
A PDE-based Method for Shape Registration

Esten Nicolai Wøien∗† Markus Grasmair∗‡

March, 2021

Abstract

In the square root velocity framework, the computation of shape space
distances and the registration of curves requires solution of a non-convex
variational problem. In this paper, we present a new PDE-based method
for solving this problem numerically. The method is constructed from nu-
merical approximation of the Hamilton-Jacobi-Bellman equation for the
variational problem, and has quadratic complexity and global convergence
for the distance estimate. In conjunction, we propose a backtracking
scheme for approximating solutions of the registration problem, which
additionally can be used to compute shape space geodesics. The meth-
ods have linear numerical convergence, and improved efficiency compared
previous global solvers.

1 Introduction

A large number of applications require the manipulation and mathematical or
statistical analysis of geometric objects in general and curves in particular. Ex-
amples from mathematical image processing are segmentation, where one wants
to find and classify different objects within an image based on their outlines (see
e.g. [14] for a classical model), or object tracking (see [19]), where one wants
to follow the same object over a sequence of consecutive frames. Other exam-
ples include the analysis of shapes of proteins [15], modelling and analysis of
computer animations [3, 9], or also inverse problems concerning the detection
of shapes from indirect measurements [12].

In order to perform these tasks, it is necessary to have a well-defined and
easily computable notion of distance between curves at hand. One important
example is the Square Root Velocity (SRV) distance originally introduced in
[17, 16] (see Section 2 below for a precise definition), which can be interpreted as
a measure for the bending and stretching energy that is required for transforming
one curve into another. For parametrised curves, this distance is defined by
applying first a non-linear transformation—the Square Root Velocity transform
(SRVT)—to the involved curves, which maps them onto the unit sphere in L2.
Then, the distance of the curves is defined as the unit sphere distance of their

∗Department of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway

†esten.n.woien@ntnu.no
‡markus.grasmair@ntnu.no

1

ar
X

iv
:2

10
3.

16
53

7v
1

 [
m

at
h.

N
A

]
 3

0
M

ar
 2

02
1

esten.n.woien@ntnu.no
markus.grasmair@ntnu.no

SRV transformations. Even more, this setting makes it possible to regard the
space of all parametrised curves as a manifold with a Riemannian structure that
is inherited from the unit sphere in L2. In particular, one can define geodesics
between parametrised curves, that is, optimal deformations of one curve into
another.

However, in many applications we are only interested in the image of a curve,
but not the concrete parametrisation. We thus rather require a distance between
shapes, that is, equivalence classes of curves modulo reparametrisations. Within
the SRV framework, this can be achieved by defining the distance between two
shapes as the infimum of the distance between all curves within their equiva-
lence class. Or, given two parametrised curves c1 and c2, we define the distance
between their shapes as the infimum of the distance between all reparametrisa-
tions of c1 and c2. It can be shown that this infimum is positive for all distinct
shapes and thus defines a distance on the set of all shapes. Moreover, it is again
possible to view the space of all shapes as a Riemannian manifold and thus to
define geodesic between shapes. We refer to [18] for a detailed introduction into
shape analysis within the SRV framework; a short overview can also be found
in [2].

The actual computation of the shape distance and of geodesics, though, re-
quires the solution of an optimisation problem over the space of all reparametri-
sations. This problem has the form

inf
ϕ1, ϕ2

∫
I

F (ϕ1(t), ϕ2(t), ϕ′1(t), ϕ′2(t)) dt, (1)

where the infimum is computed over all orientation preserving reparametrisa-
tions of the unit interval I = [0, 1]. Here the integrand F depends on the SRVTs
of the curves c1 and c2 one wants to compare. Due to invariance properties of
the SRV distance, it is sufficient to compute the minimum in (1) only with re-
spect to one of the diffeomorphisms, e.g. w.r.t. ϕ1 while leaving ϕ2 constant
equal to Id. This reduces the dimensionality of the problem, but one is still left
with an optimisation problem over a function space.

For the numerical solution, there are two main approaches: gradient based
methods and dynamical programming. In the dynamic programming approach
introduced in [16] (see also [21] for a similar numerical approach for a different
shape distance), one approximates the diffeomorphism ϕ1 by a piecewise linear
approximation with nodal points and nodal values within a fixed partition 0 =
t0 < t1 < . . . < tN = 1 of the unit interval. The resulting discrete optimisation
problem is then solved by a dynamic programming algorithm. Without further
modifications, this algorithm has a time complexity of O(N4) and thus is not
useful for practical applications. A significant speed-up is possible, though, by
limiting the set of possible slopes for the linear approximations of ϕ1. In fact, a
method with complexity O(N3) has already been proposed in [16]. Even more,
a variant with complexity O(N) has been presented in [4] (see also [11]), which
is an iterative based on an adaptive, local refinement of the search grid for the
dynamic program.

Gradient based methods usually work on a finite dimensional approximation
of the space of all reparametrisations, e.g. using B-splines or trigonometrical
functions. The optimisation problem (1) is then rephrased as a problem for the
basis coefficients. This is a finite dimensional optimisation problem, which can,

2

in principle, be solved with standard methods like gradient descent or quasi-
Newton methods. One difficulty is the constraint that the functions ϕ we are
optimising over are orientation preserving diffeomorphisms and thus monoton-
ically increasing. Thus one has a positivity constraint for ϕ′, which is difficult
to handle numerically. Thus [13] rephrase the problem in terms of γ2 := ϕ′,
which yields an optimisation problem with the single equality constraint that
‖γ‖2L2 = 1.

We note here, though, that the optimisation problem (1) is typically highly
non-convex, as the reparametrisations appear as arguments of the curves or
their SRVTs. Thus it is highly likely that there is a large number of local
minimisers and other critical point. Indeed, an example of such a situation is
shown in our numerical examples in Section 7.1. Since gradient based methods
are local, it is therefore necessary to initialise the iteration with a sufficiently
good initial guess of the solution. The same holds for the adaptively refined
dynamic program suggested in [4]. If the initialisation of that method is too
coarse, it can happen that the refinement strategy is never able to find the true
global minimum.

In this paper, we want to present, and analyse, an alternative approach to
the solution of (1) which is based on a formulation as a continuous dynamic
program. This formulation allows us to define a continuous value function
u : I × I → R, where u(x1, x2) measures the minimal (partial) cost of a re-
parametrisation satisfying ϕ(x1) = x2. In particular, u(1, 1) is precisely the
value of the optimisation problem (1). A precise definition of u is given in (11)
below. This value function u has been shown in [8] to satisfy, in the viscosity
sense, the associated Hamilton–Jacobi–Bellman equation, which is a hyperbolic
PDE with boundary values given for x1 = 0 and x2 = 0. Moreover, convergent
numerical schemes for the solution of that PDE have been proposed in [7, 8, 20].

The main contribution of this paper is a generalisation of these schemes,
which is closer in spirit to the definition of u by means of a dynamical program.
In particular, our approach allows it to recover the optimal reparametrisation in
a natural way by solving an ODE. Since the value function is defined by means
of the dynamic programming principle, the resulting numerical method will be
globally convergent. At the same time, the formulation as a PDE allows the
numerical schemes to have a time complexity of only O(N2). In Section 2, we
will formulate the necessary mathematical background in shape analysis and
the SRVT. The value function and the Hamilton–Jacobi–Bellman equation are
introduced in Section 3.1. In Sections 4 and 5, we will first introduce the general
numerical framework together with a convergence analysis, and then propose
concrete numerical schemes. Then we will discuss the recovery of the optimal
reparametrisation from the value function and the construction of geodesics in
shape space in Section 6. Finally, we will present numerical experiments in
Section 7.

2 Preliminaries

In the following, we will provide a brief introduction into shape analysis using the
square-root-velocity-transform. To that end, let I = [0, 1] be the unit interval

3

and d ∈ N, and denote by

Imm(I;Rd) :=
{
c ∈ C1(I;Rd) : |ċ(t)| > 0 for all t ∈ I

}
the space of all C1 immersions of I in Rd. We define the (scaled) Square-Root-
Velocity-Transform (SRVT)

Q : Imm(I;Rd)→ C(I;Rd \ {0})

as

q(t) = Q(c)(t) :=
1√

Length(c)

ċ(t)√
|ċ(t)|

, (2)

where

Length(c) :=

∫
I

|ċ(t)| dt

denotes the length of the curve c. Noting that∫
I

|qi(t)|2 dt =

∫
I

|ċi(t)|
Length(ci)

dt = 1,

we see that, actually, the SRVT maps a curve to an element of the unit sphere
in L2(I;Rd). The (scaled) Square-Root-Velocity (SRV) distance between c1 and
c2 is now defined as the geodesic distance between q1 and q2, that is,

dist(c1, c2) := arccos
(∫

I

〈q1(t), q2(t)〉 dt
)
. (3)

Obviously, the SRV distance is translation invariant. Moreover, due to the
scaling by the square root of the length of the curves, it is easy to see that it is
scale invariant, that is,

dist(λ1c1, λ2c2) = dist(c1, c2)

for all λ1, λ2 > 0. Since dist is defined by means of a geodesic distance, it
also satisfies the triangle inequality. As a consequence, it follows that dist is
a metric on the pre-shape space Imm(I;Rd)/G, where G denotes the group of
translations and scalings in Rd.

In fact, one can show that it is possible to regard Imm(I;Rd)/G as a Rie-
mannian manifold for which dist is the geodesic distance. This also makes it
possible to construct geodesics between curves: Consider c1, c2 ∈ Imm(I;Rd)/G
with SRVTs q1 = Q(c1) and q2 = Q(c2). If q1(t) 6= −q2(t) for all t ∈ I then the
geodesic between c1 and c2 is given as

τ 7→ cτ := Q−1
(
w(1− τ)q1 + w(τ)q2

)
∈ Imm(I;Rd)/G. (4)

Here Q−1 is the inverse SRVT, which can be explicitly computed as

Q−1(q)(t) =

∫ t

0

|q(t′)|q(t′) dt′,

and

w(τ) =
sin
(
τ dist(c1, c2)

)
sin
(
dist(c1, c2)

) .
4

We note that (4) still makes sense if q1(t) = −q2(t) for some (though not all)
t ∈ I. In that case, however, the resulting curves cτ will not all be immersions.

Next we define the shape space

S(I;Rd) := Imm(I;Rd)/(Diff+(I)×G),

where

Diff+(I) =
{
ϕ ∈ C∞(I) : ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) > 0 for all t ∈ I

}
is the group of orientation preserving diffeomorphisms of I. Given two shapes
[c1], [c2] ∈ S(I;Rd), we then define their distance as

distS([c1], [c2]) := inf
ϕ1, ϕ2∈Diff+(I)

dist(c1 ◦ ϕ1, c2 ◦ ϕ2). (5)

In fact, it is possible to simplify this expression, as the SRV distance is
invariant under simultaneous reparametrisations in the sense that

dist(c1, c2) = dist(c1 ◦ ϕ, c2 ◦ ϕ) for all ϕ ∈ Diff+(I).

Thus we have that

distS([c1], [c2]) = inf
ϕ∈Diff+(I)

dist(c1 ◦ ϕ, c2). (6)

Again, one can show that this distance is induced by a Riemannian metric on
the shape space S(I;Rd), which in turn makes it possible to define geodesics
between certain shapes. If the infimum in (6) is attained at a diffeomorphism
ϕopt, then the geodesic between the shapes [c1] and [c2] is the equivalence class
of the geodesic between c1 ◦ ϕopt and c2. Explicitly, this is given as

τ 7→
[
Q−1

(
wS(1− τ)(q1 ◦ ϕopt)

√
ϕ′opt + wS(τ)q2

)]
with

wS(τ) =
sin
(
τ distS([c1], [c2])

)
sin
(
distS([c1], [c2])

) .
In general, though, the infimum in (6) is not attained in Diff+(I). However,

it was shown in [6] that a relaxation of the optimisation problem (5) to a larger
space of reparametrisations attains its minimum. Denote to that end

Φ :=
{
ϕ ∈ AC(I) : ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) ≥ 0 for a.e. t ∈ I

}
.

Lemma 1 (Bruveris 2016). Assume that c1, c2 ∈ Imm(I;Rd). Then

distS([c1], [c2]) = inf
ϕ1, ϕ2∈Φ

dist(c1 ◦ ϕ1, c2 ◦ ϕ2). (7)

Moreover, the optimisation problem in (7) admits a solution (ϕ1, ϕ2) ∈ Φ2.

The main topic of this paper is the efficient numerical solution of the op-
timisation problem (7). In order to do so, we use a more explicit formulation
of (7). By applying the chain rule in (2), one obtains that

Q(c ◦ ϕ)(t) = Q(c)(ϕ(t))
√
ϕ′(t).

5

Thus, the optimisation problem (7) reads explicitly as

inf
ϕ1, ϕ2∈Φ

arccos
(∫

I

〈
q1

(
ϕ1(t)

)√
ϕ′1(t), q2

(
ϕ2(t)

)√
ϕ′2(t)

〉
dt
)
.

Since arccos is monotonically increasing, we can alternatively define

J(ϕ1, ϕ2) :=

∫
I

〈
q1

(
ϕ1(t)

)
, q2

(
ϕ2(t)

)〉√
ϕ′1(t)ϕ′2(t) dt (8)

and compute

distS([c1], [c2]) = arccos
(

sup
ϕ1, ϕ2∈Φ

J(ϕ1, ϕ2)
)
. (9)

Moreover, it is shown in [6, Proof of Prop. 15] that one can replace the functional
J in (9) with its convex relaxation

Jc(ϕ1, ϕ2) :=

∫
I

max
{〈
q1

(
ϕ1(t)

)
, q2

(
ϕ2(t)

)〉
, 0
}√

ϕ′1(t)ϕ′2(t) dt

without affecting the minimisers.

3 A General Variational Problem

The problem (9) can be seen as a special case of the variational problem

sup
ϕ∈A

(
J(ϕ) :=

∫
I

f(ϕ1(t), ϕ2(t))
√
ϕ′1(t)ϕ′2(t) dt

)
. (10)

Here, we denote ϕ = (ϕ1, ϕ2) and A = Φ × Φ. Moreover, f : I × I → R≥0 is
a continuous, non-negative function. Although with a different motivation, this
problem has been studied in [8, 7, 20, 10]. In [8], a Hamilton-Jacobi-Bellman
(HJB) formulation of this problem was derived, and HJB-based solvers were
constructed in [8, 7, 20]. In the following, we recall the main HJB-related
results from [8], and provide some useful generalisations of the results.

3.1 Dynamic Programming and the Value Function

For variational problems of the type (10), the solution can be described using
dynamic programming. The starting point is the introduction of a value function
u : [0, 1]2 → R defined as

u(t,x) := sup
ϕ∈A(t,x)

∫ t

0

f(ϕ1, ϕ2)
√
ϕ′1ϕ

′
2 dt (11)

with

A(t,x) :=
{
ϕ ∈ AC(I; R2) : ϕ(0) = 0, ϕ(t) = x, ϕ′(s) ≥ 0 for a.e. s ∈ I

}
.

Due to the reparametrisation invariance of the integral, we have that u(t,x) is
independent of t. We will therefore omit the time variable in the definition of u
and A and simply write u(x) = u(1,x).

6

In the case when either x1 = 0 or x2 = 0, we have that ϕ′1ϕ
′
2 = 0 a.e. for all

admissible paths. Consequently, the integrand is zero almost everywhere, mean-
ing that we obtain the boundary values u(0, x2) = u(x1, 0) = 0. Furthermore,
the value function satisfies the dynamic programming principle,

u(ϕ(t)) ≥ u(ϕ(t− h)) +

∫ t

t−h
f(ϕ1, ϕ2)

√
ϕ′1ϕ

′
2 dt, (12)

for all ϕ ∈ A. Moreover, ϕ is a solution of (10) if and only if we have equality
for all t and h. Dividing by h, and taking the limit as h→ 0, this means that a
solution ϕ formally satisfies the differential equation

− d

dt
u(ϕ) + f(ϕ)

√
ϕ′1ϕ

′
2 = 0,

which for smooth u reads

−Du(ϕ) ·ϕ′ + f(ϕ)
√
ϕ′1ϕ

′
2 = 0.

This means that it is possible to reconstruct ϕ from the value function.
We will now discuss some properties of the value function that will be needed

later in the paper. First of all, the dynamic programming principle (12) implies
immediately that u is monotone non-decreasing in the sense that u(x) ≥ u(y)
whenever x ≥ y. Additionally, wherever f(x) > 0, the value function is locally
strictly increasing: if xi > yi element-wise then u(x) > u(y). Finally it has
been shown that u(x) is Hölder continuous with exponent 1

2 [8, Lemma 1] while
v(x) := u(x)2 is Lipschitz continuous [7, Lemma 9].

3.2 The HJB equation

For variational problems such as (10), the value function can often be described
as the unique solution of the associated Hamilton-Jacobi-Bellman equation. For
a general problem of the form

sup
ϕ

∫ 1

0

`(ϕ(t),ϕ′(t))dt

with associated time dependent value function u(t,x), this reads

−ut(t,x) + sup
α∈A

(
−Du(x) ·α+ `(x,α)

)
= 0.

Here, x and α correspond to ϕ(t) and ϕ′(t), respectively.
As discussed above, the value function is in our case time independent. Thus,

we would expect a stationary Hamilton-Jacobi-Bellman equation of the form{
H(x, Du) = 0, in (0, 1]2,

u(0, x2) = u(x1, 0) = 0,

with the Hamiltonian

H(x,p) = sup
α∈R2

≥0

−p ·α+ f(x)
√
α1α2.

7

The restriction α ∈ R2
≥0 follows from the fact that ϕ′(t) takes values in R2

≥0.
However, since the functional is positively homogeneous in α, this leads to
a degenerate Hamiltonian which only takes values H(x,p) ∈ {0,+∞}. This
property is a consequence of the reparametrisation invariance of the problem,
and will be a problem for uniqueness of viscosity solutions of the HJB equation.
On the other hand, due to the reparametrisation invariance, we are able to
impose restrictions to the admissible space. Therefore, for some well chosen
set A representing the admissible derivatives of the paths ϕ, we define the
Hamiltonian as

H(x,p) = sup
α∈A
−p ·α+ f(x)

√
α1α2.

We require A to have certain properties.
• First of all, A should reflect the admissible directions of the path ϕ. In

particular, we must allow for all monotone increasing directions, which
means that we must have that coneA = R2

≥0.
• Secondly, we want the admissible set to permit both negative and positive

values for the Hamiltonian (to avoid redundancy of viscosity sub- and
supersolutions). This requires that the set A is bounded away from the
origin.

• Lastly, we want the admissible set to be compact to allow for the Hamil-
tonian to have a maximiser α. This is not needed for the viscosity char-
acterisation of the value function, but will be a necessary assumption in
the construction of numerical solvers.

Together, this can be summarised in the following two assumptions:

Assumption 1. A satisfies the following:
(a) A ⊂ R2

≥0 such that coneA = R2
≥0 and infA |α| > 0.

(b) A compact.

There are a few examples of admissible sets which satisfy these assumptions.
The natural choices are

Ar = {α ∈ R2
≥0 | |α|r = const.},

with r ∈ {1, 2,+∞}. More general, for 1 ≤ r ≤ +∞, Ar satisfies both assump-
tions 1a and 1b. Additionally, there are options satisfying only assumption 1a
including

A = {α ∈ R2
≥0 | α1α2 = const.},

A = {α ∈ R2
≥0 | α1 = const.}.

The first choice is (implicitly) used in [8], while the second choice corresponds
to the restriction ϕ′1 = 1, which is common in the literature of shape analysis.
However, both these cases lead to special situations where the maximum of H
is not necessarily attained by any α.

We have the following result:

Theorem 2. Assume that A is such that assumption 1a holds. Then, the value
function u is the unique viscosity solution of the hyperbolic PDE{

H(x, Du) = 0, in (0, 1]2,

u(0, x2) = u(x1, 0) = 0.
(13)

8

That u is a viscosity solution of the PDE is proved in [8, Theorem 2] while
uniqueness follows from [8, Theorem 3]. The actual results in [8] are formulated
using a Hamiltonian obtained from the choice A = {α ∈ R2

≥0 | α1α2 = const.}
after some equivalent reformulations.1 However, as used in the proof, the pos-
itive homogeneity of the functional of H with respect to α implies equivalence
of viscosity solutions for all choices of A satisfying assumption 1.

4 Monotone Schemes for the HJB Equation

We will now construct a new family of schemes for solving the HJB equation.
The schemes have can be interpreted both as finite difference approximations to
the HJB equation similar to the schemes of [7, 8, 20], but also as approximations
to the dynamic programming principle (12).

4.1 Schemes based on Du

We start by constructing numerical schemes for approximating solutions to the
HJB equation. As in [7, 8, 20], we discretise the unit square into a square
grid [0, 1]2h := {0, h, 2h, . . . , 1}2. Here, we assume that h = 1/N , N being the
number of discretisation points. For each grid node x, we solve a finite difference
approximation to the HJB equation, which takes the form

max
α∈A
−D−u(x)α+ f(x)

√
α1α2 = 0. (14)

Here we use the backward difference approximation

−D−u(x)α :=
u(x− hα)− u(x)

h
. (15)

For smooth u, this is a first order approximation to −Du(x)α. However, the
term u(x − hα) needs to be approximated as x − hα will not coincide with a
grid point for all values of α. We will denote this approximation as gh(x,α, u).
Inserting the approximation (15) into (14), this then gives the general scheme

max
α∈A

gh(x,α, u)− u(x)

h
+ f(x)

√
α1α2 = 0. (16)

After rearranging the terms, this results in the expression

u(x) = max
α∈A

gh(x,α, u) + hf(x)
√
α1α2. (17)

The above idea is in contrast to the typical approach as in [7, 8, 20], where
Du(x), interpreted as a gradient, is approximated numerically. The directional
derivative is then computed as the inner product of α with the approximation
to Du(x). In fact, the approximation (15) can be seen as a generalisation of the
typical approach, as we can always approximate u(x− hα) using

gh(x,α, u) = u(x)− hD−u(x) ·α.
1This choice of admissible set gives H(x,p) = −

√
max{p1, 0}max{p2, 0} + 1

2
f(x) up to

some constant, while [8] uses H(x,p) = −max{p1, 0}max{p2, 0} + 1
4
f(x)2. These Hamil-

tonians will always have the same sign, meaning that they are equivalent in the viscosity
sense.

9

for some approximate gradient D−u(x).
In order to prove convergence of the schemes, we will use the classical proof

of Barles & Souganidis for so-called monotone schemes (see [1]) To start, we
denote the schemes as Sh(x, uh(x), uh) = 0 with

Sh(x, t, u) = max
α∈A

gh(x,α, u)− t
h

+ f(x)
√
α1α2.

[1, Theorem 2.1] states that if a scheme is monotone, stable and consistent it is
also convergent. Here, we define

• Monotonicity : Sh is non-decreasing in u.
• Stability : The scheme Sh

(
x, uh(x), uh

)
= 0 has a solution uh for which

‖uh‖∞ ≤ const. independent of h.
• Consistency : For every ψ ∈ C∞, we have that

lim
h→0,y→x,ξ→0

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= H(x, Dψ(x)).

Given A, the scheme (17) is completely determined by gh. Accordingly,
monotonicity, stability and consistency of the scheme can be inferred from the
properties of gh.

Assumption 2. The approximation gh : [0, 1]2h ×A× C 1
2
[0, 1]2h → R satisfies:

(a) gh is monotone non-decreasing in u.
(b) gh is localised: there exists C > 0 such that, for all functions ψ, ξ : [0, 1]2 →

R that satisfy ψ = ξ on the ball BCh(x) of radius Ch centered at x, we
have that

gh(x,α, ψ) = gh(x,α, ξ).

(c) For constant ψ = ψ0, we have that gh(x,α, ψ) = ψ0.
(d) gh is a superlinear approximation: for every ψ ∈ C∞([0, 1]2) and all L > 0,

there exists a modulus of continuity ωψ,L such that∣∣∣∣gh
(
x,α, ψ + ξ

)
− ψ(x− hα)− ξ
h

∣∣∣∣ ≤ ωψ,L(h)

for every |ξ| ≤ L.

Theorem 3. Under assumptions 1 and 2, the scheme (17) is convergent.

Proof. The scheme satisfies the following properties:
• Monotonicity : Sh is increasing in gh and gh is non-decreasing in u. Hence
Sh is non-decreasing in u.

• Stability : The solution uh of Sh = 0 is explicitly given in (17). Denote in
the following

B−Ch(x) :=
{
y ∈ I ∩BCh(x) : y ≤ x

}
.

Due to assumptions 2a to 2c, we have that

min
y∈B−Ch(x)

uh(y) ≤ gh
(
x,α, min

y∈B−Ch(x)
uh(y)

)
≤ gh(x,α, uh) ≤ gh

(
x,α, max

y∈B−Ch(x)
uh(y)

)
= max
y∈B−Ch(x)

uh(y)

10

for every h > 0. Inserting these estimates into (17), we obtain that

min
y∈B−Ch(x)

uh(y) ≤ uh(x) ≤ max
y∈B−Ch(x)

uh(y) + h‖f‖∞Amax

with Amax = maxα∈A
√
α1α2. If we now consider [0, 1]2h as an directed

acyclic graph, each path from → 0 to x ∈ [0, 1]2h has length of at most
2N . This gives that 0 ≤ uh(x) ≤ 2‖f‖∞Amax.

• Consistency : Since A is compact, we have that

lim
h→0
y→x
ξ→0

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= lim

h→0
y→x
ξ→0

max
α∈A

gh(y,α, ψ + ξ)− ψ(y)− ξ
h

+ f(y)
√
α1α2

= lim
h→0
y→x
ξ→0

max
α∈A

ψ(y − hα)− ψ(y)

h
+ ωψ,L(h) + f(y)

√
α1α2

(∗)
= max
α∈A

lim
h→0
y→x
ξ→0

ψ(y − hα)− ψ(y)

h
+ ωψ,L(h) + f(y)

√
α1α2

= max
α∈A

Dψ(x)(α) + f(x)
√
α1α2

= H(x, Dψ(x)).

In (∗), we used that the functional is uniformly continuous in y,α, h, ξ to
exchange the limit and maximisation.

Due to [1, Theorem 2.1], this proves convergence.

4.2 Schemes based on D(u2)

Recall that u is only Hölder continuous with exponent 1
2 while u2 is Lipschitz

continuous. This means that one might expect more accurate schemes based on
an approximation of u2 rather than u. This is done in [7], where schemes are
constructed for v := u2.2

The idea is to utilise that D(u2) = 2uDu, meaning that Du = D(u2)/2u
wherever u ≥ 0. In such, one would expect v to be a viscosity solution of

max
α∈A

D(u(x)2)(α)

2u(x)
+ f(x)

√
α1α2 = 0.

Already, this equation has problems with the singularity at u(x) = 0. However,
we proceed by assuming for now that u(x) > 0. We can then follow the above
idea and construct schemes for v based on the approximation

max
α∈A

gh(x,α, u)2 − u(x)2

2u(x)h
+ f(x)

√
α1α2 = 0. (18)

2Additionally, a scheme for the Lipschitz continuous term w := u/
√
x1x2 is also constructed

in [7]. However, we deem this idea ill-suited for our approach due to the lack of simple closed-
form expressions.

11

For fixed α, this can be modified into a quadratic equation in u(x), meaning
that schemes of this form will have multiple solutions. However, similar to the
schemes in [7], we are only interested in the largest of the solutions.

Immediately, this means that u(x) ≥ hf(x)
√
α1α2. Moreover, we can mul-

tiply (18) with 2u(x)h to find that

max
α∈A

[
gh(x,α, u)2 − u(x)2 + 2u(x)hf(x)

√
α1α2

]
= max
α∈A

[
−
(
u(x)2 − hf(x)

√
α1α2︸ ︷︷ ︸

=:F (α)

)2

+ h2f(x)2α1α2 + gh(x,α, u)2︸ ︷︷ ︸
=:G2(α)

]
= max
α∈A

[
−F (α)2 +G(α)2

]
= 0

with F,G ≥ 0. Observe that we have that

−F 2(α) +G2(α) = (F (α) +G(α))(−F (α) +G(α)) ≤ 0

for all α ∈ A with equality if and only if α is optimal. Moreover, equality
can only be achieved if −F (α) + G(α) = 0. Accordingly, the above scheme is
identical to

max
α∈A
−F (α) +G(α)

= max
α∈A
−u(x) + hf(x)

√
α1α2 +

√
h2f(x)2α1α2 + gh(x,α, u)2 = 0,

which gives the closed form expression

u(x) = max
α∈A

hf(x)
√
α1α2 +

√
h2f(x)2α1α2 + gh(x,α, u)2. (19)

Theorem 4. Under assumptions 1 and 2, the scheme (19) is convergent.

Proof. Consider

u(x) = lim sup
x→y
h→0

uh(y), u(x) = lim inf
x→y
h→0

uh(y).

The proof of [1, Theorem 2.1] still holds for all x for which u(x) > 0, and
proving the properties of monotonicity, stability and consistency is similar to
that of Theorem 3. Wherever u(x) = 0, the singularity of the scheme breaks the
proof of convergence. However, we have that u(x) = 0 if and only if f(y) = 0
for all y ≤ x. Accordingly, it is sufficient to prove that this property holds for
u and u as well.

Observe that

uh(x) = max
α∈A

hf(x)
√
α1α2 +

√
h2f(x)2α1α2 + gh(x,α, uh)2

≥ max
α∈A

hf(x)
√
α1α2 + gh(x,α, uh).

Inductively, this gives that uh ≥ ũh where ũh is the solution of (17) for the same
choices of A and gh. Since ũh is convergent, this implies that uh(x) ≥ ũh(x) > 0
wherever f(x) > 0.

Now assume that f(y) = 0 for all y ≤ x. Then, since gh(·, ·, 0) = 0, it is
clear that uh(x) = ũh(x) = 0, concluding the proof.

12

5 Proposed Schemes

Now, it remains to choose A and gh such that we obtain efficient schemes. In
particular, we desire closed form expressions for both uh and the optimal α used
in each step.

For the closed form expressions for the schemes, it is useful to denote x1
1 as

the current grid point for which we are solving the schemes. In addition, we
denote x1

0, x0
1 and x0

0 as the other three points of the grid cell. Moreover, denote
uji = u(xji) and f ji = f(xji). Until now, we have assumed that f ji is evaluated
exactly. For approximations of this term, see appendix A.

5.1 Schemes based on Du

For the scheme (17), we start by letting gh be the linear interpolation of u
through the points x1

0, x0
1 and x0

0, which reads

gh = u0
0 + (1− α1)(u0

1 − u0
0) + (1− α2)(u1

0 − u0
0)

= (α1 + α2 − 1)u0
0 + (1− α1)u0

1 + (1− α2)u1
0.

(20)

It is easy to check that this satisfies all properties of assumption 2 apart from
monotonicity. To ensure monotonicity, it is required that 0 ≤ α1, α2 ≤ 1 and
that α1 + α2 ≥ 1. This holds for every α ∈ Ar := {α ∈ R2

≥0 | |α|r = 1} for
1 ≤ r ≤ +∞. We find that for the choices A = A1 and A = A∞, we can solve
the schemes analytically.

Choosing A = A1, combined with the first approximation (20), we obtain
the following solution for the scheme, and the optimal α∗:

hSh = u1
1 −

1

2

(
u1

0 + u0
1 +

√
(u1

0 − u0
1)2 + (hf1

1)2

)
,

u1
1 =

1

2

(
u1

0 + u0
1 +

√
(u1

0 − u0
1)2 + (hf1

1)2

)
,

α∗ =

(
1

2

(
1 +

u1
0 − u0

1

(u1
0 − u0

1)2 + (hf1
1)2

)
,

1

2

(
1− u1

0 − u0
1

(u1
0 − u0

1)2 + (hf1
1)2

))
.

(U1)

Interestingly, this is exactly the original scheme proposed in [8]. Using A = A∞,
we obtain with the abbreviation

u∗∗ := max{u1
0, u

0
1}

that

hSh = u1
1 −

u∗∗ +
(hf1

1)2

4(u∗∗ − u0
0)
, 2(u∗∗ − u0

0) >
√

(hf1
1)2,

u0
0 + hf1

1 , otherwise,

u1
1 =

u∗∗ +
(hf1

1)2

4(u∗∗ − u0
0)
, 2(u∗∗ − u0

0) >
√

(hf1
1)2,

u0
0 + hf1

1 , otherwise,

α∗ =



(
1,

hf1
1

2(u1
0 − u0

0)

)
, u1

0 ≥ u0
1, 2(u1

0 − u0
0) >

√
(hf1

1)2,(
hf1

1

2(u0
1 − u0

0)
, 1

)
, u0

1 > u1
0, 2(u0

1 − u0
0) >

√
(hf1

1)2,

(1, 1), otherwise.

(U∞)

13

5.2 Schemes based on D(u2)

For the scheme (17), it is useful to express the schemes for vji := (uji)
2. Instead

of linearly interpolating u, we linearly interpolate v, meaning that

g2
h = v0

0 + (1− α1)(v0
1 − v0

0) + (1− α2)(v1
0 − v0

0)

= (α1 + α2 − 1)v0
0 + (1− α1)v0

1 + (1− α2)v1
0 .

(21)

Here, we have the same conditions for monotonicity as for the schemes based
on Du, and we have analytical solutions for A = A1:

2h
√
v1

1Sh = v1
1 −

1

2

(
v1

0 + v0
1 +

√
(v1

0 − v0
1)2 + (hf1

1)2

)
,

v1
1 =

1

2

(
v1

0 + v0
1 + h2f2 +

√
(v1

0 − v0
1)2 + 2(v1

0 − v0
1)(hf1

1)2 + (hf1
1)4

)
,

α∗ =

(
1

2

(
1 +

v1
0 − u0

1

(v1
0 − v0

1)2 + 4v1
1(hf1

1)2

)
,

1

2

(
1− v1

0 − u0
1

(v1
0 − v0

1)2 + 4v1
1(hf1

1)2

))
.

(V1)
Again, we have that the scheme using A1 is identical to that of [7]. For A = A∞,
we have with

v∗∗ := max{v1
0 , v

0
1}

that

2h
√
v1

1Sh = v1
1 −

v∗∗ +
v1

1(hf1
1)2

v∗∗ − v0
0

, v∗∗ − v0
0 >

√
v1

1hf
1
1 ,

v0
0 + hf1

1 , otherwise,

v1
1 =


v∗∗(v

∗
∗ − v0

0)

v∗∗ − v0
0 − (hf1

1)2
(v∗∗ − v0

0)(v∗∗ − v0
0 − (hf1

1)2) > v∗∗hf
1
1 ,

u0
0 + hf1

1 , otherwise,

α∗ =



(
1,

√
v1

1hf
1
1

v1
0 − v0

0

)
, v1

0 ≥ v0
1 , v

1
0 − v0

0 >
√
v1

1hf
1
1 ,(√

v1
1hf

1
1

v0
1 − v0

0

, 1

)
, v0

1 > v1
0 , v

0
1 − v0

0 >
√
v1

1hf
1
1 ,

(1, 1), otherwise.

(V∞)
Due to the singularity at v1

1 = 0, we have that Sh is not defined in these cases.
However, the solution of the schemes still exist.

5.3 Higher Order Filtered Schemes

It is known that one cannot construct higher order schemes for solving HJB
equations, as one requires monotone schemes to obtain convergence. Still, it is
common to construct so-called filtered schemes. These schemes are based on a
high-order (possibly non-monotone) scheme Sah, and a monotone scheme Smh .
The idea is to choose the higher order scheme only if its approximation to the
Hamiltonian is sufficiently close to that of the monotone scheme. The selection
criterion is typically chosen as |Sah−Smh | ≤ k

√
h for some constant k to preserve

14

the theoretical
√
h convergence which is typical for schemes for HJB equations.

Therefore, we define the filtered scheme as

Sfh :=

{
Sah, |Sah − Smh | ≤ k

√
h,

Smh , |Sah − Smh | > k
√
h.

This can be implemented by first solving Sah = 0. If this solutions satisfies

|Smh | ≤ k
√
h, we keep the solution. Otherwise, we use the solution of Smh = 0.

To construct the high order scheme, we use the same idea as in section 4,
except that we use central differences, rather than backward differences. In
practice, this means that we approximate

−Du(x)α =
u(x− h

2α)− u(x+ h
2α)

h

with a similar approximation toD(u2). Approximating u(x−h2α) and u(x+h
2α)

using gh
2
, we obtain the two general schemes:

Sah = max
α∈A

gh
2
(x,α, u)− gh

2
(x,−α, u)

h
+ f(x)

√
α1α2 = 0 (22)

Sah = max
α∈A

gh
2
(x,α, u)2 − gh

2
(x,−α, u)2

2u(x)h
+ f(x)

√
α1α2 = 0. (23)

These schemes will be solved with x being the centre of a grid cell.
In (22), we approximate gh

2
(x,α, u) using a linear interpolation of u1

0, u0
1

and u0
0 for positive α and a linear interpolation of u1

0, u0
1 and u1

1 for negative α.
Interestingly, this gives a scheme which is independent of A, reading

u1
1 = u0

0 +
√

(u1
0 − u0

1)2 + (hf1
1)2,

α∗ =

(
1

2

(
1 +

u1
0 − u0

1

(u1
0 − u0

1)2 + (hf1
1)2

)
,

1

2

(
1− u1

0 − u0
1

(u1
0 − u0

1)2 + (hf1
1)2

))
.

With similar linear approximations in (23), we need an approximation of u(x),
present in the denominator, since x does not coincide with a grid cell. Using
2u(x) ≈ u1

0 + u0
1, we obtain

v1
1 = v0

0 +
1

2
h2f2 +

√
(v1

0 − v0
1)2 + (2v0

0 + v1
0 + v0

1)(hf1
1)2 +

1

4
(hf1

1)4,

α∗ =

(
1

2

(
1 +

v1
0 − u0

1

(v1
0 − v0

1)2 + 4v1
1(hf1

1)2

)
,

1

2

(
1− v1

0 − u0
1

(v1
0 − v0

1)2 + 4v1
1(hf1

1)2

))
.

5.4 Fully Discretised Schemes

The scheme (16) can in fact be used to formulate fully discretised schemes with
some modification. We start by replacing A with a variable admissible space
A = Ah ⊂ N2

0 \0, i.e. the set of pairs of non-negative integers. With this choice,
x− hα coincides with other grid points of the square grid (as long as x lies on
a grid point). In such, the scheme

u(x) = max
α∈Ah

u(x− hα) + f(x)
√
α1α2 (24)

15

can be solved without the need for an approximation to u(x− hα). By setting
x = xji ∈ [0, 1]2h, this scheme reads

uji = max
(k,l)∈Ah

uj−li−k + hf ji
√
kl. (DDP)

This is exactly the discretised dynamic programming method commonly used in
the literature. Under certain assumptions on Ah, we can still use the HJB based
approach to prove convergence of this scheme. See assumption 3 and Theorem 5
in Appendix B for details.

Choosing Ah requires a compromise between accuracy and complexity. We
want Ah to include as many directions as possible for optimal accuracy. How-
ever, the larger the set Ah, the higher the computational cost. One example of
at set satisfying assumption 3 is

Ah = {α ∈ N2
0 | |α| ≤ kh−r}

for constants k > 0 and 0 < r < 1. Here, r = 1
2 will typically give a good

compromise between accuracy and efficiency.

6 Numerical Computation of Geodesics

The numerical solution of the value function gives an estimate to u(1), which in
turn can be used to approximate the geodesic distance through distS([c1], [c2]) =
arccos(u(1)). Additionally, through a backtracking method, we can use the
value function to obtain an estimate of the solution ϕ of the variational problem
(10). This can then be used to estimate the shape space geodesic between c1
and c2.

6.1 Backtracking

To retrieve the optimal reparametrisation path ϕ, we propose a piecewise con-
stant interpolation of the maximiser α∗ of the approximated HJB equation,
where α∗ is constant on each grid cell (xi, xi+1]× (xj , xj+1]. With ϕ′(t) = α∗,
this gives a first order piecewise constant differential equation for ϕ′, which
therefore can be computed explicitly.

In practice, the path ϕ will be piecewise linear, only changing direction when
intersecting a grid line, meaning that the path can be represented by a sequence
{ϕk} with length at most 2N . Assume that the backtracking procedure has
reached the point ϕk ∈ (xi, xi+1]× (xj , xj+1]. In order to obtain the next point
in the sequence, we construct the line ψ(t) = ϕk − tα∗, defined for t ≥ 0
where α∗ is optimal for the given grid cell. Then, we find the intersection point
between ψ and the vertical line (xi, ·) and the intersection point between ψ
and the horizontal line (·, xj). The next point in the sequence will then be the
maximum of these points. This reads

ϕk−1 = max
{

(xi, ϕ2,k − (ϕ1,k − xi)α∗2/α∗1), (ϕ1,k − (ϕ2,k − xj)α∗1/α∗2, xj)
}
.

Note that since the path ϕ is monotone increasing, one of the intersection points
will actually be maximal with respect to the standard partial ordering of R2.

16

The terminal condition for the path ϕ is ϕ(1) = 1, which also acts as
the starting point for the backtracking procedure. With the convention that
α∗ = (1, 0) wherever x = (x1, 0) and α∗ = (0, 1) wherever x = (0, x2), we
ensure that the (inferred) initial condition ϕ(0) = 0 is met.

6.2 Computing Geodesics and Geodesic Distances

Now that we have an estimate of ϕ, we can estimate the SRVTs after reparam-
etrisation. Similar to the reparametrisation path, we construct a sequence of
points of the form

qi,k := qi(ϕi,k)

√
ϕi,k − ϕi,k−1

∆tk
,

for i = 1, 2. Note that this expression requires ∆tk, representing the joint
parametrisation of ϕ1 and ϕ2. Since the problem is reparametrisation invariant,
this can be chosen based on the application. One natural option is to choose
∆tk = 1

2 (ϕ1,k − ϕ1,k−1 + ϕ2,k − ϕ2,k−1), motivated from the assumption that
‖ϕ′‖1 = 1. This constraint is especially useful since ϕ′ is bounded and the
domain I remains unchanged.

Using the point estimates of the SRVTs, we can approximate the objective
function and the geodesics. First of all, for the objective function, we have the
following estimate:

Jh(ϕh) =
∑
k

〈q1,k, q2,k〉∆tk

=
∑
k

〈q1(ϕ1,k), q2(ϕ2,k)〉
√

(ϕk,1 − ϕk−1,1)(ϕk,2 − ϕk−1,2).

Observe in particular that this expression is independent of ∆tk, as desired.
Similarly, we can pointwise approximate the geodesic using

γk(τ) = wSh (1− τ)q1,k + wSh (τ)q2,k

= wSh (1− τ)q1(ϕ1,k)

√
ϕ1,k − ϕ1,k−1

∆tk
+ wSh (τ)q2(ϕ2,k)

√
ϕ2,k − ϕ2,k−1

∆tk
,

where wSh (τ) = sin(τ arccos Jh(ϕh))/ sin(arccos Jh(ϕh)). In the pre-shape space,
the geodesic can be approximated using

Q−1(γ(τ))(tk) ≈
k∑
l=1

γl(τ)|γl(τ)|∆tl =

k∑
l=1

γl(τ)
√

∆tl
∣∣γl(τ)

√
∆tl
∣∣.

Similarly to the objective function, this estimate is independent of ∆t, as desired.

7 Numerical Experiments

To test the numerical schemes, we use three test problems labeled A, B, C for
which the curves and shape space geodesics are illustrated in Figure 1. For
each of the test problems, the schemes were ran with grid sizes N = h−1 =
5 · 22, . . . , 5 · 210 (for the discretised dynamic programming, the smallest two
step sizes were omitted due to computational complexity).

17

(A)

(B)

(C)

Figure 1: Left: curves coloured by initial parametrisation. Right: shape
space geodesics.

For test problems (A) and (B), we use arc length parametrisation as the
initial parametrisation of the curves. For these problems, we do not have
analytic solutions for any of the variables of interest. The analytic solutions
were therefore approximated using the filtered scheme with a fine grid size
h−1 = ε−1 = 5 · 211. For test problem (C), we compare two curves with equal
shape but different initial parametrisations. In particular, we let c1 = c0 ◦ ψ1

and c2 = c0◦ψ2 with c0 being the arc length parametrisation of the curve. Here,
we use the Möbius transformations

ψ1(t) = 3t/(1 + 2t), ψ2(t) = t/(3− 2t),

which are each other’s inverses. Hence, one solution of the reparametrisation
problem is given by ϕ1 = ψ−1

1 = ψ2 and ϕ2 = ψ−1
2 = ψ1. For this problem,

we have the exact geodesic distance d(c1, c2) = 1 and exact expressions for the
geodesics (which are constant in τ).

It has been demonstrated in [20] that filtered schemes can give an im-
provement for simple problems. However, for our experiments, we found that
there was no significant improvement of the filtered schemes compared to the
best performing of the monotone schemes.3 Therefore, we will only compare
the four monotone schemes presented together with the fully discretised dy-
namic programming. For the discretised dynamic programming, we tested
Ah = {α ∈ N2

0 | |α| ≤ kh−r} for different values of k, r. We found that k = 3
4

and r = 1
2 gave the best performance when measuring accuracy vs computation

time. For all schemes, we found that the approximation of f as described in
appendix A gives better results. These approximations were therefore used in
the following experiments.

7.1 Presence of Local Solutions

Dynamic programming based methods typically converge slower than gradient
based method. Therefore, it is important to assess whether local solutions are
present or not. In order to do this, we consider the total value function

utot(x) := sup
ϕ∈A

∫ 1

0

f(ϕ1, ϕ2)
√
ϕ′1ϕ

′
2dt s.t. ϕ(1

2) = x.

3There is in some cases a small improvement, but this is outweighed by the added compu-
tational time.

18

0 0.
25

0.
5

0.
75

0.
93

x1

x2

(a)

ϕ1(t)

ϕ2(t)

(b)

ϕ1(t)

ϕ2(t)

(c)

Figure 2: The total value function (a), some local maxima of (10) (b),
and three local maxima near the diagonal (c).

(a)

(b)

(c)

Figure 3: Pre-shape geodesics with parametrisation corresponding to the
three local maxima visualised in Figure 2c.

This variant of the value function measures the similarity between the curves
c1, c2 given a landmark constraint at x, that is, requiring that the point c1(x1)
is registered to c2(x2). If utot has a local maximum at x, there is a local
solution of (10) passing through x. This means that utot can be used to find
local solutions. The total value function will not characterise all local solutions,
but the number of local maxima of utot is an indication of the number of local
solutions of (10). Note that all maxima of utot are inherently flat, meaning that
there are in practice paths of local maxima.

The total value function is easy to compute. The “standard” value function
(11) was defined by maximising over all paths from 0 to x. Alternatively, we
can define a reversed value function where we optimise over all paths from x
to 1. Since the problem is fundamentally invariant to reparametrisations, these
are identical problems up to replacing f(x1, x2) with f(1 − x1, 1 − x2). Then,
the sum of the standard and reversed value functions together gives the total
value function. For each local maximum of utot, one can run the backtracking
algorithm in both directions to obtain a local solution of (10).

For test problem (B), the total value function was estimated using h =
5·10−4. The estimate is visualised in Figure 2a and the local maxima of (10) are
visualised in Figure 2a. Note that a highly nonlinear colormap has been used in
Figure 2a to accentuate the local maxima. Using this method, 27 local maxima
were found. However, this method of finding local maxima is conservative, and
there are likely a lot more. We chose three local maxima close to the diagonal,

19

and computed the resulting curve space geodesics. The result is visualised in
Figure 3. As one can see, the resulting geodesics are very different. A priori, it
is hard to tell which one of these solutions a local, gradient based methods will
find. This accentuates the importance of global solvers.

7.2 Convergence of the Value Function

For the value function, we have theoretical point-wise uniform convergence.
Therefore, the natural metric for evaluating convergence is the L∞-error. We
approximate this error by a point-wise maximum between uh and uε through
‖uh − uε‖L∞ ≈ maxx∈[0,1]2h

|uh(x)− uε(x)|. Since we only consider h as integer

multiples of ε, we have hat [0, 1]2h ⊂ [0, 1]2ε , meaning that this can be evaluated
exactly.

The convergence plots can be seen in Figure 4. We seem to have numer-
ical convergence for all variables. Among the semi-discretised schemes, (V∞)
performs the best for all test problems. Apart from test problem (C), which is
to some extent less interesting anyways, the scheme (V∞) also performs better
than the discretised dynamic programming.

In [7], it was demonstrated that the schemes based on D(u2) have a higher
numerical convergence rate than the schemes based on Du. At first glance, we
do not seem to have this property. However, the difference between the schemes
becomes apparent in test problem (B), where the convergence rate of the scheme
(U∞) flattens out for h−1 ≥ 103. There are multiple factors contributing to
the error of the schemes: the regularity of u (not being Lipschitz), the local
variation of f and the number of shocks apparent in the value function. In [7],
the problems considered were very regular, with little to no variation in f and
at most one shock solution. The test problems (A) to (C) are substantially
more complex, meaning that the error contributed from the lack of Lipschitz
continuity of u is in most cases irrelevant.

101 102 103 104
10−4

10−3

10−2

10−1

100

h−1

(A)

101 102 103 104

h−1

(B)

101 102 103 104

h−1

(C)

(U1)

(V1)

(U∞)

(V∞)

(DDP)

Figure 4: Convergence of uh for test problems (A) to (C).

20

7.3 Convergence of the Geodesic Distance

By construction, we have that J(ϕ) = u(1) whenever ϕ is optimal. This gives
us two ways to approximate the shape space distance:

distS([c1], [c2]) ≈ arccosuh(1),

distS([c1], [c2]) ≈ arccos Jh(ϕh).

For the fully discretised schemes, these quantities are the same by construction
of the scheme. For the semi-discretised schemes, however, these are different
quantities and might have different convergence properties. The approximations
were computed for each scheme and step size h. For test problems (A) and (B),
we measured the error by comparison with arccosuh(1). For test problem (C),
we have the exact solution arccosu(1) = arccos J(ϕ) = 0. Convergence plots
can be found in figures 5 and 6, respectively.

We seem to have numerical convergence for all methods considered. We
observe some cancellation effects, particularly for schemes U∞ and DDP for test
problem (A) and V∞ for test problem (B). The scheme V∞ performs the best
among the semi-discretised schemes while the fully discretised scheme has quite
variable convergence properties. Generally, it is hard to determine the exact
convergence properties as we are essentially solving a PDE, but only measure
convergence of the solution at a single point. For test problem (C), we only
seem to have an O(

√
h) convergence rate for the semi-discretised schemes. This

is due to the non-differentiability of arccos J at J = 1, which only occurs when
the shape space distance is zero.4

For Jh(ϕh), all semi-discretised schemes perform almost identically. This
might be due to the simple backtracking scheme we have proposed. Higher
order backtracking schemes were tested without any significant improvement.
For test problem (A), the convergence is too non-regular for a convergence rate
to be estimated, for test problem (B), we seem to have a superlinear numerical
convergence rate, and for test problem (C), we have a linear numerical con-
vergence rate. Note also that apart from V∞, the distance estimates based on
Jh(ϕh) are more accurate than those based on uh(1). Finally, also for the dis-
tance estimate based on uh(1), we have worse convergence properties for test
problem (C) compared to test problems (A) and (B). Again, this is explained
by the non-differentiability of arccos. Consequently, we expect the schemes to
perform worse for curves with equal shapes than for curves with non-zero shape
space distance.

7.4 Convergence of the Geodesics

Although we have numerical convergence of the geodesic distance estimate, this
need not imply numerical convergence of the geodesics. Therefore, we consider
numerical convergence of the geodesics as well. Consider the two approximate
geodesics

γh(τ) = wh(1− τ)q1,h + wh(τ)q2,h,

γε(τ) = wε(1− τ)q1,ε + wε(τ)q2,ε.

4The function arccos J is also non-differentiable at J = −1. This value, however, can never
occur as the solution of the optimisation problem.

21

101 102 103 104
10−4

10−3

10−2

10−1

100

h−1

(A)

101 102 103 104

h−1

(B)

101 102 103 104

h−1

(C)

(U1)

(V1)

(U∞)

(V∞)

(DDP)

Figure 5: Convergence of arccosuh(1) for test problems (A) to (C).

101 102 103 104
10−4

10−3

10−2

10−1

100

h−1

(A)

101 102 103 104

h−1

(B)

101 102 103 104

h−1

(C)

(U1)

(V1)

(U∞)

(V∞)

(DDP)

Figure 6: Convergence of arccos Jh(ϕh) for test problems (A) to (C).

To measure the difference between these geodesics, we use the maximal pre-
shape distance over τ . Since the unit sphere distance is at most π times larger
than the L2 distance, we have that

max
τ∈[0,1]

arccos〈γh(τ), γε(τ)〉L2 ≤ max
τ∈[0,1]

π‖γh(τ)− γε(τ)‖L2

= πmax
{
‖γh(0)− γε(0)‖L2 , ‖γh(1)− γε(1)‖L2

}
= πmax

{
‖q1,h − q1,ε‖L2 , ‖q2,h − q2,ε‖L2

}
.

In other words, we can easily compute an upper bound to the maximal unit
sphere distance between the geodesics. Note that it would be even better to use
the maximal shape space distance between the geodesics. However, since the
shape space distance requires the minimisation of the pre-shape distance, the
upper bound is also an upper bound for the shape space distance.

From the convergence plots in Figure 7, we observe numerical convergence.
Again, we have no observable difference between the semi-discretised schemes.
However, in this case, the semi-discretised schemes perform better than the
discretised dynamic programming.

22

101 102 103 104
10−3

10−2

10−1

100

101

h−1

(A)

101 102 103 104

h−1

(B)

101 102 103 104

h−1

(C)

(U1)

(V1)

(U∞)

(V∞)

(DDP)

Figure 7: Convergence of γh for test problems (A) to (C).

7.5 Computational Complexity

Until now, we have evaluated performance in terms of error vs step size. How-
ever, there is a significant difference in computational complexity between the
semi-discretised and the fully discretised methods. For the fully discretised dy-
namic programming scheme, the computational complexity is O(|Ah|N2), while
for the semi-discretised schemes, the computational complexity is O(N2).

100 102 104
10−3

10−2

10−1

100

T [ms]

uh

100 102 104

T [ms]

arccosuh(1)

100 102 104

T [ms]

arccos Jh(ϕh)

100 102 104

T [ms]

γh

V∞
DDP

Figure 8: Work-precision diagrams for test problem (C). T denotes the
computation time.

To implement the schemes, we used Python using NumPy with vectorised
updates. Even though the implementation is to some extent näıve, it is useful to
evaluate the accuracy of the schemes vs the computation times. From the three
test problems, it is test problem (C) where the fully discretised scheme performs
best compared to the semi-discretised schemes. Work-precision diagrams for this
problem are visualised in Figure 8. As one can see, the semi-discretised scheme
(V∞) performs significantly better than the fully discretised method.

23

8 Conclusion

In this article, we have shown how PDE based method can be applied to the
computation of shape space distances of open shapes. The method has global
convergence and runs inO(N2) time, which is strictly better than existing global
solvers. Additionally, the numerical experiments indicate a linear convergence
in practice, although we expect a lower theoretical convergence rate.

First, we presented a family of schemes which generalises the schemes of
[8, 7]. These are based on the Hamilton-Jacobi-Bellman equation for the value
function of the problem. However, whereas the schemes of [8, 7] approximate
the gradient of the value function using finite difference approximations, we
approximate its directional derivatives. This allows for greater flexibility in the
construction of the schemes. The resulting family of schemes has theoretical
convergence, and we show that two instances of the scheme are more accurate
than previous approaches.

In conjunction with the schemes for the value function, we presented a back-
tracking scheme to obtain the solution of the reparametrisation problem. This
is then used to estimate the shape space geodesics numerically. For different
problems, the scheme seems to converge numerically, and the work-precision
efficiency is better than that of previous global solvers.

From here, there is a number of interesting topics for future work, including
the following:

• Assessment of the typical O(
√
h) convergence rate for the HJB schemes,

similar to [7, schemes S2, S3].
• Assessing theoretical convergence of the backtracking method.
• Constructing schemes such as (16) for general HJB equations.
• Construction of iterative solvers with adaptive grid refinement, where the

HJB equation is solved on smaller and smaller strips around the solution
of the reparametrisation problem, as has been done with great success for
the fully discretised schemes [11, 4, 5].

References

[1] Guy Barles and Panagiotis E. Souganidis. Convergence of approximation
schemes for fully nonlinear second order equations. Asymptotic Analysis,
4(4):271–283, 1991.

[2] Martin Bauer, Nicolas Charon, Eric Klassen, and Alice Le Brigant. Intrinsic
Riemannian metrics on spaces of curves: theory and computation, 2020.

[3] Martin Bauer, Markus Eslitzbichler, and Markus Grasmair. Landmark-
guided elastic shape analysis of human character motions. Inverse Probl.
Imaging, 11(4):601–621, 2017.

[4] Javier Bernal, Gunay Dogan, and Charles R. Hagwood. Fast dynamic
programming for elastic registration of curves. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1066–1073, 2016.

24

[5] Javier Bernal, James Lawrence, Gunay Dogan, and Robert Hagwood. On
computing elastic shape distances between curves in d-dimensional space,
2021-02-20 2021.

[6] Martins Bruveris. Optimal reparametrizations in the square root velocity
framework. SIAM J. Math. Anal., 48(6):4335–4354, 2016.

[7] Jeff Calder. Numerical schemes and rates of convergence for the Hamilton-
Jacobi equation continuum limit of nondominated sorting. Numer. Math.,
137(4):819–856, 2017.

[8] Jeff Calder, Selim Esedoglu, and Alfred Hero. A Hamilton–Jacobi equa-
tion for the continuum limit of nondominated sorting. SIAM Journal on
Mathematical Analysis, 46, 02 2013.

[9] Elena Celledoni, Markus Eslitzbichler, and Alexander Schmeding. Shape
analysis on Lie groups with applications in computer animation. J. Geom.
Mech., 8(3):273–304, 2016.

[10] Jean-Dominique Deuschel and Ofer Zeitouni. Limiting curves for i.i.d.
records. Ann. Probab., 23(2):852–878, 1995.

[11] Gunay Dogan, Javier Bernal, and Charles R. Hagwood. A fast algorithm for
elastic shape distances between closed planar curves. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[12] J. Eckhardt, R. Hiptmair, T. Hohage, H. Schumacher, and M. Wardet-
zky. Elastic energy regularization for inverse obstacle scattering problems.
Inverse Problems, 35(10):104009, 20, 2019.

[13] Wen Huang, Kyle A. Gallivan, Anuj Srivastava, and Pierre-Antoine Absil.
Riemannian optimization for registration of curves in elastic shape analysis.
J. Math. Imaging Vision, 54(3):320–343, 2016.

[14] Michael Kass Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac-
tive contour models. International Journal of Computer Vision, 1(4):321–
331, 1988.

[15] Wei Liu, Anuj Srivastava, and Jinfeng Zhang. A mathematical framework
for protein structure comparison. PLoS computational biology, 7:e1001075,
02 2011.

[16] Washington Mio, Anuj Srivastava, and Shantanu Joshi. On Shape of Plane
Elastic Curves. International Journal of Computer Vision, 73(3):307–324,
2007.

[17] Anuj Srivastava, Eric Klassen, Shantanu Joshi, and Ian Jermyn. Shape
analysis of elastic curves in euclidean spaces. IEEE transactions on pattern
analysis and machine intelligence, 10 2010.

[18] Anuj Srivastava and Eric P. Klassen. Functional and shape data analysis.
Springer Series in Statistics. Springer-Verlag, New York, 2016.

25

[19] Ganesh Sundaramoorthi, Andrea Mennucci, Stefano Soatto, and Anthony
Yezzi. A new geometric metric in the space of curves, and applications to
tracking deforming objects by prediction and filtering. SIAM J. Imaging
Sci., 4(1):109–145, 2011.

[20] Warut Thawinrak and Jeff Calder. High-order Filtered Schemes for the
Hamilton-Jacobi Continuum Limit of Nondominated Sorting. Journal of
Mathematics Research, 10, December 2017.

[21] Laurent Younes. Computable elastic distances between shapes. SIAM J.
Appl. Math., 58(2):565–586, 1998.

A Approximating the SRVTs

The schemes presented in this article are based on exact computation of the
forcing term f(x), which in turns requires access to the SRVTs q1 and q2.
Whenever these are not available, we can use finite difference approximations of
the curves c1 and c2. Here, we suggest using backward differences of the form

qi(t) ≈
ci(t)− ci(t− h)√
h|ci(t)− ci(t− h)|

,

leading to the approximation

hf(x) ≈ max

{〈
c1(x1)− c1(x1 − h)√
|c1(x1)− c1(x1 − h)|

,
c2(x2)− c2(x2 − h)√
|c2(x2)− c2(x2 − h)|

〉
, 0

}
.

For the fully discretised schemes, we suggest using backwards differences of the
form

qi(t)
√
k ≈ ci(t)− ci(t− kh)√

h|ci(t)− ci(t− kh)|
,

leading to the approximation

hf(x)
√
kl ≈ max

{〈
c1(x1)− c1(x1 − kh)√
|c1(x1)− c1(x1 − kh)|

,
c2(x2)− c2(x2 − lh)√
|c2(x2)− c2(x2 − lh)|

〉
, 0

}
.

As long as the curves are immersions, i.e., that |c′i| > 0 everywhere, these are
consistent approximations, meaning that the proofs for convergence still hold.
Moreover, we find that these approximations actually give better convergence
properties for all implementations of the schemes.

B Convergence for Fully Discretised Schemes

We express the scheme (24) as the solution of Sh = 0 with

Sh = max
α∈Ah

u(x− hα)− u(x)

h|α|
+ f(x)

√
α1α2

|α|
. (25)

Assumption 3. Ah satisfies the following:
(a) Ah ⊂ N2

0 \ {0}.

26

(b) Ah is finite for all h > 0.
(c) limh→0 maxα∈Ah

h|α| = 0.
(d) For every β ∈ A2 and ε > 0, there exists h0 > 0 such that for every

0 < h ≤ h0, there is α ∈ Ah with |α/|α| − β| < ε.

Theorem 5. Under assumption 3, the scheme (25) is convergent.

Proof. The scheme satisfies the following properties:
• Monotonicity : Sh is clearly non-decreasing in u(y).
• Stability : For all grid points x, there exists a grid point y < x, such that

uh(y) ≤ uh(x) = uh(y) + f(x)
√

(x1 − y1)(x2 − y2)

≤ uh(y) + ‖f‖∞
1

2
(x1 − y1 + x2 − y2)

using the Cauchy-Schwarz inequality. Inductively, this gives that 0 ≤
u(x) ≤ ‖f‖∞.

• Consistency : We have that

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= max
α∈Ah

ψ(y − hα)− ψ(y)

h|α|
+ f(y)

√
α1α2

|α|

= max
α∈Ah

−Dψ(y)
α

|α|
+O(h|α|) + f(y)

√
α1α2

|α|
.

Hence, due to assumption 3c, we have that maxα∈Ah
O(h|α|) = o(1).

Moreover, we have that Dψ and f is uniformly continuous in y. This,
combined with assumption 3d, gives that

lim
h→0
y→x
ξ→0

Sh
(
y, ψ(y) + ξ, ψ + ξ

)
= max
α∈A2

−Dψ(x)α+ f(x)
√
α1α2

Due to [1, Theorem 2.1], this proves convergence.

27

	1 Introduction
	2 Preliminaries
	3 A General Variational Problem
	3.1 Dynamic Programming and the Value Function
	3.2 The HJB equation

	4 Monotone Schemes for the HJB Equation
	4.1 Schemes based on Du
	4.2 Schemes based on D(u2)

	5 Proposed Schemes
	5.1 Schemes based on Du
	5.2 Schemes based on D(u2)
	5.3 Higher Order Filtered Schemes
	5.4 Fully Discretised Schemes

	6 Numerical Computation of Geodesics
	6.1 Backtracking
	6.2 Computing Geodesics and Geodesic Distances

	7 Numerical Experiments
	7.1 Presence of Local Solutions
	7.2 Convergence of the Value Function
	7.3 Convergence of the Geodesic Distance
	7.4 Convergence of the Geodesics
	7.5 Computational Complexity

	8 Conclusion
	A Approximating the SRVTs
	B Convergence for Fully Discretised Schemes

