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Abstract. While useful probability bounds for n pairwise independent Bernoulli random vari-
ables adding up to at least an integer k have been proposed in the literature, none of these bounds
are tight in general. In this paper, we provide several results in this direction. Firstly, when k = 1,
the tightest upper bound on the probability of the union of n pairwise independent events is provided
in closed-form for any input marginal probability vector p ∈ [0, 1]n. To prove the result, we show the
existence of a positively correlated Bernoulli random vector with transformed bivariate probabilities,
which is of independent interest. Building on this, we show that the ratio of the Boole union bound
and the tight pairwise independent bound is upper bounded by 4/3 and that the ratio is attained.
Applications of the result in correlation gap analysis and distributionally robust bottleneck opti-
mization are discussed. The result is extended to find the tightest lower bound on the probability
of the intersection of n pairwise independent events. Secondly, for any k ≥ 2 and input marginal
probability vector p ∈ [0, 1]n, new upper bounds are derived by exploiting ordering of probabilities.
Numerical examples are provided to illustrate when the bounds provide improvement over existing
bounds. Lastly, we identify specific instances when the existing and the new bounds are tight, for
example, with identical marginal probabilities.
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1. Introduction. Probability bounds for sums of Bernoulli random variables
have been extensively studied by researchers in various communities including proba-
bility and statistics, computer science, combinatorics and optimization. In this paper,
our focus is on pairwise independent Bernoulli random variables. It is well known that
while mutually independent random variables are pairwise independent, the reverse
is not true. Feller [18] attributes Bernstein [4] with identifying one of the earliest
examples of n = 3 pairwise independent random variables that are not mutually in-
dependent. For general n, constructions of pairwise independent Bernoulli random
variables can be found in the works of Geisser and Mantel [24], Karloff and Man-
sour [30], Koller and Meggido [31], pairwise independent discrete random variables in
Feller [17], Lancaster [36], Joffe [29], O’Brien [41] and pairwise independent normal
random variables in Geisser and Mantel [24]. One of the motivations for studying
constructions of pairwise independent random variables particularly in the computer
science community is that the joint distribution can have a low cardinality support
(polynomial in the number of random variables) in comparison to mutually indepen-
dent random variables (exponential in the number of random variables). The reader
is referred to Lancaster [36] and more recent papers of Babai [2] and Gavinsky and
Pudlák [23] who provide precise lower bounds on the entropy of the joint distribu-
tion of pairwise independent random variables that only grow logarithmically with the
number of random variables. The low cardinality of such distributions have important
ramifications in the efficient derandomization of algorithms for NP-hard combinato-
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2 A. K. RAMACHANDRA, AND K. NATARAJAN

rial optimization problems (see the review article of Luby and Widgerson [37] and
the references therein for results on pairwise independent and more generally t-wise
independent random variables).

In this paper, we are interested in the problem of computing probability bounds
for the sum of pairwise independent Bernoulli random variables adding up to at
least an integer k. Given an integer n ≥ 2, denote by [n] = {1, 2, . . . , n} and by
Kn = {(i, j) : 1 ≤ i < j ≤ n} (it can be viewed as a complete graph on n nodes).
Given integers i < j, let [i, j] = {i, i + 1, . . . , j − 1, j}. Consider a Bernoulli random
vector c̃ = (c̃1, . . . , c̃n) with marginal probabilities given by pi = P(c̃i = 1) for i ∈ [n].
Denote by p = (p1, . . . , pn) ∈ [0, 1]n, the univariate marginal vector and by Θ({0, 1}n),
the set of all probability distributions supported on {0, 1}n. Consider the set of
joint probability distributions of Bernoulli random variables consistent with the given
marginal probabilities and pairwise independence:

Θ(p, pipj ; (i, j) ∈ Kn) =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi,∀i ∈ [n],

Pθ (c̃i = 1, c̃j = 1) = pipj , ∀(i, j) ∈ Kn

}
.

This set of distributions is nonempty for any p ∈ [0, 1]n, since the distribution of
mutually independent random variables lies in the set. Our problem of interest is to
compute the maximum probability that n random variables adds up to at least an
integer k ∈ [n] over all distributions in the set. Denote this tightest upper bound
by P (n, k,p) (observe that the bivariate probabilities here are simply given by the
product of the univariate probabilities). Then,

(1.1) P (n, k,p) = max
θ∈Θ(p,pipj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i ≥ k

 .

Two useful bounds that have been proposed for this problem are discussed next:

(a) Chebyshev [10] bound: The one-sided version of the Chebyshev tail probability
bound uses the first and second moments of the random variables. Since the
Bernoulli random variables are assumed to be pairwise independent or equiva-
lently uncorrelated, the variance of the sum is given by:

Variance

∑
i∈[n]

c̃i

 =
∑
i∈[n]

pi(1− pi).

Applying the Chebyshev bound gives:

(1.2) P (n, k,p) ≤


1, k <

∑
i∈[n]

pi,∑
i∈[n] pi(1− pi)∑

i∈[n] pi(1− pi) + (k −
∑
i∈[n] pi)

2
,
∑
i∈[n]

pi ≤ k ≤ n.

(b) Schmidt, Siegel and Srinivasan [54] bound: The Schmidt, Siegel and Srinivasan
bound is derived by bounding the tail probability using the moments of mul-
tilinear polynomials. This is in contrast to the Chernoff-Hoeffding bound (see
Chernoff [11], Hoeffding [27]) which bounds the tail probability of the sum of
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 3

independent random variables using the moment generating function. A multi-
linear polynomial of degree j in n variables is defined as:

Sj(c) =
∑

1≤i1<i2<...<ij≤n

ci1ci2 . . . cij .

At the crux of the analysis in [54] is the observation that all the higher mo-
ments of the sum of Bernoulli random variables can be generated using linear
combinations of the expected values of multilinear polynomials of the random
variables. The construction of the bound makes use of the equality:

(1.3)

(∑
i∈[n] ci

j

)
= Sj(c), ∀c ∈ {0, 1}n,∀j ∈ [0,

∑
i∈[n] ci],

where S0(c) = 1 and
(
r
s

)
= r!/(s!(r−s)!) for any pair of integers r ≥ s ≥ 0. The

bound derived in Schmidt et al. [54] (see Theorem 7, part (II) on page 239) for
pairwise independent random variables is1:

(1.4) P (n, k,p) ≤ min

(
1,

∑
i∈[n] pi

k
,

∑
(i,j)∈Kn pipj(

k
2

) )
.

While both the Chebyshev bound in (1.2) and the Schmidt, Siegel and Srinivasan
bound in (1.4) are useful, neither of them are tight for general values of n, k and
p ∈ [0, 1]n. In this paper, we work towards tightening these bounds for pairwise
independent random variables and identifying instances when the bounds are tight.

1.1. Other related bounds. Consider the set of joint distributions of Bernoulli
random variables consistent with the marginal probability vector p ∈ [0, 1]n and
general bivariate probabilities given by pij = P(c̃i = 1, c̃j = 1) for all (i, j) ∈ Kn:

Θ(p, pij ; (i, j) ∈ Kn) =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi,∀i ∈ [n],

Pθ (c̃i = 1, c̃j = 1) = pij , ∀(i, j) ∈ Kn

}
.

Unlike the pairwise independent case, verifying if this set of distributions is nonempty
is already known to be a NP-complete problem (see Pitowsky [45]). The tightest
upper bound on the tail probability over all distributions in this set is given by:

max
θ∈Θ(p,pij ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i ≥ k

 ,

1While the statement in the theorem in [54] is provided for k >
∑

i pi, it is straightforward to
see that their analysis would lead to the form provided here for general k.
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4 A. K. RAMACHANDRA, AND K. NATARAJAN

where the bound is set to −∞ if the set of feasible distributions is empty. The bound
is given by the optimal value of the linear program (see Hailperin [26]):

(1.5)

max
∑

c∈{0,1}n:
∑
t ct≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) = pij , ∀(i, j) ∈ Kn,

θ(c) ≥ 0, ∀c ∈ {0, 1}n,

where the decision variables are the joint probabilities θ(c) = P(c̃ = c) for all c ∈
{0, 1}n. The number of decision variables in the formulation grows exponentially in
the number of random variables n. The dual linear program is given by:

(1.6)

min
∑

(i,j)∈Kn

λijpij +
∑
i∈[n]

λipi + λ0

s.t
∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 0, ∀c ∈ {0, 1}n,∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 1, ∀c ∈ {0, 1}n :
∑
t ct ≥ k.

The dual linear program in (1.6) has a polynomial number of decision variables but
an exponential number of constraints. This linear program is always feasible (simply
set λ0 = 1 and remaining dual variables to be zero) and strong duality thus holds.
Given the large size of the primal and dual linear programs that need to be solved,
two main approaches have been studied in the literature:

(a) The first approach is to find closed-form bounds by generating simple dual
feasible solutions (see Kounias [32], Kounias and Marin [33], Sathe et al. [53],
Móri and Székely [40], Dawson and Sankoff [12], Galambos [20, 21], de Caen [13],
Kuai et al. [34], Dohmen and Tittmann [14] and related graph-based bounds
in Hunter [28], Worsley [59], Veneziani [56], Vizvári [58]). These bounds have
shown to be tight in specific instances (in Section 2.1 we discuss some of these
instances).

(b) The second approach is to reduce the size of the linear programs used and
solve them numerically. As the number of random variables n increase, the
linear programs quickly become intractable and thus many papers adopting
this approach, aggregate the primal decision variables, thus obtaining weaker
bounds as a trade-off for the reduced size. Formulations of linear programs using
partially or fully aggregated univariate, bivariate or m-variate information for
2 ≤ m < n have been proposed in Kwerel [35], Platz [46], Prékopa [47, 48],
Boros and Prékopa [6], Prékopa and Gao [49], Qiu et al. [51], Yang et al. [61],
Yoda and Prékopa [62]). Techniques to solve the dual formulation have been
studied in Boros et al. [7].

Using the second approach, in some cases, closed-form bounds have been derived
as solutions of the aggregated linear programs. One such bound which is of relevance
to this paper is developed in Boros and Prékopa [6] when the first and second binomial
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 5

moments of an integer random variable supported on [0, n] are known. They computed
the tightest upper bound on P(ξ̃ ≥ k) by considering all distributions ω of an integer
random variable ξ̃ supported on [0, n] given by the set:{

ω([0, n])
∣∣∣ Eω [( ξ̃

j

)]
= Sj , j = 1, 2

}
.

Setting ξ̃ =
∑
i c̃i with S1 = E[S1(c̃)] and S2 = E[S2(c̃)] gives a closed-form upper

bound as follows:
(1.7)

P

∑
i∈[n]

c̃i ≥ k

 ≤


1, k <
(n− 1)S1 − 2S2

n− S1
,

(k + n− 1)S1 − 2S2

kn
,

(n− 1)S1 − 2S2

n− S1
≤ k < 1 +

2S2

S1
,

(i− 1)(i− 2S1) + 2S2

(k − i)2 + (k − i)
, k ≥ 1 +

2S2

S1
,

where i = d((k − 1)S1 − 2S2)/(k − S1)e and the ceiling function dxe maps x to the
smallest integer greater than or equal to x. Similar to the Chebyshev bound and
the Schmidt, Siegel and Srinivasan bound, the Boros and Prékopa bound in (1.7)
is not generally tight since it uses aggregated moment information, rather than the
specific marginal probabilities. Another useful upper bound derived under weaker
assumptions is the Boole union bound [5] (see also Fréchet [19]) for k = 1. This bound
is valid even with arbitrary dependence among the Bernoulli random variables. Let
Θ(p) denotes the set of joint distributions supported on {0, 1}n consistent with the
univariate marginal probability vector p ∈ [0, 1]n. The Boole union bound is given
as:

(1.8) Pu(n, 1,p) = max
θ∈Θ(p)

Pθ

∑
i∈[n]

c̃i ≥ 1

 = min

∑
i∈[n]

pi, 1

 .

Clearly, P (n, 1,p) ≤ Pu(n, 1,p). Extensions of this bound for k ≥ 2 is provided in
Rüger [52].

1.2. Contributions and structure. This brings us to the key contributions
and the structure of the current paper:

(a) In Section 2, we establish (see Lemma 2.1) that a positively correlated Bernoulli
random vector c̃ with the univariate probability vector p ∈ [0, 1]n and trans-
formed bivariate probabilities pipj/p where maxi pi ≤ p ≤ 1, always exists. The
lemma helps us compute the tightest upper bound on the probability of the union
of n pairwise independent events and is of independent interest. By a simple
transformation, the results from Lemma 2.1 are extended to show the existence
of an alternate positively correlated Bernoulli random vector (see Corollary 2.2).
Feasibility is not guaranteed for arbitrary correlation structures with Bernoulli
random vectors and hence these two results provide useful sufficient conditions.

(b) We then provide the tightest upper bound on the probability on the union of
n pairwise independent events (k = 1) in closed-form (see Theorem 2.3). The
contributions of Theorem 2.3 lie in:
1. Establishing that when the random variables are pairwise independent, for

any given marginal vector p ∈ [0, 1]n, the upper bound proposed in Kounias

This manuscript is for review purposes only.



6 A. K. RAMACHANDRA, AND K. NATARAJAN

[32], Hunter [28] and Worsley [59] is tight. These bounds were initially de-
veloped for the sum of dependent Bernoulli random variables with arbitrary
bivariate probabilities (using tree structures from graph theory) and are not
tight in general (see Example 2.4 in Section 2.1). Interestingly for pairwise
independent random variables, we prove that the bound is tight by using
Lemma 2.1.

2. Providing an explicit construction of an extremal distribution (not unique)
that attains this bound (see Table 2).

3. Proving that the ratio of the Boole union bound and the pairwise independent
bound is upper bounded by 4/3 and that this is attained (see Proposition 2.5).
Applications of the result in correlation gap analysis and distributionally
robust bottleneck combinatorial optimization are discussed (see examples 2.6
and 2.7).

4. Deriving the tightest lower bound on the probability of the intersection of n
pairwise independent events (k = n) in closed-form (see Corollary 2.9).

(c) In Section 3, we focus on k ≥ 2 and present new bounds exploiting the ordering
of probabilities (see Theorem 3.1). These ordered bounds improve on the closed-
form bounds discussed in Section 1 and numerical examples are provided to
illustrate this result.

(d) In Section 4, we provide instances where some of the existing bounds and the
newly proposed ordered bounds are tight:
1. First, we identify a special case when the existing closed-form bounds are

tight. When the random variables are identically distributed, in Section 4.1,
we provide the tightest upper bound in closed-form (see Theorem 4.1) for
any k ∈ [n]. The proof is based on showing an equivalence with a linear pro-
gramming formulation of an aggregated moment bound for which closed-form
solutions have been derived by Boros and Prékopa [6]. While the expression
of the tight closed-form bound is complicated in form in comparison with the
Chebyshev bound in (1.2) and the Schmidt, Siegel and Srinivasan bound in
(1.4), it helps us identify conditions when the latter bounds are guaranteed
to be tight (see Proposition 4.3).

2. This result with identical marginals is further extended to show tightness
for more general t-wise independent variables (see Corollary 4.2). The tight
bounds for t ≥ 4 can be derived as the optimal solution to an aggregated
linear program first proposed by Prékopa [48].

3. Next, when n−1 marginal probabilities are identical, Proposition 4.5 provides
instances when the new ordered bounds are tight. Numerical examples are
provided to illustrate this result.

(e) We conclude in Section 5 and identify some future research questions.

2. Tight upper bound for k = 1. The goal of this section is to provide the
tightest upper bound on the probability of the union of pairwise independent events.
Towards this, we start by generating a feasible solution to the dual linear program in
(1.6) with k = 1, pij = pipj for all (i, j) ∈ Kn and probabilities sorted in increasing
value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. Consider the dual solution:

λ0 = 0, λi = 1 ∀i ∈ [n], λin = −1 ∀i ∈ [n− 1] and λij = 0 otherwise.
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 7

The left hand side of the dual constraints in (1.6) then simplifies to:∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 = −
∑

i∈[n−1]

cicn +
∑
i∈[n]

ci

= cn +
∑

i∈[n−1]

ci(1− cn).

To verify that this solution is dual feasible, observe that with all ci = 0, cn +∑
i∈[n−1] ci(1 − cn) = 0. When cn = 1, regardless of the values of c1, . . . , cn−1,

we have cn +
∑
i∈[n−1] ci(1− cn) = 1. Lastly, when cn = 0 and at least one ci = 1 for

i ∈ [n− 1], we have cn +
∑
i∈[n−1] ci(1− cn) ≥ 1. This solution has an objective value

of
∑
i∈[n] pi − pn(

∑
i∈[n−1] pi). From weak duality and using the trivial upper bound

of 1, we have:

P (n, 1,p) ≤ min

∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 , 1

 .

Intuitively the first term in this expression is obtained using the probabilistic inequal-
ity:

P

∑
i∈[n]

c̃i ≥ 1

 ≤ ∑
j∈[n−1]

P (c̃j = 1, c̃n = 0) + P (c̃n = 1) ,

and is provided in the work of Kounias [32]. The key result we show is that it is
always possible to construct a pairwise independent distribution which attains the
upper bound. The proof involves showing that the problem can be transformed to
proving the existence of a distribution of a Bernoulli random vector c̃ with univariate
probabilities given by P(c̃i = 1) = pi and transformed bivariate probabilities given
by P(c̃i = 1, c̃j = 1) = pipj/pn, where pn is the largest univariate probability. In the
following lemma, we prove a more general result on the existence of such a correlated
Bernoulli random vector.

Lemma 2.1. Given an arbitrary univariate probability vector p ∈ [0, 1]n and bi-
variate probabilities pipj/p for (i, j) ∈ Kn where maxi pi ≤ p ≤ 1, a Bernoulli random
vector consistent with the given univariate and bivariate probabilities always exists.

Proof. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1.
We want to show that there always exists a distribution θ ∈ Θ(p, pipj/p; (i, j) ∈ Kn)
such that:

(2.1)

∑
c∈{0,1}n

θ(c) = 1,∑
c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
pipj
p
, ∀(i, j) ∈ Kn,

where pn ≤ p ≤ 1. The proof is divided into two parts:

(1) We first argue that it is sufficient to verify the existence of joint probabilities
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8 A. K. RAMACHANDRA, AND K. NATARAJAN

θ(c) for n Bernoulli random variables such that:

(2.2)

∑
c∈{0,1}n

θ(c) = 1,∑
c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
pipj
pn

, ∀(i, j) ∈ Kn,

where the bivariate probabilities are modified from pipj/p to pipj/pn. This is because
with 1 ≤ 1/p ≤ 1/pn, we can find a λ ∈ [0, 1] such that:

1

p
= λ

1

pn
+ (1− λ)1.

Then, we can create the convex combination of two distributions θ and θ as follows:

θ = λθ + (1− λ)θ,

where θ is a probability distribution which satisfies (2.2) and θ is a pairwise indepen-
dent joint distribution on n Bernoulli random variables with univariate probabilities
given by pi and bivariate probabilities given by pipj . The distribution θ always exists
as we can simply choose the mutually independent distribution on n random vari-
ables with univariate probabilities pi. The convex combination then guarantees the
existence of a distribution θ which satisfies (2.1). In step (2), we prove the existence
of such a θ.

(2) To show that (2.2) is feasible, observe that there always exists a feasible dis-
tribution on n − 1 Bernoulli random variables with probabilities given by ϑ(c−n) =
P(c̃−n = c−n) for all c−n = (c1, . . . , cn−1) ∈ {0, 1}n−1 such that:

(2.3)

∑
c−n∈{0,1}n−1

ϑ(c−n) = 1,∑
c−n∈{0,1}n−1:ci=1

ϑ(c−n) =
pi
pn
, ∀i ∈ [n− 1],∑

c−n∈{0,1}n−1:ci=1,cj=1

ϑ(c−n) =
pipj
p2
n

, ∀(i, j) ∈ Kn−1.

Such a ϑ exists because we can simply choose the mutually independent distribution
on n − 1 random variables with univariate probabilities pi/pn where the bivariate
probabilities are given by (pi/pn)(pj/pn). Then, we construct the distribution on n
random variables by setting the probability of the vector of all zeros to 1−pn, setting
the probabilities of the scenarios P(c̃−n = c−n, c̃n = 1) to ϑ(c−n)pn and setting all
the remaining probabilities to zero. This creates a feasible distribution satisfying (2.2)
as seen in the construction of Table 1. This completes the proof.

We remark that there are alternative approaches to construct distributions satisfying
Lemma 2.1. An anonymous referee provided the following construction. Let d̃ denote
a Bernoulli random vector with mutually independent random variables with marginal
probabilities given by P(d̃i = 1) = pi/p for i ∈ [n] and a Bernoulli random variable
z̃ constructed independently with P(z̃ = 1) = p. Define c̃i = d̃iz̃ for i ∈ [n]. Then
P(c̃i = 1) = pi for i ∈ [n] and P(c̃i = 1, c̃j = 1) = pipj/p for (i, j) ∈ Kn. We next show
that Lemma 2.1 can be extended to prove the existence of an alternative positively
correlated Bernoulli random vector.
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 9

Table 1: Probabilities of the scenarios to create a feasible distribution θ in (2.2).

Scenarios c1 c2 . . . cn Probability

2n−1


0 0 . . . 0 θ(c) = 1− pn
1 0 . . . 0 0
...

...
...

...
...

1 1 . . . 0 0

2n−1


0 0 . . . 1 θ(c) = pnϑ(c−n)
...

...
...

...
...

1 1 . . . 1 θ(c) = pnϑ(c−n)

Corollary 2.2. Given an arbitrary univariate probability vector p ∈ [0, 1]n and
bivariate probabilities pipj + p

1−p (1 − pi)(1 − pj) for (i, j) ∈ Kn where 0 ≤ p ≤
mini pi, a Bernoulli random vector consistent with the given univariate and bivariate
probabilities always exists.

Proof. From Lemma 2.1, it is straightforward to see that there exists a feasible
bivariate distribution ϑ with univariate probabilities 1−pi and bivariate probabilities
(1− pi)(1− pj)/(1− p) where 0 ≤ p ≤ mini pi (since 1 ≥ 1− p ≥ maxi(1− pi)). Note
that this distribution satisfies Pϑ (c̃i = 0) = pi, ∀i ∈ [n] and

Pϑ (c̃i = 0, c̃j = 0) = Pϑ (c̃i = 0)− [Pϑ (c̃j = 1)− Pϑ (c̃i = 1, c̃j = 1)]
= pi − [(1− pj) + (1− pi)(1− pj)/(1− p)]
= pipj + p

1−p (1− pi)(1− pj),

for all (i, j) ∈ Kn. By flipping the zeros and ones of the support of ϑ while retaining
the same joint probabilities ϑ(c), we obtain the desired result.

We note that Lemma 2.1 and Corollary 2.2 provide conditions on the bivariate
probabilities which guarantee the feasibility of positively correlated Bernoulli random
vectors. Feasibility is typically not guaranteed for arbitrary correlation structures
with Bernoulli random vectors. While prior works have identified specific correlation
structures that are compatible with Bernoulli random vectors (see Chaganty and Joe
[9], Qaqish [50], Emrich and Piedmonte [16], Lunn and Davies [38]), the identified
conditions in Lemma 2.1 and Corollary 2.2 appear to be new to the best of our
knowledge. This brings us to the first theorem, which provides the tightest upper
bound on the probability of the union of n pairwise independent events using Lemma
2.1.

Theorem 2.3. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤
pn ≤ 1. Then,

(2.4) P (n, 1,p) = min

∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 , 1

 .

Proof. With pij = pipj and k = 1, the optimal value of the primal linear program
in (1.5) is bounded since it is feasible and the objective function describes a probability
value. The optimality conditions of linear programming states that {θ(c); c ∈ {0, 1}n}
is primal optimal and {λij ; (i, j) ∈ Kn, λi; i ∈ [n], λ0} is dual optimal if and only if
they satisfy: (i) the primal feasibility conditions in (1.5), (ii) the dual feasibility
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conditions in (1.6) and (iii) the complementary slackness conditions given by: ∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0

 θ(c) = 0, ∀c ∈ {0, 1}n :
∑
t ct = 0, ∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 − 1

 θ(c) = 0, ∀c ∈ {0, 1}n :
∑
t ct ≥ 1.

(1) Proof of tightness of non-trivial bound in (2.4): We show that P (n, 1,p) =∑
i∈[n] pi − pn(

∑
i∈[n−1] pi) which is the non-trivial part of the upper bound in (2.4)

when
∑
i∈[n−1] pi ≤ 1. Consider the dual feasible solution λ0 = 0, λi = 1 ∀i ∈ [n],

λin = −1 ∀i ∈ [n−1] and λij = 0 otherwise. We verify the tightness of the bound, by
showing there exists a primal solution (feasible distribution) which satisfies the com-
plementary slackness conditions. Towards this, observe that from the complementary
slackness conditions in (iii) for all values of c ∈ {0, 1}n with

∑
t∈[n−1] ct ≥ 2 and

cn = 0, we have:

cn +
∑

i∈[n−1]

ci(1− cn)− 1 > 0 =⇒ θ(c) = 0.

This forces a total of 2n−1−n scenarios to have zero probability. Building on this, we
set the probabilities of the 2n possible scenarios of c̃ as shown in Table 2. The proba-
bility of the vector of all zeros (one scenario) is set to 1−

∑
i∈[n] pi + pn(

∑
i∈[n−1] pi).

To match the bivariate probabilities P(c̃i = 1, c̃n = 0) = pi(1 − pn), we have to then
set the probability of the scenario where ci = 1, cn = 0 and all remaining cj = 0 to
pi(1 − pn). This corresponds to the n − 1 scenarios in Table 2. Hence, to ensure

Table 2: Probabilities of 2n scenarios.

Scenarios c1 c2 . . . cn−1 cn Probability

1 0 0 . . . 0 0 1−
∑

i∈[n] pi + pn
(∑

i∈[n−1] pi

)
n− 1


1 0 . . . 0 0 p1(1− pn)
0 1 . . . 0 0 p2(1− pn)
...

...
...

...
...

...
0 0 . . . 1 0 pn−1(1− pn)

2n−1 − n


1 1 . . . 0 0 0
...

...
...

...
...

...
1 1 . . . 1 0 0

2n−1


0 0 . . . 0 1 θ(c)

 pn...
...

...
...

...
...

1 1 . . . 1 1 θ(c)

feasibility of the distribution, we need to show that there exist nonnegative values of
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θ(c) for the last 2n−1 scenarios such that:∑
c∈{0,1}n:cn=1

θ(c) = pn,∑
c∈{0,1}n:ci=1,cn=1

θ(c) = pipn, ∀i ∈ [n− 1],∑
c∈{0,1}n:ci=1,cj=1,cn=1

θ(c) = pipj , ∀(i, j) ∈ Kn−1,

or equivalently, by conditioning on cn = 1, we need to show that there exists nonneg-
ative values of ϑ(c−n) = P(c̃−n = c−n) for all c−n = (c1, . . . , cn−1) ∈ {0, 1}n−1 such
that:

(2.5)

∑
c−n∈{0,1}n−1

ϑ(c−n) = 1,∑
c−n∈{0,1}n−1:ci=1

ϑ(c−n) = pi, ∀i ∈ [n− 1],∑
c−n∈{0,1}n−1:ci=1,cj=1

ϑ(c−n) =
pipj
pn

, ∀(i, j) ∈ Kn−1.

This corresponds to verifying the existence of a probability distribution on n − 1
Bernoulli random variables with univariate probabilities pi and bivariate probabilities
pipj/pn where p1 ≤ p2 ≤ . . . ≤ pn−1 ≤ pn. Observe that in (2.5), the univariate
probabilities remain the same but the random variables are no longer pairwise in-
dependent. Now we make use of Lemma 2.1 to claim that (2.5) is always feasible.
By considering n − 1 variables and setting p = pn ≥ maxi∈[n−1] pi, it is to easy to
see from Lemma 2.1 that there exists a distribution which satisfies (2.5). An outline
of the different distributions used in the construction is provided in Figure 1. This
completes the proof for the case where

∑
i∈[n−1] pi ≤ 1 with:

P (n, 1,p) =
∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 .

(2) Proof of tightness of the trivial part of the bound in (2.4): To complete the proof,
consider the case with

∑
i∈[n−1] pi > 1. Then, there exists an index t ∈ [2, n− 1] such

that
∑
i∈[t−1] pi ≤ 1 and

∑
i∈[t] pi > 1. Let δ = 1 −

∑
i∈[t−1] pi. Clearly 0 ≤ δ < pt.

From step (1), we know that there exists a distribution for t + 1 pairwise indepen-
dent random variables with marginal probabilities p1, p2, . . . , pt−1, δ, pt+1 such that
the probability of the sum of the random variables being at least one is equal to
one (since the sum of the first t probabilities in this case is equal to one). By in-
creasing the marginal probability δ to pt, we can only increase this probability. To
see this, consider the distribution for t + 1 mutually independent Bernoulli random
variables with marginal probabilities p1, p2, . . . , pt−1, 1, pt+1 where the probability of
the sum of the random variables being at least one is equal to one. We can then
find a λ ∈ [0, 1) such that pt = λδ + (1 − λ) and construct a pairwise independent
distribution for t+ 1 pairwise independent random variables with marginal probabili-
ties p1, p2, . . . , pt−1, pt, pt+1 by using the convex combination of the two distributions
with sum of the random variables taking a value at least one with probability one.
We can generate the remaining random variables c̃t+2, . . . , c̃n independently with mar-
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(pi, pipj)

n dimensions

(
pi,

pipj
pn

)
n-1 dimensions

(pi, pipj)

n-1 dimensions

(
pi,

pipj
pn−1

)
n-1 dimensions

(
pi

pn−1
,
pipj
p2n−1

)
n-2 dimensions

Fig. 1: Construction of the extremal distribution.

ginal probabilities pt+2, . . . , pn. This provides a feasible distribution that attains the
bound of one, thus completing the proof.

2.1. Connection of Theorem 2.3 to existing results. Bounds on the prob-
ability that the sum of Bernoulli random variables is at least one has been extensively
studied in the literature, under knowledge of general bivariate probabilities. Let Ai
denote the event that ci = 1 for each i, then, k = 1 simply corresponds to bounding
the probability of the union of events. When the marginal probabilities pi = P(Ai) for
i ∈ [n] and bivariate probabilities pij = P(Ai ∩ Aj) for (i, j) ∈ Kn are given, Hunter
[28] and Worsley [59] derived the following bound by optimizing over spanning trees
τ ∈ T :

P(∪iAi) ≤
∑
i∈[n]

pi −max
τ∈T

∑
(i,j)∈τ

pij ,(2.6)

where T is the set of all spanning trees on the complete graph with n nodes with edge
weights given by pij . A special case of the Hunter [28] bound was derived by Kounias
[32]:

P(∪iAi) ≤
∑
i∈[n]

pi −max
j∈[n]

∑
i 6=j

pij ,(2.7)

which subtracts the maximum weight of a star spanning tree from the sum of the
marginal probabilities. Tree bounds have been shown to be tight, in some special
cases as outlined next:
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(a) Zero bivariate probabilities for all pairs: When all the probabilities pij are zero,
the bound reduces to the Boole union bound which is tight.

(b) Zero bivariate probabilities outside a given tree: Given a tree τ such that the
bivariate probabilities pij are zero for edges (i, j) /∈ τ , Worsley [59] proved that
the bound is tight (see Veneziani [57] for related results).

(c) Lower bounds on bivariate probabilities: Boros et al. [7] proved that by relaxing
the equality of bivariate probabilities to lower bounds on bivariate probabilities:

P
(
Ai ∩Aj

)
≥ pij , ∀(i, j) ∈ Kn,

the tightest upper bound on the probability of the union is exactly the Hunter
[28] and Worsley [59] bound (see Maurer [39] for related results).

(d) Pairwise independent variables (Theorem 2.3 in this paper): With pairwise
independent random variables where pij = pipj , the maximum weight spanning
trees in (2.6) is exactly the star tree with the root at node n and edges (i, n)
for all i ∈ [n− 1]. In, this case, the Kounias [32], Hunter [28] and Worsley [59]
bound reduce to the bound in (2.4) which is shown to be tight in Theorem 2.3
of this paper.

The next example illustrates that with general bivariate probabilities, even if a
joint distribution exists, the Hunter [28], Worsley [59] bound and Kounias [32] bound
are not guaranteed to be tight.

Example 2.4. Consider n = 4 Bernoulli random variables with univariate mar-
ginal probabilities:

p1 = 0.35, p2 = 0.19, p3 = 0.13, p4 = 0.2,

and bivariate probabilities:

p12 = 0.001, p13 = 0.022, p14 = 0.03, p23 = 0.017, p24 = 0.018, p34 = 0.019.

It can be verified using linear programming that a joint distribution with these given
univariate and bivariate probabilities exists. The tight upper bound obtained by
solving the linear program (1.5) is equal to:

max
θ∈Θ(p,pij ;(i,j)∈K4)

Pθ (c̃1 + c̃2 + c̃3 + c̃4 ≥ 1) = 0.784.

Figure 2 displays the star spanning tree chosen by the Kounias [32] bound and the
spanning tree chosen by the Hunter [28] and Worsley [59] bound. It is clear that none
of these bounds are tight in this instance. Boros et al. [7] also provide randomly
generated instances (see Table 1 of Section 4 in their paper) where the Hunter [28]
and Worsley [59] bound is not tight, athough it provides the best performance among
the upper bounds considered there.
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Fig. 2: Kounias [32], Hunter [28] and Worsley [59] spanning trees with general bivari-
ates

Figure 3 demonstrates that with the same set of univariate marginals, when pair-
wise independence is enforced, the spanning trees obtained from all these approaches
are identical and the bounds in (2.6) and (2.7) equal the tight bound 0.688 (from
Theorem 2.3).

Fig. 3: Optimal spanning tree with pairwise independence when p =
(0.35, 0.19, 0.13, 0.2).

2.2. Comparison with the union bound. The next proposition provides an
upper bound on the ratio of the Boole union bound and the pairwise independent
bound in (2.4) in Theorem 2.3.

Proposition 2.5. For all p ∈ [0, 1]n, we have:

Pu(n, 1,p)

P (n, 1,p)
≤ 4

3
.

The ratio of 4/3 is attained when
∑
i∈[n−1] pi = 1/2 and pn = 1/2.

Proof. Assume the probabilities are sorted in increasing value as 0 ≤ p1 ≤ p2 ≤
. . . ≤ pn ≤ 1. It is straightforward to see that if

∑
i∈[n−1] pi > 1, both the bounds

take the value of P (n, 1,p) = Pu(n, 1,p) = 1. Now assume, α =
∑
i∈[n−1] pi ≤ 1.
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The ratio is given as:

Pu(n, 1,p)

P (n, 1,p)
=

min
(∑

i∈[n] pi, 1
)

∑
i∈[n] pi − pn

(∑
i∈[n−1] pi

)
=

min (α+ pn, 1)

α+ pn − αpn
.

If α+ pn ≤ 1, then we have:

Pu(n, 1,p)

P (n, 1,p)
=

α+ pn
α+ pn − αpn

=
1

1− 1
1
α+ 1

pn

≤ 4

3
[where the maximum is attained at α = 1− pn and pn = 1/2].

If α+ pn ≥ 1, then we have:

Pu(n, 1,p)

P (n, 1,p)
=

1

α+ pn − αpn
=

1

α(1− pn) + pn

≤ 4

3
[where the maximum is attained at α = 1− pn and pn = 1/2].

This gives the bound of 4/3 when pn = 1/2 and α = 1/2.

We next illustrate an application of Theorem 2.3 and Proposition 2.5 in comparing
bounds with dependent and independent random variables in correlation gap analysis.

Example 2.6 (Correlation gap analysis). The notion of “correlation gap” was
introduced by Agrawal et al. [1]. It is defined as the ratio of the worst-case expected
cost for random variables with given univariate marginals to the expected cost when
the random variables are independent. When c̃ is a Bernoulli random vector and θind
denotes the independent distribution, the correlation gap is defined as:

(2.8) κu(p) = sup
θ∈Θ(p)

Eθ[f(c̃)]

Eθind[f(c̃)]
.

A function f : {0, 1}n → R+ is: (i) submodular if f(c) + f(d) ≥ f(c ∧ d) + f(c ∨
d) for all c,d ∈ {0, 1}n with c ∧ d = (min(c1, d1), . . . ,min(cn, dn)) and c ∨ d =
(max(c1, d1), . . . ,max(cn, dn)) and (ii) nondecreasing if f(c) ≥ f(d) for all c ≥ d.
A key result in this area is that for any nonnegative, nondecreasing, submodular
function, the correlation gap is always upper bounded by e/(e − 1) (see Calinescu
et al. [8], Agrawal et al. [1]). The example constructed in these papers show the
bound is attained for the maximum of binary variables f(c) = maxi∈[n] ci. For a

This manuscript is for review purposes only.



16 A. K. RAMACHANDRA, AND K. NATARAJAN

given marginal vector p, the correlation gap in (2.8) reduces to:

(2.9)

κu(p) =
maxθ∈Θ(p) Eθ[max (c̃1, c̃2, ..., c̃n)]

1−
∏n
i=1(1− pi)

=
maxθ∈Θ(p) Pθ

(∑
i∈[n] c̃i ≥ 1

)
1−

∏n
i=1(1− pi)

=
min

(∑
i∈[n] pi, 1

)
1−

∏n
i=1(1− pi)

.

We now provide an extension of this definition by considering the ratio of the worst-
case expected cost when the random variables are pairwise independent to the ex-
pected cost when the random variables are independent. This is given as:

κ(p) = sup
θ∈Θ(p,pij ;(i,j)∈Kn)

Eθ[f(c̃)]

Eθind[f(c̃)]
,

which reduces in this specific case to:

κ(p) =
min

(∑
i∈[n] pi − pn

(∑
i∈[n−1] pi

)
, 1
)

1−
∏n
i=1(1− pi)

.

Clearly κ(p) ≤ κu(p). We next compare these two ratios.

(a) Worst-case analysis: Assume the marginal probability vector is given by p =
(1/n, . . . , 1/n). For the independent distribution, the probability is given by 1− (1−
1/n)n, while the Boole union bound is equal to one (attained by the distribution
which assigns probability 1/n to each of n support points with ci = 1, cj = 0,∀j 6= i
(for each i ∈ [n]) and zero otherwise). In this case, the limit of the ratio as n goes to
infinity is given by:

lim
n→∞

κu(p) =
1

1− (1− 1/n)n
=

e

e− 1
≈ 1.5819.

Likewise it is easy to verify that with pairwise independence:

lim
n→∞

κ(p) =
1− 1/n (1− 1/n)

1− (1− 1/n)n
=

e

e− 1
≈ 1.5819.

Thus in the worst-case, both these bounds attain the ratio e/(e− 1).

(b) Instances where the correlation gap can be improved: On the other hand, Propo-
sition 2.5 illustrates that for the probabilities pn = 1/2 and

∑
i∈[n−1] pi = 1/2, the

pairwise independent bound is 3/4 and the Boole union bound is one. For example
with n = 2 where p = (1/2, 1/2), the Boole union bound is one, while both the
pairwise independent bound and the independent probability is equal to 3/4. Then,
we have κu((1/2, 1/2)) = 4/3 while κ((1/2, 1/2)) = 1. Thus in specific instances,
the correlation gap can be tightened by considering pairwise independent random
variables.

An application of the 4/3 bound in Proposition 2.5 in the context of distributionally
robust optimization is discussed next.
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Example 2.7 (Distributionally robust bottleneck combinatorial optimization).
Consider a set of n elements indexed by [n] = {1, 2, . . . , n} where element i has a
cost of ci. Given a set of feasible solutions X ⊆ {0, 1}n, the goal in the bottleneck
combinatorial optimization problem is to find the solution x ∈ X that minimizes the
maximum cost among the selected elements (bottleneck cost). This is formulated as
the bottleneck combinatorial optimization problem:

min
x∈X⊆{0,1}n

max
i∈[n]

cixi.

A threshold algorithm to solve this class of problems was developed by Edmonds and
Fulkerson [15]. Consider a distributionally robust variant of this problem where the
cost of the element i is a random variable c̃i and the joint distribution of c̃ is not fully
specified. The distributionally robust bottleneck optimization problem is formulated
as:

min
x∈X⊆{0,1}n

max
θ∈Θ

E
[
max
i∈[n]

c̃ixi

]
,

where Θ is the set of possible joint distributions and the goal is to find the solution
x ∈ X that minimizes the maximum expected bottleneck cost. Such problems have
been studied in Agrawal et al. [1] where the distributions are specified up to mar-
ginal information and Xie et al. [60] where the distributions are assumed to lie in a
ball around an empirical distribution specified by the Wasserstein distance. Here we
consider the set of distributions with pairwise independent random variables where
Θ = Θ(p, pipj ; (i, j) ∈ Kn). The next proposition provides a 4/3-approximation
algorithm for this problem.

Proposition 2.8. Let OPT be the optimal value of the distributionally robust
bottleneck combinatorial optimization problem:

OPT = min
x∈X⊆{0,1}n

max
θ∈Θ(p,pipj ;(i,j)∈Kn)

E
[
max
i∈[n]

c̃ixi

]
︸ ︷︷ ︸

f(x)

.

Suppose we can optimize linear functions over the set X ⊆ {0, 1}n in polynomial time.
Then, we can find x̂ in polynomial time such that:

OPT ≤ f(x̂) ≤ 4

3
OPT.

Proof. When x ∈ X ⊆ {0, 1}n, each c̃ixi is a Bernoulli random variable with
P(c̃ixi = 1) = pixi. Using the Boole union bound, we have:

max
θ∈Θ(p)

E
[
max
i∈[n]

c̃ixi

]
= min

1,
∑
i∈[n]

pixi

 .

Consider the solution x̂ which is computable in polynomial time by solving the min-
imum cost combinatorial optimization problem:

x̂ ∈ arg min
x∈X⊆{0,1}n

∑
i∈[n]

pixi.
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Let x∗ denote the optimal solution and θ∗ denote the worst-case pairwise independent
distribution in OPT. Then we have:

f(x̂)

OPT
=

maxθ∈Θ(p,pipj ;(i,j)∈Kn) E
[
maxi∈[n] c̃ix̂i

]
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
≤

maxθ∈Θ(p) E
[
maxi∈[n] c̃ix̂i

]
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
[since Θ(p, pipj ; (i, j) ∈ Kn) ⊆ Θ(p)]

=
min

(
1,
∑
i∈[n] pix̂i

)
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
≤

min
(

1,
∑
i∈[n] pix

∗
i

)
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
[since x∗ is only feasible for the sum objective]

=
Pu(n, 1,p · x∗)
P (n, 1,p · x∗)

[where p · x∗ = (p1x
∗
1, . . . , pnx

∗
n)]

≤ 4
3
[from Proposition 2.5].

Proposition 2.8 can be applied to instances such as the bottleneck assignment, bot-
tleneck matching problem and bottleneck shortest path problems and provides a 4/3-
approximation for these instances. The next result shows that Theorem 2.3 can be
used to prove a tight lower bound on the probability of the intersection of pairwise
independent events.

2.3. Tight lower bound for k = n. Denote the tightest lower bound on the
probability of the intersection of pairwise independent events by P (n, n,p). Then,

P (n, n,p) = min
θ∈Θ(p,pipj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i = n

 .

Corollary 2.9. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤
pn ≤ 1. Then,

(2.10) P (n, n,p) = max

(
p1

(
n∑
i=2

pi − (n− 2)

)
, 0

)
.

Proof. The proof follows from that of the union probability bound in Theorem
2.3. Define a complementary Bernoulli random variable di = 1− cn−i+1, i ∈ [n], with
transformed probabilities P(d̃i = 1) = qi = 1−pn−i+1, i ∈ [n] and thus 0 ≤ q1 ≤ q2 ≤
. . . ≤ qn ≤ 1. We first note that the maximum probability of the union of pairwise
independent events can be expressed as an equivalent maximization problem defined
on d as follows:

(2.11) P (n, 1,p) = Q(n, n− 1, q) = max
θ∈Θ(q,qiqj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

d̃i ≤ n− 1


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where Q(n, n − 1, q) is the maximum probability that at most n − 1 complimentary
events occur. The proof is then completed by noting that the tight lower intersection
bound P (n, n, q) can be expressed as

P (n, n, q) = 1−Q(n, n− 1, q)
= 1− P (n, 1,p)

= 1−min
(∑

i∈[n] pi − pn
(∑

i∈[n−1] pi

)
, 1
)

= 1−min
(

1− (1− pn)
(

1−
∑
i∈[n−1] pi

)
, 1
)

= max

(
q1

(
n∑
i=2

qi − (n− 2)

)
, 0

)
.

and replacing q by p.

Extremal Distribution: The primal distribution which attains the non-trivial part
of the tight intersection bound P (n, n, q) is shown in Table 3. It can be constructed
from the union probability extremal distribution θ? in Table 2 by flipping the zeros
and one’s of the support, reversing the bits (to ensure ordering of the transfomed
probabilities) and retaining the same joint probabilities θ?(c) but expressed in terms
of q instead of p.

Table 3: Probabilities of 2n scenarios.

Scenarios d1 d2 . . . dn−1 dn Probability

2n−1


0 0 . . . 0 0 θ(d)

 1− q1...
...

...
...

...
...

0 1 . . . 1 1 θ(d)

2n−1 − n


1 0 . . . 0 0 0
...

...
...

...
...

...
1 1 . . . 1 0 0

n− 1


1 0 . . . 1 1 q1(1− q2)
..
.

..

.
..
.

...
...

...
1 1 . . . 0 1 q1(1− qn−1)
1 1 . . . 1 0 q1(1− qn)

1 1 1 . . . 1 1 q1
(∑n

i=2 qi − (n− 2)
)

Note that the feasibility of the joint distribution in Table 3 depends on the existence
of nonnegative values θ(d) for the first 2n−1 scenarios or alternatively by conditioning
on d1 = 0, there exist nonnegative values of ϑ(d−1) = P(d̃−1 = d−1) for all d−1 =
(d2 . . . , dn) ∈ {0, 1}n−1 such that:
(2.12) ∑

d−1∈{0,1}n−1

ϑ(d−1) = 1,∑
d−1∈{0,1}n−1:di=0

ϑ(d−1) = 1− qi, ∀i ∈ [2, n],

∑
d−1∈{0,1}n−1:di=0,dj=0

ϑ(d−1) =
(1− qi)(1− qj)

1− q1
, ∀(i, j) ∈ {(i, j) : 2 ≤ i < j ≤ n},

where the constraints in (2.12) is expressed in terms of non-occurence of the Bernoulli
events represented by d, i.e. di = 0 instead of di = 1. The existence of such a feasible
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bivariate distribution ϑ can be independently verified from Corollary 2.2 by noting
that the Bernoulli random vector defined there satisfies P (c̃i = 0) = 1 − pi, ∀i ∈ [n]
and P (c̃i = 0, c̃j = 0) = (1 − pi)(1 − pj)/(1 − p) for all (i, j) ∈ Kn, subsequently
replacing pi by qi and setting p = q1 <= mini∈[2,n] qi for n− 1 variables instead of n.

2.3.1. Connection of Corollary 2.9 to existing results. The intersection
bound P (n, n,p) derived in Corollary 2.9 is zero when

∑n
i=2 pi ≤ n − 2. In related

work with identical probabilities p, Benjamini et al. [3] compute that the minimum
intersection probability for t-wise independent Bernoulli random variables and identify
when it is zero. They prove that P (n, n, p) = 0 for all t < n and p ≤ 1/2 which
matches our result with pairwise independence (t = 2) since p ≤ (n−2)/(n−1) ≤ 1/2
for all n ≥ 3. We will show in Section 4.1 that with pairwise independent identical
Bernoulli’s, it is possible to derive closed-form tight upper and lower bounds on the
intersection probability and more generally P (n, k,p) and P (n, k,p) for any k ∈ [n].
With arbitrary dependence among the Bernoulli random variables, the Fréchet [19]
lower intersection bound is given as:
(2.13)

Pu(n, n,p) = minθ∈Θ(p) Pθ
(∑

i∈[n] c̃i = n
)

= max
(∑

i∈[n] pi − (n− 1), 0
)
.

Clearly, P (n, n,p) ≥ Pu(n, 1,p) and the lower bound is thus improved with pairwise
independence.

3. Improved bounds with non-identical marginals for k ≥ 2. In the previ-
ous section, we resolved the question of finding the tightest bound on the probability
of the union of pairwise independent events. We now shift attention to the case of at
least k pairwise independent events occurring where k ≥ 2. Deriving tight bounds for
general k appears to be challenging. We exploit the ordering of the probabilities to
provide new upper bounds by creating feasible solutions to the dual linear program
in (1.6). We make use of the observation that all three bounds in (1.2), (1.4) and
(1.7) can be expressed in terms of the first two aggregated (or equivalently binomial)
moments of the sum of pairwise independent random variables with S1 =

∑
i pi and

S2 =
∑

(i,j)∈Kn pipj . The new ordered bounds improve on these three closed-form

bounds. We will refer to the original bounds in (1.2), (1.4) and (1.7) as unordered
bounds from this point onwards. The next theorem provides probability bounds
for the sum of pairwise independent random variables with possibly non-identical
marginals when k ≥ 2.

Theorem 3.1. Sort the input probabilities in increasing order as p1 ≤ . . . ≤ pn.
Define the partial binomial moment S1r =

∑
i∈[n−r] pi for r ∈ [0, n − 1] and S2r =∑

(i,j)∈Kn−r
pipj for r ∈ [0, n− 2].

(a) The ordered Schmidt, Siegel and Srinivasan bound is a valid upper bound on
P (n, k,p):

(3.1) P (n, k,p) ≤ min

(
1, min
r1∈[0,k−1]

(
S1r1

k − r1

)
, min
r2∈[0,k−2]

(
S2r2(
k−r2

2

))) ,∀k ∈ [2, n].

(b) The ordered Boros and Prékopa bound is a valid upper bound on P (n, k,p):

(3.2) P (n, k,p) ≤ min
r∈[0,k−1]

BP (n− r, k − r,p), ∀k ∈ [2, n],
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where:

BP (n− r, k − r,p)

=



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r,

(k + n− 2r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r,

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r.

and i = d((k − r − 1)S1r − 2S2r)/(k − r − S1r)e.
(c) The ordered Chebyshev bound is a valid upper bound on P (n, k,p):

(3.3) P (n, k,p) ≤ min
r∈[0,k−1]

CH(n− r, k − r,p),∀k ∈ [2, n],

where:

CH(n− r, k − r, p) =

1, k < S1r + r,
S1r − (S2

1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.

Proof.

(a) We observe that for any r1 ∈ [0, k − 1] and any subset S ⊆ [n] of the random
variables of cardinality n− r1, an upper bound is given by:

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

(∑
i∈S

c̃i ≥ k − r1

)
[since

∑
i∈[n] ci ≥ k implies

∑
i∈S ci ≥ k − r1]

≤
E
[∑

i∈S c̃i
]

k − r1
[using Markov inequality]

=

∑
i∈S pi

k − r1
.

The tightest upper bound of this form is obtained by minimizing over all r1 ∈ [0, k−1]
and subsets S ⊆ [n] with |S| = n− r1:

(3.4)

P

∑
i∈[n]

c̃i ≥ k

 ≤ min
r1∈[0,k−1]

min
S:|S|=n−r1

∑
i∈S pi

k − r1

= min
r1∈[0,k−1]

∑
i∈[n−r1] pi

k − r1

[using the n− r1 smallest probabilities].

We derive the other term in (3.1) using a similar approach while accounting for pair-
wise independence. For any r2 ∈ [0, k − 2] and any subset S ⊆ [n] of the random
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variables of cardinality n− r2, an upper bound is given by:

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

(∑
i∈S

c̃i ≥ k − r2

)

= P
((∑

i∈S c̃i
2

)
≥
(
k − r2

2

))
≤

E
[∑

i∈S
∑
j∈S:j>i c̃ic̃j

]
(
k−r2

2

)
[using equation (1.3) and Markov inequality]

=

∑
i∈S
∑
j∈S:j>i E[c̃i]E[c̃j ](
k−r2

2

)
[using pairwise independence]

=

∑
i∈S
∑
j∈S:j>i pipj(
k−r2

2

) .

The tightest upper bound of this form is obtained by minimizing over r2 ∈ [0, k − 2]
and all sets S of size n− r2. This gives:

(3.5)

P

∑
i∈[n]

c̃i ≥ k

 ≤ min
r2∈[0,k−2]

min
S:|S|=n−r2

∑
i∈S
∑
j∈S:j>i pipj(
k−r2

2

)
= min

r2∈[0,k−2]

(∑
(i,j)∈Kn−r2

pipj(
k−r2

2

) )
[using the n− r2 smallest probabilities].

From the bounds (3.4) and (3.5), we get:

P (n, k,p) ≤ min

(
1, min
r1∈[0,k−1]

(
S1r1

k − r1

)
, min
r2∈[0,k−2]

(
S2r2(
k−r2

2

))) , ∀k ∈ [2, n],

where S1r1 =
∑
i∈[n−r1] pi for r1 ∈ [0, n − 1] and S2r2 =

∑
(i,j)∈Kn−r2

pipj for r2 ∈
[0, n−2]. One can interpret this bound as creating a set of dual feasible solutions and
picking the best among them. The dual formulation is:

P (n, k,p) = min
∑

(i,j)∈Kn

λijpipj +
∑
i∈[n]

λipi + λ0

s.t
∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 0 ∀c ∈ {0, 1}n,∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 1, ∀c ∈ {0, 1}n :
∑
t ct ≥ k.

The components of the second term in (3.1) are obtained by choosing dual feasible
solutions with λi = 1/(k − r1) for i ∈ [n − r1] and setting all other dual variables to
0. Similarly, the components of the third term are obtained by choosing dual feasible
solutions with λij = 1/

(
k−r2

2

)
for (i, j) ∈ Kn−r2 and setting all other dual variables

to 0.
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(b) The bound in (3.2) is obtained by using the inequality:

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

 ∑
i∈[n−r]

c̃i ≥ k − r

 , ∀r ∈ [0, k − 1],

in conjunction with the bound in (1.7) computed from Boros and Prékopa [6]. We

compute an upper bound on P
(∑

i∈[n−r] c̃i ≥ k − r
)

by using the aggregated mo-

ments S1r and S2r with the Boros and Prékopa bound from (1.7) as follows:

BP (n− r, k − r,p)

=



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r,

(k + n− 2r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r,

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r,

where i = d((k − r − 1)S1r − 2S2r)/(k − r − S1r)e. Since the relation P (n, k,p) ≤
BP (n − r, k − r,p) is satisfied for every 0 ≤ r ≤ k − 1, the best upper bound on
P (n, k,p) is obtained by taking the minimum over all possible values of r:

P (n, k,p) ≤ minr∈[0,k−1]BP (n− r, k − r,p), ∀k ∈ [2, n].

(c) Proceeding in a similar manner as in (b), by using the aggregated moments S1r

and S2r with Chebyshev bound, the upper bound for a given r ∈ [0, k − 1] can be
written as follows:

CH(n− r, k − r, p) =

1, k < S1r + r,
S1r − (S2

1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.

The best upper bound on P (n, k,p) is obtained by taking the minimum over all
possible values of r:

P (n, k,p) ≤ min
r∈[0,k−1]

CH(n− r, k − r,p), ∀k ∈ [2, n].

3.1. Connection to existing results. Prior work in Rüger [52] shows that
ordering of probabilities provides the tightest upper bound on the probability of n
Bernoulli random variables adding up to at least k, when allowing for arbitrary de-
pendence. Specifically, the bound derived there is:

Pu(n, k,p) = max
θ∈Θ(p)

Pθ

∑
i∈[n]

c̃i ≥ k

 = min

(
1, min
r∈[0,k−1]

(
S1r

k − r

))
.

However, this bound does not use pairwise independence information. Part (a) of
Theorem 3.1 tightens the analysis in Rüger [52] for pairwise independent random
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variables. It is also straightforward to see that the ordered Schmidt, Siegel and
Srinivasan bound in (3.1) is at least as good as the bound in (1.4) (simply plug in
r = 0). Building on the ordering of probabilities, the bound in (3.2) uses aggregated
binomial moments for k ordered sets of random variables of size n − r where r ∈
[0, k− 1]. When r = 0, the bound in (3.2) reduces to the original aggregated moment
bound of Boros and Prékopa in (1.7) and hence this bound is at least as tight. All
the bounds in Theorem 3.1 are clearly efficiently computable.
It is easy to verify that the ordered Boros and Prékopa bound is at least as good as
the other two ordered bounds, i.e.,

Ordered bound (3.2) ≤ min (Ordered bound (3.1),Ordered bound (3.3)) .

This is true since, each term of the ordered bounds are derived by finding upper
bounds on the probability that the sum of the first n − r random variables takes a
value of at least k − r using only the first two moments of the sum of these random
variables. Since the Boros and Prékopa bound is the tightest upper bound possible
when using only the first two moments of the sum, each term in the ordered Boros
and Prékopa bound is at least as good as the corresponding term in the other two
ordered bounds. Taking the minimum over all these terms implies that the ordered
Boros and Prékopa bound must be at least as good as the other two bounds.

3.2. Further tightening of ordered bounds:. It is also worth mentioning
that the bounds in Theorem 3.1 can in fact be strengthened further by using the
tightest possible bound for k = 1 from Theorem 2.3. Specifically, we can tighten the
ordered Schmidt, Siegel and Srinivasan bound in (3.1) as follows:

min

1, min
r∈[0,k−2]

min

(
S1r

k − r
,
S2r(
k−r

2

)) , ∑
i∈[n−k+1]

pi − pn−k+1

∑
i∈[n−k]

pi

 .

where the last term corresponds to r1 = k − 1 and is obtained by observing that:

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

 ∑
i∈[n−k+1]

c̃i ≥ 1


≤

∑
i∈[n−k+1]

pi − pn−k+1

∑
i∈[n−k]

pi

[from Theorem 2.3]
≤

∑
i∈[n−k+1] pi

= S1(k−1)/(k − (k − 1)).

The Boros and Prékopa bound and Chebyshev ordered bounds in (3.2) and (3.3) can
be similarly tightened. Unlike the bounds in Theorem 3.1, these tightened bounds
use partially disaggregated moment information. We next provide two numerical
examples to illustrate the impact of ordering on the quality of the three bounds. We
restrict attention, however, to the aggregated ordered moment bounds in Theorem
3.1 only.

3.3. Numerical illustrations.

Example 3.2 (Non-identical marginals). Consider an example with n = 12 ran-
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dom variables with the probabilities given by

p1 = 0.0651, p2 = 0.0977, p3 = 0.1220, p4 = 0.1705, p5 = 0.3046, p6 = 0.4402,
p7 = 0.4952, p8 = 0.6075, p9 = 0.6842, p10 = 0.8084, p11 = 0.9489, p12 = 0.9656.

Table 4 compares the three ordered bounds with the three unordered bounds and the
tight upper bound. Numerically, the ordered Boros and Prékopa bound (3.2) is found
to be tight in this example for k = 7, 8, 9, 12 while the ordered Schmidt, Siegel and
Srinivasan bound (3.1) is tight for k = 12. The ordered Boros and Prékopa bound
is uniformly the best performing of the three bounds, while among the other two
ordered bounds, none uniformly dominates the other. For example, comparing the
ordered bounds when 7 ≤ k ≤ 9, the Chebyshev bound outperforms the Schmidt,
Siegel and Srinivasan bound, but when k = 6 or 10 ≤ k ≤ 12, the Schmidt, Siegel and
Srinivasan bound does better. Comparing the unordered bounds when 7 ≤ k ≤ 9,
the Schmidt, Siegel and Srinivasan bound (1.4) outperforms the Chebyshev bound
(1.2) when k = 6 but for all k ≥ 7, bound (1.2) does better. In terms of absolute
difference between ordered and unordered bounds, ordering provides the maximum
improvement to the Schmidt, Siegel and Srinivasan bound, followed by the Boros and
Prékopa bound and the Chebyshev bound.

Table 4: Upper bound on the probability of sum of random variables equaling at least
k for n = 12. For each value of k, the bottom row provides the tightest bound which
can be computed in this example by solving an exponential sized linear program. The
underlined instances illustrate cases when the other upper bounds are tight.

Bound k ∈ [1, 4] k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12
(1.2) 1 1 0.9553 0.5192 0.2552 0.1424 0.0889 0.0603 0.0434
(3.3) 1 1 0.9553 0.5192 0.2552 0.1424 0.0883 0.0549 0.0307
(1.4) 1 1 0.9517 0.6831 0.5123 0.3985 0.3188 0.2608 0.2173
(3.1) 1 1 0.9489 0.6162 0.3620 0.1827 0.0712 0.0250 0.0064
(1.7) 1 1 0.9497 0.5018 0.2509 0.1326 0.0795 0.0530 0.0379
(3.2) 1 1 0.9254 0.5018 0.2509 0.1290 0.0712 0.0249 0.0064
Tight 1 0.9957 0.8931 0.5018 0.2509 0.1290 0.0692 0.0230 0.0064

Example 3.3 (Non-identical marginals). In this example, we numerically com-
pute the improvement of the new ordered bounds over the unordered bounds for
n = 100 variables by creating 500 instances by randomly generating the probabilities
p = (p1, p2, .., p100). First, we consider small marginal probabilities by uniformly and
independently generating the entries of p between 0.01 and 0.05. When k = n, Figure
4a plots the three ordered bounds while Figure 4b shows the percentage improvement
of the three bounds over their unordered counterparts. The percentage improvement
is computed as

(
[unordered-ordered]/unordered

)
× 100%. In this example with small

marginals, the ordered Schmidt, Siegel and Srinivasan bound (3.1) is equal to the
ordered Boros and Prékopa bound (3.2) as seen in Figure 4a. Ordering tends to im-
prove the Schmidt, Siegel and Srinivasan bound significantly for smaller probabilities,
since both the partial binomial moment terms S1r and S2r are smaller with smaller
marginal probabilities for all r ∈ [0, k − 1].

The percentage improvement due to ordering in figure 4b is consistently above
80% for the Schmidt, Siegel and Srinivasan bound, while that of the Boros and
Prékopa bound is around 60%. The ordered Chebyshev bound (3.3) shows an al-
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(a) Actual value of the ordered bounds (b) Percentage improvement of ordered bounds

Fig. 4: Smaller marginal probabilities pi with n = 100, k = 100 and 500 instances.

most negligible improvement by ordering in this example.
Next, we consider similar plots when k = n−1 with larger marginal probabilities.

The entries of p are generated uniformly and independently between 0.05 and 0.99.
In Figure 5a, the ordered Chebyshev bound (3.3) performs better than the ordered

(a) Actual value of the ordered bounds (b) Percentage improvement of ordered bounds

Fig. 5: Larger marginal probabilities pi with n = 100, k = 99 and 500 instances.

Schmidt, Siegel and Srinivasan bound (3.1). In Figure 5b, the percentage improvement
due to ordering is again most significant for the Schmidt, Siegel and Srinivasan bound,
being consistently above 90% while that of the Boros and Prékopa bound is less than
40% and that of the Chebyshev bound is less than 20%. It is also clear from Figures
4 and 5 that the ordered Boros and Prékopa bound (3.2) is the tightest of the three
bounds across the instances, while among the other two bounds, none uniformly
dominates the other.

4. Tightness in special cases. In this section, we identify two tight instances,
one for the unordered bounds in (1.2), (1.4) and (1.7) and the other for the corre-
sponding ordered bounds derived in Theorem 3.1. Firstly, in Section 4.1, for identical
variables, the symmetry in the problem allows for closed-form tight bounds for any
k ∈ [2, n]. We prove this by showing an equivalence of the exponential sized lin-
ear program (1.5) which computes the exact bound with a polynomial sized linear
program analyzed in computing the Boros and Prékopa bound in (1.7). We use the
exact bound to identify instances when the other two unordered bounds are tight.
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The result with identical marginals is further extended to show tightness for t-wise
independent variables. Secondly, in Section 4.2, we demonstrate the usefulness of the
ordered bounds by identifying a special case when n− 1 marginals are identical (with
additional conditions on the probability and k), when the ordered bounds in (3.1) and
(3.2) are tight.

4.1. Tightness of bounds with identical marginals. In this section, we
provide probability bounds for n pairwise independent random variables adding up
to at least k ∈ [2, n] when their marginals are identical. The next theorem provides
the tight bound with identical marginals, by applying the Boros and Prékopa bound
in (1.7) to pairwise independent variables with ξ̃ =

∑
i∈[n] c̃i.

Theorem 4.1. Assume pi = p ∈ (0, 1) for i ∈ [n]. Let P (n, k, p) represent the
tightest upper bound on the probability that n pairwise independent identical Bernoulli
random variables add up to at least k ∈ [n]. Then,
(4.1)

P (n, k, p) =


1, k < (n− 1)p, (a)
((n− 1)(1− p) + k)p

k
, (n− 1)p ≤ k < 1 + (n− 1)p, (b)

(i− 1)(i− 2np) + n(n− 1)p2

(k − i)2 + (k − i)
, k ≥ 1 + (n− 1)p, (c),

where i = dnp(k − 1− (n− 1)p)/(k − np)e.
Proof. The tightest upper bound P (n, k, p) is the optimal value of the linear

program:

(4.2)

P (n, k, p) = max
∑

c∈{0,1}n:
∑
i ci≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = p, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) = p2, ∀(i, j) ∈ Kn,

θ(c) ≥ 0, ∀c ∈ {0, 1}n,

where the decision variables are the joint probabilities θ(c) = P(c̃ = c) for c ∈ {0, 1}n.
Consider the following linear program in n+1 variables which provides an upper bound
on P (n, k, p):

(4.3)

BP (n, k, p) = max
∑
`∈[k,n]

v`

s.t.
∑
`∈[0,n]

v` = 1,∑
`∈[1,n]

`v` = np,

∑
`∈[2,n]

(
`

2

)
v` =

(
n

2

)
p2,

v` ≥ 0, ∀` ∈ [0, n],

where the decision variables are the probabilities v` = P(
∑
i∈[n] c̃i = `) for l ∈ [0, n].

Linear programs of the form (4.3) have been studied in Boros and Prékopa [6] in
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the context of aggregated binomial moment problems. As we shall see, these two
formulations are equivalent with identical pairwise independent random variables.

(1) P (n, k, p) ≤ BP (n, k, p): Given a feasible solution to (4.2) denoted by θ, con-
struct a feasible solution to the linear program (4.3) as:

v` =
∑

c∈{0,1}n:
∑
i ci=l

θ(c), ∀l ∈ [0, n].

By taking expectations on both sides of the equality (1.3), we get:

∑
l∈[j,n]

(
l

j

)
P

∑
i∈[n]

c̃i = l

 = E [Sj(c̃)] , ∀j ∈ [0, n].

Applying it for j = 0, 1, 2, we get the three equality constraints in (4.3):∑
`∈[0,n]

v` = 1,

∑
`∈[1,n]

`v` = E

∑
i∈[n]

c̃i

 = np,

∑
`∈[2,n]

(
`

2

)
v` = E

 ∑
(i,j)∈Kn

c̃ic̃j

 = n(n− 1)p2/2.

Lastly, the objective function value of this feasible solution satisfies:

n∑
`=k

v` =

n∑
`=k

∑
c∈{0,1}n:

∑
i ci=l

θ(c)

=
∑

c∈{0,1}n:
∑
i ci≥k

θ(c).

Hence, P (n, k, p) ≤ BP (n, k, p).

(2) P (n, k, p) ≥ BP (n, k, p): Given an optimal solution to (4.3) denoted by v,
construct a feasible solution to the linear program (4.2) by distributing v` equally
among all the realizations in {0, 1}n with exactly ` ones:

θ(c) =
v`(
n
`

) , ∀c ∈ {0, 1}n :
∑
i∈[n] ci = `,∀` ∈ [0, n].

The first constraint in (4.2) is satisfied since:∑
c∈{0,1}n

θ(c) =
∑
`∈[0,n]

∑
c∈{0,1}n:

∑
i ci=l

v`(
n
`

)
[since

∣∣{0, 1}n :
∑
i∈[n] ci = `

∣∣ =
(
n
`

)
]

=
∑
`∈[0,n]

v`

= 1.
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The second constraint in (4.2) is satisfied since:∑
c∈{0,1}n:cj=1

θ(c) =
∑
`∈[1,n]

v`(
n
`

)(n− 1

`− 1

)
[since

∣∣{0, 1}n :
∑
i∈[n] ci = `, cj = 1

∣∣ =
(
n−1
`−1

)
]

=
∑
`∈[1,n]

`v`
n

= p.

The third constraint in (4.2) satisfied since:∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
∑
`∈[2,n]

v`(
n
`

)(n− 2

`− 2

)
[since

∣∣{0, 1}n :
∑
t∈[n] ct = `, ci = 1, cj = 1

∣∣ =
(
n−2
`−2

)
]

=
2

n(n− 1)

∑
`∈[2,n]

(
`

2

)
v`

= p2.

The objective function value of the feasible solution is given by:∑
c∈{0,1}n:

∑
i ci≥k

θ(c) =
∑
`∈[k,n]

∑
c∈{0,1}n:

∑
i ci=l

θ(c)

=
∑
`∈[k,n]

v`

= BP (n, k, p).

Hence, the optimal objective value of the two linear programs are equivalent. The
formula for the tight bound in the theorem is then exactly the Boros and Prékopa
bound in (1.7) (the bound BP (n, k, p) is also derived in the work of [53], although
tightness of the bound is not shown there). It is straightforward to verify that the
following distributions attain the bounds for each of the cases (a)-(c) in the statement
of the theorem:

(a) The probabilities are given as:

θ(c) =



(1− p)(j − (n− 1)p)(
n−1
j−1

) , if
∑
t∈[n]

ct = j − 1,

(1− p)(1 + (n− 1)p− j)(
n−1
j

) , if
∑
t∈[n]

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

(n− j)2 + (n− j)
, if

∑
t∈[n]

ct = n,

where j = d(n− 1)pe and all other support points have zero probability.
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(b) The probabilities are given as:

θ(c) =



1− p
k

(k − (n− 1)p), if
∑
t∈[n]

ct = 0,

p(1− p)(
n−2
k−1

) , if
∑
t∈[n]

ct = k,

p((n− 1)p− (k − 1))

n− k
, if

∑
t∈[n]

ct = n,

where all other support points have zero probability.

(c) The probabilities are given as:

θ(c) =



np[(n− 1)p− (k + i− 1)] + ik(
n
i−1

)
(k − i+ 1)

, if
∑
t∈[n]

ct = i− 1,

np[(k + i− 2)− (n− 1)p]− k(i− 1)(
n
i

)
(k − i)

, if
∑
t∈[n]

ct = i,

n(n− 1)p2 + (i− 1)(i− 2np)(
n
k

)
[(k − i)2 + (k − i)]

, if
∑
t∈[n]

ct = k,

where all other support points have zero probability and the index i is evaluated as
stated in equation (4.1)(c). It is straightforward to see that with identical marginals,
the tight union bound in Theorem 2.3 reduces to the bound in case (b) of Theorem
4.1.

4.1.1. Connection of Theorem 4.1 to existing results. Tightness results
with identical Bernoulli random variables have been established in the literature in
the context of occurence of at least and exactly k out of n events for specific regimes
of the parameters n, k and p. Theorem 4.1 however, provides the tight bounds for all
values of (n, k, p). Recent work by Garnett [22] provides the tight upper bound on the
probability that the sum of pairwise independent Bernoulli random variables exceeds
the mean by a small amount (this corresponds to case (b)). Pinelis [44] derives a
closed-form tight lower bound on the probability of occurence of exactly one of out
n events. Benjamini et al. [3] and Peled et al. [43] derived closed-form upper and
lower bounds (not necessarily tight) on the maximal intersection probability of more
general t-wise independent Bernoulli random variables (this corresponds to k = n in
case (c) for t = 2). These bounds were shown to match each other up to multiplicative
factors of lower order in a large regime of the parameters n, p, t. The connection of the
intersection probability with the linear program based approach of Boros and Prékopa
[6] has been mentioned in these papers, although the equivalence for all values of k
is not established. Corollary 4.2 in this paper, however, establishes the equivalence
for all values of n, k, p, t. The usefulness of Theorem 4.1 lies in the fact that it can be
extended to incorporate a wide variety of cases involving identical Bernoulli events by
using the results from Boros and Prékopa [6] as follows:
i) Tight closed-form lower bounds on probability of occurrence of at least k out of n
events
ii) Tight closed-form upper and lower bounds on the probability of occurence of ex-
actly k out of n events
iii) Tight linear program based upper and lower bounds for t-wise independent vari-
ables (t ≥ 3) from the symmetry assumptions (see Corollary 4.2).
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We note that when k ≥ 1 + (n − 1)p, the tight lower bound from [6] can be derived
as:

P (n, k, p) =

{ (
2+(n−1)p−k

)
p

n−k+1 , 1 + (n− 1)p ≤ k < 2 + (n− 1)p

0, k ≥ 2 + (n− 1)p.

When k = n ≥ 1 + (n − 1)p, this bound reduces to max (p ((n− 1)p− (n− 2)) , 0)
which is exactly the intersection bound computed in Corollary 2.9 with identical
probabilities.

Corollary 4.2. Consider identical t-wise independent Bernoulli random vari-
ables with probabilities p ∈ (0, 1) where t ∈ [2, n]. Then, the tightest upper bound on
the probability of n such variables adding up to at least k ∈ [n], denoted by P (n, k, p, t),
can be computed as the optimal value of the aggregated linear program proposed by
Prékopa [48]:

(4.4)

P (n, k, p, t) = max

n∑
`=k

v`

s.t.

n∑
`=m

(
`

m

)
v` =

(
n

m

)
pm, ∀m ∈ [0, t],

v` ≥ 0, ∀` ∈ [0, n],

where the decision variables are the probabilities v` = P(
∑n
i=1 c̃i = `) for l ∈ [0, n].

Proof. The proof is straightforward from the proof of Theorem 4.1 which implies
the equivalence of (4.4) with the large-sized linear program:

(4.5)

P (n, k, p, t) = max
∑

c∈{0,1}n:
∑
i ci≥k

P(c)

s.t.
∑

c∈{0,1}n
P(c) = 1,∑

c∈{0,1}n: ci=1, ∀i∈J

P(c) = pm, ∀J ∈ Im, m ∈ [t],

P(c) ≥ 0, ∀c ∈ {0, 1}n,

where Im = {I ⊆ [n] : |I| = m}. In particular for any given feasible solution of (4.4),
we can distribute the probability mass v` evenly across the

(
n
`

)
scenarios for every

` ∈ [0, n] and satisfy all the constraints in (4.5) while for any given feasible solution
of (4.5), we can aggregate the probabilities P(c) as

v` =
∑

c∈{0,1}n:
∑
i ci=l

P(c), ∀l ∈ [0, n].

and satisfy all constraints in (4.4).

We note that for 3-wise independent variables, a closed-form expression for the optimal
objective in (4.4) using the first three binomial moments has been provided in [6].
Further, the corresponding tight lower bound P (n, k, p, t) can be computed as the
optimal value of the minimization version of the aggregated linear program in (4.4).

4.1.2. Tightness of alternative bounds. We next discuss an application of
Theorem 4.1. Since the marginals are identical, it is easy to see that the ordered
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bounds in Theorem 3.1 reduce to the unordered bounds corresponding to r = 0.
While the unordered Boros and Prékopa bound provides the tightest upper bound
with identical marginals, the formula is more involved than the unordered Chebyshev
bound which reduces to:

(4.6) P (n, k, p) ≤

{
1, k < np,

np(1− p)/
(
np(1− p) + (k − np)2

)
, np ≤ k ≤ n.

and the unordered Schmidt, Siegel and Srinivasan bound which reduces to:

(4.7) P (n, k, p) ≤ min

(
1,
np

k
,
n(n− 1)p2

k(k − 1)

)
.

It is possible to then use Theorem 4.1 to identify conditions on the parameters (n, k, p)
for which the bounds in (4.6) and (4.7) are tight. We only focus on the non-trivial
cases where the tight bound is strictly less than one and n ≥ 3. Henceforth, the
Chebyshev and Schmidt, Siegel and Srinivasan bounds referred to in this section are
the unordered bounds.

Proposition 4.3.

(a) For p = α/(n− 1) and any integer α ∈ [n− 2], the Chebyshev bound in (4.6) is
tight for the values of k = α+ 1 and k = n.

(b) For p ≤ 1/(n − 1), the Schmidt, Siegel and Srinivasan bound in (4.7) is tight
for all k ∈ [2, n] while for p > 1/(n − 1), the bound is tight for all values of k ∈
[d1 + (n− 1)pe ,

⌊
n(n− 1)p2/(np− 1)

⌋
].

Proof. Since Theorem 4.1 provides the tight bound, we simply need to show the
equivalence with the bounds in (4.6) and (4.7) for the instances in the proposition.

(a) Consider p = α/(n− 1) for any integer α ∈ [n− 2].
1. Set k = α+ 1. This corresponds to case (c) in Theorem 4.1. Plugging in the

values, the index i which is required for finding the tight bound is given by:

i =

⌈
nα(α+ 1− 1− α)/(n− 1)

α+ 1− nα/(n− 1)

⌉
= 0.

The corresponding tight bound in (4.1) gives:

P (n, k, p) =
nα

(n− 1)(α+ 1)
=

np

np+ 1− p
.

It is straightforward to verify by plugging in the values that the Chebyshev
bound is exactly the same.

2. Set k = n. This corresponds to case (c) in Theorem 4.1. Plugging in the
values, the index i in the tight bound is given by:

i =

⌈
nα(n− 1− α)/(n− 1)

n− nα/(n− 1)

⌉
= α.

The tight bound in (4.1) gives:

P (n, k, p) =
α

(n− 1)(n− α)
=

p

p+ n(1− p)
.
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It is straightforward to verify by plugging in the values that the Chebyshev
bound is exactly the same in this case.

(b) Observe that the last two terms in the Schmidt, Siegel and Srinivasan bound in
(4.7) satisfy:

n(n− 1)p2

k(k − 1)
≤ np

k
when k ≥ 1 + (n− 1)p.

Since k ≥ 1+(n−1)p implies 1 ≥ np/k, the bound in (4.7) reduces to n(n− 1)p2/k(k − 1).
The range of k ≥ 1+(n−1)p corresponds to case (c) in Theorem 4.1. If k = 1+(n−1)p,
the index i = dnp(k − (1 + (n− 1)p))/(k − np)e = 0 and the tight bound from (4.1)
is:

np

1 + (n− 1)p
,

which is exactly the Schmidt, Siegel and Srinivasan bound. We can also verify that
when the index i = 1 in case (c), then the tight bound in (4.1) reduces to:

P (n, k, p) =
n(n− 1)p2 + (1− 1)(1− 2np)

(k − 1)2 + (k − 1)

=
n(n− 1)p2

k(k − 1)
.

We now identify conditions when k > 1 + (n− 1)p and the index i is equal to one.
1. Consider 0 < p ≤ 1/(n − 1). For the values of p in this interval, the valid

range of k in case (c) corresponds to integer values of k ≥ 1 + (n− 1)p which
means k ≥ 2. For the probability 0 < p ≤ 1/n, the index i satisfies:

i =

⌈
np

(
1− 1− p

k − np

)⌉
= 1

[since 0 < np ≤ 1 and 1− p ∈ (0, 1) and k − np > 1− p].

For the probability 1/n < p ≤ 1/(n− 1), the index i satisfies:

i =

⌈
(n− 1)p

(
k−1
n−1 − p
k
n − p

)⌉
= 1

[since 0 < (n− 1)p ≤ 1 and 0 < k−1
n−1 − p ≤

k
n − p].

Hence, the bound in (4.7) is tight in this case for all integer values of k ≥ 2.
2. For p > 1/(n− 1), the index i = 1 when k(np− 1) ≤ n(n− 1)p2. This corre-

sponds to all integer values k ∈ [d1 + (n− 1)pe ,
⌊
n(n− 1)p2/(np− 1)

⌋
].

A specific instance to show the tightness of the Chebyshev bound is to set p = 1/2,
k = n and n = 2m− 1 where m is an integer. Using m independent Bernoulli random
variables it is then possible to construct n pairwise independent Bernoulli random
variables (see Tao [55], Goemans [25], Pass and Spektor [42] for this construction).
Proposition 4.3(a) includes this instance (set α = (n− 1)/2, k = n and n = 2m − 1).
In addition, Proposition 4.3(a) identifies other values of p and k where the Chebyshev
bound is tight. Proposition 4.3(b) also shows that the Schmidt, Siegel and Srinivasan
bound is tight for identical marginals for small probability values (p ≤ 1/(n− 1)), for
all values of k, except k = 1. We now provide a numerical illustration of the results
in Theorem 4.1 and Proposition 4.3.
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Example 4.4 (Identical marginals). In Table 5, we provide a numerical compari-
son of the bounds for n = 11 for a set of values of p and k. The instances in Table 5
cover all the conditions identified in Proposition 4.3 when the Chebyshev and Schmidt,
Siegel and Srinivasan bounds are tight. The instances when the Chebyshev bound
is tight correspond to (i) p = 0.1 (here α = 1 and the Chebyshev bound is tight for
k = 2 and k = 11), (ii) p = 0.2 (here α = 2 and the Chebyshev bound is tight for
k = 3 and k = 11) and (iii) p = 0.5 (here α = 5 and the Chebyshev bound is tight for
k = 6 and k = 11). The Schmidt, Siegel and Srinivasan bound is tight for the small
values of p = 0.01, 0.05, 0.10 (which are less than or equal to 1/(n− 1) = 0.1) and for
all values of k, except k = 1.

Table 5: Upper bound on probability of sum of random variables for n = 11. For
each value of p and k, the table provides the tight bound in (4.1) followed by the
Chebyshev bound (4.6) and the Schmidt, Siegel and Srinivasan bound (4.7). The
underlined instances illustrate nontrivial cases when the upper bounds in either (4.6)
or (4.7) are tight.

p/k 1 2 3 4 5 6 7 8 9 10 11
0.01 0.1090 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.1208 0.02959 0.01288 0.00715 0.00454 0.00313 0.00229 0.00175 0.00138 0.00112 0.00092
0.11000 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.05 0.5250 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250
0.7206 0.19905 0.08008 0.04205 0.02571 0.01729 0.01240 0.00933 0.00726 0.00582 0.00477
0.5500 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250

0.10 1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000
1 0.55000 0.21522 0.10532 0.06112 0.03960 0.02766 0.02038 0.01562 0.01235 0.01000
1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000

0.11 1 0.59950 0.22184 0.11092 0.06655 0.04437 0.03037 0.02170 0.01627 0.01266 0.01013
1 0.63310 0.25156 0.12154 0.06975 0.04484 0.03113 0.02283 0.01744 0.01375 0.01112
1 0.60500 0.22184 0.11092 0.06655 0.04437 0.03170 0.02377 0.01849 0.01479 0.01210

0.15 1 0.78750 0.41250 0.19584 0.09792 0.05875 0.03916 0.02798 0.02098 0.01632 0.01306
1 0.91968 0.43489 0.20253 0.11109 0.06901 0.04672 0.03362 0.02531 0.01972 0.01579
1 0.82500 0.41250 0.20625 0.12375 0.08250 0.05893 0.04419 0.03437 0.02750 0.02250

0.20 1 1 0.73334 0.33334 0.16667 0.10000 0.06667 0.04762 0.03572 0.02778 0.02223
1 1 0.73334 0.35200 0.18334 0.10865 0.07097 0.04972 0.03667 0.02812 0.02223
1 1 0.73334 0.36667 0.22000 0.14667 0.10477 0.07858 0.06112 0.04889 0.04000

0.50 1 1 1 1 1 0.91667 0.54167 0.29167 0.17500 0.11667 0.08334
1 1 1 1 1 0.91667 0.55000 0.30556 0.18334 0.11957 0.08334
1 1 1 1 1 0.91667 0.65477 0.49108 0.38195 0.30556 0.25000

It is also clear why the Schmidt, Siegel and Srinivasan bound is not tight for
k = 1, since it just reduces to the Markov bound np and does not exploit the pairwise
independence information. For k = 1, the tight bound from Theorem 4.1 is given
by np − (n − 1)p2 (see Theorem 2.3 which reduces to the same bound for k = 1).
For larger values of p above 0.1, such as p = 0.11 in the table, from Proposition
4.3(b), the Schmidt, Siegel and Srinivasan bound is tight for k ∈ [d2.1e , b6.33c] which
corresponds to k ∈ [3, 6]. This can be similarly verified for the other probabilities
p = 0.15, 0.2, 0.5 in the table.

4.2. Tightness of ordered bounds in a special case. In this section, we
provide an instance when two of the ordered bounds derived in Section 3 are shown
to be tight. While the ordered bounds in Theorem 3.1 are not tight in general, the
next proposition identifies a special case with almost identical marginals when the
bounds of Schmidt, Siegel and Srinivasan in (3.1) and Boros and Prékopa in (3.2) are
shown to be attained.

Proposition 4.5. Suppose the marginal probabilities equal p ∈ (0, 1/(n − 1)] for
n − 1 random variables and q ∈ (0, 1) for one random variable. Then, the ordered
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bounds in (3.1) and (3.2) are tight for the following three instances and are given by:
(4.8)

P (n, k, p, q) =



(
n−1

2

)
p2(

k−1
2

) , k ≥ 3, q ≥ (n− 2)p, (a),(
n−1

2

)
p2(

k−1
2

) , k ∈
[
d2 + (n− 2)p/qe, n

]
, p ≤ q < (n− 2)p, (b),

pq, k = n, 0 < q < p, (c).

Proof. We first prove that the ordered bounds of Schmidt, Siegel and Srinivasan
and Boros and Prékopa reduce to the bound in (4.8) in each of the three cases and
then show that the bound is tight.

(1) Show reduction of ordered bounds to the bound in (4.8): Let P (n, k, p, q) rep-
resent the tightest upper bound when n − 1 probabilities are p and one is q. It can
be observed that the bound in (4.8) is non-trivial for the three instances since:(

n−1
2

)
p2(

k−1
2

) =
(n− 1)p(n− 2)p

(k − 1)(k − 2)
< 1,

[since (n− 2)p < (n− 1)p ≤ 1 and k ≥ 3 for cases (a) and (b)],
pq < 1,

[since q < p < 1 for case (c)].

It is easy to verify that the ordered Schmidt, Siegel and Srinivasan bound in (3.1)
reduces to the bound in (4.8) for a specific parameter r2 in each of the three cases:

(4.9)
r2 = 1, cases (a) and (b),
r2 = n− 2, case (c).

It can be similarly verified that the ordered Boros and Prékopa bound in (3.2) reduces
to the bound in (4.8) with the following parameters r and i in each of the three cases:

(4.10)
r = 1, i = 0, cases (a) and (b),
r = n− 2, i = 0, case (c).

The effectiveness of ordering is demonstrated by (4.9) and (4.10) in that the ordered
bounds of Schmidt, Siegel and Srinivasan and Boros and Prékopa correspond to r > 0
while their unordered counterparts in (1.4) and (1.7) correspond to r = 0 (considering
all n variables). The unordered bounds are thus strictly weaker than the ordered
bounds which in turn are tight as proved in the next step.

(2) Prove tightness of the bound in (4.8) by constructing extremal distributions:
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Consider the linear program to compute P (n, k, p, q) which can be written as:

(4.11)

P (n, k, p, q) = max
∑

c∈{0,1}n:
∑
t ct≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = p, ∀i ∈ [n− 1],∑
c∈{0,1}n:cn=1

θ(c) = q,∑
c∈{0,1}n:ci=1,cj=1

θ(c) = p2, ∀(i, j) ∈ Kn−1,∑
c∈{0,1}n:ci=1,cn=1

θ(c) = pq, ∀i ∈ [n− 1],

θ(c) ≥ 0, ∀c ∈ {0, 1}n.

We now proceed to prove tightness of the bound in (4.8) for each of the three instances
of the (n, k, p, q) tuple by constructing feasible distributions of (4.11) which attain the
bound.

1. P (n, k, p, q) =

(
n−1

2

)
p2(

k−1
2

) (cases (a) and (b)):

The following distribution attains the tight bound:
(4.12)
θ(c) =

(1− q)(1− (n− 1)p), if
∑
t∈[n]

ct = 0, (x),

p(1− q), if
∑

t∈[n−1]

ct = 1, cn = 0, (y),

q(1− (n− 1)p) + (n−1)(n−2)p2

(k−1) , if
∑

t∈[n−1]

ct = 0, cn = 1, (z),

p(q − n−2
k−2p), if

∑
t∈[n−1]

ct = 1, cn = 1, (u),

p2

(n−3
k−3)

, if
∑

t∈[n−1]

ct = k − 1, cn = 1, (v).

We use symbols x, y, z, u, v to denote the probability of the associated sce-
narios in (4.12). The constraints in (4.11) reduce to:(

n−2
k−2

)
v + u+ y = p(

n−1
k−1

)
v + (n− 1)u+ z = q(

n−3
k−3

)
v = p2(

n−2
k−2

)
v + u = pq

x+ y + z + u+ v = 1,

and using x, y, z, u, v from (4.12), it can be easily verified that all of the above
constraints are satisfied. The non-negativity constraints for y, v are satisfied
while x ≥ 0, z ≥ 0 is satisfied since (n − 1)p ≤ 1. Remaining case is u, for
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which we have:

case (a): u = p(q − n−2
k−2p)

≥ p(q − n−2
3−2 p)

[since k ≥ 3]
= p(q − (n− 2)p)

[since q > (n− 2)p]
≥ 0

case (b): u = p(q − n−2
k−2p)

≥ p(q − k−2
k−2q)

[since k ≥ 2 + (n− 2)p/q]
= 0.

The only support points contributing to the objective function are the first
set of

(
n−1
k−1

)
scenarios, and so we have P (n, k, p, q) =

(
n−1
k−1

)
p2/
(
n−3
k−3

)
=(

n−1
2

)
p2/
(
k−1

2

)
.

2. P (n, k, p, q) = pq (case (c)):
The following distribution attains the tight bound pq:
(4.13)

θ(c) =



(1− p)(1− (n− 2)p− q), if
∑
t∈[n]

ct = 0, (x),

p(1− p), if
∑

t∈[n−1]

ct = 1, cn = 0, (y),

q(1− p), if
∑

t∈[n−1]

ct = 0, cn = 1, (z),

p(p− q), if
∑

t∈[n−1]

ct = n− 1, cn = 0, (u),

pq, if
∑
t∈[n]

ct = n, (v).

The constraints in (4.11) reduce to:

y + u+ v = p
z + v = q
u+ v = p2

v = pq
x+ y + z + u+ v = 1,

and using x, y, z, u, v from (4.13), it can be easily verified that all of the
above constraints are satisfied. The non-negativity contraints for y, z, u, v are
satisfied by 0 < q ≤ p ≤ 1 while for x, we have:

x = (1− p)(1− (n− 2)p− q)
≥ (1− p)(1− (n− 2)p− p)

[since q < p]
= (1− p)(1− (n− 1)p)
≥ 0

[since (n− 1)p ≤ 1].

The distribution in (4.13) attains the bound pq.
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We have thus constructed two feasible probability distributions in (4.12) and (4.13)
which attain the bound in (4.8) in each of the three instances defined by the (n, k, p, q)
tuple. Hence the parameters r2, r in (4.9) and (4.10) defined for each of the three
cases must be the minimizers which exactly reduce the ordered bounds in (3.1) and
(3.2) to the tight bound in (4.8).

Example 4.6. This example demonstrates the usefulness of Proposition 4.5 when
n = 100 and p = 0.01 where (n − 1)p ≤ 1. It compares the tight bounds computed
from (4.8) with the unordered bounds of Schmidt, Siegel and Srinivasan from (1.4)
and that of Boros and Prékopa from (1.7).

(a) q = 0.99, q ≥ (n− 2)p, k ≥ 3 (b) q = 0.1, p ≤ q < (n− 2)p, k ≥ 12

Fig. 6: Comparison of unordered bounds with tight bound when n = 100, p = 0.01

Figure 6a plots the two unordered bounds along with the tight bound when q =
0.99 (case (a) of Proposition 4.5), where the tight bound is valid for all k in [3, n],
while Figure 6b compares the bounds when q = 0.1 (case (b) of Proposition 4.5) for
k ≥ 12 as the tight bound is valid when k ≥ d2 + (n − 2)p/qe = d11.8e = 12. The
unordered Boros and Prékopa bound is much tighter than the unordered Schmidt,
Siegel and Srinivasan bound in both figures. Hence, Figure 6 demonstrates that with
ordering, the relative improvement of the Schmidt, Siegel and Srinivasan bound is
much better than that of the Boros and Prékopa bound although both the ordered
bounds reduce to the tight bound in (4.8).

5. Conclusion. In this paper we have provided results towards finding tight
probability bounds for the sum of n pairwise independent random variables adding
up to at least an integer k. In Section 2, we first established with Lemma 2.1 that a
feasible correlated distribution of a Bernoulli random vector c̃ with an arbitrary uni-
variate probability vector p ∈ [0, 1]n and transformed bivariate probabilities pipj/p
where maxi pi ≤ p ≤ 1, always exists (this result was then extended to prove the exis-
tence of an alternate correlated Bernoulli random vector in Corollary 2.2). Theorem
2.3 then established that with pairwise independence, the Hunter [28] and Worsley
[59] bound is tight for any p ∈ [0, 1]n, which, to the best of our knowledge, has not
been shown thus far in the literature dedicated to this topic. In fact, paraphrasing
from Boros [7] (Section 1.2), “As far as we know, in spite of the several studies dedi-
cated to this problem, the complexity status of this problem, for feasible input, seems
to be still open even for bivariate probabilities”. With pairwise independent random
variables, feasibility is guaranteed and Theorem 2.3 shows that the tightest upper
bound is computable in polynomial time (in fact in a simple closed-form), thus pro-
viding a partial positive answer towards this question. The proof included the explicit
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construction of an extremal distribution (though not unique) in Table 2, that attains
this bound. We then showed in Proposition 2.5 that the ratio of the Boole union
bound and the pairwise independent bound is upper bounded by 4/3 and that this
bound is attained. Applications of the result in correlation gap analysis and bottle-
neck optimization (in the distributionally robust optimization context) were discussed
in examples 2.6 and 2.7. The tight upper bound on the union probability was then
used to derive a closed-form expression for the tight lower bound on the intersection
probability in Corollary 2.9, which, to the best of our knowledge, appears to be un-
known in the literature. In Section 3, for k ≥ 2, we proposed new bounds exploiting
ordering of the probabilities (which are at least as good as the unordered bounds) and
argued that the ordered Boros and Prékopa bound must be at least as good as the
other two ordered bounds proposed in Theorem 3.1. To the best of our knowledge,
this idea of ordering has not been exploited thus far to tighten probability bounds
for pairwise independent random variables. We then showed in Section 3.2 that the
ordered bounds can be further tightened by using the tight bound for k = 1 from The-
orem 2.3. Numerical examples in Section 3.3 then demonstrated that while the Boros
and Prékopa bound is uniformly the best performing of the three ordered bounds,
the Schmidt, Siegel and Srinivasan bound shows the best improvement with ordering,
in the examples considered. Section 4 provided instances when the unordered and
ordered bounds are tight. In Section 4.1, for the special case of identical probabilities
p ∈ [0, 1] and any k ∈ [n], we used a constructive proof exploiting the symmetry in the
problem, to identify the best upper bound P (n, k, p) in closed-form and a correspond-
ing extremal distribution. This result was further extended to provide tight bounds
(not necessarily closed-form) for more general t-wise independent identical variables
in Corollary 4.2. We then demonstrated the usefulness of this result by identifying
instances when the existing unordered bounds are tight. Section 4.2 demonstrated
the usefulness of the ordered bounds by identifying an instance with n − 1 identical
probabilities (along with additional conditions on the identical probability and k),
when the ordered bounds are tight.
We believe several interesting research questions arise from this work, two of which
we list below:

(a) To the best of our knowledge, the computational complexity of evaluating (or
approximating) the bound P (n, k,p) for general n, k and p ∈ [0, 1]n is still unre-
solved. While we provide the answer in closed-form for k = 1, a natural question
that arises is whether the tight bounds for general k ≥ 2 with pairwise indepen-
dent random variables are efficiently computable (or efficient to approximate)?
We leave this for future research.

(b) The upper bound of 4/3 in Section 2.2 is derived for the ratio between the
maximum probability for the union of arbitrarily dependent events and the
probability of the union of pairwise independent events. We conjecture this
upper bound is valid for the expected value of all non-decreasing, nonnegative
submodular functions (of which the probability of the union is a special case)
and leave it as an open question.
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[47] A. Prékopa, Boole-Bonferroni inequalities and linear programming, Operations Research, 36
(1988), pp. 145–162.
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[52] B. Rüger, Das maximale signifikanzniveau des Tests: “Lehne H0 ab, wennk untern gegebenen
tests zur ablehnung führen”, Metrika, 25 (1978), pp. 171–178.

[53] Y. S. Sathe, M. Pradhan, and S. P. Shah, Inequalities for the probability of the occurrence
of at least m out of n events, Journal of Applied Probability, 17 (1980), pp. 1127–1132.

[54] J. Schmidt, A. Siegel, and A. Srinivasan, Chernoff–Hoeffding bounds for applications with
limited independence, SIAM Journal on Discrete Mathematics, 8 (1995), pp. 223–250.

[55] T. Tao, Topics in random matrix theory, vol. 132, Graduate Studies in Mathematics, American
Mathematical Society, 2012.

[56] P. Veneziani, Graph-based upper bounds for the probability of the union of events, The Elec-
tronic Journal of Combinatorics, 15 (2008).

[57] P. Veneziani, Optimality conditions for Hunter’s bound, Discrete Mathematics, 308 (2008),
pp. 6009–6014.
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