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A LAGRANGIAN APPROACH FOR AGGREGATIVE MEAN FIELD

GAMES OF CONTROLS WITH MIXED AND FINAL CONSTRAINTS
∗

J. FRÉDÉRIC BONNANS† , JUSTINA GIANATTI‡ , AND LAURENT PFEIFFER†

Abstract. The objective of this paper is to analyze the existence of equilibria for a class of de-
terministic mean field games of controls. The interaction between players is due to both a congestion
term and a price function which depends on the distributions of the optimal strategies. Moreover,
final state and mixed state-control constraints are considered, the dynamics being nonlinear and
affine with respect to the control. The existence of equilibria is obtained by Kakutani’s theorem,
applied to a fixed point formulation of the problem. Finally, uniqueness results are shown under
monotonicity assumptions.
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1. Introduction. In this article we consider a Nash equilibrium problem in-
volving a large number N of agents, each of them solving a deterministic optimal
control problem involving control-affine nonlinear dynamics, final state constraints,
and mixed state-control constraints. The agents may only differ from each other by
their initial condition. The interaction between the agents is induced by a price vari-
able and a congestion term, which are determined by the collective behavior of the
agents. Our mathematical analysis focuses on an equilibrium problem which models
the asymptotic limit when N goes to infinity and when each isolated agent is sup-
posed to have no impact on the coupling terms (the price variable and the congestion
term). Therefore the problem falls into the class of mean field games (MFGs), which
have received considerable attention in the literature since their introduction in the
pioneering works by Lasry and Lions [26, 27, 28] and Caines, Huang and Malhamé
[23].

Our work addresses two main difficulties. The first difficulty of our model is the
interaction induced by the price variable. In the cost function of each agent, the price
penalizes linearly the control variable. It is defined as a monotonic function of some
aggregative term that can be interpreted as a demand. Here it is the average value
of the controls exerted by all agents. This kind of interaction is similar to the one
in Cournot models in economics, where companies without market power compete
on the amount of some product. Our model is representative from games in energy
markets involving a large number of small storage devices and some endogenous price
depending on the average speed of charge of the devices. See for instance [2, 18, 29,
31]. The second difficulty is the presence of mixed control-state constraints and final
state constraints. They appear naturally in applications in electrical engineering: for
example, when the storage devices must be fully (or partially) loaded at the end of
the time frame. In the appendix, we motivate the use of mixed constraints with an
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2 J.F. BONNANS, J. GIANATTI, AND L. PFEIFFER

example involving gas storages.
In most MFG models proposed in the literature, the agents interact only through

their position (their state variable). Mean field game models with interaction through
the states and controls are now commonly called MFGs of controls. The terminologies
extended MFGs and strongly coupled MFGs are also employed. Let us review the
articles dedicated to such models. In [20], a stationary second order MFG of controls
is studied. A deterministic MFG of controls is considered in [21]. An existence result
has been obtained for a quite general MFG model in [16]. A uniqueness result is
provided in [5]. The works [24, 25] analyse the existence and uniqueness of classical
solutions in the second order case. An existence result is provided in the monograph
[17, Section 4.6], for MFGs described by forward backward stochastic differential
equations. The particular price interaction investigated in this article has been studied
in [7] in the second order case and in [22] in the case of a degenerate diffusion and
potential congestion terms.

Most MFG models consist of a coupled system of partial differential equations
(PDEs), the Fokker-Planck equation and the Hamilton-Jacobi-Bellman (HJB) equa-
tion. The presence of final and mixed constraints in the underlying optimal control
problem makes it difficult to characterize the behavior of a representative agent with
the classical HJB approach. We therefore rely on a Lagrangian formulation of the
problem, rather than on a PDE approach. More precisely, our equilibrium problem
is posed on the set of Borel probability measures on the space of state-control tra-
jectories. The Lagrangian approach has been employed in several references dealing
with deterministic MFGs. Variational MFGs are studied in [4]. The article [30] deals
with minimal-time MFGs. The three articles [12, 13, 14] deal with state-constrained
MFGs and with the connection between the Lagrangian and the PDE formulations.
In [15] MFGs with linear dynamics are considered and in [1] state-constrained MFGs
with control on the acceleration are studied.

At a methodological level, the common feature of almost all studies dedicated to
MFGs of controls is the introduction of an auxiliary mapping, which allows to put
the equilibrium problem in a reduced form that can be handled with a fixed point
approach. In the PDE approach, the auxiliary mapping allows to express the control
of a representative agent at a given time t in function of its current state x, the
equilibrium distribution (of the states) and the gradient of the value function (see
for example [17, Lemma 4.60], [16, Lemma 5.2] or [7, Lemma 5]). This relation is
in general not explicit, contrary to MFGs with interaction through the state variable
only. In the probabilistic approach of [21, Assumption G], the auxiliary mapping
depends on t, x, and a pair of random variables (Xt, Pt), whose distribution coincides
with the distribution of pairs of state-costate of all agents in the game. In [17, Lemma
4.61], the auxiliary mapping directly depends on the distribution of (Xt, Pt). Our
roadmap is the same as the one used in the references mentioned above: we introduce
an auxiliary mapping (of the same nature as the one in [17]) which allows to write
the equilibrium problem in a reduced form which is then tractable with a fixed point
argument. After reformulation, the equilibrium problem is posed on the set of Borel
probability measures on the space of state-costate trajectories.

Our article is one of the very few publications dealing with first order MFGs of
controls and Lagrangian formulation for these problems. (i) The article of Gomes
and Voskanyan [21] is the closest to our work. Their analysis relies in a quite cru-
cial manner on some regularity properties of the value function associated with the
underlying optimal control problem (Lipschitz continuity, semiconcavity) which are
easily demonstrated in their framework without constraints. Those properties are not
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needed in the Lagrangian framework. They could probably be established, but under
stronger qualification conditions than those in force in the present work. Incidentally,
the initial distribution of the agents must have a density in [21], which is not the
case in the present work. (ii) Carmona and Delarue have an existence result, for an
MFG of controls posed as a forward-backward stochastic differential equation, see [17,
Proposition 4.64]. This model relies on Pontryagin’s principle, which is a sufficient
condition only under convexity assumptions on the underlying optimal control prob-
lem (see the assumption SMP [17, page 161]), which we do not need. Let us mention
that their other result [17, Proposition 4.64] concerns the second order case. (iii) In a
recent work, Graber, Mullenix and Pfeiffer have obtained the existence of a solution
for an MFG of controls formulated as a coupled system of possibly degenerate PDEs.
This work is restricted to the potential case, when the local congestion term is the
derivative of some convex function. It also relies on a periodicity condition on the
data functions, which we do not need here. (iv) Recently in [32], the authors study the
existence of a Lagrangian equilibrium for an MFG of controls, following a variational
approach instead of solving a fixed point problem, as proposed here.

The paper is organized as follows: In Section 2 we present the problem that we
address here, referred to as MFGC. We introduce the main notation and we define
the notion of Lagrangian equilibria for MFGC that we use throughout this work. In
Section 3 we study the optimal control problem associated with an individual player,
providing optimality conditions and regularity of solutions. Defining an auxiliary
notion of equlibria, by a fixed point argument, in Section 4 we prove the existence of
Lagrangian equilibria. In Section 5, under additional monotonicity assumptions we
analyze the uniqueness of solutions.

2. Description of the aggregative MFGC problem.

2.1. Preliminaries. Let (X, d) be a separable metric space. We denote by P(X)
the set of Borel probability measures on X . Given p ∈ [1,+∞), it is defined Pp(X)
as the set of probability measures µ on X such that

∫

X

d(x, x0)
pdµ(x) < +∞,

for some (and thus any) x0 ∈ X . The Monge-Kantorovich distance on Pp(X) is given
by

dp(µ, ν) = inf
π∈Π(µ,ν)

[∫

X

d(x, y)pdπ(x, y)

] 1
p

,

where Π(µ, ν) denotes the set of probability measures on X×X with first and second
marginals equal to µ and ν respectively. In this paper, we work with p = 1. For all
µ, ν ∈ P1(X), we have the following formula (see [19, Theorem 11.8.2]):

d1(µ, ν) = sup

{∫

X

f(x)dµ(x) −

∫

X

f(x)dν(x) | f : X → R is 1-Lipschitz

}

.

We recall the definition of narrow convergence of measures. We say that the
sequence (µn)n∈N ⊂ P(X) narrowly converges to µ ∈ P(X) if

lim
n→∞

∫

X

f(x)dµn(x) =

∫

X

f(x)dµ(x), ∀f ∈ C0
b (X),

where C0
b (X) denotes the set of all continuous and bounded real functions defined

on X . Throughout this work we endow the space P1(X) with the narrow topology.
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As a consequence of [3, Proposition 7.1.5], for any compact set K ⊂ X , we have for
all p ≥ 1, P(K) = Pp(K) and dp metricizes the narrow convergence of probability
measures on the set P(K). In addition, P(K) is compact.

2.2. MFG equilibria and main notation. We start by defining the optimal
control problem that each agent aims to solve, assuming that the price and the distri-
bution of the other players are known. The problem takes the form of a constrained
minimization problem parameterized by the initial condition x0 ∈ R

n, the agents
distribution m ∈ C([0, T ];P1(R

n)) and the price P ∈ L∞(0, T ;Rm).
Let Γ := H1(0, T ;Rn) ⊂ C(0, T ;Rn) be equipped with the supremum norm,

denoted by ‖ · ‖∞. Given x0 ∈ R
n, we define Γ[x0] by

Γ[x0] =
{
γ ∈ Γ : γ(0) = x0

}
.

We take L2(0, T ;Rm) as the control space, which we denote by U . We denote by
K[x0] the feasible set that is defined by

K[x0] =







(γ, v) ∈ Γ× U :

γ̇(t) = a(γ(t)) + b(γ(t))v(t), for a.e. t ∈ (0, T ),
γ(0) = x0,
c(γ(t), v(t)) ≤ 0, for a.e. t ∈ (0, T ),
g1(γ(T )) = 0,
g2(γ(T )) ≤ 0







.

The dynamics coefficients are a : Rn → R
n and b : Rn → R

n×m (note that bi(x) ∈ R
n

will denote the i-th column of b(x)). The final equality and inequality constraint
functions are, respectively, g1 : R

n → R
ng1 , and g2 : R

n → R
ng2 , and the state-

control constraint function is c : Rn × R
m → R

nc . Now we define the cost functional
J [m,P ] : Γ× U → R as

J [m,P ](γ, v) =

∫ T

0

(L(γ(t), v(t)) + 〈P (t), v(t)〉 + f(γ(t),m(t))) dt+ g0(γ(T ),m(T )).

Here L : Rn×R
m → R represents the running cost of the agents, f : Rn×P1(R

n) → R,
the congestion function, and g0 : R

n × P1(R
n) → R is the final cost. Therefore, the

optimal control problem that each agent addresses is

(2.1) Min
(γ,v)∈K[x0]

J [m,P ](γ, v).

The set of optimal trajectories for this minimization problem is denoted by

(2.2) Γ[m,P, x0] = {γ̄ ∈ Γ[x0] : ∃v̄ ∈ U , (γ̄, v̄) is a solution to (2.1)} .

2.2.1. Lagrangian MFGC equilibria. In the previous paragraph, we have
described the optimization problem, for a particular player, given the price and the
agents distribution. We describe now how the price is related to the collective behavior
of all agents and give a Lagrangian description of our mean field game.

Let m0 ∈ P1(R
n) be the initial distribution of the agents. We fix a price function

ψ : Rm → R
m, which is assumed to be bounded. For t ∈ [0, T ], the mapping et :

Γ× U → R
n is given by et(γ, v) = γ(t). We define the set

Pm0
(Γ× U) =

{
η ∈ P1 (Γ× U) : e0♯η = m0

}
.
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Given η ∈ Pm0
(Γ × U), we define the cost functional Jη = J [mη, P η], where the

coupling terms mη : t ∈ [0, T ] 7→ mη
t ∈ P1(R

n) and P η ∈ L∞(0, T ;Rm) are given by

(2.3) mη
t = et♯η and P η = Ψ

(∫

Γ×U

v dη(γ, v)
)

.

The continuity of the mapping t 7→ mη
t will be ensured by Lemma 4.2. In the

definition of P η,
∫

Γ×U
v dη(γ, v) is a Bochner integral with value in L2(0, T ;Rm)

(which is well defined since η ∈ P1(Γ× U)) and the mapping Ψ: θ ∈ L2(0, T ;Rm) →
Ψ[θ] ∈ L∞(0, T ;Rm) denotes the Nemytskii operator associated with the price func-
tion ψ : Rm → R

m, defined by Ψ[θ](t) = ψ(θ(t)), for a.e. t ∈ (0, T ).
Given x0 ∈ R

n and η ∈ Pm0
(Γ × U), we denote by Γη[x0] the set of optimal

state-control trajectories associated with the cost Jη and set of constraints K[x0]:

Γη[x0] =
{

(γ̄, v̄) ∈ K[x0] : J
η(γ̄, v̄) ≤ Jη(γ, v) ∀(γ, v) ∈ K[x0]

}

.

Definition 2.1. We call Lagrangian MFGC equilibrium any distribution η ∈
Pm0

(Γ× U) supported on optimal trajectories, i.e.

supp(η) ⊂
⋃

x∈supp(m0)

Γη[x].

The main objective of this paper is to prove the existence of a Lagrangian MFGC
equilibrium, under the assumptions described in the following subsection.

2.3. Assumptions. For a given normed vector space X , we denote by B̄X(R)
the closed ball of radius R and center 0. When the context is clear, we simply write
B̄(R). Given R > 0, we denote V (R) = conv

{
(x, v) : |x| ≤ R, c(x, v) ≤ 0

}
. Finally,

1 stands for a vector of all ones, of appropriate dimension, and inequality between
vectors means component-wise inequality.

We consider the following assumptions:
(H1) Convexity assumptions

(i) There exists C > 0 such that for all x ∈ R
n, the mapping L(x, ·) is

strongly convex with parameter 1/C and for all (x, v) ∈ R
n × R

m,

L(x, v) ≥ (1/C)|v|2 − C.

(ii) For all x ∈ R
n and i = 1, ..., nc, the mapping ci(x, ·) is convex.

(iii) The mapping ψ is monotone, i.e. 〈ψ(y)− ψ(x), y − x〉 ≥ 0, for all x and
y in R

m.
(H2) Regularity assumptions

(i) The mappings L and c are twice continuously differentiable.
(ii) The mappings a, b, g0, g1, and g2 are continuously differentiable.
(iii) For all m ∈ P1(R

n), the mapping f(·,m) is continuously differentiable.
The mappings f and Dxf are continuous with respect to both variables.

(iv) The mapping ψ is continuous.
(H3) Boundedness and growth assumptions

(i) Let R > 0. Then there exists C(R) > 0 such that, for all (x, v) ∈ V (R),

|DxL(x, v)| ≤ C(R)(1 + |v|2),
|DvL(x, v)| ≤ C(R)(1 + |v|).
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(ii) Let R > 0. Then there exists C(R) > 0 such that, for all (x, v) and
(x̃, ṽ) in V (R) + B̄(1),

|Dxc(x, v)|+ |Dvc(v, x)| ≤ C(R),
|Dvc(x, v)−Dvc(x̃, ṽ)| ≤ C(R)

∣
∣(x, v) − (x̃, ṽ)

∣
∣.

(iii) There exists C > 0 such that for all x ∈ R
n,

|a(x)| ≤ C(1 + |x|) and |b(x)| ≤ C(1 + |x|).

(iv) The support K0 of m0 is bounded.
(v) There exists C > 0 such that for all x0 ∈ K0, m ∈ C(0, T ;P1(R

n)) and
(γ, v) ∈ K[x0],

∫ T

0

f(γ(t),m(t))dt+ g0(γ(T ),m(T )) ≥ −C

‖Dxf(γ(t),m(t))‖L∞(0,T ;Rn) ≤ C.

(vi) The mapping ψ is bounded.
(H4) Feasibility assumptions

(i) Let R > 0. Then there exists a constant C(R) > 0 such that, for all
x ∈ B̄(R), there exists v ∈ B̄(C(R)) satisfying c(x, v) ≤ 0.

(ii) There exists C > 0 such that for all x0 ∈ K0, m ∈ C(0, T ;P(Rn)) with
m(0) = m0, and for all P ∈ L∞(0, T ;Rm) satisfying

(2.4) ‖P‖L∞(0,T ;Rm) ≤ sup
θ∈Rm

|ψ(θ)|,

there exists (γ0, v0) ∈ K[x] such that J [m,P ](γ0, v0) ≤ C.
(H5) Qualification assumptions

(i) There exists C > 0 such that for all x0 ∈ K0, (γ, v) ∈ K[x0], and
z1 ∈ R

ng1 , there exists a pair (y, w) ∈ H1(0, T ;Rn) × L∞(0, T ;Rm)
solution of the linearized state equation

(2.5)







ẏ(t) =
(
Da(γ(t)) +

m∑

i=1

Dbi(γ(t))vi(t)
)
y(t) + b(γ(t))w(t),

y(0) = 0,

such that Dg1(γ(T ))y(T ) = z1, and

‖y‖H1(0,T ;Rn) ≤ C|z1| and ‖w‖L∞(0,T ;Rn) ≤ C|z1|.

(ii) There exists C > 0 such that for all x0 ∈ K0 and (γ, v) ∈ K[x0], there
exists (y, w) ∈ H1(0, T ;Rn)× L∞(0, T ;Rm) satisfying (2.5) such that







Dg1(γ(T ))y(T ) = 0,

g2(γ(T )) +Dg2(γ(T ))y(T ) ≤ −1/C1,

c(γ(t), v(t)) +Dc(γ(t), v(t))(y(t), w(t)) ≤ −1/C1.

In addition, ‖y‖H1(0,T ;Rn) ≤ C and ‖w‖L∞(0,T ;Rn) ≤ C.
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(iii) There exists C > 0 such that for all (x, v) ∈ R
n×R

m satisfying c(x, v) ≤
0, and for all ω ∈ R

|I(x,v)|,

|DvcI(x,v)(x, v)
⊤ω| ≥ (1/C)|ω|,

where I(x, v) = {i = 1, ..., nc : ci(x, u) = 0}.
(iv) Given R > 0, let x ∈ B̄(R), and let v ∈ R

m be such that c(x, v) ≤ 0.
Then there exist C > 0, ε > 0, and w ∈ B̄(C) satisfying

c(x, v) +Dvc(x, v)w ≤ −ε1.

In addition the constants C > 0 and ε > 0 only depend on R.

Remark 2.2. Let us comment on the nature and the motivation of some of the
assumptions introduced above.

1. The first step of our analysis consists in finding a bound in L2 for the optimal
controls associated with problem (2.1). This bound must be uniform with
respect tom, P , x0. We proceed with the standard approach from the calculus
of variations, which requires:

• the existence of a feasible pair (γ, v) with a uniformly bounded cost: this
is ensured by (H4)-(ii).

• a lower bound of the cost function J [m,P ](γ, v) which holds for any
feasible pair: this is ensured by (H1)-(i) and (H3)-(v). This also requires
a bound on P , which is why we also impose that ψ is bounded with
Assumption (H3)-(vi).

2. Assumptions (H5)-(i) and (H5)-(ii) together are qualification conditions (for
the mixed and final constraints) in the form of Mangasarian-Fromovitz qual-
ification conditions (see [11, Section 2.3.4]). They were employed in a similar
context in [9, Section 3].

3. Assumptions (H5)-(iii) and (H5)-(iv) are both qualification conditions for the
constraints c(x, v) ≤ 0 for a fixed value of x, this is why those qualification
conditions only involve partial derivatives of c with respect to v. They are
used in particular in Lemma 3.1 and Lemma 3.2. They respectively take the
form of linear independence qualification conditions and inward pointing con-
ditions. Assumption (H5)-(iii) was used in [8, Equation 2.30] and Assumption
(H5)-(iv) was used in [10, Definition 2.5] for example, in similar contexts.

Remark 2.3. 1. As was pointed out above, some of the assumptions are used
to derive a priori bounds on the optimal controls associated with problem
(2.1). However, if the set of feasible controls is bounded, these bounds are
much easier to obtain and some simplifications can be done. Assume that
there exists a constant C > 0 such that for any (x, v) ∈ R

n × R
m, c(x, v) ≤

0 ⇒ |v| ≤ C. Then it is easy to verify that for any x0 ∈ K0, for any
(γ, v) ∈ K[x0], it holds

‖γ‖L∞(0,T ;Rn ≤ C and ‖v‖L∞(0,T ;Rn ≤ C,

increasing if necessary the value of C. In this case, the following simplifica-
tions can be considered:

• Assumptions (H3)-(i) and (H3)-(ii) are satisfied.
• Assumption (H3)-(v) can be ignored. We already have that γ(t) takes
values in a bounded set. Moreover, one can require in this assumption
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that m(t) lies in a set of probability measure with support included into
a bounded set; such a set is compact for the topology of d1. Therefore
the bounds follow directly from the continuity of f , Dxf , and g0.

• It is not necessary to impose that ψ is bounded.
• Assumption (H4)-(ii) boils down to a feasibility assumption (the bound
J [m,P ](γ0, v0) ≤ C is then automatically satisfied).

2. The verification of Assumption (H4)-(ii) is made easier when f is known to
be bounded. Then it suffices to assume that there exists C > 0 such that for
all x0 ∈ K0, there exists (γ0, v0) ∈ K[x0] with ‖v0‖L2(0,T :Rm) ≤ C. In such a
case, it is easy to deduce a bound of γ0 in L∞(0, T ;Rn) and finally a bound
of J [m,P ](γ0, v0), with the help of Assumption (H3)-(i).

3. In some situations, one can find a convex set X ⊆ R
n such that for any

x0 ∈ K0, for any (γ, v) ∈ K[x0], for any t ∈ [0, T ], γ(t) ∈ X . In this case,
the variable x appearing in Assumptions (H1)-(i), (H1)-(ii), (H4)-(i), (H5)-
(iii), (H5)-(iv) can be restricted to X ′ := (X + BRn(δ)), where δ is chosen
arbitrarily small. The statements of Lemma 3.1 and Lemma 3.2 remain true
for x ∈ X .

Remark 2.4. For the sake of simplicity in the presentation of this article, we
consider time-independent data, but most of the results remain valid if the above
assumptions hold uniformly with respect to time.

3. The optimal control problem. In this section, we study the optimal control
problem (2.1) that an individual player aims to solve. Throughout this section, we
fix a triplet (m,P, x0) ∈ C(0, T ;P1(R

n))× L∞(0, T ;Rm)×K0 such that (2.4) holds.

3.1. Some technical results. The next lemma is a metric regularity property,
obtained from the Mangasarian-Fromovitz qualification condition (H5)-(iv), which
implies Robinson’s qualification condition (see [11, Section 2.3.4]). Thus the lemma
is a particular case of the Robinson-Ursescu stability theorem [11, Theorem 2.87].

Lemma 3.1. Let R > 0. There exist δ > 0 and C > 0 such that for all (x, x̃, ṽ) ∈
B̄(R)2 × R

m such that c(x̃, ṽ) ≤ 0 and |x− x̃| ≤ δ, there exists v ∈ R
m such that

c(x, v) ≤ 0 and |v − ṽ| ≤ C|x− x̃|.

Moreover, for fixed x̃ and ṽ, v can be constructed as a continuous function of x.

Proof. Let R > 0. The constant ε used below, as well as all constants C >
0, depend only on R. Let (x, x̃, ṽ) ∈ B̄(R)2 × R

m be such that c(x̃, ṽ) ≤ 0. By
Assumptions (H5)-(iv), there exist w ∈ R

m, C > 0, and ε > 0 such that

c(x̃, ṽ) +Dvc(x̃, ṽ)w ≤ −ε and |w| ≤ C.

Let θ ∈ [0, 1] and let vθ = ṽ + θw. We have

(3.1) c(x, vθ) = c(x̃, ṽ) + θDvc(x̃, ṽ)w + aθ + bθ,

where

aθ =

∫ 1

0

Dxc(x̃+ s(x− x̃), ṽ + sθw)(x − x̃)ds,

bθ = θ

∫ 1

0

[
Dvc(x̃+ s(x− x̃), ṽ + sθw)−Dv(x̃, ṽ)

]
wds.
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By Assumption (H3)-(ii), we obtain

|aθ| ≤ C|x − x̃| and |bθ| ≤ Cθ
(
|x− x̃|+ θ

)
.

It follows from (3.1) that

c(x, vθ) = (1− θ)c(x̃, ṽ) + θ
[
c(x̃, ṽ) +Dvc(x̃, ṽ)w

]
+ aθ + bθ

≤ − θε+ C|x − x̃|+ Cθ2.(3.2)

Let us define δ = ε2

4C2 and θ = 2C|x−x̃|
ε , where C is the constant appearing in the

right-hand side of (3.2). We assume now that |x− x̃| ≤ δ and we fix v = vθ. It remains
to verify that c(x, v) ≤ 0. Note first that θ ≤ 2Cδ

ε ≤ ε
2C , by definition of δ. It follows

from (3.2) that

c(x, v) ≤ −θε+ (Cθ)
︸︷︷︸

≤ε/2

θ + C|x− x̃| ≤ −
θε

2
+ C|x − x̃| = 0,

which concludes the proof.

Lemma 3.2. (i) For all x ∈ R
n and for all r ∈ R

m, there exists a unique pair
(v, ν) ∈ R

m × R
nc such that the following holds:

(3.3) DvL(x, v)
⊤ + r +Dvc(x, v)

⊤ν = 0, ν ≥ 0, and 〈ν, c(x, v)〉 = 0.

We denote it (v[x, r], ν[x, r]).
(ii) Let R > 0. The mapping (x, r) ∈ B̄(R) 7→ (v[x, r], ν[x, r]) is Lipschitz continuous.
(iii) There exists C > 0 such that for all x ∈ R

n, for all r1 and r2 in R
m, it holds

〈v2 − v1, r2 − r1〉+
1

C
|v2 − v1|

2 ≤ 0,

where vj = v[x, rj ], for j = 1, 2.

Proof. (i) Let (x, r) ∈ R
n × R

m. Consider the optimization problem:

(3.4) inf
v∈Rm

L(x, v) + 〈r, v〉, subject to: c(x, v) ≤ 0.

As a consequence of Assumption (H1)-(i), the above cost function is coercive. By
Assumption (H4)-(i), there exists v0 such that c(x, v0) ≤ 0. Therefore, (3.4) pos-
sesses a solution v. As a consequence of the qualification assumption (H5)-(iii), the
optimality conditions exactly take the form of (3.3). This proves the existence part
of the first part of the theorem. Now take a pair (v, ν) satisfying (3.3). Then, by
the strong convexity of L(x, ·) and by the convexity of the mappings ci(x, ·), v is the
unique solution to (3.4) and ν is the associated Lagrange multiplier, it is also unique
as a consequence of (H5)-(iii).

(ii) Let us prove the Lipschitz continuity of v[·, ·], ν[·, ·]. We mainly rely on results
of [11]. We first reformulate (3.3) as a generalized equation: given (x, r), the pair (v, ν)
satisfies (3.3) if and only if

(3.5) 0 ∈ Φ(v, ν;x, r) +N(ν),

where Φ(v, ν;x, r) =
(

DvL(x, v)
⊤ + r+Dvc(x, v)

⊤ν,−c(x, v)
)

∈ R
m+nc and N(ν) =

{
(0, z) ∈ R

m+nc : z ≤ 0, 〈z, ν〉 = 0
}
, if ν ≥ 0, and N(ν) = ∅ otherwise. By [11,
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Proposition 5.38], (v̄, ν̄) is a strongly regular solution of (3.5) (in the sense of [11,
Definition 5.12]). Note that the required sufficient second-order optimality conditions
follow from the strong convexity of L(x, ·) and the convexity of ci(x, ·). It follows
then from [11, Theorem 5.13] that v[·, ·] and ν[·, ·] are locally Lipschitz continuous,
and therefore Lipschitz continuous on any compact set, as was to be proved.

(iii) Let us subtract equality (3.3), for r1, from equality (3.3), for r2, and consider
the scalar product of the result with v2 − v1. We obtain

(DvL(x, v2)−DvL(x, v1))(v2 − v1)
︸ ︷︷ ︸

(a)

+〈r2 − r1, v2 − v1〉

− 〈Dvc(x, v2)(v1 − v2), ν2〉
︸ ︷︷ ︸

(b)

−〈Dvc(x, v1)(v2 − v1), ν1〉
︸ ︷︷ ︸

(c)

= 0,

where νj = ν[x, rj ], for j = 1, 2. To conclude the proof, we just need to bound from
below the term (a) and to bound from above (b) and (c). By Assumption (H1)-(i), we
have (a) ≥ 1

C |v2 − v1|2, for some constant C > 0 independent of x, r1, and r2. Using
the complementarity condition, the convexity of c with respect to its second variable
(Assumption (H1)-(ii)), and the nonnegativity of ν2, we further obtain that

(b) = 〈c(x, v2) +Dvc(x, v2)(v1 − v2), ν2〉 ≤ 〈c(x, v1), ν2〉 ≤ 0.

Similarly, (c) ≤ 0. This concludes the proof.

Remark 3.3. The twice differentiability of L and c, required in Assumption (H2)-
(i) is only used for the application of [11, Proposition 5.38] in the proof of Lemma
3.2. It is sufficient to assume that L and c are continuously differentiable if c does
not depend on x (i.e. if we just have control constraints instead of mixed state-control
constraints). In that case, the Lipschitz continuity is deduced from [11, Proposition
4.32].

3.2. Estimates for the optimal solutions. The goal of this section is to de-
rive some a priori bounds for solutions (γ̄, v̄) to the optimal control problem (2.1)
and for the associated costate and Lagrange multipliers. They will be crucial for
the construction of an appropriate set of probability measures on state-costate tra-
jectories. We follow a rather standard methodology. The coercivity of L, together
with other feasibility and bound conditions allows to show the existence of a solution
and to derive a bound of v̄ in L2(0, T ;Rm). Then we provide first-order necessary
optimality conditions and a bound on the associated costate p, with the help of the
qualification conditions. We finally obtain bounds of γ̄ and p in W 1,∞(0, T ;Rn) and
v̄ in L∞(0, T ;Rm).

We recall that throughout this section the triplet (m,P, x0) is fixed and satisfies
(2.4). Note that all constants C used in this section are independent of (m,P, x0).

Proposition 3.4. The optimal control problem (2.1) has (at least) one solution.
There exist two constants M1 > 0 and C > 0, independent of m, P , and x0, such that
for all solutions (γ̄, v̄) to (2.1),

(3.6) ‖γ̄‖L∞(0,T ;Rn) ≤M1 and ‖v̄‖L2(0,T ;Rm) ≤ C.

Proof. The constants C > 0 used in this proof only depend on the data of the
problem. Let (γ0, v0) ∈ K[x0] satisfy Assumption (H4)-(ii). Let (γk, vk)k∈N be a
minimizing sequence. Without loss of generality, we can assume that

J [m,P ](γk, vk) ≤ J [m,P ](γ0, v0), ∀k ∈ N.
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Using Assumption (H1)-(i), the boundedness of P , and Assumption (H3)-(v), we
deduce that

C ≥ J [m,P ](γ0, v0) ≥ J [m,P ](γk, vk)

≥
1

C
‖vk‖

2
L2(0,T ) − C‖vk‖L1(0,T ) − C ≥

1

C
‖vk‖

2
L2(0,T ) − C,

for some independent constants C. It follows that vk is bounded in L2(0, T ;Rm).
By Grönwall’s lemma and Assumption (H3)-(iii), there exists a constant C > 0 such
that ‖γk‖L∞(0,T ;Rn) ≤ C. The state equation further implies that ‖γk‖H1(0,T ;Rn) ≤ C.
Extracting a subsequence if necessary, there exist (γ̄, v̄) ∈ H1(0, T ;Rn)×L2(0, T ;Rm)
and a C > 0 such that

‖γ̄‖H1(0,T ;Rn) ≤ C and ‖v̄‖L2(0,T ;Rm) ≤ C

and such that (γk, vk)⇀ (γ̄, v̄) for the weak topology of H1(0, T ;Rn)×L2(0, T ;Rm).
Since H1(0, T ;Rn) is compactly embedded in L∞(0, T ;Rn), we deduce that γk con-
verges uniformly to γ̄.

Let us prove that c(γ̄(t), v̄(t)) ≤ 0 for a.e. t ∈ (0, T ). Let ϕ ∈ L∞(0, T ;Rnc) be
such that ϕ(t) ≥ 0 for a.e. t ∈ (0, T ). We have

∫ T

0

〈ϕ(t), c(γ̄(t), v̄(t))〉dt = ak + bk +

∫ T

0

〈ϕ(t), c(γk(t), vk(t))〉dt ≤ ak + bk,

where, skipping the time arguments

ak =

∫ T

0

〈
ϕ, c(γ̄, v̄)− c(γ̄, vk)

〉
dt and bk =

∫ T

0

〈
ϕ, c(γ̄, vk)− c(γk, vk)

〉
dt.

Note that all these integrals are well-defined as a consequence of Assumption (H3)-(ii).
Also by Assumption (H3)-(ii), we easily verify that Dvc(γ̄(·), v̄(·)) ∈ L2(0, T ;Rnc×m).
Therefore, by the convexity of the mappings ci(x, ·) in Assumption (H1)-(ii),

ak ≤

∫ T

0

〈ϕ(t), Dvc(γ̄(t), v̄(t))(v̄(t)− vk(t))〉dt −→
k→∞

0.

By Assumption (H3)-(ii), we also have

|bk| ≤ C‖ϕ‖L∞(0,T ;Rnc)‖γk − γ̄‖L∞(0,T ;Rn) −→
k→∞

0.

It follows that for all ϕ ≥ 0,
∫ T

0 〈ϕ, c(γ̄(t), v̄(t))〉dt ≤ 0. Therefore, c(γ̄(t), v̄(t)) ≤ 0,
for a.e. t ∈ (0, T ). With similar arguments, we prove that (γ̄, v̄) is feasible and that

J [m,P ](γ̄, v̄) ≤ lim
k→∞

J [m,P ](γk, vk),

which concludes the proof of optimality of (γ̄, v̄). Repeating the above arguments, we
show that any solution to (2.1) satisfies the bound (3.6).

We next state optimality conditions for the optimal control problem. The proof
of the following proposition is deferred to the appendix in Section A. In the rest of
the section, we write c[t] instead of c(γ̄(t), v̄(t)) (for a specified pair (γ̄, v̄)). We use
the same convention for a, b, g0, g1, and g2.



12 J.F. BONNANS, J. GIANATTI, AND L. PFEIFFER

Proposition 3.5. Let (γ̄, v̄) be a solution to (2.1). There exists a quintuplet

(p, λ0, λ1, λ2, ν) ∈W 1,2(0, T ;Rn)× R× R
ng1 × R

ng2 × L∞(0, T ;Rnc)

such that (p, λ0) 6= (0, 0) and such that the adjoint equation
(3.7)
{

p(T )⊤= λ0Dg0[T ] + λ⊤1 Dg1[T ] + λ⊤2 Dg2[T ]

−ṗ(t)⊤= λ0DxL[t] + λ0Dxf [t] + p(t)⊤
(
Da[t] +

∑m
i=1Dbi[t]vi(t)

)
+ ν(t)⊤Dxc[t],

the stationary condition

(3.8) λ0DvL[t] + λ0P (t)
⊤ + p(t)⊤b[t] + ν(t)⊤Dvc[t] = 0,

and the following sign and complementarity conditions

(3.9)







λ0 ≥ 0,

λ2 ≥ 0, 〈λ2, g2(γ̄(T ))〉 = 0,

ν(t) ≥ 0, 〈c(γ̄(t), v̄(t)), ν(t)〉 = 0, for a.e. t ∈ (0, T )

are satisfied. Moreover, if λ0 6= 0, then p ∈W 1,∞(0, T ;Rn).

The goal of the last two results in this subsection is to obtain uniform bounds for
the optimal solutions and their associated multipliers.

Proposition 3.6. Let (γ̄, v̄) be a solution to (2.1). There exists a quintuplet
(p, λ0, λ1, λ2, ν) satisfying the optimality conditions of the above proposition and such
that λ0 = 1. Moreover, for such a quintuplet, we have

‖p‖L∞(0,T ;Rn) ≤M2

for some constant M2 independent of (γ̄, v̄) and (p, λ0, λ1, λ2, ν).

Proof. The proof essentially relies on the qualification conditions (H5)-(i) and
(H5)-(ii). All constants C used in the proof are independent of (p, λ0, λ1, λ2, ν) and
(γ̄, v̄). Let (y, w) satisfy the linearized equation (2.5) (for (γ, v) = (γ̄, v̄)). By integra-
tion by parts we have

〈p(T ), y(T )〉 =

∫ T

0

〈ṗ(t), y(t)〉 + 〈p(t), ẏ(t)〉dt

= − λ0

∫ T

0

(DxL[t] +Dxf [t])y(t)dt

−

∫ T

0

p(t)⊤
(
Da[t] +

∑m
i=1Dbi[t]v̄i(t)

)
y(t)dt−

∫ T

0

ν(t)⊤Dxc[t]y(t)dt

+

∫ T

0

p(t)⊤
(
Da[t] +

∑m
i=1Dbi[t]v̄i(t)

)
y(t)dt+

∫ T

0

p(t)⊤b[t]w(t)dt.

The second and the fourth integral cancel out. Injecting the optimality condition
(3.8) in the last integral, we obtain:

〈p(T ), y(T )〉 = − λ0

∫ T

0

(

DL[t](y(t), w(t)) + 〈P (t), w(t)〉 +Dxf [t]y(t)
)

dt

−

∫ T

0

ν(t)⊤Dc[t](y(t), w(t))dt.(3.10)
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The main feature of this formula is that the right-hand side is independent of p. Let
(y, w) satisfy Assumption (H5)-(ii). By (H3)-(i), (H3)-(vi) and (H3)-(v) we have

∫ T

0 (DL[t](y(t), w(t)) + 〈P (t), w(t)〉 +Dxf [t]y(t)) dt

≤ C‖y‖∞
∫ T

0
(1 + |v̄(t)|2)dt+ C‖w‖∞

∫ T

0
(1 + |v̄(t)|)dt ≤ C,

where the last inequality holds by Proposition 3.4 and (H5)-(ii). By (H5)-(ii) and the
complementarity conditions (3.9) we obtain

∫ T

0

ν(t)⊤Dc[t](y(t), w(t))dt =

∫ T

0

ν(t)⊤ (c[t] +Dc[t](y(t), w(t))) dt

≤ −
1

C
‖ν‖L1(0,T ;Rnc ).

Therefore,

(3.11) 〈p(T ), y(T )〉 ≥ −Cλ0 +
1

C
‖ν‖L1(0,T ;Rnc ).

Moreover, we deduce from the terminal condition for p that

〈p(T ), y(T )〉 = λ0Dg0[T ]y(T ) + 〈λ1, Dg1[T ]y(T )〉+ 〈λ2, Dg2[T ]y(T )〉

= λ0Dg0[T ]y(T ) + 〈λ2, g2[T ] +Dg2[T ]y(T )〉

≤ Cλ0 −
1

C
|λ2|.(3.12)

The last inequality holds by (H2)-(ii), Proposition 3.4 and (H5)-(ii). It follows
from (3.11) and (3.12) that

(3.13) |λ2| ≤ Cλ0 and ‖ν‖L1(0,T ;Rnc) ≤ Cλ0.

Now, let us consider (y, w) satisfying (H5)-(i) with z1 = λ1/|λ1|. We have

‖y‖L∞(0,T ;Rn) ≤ C and ‖w‖L∞(0,T ;Rn) ≤ C.

Since Dc[t] is bounded in L∞(0, T ;Rnc×(n+m)) (by Assumption (H3)-(ii)), we have

(3.14) ‖Dc[·](y(·), w(·))‖L∞(0,T ;Rnc ) ≤ C.

Formula (3.10), together with the bound on ‖ν‖L1(0,T ;Rnc) and (3.14) yields

(3.15) 〈p(T ), y(T )〉 ≤ Cλ0.

It follows from the terminal condition and the estimate on |λ2| that

〈p(T ), y(T )〉 = λ0Dg0[T ]y(T ) + 〈λ1, Dg1[T ]y(T )〉+ 〈λ2, Dg2[T ]y(T )〉

≥ − Cλ0 + |λ1|.(3.16)

Combining (3.15) and (3.16), we deduce that

(3.17) |λ1| ≤ Cλ0.

If λ0 = 0, then λ1 = 0, λ2 = 0, and ν = 0. Thus p(T ) = 0 and ṗ(t) = 0 a.e.
and therefore p = 0, in contradiction with (p, λ0) 6= (0, 0). We deduce that λ0 > 0.
The optimality conditions being invariant by multiplication of a positive constant, we
deduce the existence of a quintuplet satisfying (3.7)-(3.8)-(3.9) and λ0 = 1. Bounds
of |λ1|, |λ2|, and ‖ν‖L1(0,T ;Rnc) directly follow from (3.13) and (3.17). Then we obtain
a bound of |p(T )| and finally a bound of ‖p‖L∞(0,T ;Rn) with Grönwall’s lemma.
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Definition 3.7. Given a solution (γ̄, v̄) to (2.1), we call associated costate any p
for which there exists (λ0, λ1, λ2, ν) such that the optimality conditions in Proposition
3.5 hold true and λ0 = 1.

In order to obtain more regularity on (γ̄, v̄), we need to express the optimal control
as an auxiliary function of the state and costate, which is deduced from Lemma 3.2.

Lemma 3.8. Let (γ̄, v̄) and (p, λ0, λ1, λ2, ν) be as in Proposition 3.6. There exists
C > 0 independent of (γ̄, v̄) and (p, λ0, λ1, λ2, ν) such that

‖v̄‖L∞(0,T ;Rn) ≤ C, ‖ν‖L∞(0,T ;Rn) ≤ C.

In addition, there exist constants M3 > 0 and M4 > 0, such that

(3.18) ‖ ˙̄γ‖L∞(0,T ;Rn) ≤M3, ‖ṗ‖L∞(0,T ;Rn) ≤M4.

Proof. It follows from the optimality condition (3.8) and Lemma 3.2 that

(3.19)
v̄(t) = v[γ̄(t), P (t) + b(γ̄(t))⊤p(t)],
ν(t) = ν[γ̄(t), P (t) + b(γ̄(t))⊤p(t)].

Lemma 3.2 further implies that ‖v̄‖L∞(0,T ;Rm) ≤ C and ‖ν‖L∞(0,T ;Rnc ) ≤ C. The
estimates (3.18) follow.

4. Existence of MFGC equilibria. In this section, we prove the main result
of the paper. We first construct the auxiliary function announced in the introduction.
Then, applying Kakutani’s fixed point theorem, we prove the existence of an auxiliary
MFGC equilibrium (defined in Subsection 4.2), which will imply the existence of a
Lagrangian one.

4.1. Auxiliary function. We set B = B̄(M1) × B̄(M2) ⊂ R
n × R

n, where M1

and M2 are given by Lemma 3.4 and Proposition 3.6, respectively.

Lemma 4.1. (i) Let µ ∈ P(Rn × R
n) be such that supp(µ) ⊆ B. There exists a

unique P ∈ R
m such that

(4.1) P = ψ
(∫

B

v[x, P + b(x)⊤q]dµ(x, q)
)

,

where v[·, ·] is the mapping introduced in Lemma 3.2. In the sequel, the unique solution
to (4.1) is denoted by P[µ].

(ii) The mapping µ ∈ P(B) 7→ P[µ] is uniformly continuous.

The mapping P is the auxiliary function which will allow us later to define a new
notion of equilibrium. Let us motivate its introduction. In the above lemma, the
probability measure µ represents the distribution of the agents with respect to their
state and costate at a given time t. At equilibrium, an agent with state x and costate q
utilizes the control v[x, P (t) + b(x)⊤q], by Pontryagin’s principle. Therefore the price
relation (2.3) leads to the fixed point equation P (t) = ψ(

∫

B v[x, P (t)+b(x)
⊤q]dµ(x, q))

introduced above.

Proof of Lemma 4.1. Let us first prove the existence of a solution. Let C > 0
denote a bound of |ψ| (Assumption (H3)-(vi)). Consider the map

χ : P ∈ B̄Rm(C) 7→ ψ
(∫

B

v[x, P + b(x)⊤q]dµ(x, q)
)

∈ B̄Rm(C).
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By Lemma 3.2, the mapping v[·, ·] is continuous. Therefore, by the Schauder fixpoint
theorem, there exists P ∈ B̄Rm(C) such that P = χ(P ), which proves the existence
of a solution to (4.1).

Let us prove next the uniqueness and the uniform continuity. Let µ1 and µ2

be in P(B). Let P1 and P2 denote two solutions of (4.1), for µ = µ1 and µ = µ2,
respectively. For j = 1, 2, consider the maps

vj : (x, q) ∈ B 7→ v[x, Pj + b(x)⊤q].

Note that by construction, Pj = ψ
( ∫

B
vjdµj

)
. Let us first note that there exists a

constant C > 0, independent of µ1, µ2, v1, and v2 such that

‖vj‖L∞(B) ≤ C and vj is C-Lipschitz.

This is a consequence of Assumption (H2)-(ii) and Lemma 3.2. This implies, together
with the monotonicity of ψ (Assumption (H1)-(iii)) that

0 ≤ 〈ψ(
∫

B
v2dµ2)− ψ(

∫

B
v1dµ2),

∫

B
(v2 − v1)dµ2〉

= 〈P2 − P1,
∫

B(v2 − v1)dµ2〉
︸ ︷︷ ︸

=:(a)

+ 〈ψ(
∫

Bv1dµ1)− ψ(
∫

Bv1dµ2),
∫

B(v2 − v1)dµ2〉
︸ ︷︷ ︸

=:(b)

.

Lemma 3.2 yields

(a) ≤

∫

B

〈v2(x, q)− v1(x, q), (P2 + b(x)⊤q)− (P1 + b(x)⊤q)〉dµ2(x, q)

≤ −
1

C

∫

B

|v2(x, q)− v1(x, q)|
2dµ2(x, q).

Let C denote a bound of ‖v1‖L∞(B). Since ψ is continuous, it is uniformly continuous
on B. Therefore, there exists a function ω : [0,∞) → [0,∞) such that for all x and
y in B̄Rm(C), |ψ(y) − ψ(x)| ≤ ω(|y − x|), such that ω(0) = 0 and such that ω is
right-continuous at 0. We have

(b) ≤ ω
(
|
∫

B
v1dµ1 −

∫

B
v1dµ2|

)
∣
∣
∣

∫

B

(v2 − v1)dµ2

∣
∣
∣.

Using further the Lipschitz continuity of v1 and Cauchy-Schwarz inequality, we deduce
that

(b) ≤ ω(Cd1(µ1, µ2))
(∫

B

|v2 − v1|
2dµ2

)1/2

.

Since 0 ≤ (a) + (b), we deduce that

∫

B

|v2 − v1|
2dµ2 ≤

(

Cω(Cd1(µ1, µ2))
)2

=: ω̃(d1(µ1, µ2)).

Finally, we have

|P2 − P1| ≤ ω
(
|
∫

B
v2dµ2 −

∫

B
v1dµ1|

)

≤ ω
(
|
∫

Bv2 − v1dµ2|+ |
∫

Bv1dµ2 −
∫

Bv1dµ1|
)

≤ ω(ω̃(d1(µ1, µ2) + Cd1(µ1, µ2)).

If µ1 = µ2, then P1 = P2. The uniqueness of the solution to (4.1) follows. The
uniform continuity of P also follows, which concludes the proof.
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4.2. Auxiliary MFGC equilibria. In order to analyze the existence of La-
grangian MFGC equilibria, we propose here a new notion of equilibrium, that we call
auxiliary equilibrium. We set

Γ̃ = H1(0, T ;Rn)×H1(0, T ;Rn).

We equip Γ̃ with the supremum norm, defined by max(‖γ‖∞, ‖p‖∞) for a given pair
(γ, p) ∈ Γ̃. We denote it (by extension) ‖(γ, p)‖∞. For any x0 ∈ R

n, we define

Γ̃[x0] =
{
(γ, p) ∈ Γ̃ : γ(0) = x0

}
.

Given t ∈ [0, T ], we consider the mappings ẽt : Γ̃ → R
n and êt : Γ̃ → R

n ×R
n defined

by ẽt(γ, p) = γ(t) and êt(γ, p) = (γ(t), p(t)), for all (γ, p) ∈ Γ̃. We denote

Pm0
(Γ̃) =

{
κ ∈ P1(Γ̃) : ẽ0♯κ = m0

}
.

We consider the following compact subset of Γ̃,

(4.2) Γ̃B := {(γ, p) ∈ Γ̃ : ‖γ‖∞ ≤M1, ‖p‖∞ ≤M2, ‖γ̇‖2 ≤ T
1
2M3, ‖ṗ‖2 ≤ T

1
2M4},

where M1, M2, M3 and M4 were introduced in Proposition 3.4, Proposition 3.6 and
Lemma 3.8.

Given a distribution κ ∈ P1(Γ̃) with supp(κ) ⊂ Γ̃B, we set for t ∈ [0, T ]

m̃κ
t = ẽt♯κ ∈ P(Rn), µκ

t = êt♯κ ∈ P(Rn × R
n).

Lemma 4.2. Let κ ∈ Pm0
(Γ̃) with supp(κ) ⊂ Γ̃B. Then m̃κ

t and µκ
t are 1

2 -Hölder
continuous w.r.t. t ∈ [0, T ].

Proof. Recalling that B = B(M1) ×B(M2) ⊂ R
n × R

n, since supp(κ) ⊂ Γ̃B, we
obtain supp(µκ

t ) ⊂ B and supp(m̃κ
t ) ⊂ B̄(M1) for all t ∈ [0, T ].

For all s, t ∈ [0, T ] we have

d1(µ
κ
t , µ

κ
s ) = sup

ϕ∈Lip1(R
n×Rn)

∫

B

ϕ(x, q)(dµκ
t − dµκ

s )(x, q)

= sup
ϕ∈Lip1(R

n×Rn)

∫

Γ

[ϕ(γ(t), p(t))− ϕ(γ(s), p(s))]dκ(γ, p)

≤

∫

Γ

max{|γ(t)− γ(s)|, |p(t)− p(s)|}dκ(γ, p)

≤ T
1
2 max{M3,M4}|t− s|

1
2 .

The last inequality holds by the assumption supp(κ) ⊂ Γ̃B. Similarly the result
follows for m̃κ

t .

Given κ ∈ P(Γ̃B), by the above lemma, we obtain m̃κ ∈ C([0, T ];P1(R
n)). Setting

P̃ κ ∈ L∞(0, T : Rm) given by

(4.3) P̃ κ(t) = P[µκ
t ],

where P is defined in Lemma 4.1, by Lemma 4.1 and Lemma 4.2, we obtain P̃ κ ∈
C(0, T ;Rm). Defining the functional J̃κ := J [m̃κ, P̃ κ], we can consider the set of
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optimal trajectories and associated adjoint states Γ̃κ[x0] given by

Γ̃κ[x0] =
{

(γ̄, p) ∈ Γ̃[x0] : γ̄ ∈ Γ[m̃κ, P̃ κ, x0] and p is an associated costate with γ̄
}

,

where the meaning of “associated costate” is given in Definition 3.7 and Γ[m̃κ, P̃ κ, x0]
was defined in (2.2).

Definition 4.3. A measure κ ∈ Pm0
(Γ̃) is an auxiliary MFGC equilibrium if

supp(κ) ⊂
⋃

x∈supp(m0)

Γ̃κ[x].

We now establish the relationship between the notion of Lagrangian and auxiliary
MFGC equilibria. Given κ ∈ P(Γ̃B), let V

κ : Γ̃ → U be defined by

V κ(γ, p) = v
[

γ, P̃ κ + b(γ)⊤p
]

,

where the r.h.s. is the Nemytskii operator associated with the auxiliary mapping
introduced in Lemma 4.1. Let π1 : Γ̃ → Γ be such that π1(γ, p) = γ. Then, we define
η[κ] = (π1, V

κ) ♯κ ∈ P1(Γ× U).

Lemma 4.4. Let κ ∈ P(Γ̃) be an auxiliary MFGC equilibrium. Then, η[κ] ∈
P1(Γ× U) is a Lagrangian MFGC equilibrium.

Proof. For the sake of simplicity we note η instead of η[κ]. The main point is to
prove that P̃ κ = P η, where P η was introduced in (2.3). By the definition of η, it is
supported on regular curves, thus

P η(t) = ψ
( ∫

Γ×U
v(t)dη(γ, v)

)

= ψ
( ∫

Γ̃
v
[

γ(t), P̃ κ(t) + b(γ(t))⊤p(t)
]

dκ(γ, p)
)

= ψ
( ∫

Rn×Rn v
[

x, P̃ κ(t) + b(x)⊤q
]

dµκ
t (x, q)

)

= P̃ κ(t).

The last equality follows from (4.1) and (4.3). It is clear that m̃κ = mη, then Jη = J̃κ

(Jη is defined in Section 2.2.1). Since κ is an auxiliary MFGC equilibrium, any
(γ̄, p̄) ∈ supp(κ) defines an optimal pair (γ̄, V κ(γ̄, p̄)) for Jη. We conclude that η is a
Lagrangian MFGC equilibrium.

In Section 4.4 we show the existence of auxiliary MFGC equilibria, applying
Kakutani’s fixed point theorem. The next technical section provides some convergence
results to prove that the assumptions of Kakutani’s theorem hold.

4.3. Convergence properties.

Lemma 4.5. Let (κi)i∈N be a sequence contained in P1(Γ̃) such that supp(κi) ⊂
Γ̃B for all i ∈ N. Assume that (κi)i∈N narrowly converges to κ. Then,

sup
t∈[0,T ]

d1(m̃
κi

t , m̃
κ
t ) → 0 and sup

t∈[0,T ]

d1(µ
κi

t , µ
κ
t ) → 0.

Proof. We start proving that for any κ̄, κ̂ ∈ P1(Γ̃B) we have

(4.4) sup
t∈[0,T ]

d1(m
κ̄
t ,m

κ̂
t ) ≤ d1(κ̄, κ̂), and sup

t∈[0,T ]

d1(µ
κ̄
t , µ

κ̂
t ) ≤ d1(κ̄, κ̂).



18 J.F. BONNANS, J. GIANATTI, AND L. PFEIFFER

We show the result for µκ̄
t and µκ̂

t , and then the result for mκ̄
t and mκ̂

t is straightfor-
ward. By the Kantorovich-Rubinstein formula, for any t ∈ [0, T ] we have

d1(µ
κ̄
t , µ

κ̂
t ) = sup

ϕ∈Lip1(R
n×Rn)

∫

Rn×Rn

ϕ(x, q)d(µκ̄
t − µκ̂

t )(x, q)

= sup
ϕ∈Lip1(R

n×Rn)

∫

Γ̃

ϕ(γ(t), p(t))d(κ̄ − κ̂)(γ, p) ≤ d1(κ̄, κ̂).

In the last inequality we use the fact that given ϕ ∈ Lip1(R
n × R

n), the mapping
(γ, p) 7→ ϕ(γ(t), p(t)) belongs to Lip1(Γ̃), for all t ∈ [0, T ].

Since (κi)i∈N ⊂ P1(Γ̃B) narrowly converges to κ, by [3, Proposition 7.1.5], we
obtain d1(κ

i, κ) → 0. The conclusion follows with (4.4).

Lemma 4.6. Let (κi)i∈N ⊂ Pm0
(Γ̃), κ ∈ Pm0

(Γ̃) be such that supp(κi) ⊂ Γ̃B for
all i and supp(κ) ⊂ Γ̃B. Assume that κi narrowly converges to κ̄. Let (xi)i∈N ⊂ K0

be a sequence such that xi → x̄ and let (γi, pi)i∈N ⊂ Γ̃κi

[xi] (defined in section 4.2)
be a sequence such that (γi, pi) → (γ̄, p̄) uniformly on [0, T ]. Then (γ̄, p̄) ∈ Γ̃κ̄[x̄].

Proof. We have to prove that there exists v̄ ∈ L2(0, T ;Rm) such that (γ̄, v̄) ∈ K[x̄]
and

J̃ κ̄(γ̄, v̄) ≤ J̃ κ̄(γ, v) ∀(γ, v) ∈ K[x̄].

In addition, we have to prove that p̄ is the costate associated with (γ̄, v̄), in the sense
of Definition 3.7.

Since (γi, pi)i∈N ⊂ Γ̃κi

[xi], there exists for all i ∈ N a control vi ∈ L2(0, T ;Rm)

such that (γi, vi) ∈ K[xi] and (γi, vi) is optimal for J̃κi

. By Proposition 3.4, since
(xi)i∈N ⊂ K0, we have ‖γi(t)‖∞ ≤M1 and ‖vi‖2 ≤ C, for all i ∈ N. Therefore, there
exists v̄ ∈ L2(0, T ;Rm) such that, up to a subsequence, vi ⇀ v̄. By Lemma 3.8, the
sequence (γi)i∈N

is a bounded sequence in H1(0, T ;Rn), since γi → γ̄ in C(0, T ;Rn),
it follows that γ̄ ∈ H1 and γ̇i ⇀ ˙̄γ in L2(0, T ;Rn). In addition, by (H2)-(ii), (H3)-(iii),
the uniform convergence of γi to γ̄ and the weak convergence of vi to v̄ we obtain

a(γi) + b(γi)vi ⇀ a(γ̄) + b(γ̄)v̄, in L2(0, T ;Rn),

which implies that ˙̄γ(t) = a(γ̄(t)) + b(γ̄(t))v̄(t), for a.e. t ∈ (0, T ). It is clear that
γ̄(0) = x̄.

Furthermore, for all i ∈ N there exists (λi1, λ
i
2, νi) ∈ R

ng1 ×R
ng2 × L∞(0, T ;Rnc)

such that (3.7), (3.8) and (3.9) hold for (γi, vi, pi) and λ
i
0 = 1. By the proof of Propo-

sition 3.6, we obtain that (λi1, λ
i
2)i∈N is bounded, then there exists a subsequence, still

denoted (λi1, λ
i
2)i∈N, that converges to (λ̄1, λ̄2).

By Lemma 3.2 and (3.8), we deduce

vi(t) = v
[

γi(t), P̃
κi

(t) + b(γi(t))
⊤pi(t)

]

, νi(t) = ν
[

γi(t), P̃
κi

(t) + b(γi(t))
⊤pi(t)

]

.

By our assumptions, Lemma 4.1 and Lemma 4.5, the sequences (γi), (pi) and (P̃ κi

)
are bounded and they converge to γ̄, p̄ and P̃ κ̄, uniformly over [0, T ]. By Lemma 3.2,
the mappings v[·, ·] and ν[·, ·] are Lipschitz continuous over bounded sets, then

(4.5) vi(t) → v̄(t) = v
[

γ̄(t), P̃ κ̄(t) + b(γ̄(t))⊤p̄(t)
]

,

and

νi(t) → ν̄(t), where ν̄(t) = ν
[

γ̄(t), P̃ κ̄(t) + b(γ̄(t))⊤p̄(t)
]

,
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uniformly over [0, T ]. In addition by Lemma 4.5, supt∈[0,T ] d1(m̃
κi

t , m̃
κ̄
t ) → 0. There-

fore by (H2) and (H3), we can pass to the limit in (3.7). By similar arguments we can
pass to the limit in (3.8) and (3.9). Finally we can conclude that (p̄, 1, λ̄1, λ̄2, ν̄) satis-
fies the adjoint equation, the stationary condition and the complementarity condition
for (γ̄, v̄).

Now, we prove the optimality of (γ̄, v̄) for J̃ κ̄. First we show that

(4.6) J̃ κ̄(γ̄, v̄) = lim
i→∞

J̃κi

(γi, vi).

By the uniform convergence of the sequence (γi), Lemma 4.5 and (H2) we have

∫ T

0

f
(

γi(t), m̃
κi

t

)

dt →

∫ T

0

f
(
γ̄(t), m̃κ̄

t

)
dt and g0

(

γi(T ), m̃
κi

T

)

→ g0
(
γ̄(T ), m̃κ̄

T

)
.

Skipping the time arguments, we have

∫ T

0

[

〈P̃ κi

, vi〉 − 〈P̃ κ̄, v̄〉
]

dt =

∫ T

0

[

〈P̃ κi

− P̃ κ̄, vi〉+ 〈P̃ κ̄, vi − v̄〉
]

dt.

By Lemma 4.1, Lemma 4.5, the uniform convergence in (4.5) and the boundedness of

the sequences (P̃ κi

) and (vi) we conclude that
∫ T

0 〈P̃ κi

, vi〉dt →
∫ T

0 〈P̃ κ̄, v̄〉dt. By (H2)-
(i) and the uniform convergence of (γi) and (vi) to γ̄ and v̄, respectively, we deduce

that
∫ T

0
L(γi, vi)dt→

∫ T

0
L(γ̄, v̄)dt. Combining the above estimates, (4.6) follows.

Now, let (γ̂, v̂) ∈ K[x̄] be an optimal solution for J̃ κ̄ and initial condition x̄.
By (H5)(i)-(ii), Robinson’s constraint qualification (see [11, (2.163)]) holds at v̂. By
[11, Theorem 2.87] and (H2) we conclude that there exists a sequence (v̂i)i∈N ⊂
L∞(0, T ;Rm) such that ‖v̂i − v̂‖∞ → 0, and the sequence (γ̂i)i∈N, given by

{
˙̂γi(t) = a(γ̂i(t)) + b(γ̂i(t))v̂i(t), for a.e. t ∈ [0, T ]

γ̂i(0) = xi

is such that (γ̂i, v̂i) ∈ K[xi]. In addition, by our assumptions and Grönwall’s Lemma
we deduce that (γ̂i)i∈N is uniformly bounded in L∞(0, T ;Rn) and ‖γ̂i − γ̂‖∞ → 0.

By the optimality of (γi, pi) ∈ Γ̃κi

[xi], we have

(4.7) J̃κi

(γi, vi) ≤ J̃κi

(γ̂i, v̂i) ∀i ∈ N.

Since ‖v̂i − v̂‖∞ → 0 and ‖γ̂i − γ̂‖∞ → 0, arguing as above we obtain,

(4.8) lim
i→∞

J̃κi

(γ̂i, v̂i) = J̃ κ̄(γ̂, v̂).

By (4.6), (4.7) and (4.8), we deduce

J̃ κ̄(γ̄, v̄) = lim
i→∞

J̃κi

(γi, vi) ≤ lim
i→∞

J̃κi

(γ̂i, v̂i) = J̃ κ̄(γ̂, v̂).

Then, (γ̄, v̄) is optimal, which finally proves that (γ̄, p̄) ∈ Γ̃κ̄[x̄].

4.4. Existence results. In this section, we characterize auxiliary MFGC equi-
libria as fixed points of a set-valued map. Applying Kakutani’s fixed point theorem,
we prove the existence of such equilibria.
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By [3, Theorem 5.3.1] (Disintegration Theorem), for any κ ∈ Pm0
(Γ̃), there exists

a m0-a.e. uniquely determined Borel measurable family {κx}x∈Rn ⊂ P(Γ̃) such that

supp(κx) ⊂ Γ̃[x], m0−a.e. x ∈ R
n,

and for any Borel mapping ϕ : Γ̃ → [0,+∞],

∫

Γ̃

ϕ(γ, p)dκ(γ, p) =

∫

Rn

(∫

Γ̃[x]

ϕ(γ, p)dκx(γ, p)
)

dm0(x).

Following the lines of [12], we define the set-valued map E : Pm0
(Γ̃) ⇒ Pm0

(Γ̃) as

E(κ) = {κ̂ ∈ Pm0
(Γ̃) : supp(κ̂x) ⊂ Γ̃κ[x], m0−a.e. x ∈ R

n}.

It follows that κ is an auxiliary MFGC equilibrium if and only if κ ∈ E(κ).

Theorem 4.7. There exists at least one auxiliary MFGC equilibrium.

Proof. Arguing as in [12, Lemma 3.5], for any κ ∈ Pm0
(Γ̃) the set E(κ) is a

nonempty convex set. By Proposition 3.4, Proposition 3.6 and Lemma 3.8 we have

E(κ) ⊂ Pm0
(Γ̃B), ∀κ ∈ Pm0

(Γ̃),

where Γ̃B was introduced in (4.2). By Lemma 4.6, and [12, Lemma 3.6], we conclude
that the map E : Pm0

(Γ̃) ⇒ Pm0
(Γ̃) has closed graph.

Finally, since the set Γ̃B is a compact subset of Γ̃, we obtain that Pm0
(Γ̃B) is a

nonempty compact convex set. Then, we can apply Kakutani’s fixed point theorem,
to deduce that there exists κ̂ ∈ Pm0

(Γ̃B) such that κ̂ ∈ E(κ̂).

Remark 4.8. Let us comment on the impossibility to employ a similar fixed point
approach directly based on the notion of Lagrangian equilibria (Definition 2.1). Con-
sider a probability distribution η of state-control trajectories. From the definition of
P η, there is no regularity property (with respect to time) to expect, since the controls
in problem (2.1) are taken in L2(0, T ;Rm). Consequently, it is not possible to use
relation (3.19) to derive any regularity property for the optimal controls with respect
to the criterion J [mη, P η] and thus it does not seem possible to construct an appro-
priate compact set of probability distributions of state-control trajectories, on which
some fixed point relation could be defined.

5. Uniqueness. As usual in the MFG theory, by adding some monotonicity
assumptions we can obtain uniqueness results.

Definition 5.1. A function ϕ : Rn × P(Rn) → R is monotone if

∫

Rn

(ϕ(x,m1)− ϕ(x,m2)) d (m1 −m2) (x) ≥ 0, ∀m1, m2 ∈ P(Rn).

It is strictly monotone if it is monotone and

∫

Rn

(ϕ(x,m1)− ϕ(x,m2)) d (m1 −m2) (x) = 0,

if and only if ϕ(x,m1) = ϕ(x,m2) for all x ∈ R
n.

An example of strictly monotone function can be found in [12].
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Theorem 5.2. Assume that f and g0 are strictly monotone and ψ is also strictly
monotone (i.e. for all x and y ∈ R

m with x 6= y, 〈ψ(y) − ψ(x), y − x〉 > 0). Let
η1, η2 ∈ Pm0

(Γ × U) be Lagrangian MFGC equilibria for m0, then P η1 = P η2 and
Jη1 = Jη2 .

Proof. Let us define ui(x) = inf(γ,v)∈K[x] J
ηi(γ, v), i = 1, 2. Let (γ, v) ∈ supp(η1),

then

u1(γ(0)) =

∫ T

0

(L(γ(t), v(t)) + 〈P η1(t), v(t)〉 + f(γ(t),mη1

t )) dt+ g0(γ(T ),m
η1

T ),

u2(γ(0)) ≤

∫ T

0

(L(γ(t), v(t)) + 〈P η2(t), v(t)〉 + f(γ(t),mη2

t )) dt+ g0(γ(T ),m
η2

T ).

Integrating w.r.t. η1 we obtain

∫

Γ×U

(u1(γ(0))− u2(γ(0)))dη1(γ, v) +

∫

Γ×U

∫ T

0

〈P η2(t)− P η1(t), v(t)〉dtdη1(γ, v)

≥

∫

Γ×U

(g0(γ(T ),m
η1

T )− g0(γ(T ),m
η2

T )) dη1(γ, v)

+

∫

Γ×U

∫ T

0

(f(γ(t),mη1

t )− f(γ(t),mη2

t )) dtdη1(γ, v).

By the definition of mη1 we obtain

∫

Rn

(u1(x) − u2(x))dm0(x) +

∫

Γ×U

∫ T

0

〈P η2(t)− P η1(t), v(t)〉dtdη1(γ, v)

≥

∫

Rn

(g0(x,m
η1

T )− g0(x,m
η2

T )) dmη1

T (x)

+

∫ T

0

∫

Rn

(f(x,mη1

t )− f(x,mη2

t )) dmη1

t (x)dt.

Arguing in a similar way for η2, we deduce

∫ T

0

∫

Γ×U

〈P η2(t)− P η1(t), v(t)〉d(η1 − η2)(γ, v)dt

≥

∫

Rn

(g0(x,m
η1

T )− g0(x,m
η2

T )) d (mη1

T −mη2

T ) (x)

+

∫ T

0

∫

Rn

(f(x,mη1

t )− f(x,mη2

t )) d (mη1

t −mη2

t ) (x)dt.(5.1)

By the definition of P ηi we deduce

∫ T

0

∫

Γ×U

〈P η2(t)− P η1(t), v(t)〉d(η1 − η2)(γ, v)dt

=

∫ T

0

〈

ψ
(∫
vdη2(γ, v)

)
− ψ

(∫
vdη1(γ, v)

)
,
∫
vdη1(γ, v)−

∫
vdη2(γ, v)

〉

dt
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and the r.h.s. is non-positive, by Assumption (H1)-(iii). In addition, since f and g0
are monotone, we deduce that the three terms in (5.1) vanish. Since f and g0 are
strictly monotone we obtain for all x ∈ R

n and a.e. t ∈ (0, T ),

f(x,mη1

t ) = f(x,mη2

t ) and g0(x,m
η1

T ) = g0(x,m
η2

T ).

By the strict monotony of ψ we have

∫

vdη1(γ, v) =

∫

vdη2(γ, v), a.e. t ∈ (0, T ),

which in particular implies P η1 = P η2 . The result follows.

Remark 5.3. As noted in [12], if we assume that ψ is strictly monotone, g0 is
monotone and f satisfies

∫

Rn

(f(x,m1)− f(x,m2)) d (m1 −m2) (x) ≤ 0 ⇒ m1 = m2,

then, following the ideas of the above proof, we obtain P η1 = P η2 and mη1 = mη2 .

6. Conclusion. We have proved the existence of a Lagrangian equilibrium for
an MFG of controls with final state and mixed state-control constraints, and a class
of nonlinear dynamics. Using auxiliary mappings and a priori estimates on optimal
state-costate trajectories, we have reformulated the problem as a fixed point problem
on a compact set of probability measures on state-costate trajectories. As explained in
Remark 4.8, this reformulation was necessary, in the absence of smoothing properties
of the price interaction.

A future direction of research may concern the characterization of the equilibrium
with a system of coupled partial differential equations (HJB equation and continuity
equation), as it is done for example in [14]. In this reference, a feedback control is
constructed thanks to the differentiability of the value function, itself obtained with
the strict convexity of the Hamiltonian. This last property is however lost (in general)
in the presence of mixed state-control constraints. Another difficulty would arise from
the treatment of final-state constraints. The recent work [6] may contain useful tools
in that direction; this article deals with optimal control problems with final-state
constraints: it provides a characterization of the value function as well as sensitivity
relation.

In some future work, one could also address the extension of our aggregative MFG
model to the case of pure state constraints, as those considered in [12]. As we already
pointed out, our analysis relies in a crucial way on some a priori estimates on the
costate, whose evolution is not impacted by the price variable. Proving the regularity
of the costate, in the presence of pure state constraints and a merely measurable price
function, seems however to be a great challenge.

Appendix A. Proof of optimality conditions.

We provide in this section a proof of the optimality conditions stated in Propo-
sition 3.5. An important difficulty is the fact that optimal controls are not a priori
known to be bounded (we are not able to prove the boundedness of optimal controls
without having the optimality conditions at hand). It is therefore not possible to for-
mulate the optimal control problem as an abstract problem satisfying a qualification
condition in L∞ and to derive easily optimality conditions, as it is done in [10] for
example. It turns out that the optimal control problem can be naturally formulated
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as an optimal control problem for which the dynamic constraint takes the form of a
differential inclusion. This enables us to use the associated optimality conditions, re-
ferred to as extended Euler-Lagrange conditions in the literature. More precisely, our
analysis is based on [33, Theorem 7.5.1], which covers the case of unbounded controls
and requires few regularity assumptions.

We first introduce two definitions of cones, used for the expression of the opti-
mality conditions for problems with differential inclusions. Given a closed subset K
of Rℓ and x ∈ K, we call proximal normal cone of K at x the set NP

K(x) defined by

NP
K(x) =

{
p ∈ R

ℓ : ∃C > 0, ∀y ∈ K, 〈p, y − x〉 ≤ C|y − x|2
}
.

That is, p ∈ NP
K(x) if and only if, for some C > 0,

(A.1) x ∈ argmin {〈−p, y〉+ C|y − x|2 : y ∈ K}.

The limiting normal cone NK(x) is defined by

NK(x) =

{

p ∈ R
ℓ
∣
∣
∣∃(xk, pk)k∈N such that:

(xk, pk) → (x, p), as k → ∞

xk ∈ K, pk ∈ NP
K(xk) ∀k ∈ N

}

.

Proof of Proposition 3.5. Step 1: reformulation of the optimal control problem.
Let us fix a solution (γ̄, v̄) ∈ H1(0, T ;Rn)×L2(0, T ;Rm) to (2.1). In order to alleviate
the notation, we first define

L̃(t, x, v) = L(x, v) + 〈P (t), v〉 + f(x,m(t)),

for all (x, v) ∈ R
n+m and for a.e. t ∈ (0, T ).

We work with an augmented state variable y = (y(1), y(2), y(3)) ∈ R
n+m+1.

We consider a set-valued map F : [0, T ] × R
n+m+1

⇒ R
n+m+1 defined as F (t, y) =

{
ξ(t, y(1), v, z) : (v, z) ∈ R

m × R, c(y(1), v) ≤ 0, z ≥ 0
}
, where for (x, v, z) ∈ R

n+m+1

ξ(1)(t, x, v, z) = a(x) + b(x)v, ξ(2)(t, x, v, z) = v, ξ(3)(t, x, v, z) = L̃(t, x, v) + z.

The component ξ(1) coincides with the dynamics of the original state variable. The
second component has a technical purpose, it allows in particular to prove easily
that F (t, y) is closed (which would be delicate otherwise, since the controls are not
necessarily bounded). The third component allows to put the problem in Mayer
form. The initial condition associated with the new state variable is defined by ȳ0 =
(x0, 0, 0) ∈ R

n+m+1. Let K ⊆ R
2(n+m+1) be given by

K =
{
(yi, yf ) ∈ R

2(n+m+1) : yi = ȳ0, g1
(
y
(1)
f

)
= 0, g2

(
y
(1)
f

)
≤ 0

}
.

We define Φ: R2(n+m+1) → R by Φ(yi, yf ) = g0(y
(1)
f ) + y

(3)
f . The optimal control

problem (2.1) can finally be reformulated as follows:
(A.2)

inf
y∈H1(0,T ;Rn+m+1)

Φ(y(0), y(T )), subject to:

{
ẏ(t) ∈ F (t, y(t)), for a.e. t ∈ (0, T ),
(y(0), y(T )) ∈ K.

More precisely, the trajectory ȳ, defined by







ȳ(1)(t) = γ̄(t)

ȳ(2)(t) =
∫ t

0 v̄(s)ds

ȳ(3)(t) =
∫ t

0
L̃(s, γ̄(s), v̄(s))ds
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is a solution to (A.2). Denoting ξ̄ = ˙̄y, we note that ξ̄(t) = ξ(t, γ̄(t), v̄(t), 0).
Step 2: verification of the technical conditions of [33, Theorem 7.5.1]. It is easily

verified that for a.e. t ∈ (0, T ), F (t, y) is non-empty and convex, as a consequence
of Assumptions (H1)-(i), (H1)-(ii), and (H4)-(i). It is also easily verified that F is
measurable and has a closed graph. It remains to show that there exist η > 0 and
k ∈ L1(0, T ) such that

(A.3) F (t, ỹ) ∩
(
˙̄y(t) + ηk(t)B̄(1)

)
⊆ F (t, y) + k(t)|ỹ − y|B̄(1),

for a.e. t ∈ (0, T ) and for all y and ỹ such that |y − ȳ(t)| ≤ η and |ỹ − ȳ(t)| ≤ η.
Let t ∈ (0, T ), let y and ỹ be such that |y − ȳ| ≤ δ/2 and |ỹ − ȳ| ≤ δ/2, where
δ is given by Lemma 3.1, with R = ‖γ̄‖L∞(0,T ;Rn). Let k̄(t) = 1 + |v̄(t)|2. Let

ξ̃ ∈ F (t, ỹ)∩
(
˙̄y(t)+ k̄(t)B̄(1)

)
. Let ṽ ∈ R

m and z̃ ∈ R be such that ξ̃ = ξ(t, ỹ(1), ṽ, z̃),

c(ỹ(1), ṽ) ≤ 0 and z̃ ≥ 0. Since |ξ̃ − ξ̄(t)| ≤ k̄(t), we deduce that

|ξ̃(2) − ξ̄(2)(t)| = |ṽ − v̄(t)| ≤ k̄(t).

Therefore

|ṽ| ≤ |ṽ − v̄(t)|+ |v̄(t)| ≤ k̄(t) +
1

2
+

1

2
|v̄(t)|2 ≤

3

2
k̄(t).

We also have |y(1) − ỹ(1)| ≤ |y − ȳ(t)| + |ỹ − ȳ(t)| ≤ δ. Thus by Lemma 3.1, there
exists v ∈ R

m such that c(y(1), v) ≤ 0 and |v − ṽ| ≤ C|y(1) − ỹ(1)| (note that all
constants C involved for the verification of (A.3) are independent of (t, ỹ, ṽ, y, v)).
Let ξ = ξ(t, y(1), v, z̃). We have ξ ∈ F (t, y). It remains to bound |ξ− ξ̃|. We first have

|ξ(1) − ξ̃(1)| ≤ |a(y(1))− a(ỹ(1))|+ |b(y(1))| · |v − ṽ|+ |b(y(1))− b(ỹ(1))| · |ṽ|

≤ C
(
|y − ỹ|+ |v − ṽ|

)
(1 + |v̄(t)|2)

≤ C|y − ỹ|k̄(t),

by (H2)-(ii). The same estimate can be established for |ξ(3) − ξ̃(3)| (with the help of
Assumption (H3)-(i)) and for |ξ(2) − ξ̃(2)|, thus

(A.4) |ξ − ξ̃| ≤ C|y − ỹ|k̄(t).

The inclusion (A.3) follows, taking k(t) = Ck̄(t) and η = min
(
δ/2, 1/C

)
, where C is

the constant appearing in the right-hand side of (A.4).
Step 3: abstract optimality conditions and interpretation. Applying [33, Theorem

7.5.1], we obtain the existence of p̄ ∈W 1,1(0, T ;Rn+m+1) and λ0 ≥ 0 such that:
(i) (p̄, λ0) 6= (0, 0),
(ii) − ˙̄p(t) ∈ conv

{
q : (q,−p̄(t)) ∈ NGr(F (t,·))(ȳ(t), ξ̄(t))

}
,

(iii) (−p̄(0), p̄(T )) ∈ λ0∇Φ(ȳ(0), ȳ(T )) +NK(ȳ(0), ȳ(T )),
where Gr(F (t, ·)) = {(y, ξ) : ξ ∈ F (t, y)}. We let the reader verify that the condition
(iii) (together with Assumptions (H5)-(i) and (H5)-(ii)) implies the existence of λ1 ∈
R

ng1 and λ2 ∈ R
ng2 , λ2 ≥ 0, such that

p̄(1)(T )⊤ = λ0Dg0(ȳ
(1)(T )) + λ⊤1 Dg1(ȳ

(1)(T )) + λ⊤2 Dg2(ȳ
(1)(T )),

p̄(2)(T )⊤ = 0,
p̄(3)(T )⊤ = λ0,

and such that 〈g2(ȳ(1)(T )), λ2〉 = 0. For the interpretation of the adjoint equation
(condition (ii)), we need to examine the limiting normal cone of the graph of F (t, ·).
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Let y ∈ R
n+m+1, let ξ ∈ F (t, y), and let (q,−p) ∈ NGr(F (t,·))(y, ξ). Let yk → y,

ξk = ξ(t, y
(1)
k , vk, zk) → ξ, ξk ∈ F (t, yk), (qk, pk) → (q, p) be such that (qk,−pk) ∈

NP
Gr(F (t,·))(yk, ξk). By definition of the proximal normal cone, see (A.1), (yk, ξk) is for

some C > 0 (depending on k) solution of the minimization problem

Min
(y,ξ)∈Gr(F (t,·))

3∑

i=1

(

〈−q
(i)
k , y(i)〉+ 〈p

(i)
k , ξ(i)〉

)

+ C(|y − yk|
2 + |ξ − ξk|

2).

In view of the expression of the multimapping F , this holds if and only if, for some
(vk, zk) ∈ R

m × R, (yk, vk, zk) ∈ R
n+m+1 × R

m × R is solution of

Min
(y,v,z)

∑3
i=1〈−q

(i)
k , y(i)〉+ 〈p

(1)
k , a(y(1)) + b(y(1))v〉

+〈p
(2)
k , v〉+ 〈p

(3)
k , L̃(t, y(1), v) + z〉+ C(|y − yk|

2 + |ξ − ξk|
2),

s.t. c(y(1), v) ≤ 0 and z ≥ 0.

Since this problem is qualified, we obtain the existence of νk ∈ R
nc , νk ≥ 0, such that

the following stationarity and complementarity conditions hold:

• Stationarity with respect to z: p
(3)
k ≥ 0.

• Stationarity with respect to v:

(p
(1)
k )⊤b(y

(1)
k ) + (p

(2)
k )⊤ + p

(3)
k DvL̃(y

(1)
k , vk) + ν⊤k Dvc(y

(1)
k , vk) = 0.(A.5)

• Stationarity with respect to y(1):

−(q
(1)
k )⊤ + (p

(1)
k )⊤

(

Da(y
(1)
k ) +

∑m
i=1Db(y

(1)
k )vk,i

)

+p
(3)
k DxL̃(y

(1)
k , vk) + ν⊤k Dxc(y

(1)
k , vk) = 0.

• Stationarity with respect to y(2): q
(2)
k = 0.

• Stationarity with respect to y(3): q
(3)
k = 0.

• Complementarity: 〈c(y
(1)
k , vk), νk〉 = 0.

The inward pointing condition, Assumption (H5)-(iv), yields a uniform bound
on νk (with respect to k). This allows to pass to the limit in the above relations,

using the continuity assumptions on L̃, a, b, and c (note that ξ
(2)
k → ξ(2) implies that

vk → v). We deduce that ˙̄p(2) = 0 and ˙̄p(3) = 0, thus p̄(2)(t) = 0 and p̄(3)(t) = λ0.
Since p̄ ∈ W 1,1(0, T ;Rn+m+1), it belongs to L∞(0, T ;Rn+m+1). Passing to the limit
in (A.5) we obtain

(A.6) λ0DvL̃(ȳ
(1)(t), v̄(t)) + (p̄(1)(t))⊤b(ȳ(1)(t)) + ν̄(t)⊤Dvc(ȳ

(1)(t), v̄(t)) = 0.

If λ0 6= 0, ν̄(t) = ν
[
ȳ(1)(t), λ0P (t) + (p̄(1)(t))⊤b(ȳ(1)(t))

]
, by Lemma 3.2. Since ν[·, ·]

is Lipschitz continuous on bounded sets, we obtain ν̄ ∈ L∞(0, T ;Rnc). Analogously,
v̄ ∈ L∞(0, T ;Rm), therefore we deduce that p̄ ∈W 1,∞(0, T ;Rn+m+1).

If λ0 = 0, we denote by ν̄I(t) the components of ν̄(t) whose indices belong to the
set I(ȳ(1)(t), v̄(t)). Skipping the time arguments, from (A.6) we deduce

ν̄I = −
[

DvcI(ȳ
(1), v̄)DvcI(ȳ

(1), v̄)⊤
]−1

DvcI(ȳ
(1), v̄)b(ȳ(1))⊤p̄(1).

The matrix
[
DvcI(ȳ

(1), v̄)DvcI(ȳ
(1), v̄)⊤

]
is uniformly invertible by (H5)-(iii). Since

ȳ(1), p̄(1) ∈ L∞(0, T ;Rn), by (H2)-(i), (H3)-(ii) and (H3)-(iii) we deduce that ν̄ ∈
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L∞(0, T ;Rnc). In this case, we only have v̄ ∈ L2(0, T ;Rm), so we obtain p̄ ∈
W 1,2(0, T ;Rn+m+1).

Appendix B. Application to a gas storage problem.

B.1. Setting. Consider the case when the scalar state γ(t) represents a scaled
energy storage, with value in [0, 1] and integrator dynamics

γ̇(t) = v(t).

Therefore a(x) = 0 and b(x) = 1. In addition we have limitations on the efficiency of
pumping depending on the storage level, namely

ϕ1(γ(t)) ≤ v(t) ≤ ϕ2(γ(t)),

with ϕ1 and ϕ2 decreasing and of class C1 : [0, 1] → R, with negative (resp. positive)
values except for ϕ1(0) = ϕ2(1) = 0, and for some α1 > 0 and α2 > 0:

(B.1) − α1x ≤ ϕ1(x); ϕ2(x) ≤ α2(1− x).

In particular we have the uniform bound

(B.2) vm := ϕ1(1) ≤ v(t) ≤ ϕ2(0) =: vM ,

For example, we could take ϕ1(x) = −α1x and ϕ2(x) = α2(1 − x). Since these
constraints imply that the state remains between 0 and 1 (assuming of course that
γ(0) ∈ [0, 1]), we can discard the pure state constraint γ(t) ∈ [0, 1].

In what follows we will assume that the support of m0 is a compact subset of
(0, 1). It follows that for some εX > 0, any trajectory (γ, v) satisfying the mixed state
and control constraints is such that γ(t) ∈ [εX , 1− εX ], for all t ∈ [0, T ]. So point 3 of
Remark 2.3 applies with X = [εX , 1− εX ], taking δ ∈ (0, εX) in the definition of X ′.

The two mixed constraints are expressed in the format of this paper as

(B.3) c1(x, v) = ϕ1(x) − v; c2(x, v) = v − ϕ2(x).

They cannot be active simultaneously, since ϕ1 and ϕ2 have opposite sign, and do
not have zero value simultaneously. It follows that

δ := min
x∈[0,1]

[ϕ2(x) − ϕ1(x))]

is positive. Consequently any (x, v) such that c(x, v) ≤ 0 satisfies

(B.4) c1(x, v) + c2(x, v) = ϕ1(x) − ϕ2(x) ≤ −δ.

A classical constraint is to have a minimal storage at the end of the period, say
γ(T ) ≥ 1

2 , corresponding to

(B.5) g2(x) :=
1
2 − x.

There is no equality constraint on the final state. Also, f(x,m) = 0 and g0(x,m) =
−πx, where π can be interpreted as a final price. For ψ we can take the identity,
which is not bounded but, since is applied to a set of bounded controls v, we can
redefine it as a bounded, continuous monotone operator. We can also take for instance
L(x, v) = v2/2.
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B.2. Checking hypotheses. The non obvious hypotheses are (H5)-(ii) and
(H5)-(iv). In view of Remark 2.3, it is enough to check this latter assumption for
x ∈ X ′. Assume that c1(x, v) ≤ c2(x, v), i.e. the second constraint is “more active”
than the first one. Taking w = −δ/4, by (B.4) we have c1(x, v) ≤ −δ/2, so that

(B.6) c1(x, v) +Dvc1(x, v)w ≤ −δ/4.

Also,

(B.7) c2(x, v) +Dvc2(x, v)w = c2(x, v) − δ/4 ≤ −δ/4.

If c2(x, v) ≤ c1(x, v), taking w = δ/4 we obtain similar estimates. Hypothesis (H5)-
(iv) follows.

We next discuss (H5)-(ii). Remember that we ignore the first condition since
there is no equality constraint for the final state. Given ε = (ε1, ε2) with ε1 ≥ 0 and
ε2 ≥ 0, set

(B.8) κ1(t) := ϕ1(γ(t))− v(t) + ε1; κ2(t) := −ε1 + ϕ2(γ(t))− v(t).

In our setting, the third condition of (H5)-(ii), when ε1 := 1/C, can be expressed as

(B.9) κ1(t) +Dϕ1(γ(t))y(t) ≤ w(t) ≤ κ2(t) +Dϕ2(γ(t))y(t),

with y(t) =
∫ t

0 w(s)ds. Observe that

(B.10) κ1(t)− ε1 ≤ 0 ≤ κ2(t) + ε1.

Let

(B.11) F (t, y) := min(κ2(t) +Dϕ2(γ(t))y, ε2).

Since F (t, y) is a Lipschitz function of y, by the Cauchy-Lipschitz theorem, the ODE

(B.12) ẏ(t) = F (t, y(t)), t ∈ (0, T ); y(0) = 0

has a unique solution yε(t), and we denote wε(t) := ẏε(t) = F (t, yε(t)). By the
definition of F , (yε(t), wε(t)) satisfies the second linearized mixed constraint.

Lemma B.1. We have that:
(i) If ε = 0, then y0(t) = 0 for all t ∈ [0, T ].
(ii) If ε1 = 0 and ε2 > 0, then yε(t) ≥ 0 for all t, and is always equal to 0 iff the
second mixed constraint is always active.
(iii) If ε1 = 0 and ε2 > 0, Let t0 := inf{t ∈ [0, T ]; y(t) > 0}. If the second mixed
constraint is not always active, then t0 < T , and y(t) > 0, for all t ∈ (t0, T ]. In
particular y(T ) > 0.
(iv) If ε1 = 0 and ε2 > 0, then the first mixed linearized constraint is never active.
(v) Assume that the second mixed constraint is not always active. Given ε2 > 0, small
enough, if ε1 > 1 is small enough, then (yε, wε) satisfies (H5)-(ii).

Proof. (i) Let z(t) denote the zero function on [0, T ]. Then, in view of (B.10):

(B.13) F (t, z(t))) = min(κ2(t), ε2) = min(κ2(t), 0) = 0.

This establishes point (i).
(ii) Since F is a nondecreasing function of ε2, and y(t) is one dimensional, we deduce
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that yε(t) is a nondecreasing function of ε2, and is therefore nonnegative (since y0 = 0).
We have yε = z iff

(B.14) 0 = F (t, 0) = min(κ2(t), ε2), for all t ∈ [0, T ],

that is, iff the upper bound is always active.
(iii) Observe that since κ2(t) ≥ 0, and Dϕ2(γ(t))yε(t) ≤ 0:

(B.15) ẏ(t) = F (t, y(t)) ≥ min(Dϕ2(γ(t))yε(t), ε2) = Dϕ2(γ(t))yε(t) ≥ −Cyε(t).

Let yε(t1) > 0. It follows that for t ∈ [t1, T ], yε(t) ≥ e−C(t−t1)yε(t1). Point (iii)
follows.
(iv) Since F is a Lipschitz function of (y, ε), there exists C > 0 such that, for all
ε ∈ R

2
+:

(B.16) max
t∈[0,T ]

(|yε(t)|+ |Dϕ1(γ(t))yε(t)|+ |Dϕ2(γ(t))yε(t)|) ≤ C0|ε|.

Since yε(t) ≥ 0 and Dϕ1(γ(t)) ≤ 0, we have

(B.17) κ1(t) +Dϕ1(γ(t))yε(t) ≤ κ1(t) ≤ ε1.

We distinguish two cases.
(a) If wε(t) = ε2 the result holds, whenever ε1 < ε2.
(b) If wε(t) = κ2(t) +Dϕ2(γ(t))yε(t), since κ2(t)− κ1(t) ≥ δ − 2ε1, we get

(B.18) w(t) ≥ κ1(t) + δ − 2ε1 − C0|ε|.

So, the result holds provided that

(B.19) 2ε1 + C0|ε| ≤ δ.

(v) Fix ε2 > 0 small enough. For ε1 > 0 small enough, we have by a continuity
argument that the first linearized mixed constraint holds (as well as the second one
by the definition of F (t, y)), and that y(T ) > 0. The conclusion follows.
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