on convex and nonconvex domains.

1 Introduction

PDE-constrained optimal control is an active research area and has been popular for the last sev-
eral decades. Interest in analysis and computation for problems in this area has been generated
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by a wide variety of applications and the fast development of computational resources. There
are already several monographs and chapters devoted to various aspects of the field, including
theoretical analysis, computational methods, and application areas; see, e.g., [6, 34,46].

Boundary control problems for PDEs are a very important part of this field since for many
applications control may only be applied at the boundary of the physical domain. Dirichlet
boundary control problems are especially important in application areas, but the problems can
be difficult to analyze mathematically – especially when the physical domain has a nonsmooth
boundary. One of the key points in the study of Dirichlet boundary control problems is the choice
of the control penalty in the cost functional. A natural goal in many applications is to minimize
the “amount” of control used, which naturally leads to a boundary control penalty using the
L2(Γ) norm. This also appears to be a reasonable choice from a numerical approximation point
of view. However, in the analysis of such a problem the governing state equation is typically
understood in a very weak sense since the Dirichlet boundary condition is only in L2(Γ).

Despite this difficulty, many researchers have considered problems using the L2(Γ) control
penalty and developed numerical methods and numerical analysis results. One of the first
contributions was the study of a finite element method for elliptic Dirichlet boundary control
problems in [20]. Control constrained problems governed by semilinear elliptic equations on
polygonal domains were studied in [8]. Optimal-order error estimates were derived for the
unconstrained problem in [50] for both the control and state by introducing a dual control
problem. Higher-order convergence rates were proved in [18] for control-constrained problems
in smooth domains based on the superconvergence properties of regular triangulations. In
[29] the authors used a mixed finite element method for approximating the elliptic Dirichlet
boundary control problem to avoid the very weak formulation of the state equation. For recent
results on the regularity of solutions and standard finite element approximations of elliptic
Dirichlet boundary control problems we refer to [1], [48] and the references cited therein. In [2],
optimal error estimates on general (possibly nonconvex) polygonal domains are obtained for
quasi-uniform and superconvergence meshes. Recently, the hybridizable discontinuous Galerkin
(HDG) method has applied to the elliptic Dirichlet boundary control problem on convex domains
[10–12, 26, 37]. The HDG method also avoids the very weak formulation, and has a lower
computational cost compared to traditional discontinuous Galerkin and mixed methods. We
also refer to [24,27] for error estimates for parabolic Dirichlet boundary control problems, to [49]
for state-constrained problems, and to [7] for a Robin penalization approach.

On the other hand, H1/2(Γ) appears to be a natural choice to study the state equation in the
standard variational formulation. There are also some numerical analysis results in this direc-
tion. The analysis of a finite element method for an elliptic Dirichlet boundary control problem
in the energy space setting with H1/2(Γ) as the control space was performed in [54]; a boundary
element method for this problem is proposed and analyzed in [53]. In [13] a variation to the
energy space method is proposed where the control penalty now involves the harmonic extension
of the control into the domain; a posteriori error estimates and the convergence of the adaptive
finite element method is studied in [28] for this approach. Also see [40] for another related
approach to the energy space method. Sharp convergence rates for the energy space approach
have recently been obtained in [58]. There are also other ways to deal with the inhomogeneous
Dirichlet boundary condition. In [43–45] elliptic Dirichlet boundary control problems are stud-
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ied in the energy space setting using wavelet schemes for the spatial discretization and using a
Lagrange multiplier for the inhomogeneous Dirichlet boundary condition.

Dirichlet boundary control problems are of great interest for applications in fluid dynamics;
see, for example, [17,21,22,31,32,35,36,38,56]. Although many numerical algorithms and sim-
ulation results can be found in the literature, there are very few well-posedness, regularity, and
numerical analysis results for Dirichlet boundary control problems for fluid flows in polygonal
domains.

In this work, we study Dirichlet Stokes flow control problems in 2D polygonal domains using
both L2 and H1/2 for the control spaces. We give precise well-posedness and regularity results
for both problems, and show that the L2 regularized optimal control can be discontinuous at the
corners of a convex domain. We prove higher regularity for the energy space control problem.
We also develop a finite element method for both problems, and prove a prior error estimates
for the energy space problem.

Below, we give precise formulations of the Dirichlet Stokes control problems we consider and
give a brief overview of related work.

Let Ω ⊂ R2 be an open bounded domain with polygonal boundary Γ. We let Hm(Ω) denote
the standard Sobolev space with norm ‖ · ‖m,Ω and seminorm | · |m,Ω, and we use bold font to
denote vector valued spaces. Set Hm(Ω) = [Hm(Ω)]2 and H1

0 (Ω) = {v ∈H1(Ω); v = 0 on Γ}.
We denote the L2-inner products on L2(Ω), L2(Ω), L2(Γ) and L2(Γ) by

(y, z) =

2∑
j=1

∫
Ω
yjzj , (p, q) =

∫
Ω
pq, (y, z)Γ =

2∑
j=1

∫
Γ
yjzj , (u, v)Γ =

∫
Γ
uv.

We use 〈·, ·〉 to denote the duality product between H−s(Ω) and Hs(Ω). We let Hs(Γ) denote
the space of traces of Hs+1/2(Ω) for 0 < s < 3/2, and we note that Hs(Γ) for 1/2 < s < 3/2
is given by Hs(Γ) = {u ∈ Πm

i=1H
s(Γi) : u ∈ C(Γ)}, see [30, Theorem 1.5.2.8]. (This definition

does not make sense for s = 3/2.) For 0 < s < 3/2, we use 〈·, ·〉Γ to denote the duality product
between H−s(Γ) and Hs(Γ).

For the Stokes problem, we use the standard spaces

H(div; Ω) = {v ∈ L2(Ω), ∇ · v ∈ L2(Ω)}, L2
0(Ω) =

{
p ∈ L2(Ω), (p, 1) = 0

}
,

as well as the velocity spaces (see [57, Section 2.1])

V s(Ω) = {y ∈Hs(Ω) : ∇ · y = 0, 〈y · n, 1〉Γ = 0}, s > 0,

which are Banach spaces with the Hs(Ω) norm. For 0 6 s < 3/2, define

V s(Γ) = {u ∈Hs(Γ) : (u · n, 1)Γ = 0},

and let V −s(Γ) denote the dual space.
For the control problem, consider a target state yd ∈ H, a velocity penalty space H ↪→

L2(Ω), and a control penalty space U ↪→ V 0(Γ). Let α > 0 denote a Tikhonov regularization
parameter, and consider the optimal control problem

min
u∈U

J(u) =
1

2
‖yu − yd‖2H +

α

2
‖u‖2U , (1.1)
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where yu ∈ V 0(Ω) is the unique solution (either in the transposition sense, see Definition 2.3
below, or standard variational solution) of the Stokes system

−∆y +∇p = f in Ω,

∇ · y = 0 in Ω,

y = u on Γ,

(p, 1) = 0.

(1.2)

We note that similar Dirichlet control problems with various choices of the spaces H and
U have been considered in the literature for both the Stokes and Navier-Stokes equations. The
choices H = L4(Ω) and U = V 1(Γ) were used in the early work [32]. In [17], the spaces
H = V 1(Ω) and U = L2(Γ) are used for the objective functional; however, the optimal control
problem looks for admissible optimal controls in Uad = V 1/2(Γ), which is the natural space for
the controls to obtain a variational solution of the state equation (1.2). In [38], the authors
consider a smooth domain and choose H = V 0(Ω) and U = V 0(Γ). We show in polygonal
domains that this approach leads to optimal controls that are discontinuous at the corners; see
Section 3 for the well-posedness and regularity results. However, a better regularity result for
these spaces is obtained if we consider tangential control, i.e., we impose the condition u ·n = 0
pointwise instead of (u · n, 1)Γ = 0, see [25] for more details.

Here we focus on the energy space method for the problem in polygonal domains. In Section 4
we formulate the Dirichlet boundary control problem of Stokes equation with velocity space
H = V 0(Ω) and control space U = V 1/2(Γ), and we derive the first order optimality condition
by using the Steklov-Poincaré operator. Higher regularity of the solutions is shown compared
to the L2(Γ) setting. In Section 5 we give finite element approximations and error estimates for
the energy space method. Numerical experiments are carried out in Section 6 for both choices
U = V 0(Γ) and U = V 1/2(Γ) in both convex and nonconvex polygonal domains.

Remark 1.1. For f ∈H−1(Ω), if we let yf ∈ V 1(Ω) ∩H1
0 (Ω) be the unique solution of (1.2)

for u = 0 and redefine yd := yd − yf , we can formulate an equivalent problem to (1.1) with
f = 0, in the sense that the optimal control will be the same for both problems and the optimal
states will differ by yf . Thus, in the rest of the work, we assume f = 0.

Remark 1.2. The introduction of control constraints does not lead to any differences in the
regularity of the solutions or the rates of convergence. Control constrained problems can be
treated by means of variational inequalities instead of equalities and there are plenty of examples
about this in the literature. We focus on the unconstrained problem in order to avoid additional
technicalities.

2 Regularity results

We first summarize the result we presented in [25] about the concept of solution for Dirichlet
data in V 0(Γ) and its precise regularity.

Definitions of very weak solutions of the Stokes and Navier-Stokes equations for data in
V 0(Γ) and even V −1/2(Γ) have been given for convex polygonal domains and smooth domains;
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see [15, Appendix A], [47], [57, Appendix A], and [38, Definition 2.1]. In [25], we showed how
to extend the concept to problems posed on nonconvex polygonal domains for data in V s(Γ)
with some negative s, and we also proved that the optimal regularity V s+1/2(Ω) expected for
the solution can be achieved. In [51] a similar result is provided for convex polygonal domains,
but only suboptimal regularity V s+1/2−ε(Ω) for ε > 0 is proved.

To introduce the definition of solution of the state equation, we first need some results about
the following compressible Stokes equation:

−∆z +∇q = g in Ω,

∇ · z = h in Ω,

z = 0 on Γ,

(q, 1) = 0.

(2.1)

For data (g, h) ∈ H−1(Ω) × L2
0(Ω), this problem must be understood in the weak sense: Find

(zg,h, qg,h) ∈H1
0 (Ω)× L2

0(Ω) satisfying

(∇zg,h,∇ζ)− (qg,h,∇ · ζ) = (g, ζ) ∀ζ ∈H1
0 (Ω),

(χ,∇ · zg,h) = (h, χ) ∀χ ∈ L2
0(Ω).

Following [16], we define the singular exponent ξ as the real part of the smallest root different
from zero of the equation

sin2(λω)− λ2 sin2 ω = 0, (2.2)

where ω denotes the greatest interior angle of Γ. A numerical computation of ξ shows, cf. [16,
Figure 2], that ξ ∈ (0.5, 4], ω 7→ ξ is strictly decreasing, ξ > π/ω if ω < π, and ξ < π/ω if
ω > π. Let

s? = min{ξ − 1/2, 1/2}. (2.3)

Theorem 2.1. [16, Theorem 5.5 (a)] Let s satisfy −1/2 < s < s?. If g ∈ Hs−1/2(Ω) and
h ∈ Hs+1/2(Ω) ∩ L2

0(Ω), then Equation (2.1) has a unique solution (zg,h, qg,h) ∈ [H3/2+s(Ω) ∩
H1

0 (Ω)]× [H1/2+s(Ω) ∩ L2
0(Ω)]. Moreover, we have

‖zg,h‖H3/2+s(Ω) + ‖qg,h‖H1/2+s(Ω)/R 6 C
(
‖g‖Hs−1/2(Ω) + ‖h‖Hs+1/2(Ω)/R

)
. (2.4)

Notice that although the pressure is uniquely determined as a function with the condition
(q, 1) = 0, the norm must be taken modulo constant functions. It is important to note that
Theorem 2.1 only holds for s < 1/2. This means, even in convex domains one cannot expect in
general to have H2(Ω) regularity of z.

The H2(Ω) regularity of z can be obtained by requiring an additional condition on the
divergence of z. For example if h ∈ H1

0 (Ω) with (h, 1) = 0, then the above result holds for
s = s? (this follows from [16, Theorem 5.5(c)], or the early reference [41] for convex polygonal
domains). This implies in a convex domain we have z ∈H2(Ω).

This H2(Ω) regularity result was used in [15,51] to define very weak solutions in polygonal
domains using h ∈ H1

0 (Ω) as a test function. Although this approach does enable us to define
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the transposition solution, it does not lead to optimal regularity results for the solution of the
Dirichlet control problem.

Later, we also require a regularity result for the case h ≡ 0 in a convex domain. Let
(z(g), q(g)) denote the solution of (2.1) for h = 0, i.e., z(g) = zg,0 and q(g) = qg,0.

Theorem 2.2. [16, Theorem 5.5(b)(c)] Suppose g ∈Ht−1(Ω) for some −1 6 t < ξ and h = 0.
If Ω is convex, then the incompressible Stokes equation

−∆z +∇q = g in Ω,

∇ · z = 0 in Ω,

z = 0 on Γ,

(q, 1) = 0

(2.5)

has a unique solution z(g) ∈ V t+1(Ω) ∩H1
0 (Ω), q(g) ∈ Ht(Ω) ∩ L2

0(Ω), which satisfies

‖z(g)‖H1+t(Ω) + ‖q(g)‖Ht(Ω) 6 C‖g‖Ht−1(Ω).

Below, we derive the weak variational form for the state equation (1.2). Since the problem
is linear, we may decompose the solution into the contributions from the right hand side f
and the Dirichlet boundary data u. The existence of a unique classical variational solution for
f ∈ L2(Ω) is standard and so we may set f = 0, see Remark 1.1.

We use interpolation below to give precise regularity results for the state equation (with f =
0), and therefore we define very weak solutions in the case u ∈ V −s(Γ) for 0 < s < s?. Elements
of this space do not necessarily satisfy any condition analogous to (u · n, 1)Γ = 0. In order to
account for the constants, we follow [57, Eq. (2.2)] and for (z, q) ∈ H3/2+s(Ω) × H1/2+s(Ω)
with s > 0 we define the constant

λ(z, q) =
1

|Γ|
(∂nz · n− q, 1)Γ. (2.6)

This constant satisfies

‖∂nz − qn‖L2(Γ)/R = ‖∂nz − qn− λ(z, q)n‖L2(Γ),

and we have

∂nz − (q + λ(z, q))n ∈ V 0(Γ).

This fact, trace theory, and (2.4) give that for 0 < s < 1/2 we have

‖∂nzg,h − (qg,h + λ(zg,h, qg,h))n‖Hs(Γ) 6 C
(
‖g‖Hs−1/2(Ω) + ‖h‖Hs+1/2(Ω)/R

)
. (2.7)

This allows us to give the following well-defined notion of transposition solution for the state
equation (again, with f = 0).
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Definition 2.3. Suppose 0 6 s < s? and u ∈ V −s(Γ). We say that yu ∈ V 0(Ω), pu ∈(
H1(Ω) ∩ L2

0(Ω)
)′

is a solution in the transposition sense of

−∆y +∇p = 0 in Ω,

∇ · y = 0 in Ω,

y = u on Γ,

(p, 1) = 0,

(2.8)

if
(yu, g)− 〈pu, h〉 = 〈u,−∂nzg,h + (qg,h + λ(zg,h, qg,h))n〉Γ, (2.9)

for all g ∈ L2(Ω) and h ∈ H1(Ω) ∩ L2
0(Ω), where (zg,h, qg,h) ∈ H1

0 (Ω) × L2
0(Ω) is the unique

solution of (2.1) and λ(zg,h, qg,h) is the constant given in (2.6).

This definition can be formally obtained by integrating by parts twice in the equation and
also once in the divergence free condition. We note that this definition can be written in
different ways: using two separate equations tested by g and h (see [38] or [57]), or as one
equation (see [15] or [47]).

Furthermore, this definition can be rewritten in different forms when u is more regular.
First, if u ∈ V 0(Γ), then (u, λn)Γ = 0 for every constant λ ∈ R and therefore (2.9) can be
written as

(yu, g)− 〈pu, h〉 = (u,−∂nzg,h + qg,hn)Γ. (2.10)

Second, if u ∈ V 1/2(Γ), then the very weak solution is the variational solution of the problem:
Find (yu, pu) ∈H1(Ω)× L2

0(Ω) satisfying

(∇yu,∇ζ)− (pu,∇ · ζ) = 0 ∀ζ ∈H1
0 (Ω),

(χ,∇ · yu) = 0 ∀χ ∈ L2(Ω)/R,
yu = u on Γ.

(2.11)

Next, we give a regularity result for the state equation (2.8) on polygonal domains from [25,
Theorem 2.2]. We note that an analogous result for smooth domains is found in [57, Corollary
A.1]. The limiting cases s = −1/2 and s = 3/2 can be achieved when the domain is smooth;
however, this is not possible for polygonal domains.

Theorem 2.4. If u ∈ V s(Γ) for −s? < s < s? + 1, then the solution of (2.8) satisfies

yu ∈ V s+1/2(Ω) and pu ∈

{
Hs−1/2(Ω)/R if s > 1/2,(
H1/2−s(Ω)/R

)′
if s 6 1/2.

Moreover, the control-to-state mapping u 7→ yu is continuous from V s(Γ) to V s+1/2(Ω).

We also recall here the concept of stress force on the boundary as used in [33]. Let (ψ, φ)
be the solution of the incompressible Stokes system with source g ∈ L2(Ω) and Dirichlet data
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u ∈ V 1/2(Γ), i.e., ψ = z(g) + yu and φ = q(g) + pu, where (z(g), q(g)) is the solution of (2.1)
with h = 0, and (yu, pu) is the solution of (2.11).

For g and u as above, we define the stress force on the boundary t(g,u) related to (ψ, φ)
to be the unique solution of the variational problem:

〈t(g,u), ζ〉Γ = (∇ψ,∇ζ)− (φ,∇ · ζ)− (g, ζ) ∀ζ ∈H1(Ω). (2.12)

Notice that for u ∈ V r+1/2(Γ) with r > 0, integration by parts shows that

t(g,u) = ∂nψ − φn. (2.13)

For 0 6 s < s? + 1, we define E : V s(Γ)→ L2(Ω) by

Eu = yu. (2.14)

Directly from (2.10) with h = 0 and (2.13), the adjoint E? : L2(Ω)→ V −s(Γ) is defined by

E?g = −∂nz(g) + q(g)n = −t(g,0). (2.15)

By Theorem 2.4 we know that E : V s(Γ)→ L2(Ω) is bounded and hence E? : L2(Ω)→ V −s(Γ)
is also bounded. Therefore, E?E : V s(Γ) → V −s(Γ) is bounded. Specifically, setting s = 1/2
gives that for all u ∈H1/2(Γ) we have

‖E?Eu‖H−1/2(Γ) 6 C‖u‖H1/2(Γ). (2.16)

3 Stokes Dirichlet boundary control in V0(Γ)

In this section, we investigate the case U = V 0(Γ). For yd ∈ L2(Ω) and α > 0, our control
problem reads

min
u∈V 0(Γ)

J0(u) =
1

2
‖yu − yd‖2L2(Ω) +

α

2
‖u‖2L2(Γ), (3.1)

where yu ∈ V 0(Ω) is the solution of the state equation (2.10). By (2.14) we have

J0(u) =
1

2
(E?Eu,u)Γ − (E?yd,u)Γ +

cΩ

2
+
α

2
‖u‖2L2(Γ)

:= F (u) +
cΩ

2
+
α

2
‖u‖2L2(Γ),

(3.2)

where cΩ = ‖yd‖2L2(Ω) and F (u) = 1
2(E?Eu,u)Γ − (E?yd,u)Γ +

cΩ

2
is the tracking term. It is

straightforward to prove that

F ′(u)v = (E?Eu,v)Γ − (E?yd,v)Γ ∀u ∈ V 0(Γ) and v ∈ V 0(Γ). (3.3)

Although we are mainly interested in this work in regularization in the energy space V 1/2(Γ),
the solution properties of the problem with V 0(Γ)-regularization are also of interest in order to
more clearly see the advantages and disadvantages of energy space control problem. It is also
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interesting to see the differences between the Dirichlet boundary control of the Poisson equation
(cf. [1]) and of the Stokes system.

Using the strict convexity of the functional and the continuity of the control-to-state map-
ping, which follows from Theorem 2.4, it is standard to prove the existence of a unique solution
u0 ∈ V 0(Γ) of problem (P0). We also prove regularity results below, and show that the optimal
control can be discontinuous at the corners of a convex polygonal domain.

Theorem 3.1. Suppose yd ∈ Hm(Ω) for some 0 6 m < s? and let u0 ∈ V 0(Γ) be the
solution of problem (P0). Then u0 ∈ V s(Γ) for all 0 6 s < s? and there exist y0 ∈ V s+1/2(Ω),
p0 ∈ (H1/2−s(Ω) ∩ L2

0(Ω))′, z0 ∈ V 1+t(Ω) ∩H1
0 (Ω) and q0 ∈ Ht(Ω) ∩ L2

0(Ω) for all t 6 1 + m
such that t < ξ, that satisfy the state equation

−∆y0 +∇p0 = 0 in Ω,

∇ · y0 = 0 in Ω,

y0 = u0 on Γ,

(p0, 1) = 0,

(3.4)

the adjoint state equation

−∆z0 +∇q0 = y0 − yd in Ω,

∇ · z0 = 0 in Ω,

z0 = 0 on Γ,

(q0, 1) = 0,

(3.5)

and the optimality condition

(αu0 − (∂nz0 − q0n),v)Γ = 0 ∀v ∈ V 0(Γ). (3.6)

Moreover, there exists λ0 ∈ R such that

u0 =
1

α
(∂nz0 − (q0 + λ0)n),

and

u0 ∈
n∏

i=1

Ht−1/2(Γi) for all t 6 m+ 1 such that t < ξ.

Finally, if m > 0 and Ω is convex, then u0 is continuous at a corner xj if and only if q0(xj)+λ0 =
0.

Here, the state equation must be understood in the very weak sense (2.10), while the adjoint
state equation must be understood in the variational sense.

9
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Proof. By the definition of J0(u) in (3.2) and (3.3), the derivative of the objective functional
J0(u) for u,v ∈ V 0(Γ) can be written as

J ′0(u)v = (αu+E?Eu,v)Γ − (E?yd,v)Γ

= (αu+E?(Eu− yd),v)Γ

= (αu− (∂nz(yu − yd)− q(yu − yd)n),v)Γ,

where we used (2.14) and (2.15) in the last equality. The optimality conditions follow in a
standard way. For v ∈ V 0(Γ) we have that (λu,v) = 0 for any λ ∈ R. Taking λ0 to equal the
constant λ(z(yu − yd), q(yu − yd)), which is defined in (2.6), we also have that

(αu0 − (∂nz0 − (q0 + λ0)n),v)Γ = 0 ∀v ∈ V 0(Γ).

This implies that αu0 is the L2(Γ)-projection of ∂nz0 − (q0 + λ0)n onto V 0(Γ). Since
∂nz0 − (q0 + λ0)n ∈ V 0(Γ), we have

u0 =
1

α
(∂nz0 − (q0 + λ0)n).

The regularity follows from a bootstrapping argument: From Theorem 2.4 we have that
y0 ∈ V 1/2(Ω). Using this and taking into account that yd ∈Hm(Ω), we have from Theorem 2.2
that z0 ∈ V 1+t(Ω), q0 ∈ Ht(Ω) ∩ L2

0(Ω) for all t 6 1 +m such that t < ξ.
From trace theory, and since 1/2 < t, it is clear that

∂nz0 − (q0 + λ0)n ∈
n∏

i=1

Ht−1/2(Γi) for all t 6 m+ 1 such that t < ξ.

For t < 1, and taking s = t − 1/2, we have that s < s? and that
∏n

i=1H
s(Γi) = Hs(Γ).

Therefore, (3.6) gives that u0 ∈Hs(Γ) for all s < s?. The regularity of the optimal state follows
from Theorem 2.4.

If m > 0 and Ω is convex, then the gradient of the dual pressure q0 is a function in Ht−1(Ω)
with t − 1 > 0. So we have that each component zi, i = 1, 2 of z0, satisfies ∆zi ∈ Ht−1(Ω)
and zi = 0 on Γ. Therefore, we have that ∂nz

i(xj) = 0, i = 1, 2, for every convex corner xj
(cf. [7, Appendix A]); also, from [7, Lemma A2] and the Sobolev imbedding theorem we have
that the normal derivative of z0 is a continuous function. For the pressure, the situation is
slightly different. From trace theory we have that q0 ∈ Ht−1/2(Γ), and by Sobolev imbeddings
we know q0 is a continuous function. Nevertheless, the vector n is discontinuous at the corners,
and hence the (q0 + λ0)n can only be continuous at xj if q0(xj) = −λ0.

Remark 3.2. This regularity of the optimal control in a convex domain is essentially different
from the regularity achieved by the optimal control of problems related to the Poisson equation.
The solution of a problem governed by the Poisson equation must be a continuous function,
which is also zero at the corners. In our case, the optimal control may show discontinuities. See
Figure 2 for an example with a continuous control and Figure 3 for a problem example with
discontinuous control.

Remark 3.3. Notice that the pressure is determined up to a constant. We choose the pressure
such that (q0, 1) = 0, but any other representative is of course possible. The value of λ0 would
change accordingly, so that q0 + λ0 does not vary.
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4 Stokes Dirichlet boundary control in the energy space

Next, we consider Stokes Dirichlet boundary control with a different regularization term:

min
u∈V 1/2(Γ)

J1/2(u) =
1

2
‖yu − yd‖2L2(Ω) +

α

2
|u|2

H1/2(Γ)
, (4.1)

where again we assume yd ∈ L2(Ω) and α > 0.
There are different kinds of definitions for the H1/2(Γ)-norm, e.g., one may use the Sobolev-

Slobodeckii norm or the Fourier transform. The key point to the study of the optimization
problem (4.1) is to find an appropriate representation for the H1/2(Γ)-norm that enables us
to derive the first order optimality condition. Here we follow the idea of [54] and introduce a
Stokes version of the Steklov-Poincaré operator (cf. [3, 19]) associated with (2.10).

It follows from Theorem 2.4 that for any given control u ∈ V 1/2(Γ), there exists a unique
state (yu, pu) ∈ V 1(Ω)× L2

0(Ω) that satisfies

‖yu‖H1(Ω) + ‖pu‖L2(Ω) 6 C‖u‖H1/2(Γ). (4.2)

Given u ∈ V 1/2(Γ), we define Du ∈H−1/2(Γ) by

〈Du,v〉Γ = (∇yu,∇Rv)− (pu,∇ ·Rv) ∀v ∈H1/2(Γ), (4.3)

where R is any continuous extension operator from H1/2(Γ) to H1(Ω).

Lemma 4.1. The definition of D is independent of the chosen extension R and

Du = t(0,u), (4.4a)

‖Du‖H−1/2(Γ) 6 C‖u‖H1/2(Γ) ∀u ∈ V 1/2(Γ). (4.4b)

Proof. First of all, writing the partial differential equation in divergence form as

−∇ ·
(
(∇+∇T )yu − puI

)
= 0

gives (∇ + ∇T )yu − puI ∈ H(div; Ω), and so this function has a well defined normal trace
in H−1/2(Γ). It is remarkable too that it is possible to define a variational normal derivative
∂nyu ∈H−1/2(Γ), cf. [7, Lemma A6], and hence pun is also a well defined element in H−1/2(Γ).

Next, for all u,v ∈H1/2(Γ), integrating by parts in the definition of Du gives

〈Du,v〉Γ =

∫
Ω

(
∇yu∇Rv − pu∇ ·Rv

)
=

∫
Ω

(
−∆yu +∇pu

)
Rv + 〈∂nyu − pun,v〉Γ

= 〈∂nyu − pun,v〉Γ, (4.5)

where we used −∆yu + ∇pu = 0. This proves that the definition of D is independent of the
chosen extension R, and (4.4a) holds by (2.13) and (4.5).

11
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Finally, we prove (4.4b). Using the definition of D in (4.3), the bound in (4.2), and the
continuity of R : H1/2(Γ)→H1(Ω) gives

‖Du‖H−1/2(Γ) = sup
06=v∈H1/2(Γ)

〈Du,v〉Γ
‖v‖H1/2(Γ)

6 C sup
0 6=v∈H1/2(Γ)

(‖yu‖H1(Ω) + ‖pu‖L2(Ω))|Rv|H1(Ω)

‖v‖H1/2(Γ)

6 C(‖yu‖H1(Ω) + ‖pu‖L2(Ω))

6 C‖u‖H1/2(Γ).

Lemma 4.2. 〈Du,u〉1/2
Γ is a seminorm in V 1/2(Γ) equivalent to the H1/2(Γ) seminorm.

Proof. Let Q be the projection of H1/2(Γ) onto V 1/2(Γ) and set Rv = yQv. Notice that
∇ ·Rv = 0 and if v ∈ V 1/2(Γ) then Rv = yv. By (4.3) we have

〈Du,v〉Γ = (∇yu,∇yv) ∀v ∈ V 1/2(Γ), (4.6)

and thus we have that 〈Du,u〉1/2
Γ is a seminorm in V 1/2(Γ) equivalent to theH1/2(Γ) seminorm.

Proceeding similarly to the derivation of (3.2), the precise formulation of our control problem
is given by

min
u∈V 1/2(Γ)

J1/2(u) =
1

2
‖yu − yd‖2L2(Ω) +

α

2
〈Du,u〉Γ

=
1

2
〈Tu,u〉Γ − 〈w,u〉Γ +

cΩ

2
,

(4.7)

where cΩ = ‖yd‖2L2(Ω) and

T = αD +E?E, w = E?yd ∈ V −1/2(Γ). (4.8)

The functional being convex and coercive implies that problem (4.7) has a unique solution
ū ∈ V 1/2(Γ).

We also note that, by (4.6), an alternative way to write the functional for u ∈ V 1/2(Γ) is

J1/2(u) =
1

2
‖yu − yd‖2L2(Ω) +

α

2
‖∇yu‖2L2(Ω).

Lemma 4.3. There exist constants C1, C2 > 0 such that for every u,v ∈ V 1/2(Γ)

〈Tu,v〉Γ ≤ C1‖u‖V 1/2(Γ)‖v‖V 1/2(Γ)

and
〈Tu,u〉Γ ≥ C2‖u‖2V 1/2(Γ)

.

12
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Proof. The first property follows immediately from the definition of T . Notice that D maps
V 1/2(Γ) into H−1/2(Γ) which is continuously embedded in V −1/2(Γ) by duality.

Next, by (4.8), (2.14) and (4.6) we have

〈Tu,u〉Γ = ‖Eu‖2L2(Ω) + α〈Du,u〉Γ
= ‖yu‖2L2(Ω) + α‖∇yu‖2L2(Ω)

> min(1, α)‖yu‖2H1(Ω)

> C2‖u‖2H1/2(Γ)
= C2‖u‖2V 1/2(Γ)

,

where we used the trace theorem in the last inequality.

Next, we give more insights into the structure of the solution to problem (P1/2). The
functional J1/2 in problem (4.7) is Frechét differentiable with respect to u. Furthermore, for all

u,v ∈ V 1/2(Γ), by (4.7) and (4.8) we have

J ′1/2(u)v = 〈Tu−w,v〉Γ
= 〈αDu+E?(Eu− yd),v〉Γ
= 〈α(∂nyu − pun)− (∂nz(yu − yd)− q(yu − yd)n),v〉Γ,

where we used (4.5), (2.14) and (2.15) in the last equality.
Now we are in the position to derive the regularity of the solution to the minimization

problem (4.7).

Theorem 4.4. Assume yd ∈ Hm(Ω) for some 0 6 m < min{2, 1 + ξ}, and let ū ∈ V 1/2(Γ)
be the optimal solution of problem (4.7). Then ū ∈ V 1/2+r(Γ) for all r < min{1, ξ} and there
exist ȳ ∈ V 1+r(Ω), p̄ ∈ Hr(Ω) ∩ L2

0(Ω), z̄ ∈ V 1+t(Ω) ∩H1
0 (Ω) and q̄ ∈ Ht(Ω) ∩ L2

0(Ω) for all
t 6 1 +m such that t < ξ that satisfy the state equation

−∆ȳ +∇p̄ = 0 in Ω,

∇ · ȳ = 0 in Ω,

ȳ = ū on Γ,

(p̄, 1) = 0,

the adjoint state equation

−∆z̄ +∇q̄ = ȳ − yd in Ω,

∇ · z̄ = 0 in Ω,

z̄ = 0 on Γ,

(q̄, 1) = 0,

and the optimality condition

〈α(∂nȳ − p̄n)− (∂nz̄ − q̄n),v〉Γ = 0 ∀v ∈ V 1/2(Γ).

Moreover, there exists λ̄ ∈ R such that

α(∂nȳ − p̄n) = ∂nz̄ − (q̄ + λ̄)n. (4.9)

13



W. Gong, M. Mateos, J. Singler, Y. Zhang

Here, both the state equation and the adjoint state equation must be understood in the
variational sense.

Proof. The minimization problem, being a convex problem, is equivalent to the following Euler-
Lagrange equation

J ′1/2(u)v = 〈Tu−w,v〉Γ = 0 ∀v ∈ V 1/2(Γ). (4.10)

The existence of a unique solution follows immediately from the Lax-Milgram theorem and
Lemma 4.3. First order optimality conditions follow in a standard way. Taking λ̄ = λ(z̄, q̄), we
deduce relation (4.9) as we did for the L2(Γ)-regularized problem.

Since ū ∈ V 1/2(Γ), by Theorem 2.4 we have that ȳ ∈ V 1(Ω). From Theorems 2.1 and 2.2,
we obtain z̄ ∈ V 1+t(Ω) and q̄ ∈ Ht(Ω) ∩ L2

0(Ω) for all t 6 min{2, 1 +m} with t < ξ. Using the
trace theorem (see [30, Theorem 1.5.2.1]) we arrive at

e := ∂nz̄ − (q̄ + λ̄)n ∈
n∏

i=1

Ht−1/2(Γi) ⊂
n∏

i=1

Hr−1/2(Γi) ∀r < min{1, ξ}.

From the trace theorem again on polygons, see [30, Theorem 1.5.2.1] and also [23, Remark
1.1, Chapter 1], we know that there exists some Y ∈H1+r(Ω) such that ∂nY = e/α on Γ. So
we have that F = ∆Y ∈ Hr−1(Ω) and H = −∇ · Y ∈ Hr(Ω). Using the state equation and
the optimality condition (4.9), we deduce that the pair (ȳ − Y , p̄) satisfies

−∆(ȳ − Y ) +∇p̄ = F in Ω, ∇ · (ȳ − Y ) = H in Ω, ∂n(ȳ − Y )− p̄n = 0 on Γ.

This problem has a variational solution, which is unique up to a constant. Noticing that the
singular exponents for the Stokes problem with Neumann boundary conditions are the same as
those for Dirichlet boundary conditions, see e.g. [55, pp. 191–192], we deduce from Theorem 2.1
that ȳ ∈H1+r(Ω). From the standard trace theorem, we have that ū ∈Hr+1/2(Γ).

Remark 4.5. In this case, the optimal control is a continuous function even for problems posed
on nonconvex domains; see the second subfigure of Figure 4 in Example 6.3 below.

In order to use the Aubin-Nitsche technique to obtain error estimates in L2(Γ) for the
control variable, we are also going to study, for any given η ∈ L2(Γ), the regularity of the
unique solution uη ∈ V 1/2(Γ) of the problem

〈Tuη,v〉Γ = (η,v)Γ ∀v ∈ V 1/2(Γ).

A straightforward computation using the definitions of T , D and E, gives

〈Tuη − η,v〉Γ = 〈α(∂nyuη − puηn)− (∂nz(yuη)− q(yuη)n)− η,v〉Γ

for all v ∈ V 1/2(Γ). So we have that there exists some λ ∈ R such that (yuη , puη) solves the
following Neumann problem

−∆yuη +∇puη = 0 in Ω,
∇ · yuη = 0 in Ω,

α(∂nyuη − puηn) = ∂nz(yuη)− (q(yuη) + λ)n+ η on Γ.
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Now we can follow the reasoning of Theorem 4.4. In this case

e := ∂nz(yuη)− (q(yuη) + λ)n+ η ∈ L2(Γ),

so we are in the same situation as before, but with t = 1/2, which leads to uη ∈H1(Γ). Notice
that we do not need convexity to obtain this result.

5 FEM for the Stokes Dirichlet energy space control problem

In this section, we consider finite element approximations to the optimal control problem (4.7).
We also briefly mention finite element approximations to the problem (3.1) in Remarks 5.4, 5.5,
5.11.

First, we assume that the finite dimensional spaces Yh ⊂ H1(Ω) and Wh ⊂ L2(Ω) satisfy
the inf-sup condition: For each ph ∈Wh there exists a yh ∈ Yh such that∫

Ω
ph∇ · yhdx = ‖ph‖2L2(Ω) and ‖yh‖H1(Ω) 6 C‖ph‖L2(Ω).

It is well known that the P1+ bubble -P1 “Mini” element or the Pk+1−Pk, k > 1, “Taylor-Hood”
element satisfy the inf-sup condition.

Let Y 0
h := Yh ∩H1

0 (Ω), W 0
h = Wh ∩ L2

0(Ω) and Yh(Γ) ⊂ H1/2(Γ) be the trace of Yh. Let
the discrete control space be given by

Uh := {uh ∈ Yh(Γ) : (uh · n, 1)Γ = 0}. (5.1)

Next, we define the discrete optimization problem:

min
uh∈Uh

Jh(uh) =
1

2
‖Ehuh − yd,h‖2L2(Ω) +

α

2
(Dhuh,uh)Γ, (5.2)

where yd,h ∈ Yh is a suitable approximation of yd in the sense that ‖yd,h − yd‖L2(Ω) 6 Chr,
and the discrete operators Dh and Eh are given below. Here, and in the rest of the paper,
r < min{1, ξ} is the exponent obtained in Theorem 4.4.

We define the operators Eh : H1/2(Γ)→ Yh and Ph : H1/2(Γ)→W 0
h by

Ehu = yh, Phu = ph. (5.3)

Here (yh, ph) is the finite element approximation of (yu, pu), i.e., (yh, ph) satisfies

(∇yh,∇ζh)− (ph,∇ · ζh) = 0 ∀ζh ∈ Y 0
h ,

(χh,∇ · yh) = 0 ∀χh ∈W 0
h ,

yh = Qhu on Γ,

(5.4)

where Qhu is the L2 projection of u onto Uh. We note for later that Qh satisfies the following
standard estimate

‖Qhu− u‖H1/2(Γ) 6 Chr‖u‖Hr+1/2(Γ) ∀u ∈ V
1/2(Γ). (5.5)
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Next, we give the discrete approximation of the stress force on the boundary, as introduced
in [33, Section 3]. For any g ∈ L2(Ω), we define (zh(g), qh(g)) ∈ Y 0

h ×W 0
h to be the unique

solution of

(∇zh(g),∇ζh)− (qh(g),∇ · ζh) = (g, ζh) ∀ζh ∈ Y 0
h ,

(χh,∇ · zh(g)) = 0 ∀χh ∈W 0
h .

For g ∈ L2(Ω) and u ∈ V 1/2(Γ), let ψh = zh(g) + Ehu and φh = qh(g) + Phu. We define
th(g,u) ∈ Yh(Γ) as the approximation of the stress force on the boundary of the pair (ψh, φh):

(th(g,u), ζh)Γ = (∇ψh,∇ζh)− (φh,∇ · ζh)− (g, ζh) ∀ζh ∈ Yh. (5.6)

Notice that this is exactly the concept of discrete normal derivative; see [8] or, better suited
for our purposes, [58]. It is also important to notice that, for vh ∈ Yh(Γ), we have that

(th(g,u),vh)Γ = (∇ψh,∇Rhvh)− (φh,∇ ·Rhvh)− (g,Rhvh) ∀vh ∈ Yh(Γ) (5.7)

for any linear extension operator Rh : Yh(Γ) → Yh. For instance, Rh could be the discrete
harmonic extension, the operator Eh, or the zero extension.

For u ∈ V 1/2(Γ) we define Dh as the approximation of the stress force on the boundary of
the pair (Ehu, Phu):

Dhu = th(0,u). (5.8)

Lemma 5.1. (Dhuh,uh)
1/2
Γ is a seminorm in Uh equivalent to the H1/2(Γ) norm.

Proof. Notice that for uh ∈ Uh ⊂ V 1/2(Γ), using that Ehuh ∈ Yh and Phuh ∈ W 0
h , by (5.8),

(5.3) and (5.6) we have

(Dhuh,uh)Γ = (th(0,uh),Ehuh)Γ

= (∇Ehuh,∇Ehuh)− (Phuh,∇ ·Ehuh)

= (∇Ehuh,∇Ehuh),

where we used (qh,∇ · Ehuh) = 0 for all qh ∈ W 0
h in the last equality. This proves that

(Dhuh,uh)
1/2
Γ is a seminorm on H1/2(Γ) for any uh ∈ Uh.

Lemma 5.2. For every yh ∈ Yh and vh ∈ Uh, we have that

(yh,Ehvh) = (−th(yh,0), vh)Γ,

and the adjoint of the restriction of Eh to Uh is given by

E?
hyh = −th(yh,0). (5.9)
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Proof. We define Ghyh as the discrete approximation of the negative stress force on the bound-
ary of the pair (zh(yh), qh(yh)):

Ghyh = −th(yh,0).

Consider vh ∈ Uh, notice that Ehvh ∈ Yh and by definition it equals vh on the boundary.
Using the definition of approximate stress force on the boundary, the facts that both (qh(yh),∇·
Ehvh) = 0 and (Phvh,∇ · zh(yh)) = 0, and also qh(yh), Phvh ∈W 0

h , we obtain

(Ghyh,vh)Γ = −(∇zh(yh),∇Ehvh) + (qh(yh),∇ ·Ehvh) + (yh,Ehvh)

= −(Phvh,∇ · zh(yh)) + (yh,Ehvh)

= (yh,Ehvh)

and the proof is complete.

Lemma 5.3. Problem (5.2) has a unique solution ūh.

Proof. By Lemma 5.1, it is standard to deduce that Jh is coercive in Uh. Since it is also strictly
convex, problem (5.2) has a unique solution ūh.

Following the same notation in Section 4, we define

Th = αDh +E?
hEh, wh = E?

hyd,h. (5.10)

Then the problem (5.2) can be rewritten as:

Jh(uh) =
1

2
(Thuh,uh)Γ − (wh,uh)Γ +

1

2
‖yd,h‖2L2(Ω), (5.11)

and the unique solution ūh of the discrete problem satisfies the first order optimality condition

(Thūh,vh)Γ = (wh,vh)Γ ∀vh ∈ Uh. (5.12)

Remark 5.4. The discretization of the problem (3.1) is done in the same way. The solution of
the discrete problem satisfies

(αu0h +E?
hEhu0h,vh)Γ = (wh,vh)Γ ∀vh ∈ Uh.

Thanks to the remarkable result [4, Theorem 5.2], the approximation of the transposition solu-
tion can be done using the discrete weak formulation given to compute Eh.

5.1 Matrix representation of (5.2)

Let Yh = span{ζn}Nn=1 and Y 0
h = span{ζn}N0

n=1, where {ζn}n are nodal basis functions for Yh

ordered so that the first N0 basis functions all vanish on the boundary and the remaining N−N0

basis functions do not. Then we have Yh(Γ) = span{ζn}Nn=N0+1. Let Wh = span{χn}Mn=1, where
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{χn}n are nodal basis functions for Wh. For any yh ∈ Yh, uh ∈ Yh(Γ), zh ∈ Yh0, ph ∈ Wh, we
write

yh(x) =
N∑

n=1

ynζn(x) =

N0∑
n=1

ynζn(x) +
N∑

n=N0+1

ynζn(x),

uh(x) =

N∑
n=N0+1

unζn(x), zh =

N0∑
n=1

znζn(x), ph(x) =

M∑
n=1

pnχn(x).

We denote y = (y1, y2, · · · , yN )T , y
I

= (y1, y2, · · · , yN0)T , u = (uN0+1, uN0+2, · · · , uN )T ,

z = (z1, z2, · · · , zN0)T , and p = (p1, p2, · · · , pM )T . Instead of imposing the condition (ph, 1) = 0,

we choose ph such that pM = 0 and denote p̃ = (p1, p2, · · · , pM−1)T ; see Remark 3.3.

We also let M denote the mass matrix representing the standard inner product in L2(Ω),
and let K denote the stiffness matrix representing the vector Laplace operator on the finite
element space Yh. Additionally, B denotes the matrix representation of the divergence operator
on the involved finite element spaces Yh and Wh. We have

M = [(ζj , ζi)]
N
i,j=1 ; K = [(∇ζj ,∇ζi)]Ni,j=1 ; B = − [(χi,∇ · ζj)]i=M,j=N

i,j=1 .

We also use the following submatrices

M0 = [(ζj , ζi)]
i=N0,j=N
i,j=1 ; M00 = [(ζj , ζi)]

N0

i,j=1 ;

MΓ0 = [(ζj , ζi)]
i=N,j=N0

i=N0+1,j=1 ; MΓΓ = [(ζj , ζi)]
N
i,j=N0+1 ;

K0 = [(∇ζj ,∇ζi)]i=N0,j=N
i,j=1 ; K00 = [(∇ζj ,∇ζi)]N0

i,j=1 ;

KΓ0 = [(∇ζj ,∇ζi)]i=N,j=N0

i=N0+1,j=1 ; KΓΓ = [(∇ζj ,∇ζi)]Ni,j=N0+1 ;

B0 = − [(χi,∇ · ζj)]i=M,j=N0

i,j=1 ; BΓ = − [(χi,∇ · ζj)]i=M,j=N
i=1,j=N0+1 .

Since we impose the condition pM = 0, instead of B, we use

B̃ = − [(χi,∇ · ζj)]i=M−1,j=N
i,j=1 , B̃0 = − [(χi,∇ · ζj)]i=M−1,j=N0

i,j=1 , B̃Γ = − [(χi,∇ · ζj)]i=M−1,j=N
i=1,j=N0+1 .

Now, we give the implementation details for the discrete optimization problem (5.2). By
(5.11), it is equivalent to solve the following equality constrained quadratic programming prob-
lem: min

1

2
〈Thuh,uh〉Γ − (wh,uh)Γ,

uh ∈ Yh(Γ), (uh,n)Γ = 0.
(5.13)

Let NΓ = dimYh(Γ). Define T ∈ RNΓ×NΓ to be the matrix representation of Th, i.e.,
vTT u = (Thuh,vh)Γ for all uh and vh ∈ Yh(Γ), w ∈ RNΓ to be the vector representation of wh,
i.e., uTw = (wh,uh)Γ for all uh ∈ Yh(Γ), and c ∈ RNΓ to be the vector representation of the
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constraint, i.e., uT c = (uh,n)Γ for all uh ∈ Yh(Γ). Then the problem (5.13) can be rewritten
as

min
1

2
uTT u− uTw,

u ∈ RNΓ , uT c = 0.
(5.14)

Next, we show how to get the vector representations of w and T u. To do this, we first
compute E?

hyd,h. Consider the discrete extension operator Rhvh ∈ Yh such that Rhvh = vh on
Γ and Rhvh = 0 in the interior nodes of Ω. By the definition of wh in (5.10) and using (5.9)
and (5.7) we have

〈wh,vh〉Γ = 〈E?
hyd,h,vh〉Γ

= −(∇zh(yd,h),∇Rhvh) + (qh(yd,h),∇ ·Rhvh) + (yd,h,Rhvh)

= (−KΓ0zd − B̃TΓ q̃d +MΓyd) · v.

Algorithm 1: computation of w

1 compute (zd, q̃d) by solving

K00zd + B̃T0 q̃d =M0yd,

B̃0z = 0.

2 set w = −KΓ0zd − B̃TΓ q̃d +MΓyd.

By the definiton Th in (5.10), we need to compute (E?
hEhuh,vh)Γ and (Dhuh,vh)Γ. Using

(5.3), (5.9) and (5.7) we have

(E?
hEhuh,vh)Γ = (E?

hyh,vh)Γ

= −(∇zh(yh),∇Rhvh) + (qh(yh),∇ ·Rhvh) + (yh,Rhvh)

= (−KΓ0z − B̃TΓ q̃ +MΓy) · v.

Now we are in the position to derive the matrix representation of the perturbed Steklov-
Poincaré operator Dh. Using (5.8) and (5.7) we have

(Dhuh,vh)Γ = (∇Ehuh,∇Rhvh)− (Phuh,∇ ·Rhvh)

= (KΓy + B̃TΓ p̃) · v.
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Algorithm 2: computation of T u
1 compute (y

I
, p̃) by solving

K00yI + B̃T0 p̃ = −KT
Γ0u,

B̃0yI = −B̃Γu.

2 recover y = (y
I
, u)T , and then compute (z, q̃) by solving

K00z + B̃T0 q̃ =M0y,

B̃0z = 0.

3 set T u = α(KΓy + B̃TΓ p̃) +MΓy −KΓ0z − B̃TΓ q̃.

The problem (5.14) can be easily transformed into an unconstrained problem following the
so-called null space method; see e.g. [52, page 462]. We denote cT = (c1, . . . , cNΓ

) and assume,
without loss of generality, that c1 6= 0. The columns of the null space of cT form the matrix
Z ∈ RNΓ×(NΓ−1) such that Z1,j = −cj+1/c1 and Zi+1,j = δi,j for 1 6 i, j 6 NΓ − 1. We solvemin

1

2
xTZTT Zx− xTZTw

x ∈ RNΓ−1

and then recover u = Zx. The Lagrange multiplier related to the constraint can also be
recovered by means of

λ =
cT (T u− w)

cT c
.

We can also write the “big” optimality system. Noticing that

(E?
h(yh − yd,h),vh)Γ = −(∇zh(yh − yd,h),∇Rhvh) + (qh(yh − yd,h),∇ ·Rhvh)

+ (yh − yd,h,Rhvh)

= (MΓ(y − yd)−KΓ0z − B̃TΓ q̃) · v,

using that MΓy = MΓ0yI +MΓΓu and KΓy = KΓ0yI + KΓΓu, and taking into account that
u = Zx, we have

K00 KT
Γ0Z B̃T0

B̃0 B̃ΓZ
−M00 −MT

Γ0Z K00 B̃T0
B̃0

ZTAΓ0 ZTAΓ0Z ZTαB̃TΓ −ZTKΓ0 −ZT B̃TΓ




y
I
x
p̃

z
q̃

 =


0
0

−M0yd
0

ZTMΓyd

 ,
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where

AΓ0 = αKΓ0 +MΓ0 and AΓΓ = αKΓΓ +MΓΓ.

The above system is not symmetric. There exist alternative symmetric formulations, at the price
of the inversion of the stiffness matrix; see e.g. [54, eq. (3.32)] for an antisymmetric version.

Remark 5.5. To solve the L2-regularized problem, the procedure is very similar. The only
difference, cf. [48], is the computation of T u, which is done in the following way

T u = αSΓΓu+MΓy −KΓ0z − B̃TΓ q̃,

where SΓΓ is the mass matrix on the boundary,

SΓΓ = (ζj , ζi)Γ
N
i,j=N0+1.

An approximation of the quantity λ0 can be done using the Lagrange multiplier by means of
λ0 = −λ/|Γ|.

5.2 Error analysis

First, we state the main result in this section.

Theorem 5.6. Let ū ∈ V r+1/2(Γ), with r < min{1, ξ}, be the unique solution of problem (4.7)
and let ūh ∈ Uh be the solution of (5.2). If the conditions in Theorem 4.4 are all fulfilled, then

‖ū− ūh‖H1/2(Γ) 6 Chr‖ū‖Hr+1/2(Γ).

To prove Theorem 5.6, we assume that the following approximation properties are satisfied
(see [23, Chapter II. Section 1.3]):

(H1) (Approximation property of Yh). There exists an operator rh ∈ L(H2(Ω),Yh) such that

‖y − rhy‖H1(Ω) 6 Ch‖y‖H2(Ω) ∀y ∈H2(Ω),

rh preserves the boundary conditions, and

‖u− rhu‖H1/2(Γ) 6 Ch‖u‖H3/2(Γ) ∀u ∈H3/2(Γ).

(H2) (Approximation property of Wh). There exists an operator Sh ∈ L(L2(Ω),Wh) such that

‖p− Shp‖L2(Ω) 6 Ch‖p‖H1(Ω) ∀p ∈ H1(Ω).

These assumptions are satisfied by typical finite element spaces used to solve the Stokes
equation, such as the P1+ bubble -P1 “Mini” element or the Pk+1 −Pk, k > 1, “Taylor-Hood”
element; see [23, Chap. II, Secs. 4.1 and 4.2], where we take rh to be the corresponding Lagrange
interpolation operator and Sh the L2(Ω) projection.
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Lemma 5.7. There exists a constant C > 0 independent of h such that for any g ∈ L2(Ω) and
v ∈ V 1/2(Γ) we have

‖th(g,v)‖H−1/2(Γ) 6 C(‖g‖L2(Ω) + ‖v‖H1/2(Γ)).

Moreover, if v ∈ V r+1/2(Γ), we have the error estimate

‖t(g,v)− th(g,v)‖H−1/2(Γ) 6 Chr(‖g‖L2(Ω) + ‖v‖Hr+1/2(Γ)).

Proof. The error estimate follows directly from [33, Proposition 17] and Theorems 2.2 and 2.4.

In the next lemma, we collect the approximation properties of Eh, E?
h and Dh that will be

used to obtain the final error estimate.

Lemma 5.8. The approximate solution operators Eh : V 1/2(Γ) → L2(Ω), E?
h : L2(Ω) →

V −1/2(Γ), Dh : H1/2(Γ)→H−1/2(Γ) are bounded, i.e., there exists a constant C > 0 indepen-
dent of h such that

‖Ehu‖L2(Ω) 6 C‖u‖H1/2(Γ), (5.15a)

‖E?
hg‖H−1/2(Γ) 6 C‖g‖L2(Ω), (5.15b)

‖Dhu‖H−1/2(Γ) 6 C‖u‖H1/2(Γ). (5.15c)

Moreover, for u ∈ V r+1/2(Γ) and g ∈Hr(Ω), the following error estimates hold:

‖Eu−Ehu‖L2(Ω) 6 Chr‖u‖Hr+1/2(Γ), (5.16a)

‖E?g −E?
hg‖H−1/2(Γ) 6 Chr‖g‖Hr(Ω), (5.16b)

‖Du−Dhu‖H−1/2(Γ) 6 Chr‖u‖Hr+1/2(Γ). (5.16c)

Proof. The boundness of Eh and the approximation error follow directly from [33, Theorem
15] and the continuous embedding H1(Ω) ↪→ L2(Ω). The remaining estimates can be easily
obtained by Lemma 5.7, (5.9), and (5.8).

Next, we introduce the following auxiliary problem: find ûh ∈ Uh such that

(T ûh,vh)Γ = (w,vh)Γ ∀vh ∈ Uh, (5.17)

where w = E?yd ∈ V −1/2(Γ).

Lemma 5.9. Let ū ∈ V r+1/2(Γ), with r < min{1, ξ}, be the unique solution of problem (4.7)
and ûh ∈ Uh be the solution of (5.17). If the conditions in Theorem 4.4 are all fulfilled, then

‖ū− ûh‖H1/2(Γ) 6 Chr‖ū‖H1/2+r(Γ). (5.18)
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Proof. First, by (4.10), (5.17), and Uh ⊂ V 1/2(Γ), we have

(T (ū− ûh),vh)Γ = 0 ∀vh ∈ Uh. (5.19)

Next, by Lemma 4.3, we know that T is V 1/2(Γ)-elliptic and continuous. For any u?
h ∈ Uh, the

error estimate follows in a standard way:

c‖ū− ûh‖2H1/2(Γ)
6 (T (ū− ûh), ū− ûh)Γ

= (T (ū− ûh), ū− u?
h)Γ

6 ‖T (ū− ûh)‖V −1/2(Γ)‖ū− u
?
h‖H1/2(Γ)

6 C‖ū− ûh‖H1/2(Γ)‖ū− u
?
h‖H1/2(Γ).

Therefore, there exists C > 0 such that

‖ū− ûh‖H1/2(Γ) 6 C inf
u?
h∈Uh

‖ū− u?
h‖H1/2(Γ).

The result follows by interpolation (see e.g. [5, Theorem (14.3.3)]), where we take u?
h = rhu

from (H1) and use the regularity of ū stated in Theorem 4.4.

Now we give the proof of Theorem 5.6.

Proof of Theorem 5.6. Due to Lemma 5.9, it is enough to obtain the error estimate for ‖ūh −
ûh‖H1/2(Γ).

By the definition of Th in (5.10) and Lemma 5.1, we know that Th is coercive on Uh. By
the first order conditions satisfied by ûh and ūh in (5.17) and (5.12) and by Young’s inequality,
we know that there exists a constant κ independent of h such that

κ‖ūh − ûh‖2H1/2(Γ)
6 (Th(ūh − ûh), ūh − ûh)Γ

= (wh −w, ūh − ûh〉Γ + 〈(T − Th)ûh, ūh − ûh)Γ

6
2

κ
‖wh −w‖2H−1/2(Γ)

+
2

κ
‖(T − Th)ûh‖2H−1/2(Γ)

+
κ

4
‖ūh − ûh‖2H1/2(Γ)

.

Hence, by the definitions of T and Th in (4.8) and (5.10) we have

3

4
κ‖ūh − ûh‖2H1/2(Γ)

6
2

κ
‖wh −w‖2H−1/2(Γ)

+
2

κ
‖(T − Th)ûh‖2H−1/2(Γ)

6 C
(
‖wh −w‖H−1/2(Γ) + ‖(D −Dh)ûh‖H−1/2(Γ) + ‖(E?E −E?

hEh)ûh‖H−1/2(Γ)

)2

= C (S1 + S2 + S3)2 .
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For the first term S1, using the approximation properties of yd,h, (4.8), (5.10), (5.16b) and
(5.15b), we get

S1 = ‖wh −w‖H−1/2(Γ)

= ‖E?
hyd,h −E?yd‖H−1/2(Γ)

6 ‖(E?
h −E?)yd‖H−1/2(Γ) + ‖E?

h(yd,h − yd)‖H−1/2(Γ)

6 Chr.

For the second term S2, by the definition of Dh in (5.8) we know that DhQh = Dh, where
Qh is the L2 projection. We have

S2 = ‖(D −Dh)ûh‖H−1/2(Γ)

6 ‖D(ûh − ū)‖H−1/2(Γ) + ‖Dū−DhQhū‖H−1/2(Γ) + ‖(Dh(Qhū− ûh)‖H−1/2(Γ)

6 C‖ûh − ū‖H1/2(Γ) + ‖Dū−Dhū‖H−1/2(Γ) + C‖Qhū− ûh‖H1/2(Γ),

where we used (4.4b) and (5.15c) in the last inequality. Next, by (5.18), (5.16c), and (5.5) we
have

S2 6 C‖ûh − ū‖H1/2(Γ) + ‖Dū−Dhū‖H−1/2(Γ) + C‖ū− ûh‖H1/2(Γ) + C‖Qhū− ū‖H1/2(Γ)

6 Chr‖ū‖Hr+1/2(Γ).

Next, for the term S3 we proceed similarly to S2. Using the fact that EhQh = Eh, we have

S3 = ‖(E?E −E?
hEh)ûh‖H−1/2(Γ)

6 ‖E?E(ûh − ū)‖H−1/2(Γ) + ‖(E? −E?
h)Eū‖H−1/2(Γ)

+ ‖E?
h(Eū−EhQhū)‖H−1/2(Γ) + ‖(E?

hEh(Qhū− ûh)‖H−1/2(Γ)

6 C‖ûh − ū‖H1/2(Γ) + Chr‖Eū‖Hr+1(Ω) + C‖Eū−Ehū‖L2(Ω) + C‖Qhū− ûh‖H1/2(Γ),

where we used (2.16), (5.16b), (5.15b), and (5.15a) in the last inequality. By (5.18), (5.16a) and
(5.5) we have

S3 6 C‖ûh − ū‖H1/2(Γ) + Chr‖Eū‖Hr+1(Ω) + C‖Eū−Ehū‖L2(Ω) + C‖Qhū− ū‖H1/2(Γ)

6 Chr‖ū‖Hr+1/2(Γ).

Collecting all the estimates completes the proof.

Remark 5.10. The application of the Aubin-Nitsche technique to the intermediate problem
leads easily to

‖ū− ûh‖L2(Γ) 6 Chr+1/2‖u‖Hr+1/2(Γ).

However, using this to obtain error estimates in L2(Γ) for ūh is not immediate because ūh

satisfies a problem with a perturbed operator and perturbed second member. Following [14,
Remark 26.1], the error would be of the same order as

‖(T − Th)ūh‖H−1/2(Γ) + ‖w −wh‖H−1/2(Γ).
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Using the improved error estimate for the discrete approximation of the stress force on the
boundary for regular solutions in [33, Proposition 17], we find that the convergence order r+1/2
for those terms can be achieved under the following two assumptions: first, that yd ∈Hr−1/2(Ω),
which is quite reasonable; but also that ūh is bounded in H1+r(Γ). But this second assumption
requires a higher regularity of the optimal solution; in such a case the order of convergence in
H1/2(Γ) would be increased by another 1/2.

In numerical experiments, this is the behavior usually observed with the “Mini” finite ele-
ment: order 3/2 in H1/2(Γ) and order 2 in L2(Γ).

Remark 5.11. Although the discretizations of the L2 regularized problem and the H1/2 reg-
ularized problem are very similar, the error analysis performed for the second case cannot
be carried out for the first because of the lack of regularity of the solution u0 ∈ Hs(Γ) for
0 6 s < s?, where s? = min{1/2, ξ − 1/2}.

Using the general discretization error estimate of [2, Theorem 3.2], we see that the error is
bounded by the best approximation error in the space, the error related to the discretization
of the state equation, and the error related to the discrete approximation of the stress force on
the boundary. While we have no results for the last two ones, the first one is determined by the
Sobolev exponent s, so one cannot expect more than hs for the error.

6 Numerical experiments

In this section we carry out some numerical experiments to compare the solutions of the two
control problems (3.1) and (4.7), and also illustrate how the convergence orders can vary due to
the shape of the domain and the problem data. We present two examples in a square domain, the
first one having a very regular solution, and one example in an L-shaped domain. We discretize
each problem using the “Mini” finite element [42] and a family of meshes of size hi = 2−i

√
2

obtained by regular refinement of an initial coarse mesh of size h0 =
√

2. For one problem, we
also discretize using Taylor-Hood elements. Since we do not have the exact solution, we compare
the obtained solutions for i = 2, . . . , I − 2 with the reference solution obtained for i = I, where
I = 9 for the square (a mesh with 2 × 22×9 = 524288 elements) and I = 8 for the L-shaped
domain (a mesh with 6× 22×8 = 393216 elements). For i = 2, . . . , I − 2 we can solve the “big”
optimality system using Matlab’s mldivide. For i = I we run out of memory and solve the
reduced optimality system using Matlab’s pcg.

Let Eh = u − uh, we report the L2(Γ)-norm error and the H1/2(Γ)-seminorm error, both
computed using the equivalent mesh-independent discrete norms obtained in [9].

Example 6.1. We consider the unit square domain Ω = (0, 1)2 and set the regularization
parameter α = 1.0e − 3. We choose the forcing f = (1, 1), and for the target state we choose
the large vortex given in [39],

yd = 200× [x2
1(1− x1)2x2(1− x2)(1− 2x2);−x1(1− x1)(1− 2x1)x2

2(1− x2)2],

see the left of Figure 1. For a related example using tangential boundary control, see [25]. The
data size in terms of the tracking functional can be measured as F (0) = 0.302339. Notice that
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Figure 1: Left is the target of Example 6.1, middle is the target of Example 6.2, right is the
target of Example 6.3.

Figure 2: Solution of Example 6.1: The first two subfigures are for H1/2(Γ) regularization, the
last two subfigures are for L2(Γ) regularization.

∇ · yd = 0 and yd = 0 on Γ, but it cannot be the solution of the Stokes problem with data
f = (1, 1) since f + ∆yd is not a conservative field.

For the H1/2(Γ) regularization, we obtain a value for the tracking term of F (ū) = 0.112264,
while for the L2(Γ) regularization we obtain a slightly smaller value F (u0) = 0.111576. A graph
of the state, the optimal control in the energy space, and the solution of the L2(Γ) regularized
problem can be found in Figure 2. In this case, u0 is a continuous function. Numerically, we
find that |q0(xj) + λ0| < 3× 10−8 for all four corners xj .

The value of the singular exponent for this domain is ξ = 2.740; see [16, Table 1]. This
means that the exponent giving the order of convergence of the energy regularized problem in
the H1/2(Γ)-norm is r ≈ 1 and the exponent giving the best possible order of convergence of the
L2(Γ) regularized problem in the L2(Γ) norm is s ≈ 0.5. We obtain the results summarized in
Table 1 for the optimal control problem withH1/2 regularization and with L2(Γ) regularization.
In this case the solution is very regular, the results are similar for both approaches and better
than predicted by the general theory. This high regularity can also be noticed in the orders of
convergence found for the other variables using higher order Taylor-Hood elements; see Table 2.

Example 6.2. Set Ω = (0, 1)2, α = 1, f = 0 and yd = (x1;x2 − x1). The data size is
F (0) = 0.25, and the target does not belong to V 0(Ω). A graph of the target field is sketched
in the middle of Figure 1.

For the energy regularization, we find F (ū) = 0.117607; see the first two subfigures of
Figure 3. For the L2(Γ)-regularized problem, we have that F (u0) = 0.158279. The control is
discontinuous at the corners, see the last subfigure of Figure 3, and hence is not in H1/2(Γ).
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i
H1/2 regularization L2 regularization

‖Eh‖H1/2(Γ) Rate ‖Eh‖L2(Γ) Rate ‖Eh‖H1/2(Γ) Rate ‖Eh‖L2(Γ) Rate

2 4.93E+0 - 8.37E-01 - 6.17E+0 - 9.78E-01 -
3 1.62E+0 1.61 2.56E-01 1.71 2.01E+0 1.62 3.03E-01 1.69
4 4.82E-01 1.75 6.80E-02 1.91 6.37E-01 1.65 8.00E-02 1.92
5 1.39E-01 1.79 1.75E-02 1.96 1.87E-01 1.77 2.01E-02 1.93
6 4.07E-02 1.78 4.37E-03 2.00 5.54E-02 1.75 5.31E-03 1.98

Table 1: Errors and experimental order of convergence for Example 6.1.

i
‖y − yh‖L2(Ω) ‖u− uh‖H1/2(Γ) ‖z − zh‖L2(Ω)

Error Rate Error Rate Error Rate

P2 − P1

1 1.73E-03 - 2.36E-02 - 2.03E-03 -
2 2.76E-04 2.65 8.14E-03 1.54 3.79E-04 2.42
3 3.69E-05 2.90 2.20E-03 1.89 5.13E-05 2.89
4 5.12E-06 2.85 6.16E-04 1.83 6.61E-06 2.95
5 7.36E-07 2.80 1.81E-04 1.76 1.81E-07 2.98

P3 − P2

1 4.54E-04 - 9.56E-02 - 6.28E-03 -
2 4.17E-05 3.45 1.70E-03 2.49 5.67E-04 3.47
3 4.39E-06 3.25 3.98E-03 2.10 4.45E-05 3.67
4 6.50E-07 2.75 1.26E-04 1.65 3.75E-06 3.57
5 9.61E-08 2.76 3.85E-04 1.72 3.20E-07 3.55

Table 2: Errors and experimental order of convergence for the state and adjoint state for
Example 6.1.
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Figure 3: Solution of Example 6.2: The first two subfigures are for H1/2(Γ) regularization, the
last two subfigures are for L2(Γ) regularization.

i
H1/2 regularization L2 regularization

‖Eh‖H1/2(Γ) Rate ‖Eh‖L2(Γ) Rate ‖Eh‖L2(Γ) Rate

2 2.80E-02 - 3.77E-03 - 1.29E-01 -
3 9.88E-03 1.50 1.05E-03 1.85 8.90E-02 0.53
4 3.34E-03 1.57 2.81E-04 1.90 6.22E-02 0.52
5 1.10E-03 1.60 7.32E-05 1.94 4.37E-02 0.51
6 3.67E-04 1.59 1.86E-05 1.98 3.08E-02 0.51

Table 3: Errors and experimental order of convergence for Example 6.2.

Finite element error results are summarized in Table 3. Again we have r ≈ 1 and s ≈ 0.5.
In this case, the observed experimental order of convergence for the L2(Γ) error of the L2(Γ)-
regularized problem is quite close to s.

Example 6.3. We take the same data as Example 6.2, but now consider the L-shaped domain
Ω = (−1, 1)2 \ (0, 1)2. The results on this domain are F (0) = 1.75, F (ū) = 1.107016, F (u0) =
1.044080. Graphs of the data and the solutions can be found in the right Figure 1 and the first
two subfigures of Figure 4. Experimental orders of convergence are in Table 4. The singular
exponent for this domain is ξ = 0.544, so r ≈ 0.544 and s ≈ 0.044. The observed orders of
convergence are higher.

One remarkable fact is that for the L2(Γ)-regularized problem the optimal control need not
tend to ∞ at a nonconvex corner, as happens with Dirichlet optimal control problems governed
by the Poisson equation in a nonconvex polygonal domain.

Figure 4: Solution of Example 6.3: The first two subfigures are for H1/2(Γ) regularization, the
last two subfigures are for L2(Γ) regularization.
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i
H1/2 regularization L2 regularization

‖Eh‖H1/2(Γ) Rate ‖Eh‖L2(Γ) Rate ‖Eh‖L2(Γ) Rate

2 4.11E-01 - 7.40E-02 - 3.40E-01 -
3 2.49E-01 0.72 3.42E-02 1.12 2.38E-01 0.51
4 1.53E-01 0.71 1.55E-02 1.14 1.71E-01 0.48
5 9.12E-02 0.74 6.86E-03 1.18 1.24E-01 0.46
6 5.07E-02 0.85 2.83E-03 1.28 8.95E-02 0.47

Table 4: Errors and experimental order of convergence for Example 6.3.
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//doi.org/10.1016/j.anihpc.2006.06.008.

[58] M. Winkler, Error estimates for variational normal derivatives and Dirichlet control
problems with energy regularization, Numer. Math., 144 (2020), pp. 413–445, https://

doi.org/10.1007/s00211-019-01091-1.

33

https://doi.org/10.1007/s002459911018
https://doi.org/10.1080/02331934.2018.1426578
https://doi.org/10.1007/s10589-015-9784-y
https://doi.org/10.1007/s10589-015-9784-y
https://doi.org/10.1137/080735734
https://doi.org/10.1142/S0218202598000603
https://doi.org/10.1007/b98874
https://doi.org/10.1002/mma.1356
https://doi.org/10.1007/s00211-014-0653-x
https://doi.org/10.1051/m2an/2016040
https://doi.org/10.1016/j.anihpc.2006.06.008
https://doi.org/10.1016/j.anihpc.2006.06.008
https://doi.org/10.1007/s00211-019-01091-1
https://doi.org/10.1007/s00211-019-01091-1

	1 Introduction
	2 Regularity results
	3 Stokes Dirichlet boundary control in V0()
	4 Stokes Dirichlet boundary control in the energy space
	5 FEM for the Stokes Dirichlet energy space control problem
	5.1 Matrix representation of (5.2)
	5.2 Error analysis

	6 Numerical experiments

