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Abstract

The objective of electrical impedance tomography (EIT) is to recon-
struct the internal conductivity of a physical body based on current and
voltage measurements at the boundary of the body. In many medi-
cal applications the exact shape of the domain boundary and contact
impedances are not available. This is problematic as even small errors
in the boundary shape of the computation domain or in the contact
impedance values can produce large artifacts in the reconstructed images
which results in a loss of relevant information. A method is proposed that
simultaneously reconstructs the conductivity, the contact impedances and
the boundary shape from EIT data. The approach consists of three steps:
first, the unknown contact impedances and an anisotropic conductivity
reproducing the measured EIT data in a model domain are computed.
Second, using isothermal coordinates, a deformation is constructed that
makes the conductivity isotropic. The final step minimizes the error of
true and reconstructed known geometric properties (like the electrode
lengths) using conformal deformations. The feasibility of the method is
illustrated with experimental EIT data, with robust and accurate recon-
structions of both conductivity and boundary shape.

1 Introduction

In electrical impedance tomography (EIT) a set of electrodes is attached on the
boundary of a physical body. Electric currents are injected to the body, and the
resulting voltages on the electrodes are measured. The goal is to reconstruct
the conductivity inside the body from the boundary data. Medical applications
of EIT include monitoring heart and lung function [18, 19], detection of breast
cancer [7], imaging of brain function and stroke detection [2, 4, 9].
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Most EIT image reconstruction methods rely on an accurate model of the
boundary of the body, which is not always available in medical applications. For
example, consider using EIT for monitoring the lung function of an unconscious
patient in intensive care [18, 19]. A model for the boundary of the patient’s
chest could in principle be obtained using CT or MRI. However, transporting
a critically ill patient to a scanner may not be practical. Further, chest shape
changes with breathing and depends on patient positioning. This is problematic
since even small errors in the domain model can cause large artifacts in the
reconstructed conductivity images [1, 12, 30].

Another common feature in traditional EIT is to treat the electrode con-
tact impedances as known parameters. They model the voltage drops caused
by electrochemical effects at the electrode-skin interface, and depend on local
skin conditions and on temporal variations arising from perspiration and partial
drying of the electrode gel. So the contact impedances are known only approxi-
mately in practice, which may lead to severe errors in the reconstructed images
[13, 26]. So-called four point measurements, where separate electrodes are used
for current injection and voltage measurements, offer some help [14]. However,
a better option is to consider the contact impedances as unknown parameters
in the EIT problem [16].

One way to deal with imprecise boundary models is to use difference imaging,
aiming to reconstruct only the change in the conductivity between successive
measurements [6, 34, 28]. Errors caused by (hopefully invariant) model inac-
curacies cancel out to some extent when subtracting the two measurements.
However, in this paper we focus on absolute imaging with the goal of recon-
structing actual conductivity values.

Let us review previous attempts to compensate for the domain modeling
errors in absolute EIT. In [22] it was shown that in an inaccurately modeled
domain there is a unique minimally anisotropic conductivity matching the EIT
data. The square root of the determinant of that conductivity gives a deformed
image of the original conductivity defined in the true domain. This methodology
was extended to include the estimation of unknown contact impedances in [23].
On the other hand, in [25] the original method introduced in [22] was extended
by using isothermal coordinates to transform the reconstructed anisotropic con-
ductivity to an isotropic conductivity close to the original one. The idea of using
isothermal coordinates for reducing anisotropic EIT to an isotropic model was
introduced by Sylvester in [37].

The Bayesian approximation error method was applied to EIT with an im-
perfectly known boundary in [30, 31]. A different approach was considered
in [15] where the dependence of the electrode measurements on model prop-
erties were parametrized via polynomial collocation. In [10, 11], the authors
designed a reconstruction algorithm using the complete electrode model [35]
and the Fréchet derivative of the current-to-voltage map with respect to the
electrode locations and boundary shape. A similar approach was considered
in [9] but for the problem of head imaging by EIT. Differently from [10, 11], to
cope with the instability the so-called smoothened complete electrode model [17]
was considered as the forward model.

In this paper we extend the methods in [22, 23, 25] and introduce a way
to simultaneously reconstruct the conductivity, the contact impedance, and the
boundary shape in absolute EIT imaging in 2D. The reconstructed conductivity
coincides with the original conductivity up to a conformal deformation. Briefly,
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Figure 1: The different steps of the method and the corresponding maps.

the new method consists of the following steps (see Figure 1):

(i) Choose a model domain Ωm that approximates the true domain Ω. For
instance, Ωm could be a disc having approximately the same perimeter
than Ω.

(ii) Estimate the unknown contact impedances and compute the conductivity
γa, the least anisotropic of all conductivities producing the same voltage
data in the model domain Ωm that was measured on ∂Ω. Mild assumptions
ensure that γa is unique (see section 2.1).

(iii) Transform the reconstructed conductivity γa to an isotropic conductivity
γi. This is done by solving a Beltrami equation whose coefficient is re-
lated to the conductivity γa. If we denote by Fi the solution of Beltrami
equation, then the map x 7→ Fi(x) can be interpreted as the isothermal
coordinates in which the conductivity γa can be represented in isotropic
form.

(iv) Apply a conformal map M to Ωi = Fi(Ωm) such that Ωc := M(Ωi) and the
conductivity γc := γi ◦M−1 are close to known properties of Ω and of the
true conductivity defined in it, respectively. Moreover, the reconstructed
isotropic conductivity γc defined in Ωc is a conformally deformed image of
the true isotropic conductivity defined in Ω. This last step is essential for
it guarantees that the reconstruction matches optimally with the original
domain at the electrodes.

The rest of the paper is organized as follows. In section 2 we present the the-
ory behind the process of shape-deforming reconstruction. Section 3 introduces
the complete electrode model (CEM) and gives the conditions of applicability
of the proposed method in the case of the CEM. The numerical implementation
of the process of shape-deforming reconstruction is given in section 4. Then, in
section 5 we present several results based on experimental EIT data that was
measured from a phantom tank. Finally, the conclusions are given in section 6.
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2 Shape-deforming reconstruction: theory

The measurement domain is represented by a bounded plane domain Ω having
a smooth enough boundary. The electric potential in Ω is denoted by u. More
precisely, it is the unique H1(Ω)–solution of the conductivity problem

∇ · γ∇u = 0 in Ω (1)

zν · γ∇u+ u = h on ∂Ω, (2)

where h is the Robin-boundary value, ν is the unit normal vector at the bound-
ary ∂Ω and z is a function that models the contact impedance on ∂Ω. The
voltage to current measurements are modeled by the Robin-to-Neumann map
R = Rz,γ given by

R : h 7→ ν · γ∇u|∂Ω, (3)

which maps the potential distribution at the boundary ∂Ω to the current through
the boundary. The contact impedance function z is assumed continuously dif-
ferentiable and non-negative: z ≥ c > 0.

The use of the (incorrect) model domain Ωm instead of the true measurement
domain Ω can be interpreted mathematically as a deformation of the domain.
This is a way to model our lack of information about the true shape of the object
under imaging. Consider then what happens to the conductivity equation when
Ω is deformed to Ω̃. Let F : Ω→ Ω̃ be a sufficiently smooth diffeomorphism and
denote f = F |∂Ω. If u is a solution of the Robin boundary value problem (1)-(2),

then ũ = u ◦ F−1 and h̃ = h ◦ f−1 satisfy the conductivity equation

∇ · γ̃∇ũ = 0 in Ω̃, (4)

z̃ν · γ̃∇ũ+ ũ = h̃ on ∂Ω̃, (5)

where z̃(x) = z(f−1(x))‖τ · ∇(f−1)(x)‖, τ is the unit tangent vector of ∂Ω̃ and
γ̃ the conductivity given by

γ̃(x) := F∗γ(x) =
F
′
(y)γ(y)(F

′
(y)T )

|detF ′(y)|

∣∣∣∣∣
y=F−1(x)

, (6)

where F
′

= DF is the Jacobian matrix of the map F . We say that γ̃ is the
push-forward of γ by the diffeomorphism F . Observe that equation (6) implies
that even if the conductivity γ in the true domain Ω is isotropic (scalar valued),

the transformed conductivity γ̃ in the deformed domain Ω̃ can be anisotropic
(matrix valued).

Consider next what happens to the boundary measurements in the deformed
domain Ω̃. If mapping R̃ corresponds to conductivity γ̃ and contact impedance
z̃ in Ω̃, then the boundary measurements are transformed by

(R̃h)(x) = (R(h ◦ f))(y)|y=f−1(x). (7)

In the proposed method, we consider the problem of estimating the (isotropic)
conductivity γ in Ω from measurements of the Robin-to-Neumann map at ∂Ω.
We assume that the shape of the true boundary ∂Ω, contact impedance z and
map Rz,γ are not known. Let Ωm, called the model domain, be our model for
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the domain Ω and let fm : ∂Ω → ∂Ωm (m for model) be a diffeomorphism
which models the inexact knowledge of the boundary. The data for the solution
of the inverse problem consist of the boundary of the model domain ∂Ωm and
the Robin-to-Neumann Rm given in (7) with f = fm.

If we consider a traditional approach for solving the EIT inverse problem,
then one tries to find an isotropic conductivity in Ωm that minimizes

‖Rm −Rz,γ‖2 + αW (z, γ), (8)

where z is the function that models the contact impedance, γ is the isotropic
conductivity inside the model domain Ωm, the functionalW is used for providing
appropriate regularization, and α > 0 is the regularization parameter.

Due to the deformation done when going from the true domain Ω to the
model domain Ωm, the measurement Rm does not in general correspond to any
isotropic conductivity in Ωm, implying that minimization of (8) will lead to
an erroneous reconstruction. For demonstrations of the domain model related
reconstruction artifacts with practical EIT measurements, see e.g. [12, 26, 30].

To overcome the reconstruction errors due to the unknown domain shape, we
seek to reconstruct a conductivity that is close to the original conductivity up
to a conformal deformation. The first step of the proposed approach is to find in
Ωm contact impedances and a minimally anisotropic conductivity that explain
the measurement. We remark that the idea of using an anisotropic conductivity
to recover an isotropic conductivity was first mentioned in [21]. However, the
approach suggested there is different from the one considered here.

2.1 Recovering contact impedances and minimally anisotropic
conductivity

Definition 1. Let [γjk(x)]2j,k=1 be a symmetric positive definite matrix-valued
conductivity with entries in L∞(Ω) and bounded from below almost everywhere
by a positive constant. Denote its eigenvalues by λ1(x) and λ2(x), λ1(x) ≥
λ2(x). The anisotropy of γ at x is defined by

A(γ, x) =

√
λ(x)− 1√
λ(x) + 1

, λ(x) =
λ1(x)

λ2(x)
,

and the maximal anisotropy of γ is then defined by

A(γ) = sup
x∈Ω

A(γ, x).

The lower positive bound on the entries γjk implies that always A(γ) < 1.

If γ is such that the anisotropy A(γ, x) is constant (with respect x), then γ is
a uniformly anisotropic conductivity. A useful feature of uniformly anisotropic
conductivities is that they can be expressed as

γ(x) = η(x)Tθ(x)

(
λ1/2 0

0 λ−1/2

)
T−1
θ (x), (9)

where λ ≥ 1 is a constant, η(x) ∈ R+ is a real-valued function and Tθ(x) is a
rotation matrix

Tθ =

(
cos θ sin θ
− sin θ cos θ

)
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where the angle θ(x) defines the direction of the anisotropy. In what follows,
conductivities of the form (9) are denoted by γ = γλ,η,θ.

Based on a classical result of Strebel on the existence of the extremal qua-
siconformal map (see [8, 36]), it was shown in [23] that among all anisotropic
conductivities defined in Ωm and that match the observed Robin-to-Neumann
map Rm, there is a unique conductivity γa that has the minimal anisotropy
A(γa) and that γa is of the form (9). Indeed, consider all pairs (z̃, γ̃) of a con-
tact impedance z̃ :∂Ωm → R and an anisotropic conductivity γ̃ in Ωm for which
the map Rz̃,γ̃ matches the map Rm and denote by S the class of these pairs,
that is

S = {(z̃, γ̃) : γ̃ ∈ L∞(Ωm,R2×2), γ̃ ≥ c1I, z̃ : ∂Ωm → R is C1-smooth, z̃ ≥ c2,
and Rz̃,γ̃ = Rm, where c1, c2 > 0}.

(10)

The following result is proved in [23].

Proposition 1. Let Ω be a bounded, simply connected C2-domain. Let γ ∈
C2(Ω) be an isotropic conductivity, z : ∂Ω → R be the C1-smooth contact
impedance function and Rz,γ its Robin-to-Neumann map. Assume that Ωm
is a model domain satisfying the same regularity assumptions as Ω, and let
fm : ∂Ω → ∂Ωm be a C2-smooth diffeomorphism. Assume that we are given
∂Ωm and Rm defined by (7) with f = fm. Then the minimization problem in
Ωm,

min
(z̃,γ̃)∈S

A(γ̃) (11)

has a unique minimizer (z̃0, γ̃0). Moreover, let λ ≥ 1 be such that A(γ̃0) =
(λ1/2 − 1)/(λ1/2 + 1). Then, there are unique θ ∈ L∞(Ωm, [0, 2π)) and η ∈
L∞(Ωm,R+) such that

γ̃0 = γλ,η,θ. (12)

Finally, in Ωm we have z̃0(x) = z(f−1
m (x))||τ ·∇(f−1

m )(x)|| and there is a unique
map Fe : Ω→ Ωm (e for extremal), depending only on fm, such that Fe|∂Ω = fm
and

η(x) = det(γ̃0(x))1/2 = γ(F−1
e (x)), for x ∈ Ωm.

Remark. If the contact impedances are known, then the assumptions about the
smoothness of the conductivity, the domain and the model map can be relaxed to
γ ∈ L∞(Ω), Ω a C1,α-domain and fm a C1,α-smooth diffeomorphism with α >
0, respectively. Note also that in the above proposition the mappinng fm is not
generally known, and hence neither is Fe recoverable. However, we can recover
the contact impedance z̃ and the (generally anisotropic) extremal conductivity
matrix γ̃ in Ωm.

In the following, the anisotropic conductivity defined by equation (12) is
denoted by γa. Proposition 1 can be interpreted such that one can find unique
contact impedances defined in ∂Ωm and a unique conductivity defined in the
model domain Ωm that is as close as possible to being isotropic and the square
root of the determinant of this conductivity gives a deformed image of the
original conductivity of the true measurement domain Ω in the model domain
Ωm. Further, the deformation Fe of the conductivity image depends only on
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the map fm, that is, on the error in the boundary model, not on the original
conductivity γ in the true domain Ω.

In the practical implementation of the algorithm for EIT measurements,
the equality constrained problem (11) is approximated by the regularized least
squares minimization problem

min
z>0,λ≥1,η>0,θ

{
‖Rm−Rz,γλ,η,θ‖2L(H1/2(∂Ωm),H−1/2(∂Ωm)) +αW (z, λ, η, θ)

}
, (13)

where W is an appropriate regularization functional and α the regularization
parameter. Details of the discretization and minimization of problem (13) in
the case experimental EIT data with a finite number of measurements is given
in section 4.2.

2.2 Transforming the anisotropic conductivity to an isotropic
conductivity

Once the anisotropic conductivity γa has been found, the next step is to find
coordinates where γa can be represented as an isotropic conductivity γi. In
order to do that, we identify C and R2 and then extend γa by an isotropic unit
conductivity to the whole C and define Fi : C → C (i for isotropization) to be
the unique solution of the problem

∂Fi(x) = µ(x)∂Fi(x), x ∈ C, (14)

Fi(x) = x+ h(x), (15)

h(x)→ 0 as |x| → ∞. (16)

where ∂ denotes the so-called d-bar operator and µ the Beltrami coefficient
given by

µ(x) =
γ11
a − γ22

a + 2iγ12
a

γ11
a + γ22

a + 2
√

detγa
, γa(x) = [γjka (x)]2j,k=1. (17)

The problem (14)-(16) has unique solution since |µ(x)| ≤ c0 < 1 and µ vanishes
outside Ωm, see [3]. The map x 7→ Fi(x) can be interpreted as the isothermal
coordinates where γa is characterized by being an isotropic conductivity. We
say that γa is isotropized by

γi := (Fi)∗γa (18)

according to the equation (6).
In [23] is proved that the Robin-to-Neumann map Rz,γ determines uniquely

the contact impedance z. Thus, the knowledge of Rz,γ is equivalent to the
knowledge of the Dirichlet-to-Neumann map. By this result and by Proposition
1.1 in [24] we have the following result:

Proposition 2. Let Ω be a bounded, simply connected C2-domain. Assume that
γ ∈ C2(Ω) is an isotropic conductivity and that Rz,γ is its Robin-to-Neumann
map. Let Ωm be a model domain satisfying the same regularity assumptions as
Ω, and let fm : ∂Ω → ∂Ωm be a C2-smooth orientation preserving diffeomor-
phism. Assume that we are given ∂Ωm and Rm defined by (7) with f = fm. Let
γa be the unique solution of the minimization problem (11), let Fi be the unique
solution of problem (14)-(16), and let γi given by (18). Then,

γi(y) = γ(G−1(y)), for y ∈ Ωi = Fi(Ωm), (19)

7



where G := Fi ◦ Fe : Ω→ Ωi is a conformal map.

Remark. If the contact impedances are known, then the assumptions about the
smoothness of the conductivity, the domain and the model map can be relaxed
to γ ∈ L∞(Ω), Ω a C1,α-domain and fm a C1,α-smooth diffeomorphism with
α > 0, respectively.

The previous proposition can be interpreted by saying that we can find
an isotropic conductivity γi that is a conformally deformed image of the true
conductivity γ.

2.3 Post-processing by using a Möbius transformation

By Proposition 2, the map G : Ω → Ωi is conformal, and thus the restriction
of the map to the boundary, g = G|∂Ω, could stretch the length element on
the boundary. In consequence, the lengths of the images of the electrodes are
changed when compared to the true physical lengths. One could correct this
stretching effect by applying a conformal map to Ωi. The simplest alterna-
tive would be to do post-processing of the obtained image by using a Möbius
transformation of the complex plane as follows.

Given Ωi = Fi(Ωm) and electrodes ê` on ∂Ωi, find a Möbius transformation
M such that

|M(ê`)| = |ẽ`| for ` = 1, . . . , L,

where ẽ` denote the electrodes on ∂Ωm (we assume that the model map for
the boundary fm : ∂Ω → ∂Ωm is length preserving on the electrodes, hence
the lengths of electrodes ẽ` on ∂Ωm are equal to the true physical lengths, see
section 3.1 ).

Additionally, assume that some extra information about the true domain Ω
has been given to us. For example, in a clinical situation one might be able to
measure the width, height or perimeter of the patient’s chest. Then, we can use
this information and try to find a Möbius transformation M such that

d(Ω) = d(M(Ωi)),

where d(Ω) denotes the given measured information of the true domain Ω and
d(M(Ωi)) the corresponding measure of the approximated domain M(Ωi).

Recall that a Möbius transformation is a function of the form

M(y) =
ay + b

cy + d

where a, b, c, d are any complex numbers satisfying ad− bc 6= 0. Then, the last
step of the reconstruction algorithm consists in finding complex numbers a, b, c
and d minimizers of the following function

M(a, b, c, d) =
(
d(Ω)− d(M(Ωi))

)2

+ β

L∑
`=1

(
|M(ê`)| − |e`|

)2

, (20)

where β ≥ 0 is a scaling factor.
In what follows we denote Ωc = M(Ωi) and

γc(y) = γi(M
−1(y)) = γ(Ḡ−1(y)), for y ∈ Ωc,

where Ḡ = M ◦ G : Ω → Ωc is a conformal map. That is, γc is a conformally
deformed image of the true conductivity γ.
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3 EIT forward model

3.1 Complete electrode model

In an EIT experiment, a set of L electrodes are attached at the boundary ∂Ω of
the body and the EIT measurement data consists of a finite number of voltage
and current measurements taken on these electrodes. The most accurate and
widely used mathematical model for the electrode measurements is the com-
plete electrode model (CEM) [35], which can be considered as finite-dimensional
approximation of the Robin-to-Neumann map.

Let e` ⊂ ∂Ω, ` = 1, . . . , L be disjoint open paths modelling the electrodes.
The CEM is defined by the elliptic boundary value problem:

∇ · γ∇u = 0, in Ω (21)

z`ν · γ∇u+ u = U`, on e`, ` = 1, . . . , L (22)

ν · γ∇u = 0, on ∂Ω \ ∪L`=1e` (23)

where U` is (constant) representing electric potential on electrode e`, z` is the
contact impedance at electrode e` and the normal current density outside the
electrodes is zero.

In this model, the currents on the electrodes are defined by

I` =

∫
e`

ν · γ∇u(x) ds(x), ` = 1, . . . , L,

and the relation between the electrode currents and voltages are modelled by
the map E : RL → RL:

E(U1, . . . , UL) = (I1, . . . , IL),

where E is called the electrode measurement matrix for (∂Ω, γ, e1, . . . , eL, z1, . . . , zL).
The existence and uniqueness of the solution (u, U), where u ∈ H1(Ω) and
U = (U1, . . . , UL)T ∈ RL is guaranteed by imposing the charge conservation∑L
`=1 I` = 0 and by fixing the ground level of the potentials

∑L
`=1 U` = 0, for

details see [35].

Let Ω and Ω̃ C1,α-smooth domains. We say that f : ∂Ω → ∂Ω̃ is length
preserving on ∪L`=1e` if ‖τ · ∇f(x)‖ = 1 for x ∈ ∪L`=1e`, where τ is the unit
tangent vector ∂Ω.

The conditions for the applicability of the minimization problem (13) in the
case of the complete electrode model (21)-(23) are given in Proposition 3 (the
proof can be found in Proposition 4.1 in [22]).

Proposition 3. Let Ω and Ω̃ be C1,α-smooth domains and F : Ω→ Ω̃ be a C1,α

diffeomorphism, e` ⊂ ∂Ω be disjoint open sets, and γ be a conductivity in Ω. Let
f=F |∂Ω, ẽ` = f(e`) and γ̃ = F∗γ. Assume that f is length preserving on ∪L`=1e`.
Then, the electrode measurement matrices E for (∂Ω, γ, e1, . . . , eL, z1, . . . , zL)

and Ẽ for (∂Ω̃, γ̃, ẽ1, . . . , ẽL, z1, . . . , zL) coincide.

Particularly, if Ω̃ is the model domain Ωm and f = fm : ∂Ω → ∂Ωm is the
model map for the boundary, then the assumption that f is length preserving
on electrodes implies that the size of the electrodes has to be known correctly.
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This is a highly feasible assumption, as the sizes of the electrodes can be mea-
sured precisely. In this case, by Proposition 3, the electrode discretization E of
the Robin-to-Neumann map R equals the corresponding discretization Ẽ of R̃
given by (7) and f = fm. Thus, if the boundary shape is modeled incorrectly
but the lengths of the electrodes are modelled correctly, then the electrode mea-
surements do not change.

3.2 Discretization and notation

The numerical solution of problem (21)-(23) is computed using the finite element
method (FEM). The corresponding weak formulation and FEM discretization
of the CEM in the case of anisotropic conductivities has been presented in [23].
In this section we present only the notation that is used for the discretized
problem.

In the discretization, the domain Ωm is divided into a set of P disjoint image
elements (square pixels) and functions η and θ are approximated as piecewise
constant of the form

η(x) =

P∑
i=1

ηiχi(x), θ(x) =

P∑
i=1

θiχi(x), (24)

where χi is the characteristic function of the i-th pixel and ηi, θi are the pixel
values of the unknown parameters. Using this notation, the finite dimensional
approximations of η and θ are identified with the coefficient vectors

η = (η1, . . . , ηP )T ∈ RP , θ = (θ1, . . . , θP )T ∈ RP , (25)

and λ is a scalar parameter.
In practice, the EIT measurements are often made such that known currents

are injected into the domain Ω using some of the electrodes at ∂Ω, and the
electrode voltages needed to maintain the currents are measured. Sometimes,
to avoid contact impedance related problems, the voltages may be measured
using a four-point measurement where the voltage readings are recorded only on
those electrodes that are not used to inject current for that particular current
injection. Thus, the measured data may contain only partial information of
the matrix E. To accommodate the possibility of a partial measurement into
the forward model, the following notation is used for the discretized problem.
Assume that the EIT experiment consists of a set of J voltage vectors V (j)

obtained as a response to J different current patterns I(j) ∈ RL, j = 1, . . . , J ,

each fullfilling the charge conservation
∑L
`=1 I

(j)
` = 0. Typically, the elements of

vector V (j) are the voltages (potential differences) between pairs of neighboring
electrodes. Assume that each V (j) contains K voltage readings, that is, we have
V (j) ∈ RK . Then the forward model for a single current injection becomes

V (j) = PjE
−1I(j) + ε(j),

where E is the electrode measurement matrix, ε(j) is a random vector which
models the measurement errors, and Pj : RL → RK is a measurement operator
that maps the electrode potentials to the measured voltages.

For the solution of the inverse problem, all the measurement vectors V (1), V (2),
. . . , V (J) are collected into a single (column) vector

V = (V (1), V (2), . . . , V (J))T ∈ RN , N = JK.

10



For the corresponding forward problem, we use the notation

VFEM(z, η, θ, λ) = (V
(1)
FEM(z, η, θ, λ), V

(2)
FEM(z, η, θ, λ), . . . , V

(J)
FEM(z, η, θ, λ))T ∈ RN

where
V

(j)
FEM(z, η, θ, λ) = PjE

−1(z, η, θ, λ)I(j) ∈ RK

corresponds to the measurement vector with current pattern I(j), vector of
contact impedances z and uniformly anisotropic conductivity γη,θ,λ.

4 Shape-deforming reconstruction: implemen-
tation

4.1 Inverse problem

Given a vector V =
(
V (1), . . . , V (J)

)T ∈ RN of J voltage measurements made

on the electrodes on ∂Ω, corresponding to known injected currents I(j), j =
1, . . . , J , our aim is to simultaneously recover an unknown isotropic conduc-
tivity γ, the unknown boundary shape ∂Ω and the unknown vector of contact
impedances z ∈ RL, based on these current-to-voltage data.

Recall that we assume that instead of the true domain Ω we are given an
approximate model domain Ωm. Then, when we search for an isotropic con-
ductivity in Ωm, we can not find any that matches the EIT measurements.
Therefore, we propose to use the theory and methods introduced in section 2.
In what follows, we explain how to implement the methodology described in
section 2 but in the context of practical EIT experiments with finite number of
measurements.

4.2 Recovering contact impedances and minimally anisotropic
conductivity

In this subsection we present how the constrained minimization problem (13) is
discretized and solved numerically.

Another useful property of uniformly anisotropic conductivities of the form (9)
is that γη,θ,λ = γη,θ′ ,λ′ , where λ

′
= 1/λ and θ

′
(x) = θ(x) + π/2,. Therefore,

problem (13) can be recast as finding an anisotropic conductivity such that λ
gets values λ > 0 instead of λ ≥ 1. Hence, the discrete version of (13) can be
stated as finding the minimizer of

min
z>0,η>0,λ>0,θ

J(z, η, λ, θ), (26)

where

J(z, η, λ, θ) = ‖V − VFEM (z, η, λ, θ)‖2 +Wz(z) +Wη(η) +Wλ(λ) +Wθ(θ),
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and the regularization functionals are given by

Wz(z) = α0

L∑
`=1

z2
` + α1

L∑
`=1

∑
j∈N`

|z` − zj |2, (27)

Wη(η) = α2

P∑
k=1

η2
k + α3

P∑
k=1

∑
j∈Nk

|ηk − ηj |2, (28)

Wθ(θ) = α4

P∑
k=1

θ2
k + α5

P∑
k=1

∑
j∈Nk

|eiθk − eiθj |2, (29)

Wλ(λ) = α6(λ− 1)2, (30)

where Nk denotes the four-point neighborhood system for pixel k in the pixel
grid and α0, . . . , α6 are non-negative, scalar valued regularization parameters.
Note that i in (29) denotes the imaginary unit.

The minimization of (26) is done with the Gauss-Newton method combined
with a line search strategy, for details see [32]. In addition, to simplify the
minimization problem (26), we compute the solution in two stages:

• 1st Stage: assume that η is constant in Ωm and minimize problem (26)
with respect to parameters η ∈ R, λ ∈ R, θ ∈ RP and z ∈ RL until
convergence is reached.

• 2nd Stage: set the values of contact impedances equal to computed values
ẑ, change η to be the piecewise constant approximation (24) and minimize
problem (26) with respect to parameters η ∈ RP , λ ∈ R, θ ∈ RP using

as initial condition the estimated values η̂, θ̂, λ̂ computed in the previous
stage.

To ensure the positivity of the constraints we consider the interior point
method [39]. That is, the functional J in (26) is augmented with the barrier
function

Bs(z, η, λ) = τs

(
L∑
`=1

1

z`
+

P∑
k=1

1

ηk
+

1

λ

)
,

where τs is a positive coefficient. Then, a solution of the original constrained
problem (26) is computed by solving a sequence of unconstrained problems of
the form

min J(z, η, λ, θ) +Bs(z, η, λ), (31)

with τs > τs+1 and τs → 0 as s → 0. The stopping criteria is based on the
magnitude of the gradient and the decrease in the augmented functional. Once
these are under predetermined thresholds or maximum number of iterations is
reached, the Gauss-Newton iteration is terminated. For a detailed explanation
on how to compute the Jacobian matrix of the forward map VFEM (z, η, λ, θ) we
refer to [20].

4.3 Transforming the anisotropic conductivity to an isotropic
conductivity

The next step of our method is the isotropization of the anisotropic conductivity
γa. In order to do that, we need to find the isotropization map Fi by solving
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the problem (14)-(16) numerically. Substituting (15) to (14) gives

h(x) = P[I − µS]−1µ(x), (32)

where P is the solid Cauchy transform and S is the Beurling transform. Recall
that P is the inverse operator of ∂ and that S transforms ∂ derivatives into ∂
derivatives, see [5, 29].

The inverse operator in (32) is well-defined as it can be expressed as a con-
vergent Neumann series using the fact that |µ(x)| < 1. However, equation (32)
is defined in the whole plane R2, therefore some sort of truncation is needed to
compute a numerical solution. In order to do that, we use a periodization tech-
nique introduced in [38] where a periodic version of (32) is considered and its
solution can be then used to compute a solution of (32). A detailed description
of how to numerically solve problem (14)-(16) is given in [25].

4.4 Post-processing by using a Möbius transformation

The last step of the proposed methodology consists in finding a Möbius trans-
formation M such that Ωc = M(Ωi) is close to the true domain Ω.

As the data for finding the transformation M , we are given the lengths of
electrodes ẽ` on ∂Ωm. Recall that the model map for the boundary fm : ∂Ω→
∂Ωm is length preserving on the electrodes, hence the lengths of electrodes ẽ`
are equal to the true physical lengths, see section 3.1. Additionally, we can also
assume that we are given some a priori measured information d(Ω) of the true
domain Ω.

Note that complex numbers a, b, c, d and ξa, ξb, ξc, ξd with ξ 6= 0 define the
same Möbius map. Therefore, we restrict our attention to normalized Möbius
transformations, that is ad − bc = 1. In this case, parameters a, b, c determine
parameter d, hence we write d = d(a, b, c). If we denote a = m1 + im2, b =
m3 + im4 and c = m5 + im6, then problem (20) can be written in the form

min
m∈R6

M(m). (33)

To solve the unconstrained minimization problem (33) we have considered the
modified version of the Barzilai-Borwein method proposed in [33], where a non-
monotone line search technique that guarantees global convergence is combined
with classical the Barzilai-Borwein method.

5 Reconstructions from experimental data

In this section we evaluate the feasibility of the presented method with experi-
mental EIT data from tank measurements.

The data sets were collected using the Kuopio impedance tomography (KIT4)
equipment [27] from a vertically symmetric chest shaped tank as shown in Fig-
ure 2. The chest shaped tank has L = 16 electrodes of length 2cm located at
almost equally spaced positions on its boundary ∂Ω.

The EIT measurements were collected using the adjacent (skip-0) method
obtaining a total of N = L2 voltage measurements for each EIT experiment.
Therefore, having a device with L = 16 electrodes we have a measurement vector
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Figure 2: The three different experimental tank setups and agar targets (pink
high conductivity and white low conductivity).

V ∈ R256. The amplitude of the injected currents was 3mA with frequency
10kHz.

Heart and lung shaped inclusions made of agar were used to simulate the
true isotropic conductivity γ. The conductivity of the saline was roughly 55%
higher compared to the conductivity of the lung target while the conductivity
of the heart target was roughly 100% higher compared to the saline.

Three different experimental data sets are considered: experimental data
1 simulates the thorax of a healthy patient, experimental data 2 simulates a
human chest with an injury in the left lung (the bottom portion was extracted
completely) and experimental data 3 that also simulates a human chest with an
abnormality in the left lung (a higher conductivity piece of agar was included
in the bottom portion), see Figure 2.

For the three experiments two different reconstructions were computed:

(i) Reconstruction of isotropic conductivity in the model domain Ωm using a
traditional approach.

(ii) Reconstruction of isotropic conductivity in the reconstructed domain Ωc =
M(Fi(Ωm))
= Ḡ(Ω) using the proposed methodology.

The conventional reconstruction (i) was obtained by solving the problem

min
z>0,γ>0

‖V − VFEM (z, γ)‖+Wz(z) +Wγ(γ), (34)

where the penalty term Wz is given by (27) and Wγ is as in (28). The solution
of (34) is computed using a Gauss-Newton implementation similar to the one
considered for (26). In the first stage, we assumed γ(x) = γ0 and the only
unknowns were γ0 ∈ R and z ∈ RL. In the second stage, we assume z = ẑ, that
is the contact impedances are constant and equal to the estimated values ẑ while
γ is written as piecewise constant function similar to (24) on the model domain
Ωm. Then, problem (34) is solved minimizing with respect to conductivity
γ ∈ RP .

In all the examples of this section we assume that the perimeter of the true
domain Ω is given. That is, the measured information d(Ω) is the perimeter of
chest tank and is 102.33cm.

To measure the quality of the reconstructions of the unknown domain Ω we
consider the following error

E(D) =
|Ω \D|+ |D \ Ω|

|Ω|
· 100%, (35)
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where |D| denotes the area of a set D ⊂ R2.

5.1 Recovering: conductivity γ, boundary shape ∂Ω and
contact impedances z

In this section we consider the problem of simultaneously recovering an unknown
isotropic conductivity γ, the unknown boundary shape ∂Ω and the unknown
vector of contact impedances z ∈ RL from current-to-voltage data measurements
made on the electrodes on ∂Ω.

In all examples of this section the model domain Ωm is a circle with radius
17.5cm, see Figure 3. The relative error (35) for the model domain is Ωm is
E(Ωm) = 21.12%.

Error 21.12%

Figure 3: Boundary of the true domain Ω (blue) and boundary of the model
domain Ωm (red). The relative error (35) for Ωm is E(Ωm) = 21.12%

To calibrate the regularization parameters associated to the penalty func-
tionals in the minimization problems (26) and (34), we first use simulated EIT
measurement using the complete electrode model (21)-(23) with L = 16 elec-
trodes attached to the boundary ∂Ω, where Ω represents a cross-section of a
human chest, and γ simulates the lungs and heart (see Figure 4). The parame-
ters were tuned manually in this example for best (visual) reconstruction quality
and the values of these parameters were fixed for all the experimental cases.

The simulated EIT measurements were computed using FEM. The chest
shaped domain Ω was discretized using a mesh with Ne = 19459 triangular
elements and with Nn = 10501 nodes for the numerical approximation of the
potential u. Where did these numbers come from? The convergence of the
FEM solution was studied with respect to a solution in a very dense mesh and
the discretization was selected so that the error with respect to the reference
FEM solution was negligible. The selected mesh was then also verified to yield
high quality reconstruction from the experimental data (with the conventional
reconstruction in correct domain).
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Figure 4: Synthetic data. Left: true conductivity and true domain Ω. Mid-
dle: traditional reconstruction of isotropic conductivity γ using incorrect model
domain Ωm. Right: reconstruction with the proposed method using the in-
correct model domain Ωm. The displayed quantity is γc(y) = γ(Ḡ−1(y)), for
y ∈ Ωc = M(Fi(Ωm)). The minimum and maximum value of the true and the
estimated vector of contact impedances are shown below each figure, respec-
tively.

In the reconstruction process, the model domain Ωm was divided to Ne =
11398 triangular elements and Nn = 6084 node points. On the other hand, to
represent the conductivity, Ωm was discretized using P = 2732 square pixels of
size 6× 6mm2, leading to unknown γ ∈ R2732 in the minimization of(26).

The image in the middle of Figure 4 shows the traditional reconstruction
of the isotropic conductivity γ by minimization of (34) in the incorrect model
geometry Ωm. The regularization parameters were α0 = 10 and α1 = 50 for
penalty functional Wz(z) and α2 = 5 · 10−7 and α3 = 5 · 10−6 for functional
Wγ(γ). The estimated contact impedance ẑ were in the range [2.35, 2.99]×10−3.
The image in the right of Figure 4 shows the reconstruction with the proposed
methodology considering the incorrect model domain Ωm. The regularization
parameters for the first stage of the algorithm were α0 = 10, α1 = 50, α4 =
10−5, α5 = 10−1and α6 = 1. The values of estimated contact impedance ẑ
were in the interval [3.28, 4.2] × 10−3. The regularization parameters for the
second stage of the algorithm were α2 = 0, α3 = 10−7, α4 = 0, α5 = 10−7 and
α6 = 10−5. Finally, the regularization parameter for the post-processing step
was β = 0 and therefore only the perimeter of the true domain Ω is consid-
ered in the minimization of the function given by (20). In summary, only 3
non zero parameters were considered during the second stage. The error (35)
corresponding to the recovery domain was E(Ωc) = 5.17%.

In Figure 5, we present the results corresponding to experimental data 1.
The measurement domain Ω and the target conductivity are shown in the top
left in Figure 5. The top right image shows the traditional reconstruction of
isotropic conductivity by minimization of (34) and considering the incorrect
model domain Ωm The values of estimated contact impedance ẑ are contained
in the interval [1.53, 2.73] × 10−3. Bottom left shows the reconstruction with
the proposed approach considering the incorrect model domain Ωm. The image
shows the isotropic conductivity γc(y) = γ(Ḡ−1(y)), for y ∈ Ωc = M(Fi(Ωm)).
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Error 5.18%

Figure 5: Experimental data 1. Top left: measurement setup. Top right:
traditional reconstruction of isotropic conductivity γ utilizing incorrect model
domain Ωm. Bottom left: reconstruction with the proposed approach utilizing
incorrect model domain Ωm. The displayed quantity is γc(y) = γ(Ḡ−1(y)), for
y ∈ Ωc. Bottom right: boundaries of the true domain Ω and recovery domain
Ωc = M(Fi(Ωm)) = Ḡ(Ω). The relative error (35) for the recovery domain is
E(Ωc) = 5.18%.

The bottom right shows the boundary of the true domain Ω and the recovery
domain Ωc. In this example ẑ ∈ [2.26, 4.84] × 10−3 and the error (35) of the
recovery domain is E(Ωc) = 5.18%. While the conventional reconstruction of the
isotropic conductivity utilizing the model domain Ωm has serious artifacts, the
proposed methodology provides an accurate reconstruction of the conductivity
distribution as well as the boundary shape.

The corresponding results for the experimental data 2 are shown in Figure 6.
The values of ẑ were in the range [1.61, 2.74] × 10−3 for the traditional recon-
struction and in the range [2.49, 4.89]× 10−3 using the proposed methodology.
The relative error (35) for the recovery domain was E(Ωc) = 5.27%

For the experimental data 3 the results of the reconstructions are shown in
Figure 7. The estimated contact impedance ẑ were in the range [1.8, 3.37]×10−3

for the traditional reconstruction and in the range [2.74, 5.47]× 10−3 using the
proposed methodology. The relative error (35) for the recovery domain was
E(Ωc) = 5.57%.

It is worth mentioning that the reconstructions obtained here are only qual-
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Error 5.27%

Figure 6: Experimental data 2. Top left: measurement setup. Top right: tra-
ditional reconstruction of isotropic conductivity γ considering incorrect model
domain Ωm. Bottom left: reconstruction with the proposed approach consider-
ing incorrect model domain Ωm. The displayed quantity is γc(y) = γ(Ḡ−1(y)),
for y ∈ Ωc. Bottom right: boundaries of the true domain Ω and recovery domain
Ωc = M(Fi(Ωm)) = Ḡ(Ω). The relative error (35) for the recovery domain is
E(Ωc) = 5.27%.

itative since they are computed using the CEM in 2D and employing data
collected from a vertically symmetric 3D target.

5.2 Recovering: conductivity γ and contact impedances z
with incorrectly modeled electrode locations

In this section we consider the problem of recovering an unknown isotropic con-
ductivity γ from current-to-voltage data, assuming that true domain Ω is known
but the vector of contact impedances z ∈ RL is unknown and the electrode lo-
cations are modelled incorrectly. This would be a realistic scenario in practice
when the domain shape would be known but the electrodes would be posi-
tioned, for example, around the chest of the patient manually without access to
an auxiliary measurement of their locations. The measurement electrodes were
displaced with randomly selected sign of the displacement (with the exception
that no displacement was added to electrodes 1, 2 and 16). We consider two
case studies (see Figure 8 ):
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Error 5.57%

Figure 7: Experimental data 3. Top left: measurement setup. Top right:
traditional reconstruction of isotropic conductivity γ utilizing incorrect model
domain Ωm. Bottom left: reconstruction with the proposed approach utilizing
incorrect model domain Ωm. The displayed quantity is γc(y) = γ(Ḡ−1(y)), for
y ∈ Ωc. Bottom right: boundaries of the true domain Ω and recovery domain
Ωc = M(Fi(Ωm)) = Ḡ(Ω). The relative error (35) for the recovery domain is
E(Ωc) = 5.57%.

Case 1: electrodes were displaced approximately 25% of the true physical
length.

Case 2: electrodes were displaced approximately 35% of the true physical
length.

For each case study we present the results using the same set of experimental
data used in the previous section. Similarly, for each experiment, two different
reconstructions were computed:

(i) Traditional reconstruction of isotropic conductivity in the true domain
Ω using incorrect electrode locations.

(ii) Reconstruction of isotropic conductivity using the proposed method-
ology taking as model domain the true domain, that is Ωm = Ω, but with
incorrect electrode locations.

The true domain Ω was discretized using mesh with Ne = 15809 triangular
elements and Nn = 8676 node points. Then, to represent the conductivity, Ω

19



e2

e1

e16

Figure 8: Left: Case 1 electrodes are displaced approximately 25% of the true
physical length. Right: Case 2 electrodes are displaced approximately 35% of
the true physical length. True electrodes are shown in red. Displaced electrodes
are shown in green. In both cases, no displacement was added to electrodes e1,
e2 and e16.

was divided to P = 2303 square pixels of size 6 × 6mm2, leading to unknown
γ ∈ R2303.

The results for the Case study 1 are shown in Figure 9. Top row shows the
results of experimental data 1, images in middle row correspond to experimental
data 2 and bottom row shows the results of experimental data 3. The effect of
incorrect modelling of electrode locations is clearly evident when using the con-
ventional reconstruction method. Spurious details, mostly close to the boundary
of the model domain, deteriorate the quality of the reconstruction. On the other
hand, the proposed method produces reasonably good reconstructions even if
the electrode locations are imperfectly known. The relative error (35) for the
recovery domain was E(Ωc) = 1.79%, E(Ωc) = 1.19% and E(Ωc) = 2.16%, for
experimental data 1, 2 and 3 respectively.

The corresponding results for the Case study 2 are shown in Figure 10. The
relative error (35) for the recovery domain was E(Ωc) = 2.79% for experimen-
tal data 1, E(Ωc) = 2.26% for experimental data 2 and E(Ωc) = 2.57% for
experimental data 3.

5.3 Checking the conformal maps Ḡ

Given a vector of V ∈ RN of voltage measurement corresponding to a conduc-
tivity γ in Ω, the proposed method reconstructs an approximate conductivity

γc(y) = γ(Ḡ−1(y)), for y ∈ Ωc,

where Ḡ = M ◦Fi◦Fe : Ω→ Ωc is a conformal map. That is, γc is a conformally
deformed image of the true conductivity γ.

Then, given a vectors of V1, V2 ∈ RN of voltage measurements corresponding
to conductivities γ1 and γ2 respectively, we have the conformal maps Ḡ1 : Ω→
Ωc,1 and Ḡ2 : Ω→ Ωc,2. Theory predicts that the map Ḡ1 ◦ Ḡ−1

2 : Ωc,2 → Ωc,1
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Figure 9: Case 1: electrodes were displaced approximately 25% of the true
physical length. Top row shows the results of experimental data 1, images
in middle row correspond to experimental data 2 and bottom row shows the
results of experimental data 3. Left column: the 3 different experimental setups.
Middle column: traditional reconstructions of isotropic conductivity in Ω using
incorrect electrode locations. Right column: reconstructions with the proposed
method using Ωm = Ω but incorrect electrode locations. The displayed quantity
is γc(y) = γ(Ḡ−1(y)), for y ∈ Ωc = M(Fi(Ωm)). The minimum and maximum
value of the estimated contact impedance ẑ are shown below each figure.
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Figure 10: Case 2: electrodes were displaced approximately 35% of the true
physical length. Top row shows the results of experimental data 1, images
in middle row correspond to experimental data 2 and bottom row shows the
results of experimental data 3. Left column: the 3 different experimental setups.
Middle column: traditional reconstructions of isotropic conductivity in Ω using
incorrect electrode locations. Right column: reconstructions with the proposed
method using Ωm = Ω but incorrect electrode locations. The displayed quantity
is γc(y) = γ(Ḡ−1(y)), for y ∈ Ωc = M(Fi(Ωm)). The minimum and maximum
value of the estimated contact impedance ẑ are shown below each figure.

22



should be the identity map. However, due to numerical errors we could only
expect that this map is close to the identity map.

Recall that

Ḡj ◦ Ḡ−1
k = Mj ◦ Fi,j ◦ Fe ◦ F−1

e ◦ F−1
i,k ◦M

−1
k

= Mj ◦ Fi,j ◦ F−1
i,k ◦M

−1
k

where F−1
i,k ◦M

−1
k : Ωc,k → Ωm and Mj ◦ Fi,j : Ωm → Ωc,j . Figures 11 and 12

show the action of the map Ḡj ◦ Ḡ−1
k : Ωc,k → Ωc,j for j = 2, 3 and k = 1.

Both figures correspond to the different experimental data sets presented in
section 5.1. Observe that the recovered boundaries ∂Ωc,k and ∂Ωc,j from noisy
voltage measurements from the three different conductivities are highly similar
and they can hardly be distinguished from each other in the figures.

In Figure 13 we show the action of the map Ḡj ◦ Ḡ−1
k : Ωc,k → Ωc,j for

j = 2, 3 and k = 1, but corresponding to the different experimental data sets
presented in section 5.2.

Figure 11: Map Ḡ2 ◦ Ḡ−1
1 . Top left: reconstructed domain Ωc,1 = Ḡ1(Ω).

Top right: model domain Ωm = F−1
i,1 ◦M

−1
1 (Ωc,1), the cyan points in Ωc,1 are

mapped to red points in Ωm. Bottom left: domain Ωc,2 = M2 ◦ Fi,2(Ωm) =
Ḡ2 ◦ Ḡ−1

1 (Ωc,1), the red points in Ωm are mapped to magenta points in Ωc,2.
Bottom right: boundaries of domains Ωc,j , j = 1, 2 and true domain Ω, the cyan
points in Ωc,1 are mapped to magenta points in Ωc,2.
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Figure 12: Map Ḡ3 ◦ Ḡ−1
1 . Top left: reconstructed domain Ωc,1 = Ḡ1(Ω).

Top right: model domain Ωm = F−1
i,1 ◦M

−1
1 (Ωc,1), the cyan points in Ωc,1 are

mapped to red points in Ωm. Bottom left: domain Ωc,3 = M3 ◦ Fi,3(Ωm) =
Ḡ3 ◦ Ḡ−1

1 (Ωc,1), the red points in Ωm are mapped to magenta points in Ωc,3.
Bottom right: boundaries of domains Ωc,j , j = 1, 3 and true domain Ω, the cyan
points in Ωc,1 are mapped to magenta points in Ωc,3.

5.4 Dynamic imaging in unknown domain

In dynamic EIT the objective is to monitor changes in the conductivity in time
or between measurements with different frequencies. In this section we consider
the application of the proposed approach to dynamic imaging.

5.4.1 Two conductivities γ1 and γ2 defined in the same domain Ω

Given an isotropic conductivity γ in Ω, from Proposition 1, there is a unique
map Fe : Ω→ Ωm such that Fe|∂Ω = fm and

η(x) = det(γa(x))1/2 = γ(F−1
e (x)), for x ∈ Ωm, (36)

where γa is the unique solution of the minimization problem (11). As we noted
before, this result says that there exits a unique anisotropic conductivity γa in
Ωm such that det(γa(x))1/2 gives a deformed image in the model domain of the
original conductivity γ defined in the true domain. The deformation Fe of the
conductivity image depends on the map fm, but not on the original conductiv-
ity γ. This result is very useful because it implies that local perturbations of
conductivity remain local in the reconstruction as we show below.
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Figure 13: Maps Ḡk ◦ Ḡ−1
1 , k = 2, 3, for the situation where electrodes are

displaced. Left column shows the results for the Case 1 (25% of displacement)
and right column shows the results for Case 2 (35% of displacement). Top row:
boundaries of domains Ωc,1, Ωc,2 = Ḡ2 ◦ Ḡ−1

1 (Ωc,1) and true domain Ω. Bottom
row: boundaries of domains Ωc,1, Ωc,3 = Ḡ3 ◦ Ḡ−1

1 (Ωc,1) and true domain Ω. In
all figures the cyan points in Ωc,1 are mapped to magenta points in Ωc,k by the
map Ḡk ◦ Ḡ−1

1 , for k = 2, 3.

Let fm : ∂Ω → ∂Ωm be a (fixed) boundary modeling map and let γ1 and
γ2 = γ1 + δγ be two isotropic conductivities in Ω. Then, by equation (36) we
have

η1(x)− η2(x) = δγ(F−1
e (x)), for x ∈ Ωm. (37)

Note that the theory states that maps Fe, Fi and M are the same for the
two conductivities γ1 and γ2 when the model map fm is the same. From the
numerical point of view, we observed in section 5.3 that although these maps
are not exactly the same, they are highly similar.

Let Fi,1 be the solution of problem (14)-(16) with coefficient µ associated to
conductivity γa,1 and M1 the Möbius map from Ωi,1 = Fi,1(Ωm) to Ωc,1, then

η1(F−1
i,1 ◦M

−1
1 (y))− η2(F−1

i,1 ◦M
−1
1 (y)) = δγ(Ḡ−1

1 (y)), for y ∈ Ωc,1. (38)

That is, we can obtain a conformally deformed image of the difference between
conductivities γ1 and γ2. Observe that in equation (38), it is not necessary
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to compute Fi,2 and M2 since we only need function η2. In order to obtain
function η2 we consider the minimization problem (26) but fixing z, λ and θ
to be the same as with experimental data 1, that is V1 ∈ RN , but use the
experimental measurements V2 ∈ RN to compute η2. In Figure 14 we show
the results corresponding to the different experimental data sets presented in
section 5.1.

Note that in the situation of electrodes displaced we have Ωm = Ω, then we
can directly compare the reconstructions in the true domain using equation (37).
In Figure 15 we present the results corresponding to the situation where elec-
trodes were displaced approximately 25% of the true physical length (Case 1)
and in Figure 16 the results corresponding to the situation where electrodes
were displaced approximately 35% of the true physical length (Case 2).

5.4.2 Two conductivities γ1 and γ2 defined in two different domains

In (38) we assume that the unknown boundary does not change between the
measurements. Nevertheless, that assumption is often infeasible. For instance,
when imaging a human chest during a breathing cycle, the thorax shape and
the contact impedances could vary between breathing states. If γ1 and γ2 are
isotropic conductivities of the same object but corresponding to different mea-
surement times and defined in slightly different domains, namely Ω1 and Ω2,
then changes in the conductivity between the two measurement times could be
determined by considering

γc,1(y)− γc,2(y) = γ1(Ḡ−1
1 (y))− γ2(Ḡ−1

2 (y)), for y ∈ Ωc,1 ∩ Ωc,2. (39)

In Figure 17 we show the results corresponding to the different experimental
data sets presented in section 5.1.

5.5 Discussion on the results

From the reconstructions in the top right of Figures 5 to 7, we observe that
the traditional approach that ignores the modeling errors produces poor quality
reconstructions and in consequence leads to the loss of useful information. On
the contrary, utilizing the same incorrect model setting, the proposed approach
produces good quality reconstructions carrying useful information about the
target conductivity (see bottom left of Figures 5 to 7). We can observe that
both, the shapes of the domain and the inclusions are accurately reconstructed.
Moreover, while the relative error (35) between the true domain and the model
domain was over 20%, the error for the recovery domain is reduced to about 5%
in all cases.

In the situation when the true domain is known but the locations of the
electrodes are inaccurately known the traditional approach gives reconstruction
having severe artifacts, mainly close to the tank boundary (see middle column
of Figures 9 and 10). On the contrary, the proposed approach eliminates these
artifacts and also reproduces the shapes of the inclusions more accurately (see
last column of Figures 9 and 10). These results indicate that the proposed
method tolerates well inaccurate knowledge of the electrode locations.

Finally, as can be seen from Figures 14 to 17, the proposed approach seems to
be a feasible tool for dynamic imaging both in the case when the shape boundary
is known but electrodes positions are inaccurately known (see Figures 15 and 16)
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Figure 14: Difference imaging: γ1 vs γk, k = 2, 3 in Ωc,1. Top row shows
the results of experimental data 1, images in middle row correspond to ex-
perimental data 2 and bottom row shows the results of experimental data 3.
Left column: the 3 different experimental setups. Middle column: functions
η1(F−1

i,1 ◦ M
−1
1 (y)), η2(F−1

i,1 ◦ M
−1
1 (y)) and η3(F−1

i,1 ◦ M
−1
1 (y)) for y ∈ Ωc,1.
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−1
1 (y)) = (γ2 − γ1) (Ḡ−1

1 (y)) and

(η3 − η1) (F−1
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−1
1 (y)) = (γ3 − γ1) (Ḡ−1

1 (y)), respectively (see equation (38)).
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Figure 15: Difference imaging electrodes displaced 25% (Case 1) γ1 vs
γk, k = 2, 3 in Ωm = Ω. Top row shows the results of experimental data 1,
images in middle row correspond to experimental data 2 and bottom row shows
the results of experimental data 3. Left column: the 3 different experimental
setups. Middle column: functions η1(x), η2(x) and η3(x), for x ∈ Ωm = Ω.
Right column: difference (η2 − η1) (x) = (γ2 − γ1) (F−1

e (x)) and (η3 − η1) (x) =
(γ3 − γ1) (F−1

e (x)), respectively (see equation (37)).
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Figure 16: Difference imaging electrodes displaced 35% (Case 2) γ1 vs
γk, k = 2, 3 in Ωm = Ω. Top row shows the results of experimental data 1,
images in middle row correspond to experimental data 2 and bottom row shows
the results of experimental data 3. Left column: the 3 different experimental
setups. Middle column: functions η1(x), η2(x) and η3(x), for x ∈ Ωm = Ω.
Right column: difference (η2 − η1) (x) = (γ2 − γ1) (F−1

e (x)) and (η3 − η1) (x) =
(γ3 − γ1) (F−1

e (x)), respectively (see equation (37)).
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Figure 17: Difference imaging: γ1 vs γk, k = 2, 3 in Ωc,1 ∩ Ωc,k. Top
row shows the results of experimental data 1, images in middle row corre-
spond to experimental data 2 and bottom row shows the results of exper-
imental data 3. Left column: the 3 different experimental setups. Mid-
dle column: conductivities γc,k(y), for y ∈ Ωc,k. Right column: differ-
ence (γc,2 − γc,1) (y) =

(
γ2 ◦ Ḡ−1

2 − γ1 ◦ Ḡ−1
1

)
(y) for y ∈ Ωc,2 ∩ Ωc,1 and

(γc,3 − γc,1) (y) =
(
γ3 ◦ Ḡ−1

3 − γ1 ◦ Ḡ−1
1

)
(y) for y ∈ Ωc,3 ∩ Ωc,1, respectively

(see equation (39)).
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and in the case when the shape boundary and electrode positions are unknown
(see Figures 14 and 17).

6 Conclusion

A typical difficulty in practical EIT is that in most measurement situations
the knowledge about the boundary of the body, the electrode locations and
the contact impedances are usually uncertain. It is widely known that these
modeling errors can cause severe artifacts that ruin the quality of the image
reconstruction and in consequence diagnostically relevant information is lost.
In this paper, we have introduced a method that is capable of producing good
quality reconstructions of the conductivity in settings where the boundary of
the body, the electrode locations and the contact impedances are inaccurately
known. The method was evaluated via experimental studies with water tank
data. The obtained results indicate that the proposed approach is an effective
tool to overcome the difficulties caused by the uncertainties in the measurement
configuration usually present in practical EIT.
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