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Abstract

We study the band structure of self-adjoint elliptic operators Ay = —V - 04V, where o, has the
symmetries of a honeycomb tiling of R?. We focus on the case where o is a real-valued scalar: g, = 1
within identical, disjoint “inclusions”, centered at vertices of a honeycomb lattice, and oy = g > 1
(high contrast) in the complement of the inclusion set (bulk). Such operators govern, e.g. transverse
electric (TE) modes in photonic crystal media consisting of high dielectric constant inclusions (semi-
conductor pillars) within a homogeneous lower contrast bulk (air), a configuration used in many
physical studies. Our approach, which is based on monotonicity properties of the associated energy
form, extends to a class of high contrast elliptic operators that model heterogeneous and anisotropic
honeycomb media.

Our results concern the global behavior of dispersion surfaces, and the existence of conical crossings
(Dirac points) occurring in the lowest two energy bands as well as in bands arbitrarily high in the
spectrum. Dirac points are the source of important phenomena in fundamental and applied physics,
e.g. graphene and its artificial analogues, and topological insulators. The key hypotheses are the non-
vanishing of the Dirac (Fermi) velocity vp(g), verified numerically, and a spectral isolation condition,
verified analytically in many configurations. Asymptotic expansions, to any order in g~!, of Dirac
point eigenpairs and vp(g) are derived with error bounds.

Our study illuminates differences between the high contrast behavior of A, and the corresponding
strong binding regime for Schroedinger operators.

Keywords: Photonic crystals, High contrast elliptic operators, Honeycomb media, Band structure, Dirac
points.

1 Introduction and summary of the results

1.1 Introduction

This article concerns the spectral properties of the second order divergence form elliptic operator A, :=
—V -0,V acting on L?(R?), where o, is defined on R? and has the symmetries of a honeycomb tiling
of R?. We focus on the case where o4(x) is a strictly positive, real-valued and piecewise constant scalar
function of position, * = (z,y), which is equal to g > 0 on a set of inclusions and equal to 1 on their
complement in R? (the bulk); see Figure 1.

The interest in elliptic operators with honeycomb symmetry was catalyzed by the discovery of 2D
materials, such as graphene [29, 49, 11, 39], and their role in the field of topological insulators. Graphene’s
remarkable wave propagation properties are directly related to the presence of Dirac points, conical
touchings of neighboring dispersion surfaces in the band structure of the single-electron (Schroedinger)
model of graphene. Dirac points have been shown to occur in generic honeycomb Schroedinger operators
[23]; see also [1, 5, 16, 33, 43]. Their implications for the dynamics of wave-packets were studied in [24].

Analogous wave properties have been observed in many different physical systems with honeycomb
symmetry, where operators of type A, arise in engineered topological materials, e.g. electromagnetism
for photonic graphene, acoustics, mechanics; see, for example, [8, 48, 51, 57]. Such engineered honeycomb



media are often called artificial graphene. For a discussion of operators of the type Ay, as they arise in
the context of transverse electric (TE) modes in the 2D Maxwell equations, see Appendix A. Elliptic
operators of type Ay occur as well in models for 2D acoustics [41] and in elasticity [52]. Dirac points and
their dynamical consequences in photonic graphene for the 2D Maxwell equations with smooth coefficients
were studied in [43, 60].

Typically, engineered periodic structures (honeycomb and other) are media which consist of two
or more distinct materials, each characterized by its own constant material parameter, e.g. dielectric
constant. Often the material contrast is taken to be large. The goal of this article is to study the spectral
properties of honeycomb operators A, where o4 is piecewise constant. We focus on the regime of high
material contrast, corresponding to g large.

An analogous study of continuum honeycomb Schroedinger operators in the strong binding regime was
initiated in [22]. Here, the periodic quantum potential consists of deep atomic potential wells centered at
honeycomb lattice sites. It is shown that the low-lying (first two) dispersion surfaces, after a centering
and rescaling, converge uniformly to those of the tight binding (discrete) model of graphene. In contrast,
for A, we obtain detailed information on the low-lying spectrum and also its higher energy dispersion
surfaces. For example, our results imply in particular for the case of circular inclusions that for each
eigenvalue, 3, of the infinite sequence of radial (simple) Dirichlet eigenpairs of —A for the single inclusion,
there is a pair of dispersion surfaces of A, acting in L?(R?), which meet in a Dirac point, and which
converge to the constant function with value equal 5, as g T oo, uniformly on B for the upper one and on
any compact subsets of B\ {0} for the lower one.

Corresponding results for Dirac points at higher energies have not yet been proved for Schroedinger
operators in the strong binding regime. Furthermore, the global character of the dispersion surfaces of A,
is very different from that of the Schroedinger case. For example, general dispersion surfaces of A, (and,
in particular, the first dispersion surface) do not converge uniformly with increasing g in any compact
set including k = 0.

The methods we use differ in many key respects from those used in the honeycomb Schroedinger
case. A, is decomposed as a fiber integral over the subspaces L, on which we use the variational
characterization of eigenvalues of self-adjoint operators. Comparison principles (Dirichlet and Neumann
bracketing) and the monotonicity of the energy form for A,, with respect to g, enable verification of
a key spectral isolation property, used to study the asymptotics of bands that touch in a Dirac point.
Finally, due to the discontinuity in the coefficients of A4, we work with a weak formulation of the elliptic
eigenvalue problem, which requires many technical adjustments to aspects of the analysis with parallels

in [22].
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Figure 1: Left panel: Honeycomb arrangement of inclusions. Centers of inclusions are located at vertices
of the honeycomb: (v4 + A) U (vp + A), where A = Zv, & Zwv, is the equilateral triangular lattice. The
unit cell  is a diamond-shaped region containing inclusions: Q4 centered at v4 and Q7 centered at vg.
og(z) =1 for z € Q1 UQP and o, = g for z outside the inclusions. o,(z +v) = o(z) for all v € A and
all € R2. Right panel: Dual lattice A* = Zk; @ Zk,. Brillouin zone, 3, with its two independent high
symmetry quasimomenta at vertices: K and K'.




1.2 A brief description of the mathematical problem

Figure 1 (left panel) displays a portion of the structure defined by o,. The plane is partitioned into
diamond-shaped period cells with fundamental cell ). Each period cell has two disjoint identical inclu-
sions, Q4 and QF, centered at vertices of a honeycomb structure. The inclusion shape is required to
be: 2m/3 rotationally invariant and inversion symmetric about its center. The function o, takes on two
values

og(x) =

1 for x in the inclusions
g>1 for @ in the bulk (outside the set of inclusions).

In this article we present results on spectral properties of
A, == =V -0,V acting on L*(R?) . (1.1)

Since A, commutes with (triangular) lattice translations, its spectrum can be obtained via the family of
quasi-periodic Floquet-Bloch eigenvalue problems; see Section 2.3. For each k € B C (R2)* (B ~ T?), the
Brillouin zone (Figure 1, right panel), let A\1(g; k) < Aa(g; k) < ... u(g;k) < ... denote the eigenvalues,
with multiplicities listed, for the eigenvalue problem:

Ayt =\ subject to k—quasi-periodic boundary conditions; see (2.2).

The functions k — A, (g; k), n > 1, are Lipschitz continuous and their graphs are the dispersion surfaces
of A,. The L?*(R?) spectrum of A, is the union of closed real intervals, that are swept out by the maps
k — \.(g;k) as k varies over B ~ T2. The collection of all Floquet-Bloch eigenvalue / eigenfunction
pairs is called the band structure of A4. Section 2.3 provides a more detailed discussion.

1.3 Summary of main results

We summarize our main results on the band structure of A, acting in L?(R?) for ¢ > 1. To keep
the presentation of this introduction short, we outline results as they apply to the low-lying (first two)
dispersion surfaces. Our results extend to higher energy bands whose high contrast limit satisfies a band
spectral isolation condition (S); see Definition 4.2. Precise formulations of results for low-lying and higher
energy dispersion surfaces are stated in Sections 3 to 9.

1. Theorem 4.4 and Corollary 4.5: Convergence of dispersion maps as g T : Hempel and Lienau
[35] developed a variational approach for studying the convergence of the band dispersion func-
tions as g T oo; see also [28]. It is based on the monotonicity of the energy form, ag(u,u) =
Joog(@)|Vu(z)? de, with respect to the parameter g and the min-max characterization of eigen-
values of self-adjoint operators. In Section 4 we apply their approach to a study of the band
structure of A, for g > 1. Note that the results of Sections 3 and 4 do not require honeycomb
symmetry; see Remark 4.7

To explain these results, in the context of the first two bands, note first that A, annihilates constant
functions, which satisfy periodic boundary conditions (k—quasi-periodicity with & = 0). Therefore,
A1(g;0) = 0 for all g. We prove, on the other hand, that as g tends to infinity:

(a) the first dispersion map, k — A1(g; k) converges, uniformly on compact subsets of B\ {0} (but
not on all B), to the constant function of k with value equal to the (strictly positive) 15t Dirichlet
eigenvalue of a single inclusion, Q4 | and

(b) the second dispersion map, k — Aa(g;k) converges, uniformly on all of B to the constant
function in k with value equal to the (positive) 15t Dirichlet eigenvalue of a single inclusion, Q4 .

(¢) For g sufficiently large, there is a gap in the spectrum of A, between the 2™ and 3™ spectral
bands.

Figure 2 illustrates assertions (a), (b) and (c¢). In each panel, the 3 displayed curves are obtained
by tracking the dispersion surfaces k +— \;(g; k), j = 1,2,3, along the boundary of a symmetry-
reduced Brillouin zone for the indicated value of g. While in all panels A\i(g,0) = 0, we see
that in the complement of any neighborhood of k = 0, A1(g; k) converges uniformly to the first



Dirichlet eigenvalue, 61 > 0, of the single inclusion. This eigenvalue is a doubly degenerate Dirichlet
eigenvalue, 8; = 85 = b1, for the union of two identical disjoint inclusions Q4 U Q. On the other
hand, A2(g; k) is seen to converge uniformly on all B. Finally, as asserted in (c), a spectral gap
opens between the first two bands and the third band for larger values of g.
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Figure 2: Dispersion maps k — \1(g; k), A2(g; k) and A3(g; k) plotted along the boundary, M — 0 —
K — M, of the symmetry-reduced Brillouin zone for the indicated values of the contrast g. For all g > 0,
A1(g;0) = 0. However, as g T 0o, A1(g; k) converges, uniformly on any compact subset of B\ {0}, to the
two-fold degenerate smallest eigenvalue d; = d2 > 0 of the Dirichlet Laplacian (horizontal dashed line)
for the domain Q4 UQP, the union of two disc inclusions of radius Ry = 0.2. The second dispersion map,
A2(g; k), converges uniformly on the full Brillouin zone B to 6; = d3 > 0. Here, A = §; = 3 = (2071/R0)2,
where 2,1 denotes the first zero of the Bessel function Jy(z). For typical values of g, there is a Dirac
point (conical intersection of bands) over the high-symmetry quasi-momentum K (and K’, not shown).
For the simulated structure, this Dirac point is situated between the second and third bands for g = 8.9
and between the first and second bands for g = 25,40, 100, 250; see Theorem 5.12. A (transitional) triple
degeneracy occurs at K (resp. K') for g = 13.1. Furthermore, for large g there is a gap between the 274
and 37¢ spectral bands; see Theorem 4.4 .

2. Theorem 5.12 and Corollary 5.13, Existence of Dirac points for g sufficiently large: In Section 5
we prove, under a non-degeneracy condition (non-zero Dirac velocity, vp(g)), that for g sufficiently
large, A, has Dirac points (Ap(g),kp). These occur at intersections of the first two dispersion
surfaces at an energy A\p(g), for kp equal to any of the 6 vertices of B (K and K', high symmetry
quasi-momenta and their images by rotations of 27/3 and 47 /3 centered at 0, see section 5.1
and Remark 5.5). By Theorem 4.4, since K, = K,K’ are non-zero, it follows that \;(g; K,) =
A2(g; Ky ) = Ap(g) tends to the (multiplicity 2) Dirichlet eigenvalue d; = d2 of the inclusion subset
Q4 U QB of the fundamental domain €.

In Figure 2, Dirac points appear as linear (transverse) crossings of two curves. For Schroedinger
operators [23], and divergence form elliptic operators with smooth coefficients [43]) we have that:
for all but a discrete set of values of the well-depth parameter (respectively, contrast parameter),
Dirac points occur at least at one energy over the 6 vertices of 5. In the setting of this article,



Figure 2 shows the emergence of Dirac points for sufficiently large g between the first two bands.
For a detailed discussion of the observed transfer of the Dirac point from the second and third bands
to the first and second bands as ¢ increases, see Section 7, specifically the discussion of Figure 6.

Let kp = K. The eigenvalue Ap(g) has a corresponding eigenspace of dimension two with as-
sociated orthonormal basis {®1(g,-), P2(g,-)} where ®4(g,-) = f‘}K + O(1/g) and ®a(g,-) =
+e—2in/ 2Pl + O(1/g) for large g. Here, PfK and PPy are K—quasi-periodic superpositions
of single inclusion Dirichlet states. Pf}K is supported on the A— inclusions and PEK is supported
on the B— inclusions. Hence, these Dirichlet states play a role analogous to atomic orbitals in the
strong-binding Schroedinger analysis [22]. Numerical simulations demonstrating this behavior are
presented in Sections 7 and 8.

The disjointness of the supports of the leading order terms of ®;(-, g) implies, for the Dirac velocity:

up(g) = vHlg +O0(g72).

Hence, the Dirac velocity tends to zero when g T oo and the Dirac cone becomes increasing flat as
g increases; see Figure 2 for ¢ = 250. This is consistent with the uniform convergence of dispersion
surfaces away from k = 0. We conjecture that vg) # 0. Numerical computations show this to be
the case (see Section 7) and hence for ¢ > 1, (Ap,kp) is a Dirac (conical) point in the sense of
Definition 5.3.

Our proof of Theorem 5.12 and its Corollary 5.13, is based on the set of sufficient conditions
proved in Theorem 5.4. Analogous conditions were proved in [23] using a Schur complement /
Lyapunov-Schmidt reduction strategy, for Schroedinger operators and for elliptic operators with
smooth coefficients [43] by the same overall strategy. But since A, has discontinuous coefficients
the proof of Theorem 5.4 proceeds via the weak formulation of the elliptic eigenvalue problem.
Furthermore, since we also study Dirac points arising in higher energy bands, the natural energy
form is not coercive; indeed it is infinite dimensionally indefinite. We use the notion of T-coercivity
to transfer the problem to a coercive setting, enabling bounded invertibility of the relevant operator
to obtain the reduction; see Section 9.

A precise formulation of the above results with extensions to Dirac points in higher energy spectral
bands appears in Sections 4 through 9.

3. Theorem 6.3, Corollaries 6.6 and 6.7, and Theorem 6.8 Asymptotic expansions of Bloch eigenmodes
and Dirac velocity at K, = K, K': In Section 6 we construct asymptotic expansions to any order
in g~! of a) the Dirac energy Ap(g), and b) an associated orthonormal basis, {®;(g, ), ®2(g,-)},
of Bloch eigenfunctions. Such approximate eigenpairs are called quasi-modes. By general self-
adjointness principles, presented in Appendix C in the weak formulation, the existence of Dirac
quasi-modes with small residual implies that the actual Dirac eigenpairs (established earlier) are
within a neighborhood whose size is set by the size of this residual. Thus, this justifies the ex-
pansions. These mode expansions are then used to obtain an asymptotic expansion of the Dirac

velocity, vp(g), to any order in g~1.

1.4 Connection to previous analytical works on high contrast media

High contrast elliptic operators have been studied in media where the contrast and the geometrical
structure (e.g. inclusion length scale) are coupled. For example, the articles [12, 27, 58, 61] concern the
high contrast homogenization regime, in which the size of the unit cell depends on the material contrast,
and the articles [26, 31] concern media which contain asymptotically thin structures. In this article,
inclusions defined by o, have fized geometry and we take the contrast, g, between the two material
parameters to be large. We can make use of the variational methods of Hempel and Lienau [35], who
studied the limiting behavior of the band spectrum and obtained criteria for the opening of gaps in the
spectrum of Ay for g > 1. Further developments along these lines concerning the density of states of
such media were obtained in [28]. The main focus in [35] is the use of high contrast to open gaps in the
energy spectrum. In this paper we apply these methods together the symmetries of novel structures to



study important band structure properties such as Dirac points. We believe our approach can be used
to study other classes spectral degeneracies; see, e.g., [40].

An alternative potential theoretic formulation of the spectral problem for operators with piecewise
constant coefficients, in terms of boundary integral equations, is developed in [2]. But unlike, the methods
of this paper, this formulation is not easily adapted if the media has strong heterogeneities or anisotropy,
i.e. if the medium is not piecewise constant. In a square lattice geometry, using such a potential theoretic
approach, the authors of [45] study the question of the existence and width of spectral gaps for sufficiently
large contrast. They provide, in particular for disc-shaped inclusions, a sufficient condition with a lower
bound on the contrast (in terms of inclusions radii and inclusions relative distances) to open a gap between
consecutive energy bands. Recently, high contrast elliptic operators in honeycomb structures have been
studied via a potential theoretic approach for the “inverted” case of a honeycomb-lattice of acoustic
“Minnaert bubbles”, in which o, is large within the honeycomb inclusion set and bounded outside the
inclusion set [1]. Their results apply to the two lowest bands and, so far, have no equivalent for higher
energy bands.

Concerning asymptotic expansion of eigenpairs in high contrast media, we mention the works [2, 17,
37, 44]. In [37] the case of a bounded domain with Dirichlet boundary conditions and high contrast coef-
ficient within the inclusions is studied. Using approximation by quasi-modes, they provide an asymptotic
expansion of the eigenvalues and spectral projectors to any order. In [2], using Riesz homomorphic func-
tional calculus and a potential theory, the authors give the leading order term of a Bloch simple eigenvalue
in a square lattice at any non-zero quasimomentum. By a similar technique and in the same geometry,
the authors of [44] prove the analyticity of simple Bloch eigenvalues or of the eigenvalue group, for the
case of degenerate eigenvalues. The coefficients involved in their series expansion are defined implicitly
via the Riesz holomorphic functional calculus. Finally, recently in [17], the first terms of the asymptotic
expansion of Bloch eigenvalues were derived for the limiting case of a single disc-shaped inclusion whose
closure touches the boundary of a square unit cell.

We conclude by mentioning a number of interesting natural questions to consider going forward:
(1) Are there results on the scaled limiting shape of dispersion surfaces which intersect in a Dirac point?
Such a result was proved for the first two bands of Schroedinger operators in the strong binding regime
in [22].
(2) Dirac points are known to occur in generic honeycomb Schroedinger operators [23]. The methods of
[23] were used to prove the analogous result for divergence form operators with smooth coefficients [43].
It would be of interest to develop a method, which through the weak formulation, can handle divergence
form operators with non-smooth coefficients, A,.
(3) And finally, it would be of great interest to consider the propagation of edge modes in the current
context. For honeycomb media, these have been studied (a) for the Schroedinger equation with a sharply
(zigzag-) terminated honeycomb structure [25], and domain wall line-defects [21, 20, 22], and for (b)
Maxwell’s equations in a honeycomb structure with a domain wall [43]. It would be interesting to use
the techniques of the present paper to study edge states for line-defect perturbations of A,.

1.5 Outline of the paper

In Section 2, we give a precise formulation of the mathematical problem and review the spectral theory
of elliptic operators in periodic structures.

In Section 3, we summarize the variational theory developed by Hempel and Lineau in [35]. We provide
some extensions of their theory concerning strict monotonicity Bloch eigenvalues as functions in the con-
trast parameter g, and regarding uniform convergence of band dispersion functions on the Brillouin zone
as g T oo.

In Section 4, building on [35], we introduce a spectral isolation condition (S) (Definition 4.2), expressed
in terms of eigenvalues of the Dirichlet Laplacian for a single inclusion. We then establish a relation
between this Dirichlet spectrum and the Li-spectrum (for k # 0) of A, for large g. Furthermore, we
characterize the high contrast global behavior of dispersion surfaces and show the existence of a spectral
gap for dispersion surfaces whose high contrast limit is given in terms of Dirichlet eigenvalues that satisfy
the condition (S). Condition (S) always holds for the first Dirichlet eigenvalue. Hence, these results hold
for the lowest-lying (first) dispersion surface.



In Section 5 we embark on the study of honeycomb operators Ag, using general results of the previous
sections. Section 5.1 discusses the symmetries of honeycomb operators, operators which commute with
Ag, and important consequences for the spectral analysis. In connection with this, the Appendix B, deals
with technical questions arising due to the discontinuities of the elliptic coefficient o,. The notion of a
Dirac point is defined in Section 5.2, and sufficient conditions for their existence are given in Theorem 5.4.
In Section 5.3 we construct states which capture the limiting behavior of the Floquet Bloch eigenspace
of Dirac points; these states are K,—quasi-periodic superpositions of translates of the Dirichlet eigen-
states of the single isolated inclusion. In Section 5.4 we prove Theorem 5.12 on the existence of Dirac
points, associated with Dirichlet spectrum of —A satisfying (S), under the non-degeneracy condition
that the Dirac velocity, vp(g), is non-zero. Condition (S) always holds for the first Dirichlet eigenvalue
and hence Theorem 5.12 applies to give Dirac points within the two first dispersion surfaces, modulo the
non-degeneracy assumption, which we address numerically.

In Section 6, we prove asymptotic expansions to any order in g~! for: the Dirac eigenvalue, Ap(g), a
natural choice of orthonormal of its corresponding 2— dimensional eigenspace, and for the Dirac velocity
vp(g). We use the weak formulation of the quasi-mode principle, discussed in Appendix C.

In Section 7 we present the results of numerical simulations which illustrate our rigorous results for the
first 2 spectral bands of A,.

In Section 8 we show, for the case of disc-shaped inclusions, that the spectral isolation condition (S) is
satisfied for all radial Dirichlet eigenpairs, i.e. those whose eigenvalues derive from zeros of the Bessel
function Jyp(z). Hence, for this special geometry, the results of Sections 4-6 apply to give Dirac points
at intersections of an infinite sequence of energy band pairs. As an illustration, we present numerical
simulations for the 11" and 12" spectral bands.

In Section 9, we prove Theorem 5.4 on sufficient conditions for the existence of Dirac points. The proof
uses a weak formulation of Lyapunov-Schmidt / Schur complement reduction scheme of previous work
and makes use of T'—coercivity to define an appropriate resolvent for the reduction, which applies when
Dirac points sit among spectral bands above the first two.

Finally, in the Appendix D, we extend our approach and results to a class of divergence form elliptic op-
erators which, in electromagnetism, model inhomogeneous and anisotropic inclusions in an heterogeneous
and anisotropic bulk.

1.6 Notations, definitions and conventions

e We denote by Ny and N respectively the set of non-negative integers and positive integers.

e For two Banach spaces F and F, B(E, F) is the Banach algebra of bounded linear operators from F
into F. We write B(E) = B(E, E) .

o (- ~>E* . denotes the duality product between the Banach space E and its dual E*.

e In this paper, all the considered Hilbert spaces H are endowed with a complex inner product. This
inner product and all the considered sesquilinear forms, defined on H x H, are antilinear with respect to
the second variable.

e Except in the context of our definition of lattice, the symbol & refers to both the direct sum of two
closed spaces in a Banach space and the orthogonal direct sum between two closed spaces in a Hilbert
space. Unless explicitly specified otherwise, the symbol @ refers to an orthogonal direct sum.

e If A: D(A) C H — H is a selfadjoint (resp. normal) operator on a Hilbert space #H, one denotes by
Ea(-) its associated spectral measure defined from the Borel sets of R (resp. C) into the projection of
B(H) (see [15, 54, 55]).

o Let H be a Hilbert space, A : D(A) C H — H a unbounded linear operator and B : H — H a bounded
linear (or bounded anti-linear) operator. One says that A commutes with B, if D(A) is stable under B
(i.e. B(D(A)) C D(A)) and if the commutator [A, B] = AB — BA vanishes on D(A).

For the particular case where A is a self-adjoint and B is linear, this definition is equivalent to the
commutation of B with the spectral measure Ex(:) of A in the sense that the commutator [B,E4 (7))
vanishes on H for any Borel sets I of R (see Proposition 5 p. 145 of [15]).

Furthermore if B is a normal operator, it is equivalent to the commutation of the spectral measures of B
with A, i.e Eg(J)D(A) C D(A) and [A,Eg(J)] vanish on D(A) for any Borel sets J of C (by combining
Proposition 5.27 p. 107-108 of [55] and Proposition 5 p. 145 of [15]). Finally, this turns out to be also



equivalent to the commutation of the two spectral measures, namely [Ea(I),Eg(J)] = 0 on H, for any
Borel sets I of R and any Borel sets J of C (see Proposition 5.27 p. 107-108 of [55]).
e Let R denote the matrix which rotates a vector in R? clockwise by 27/3:

R= 2. 2. 1.2
V3l -
2 2
Its eigenvalues and a choice of normalized eigenvectors are given by:
_ _ - 1
Ré=7¢ and RE=TE, where 7 =e%% and ¢ = 7 (1,i)". (1.3)
e Triangular lattice, A = Zvy & Zv,, where
o — (@ )" and v, - (@ Sy
V202 2T\ 2/
e Honeycomb, H = A4 U Apg, where A; = v; + A with base points:
T 1 T
va = (0,0) and vp = <%,O) .
e Dual lattice A* = Zk, ® Zks, where
3 T 3 T
ky = Qw(i, 1) and ky — 27r(£, —1) .
3 3
-
e A choice of hexagonal tile center is given by x. = % (%, 71) . It is located at a vertex of the

fundamental cell Q; see Figure 1). Note that Rx. = —vp.

e K and K’ are the 2 independent high-symmetry quasi-momenta, at vertices of the Brillouin zone B
depicted in Figure 1:

1 A T /
K= g(k1 —k2) = (0, 3 and K’ = —K. (14)
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2 Analytical preliminaries

In this section we first introduce the equilateral triangular lattice and honeycomb structure. We then
define the honeycomb medium through the piecewise constant coefficient o, of the operator A,. We
employ notations and conventions similar to those in [23].
2.1 'Triangular lattice, honeycomb structure and the periodic medium
The equilateral triangular lattice in R? is given by:

A =7Zv, © Zvy = {mwl + mova, (ml,mz) S Zz}

Given base points v4 and vg, we consider equilateral triangular sub-lattices: Ay = va4 + A and A =
vp + A. The honeycomb structure, H, is the union of these two interpenetrating sub-lattices:

H = As U Ap.



As a fundamental domain in RZ, we choose the diamond-shaped region, which contains v4 and vp:

1 T
0= (—E,O) +{91’01 + 6v5,0 < 6; < 1,i:1,2} ;

see Figure 1. Denote the discrete translates of {2 by lattice vectors by:
Qo = Q + moy + nos,

where Q = Qgg. The family of regions Q,,,,, (m,n) € Z? is a tiling of R?.

2.2 The honeycomb coefficient o ()

In this section we define o4(x) to be piecewise constant on the fundamental cell, 2, and extend it to be
A— periodic on R?. We begin with a discussion of constraints on the subset of € consisting of inclusions.

Throughout this article we assume:

(€2.i) The inclusion Q4 is a non-empty simply connected open subset of  with a Lipschitz boundary
004, and with vy € Q4.

(€2.il) The inclusion QF is the translate of Q4 by vp.

We denote the inclusion subset of Q by QF := Q4 UQF.
(Q.iii) The inclusions are disjoint; Q4 N OB = ().

(€2.iv) The inclusion set is uniformly bounded away from the boundary, 02, of the fundamental cell;
dist(Q+,8Q) >0.

Next we impose conditions, used in the construction of a honeycomb symmetric medium, o4(z), and
the associated operator A,. We further require the following assumptions on Q4 and QF linked to the
honeycomb symmetries:

(Q.v) Q4 is invariant under the 27 /3— rotation about origin v4 = 0. That is,
R(Q4) = Q#, where R is the clockwise 27/3— rotation matrix;
we say that Q4 is centered at v 4.
(Q.vi) Q4 is invariant under inversion with respect to v4 = 0. That is,

O = -0 ={—x:xcQ}.

Note that (2.v) and (Q.vi) together imply that Q4 is also 7/3 rotationally invariant about v 4.
Let 2~ denote the part of €2, which is outside the inclusion set:

Q0 —0\ar

and thus
Q=0tuontuQ ; see Figure 3.

Our periodic partial differential operator, Ay, is specified by a piecewise constant constitutive law,
og = 0g4(x). We first define o, on Q by

(2.1)

1, zeQt=0Q40UQ0F
og(x) =

g, xTEN,

and then extend o4 to be defined on all R? as a A— periodic function. This extension is smooth across cell
interfaces but has discontinuous jumps across inclusion boundaries. Referring to Figure 3, an admissible

choice of o, is obtained by taking o, = 1 on all inclusions and o4 = g in their complement with respect
to R2.



Qt=0'u0f and Q=QtUQ"

Figure 3: Examples of inclusion subsets, 7, of the fundamental cell, 2, satisfying conditions (€.i)-(2.vi).
Note that the boundaries of the inclusions in the right panel are Lipschitz continuous but not C*.

2.3 A quick review of Floquet-Bloch theory
Let A* C (R2)* = R denote the lattice which is dual to A:

A =7k, @ Zky = {mik; + maoky, (m1,ms) € Z%}, where kj-v,, = 270;,.

A choice of fundamental cell in R3, the Brillouin zone, is the closed regular hexagon B shown in Figure
1. The family of regions B,,, = B + mky + nks where (m,n) varies over Z? tiles R3.
For any k € R?, let L} = L% (R?/A) denote the Hilbert space of k— quasi-periodic functions:

Li = {fec L} (R} | f(x+v)=c*Vf(x), for a.e x € R? and all v € A}, (2.2)

with inner product (f, 9>Li = [ f(2)g(x)dz, defined for all f,g € L, and denote by ||- HLi the associated

norm. (When the context is clear, we omit the subscript L7 from the norm notation.) Note that
Li_, = L*(R?/A), the space of A— periodic functions.
Given a function u in the Schwartz space S(R?), define its Floquet-Bloch transform:

(Fu)(z, k) = Z e*vy(x —v), for x € R and k € R}. (2.3)
vEA
For a fixed « € §, the expression (2.3) extends k — (Fu)(z, k) to a A*— periodic function on R3:
(Fu)(x,k+ k) = (Fu)(z, k) forall k€ A" .

Thus we may restrict the quasimomentum k to B. Furthermore, for a fixed k € B, the function is
x — (Fu)(z, k) € Li:

(Fu) (x + v, k) = *? (Fu) (x, k), for all v € A and a.e. = € R?.

For all u € S(R?), one can show the following Plancherel-type identity:

/R (@) Pda = ﬁ /B /Q \Fu(e, k) 2dz dk, (2.4)

where |B| = |k1 A ko| = 2% (272)/+/3 is the area of the Brillouin zone B. The identity (2.4) extends
by density F/+/|B] as a linear isometry from L2(R?) to L?(B,L2). Moreover, this isometry is unitary
(since surjective) and we have the following inversion formula; all v € L?*(R?) have the following L3
decomposition:

1
Bl Jres

In analogy with (2.2) we introduce, for any k € R?, the Sobolev spaces H} = HL(R?/A):

u(w) = ‘—;'(]—'*]—'u) (@) F(u)(a, k) dk, for ac. @ € R2.

Hi :={f € H..(R?) | f(x +v) =e*?f(x),for a.e. x € R? and all v € A},
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endowed with the following inner product,

(Fo)my = [ f@ig@)de+ [ V@) Valw)da
and denote by || - ||z the associated norm.

Remark 2.1. We emphasize that functions u € H,i, are such that the trace of the map = > e~ *Ty(x)
has no jump across boundaries between period cells and is A— periodic. For the definition of traces
(restriction operators) in terms of Sobolev spaces, we refer for e.g. to [50, 32, }7].

2.4 The operator A, and its spectral theory: general properties

Let o, denote the piecewise constant function and A— periodic (L} _, = L?(R?/A)) function introduced
in Section 2.2. The operator

Ay, =-V -0,V : D(A,) C L*(R?*) — L*(R?)
with domain
D(Ay) = {ue€ H'(R?) | -V -0,Vu € L*(R?)},

is a positive self-adjoint operator. Furthermore, A, is unitarily equivalent to a direct fiber integral over
self-adjoint positive operators Ay i (see for e.g. [42]):

1 52
Ay = @-7:* ( A BAg,k dk) F meaning F(Agu)(-, k) = Ay Fu(-, k) for ae. k € B, (2.5)
€

where F denotes the Floquet-Bloch transform defined in Section 2.3. For any k € R?
Ag,k : D(Ag,k) — Li
denotes the operator —V - 0,V with domain given by:
D(Ag) == {u €H. |-V 0,Vue Li}.

Remark 2.2. Let u € D(A, ). Then, the trace of the function x — e~ *®u(x) and its Neumann trace
d(e=*Ty) /On are A— periodic, and have no jump across the boundaries between periodic cells. Here,
the orientation of the unit normal vector n on Uy, 708y, is chosen so that nv is constant on the sides
of the periodic cells that are obtained from each other by translation of lattice vectors, except of course at
the lattice vertices where it is not defined.

For k € R?, Ay has a compact resolvent; see e.g. [53, 42]. Its spectrum consists of a sequence of
non-negative eigenvalues:

0 < Ai(gik) < Xal(g:k) < < No(g5 k) < -+

listed with multiplicity, and tending to positive infinity. For any x € A*, one has Li e = Li, H} e =H ,i,
D(Ag ki) = D(Ag k) and thus Ay gy = Ay k. The maps

k € R? — \,(g; k) are real-valued, Lipschitz continuous and A*-periodic functions; (2.6)

see, for example, [4, 14, 24]. The maps k — \;(g; k) are called band dispersion maps. Since the band
dispersion maps are A*-periodic, one can restrict their study to the Brillouin zone B ~ T2. Their graphs
over B are called the dispersion surfaces of A,. By (2.5) and (2.6), the spectrum of A4, o(4A,), can be
obtained from the spectra of the fiber operators:

a(Ag) = (J Mlg; B) - (2.7)

The band structure of A, refers to the collection of dispersion (eigenvalue) maps and their associated
eigenmodes.



2.5 Eigenvalue bracketing

To estimate the location of o (A ), we make use of the Dirichlet and Neumann spectra A, on 2. Introduce
the operators:

AP = -V . 0,V, where D(AD™?) ={ue H)(Q) |-V 0,Vue L*(Q)}, (2.8)
ou

AYe? = -V . 0,V, where D(A)) = {ue€ H'(Q) | =V - 0,Vu € L*() and T 0}, (29)

where n denotes unit normal vector on 9€2, which points exterior to Q2. The operators Af 2 and Aév AL
are self-adjoint, positive and have compact resolvent. Moreover, Af 2 ig positive definite. Their spectra
consist of a sequence of real eigenvalues of finite multiplicity and tending to infinity. We list them (with

multiplicity) as:

0= AV (g) <AV R(g) < o< ANew(g) <

0< A (g) AP (g) <. AP (g) <.

The following lemma provides useful upper and lower bounds on the maps of the Floquet-Bloch dispersion
maps: A, (k;g) in terms of AD™%(g) and AL (g).

Lemma 2.3. For any fized g > 0, one has for alln > 1 and all k € B:
AR (g) < An(ksg) < APTHg) (2.10)

Hence, by (2.10) and (2.7):

o0

o(hy) C [JIV R (9), A7 (9)].

n=1

Proof. The proof is based on the application of the min-max principle to the quadratic (sesquilinear)
form associated with the operator —V - o,Vu

ag(u,v) = /Qag(ac)Vu(m) -Vo(x) de,

with the form domains: H{(§2), H., and H'(Q2), associated with, respectively, Dirichlet, k—quasi-periodic
and Neumann boundary conditions. By the min-max characterization of eigenvalues [15, 36, 53] of
selfadjoint positive operators with compact resolvent:

1. Neumann boundary conditions:

ANew(g)y = min max ag(u,u); (2.11)
VCH(Q) ueV
dimV=n Hu”LQ(Q):l
2. k— quasi-periodic boundary conditions:
An(g; k) = min max  ag(u,u); (2.12)
VCH, u€
dimV=n lullL2(@)=1
3. Dirichlet boundary conditions:
AP0y —  min max  ag(u,u). (2.13)
VCHg (%) u
dimV=n HU’HL2(Q):1

The inequality (2.10) follows immediately from the relations: H{(Q2) € HL C H'(Q), where we regard
H} as the subspace H'(Q) consisting of Hj. functions restricted to . O
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3 High-contrast (g > 1) behavior of dispersion maps

The article [35] contains general results on the large g behavior of the band dispersion functions, k
An(g; k); see also [28]. In this section we review and extend their results and in later sections apply them
honeycomb operators A, . For the results of this section we do not require honeycomb symmetry.

3.1 Limit of the fiber operators A
Recall that Q1 denotes the inclusion subset within the fundamental cell, Q; see Figure 1. For each
(m,n) € Z* define

Translates of Q: For (m,n) € Z?, Qf = Q"+ mv; + nvy C Qun,

Union over all translates of inclusions: Q1 = U(m,n)ez? QF  c R?

The bulk: Q- =R?*\ QF, (3.1)
We introduce the closed subspaces of L and Hj consisting of functions that vanish outside Q+:
L} = {ue L} |u(x)=0ae on Q }and Hf = {ue H |u(z)=0ae. on Q2 }. (3.2)

Let k € B be fixed. In [35] it is proved that the positive operator A, j converges in the norm-resolvent
sense as g — 400 via a study of the convergence of the associated sesqulinear form:
1 1

agk(u,v) = (A7 u, AZ )2 = /QagVu Vo dez, foralluve D(Ajk) = Hj. (3.3)

We present a short outline of their reasoning, which uses a result of [56] on monotone quadratic forms.
For any fixed u € Hj, the function g — a4 x(u, ) is increasing for positive g. Hence, we may define:

oo, ke (U, U) = sup ag(u,u) = lim ag(u, u),

with domain

dom(aeo k) = {u € Hi, | supag g (u,u) < oo}.
g>0

Let us now characterize dom(aco ). A function u € Hj belongs to dom(an ) if and only for some
constant C > 0:

agk(u, u) = / ogk|Vul?de < C, for all g > 0.
Q

The latter condition implies that:

g / |Vul?de < C, for all g >0, andhence Vu=0 ae. in Q. (3.4)
a-

Since ™ is open and connected (recall Q4 is simply connected), it follows that u(x) = a constant a.e.
in Q. Furthermore, since Hj functions are k quasi-periodic and belong to H} (R?) (their trace is
continuous across the boundary of the cells and the boundary of the inclusions), we conclude that u(x)
is a.e. equal to a constant on ©~. There are now two cases: k # 0 and k = 0.

3.1.1 The limiting operator A j for k # 0

For k € B\ {0}, non-zero constant functions on £~ do not belongs to H}. Since u is a.e. constant on
Q- it follows that u(z) = 0 for a.e.  in Q. Hence, dom(as 1) = H}; see (3.2).
Thus, for all k € B, the limiting sesqulininear form is given by:

Qoo (U, u) = lim ag k(u,u) = / \Vul?dz, for all u € dom(ace k) = H}.
O+

g—00
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For all k # 0 we may now associate, to the limiting form as k, the self-adjoint positive definite operator
Aoo,k : dOHl(AOO’k) - Li — Li:

—Au(z), fora. e xeQh

o 3.5
0 for a. e. £ € Q- =R?\ QF, (3.5)

(Acoru)(x) = {

with domain: _ B
dom(A k) = {u € dom(ane k) = Hj | A gu € L3}

The operator Aok is a positive definite self-adjoint operator with a compact resolvent. It has a discrete
set of real and strictly positive eigenvalues:

0<01<02...<d, < ..o

listed with multiplicity and tending to +oo. By (3.5), the sequence (J,,)n>1 is independent of k since it
coincides with the sequence of eigenvalues (counted also with multiplicity) of the Dirichlet Laplacian:

- ADir,m =—A dom(—ADir,m) - LQ(QJF) — L2(9+) (3-6)

where its domain D(—Ap;, o+) = {u € H}(QF) | Au € L2(Q1)} with QF = Q4 UQB. The following
result on norm-resolvent convergence of A, g as g — +oo is proved in [35]:

Theorem 3.1 (Norm resolvent convergence of Ay g to A k). Let k € B\ {0}. Then, for all { € C\ R:

RAg,k (C) = (Ag,k - C)71 — RAoo,k (C) = (Aoo,k - C)il , GS g — 00, in B(Li) (37)
It follows that the eigenvalues of Ay g converge to those of A g0 Fiz k # 0,
for any n >0, M(g; k) = 0, as g — +o0.

Remark 3.2. The resolvent Ry_ , (¢) acts on a closed proper subspace Ei of Li. Thus, to discuss
norm resolvent convergence in (3.7), one needs to extend the resolvent Ry__,(C) to the whole space

L} = Zi@(ii)L This is done (see [35, 56]) by setting Ry__, (Q)u = 0 for u € (Ei)J- ={ueli|lu=
0 a.e. on QT}.

3.1.2 The limiting operator A j for k=0

For k = 0 (periodic-case), the constant functions belong to H} = H(R?/A). Thus, in contrast to the
case when k # 0, we can only conclude from (3.4) that u is constant a.e. on ©~. Thus, dom(ac0) =
f[& @ span(1) where 1 is the constant function equal to one on all R?. Hence, for k = 0 the limiting form
(0,0 is given by:

aoo,0(t,u) = gli_{go gk (U, v) = /Q+ |Vu|*de, Vu € dom(aso) = H} @ span(1).

We note that the latter direct sum is not orthogonal. There exists a unique limiting positive self-adjoint
operator Ay o associated with as 0. It acts on the closed subspace z% @span(1) of L3 and its domain is
given by dom(Aw o) := {u € f]& | Agu € E%} @ span(1) where Agu is defined by Agu = —Awu a.e on QF
and Agu = 0 a.e on ©~. The description of the limiting operator requires much more technical study

than for the case k # 0. This is carried out in [35]. We do not provide the details here. A, ¢ has a
compact resolvent and its spectrum consists of a non-negative sequence (v,,) of eigenvalues:
0<r<m<...<y, <.

)

listed with multiplicity and tending to +o0o0. The following result is proved in [35].
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Theorem 3.3 (Ay 0 — A o in the norm resolvent sense). Let k = 0. Then we have for all ¢ € C\ R:

Ry, o(Q) = (Ago— )" — Rao(C) = (Ao — )", as g — oo, in B(L3). (3.8)

Hence,
For all n >0, An(g;0) = vy, as g — +o0.

Remark 3.2 applies to Theorem 3.3; one defines resolvent norm convergence (3.8) by extending the
resolvent Ra__ () by 0 on the orthogonal complement of (L3 & span(1)) in L3.

We conclude this section by recalling a further result of [35], proved by similar techniques to those
above, showing that limiting eigenvalues of A g, for k # 0, and A ¢ also arise as limits of the eigenvalues
of the operators AP7"? and A", introduced in (2.8)-(2.9). By the min-max characterization of
eigenvalues, (2.13) and (2.11), for any n > 1, g = AP"%(g) and g — AVe"$(g) are increasing functions.
Hence they either converge or diverge to +00 as g — +oo. In [35] the following is proved:

Theorem 3.4. The spectrum of the operators and converge respectively to the spectra of

Ak for k € B\ {0} and Ax 0 in the sense that for alln > 0:

Dir,Q2 Neu,2
Ag Ag

AP gy 55, and  AN(g) = vy, as g — oo.

3.2 Limiting behavior of dispersion surfaces and the opening of spectral gaps

We study the uniform convergence of the dispersions surfaces k — A, (g; k) defined on the Brillouin-zone
B and also on the existence of a criterion for the existence of gaps between these surfaces. Although
not explicitly stated in [35], a direct consequence is the uniform convergence of the dispersion surfaces
k — X\.(g; k) on any compact subset of the Brillouin zone B which does not contain 0. We precede the
formulation of this result with a lemma on the strict monotonicty of the dispersion maps with respect to
the contrast parameter g. This property is not discussed in [35].

Lemma 3.5. 1. Let n = 1. For all g > 0, A1(g;0) = 0. Furthermore, for fixed k # 0, g € Ry +—
A1(g; k) is strictly increasing.

2. Let n > 2 and fir k € B. Then, the function g € Ry — A\, (g; k) is strictly increasing.

Proof. Note that for any fixed u € H, g — a,(u,u) defined for g > 0 is increasing. Hence, by the
min-max characterization (2.12), for any fixed n > 1 and k € B, g — A,(g; k) are increasing. For the
particular case n =1 and k =0, Aj gu = 0 implies u is equal to a constant on . Thus, A1(g;0) = 0 for
all g > 0 and furthermore this eigenvalue is simple.

We prove now by contradiction, that A, (-; k) is strictly increasing for n > 2 or for n = 1 if k # 0. This
strict monotonicity of the dispersion maps is not mentioned in [35]. Assume that there exist g1,g2 > 0
such that g1 < g2 and A,(g1;k) = Ay (g2; k). Then by the min-max theory, there exists a subspace V;,

for j = 1,2, of dimension n with V; = span(uy j, ... un ;) where w,, ; € D(Ag, k), [[tm jllr2@) = 1 and
Ag; kUm,j = Am(9j; k) um,; for m =1,... n such that:
Anlgjik) = ag,(tn;, un,;)
= max ag. (U, u) = min max ag. (u,u). 3.9
weVj, llullp2(qy=1 9'7( u) VCH, dimV=n u€V, |lullp2g)=1 g_,( ) 3.9)

Thus, it follows that:

ag, (uml’ un,l) < max Qg, (u7 u)
u€Va, Jull L2(q)=1

< max Qgs (uvu) = Qg, (un,27un72) = Qg, (un,l?uml)
u€eVa, HuHLz(Q):l

(where the first inequality is due to the min-max formula (3.9) for j = 1 and the second to the increasing
of the functions g — a,4(u,u) defined for g > 0). Hence V5 is a subspace of dimension n for which the
minimum is reached in (3.9) for both j = 1 and j = 2. Thus, by min-max theory, the set V5 consists of the

15



linear combination of eigenfunctions associated to the n—th first eigenvalues of the operator Ay,  and the
function u, 2 € V2 which reaches the maximum over V5 is an eigenfunction associated to the eigenvalue
An(91; k) (= An(g2; k). Thus, one has Ag g, un2 = A\n(g1;K)un2 and Ag g,un2 = A\n(g1;k)upn2. This
leads immediately to —Au = (A, (91:k)/91) un,2 = (A (91;k)/g2) tn,2 on Q~ and thus to uy, 2 =0 on O~
because A, (g1; k) # 0 for n > 2 or k # 0. Using the continuity of the traces of u, 2 and of o,4,0u, 2/0n
across OQT, it implies that u, 2 and du, 2/0n are also continuous and thus they both vanish on 9Q*.
Hence, one has Auy, o = Ap(g1;k)tn,2 on Q and u, 2 = 0 on Q- which leads by the unique continuation
principle (see e.g. Lemma 2.2 of [7]) to the contradiction u, 2 = 0 on . O

Proposition 3.6. Let n > 1. (a) For k € B\ {0}, the dispersion map k — \,(g; k) converges to the
constant function with value 0, as g — oo. This convergence is uniform on compact subsets of B\ {0}.
(b) The convergence in (a) is uniform on all of B if and only if v, = §y,.

Proof. Choose J, a compact subset of B\ {0}. For g > 0, the functions k +— \,,(g; k) are continuous and
converge pointwise to the constant function é,; see Theorem 3.1. Furthermore, for all fixed k € J, the
functions g — A, (g; k) are increasing by Lemma 3.5. Therefore, by Dini’s theorem, the convergence is
uniform on J. If v,, # 0y, then A\, (g;0) = vy, # 6, = limg_o0 An(g, k # 0). In this case the convergence
is not uniform on B since k — A, (g; k) is continuous and the limiting function is discontinuous. On the
other hand, if v, = ¢, take J = BB and then Dini’s theorem implies uniform convergence on B. O

Proposition 3.7 (Interlacing of limiting Dirichlet and Neumann eigenvalues). The eigenvalues v, and
0n interlace in the following sense:

Up < 0p < Vpy1, for n>1. (3.10)

Proof. The first inequality v, < 4, in (3.10) follows from the limit ¢ — oo of the inequality (2.10):
ANew () < \Dir(g) and Theorem 3.4. The second inequality &,, < v,41 is much more delicate; it is
proved by a min-max argument in [35, Proposition 3.3]. O

That the dispersion surfaces “collapse” onto asymptotic sets determined by the limiting Dirichlet and
Neumann spectra {v,, n € N} and {6,, n € N} provides a means for identifying gaps in the spectrum
of A, acting in L?(R?) . The following result of [35] gives a condition for the opening of a gap, for g
sufficiently large, between the n'" and (n + 1)** dispersion surfaces.

Proposition 3.8 (Condition for gap opening and location of spectral bands for g > 1).

1. Suppose 6, < vpy1. Then, for sufficiently large g, there is a gap in the spectrum of the periodic
operator A,. More precisely, for all n sufficiently small (n € (0,vp41 — 0y)), there exists g, > 0
such that if g > gy, then

o(Ag) N [0p, Vnt1 — ) = 0. (3.11)

Hence, there is spectral gap located between the n*" and (n+ 1)%t spectral bands, which contains the
interval [0y, Unt1 — 7).

2. Suppose vy, < 0. Then, for any sufficiently small n (i.e. n € (0,0, —vy)), and g > g, sufficiently
large, the n" spectral band, \,(B;g), contains the interval [v,, 0, —n]. Hence, the n—th band “does
not get flat” for large contrast.

Proof. Figure 4 (resp. figure 5) serves as a clarifying schematic of the point 1 of Proposition 3.8 (resp.
of the point 2).

We first prove part (1). Let n € (0,41 — d5) be fixed. One has by Theorem 3.4 that )\T]:]quﬂ(g) —

Vn41, as ¢ — +00. Therefore, there exists g, > 0 such that if g > g, , then v,,11 —n < )\anTQ(g)

Therefore, by the eigenvalue bracketing inequality (2.10), one has for g > g, and all k € B, vp41—1 <
)\fjffg(g) < Ant1(g; k). Hence the (n+1)%- spectral band “is above” the energy vy, 11 — 7. Furthermore,
An (k) is a strictly increasing function for g > 0 for k # 0 or n > 1 (see lemma 3.5) and it tends to 4,
(by Theorem 3.4), as g — +oo. Therefore one has A,(g; k) < d,. For the particular case, n = 1 and
k=0, A\(g;0) =0 < 6 for g > 0. Thus, the n—th dispersion curve is always “strictly below” §,, which
yields to (3.11).
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ANCU’Q(g)

n+1

Figure 4: Bands and gaps of Ay for g large when 6,, < v,,41 (case 1 of Proposition 3.8).
v, 6, —1n [

n

B (.5, —n] C “n-thband”

inz:0) " gk

Figure 5: n-th bands for A, for g large when v,, < d,, (case 2 of Proposition 3.8).

We now prove part (2). Let n € (0,5, —vy,) be fixed. By Lemma 3.5, \,,(+; 0) is an increasing function
for g > 0 and, by Theorem 3.3, it tends to v, as ¢ — oco. Thus, one has \,(g;0) < v, for all g > 0.
Let ko € B\ {0}, as A\,(9; ko) — 0n, as g — +00. One obtains that it exists g, > 0 such that if
9> Gy, 0n — 1N < An(g; ko). One deduces from the convexity of B and the continuity of A,(g;-) over B
that h : t — A\, (g;tko) is well-defined and continuous on [0, 1] and therefore by the intermediate value
theorem [vy,, 0, — 1] C h([0,1]) C A\n(g; B) for all g > g,,. Hence it implies with (2.7) that for all g > gy,
[Un, 6n — 1] C An(g;B) C o(4y). O

Thus, when the strict inequality v, < d,, < v, 41 is satisfied, one gets information on the large contrast
asymptotics of the n*"* and (n + 1)**— spectral bands. In particular when §,, < v, 11, there is a spectral
gap between these two bands.

In [35], the authors provide the following useful condition on the eigenfunctions of —Ap;, o+ (defined
by (3.6)) to ensure that d,, < vy,+1, and hence the existence of a spectral gap for g > 1.

Proposition 3.9. (Conditions for a gap in the spectrum for large g)
Let (0p)n>1 be the limiting Dirichlet eigenvalues (Theorem 3.4), and formally set o = —oo. Assume
dim ker(—Api o+ — 0, Id) =m + 1, with §, =0; = -+ = 04 s0 that

5j_1 <Oy < 5j+m+1-

Then, we have the following two distinct scenarios:

(A) (Band separation) there exists u € ker(—Ap;, o+ — 0,1d) such that / u(x) dz # 0,
o+

and in this case, v; <6; and Oj4m < Vjtm+i-

(B) for all u € ker(—Ap;, o+ — 6,1d), one has / u(x) de = 0,
O+

and then either v; =0; or Cjym = Vjtm+1-

4 Isolation and limit behavior of two degenerate spectral bands

Our strategy to prove the existence of Dirac points in the band structure of honeycomb operators, involves
an asymptotic reduction of the full spectral problem for A, to a problem localized about two degenerate
(touching) bands. This (Lyapunov-Schmidt / Schur complement) reduction scheme requires that for
g > 1 the two bands that touch in a Dirac point are separated from the remainder of the spectrum. Since,
the dispersion maps collapse onto asymptotic Dirichlet or asymptotic Neumann eigenvalues (Proposition
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3.6), the condition in part (A) of Proposition 3.9 may be used to obtain such band separation. Indeed,
suppose the scenario of part (A) holds, i.e. u € ker(—Ap;, o+ — d,1d) and fQ+ u(x)de # 0. Then,

0j—1 SV <05 =0 =+ = Ojtm < Vjtmt1 < Oj4ml (4.1)

Hence, for sufficiently large g: bands r, with » < j — 1 and r > j + m + 1 are uniformly bounded away
from the m 4 1 bands with indices: r =j,...,j + m.

For the construction of Dirac points we require two spectral bands which touch to be isolated from
other bands of spectrum; hence we require (4.1) with m = 1. Since O+ = QAUQP is the union of disjoint
translates of a connected set, we may express this condition in terms of the Dirichlet eigenvalues of a
single inclusion, Q4.

We introduce the eigenvalues (listed with multiplicity)

0<51<82~~§5n§~~

of the single inclusion Dirichlet Laplacian —Ap;, g4 and recall that (d,,),>1 is the sequence of eigenvalues
(listed also with multiplicity) of —Ap;, o+ (and of Ak, for k € B\ {0}). Since the single inclusion Q4
is connected, &, is simple [36, Theorems 1.2.5 and 1.3.2]. The following proposition relates the spectra of
—Apir o+ and —Ap;;, ga. We omit its elementary proof, which uses [53, Proposition 3 p. 269].

Proposition 4.1. The spectra of —Api o+ and —Ap;, oa satisfy the following relations:
1. U(*ADir,sw) = U(*ADir,QA)y
2. for alln > 1: 631 = 09, = 5n,

3. foralln > 1: R
dimker(—Apj; o+ — 02, 1d) = 2 x dimker(—Ap;, o+ — d,1d).

4. foralln >1:

there exists u € ker(—Ap;, g+ — 0, Id) such that / u(x)dx #0
O+

—

there exists v € ker(—Ap;, ga — on 1d) such that / v(x)dx #£ 0.
Qa

The band separation scenario (A) of Proposition 3.9 with m = 1 and Proposition 4.1 lead naturally
to the following definition on the eigenvalues of —Ap;, 4 referred as a spectral isolation condition.

Definition 4.2. (Spectral isolation condition, (S)) Let n > 1 and bn be an eigenvalue of the single
inclusion Dirichlet Laplacian, —Ap;, ga. We say that 6, for somen > 1, satisfies the spectral separation
condition (S) if the two following properties hold:

(a) b, is a simple eigenvalue of —Apir a4, i-e. dimker(—=Ap; ga — ou1d) =1, and

(b) There exists an eigenfunction v € ker(—Ap; ga — 6n1d) such that
/ v(zx)dx # 0.
QA4

Propositions 3.9 and 4.1 imply

Proposition 4.3. If the the condition (S) holds for bn with n > 1 then Dirichlet and Neuwmann eigen-
values satisfy the following inequalities

Van—1 < O2pn—1 = Vap, = 02, < Vapy1 < dopy1.
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Proof. Since b, is a simple eigenvalue of —Ap;, g4, Proposition 4.1 implies that ds, 1 is an eigenvalue
of multiplicity 2 with do,_1 = o, = oy < don+1. Furthermore, the point (b) of Definition 4.2 implies,
via part 4 of Proposition 4.1, that d, = 2,1 satisfies the band separation condition (A) of Proposition
3.9 with m = 1. Thus it follows that: vo,_1 < dop—1 = d2,, < Vop41. Finally, the interlacing inequality
(310) yield81 Vop—1 < 627;—1 = Vop = 62n < Vap+1 < 52n+1- O

From the isolation of two degenerate asymptotic Dirichlet eigenvalues we next conclude properties of
the corresponding dispersion surfaces of A, for sufficiently large g.

Theorem 4.4. If §, satisfies the spectral separation condition (S), then the dispersion maps Aan—1(9g;-)
and Aan(g;-) satisfy the following (global) properties:

1. The dispersion map A2n—1(g;-) converges uniformly to the constant function da, = bn as g — +0
on any compact set of B\ {0} whereas Aap—1(g;0) = vop_1 # dan as g — +oo. In this case, the
band (dispersion surface) does not flatten as g 1 oco.

2. Aan(g;+) converges uniformly to 82, as g — +o0o on the whole Brillouin zone B. In this case, the
band “becomes increasingly flat” as g becomes large.

3. For g sufficiently large, there exists a gap between the (2n)!" and the (2n + 1)%t dispersion maps.
More precisely, one has Aap(g; B) C [0,02,) for all g > 0 and for any 0 < n < vop41 — 02y, there
exists gy > 0, such that Vg > ¢y, Aony1(g; B) C (62n + 1, +00).

Proof. By Proposition 4.3, the limit Dirichlet and Neumann eigenvalues satisfy vo,_1 < dop_1 = Vo, =
don < Vant1 < Oony1. First note that Ao,—1(9;0) — vo,—1 # 024, as g — 400 (see Theorem 3.3).
By Proposition 3.6 and the inequality vo,—1 < 02,1 = dapn, Aan—1(g; k) converges uniformly to da,, on
compact sets of B\ {0}. Furthermore, since va, = da2,,, part (b) of Proposition 3.6 implies that A2, (g; k)
converges uniformly to do,, on all of 5. Finally, as d2, < Vo411, the third point is a direct application
of (3.11) (with 2n replacing n and vo,41 — d2, — 7 replacing 7) in Proposition 3.8. This yields a gap
between the 2n-th and the 2n + 1-th band. More precisely, one has Aa,(g; B) C [0, d2y,) for all g > 0. On
the other hand, by Proposition 3.8, for any 0 < 1 < vap41 — d2,, there exists g, > 0, such that Vg > g,,
Aont1(9; B) € (025 + 1, +00). O

Note, in particular, that the spectral isolation condition (S) of Definition 4.2 applies to to the smallest
eigenvalue of —Ap;, oa. Indeed, the smallest eigenvalue of the Dirichlet Laplacian —Ap;, g4 is simple
and admits an eigenfunction v that is almost everywhere positive (see, [36, Theorems 1.2.5 and 1.3.2] or
[3, Theorem 4.1]). Thus, the assumptions of Theorem 4.4 hold for n = 1 since 6, satisfies the condition

(S).

Corollary 4.5. Points 1, 2 and 3 of Theorem 4./ hold for n = 1, where for point 1, we have A\1(g;0) =
vy =0 for all g > 0.

Proof. As 0, satisfies (8S), the points 1, 2 and 3 of Theorem 4.4 hold for n = 1. The fact that A\;(g;0) =
1 = 0 for all g > 0 follows from Lemma 3.5 and Theorem 3.3 applied for n = 1. O

Remark 4.6. For honeycomb Schroedinger operators in the strong binding regime, the lowest two dis-
persion surfaces (after centering and rescaling) converge uniformly on the whole Brillowin zone to a tight
binding model; [22]. Here uniform convergence of the surface to the first Dirichlet eigenvalue 61 holds
only away from a neighborhood of k = 0.

Remark 4.7. We point out that untill now we have not required the honeycomb symmetry of o4. Thus
s0 far we have only used that 2 = QT UQ~ UON contains two identical open simply connected inclusions
Q4 and QF with Lipschitz boundary that are disjoint and have a positive distance from OS).

5 High contrast honeycomb structures and Dirac points

In the present and subsequent sections, we use extensively the symmetries of the honeycomb structure.
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5.1 Symmetries of Honeycomb structures and their implications

We begin by recalling here symmetry properties of honeycomb media; see [23]. Let K and K’ be the two
vertices of B defined by (1.4) (see also figure 1). Then, the six vertices of B are generated from K and
K’ by applying the 27/3 clockwise rotation matrix R (defined in (1.2)). Thus, the six vertices fall into
two groups:

e K type-points: K, RK =K + ko, R’K = K — ki,
o K’ type-points: K', RK' =K' —ky, RPK' =K' + k;.

For any vertices K, of the Brillouin zone, one introduces also the rotation operator R[f] : L — Li
with respect to the reference point x. (see section 1.6 for the definition of x.) given by

R[fl(x) = f(zc + R*(x —z.)), f€ Li,. (5-1)

One first checks easily that R is well-defined. Indeed, for any f € L%* and a.e. x € R?, one has for
v e A R[fl(x+v) = f(x.+ R*(x — z.) + R*v) and since R*v € A, we obtain

Rif@+v) = (0 + B (@ - a.)
_ K f(a, 1 B (o - )
e®-vRIfl(x) (since RK, — K, € A*). (5.2)

Moreover, R is a unitary operator and one can check that its (essential) spectrum consists of three
eigenvalues 1, 7,7 with 7 = exp(27i/3) with associated eigenspaces:

Rg =vg}, (5.3)

for v = 1,7,7. Since R acting in L%Q is a normal operator, the spectral theorem implies that L%* has
the orthogonal decomposition:

Lk, , ={g € Lk,

L. =Lg 190 Lk, . oLk, - (5.4)

Introduce, P, the inversion operator with respect to x., and complex conjugation, C:

Plfl(x) = f2x. — =),  Clfl(z) = f(=).

Their composition operator PC : L%* — L%(* is given by

PCfl(x) = C[f](2xc — ) = (2. — x). (5.5)

Furthermore, it is easily verified (see Proposition 7.2 of [22]) that PC is well-defined and is an anti-linear
involution that satisfies
PC(Lk, ) = Li. 7

The vertices of B are high symmetry quasi-momenta in the following sense:

Proposition 5.1. For any vertex K, of the Brillouin zone B, [R,Ayx.] =0 and [PC,Ayx.] = 0; see
Section 1.6.

Proof. The proof is given in Proposition B.5. O
One denotes by ker, (Ag k, — Ald) for A € R and v = 1,7, 7 the space defined by

ker, (Ag k., — Ald) :=ker(Ag k. — Ald) N L, (5.6)
and by my k., = dim(ker, (Ag k. —Ad)). Finally, we denote by 0, (Ag k. ) the L, spectrum of Ay k., :
o(Agk,.) ={ eR|myk,,(A) >0} forv=1,7,7. (5.7)

The commutation relations with the symmetry operators imply:
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Corollary 5.2. Let A € R and K, be a vertex of B. Then, one has

U(AQ,K*) = U UV(AQ,K*) ) (58)
v=1,7,T

ker (Ag k., — Md) = @ ker, (Agk. — Ad). (5.9)
v=1,7,T

Thus, solving the eigenvalue problem: Ay x, u = Au is equivalent to solving the three eigenvalue problems:
Agx,u=Auin L%(*,U forv=1,7,7. Moreover,

PC(Ker, (Agx. — M) ) = kery (Agx. —Ald) for v=1,7.7. (5.10)
Finally, we have the following relations on the dimension of eigenspaces:
mg K. r(A) =mgxr,. 7(A) and dimker(Ayx, — Ald) =2mgk, -(A) + mg k. 1(N), (5.11)

and on the spectra: o-(Agk.) = o7(Agk,) and c(Agk,) = 01(Agk.)Uo (Agk, ).

Proof. We prove only (5.8) and (5.9) since the other relations are proved in a similar way. By (5.4) and
(5.6), the spaces ker, (A, k, —AId) are orthogonal and their orthogonal sum is included in ker(A, x, —A1d).
We show now the other inclusion. Let u € ker(Agy kx, — AId). By virtue of (5.3) and (5.4), u admits the
following orthogonal decomposition

u=u + ur +uz, with u, =Eg({vhue Lk, , forv=1r17, (5.12)

where Ex ({v}) is the spectral projector of R associated to the eigenvalue v. As R is a bounded normal
operator which commutes with the self-adjoint operator Ag k. (see Proposition 5.1), it implies that its
spectral measure: Ex(-) commutes also with Ag i, (see section 1.6). Hence, one has u, = Ex({v})u €
D(Ay x,) (since u € ker(Ay k, — Md) C D(A, k) and D(A, k) is stable by Ex({r})) and

Agr.u, =Er({v}HAg k. u= Er({v})u=Au, forv=177.
Thus, u, € ker,(Agk, — Ald) and with (5.12), u belongs to the orthogonal sum of the three spaces:

ker, (Agk, — Ald) for v = 1,7, 7. This proves (5.9). (5.8) follows immediately from (5.7) and (5.9). O

5.2 Dirac points

We recall the precise definition of a Dirac point for a divergence form elliptic operator Ag; see [23, 43].

Definition 5.3 (Dirac Points). Fiz g > 0. The “energy / quasimomentum” pair (Ap(g),kp) € RT x B
is called a Dirac point of the operator A, if there exists n > 1 such that:

1. \u(9;5kp) = Mt1(9; kD) = Ap(g) is an eigenvalue of multiplicity 2 of the operator Ay, ;

2. The dispersion maps A\, (g; ) and Ap41(g; +) touch in isotropic cones at kp, i. e. for somevp(g) > 0:

At1(g:k) = Ap(g) +vp(g) |k —kp|+o(lk —kpl);
A(g;k) = Ap(g) —vp(g) |k —kp|+o(lk—kpl|).

The following theorem gives sufficient conditions for the existence of a Dirac points at any vertex
K. of the Brillouin zone B. Its analogue was proved for Schroedinger operators in [23] and for elliptic
operators with smooth coefficients [43]. Our proof is given in Section 9. Since the coefficient of the
operator Ay, oy, is discontinuous, the proof is significantly different from that in previous works.

Theorem 5.4 (Sufficient condition for the existence of Dirac points). Let g the positive contrast parameter
be fired, K, be any vertex of the Brillouin zone B and Ap(g) € RY. Assume that:
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1. mi, 3+(Ap(g)) = dimker,(Ayx, — Ap(9)Id) = 1 (i.e. the L2 eigenvalue problem A,k u =
Ap(g)u has a one dimensional space of solutions u). Let ®1(g,-) be a normalized eigenfunction of
ker; (Ag k., — Ap(g9)Id) and ®1(g,-) = PCP1(g,-) € kerz(Ay k. — Ap(9)1d) (by (5.10)).

2. mk. 41(Ap(9)) =0 (i.e the L, eigenvalue Ay, u= Ap(g)u admits only u =0 as solution).

3. (Non-vanishing of the Dirac velocity)
(@) =| [ a,019.2) TEalg.@1de - (1.-0)T] £0. (5.13)
D

Then, (K., Ap(g)) is a Dirac point in the sense of Definition 5.5.

Remark 5.5. By symmetry, it is sufficient to prove Theorem 5.4 for one of the 6 vertices of the Brillouin
zone B [22, 43]. This relies on the following symmetry properties:

1. IfK, is a K type-points then L3 = L%(* and Agx = Ay k., for all g > 0 since K and K. yields to
the same quasi-periodic conditions (as their quasimomenta differ from a dual lattice vector). Thus,
Ay x and Ay x, have the same eigenelements. Hence, conditions of Theorem 5.4 are satisfied for
(K., \p(9)) if and only if they are satisfied for (K, Ap(g)) and in particular one has vy~ (g) = vE(g).

If K, is a K' type-points, the same property holds (by replacing K by K') since Ay =Ajk, .

2. As K' = —K, one checks easily that (X, ®) is an eigenpair of Ay x if and only if (A\,C® = ¢) is an
eigenpair of Ag k. Furthermore, one shows easily that for real A and o = 1,7,7:

C(Lik,) =L2ks and C(kery (Ag ik — Ald)) = kers (Ag +x — Ald)). (5.14)
Since C (an anti-linear involution) does not change the subspace dimensionality, we have by (5.11)
and (5.14):
Mg K,o(A) = mg k' 5(\) =mgx/ o(\) foro=1,7,7 and A € R.
Thus, Theorem 5.4 holds for (K, Ap(g)) with associated ®¥(g,-), ®X(g,-) = PC®¥(g,-) and v¥(g)
if angl(/only if it Z<I9< satisfied for (K’,I/(\D(g)) withKaSSOCiated (ﬁ('(g,.) = CoK(g,), K (g,-) =
PCOT (g,) = PO (g,-) = (P? 0 )21 (g,-) = CO (g, ) and vi (g9) = vE(g).
Remark 5.6. In Theorem 5.4, the normalized vector ®1(g) is uniquely defined up to a complex phase.
However, the Dirac velocity vp(g), defined by (5.13), is independent of this choice of phase.

5.3 Construction of limiting eigenstates at high symmetry quasi-momenta

In this section we build up approximations for a basis of the degenerate eigenspace associated to a Dirac
point. The idea is that as g 1 oo, the L%Q eigenstates of A, k, converge to eigenstates of the Dirichlet
Laplacian for an isolated inclusion. It is therefore natural, when g is large, to seek Floquet-Bloch states
which are quasi-periodic superpositions of translates of Dirichlet eigenstates. In the context of quantum
chemistry, this idea is known as LCAO: the linear combination of atomic orbitals. By analogy we refer
to the translated Dirichlet eigenstates Dirichlet orbitals.

5.3.1 Dirichlet orbitals

Introduce the operators associate with inversion, complex conjugation and 27 /3 rotation on the single
inclusion Q4: -

Poa f(x) = f(—x),  Cf(x)=f(z), Roaf(x)=f(R" z) (5.15)
Here, R denotes the 2 x 2 matrix, which rotates a vector in the plane about v4 = 0 by 27 /3 clockwise.
Since R(Q4) = Q4 and P(Q4) = Q4 (assumptions (Q.v) and (2.vi) of Section 2.2), the operators
Paa, Raa and C map L2(Q4) to itself. Poa and Rga are unitary and C is anti-unitary. Furthermore,

[PQAa 7ADir,QA} = 07 [RQAv 7ADir,QA] = Oﬂ [C7 7ADir,QA] = 0] (516)
The commutation with the conjugation operator is obvious, for the two other commutation relations, see

1.6, in particular, Proposition B.1 for more details.
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Proposition 5.7. Let Sn, n > 1 be an eigenvalue of —Api, ga satisfying the spectral isolation condition
(S) of Definition 4.2. Let v € ker(—Ap;, ga — 6,1d), then one has

Raalt](@) = Ripalo](@) = v(a). (5.17)

Moreover, there exists a unique (up to a factor of —1) normalized eigenfunction p, € ker(—Ap;, ga —5nId)
such that for almost all x € Q4 :

Clpnl(®) = pu(x), and (5.18)
cither  Poalpn](x) =pn(x) or Poalpn](z) = —pu(x) .

Proof. Let v be an eigenfunction associated with é,. Since —Api,ga commutes with Cqa, U is also an
eigenfunction of —Ap;, oa associated with dn. Therefore, Re(v) = (v +7)/2 and Im(v) = (v —7)/(2i) €
ker(—Api; g4 — gnId) and these two functions cannot be simultaneously equal to the zero function since
v = Re(v) +1iIm(v) # 0. Thus, there exists a real-valued eigenfunction associated to 0n. Moreover, since
dn is a simple eigenvalue, there exists a unique (up to a multiplication by —1) real-valued normalized
eigenfunction, which we denote p,, € ker(—Ap;, ga — 0,1d). By the commutation relations (5.16), the one
dimensional space ker(—Ap;, ga —5nId) = span{p, } is invariant under Rga and Pqa. In addition, Rga p,
and Pqa p, are real-valued, thus there exist o, 8 € R such that (Rqa p,)(x) = pp(R*x) = ap,(x) and
Poapn(x) = Bpn(x) for € Q4. But as Rga p, and Pga p,, are normalized (since p,, is normalized), and
since Rqa is unitary and Pqa is anti-unitary, we have « = £1 and = £1. Furthermore, since R% 4 =1d,
we have a® = 1 and thus o = 1. Finally, since ker(—Apj g4 — gnId) = span{p, } and Rqap, = pn, it
follows that any v € ker(—Ap;, ga — 5nId) satisfies (5.17). O

Let gn, n > 1 be an eigenvalue of —Ap;, g4 satisfying the band separation condition (S) and let
Pn € ker(=Ap;; 04 —5nId) denote the normalized eigenfunction (unique up to a factor of —1), guaranteed
by Proposition 5.7 which satisfies the symmetry relations (5.17) and (5.18). We extend p,, to be defined
on all R? by setting it equal to zero on R?\ Q4. We continue to denote this extension by p, and observe
that for a.e. £ € R? we have:

pn(x) = pr(R*x) = pp(Rx) (5.19)
pn(x) = pp(x), and (5.20)
either pn(_w) :pn(w) or pn(_:v) = _pn(w)' (521)

The following proposition is an immediate consequence of Proposition 4.1.

Proposition 5.8. Assume that b is an eigenvalue of —Ap;, ga for which the spectral isolation condition
(S) of Definition 4.2 holds, with corresponding normalized eigenfunction p, that satisfies (5.19), (5.20)
and (5.21). Then, 62,,—1 = 62n = 6, is an eigenvalue of —Ap;, o+ of multiplicity 2, i. e.

Oon_1 = 0o = Sn < 62n+1 = Sn+1 fOT n>1 and Sn,1 = opn_2 < O2p_1 fOT’ n>1.

Furthermore, {pn(x —va),pn(x —vp)} is an orthonormal basis for ker(—Ap;, o+ — d2,1d).

Example 5.1 (24 and QF, circular inclusions). If Q4 and QF are two discs of radius Ry, the three
first eigenvalues of —Ap;, o+ are given by 61 = dy = 5 = (2071/R0)2 <63=10y = (z171/R0)2 where zp 4
denotes the ¢t positive zero of the Bessel function Jp (p € No). Moreover, the normalized eigenfunction
p1 associated to &y is (up to —1 factor) given by

Li<r, (T) JO(\/EL'BD ,

) = o) B

note that |Ji(z0.1)| # 0 as the zeros of Jy are simple; see [59]. For the normalization of p1, we use the

identity fORO JE(V o) rdr = R3 J4(20.1)%/2 (see chapter 5, formula 11 page 135 of [59]). Finally, note
that in this particular case py is an even function.
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5.3.2 Pseudo-periodic superposition of Dirichlet orbitals

In this section, we prove the existence of Dirac points over the Brillouin zone vertices for g sufficiently
large. By Remark 5.5, it suffices to work at the single vertex K of B. First, one construct the eigenstates
of the limit problem as ¢ — 4o00. We assume that the Dirichlet eigenvalue §,, n > 1 satisfies the
spectral isolation condition (S) of Definition 4.2. Let p, be the unique (up to a factor —1) normalized
eigenfunction associated to 6, that satisfies (5.19), (5.20) and (5.21). For each of the two triangular
sublattices, A + vy, J = A, B which comprise the honeycomb, we associate the function

ZelK” (x —v—wvy), fora. e xcR? J=A,B. (5.22)
vEA

The supports of each summand are disjoint, so the above series is trivially convergent; for each = € R?,
at most one of its term is nonzero. Furthermore, note that PT{ k (+) is the Floquet-Bloch transform at

quasi-momentum K of p, (- —v;) (see (2.3)) and is therefore K—quasi-periodic. Hence, P, € L.

Lemma 5.9. Assume that the eigenvalue b, of —Apiy a satisfies the condition (S) of Definition 4.2.
Then,

1.
Py e Lk . and PPy € L% -, PCPAy = e ¥ PPy, (5.23)

where the choice of sign, £, is + (resp. —) if the single inclusion Dirichlet eigenfunction p, with
corresponding eigenvalue &y, is even (resp. odd).

2. the two-dimensional eigenspace of A k associated with the eigenvalue Sn = dop—1 = 0o, admits
{Plg, PPy} as an orthonormal basis.

Proof. Definitions (3.5) and (3.6) imply that A, k and —Ap;, o+ have the same eigenvalues (with multi-
plicity). Furthermore, the eigenfunctions of A, x are obtained from those of —Ap;, o+ by first extending
them to be identically zero on \ 27T, and then extending this function on 2 to be k—quasi-periodic
on R2. Thus, by Proposition 5.8, {P;L“K,P K} is an orthonormal basis of the 2-dimensional space
ker(Aoc,K — 52n1d)~

We next prove that Pl K € L3 _. This proof is similar to the one of [43, Lemma 10.4]. We recall that
va = (0,0). For almost all @ € R2

R[PrﬁK](w) = ZGIK” (e + R*(x — ) — v)
veEA

= Ze‘K” (Rxe + (x — x.) — Rv),
vEA

where the last equality holds since p,(Ry) = pn(y) for all y € R? (Proposition 5.7). Using that

vy = ¢, — Rz, (since . = vy — vp and Rr. = —vp) and that R is unitary we have
R[Pixl(®) = Z A, (2 — (Rv+v2))
veEA
e IRK-v; Z eiRK-(Rv—i—vg)pn (Cl: _ (R’U + 1)2)),
vEA
o iK-vs Z K- (Rvtva) (w —(Rv + vz)) ( since RK = ks + K),
vEA
= 7 Z Kvp, (z —w).
weA

The last equality follows since v — Rv + wvo maps A to itself and and e Kv2 = g=g(ki—ka)vz —

—5(=2M = 7. Thus, R[P/\k](z) = 7 Pk (x) and Pk € Lk
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Finally, we prove the equality in (5.23). This will imply that Pk p is in Lk - since Pk 4 € L%{,r and

PC maps Li , into L . By definition of PC, one has
PCIPkl(x) = Plx(z.—z)
= Z e iKYy (2w, —x —wv) (since p, is real-valued),
vEA

= 4+ Z e Ky (x+v—2x.) (since p, is even (+) resp. odd (—)),
vEA

= iz —iKwv, (T +v—vy+v; —vp) (since 2z, =vy — v +vp),
vEA

= 4K (- ”2)Ze pn(x —w—vp) (w=—v+vy—1vy),

weA

= e T PPr(z) (since K @102 = o~iIF ),

5.4 Existence of Dirac points for high contrast

In this section, building upon the sufficient conditions of Theorem 5.4, we prove that for g sufficiently
large, the existence of Dirac points is reduced to the non-vanishing of the Dirac velocity vp(g). For this
result we require the following classical result of spectral theory on spectral measures and norm resolvent
convergence. Its proof can be found in [54, Theorem VIII.23 p. 289-290].

Lemma 5.10. Let (Ay,)nen be a sequence of unbounded self-adjoint operators on a Hilbert space H that
converges to a self-adjoint operator A on H in the norm resolvent sense. That is, for any ¢ € C\ R,
|Ra, (C) — Ra(Q)llB#) — 0, as n — +oo. Then, for any real a,b ¢ o(A), one has the following norm
convergence of the spectral projectors onto the real interval (a,b):

|Ea, ((a,0)) —Ea((a,0))[lpz) — 0 asn — +oo.

Let Ep, () and Eg__ . (-) denote the spectral measures associated with the self-adjoint operators
Ag,K and Aoo,K'

Remark 5.11. From Theorem 3.1, one knows that Ay x tends to Ay x in the norm resolvent. But

Ao x acts on a strict closed subspace L of L, the Hilbert space associated to A k. Thus, to give a
meaning to Lemma 5.10 in our setting, one needs as in Remark 3.2 for the resolvent operator R 4 (¢)

to extend the definition of the spectral measure of Ea__ . (-) to the space Ly = L%< P (L%()J‘ by setting
Ep w(Hu =0 for any u € (L3)* and any Borel sets I of R, for more details (see [35, 56]).

Theorem 5.12 ((S) and vp(g) # 0 = existence of Dirac points). Assume that the eigenvalue &, of
—Anpi, g4 satisfies the spectral isolation condition (S) of Definition 4.2. Let {P;:‘K, P’ K} be as in (5.22).
Then, there exists g, > 0 such that for all g > g« the following conditions hold:

1. Aon—1(g; K) = Xan(9; K) = Ap(g) is a multiplicity 2 eigenvalue of Ay k.

2. mgx,-(Ap(9) =1 and a normalized eigenfunction of ker;(Ayx — Ap(g)1d) is given by

Ea, « {Ap(9)}) Pk
IEa, « ({An(9)}) Pitkcllcz’

In addition, one has ®1(g,:) — PAK as g — +00 in the L —norm.

®1(g,-) == (5.24)

3. mk, g7(Ap(9)) =1 and a normalized eigenfunction in ker=(Ag x — Ap(g)Id) is given by ®2(g,-) =
PCD1(g,-). Moreover, this eigenfunction satisfies

o Ea (o9} PP
2(0) =2 e (Do) PPlles

(5.25)
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Equation (5.25) holds with the + sign (resp. —) if the eigenfunction p,, is even (resp. odd) in
Definition (5.22). Furthermore, ®3(g,) — e "5 P,EK as g — +0o in the Li—norm.

4. mi, g1(Ap(9)) = 0. Thus, Ay u = Ap(g)u admits only zero as solution in L ;.
5. {®1(g,"), ®2(g,-)} is an orthonormal basis of ker(Ay, xk — Ap(g)Id) in L.

Finally, if the Dirac velocity vp(g) satisfies the non degeneracy condition:

vp(g) = ‘/Dagél(g,w)vq)g(g,w)da:~(1,i)T 20, (5.26)

then (K,Ap(g)) is a Dirac point in the sense of Definition 5.3. It follows (see Remark 5.5) that
(K«,Ap(9)) is a Dirac point for any vertex K. of the Brillouin zone B.

Since the first eigenvalue &; of —Api; ga (with corresponding positive eigenfunction) satisfies the
spectral isolation condition (&) of Definition 4.2, we have:

Corollary 5.13. Let g > g, be sufficiently large. Assume the non-degeneracy condition (5.26) on vp(g).
Then, there exists are Dirac points between the two first dispersion surfaces of A4, at each vertex of the
Brillouin zone B.

Proof. We prove now Theorem 5.12. As we work at a fixed quasimomentum K, we omit in the proof the
K dependence of the eigenvalues and write for e.g. Aa,—1(g) for Ao,—1(g; K).

Step 1: Localization of the eigenvalue for high contrast. &, satisfies the spectral isolation condition S)
of Definition 4.2. Therefore, by Theorem 4.4, one has on one hand that As,—1(g) and A2, (g) tend to oy,
as g — oo and on the other that there exists a gap between the 2n'" and the (2n+41)%* bands. More pre-
cisely, by virtue of Theorem 4.4, for a fixed 7 satisfying 0 < n < min(da,, Van+1 — d2n), there exists g, > 0
such that for g > g., Aan—1(9), A2n(g) € (02n — 1, d2n + 1) and Aap+1(9) € [02n — 1, 02n +1]. If n > 1, we
also need that Aoj,—2(g) € [02n — 1), 02, +71]. Indeed, one knows from Theorem 3.1 that Mg, —2(g) — d2,—2
as g — +oo and g — Aap_2(g) is strictly increasing by Lemma 3.5. Hence, Aa,—2(g) < d2,—2. Further-
more, by the condition (S), 6, is simple and thus 02,9 = 0p_1 < 02 = 0. Thus, if n > 1 for any
fixed n satisfying 0 < n < min(d2,, — d2,—2, Van+1 — 02, ), there exists g, > 0 such that g > g, implies
Aon—2(9), Aant1(g) € [02n — m, d2n + 1] and Aan—1(9), Aan(g) € (d2n — 1, d2n + n). Hence, for n > 1, the
eigenvalue A2, —1(g) is of multiplicity at most 2 for g > g..

Step 2: Proof of point 1. of Theorem 5.12. We prove this by contradiction. Suppose Aa,—1(g) =
A2n—2(g) does not hold for g large enough. Then, there is a sequence (g,,) with g,, — +00 as m — oo such
that Aop—1(gm) # A2n(gm)- Step 1 enables us to localize and isolate these eigenvalues to an interval about
don; for any fixed 7, satisfying 0 < 7 < min(de, 3 — d2) if n =1 or 0 < n < min(de, — d2p—2, Vant+1 — d2n)
if n > 1, there exists g, > 0 such that for g, > g.:

U(Agm,K) N (52n -n, 52n + 77) = {/\271—1(9m), /\Qn(gm)} (527)

This yields the following relation on the spectral projectors of A, k:

EAgm,K ((5271 — 1, 020 + 77)) = EAgm,K({)‘%fl(gm)’ A2n(gm)})- (5.28)

We define
tg,, =En, w«({A2n—1(gm); Aon(gm) }) Pl (5.29)

and we prove that ug,, # 0 for all m large enough. The resolvent norm convergence of A, k to Ak
(see Lemma 5.10) implies the strong norm convergence of the spectral projectors associated to an open
interval whose endpoints are not in 0(As k). Thus, using (5.28) and the fact dz, £ 7 ¢ 0(Asx k), One
has the following limit in the L% norm:

Ug,, = Ba, 1 ((620 — 1,020 + 1)) Pt — B 1 (620 — 1, 020 + 1)) Pik
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as m — oo with

EAOO,K ((5271 - d2n + n))Prle,K = EAOC,K({5271})P;:K = PvﬁK 7é 0. (5'30)

The first equality in (5.30) and the property d2, £1 ¢ 0 (A k) rely on the following point. One has day, =
dan—1, Oan+1 & (dan — 1, 2, + 1) (since vo, 41 < d2n41 by Proposition 3.8) and dop—o & (02, — 1), 62, + 1)
for n > 1. Hence, Es_ . ((d2n — 1,020 + 1)) = Ea_ «({02n}). Further, since PTﬁK is a normalized
eigenfunction of A, k associated to d2, (Lemma 5.9), the second equality of (5.30) holds.

Consider now the orthogonal decomposition of the non-zero vector u,,, defined by (5.29):

Ug,, = Ea, s (P2n-1(9m) ) Pitk + Ea,, e (P2 (9m) H Prixc- (5.31)

By (5.30) at least one term of the right hand side of (5.31) does not vanish for m large enough. Up
to a subsequence extraction on the sequence (g,), one can assume without a loss of generality that
IEAMYK({/\Qn_l(gm)})PﬁK # 0 for m large enough. Thus, we can define the normalized vector @1 (g, -)
as in (5.24) (by replacing Ap(g) by A2n—1(gm) in (5.24)). Recall by Lemma 5.9, that P;"K € Lk ;. Since
R commutes with A,k (see Proposition 5.1), R commutes with its associated spectral measure (see Sec-
tion 1.6). Therefore, By, . ({Aon—1(9m)}) Li ; C L , and thus @ (g, ) € ker-(Ag, k —A2n—1(gm) Id)
is a L . normalized eigenfunction for the eigenvalue Ag;,—1(gm). We now define ®5(gpm, ) = PCP1(gm, -)
(which is normalized since PC is anti-unitary). By Corollary 5.2, ®3(gm, ) € kerz(Ag,, kK — A2n—1(gm ) Id)
is a normalized L%Q? eigenfunction associated to Aajp—1(gm). Moreover, as L%{,T is orthogonal to L%Q?’
{®1(gm; ), P2(gm, )} is an orthonormal set of two eigenfunctions associated to the eigenvalue Agy—1(gm )-
But Aap—1(gm) is a simple eigenvalue. Indeed, by assumption Asp—1(gm) 7# A2n(gm), and from Step 1,
one has Aop_2(g9m) < A2n—1(gm) for m large enough if n > 1. (Of course the same contradiction is
reached if we were to assume that, up to a subsequence extraction, Es . ({A2n(gm)}) P;iK # 0 for m
large enough.) Hence, for g large enough , one has A\a,—1(9) = A2n(g) =: Ap(g). Step 1 implies Ap(g) is
of multiplicity at most 2. Hence, Ap(g) is of multiplicity 2. This completes the proof of point 1.

Step 3: Proof of points 2-5 in Theorem 5.12: The reasoning of Step 2 applied to Ex_ . ({Ap(g; K)})
shows that the normalized eigenfunction ®4(g,-) defined by (5.24) belongs to ker,(Ay k — Ap(g) Id) and
thus mk, 4.-(Ap(g) > 1. Moreover the strong convergence of the spectral projector implies:

®1(g,) = Pk as g — oo since Eu o ({0n}) P = Pit and [Pz = 1.

In the same way, we have that ®3(g,-) = PC®1(g, -) € kerz(Ay xk —Ap(g) Id) is a normalized eigenfunction
associated to Ap(g) and thus mk, 47(Ap(g)) > 1. Hence, {®1(g,-), P2(g,-)} is an orthonormal set of
eigenfunctions associated to Ap(g). Since Ap(g) is of multiplicity 2, it follows from the relation (5.11)
that

mK, g,7(Ap(9)) = mk, g7(Ap(9)) =1 and mx, 41(Ap(g)) = 0.

This proves points 2, 4 and 5.

To prove relation (5.25) of the point 3, apply PC to (5.24) and use the identity (5.23) and the facts
that PC commutes with E({Ap(g)}) and preserves the norm.

Finally, if the non-degeneracy condition (5.26) on vp(g) holds, all assumptions of Theorem 5.4 hold
and we conclude that (K, Ap(g)) is a Dirac point in the sense of Definition 5.3. O

6 High contrast asymptotic analysis of Bloch eigenelements

6.1 Expansion in powers of ¢~! and hierarchy of PDEs in L%{,T N Hi

In this section, we derive asymptotic expansions for a large contrast parameter, g, of Bloch eigenvalues,
eigenfunctions at vertices of B, and the Dirac velocity vp(g). The validity of these asymptotic expansions
is proved in Section 6.5. These expansions hold for eigenvalues whose limiting behavior is given by a
Dirichlet eigenvalue 4, for n > 1 that satisfies the spectral isolation condition (S) of Definition 4.2 (e.g.
for the two first bands when n = 1, or higher energy bands as it is illustrated in section 8). We focus on
the vertex K of B, all results apply by symmetry to the other vertices; see Remark 5.5.
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If 4, satisfies the condition (S) of Definition 4.2, the conclusions of Theorem 5.12 hold. In particular,
for g large enough, the eigenvalue Ag,,—1(g; K) = A2, (9; K) = Ap(g) is of multiplicity 2 and there exists
an orthonormal basis {®1(g,-), P2(g,-)} of ker(Ayx — Ap(g)ld), where ®1(g,-) € Li . and ®a(g,-) =
PC@l(g, ) S L%Q?

We expand the eigenelements Ap(g) and ®,(-, g) in powers of g~! for g large. By Theorems 4.4 and

5.12 we have Ap(g) — 6, and we can choose a normalized eigenfunction ®,(g,-) — é(o) PAK in L} -
as g — +oo. Here, P4 'k is defined by (5.24). Thus, we formally expand, for any M > 1:

M
Aplg) = > g7 AR + O(g~(M+D) (6.1)
m=0
M
®y(g,) = > g @™ + O(g~ M) with o™ € L , N H
m=0

with )\g) =4, and (I)go) = P;:‘,K. We remark that if Hi convergence holds for (6.1), then

M
®y(g,) = PCR1(g,-) = > g~ PCO{™ + O (g~ M+V) with PCo{™ e Lk - N Hk.

m=0

We next derive recursion relations for q)(lm)(w) and )\(Dm), m > 1. We substitute the expansion (6.1)
into the eigenvalue problem:

Ay x®i(g,-) = Ap(g)P1(g,-) with ®1(g, ) € D(A; k). (6.2)

Thus ®4(g, -) is the solution of the following cell problem on 2:

—A®(g,-) = Ap(g)P1(g,-) in QF,
[@1(g,)] = 0 and [7, =5 =] =0 on 90*,
—gA®(g,") = Ap(9)P1(g,-) in Q-

[
®(g,-) and ;j’ ) K —quasi-periodic on 05).

The jump of traces on IN* is here defined by [f] = f~ — f* where f* is the trace of f on 9Q* from
the domain Q*. n is the outward unit normal vector oriented from Q% to Q= so that with the same
convention the jump of Neumann traces on 9Q7 is defined by [0f/dn] = [0f/0n|~ —[0f/On]*. Inserting
the expansions (6.1) in (6.2) gives, for all M > 0:

M M
Z gfmA(I)(m) + O( 7(1V[+1) ( Z g*m)\(m) + O( *(M+1))) ( Z g*mq)(lm) + O(g*(Mle))) in Q+,

m=0 m=0

M

(3o o+ 0] =[S g 40 0] on 0

m=0 m=0
M _ M (m)
350 B2 ot ][50 285 otym
m=0
M
Z —g A R™ 4 0(g *M)—(Zg*m”m)w M) (L e+ 0l M) i,
m=0 m=0 m=0

(m)
<I>EM> and 8(27;1 K—quasi-periodic for m =0,1,... M on 0f.

(6.3)
To simplify the notation, in the following we write df*/dn for the Neumann trace of f on Q7 from the
domain OQF.
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6.2 Determination of ®{” € Lk, N Hy and A er

In (6.3), the order g° term in QF and the order g term in 2~ yield the following equations:

~Ad = 2P ol in O,
0 0 99"~
0" =" and Z=L— =0 on 90+
) on (6.4)
—A®, =0 in Q7
8‘1)(0)
<I>§0) and 87711 K—quasi-periodic on 0f2.

We first solve for <I>§0) on 7. By the Lax-Milgram theorem, <I>(10) = 0 is the unique solution of the cor-
responding PDE problem in Hi (£27) (see Appendix B for the definition of the Sobolev space Hy (27)).
By the boundary conditions along 9Q", we have that <I>§O)’+ = (I)go),— = 0. Thus taking )\g) =6, and
<I>§O) on QT = Q4UQP to be a Dirichlet eigenfunction on Q4 vanishing on QF solves the PDE problem in
QF. Hence, the K-quasi-periodic extension to all R2, () = Py € Li . N Hi , satisfies all conditions
of (6.4) (Lemma 5.9).

Starting with this choice of )\g) and (I)go)’ we next define )\g"‘) and @gm) recursively for all m > 1.
The Sobolev spaces used in the following discussion are defined in Appendix B. The symmetry operators

Ra=, PCaox and Ryq+ and PCyq+ which are the operators R and PC but defined on the sets QF and
00t are also defined in this section.

6.3 Determination of ®{" € Lk, N Hy and A er

In (6.3) the order ¢! term in Q% and the order g° term in Q~ yield:

A0 = 2\De A" in QF,
M= 9Pt
1),— 1), 0P n,K
)" = oM and f?ln =3, on 90T, o)
—AdY = AW — in Q- '
(1)
P
@gl) and 8871 K—quasi-periodic on 0f2.
n

The latter two equations of (6.5) imply that <I>§1) on the domain 2~ is determined by the boundary value

problem:
gpl—  opAE
= ot 6.6
on on " ’ (6.6)
with K—quasi-periodic boundary conditions for @gl) and 8@&1) /On on 0. By the Lax-Milgram theorem,
this problem admits a unique solution in Hg (€27) that belongs to Hg A (227).

— Ad)(ll) =0on Q" and

To eventually establish that <I>(11) € L%(ﬁ, we first verify that <I>(11) on )~ inherits that symmetries

of Py Since Py € Hy A(21), using Lemma B.4 and the fact Py € Li . yields that Re- <I>§1) €
Hi (Q7) satisfies

A+

aRncp?)} _ P
on on ’

with K—quasi-periodic boundary conditions for Req- ‘P(ll) and ORq- fbgl) /On on 9. Therefore, Rg_ <1>§1>

and T@il) satisfies the same boundary value problem which admits a unique solution in H (27) and it
follows that

—A’RQAI)gl) =0on Q" and [

Ra-0" = 70" on @~ and [Rg-®V]" = 70"~ on 002 (6.7)
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We next construct <I>§1) € Hi(27) and )\g) satisfying
— A =20 o) L A0 iy oF and @V = &M on 90t (6.8)

and compatible with the goal of obtaining ®{") € L . N Hg.

We claim that /\S) can be chosen so that (1)51) is unique in the space
Wi = {u € Hi (1) | (“7P7?,K)L§((Q+) =0 and (U7P75K)L§<(Q+) = O}. (6.9)

Seek (I>(11) € Wi, such that <I>(11) = uy + v, where u; € W is an extension, to the region Q1 of the
boundary values: <I>§1)’7 € Hé (0Q2T). Let us construct this extension. By standard elliptic theory, there
exists a unique @ € Hi (Q7) such that Ay = 0on QT and 41 = @ﬁl)’* on 9Q7T. Furthermore, (B.7) and
(6.7) imply Roa+ @)™ = [Ra- @V~ = 70"~ Thus, it follows from Lemma B.3 that R+ iy = 7 iy
since Ro+w1 and 7u; are both solutions of the elliptic boundary value problem:

Au=0 on Q" and u—7'<1>( ~ on 90T,
which admits a unique solution in Hi (2F). Now, we set
uy =iy — (@, Pw) 1z o+ Pix

Note that Rq+u1 = Tu; and RQ+P K = TPfK Therefore, (u1, Pk, B)L2 @+) = 0, and thus u; € Wi.
On the other hand, u; = ("~ on 92 since Py =0 on 02T, Furthermore, one has uy € Hy A (27)
(since Ay =0 and Paly € Hi A(27)).

We now construct v1. Since <I>(11) = uy + v1, equation (6.8) can be rewritten as
( — A - )\g))vl = (A + )\g))ul + )\g)@go) in Q" and v; =0o0n 90T. (6.10)

By the Fredholm alternative (see e.g. [46]), (6 10) admits a unique solution v; € W, if and only if the

right hand side is orthogonal Ker(A. x — )\ Id) = span{ P K PT?K} restricted to Q1. Moreover, such

a solution vy will satisfy the additional regularity v € Hy A(QJF) inherited from the equation (6.10).
We first impose orthogonality to Pgx. Using Green’s identity, relations (6.4) and (6.5) and the

relations A = §,, @ = PAg and u; = @'F = """ on 90+ we have:

0= / QAR u + A5 @7] - Py da
Q
A+
— <% PAK> _<8P”7K U1> +>\g)
on’ ™™/ H M2 H? on H Y2 HY?
A+
_ _<‘9Pn,K 2" ) G
on s F1 H;1/2’H11</2 D >

where (-, ) ;,—1/2 ;1/2 stands for the duality product between the Sobolev spaces lel/z (0QT) and H11</2 (0QT)
K K
(see Appendix B for more details). Therefore, it yields

AT
A0 <5Pn,K 3
DN on 0! H 2 mY?

Note that since the eigenvalue g — Ap(g) = A2, (g; k) is increasing and approaches on (see Lemma
3.5 and Theorem 4.4), we must have that )\g) < 0. Indeed, this can be explicitly displayed. Using the
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equation (6.6) and applying the Green’s identity in 27, one obtains that

A =

oeW— )
< o)~ where —n is here the outward normal to Q7),

? > —1/2 441/2 (
on H M Hy

— / o Al — Vo2 da

—/ VeW|)2de < 0. (6.11)
o

This previous expression of /\g) was obtained with a different approach by [2] for the case of a simple
Bloch eigenvalue and a square lattice at any non-zero quasimomentum.

We now verify orthogonality of the right hand side of (6.10) to PBg. Since P;:K = <I>§O) and PPy
are orthogonal in L% (Q): ’

B,+
ouy —p— > <3Pn,K >
- _ Uy
» K —1/2 ,1/2 ’ —1/2 ;;1/2
on H Y2 HY on H Y2 HY

/QJ%HSS))M+A8)©§°)]~P£dev =

B+
VA S
o on 1 H /2 oY

As Rpq+ is unitary in H;/Q(GQJF), one deduces from the definition (B.9) of the operator Roq+ in
H,'?(090%) that

B+ B+
8Pn,K (I)(l),f (R 8Pn,K R (I)(l)7f
on y» F1 H£1/27H;(/2 - ot on s IVt Fq lel/Q’H;(/Q'

Hence, from the relations (6.7), (B.7), (B.11), and the fact that PEK € Lk 7, it follows that

B+
<8Pn’12_ @(1)7_> <|:8RQ+P£K
on 1 H 2 HY? on
B+

_ /9% -
= (K g
on s <1 H};1/27H11(/2'

T Rogr @
» ot = H£1/2,H11</2

As 72 = 7 # 1, one concludes that:

s 1 > —1/2 1/2_0
on Hy 2 HY

<3Pfi3 o) _ <3Pfi<+ 20—
on ! HZY? H1/?
Thus, the second compatibility condition holds automatically by symmetry arguments.

Hence if )\g) is given by (6.11), then there is a unique solution v; € Wi of (6.10) and one concludes
that @gl) = uy +v7 is the unique solution of (6.8) in W, (with the additional regularity (I>§1) € Hg A(921)
inherited from the equation (6.8)). Moreover, using that RAu; = ARuy, Ro+u; = Tui, Rao+ PiK =
TP;:K on 27, one easily checks that

R+ [(A +81)ur + A PAL] = 7((A + 81)ur + A5 PAg) on Q.

Furthermore, from the definition (6.9) of W, one deduces immediately with Lemma B.3 that W is stable
by Ra+ and thus Rg+v; € W!. Thus, from (6.10), one obtains that Rg+v; and Tv; satisfies the same
boundary value problem which admits a unique solution in W!'. Hence, one has Rqg+v; = 7v; on QF
and therefore R+ @gl) = T(I)gl) on Q7. One concludes finally with (6.7) that @gl) €Lk,

To sum up, @gl) € L%{,T is the unique solution of (6.5) in Hg orthogonal to PféK and PfK in L%,
with the additional regularity <I>§1) € Hy A (92%F) inherited from the equation (6.5).

31



6.4 Determination of ®{™ ¢ L, N Hyg and A for m o> 1

We now generalize our construction at order g~ to all orders g=™, for m > 1. Identifying in (6.3) the

order g~™ terms in Q% and the order g—™*! terms in O~ leads to:
—Ae™ =" AR el in QF,
- (m) (m-1)
_ oo™ pe(mTt
m), m),+
(™~ = (™" and 61n = 1871, on 90T,
(6.12)
—AG™ = Z Apr P ) in Q-
(m) 8(I>(1m
&, and “on K—quasi-periodic on 0f2.

The system (6.12) reduces to (6.5) when m = 1. For m > 1, the functions @gm) and the scalars )\(m)
for m > 1 are defined recursively. Assume for p =1,2,...,m — 1, that @gp) € L%Q N Hy and )\ ) e
are defined to uniquely solve (6.12) in Hj x C and such that @51’) is L% — orthogonal to Pn}K and Pn’K7
and such that <I>§p ) e L%{,rv with the additional regularity <I>‘f’ ) e H11< A (£2F) inherited from the equations

(6.12). We proceed to construct )\(Dm) and @:(Lm) satisfying these same properties.
Consider (6.12) on Q~, which states

m-1 (m), (m=1)+
L ® o
A0 = 3" AT i 07 and 0 = 0 " on 90",

p=0

where @gm) and 6<I>(1m) /On are required to satisfy K—quasi-periodic boundary conditions on 909. As in
our analysis for m = 1, by the Lax-Milgram theorem, this problem admits a unique solution in Hy (£27)
(that is also in Hg A(£27)). Furthermore, as for m = 1, by applying Lemma B.4 with the fact that

Z;n 01 )\(m - p)<I>(p) € L% . (since @gp) €Lk form=0,. —1) leads to Rq-® (m) = T(I)( ™ in Q-
Therefore, one deduces that [RQJI)?”)] (I>(m on 89“‘

Turning to ®{™ on QF, we seek 7" € C, and ™ € HL (2T) such that
(—A = 2Dy plm = Z Am=Pe®) i ot and ™ = @™ on 90t (6.13)

For the construction we again use the decomposition: M) =g, + Um, Where u,, € W, is an extension

1
to QT of @gm)’f € HE(0Q). The function w,, € W, is constructed in a manner analogous to that for
orders g7P, p = 1,...,m — 1. Thus, the resulting u,, satisfies the symmetry and regularity properties:
Rt Um = Tl (With uy, also in Hg A (27)).
Setting ®("™) = w,, + v,, in (6.13) leads to

m—1
(A =2 v = (A + 2D ) gy + 257 7 + 37 AT PP in 0F and v, =0o0n 00T (6.14)

p=1

As for the case m = 1, we determine )\gn) from the compatibility conditions for solvability for ®(™ e
Wi, i.e. that ®("™) is orthogonal to P;SK and Pf’K. By induction hypothesis, <I)(1p) is orthogonal to P;"K
forp=1,...,m—1and @EO) = P,ﬁK. Therefore, using (6.14)) we have that

Al = /m (= A= 2AD)um PAg da.
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Applying Green’s identity yields:

ApA+
BPn 53

)\(m) < (I)gm)v—>

—1/2 7,1/2.
Hy /7 Hy

Continuing, as in the case m = 1, by Green’s identity applied in Q~ and equation (6.6), one obtains:
A = /Q . vel™ voll) de. (6.15)

Together with (6.11), for the case m = 1, we have (6.15) for m > 1.
The other compatibility condition, orthogonality of the right hand side of (6.14) to PffK, follows

using that <I>gm) is orthogonal in L (2F) to PEK for p = 0,...,m — 1 and then by reproducing the
reasoning done for m = 1, using symmetry relation R@gmh* = T<I>§m)’7 on Q" and Lemmas B.3 and
B.4. Hence, for /\(Dm) given by (6.15), equation (6.14) admits a unique solution v, € W; (and also in
Hy A(921)). Therefore, <I>§m) = Up, + Uy, 18 the unique solution of (6.13) in W; (with the additional
regularity <I><1m) € HIlQA(Q"’)). Furthermore, using that <I>(1p) € L%{,T for p = 0,...,m — 1, one proves
easily by mimicking the reasoning done for m = 1 that R@gm) = 7'<I>(1m) in QF.

Thus, one concludes that @gm) € L%{,T and that with )\(m) € C as defined, <I>(m) is the unique
solution of (6.12) in Hg such that <I>§m) is orthogonal to PAK and PfK (with the additional regularity

q)g’”) c H}QA(Qi) inherited from the equation (6.12)).

6.5 Asymptotic expansions

In the previous section we developed a formal procedure for computing approximate L%’T eigenpairs of
A,k to any order in g~'. Such approximations are often called quasi-modes. Our goal in this section is
to prove that these approximate eigenpairs approximate genuine eigenpairs of A, k. To show this we use
general principles of self-adjoint operators described in Appendix C.

Remark 6.1. Since the operator Ay x has discontinuous coefficients, its domain D(Ag k) depends on
the asymptotic parameter g. Therefore, we use here a weak formulation of the quasi-modes approach
outlined in Appendix C, which permits the extension of the notion of quasi-mode to functions with less
regularity (in particular, functions that do not belong to D(A, k) but belong rather to D(A;/Z) Hi;
the latter is independent of g). Furthermore, this approach yzelds an asymptotic expansion of the Bloch
eigenfunctions ®;(g,-) in a norm which is stronger than the H'-norm which, in particular, allows us
to obtain an asymptotic expansion of the Dirac velocity vp(g). Note that the expression for vp(g), see
(5.13), depends both on ®,(g,-) and V®,(g,-). Results related to this weak formulation of quasi-modes
expansions are summarized in Appendiz C.

Introduce the inner product defined on Hi by
(U, 0)a, x = agx(u,v), forall u,v € Hy.

Here, a4k is the sesqulinear form defined in (3.3). We denote by |- ||a, x the norm associated to (-, )q, k-
By a Poincaré type inequality, this norm dominates the norm |[| - [|z1 with a constant C' independent of
g for g > 1.

For M > 0, introduce A (g) and ®(g), the formal approximations of the previous section:

ZA(’") “m and ®M(g, ") ZCD(m) -, (6.16)

Here, A9 = §,, (¥ = Pg and for m > 1, A s defined by (6.15), and @™ € HL N Li . is the
unique solution of (6.12) for m > 1 in Hy, which is orthogonal to span{P'x, PP }.

We shall use the following proposition to justify the asymptotic expansion (6.1) of the eigenvalue
Ap(9) = A2n—1(9; K) = A2n(g; K) for g sufficiently large.
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Proposition 6.2. For any M € Ny, there exists C > 0 such that for all v € Hi and all g > 1:

agac(®1(9.),0) =2 (9) (@1 (9.).0)| < Cllo

where AM (g) and ®M(g,-) are defined by (6.16).

Proof. Let v € Hi. We begin by splitting the difference on the left hand side of (6.17) into two parts,
terms of order g~™ with m < M and terms of order g—(M+1).

ag,K g_(M—H), (6'17)

Gg K ((I)ivIJrl(ga ')a 'U) - A%(g) ((I)]1w+1(g7 ')7 ’U) = sg(v) + ry(”) (618)
with
M 1 M 1 M 1 m
sg(v) =Y —/ V"t Vode+ Y — [ Vo Tude— Y — S AR (@ v) (6.19)
4 m=0 g" Q- m=0 gm ot m=0 g" p=0
d
an 1 M1 M
M+1) =— m—
Tg(v):TH/ Vol Tode — Y N AR (@) 0,
g Q+ m=MA1 g =0

(we used here in particular that <I>§O) = P;gK = 0 on Q7). By the Cauchy-Schwarz inequality r4(v)
satisfies the bound:

2M+1 M
_ M+1 —m m—
Iry @) < g~ MV oo [Vollaany + (D g7 3 AR ol
m=M+1 p=0

By a Poincaré type inequality, it follows that there exists C' > 0, independent of g > 1, such that
Irg(v)] < C g~ MV [v]la, k- (6.20)

To complete the proof, we claim that s,(v) = 0 by the definitions of A%”) and <I>§’">. Using the Green
identity in QF and the fact that +mn is the outward normal of QF leads to

M 1 (m+1) M 1 (m+1) aq)(m+1),—
m .. _ z : m = 1 5
E gim\/Q,V(pl Vodx = ﬁ{\/g, *A(I)l ’Udi]}*<T,U>H;1/2,Hll(/2]

m=0 m=0
and M M (m)
1 (M) T 2 1 (m) o9, }
2 o v V”dw_mz_m[/m AR Tde + (T T e |

Adding the last expressions and using that 8<I>(1m+1)’_/8n = 8<I>(1m)’+/8n on 90T (by (6.5) and (6.12)),
we have that the duality products on 9Q" cancel and s, defined by (6.19) can be rewritten as

M m m
_ 1 (m+1) () g (m—p)\ (m) (P) g (m—p)y —
sg(v)—mz_ogm{/ﬂ(—Aél —pZ:OAg @ p)vdm+/m(—Aq>l —I;OA; (") v da|.

Hence, s4(v) = 0, since <I>§°) and <I>§’") for m > 1 satisfy respectively (6.4) and (6.12) in Q*. Therefore,
with (6.18) and (6.20), one obtains immediately the inequality (6.17). O

Using the preceding Lemma, we can now prove the asymptotic expansion (6.1).

Theorem 6.3. (Asymptotic expansion of the Dirac eigenvalue, Ap(g), for large g)
Assume O, satisfies condition (S) of Definition 4.2 for a fizted n > 1. Then, for M > 0 and g large
enough, the Dirac eigenvalues: Aop—1(9;K) = Aan(g; K) = Ap(g) admit the asymptotic expansion

M
Ap(g) = A (g) + O (g~ M) = 37 AEYgmm 4 09~ M+, (6.21)

m=0

where \M (g) is defined by the M — term expansion (6.16).
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Remark 6.4. A consequence of (6.21) is that )\g”) and A\ (g) are real for all m, M € Ny and g > 0.

Proof. Let M € Ny. First, by Theorem 5.12 we have for g sufficiently large that Ap(g) = Aon—1(g; K) =
A2n(g; K), and is of multiplicity 2. We will show (6.21), by applying the Corollary C.2 to the approximate
eigenpair (quasi-mode): A = AM(g) and u = ®}T!(g,) defined in (6.16), using the bound (6.17) of
Proposition 6.2.

We next verify the assumptions of Corollary C.2. By (6.16), we have AM (g) — 6n > 0as g — +oo
which implies that Re(AM¥ (g)) > 0 for g large enough. Moreover, as <I>§0) = Per vanishes on 2~ and
P;SK # 0, one gets

||<I>:]L‘/[+1(g7 Magx = |\VP$K||L2(Q+) >0, as g — +oo. (6.22)

Thus, it follows that
(MY @+ D72 (g, layue = On + D THIVPAK L2ty > 0.

We deduce that for g large enough, C/gM+ < (]AM (g)| + 1)~ 1| @M+ (g, lay.x, wherer C'> 0 (indepen-
dent of g) is the constant in the estimate (6.17). Therefore, the bound (6.17) and Corollary C.2 imply
that for g large enough, there exists A(g, K) € o(A(g, K)) such that:

C
(97 ')”ag,K g

B (9) = A9, K)| < ik 1 (A (9)l +1).

Therefore, there is a constant C > 0, independent of g, such that for g large enough:
A (9. K) — Ag, K)| < Cg(MHD), (6.23)

Since AM (g, K) — 8,, = 0oy, as g — +00, it follows form (6.23) that A(g, K) — da,. Moreover, by Theorem
3.1 and Proposition 5.8, one has Aa,,—1(9; K) = Ao (9; K) = Ap(9) = don, Aont1(g; K) = dapp1 > oy if
n>1andif n > 1, Aap_2(g; K) = d2pn—2 < o, for ¢ = +o0. Thus, one has necessarily S\(g,K) = Ap(g)
for all g sufficiently large.

Finally, we show that )\gl) and A\ (g, K) are real-valued. Indeed, we know that A% (g) = )\([(,)) =4, eR
and also from (6.11) that )\g) < 0. Therefore, A (g) = )\g) + g_l)\g) € R for all g > 0. Unfortunately,

that )\gn) and A\ (g) are real-valued is not easily deduced from formula (6.15) for m, M > 1. However,
we can straightforwardly verify this from (6.21) by induction. Indeed, assume that for all 0 < m < M,

)\(Dm) and A5 (g) are real-valued for any g > 0. Using the relation (6.21) at the order M + 1 leads to
lim g™+ (Ap(g) — AM (g)) = AP

g—o0

where Ap(g) € o(A, k) C R and A4 (g) is real-valued by induction. Hence, taking the latter limit, one
deduced that )\(DM+1) € R. Thus Ay (g) = MY (g) + XM+ /gM+1 g also real-valued for any g > 0. O

We next address bounds on the truncation error for our asymptotic expansions of the eigenfunctions.

Theorem 6.5. (Asymptotic expansion of the eigenfunction in the || - ||o, norm)

Assume that 6, satisfies the condition (S) for a fizxed n > 1 and let M € Ng. Then, for g large enough,
there exists an eigenfunction W (g,-) € ker(Ayx — Ap(9)1a) (with Ap(g) = Aan(g; K) = Xan_1(g;K))
which satisfies | ¥M)(g,-)|| =1 (where || - || is the Li-norm) and C > 0 such that:

_ (1)11\4+1(gv') 9
1937 (g, )l — gt

Proof. To prove this result, we apply the Corollary C.3 to u, = fbi\4+1(g,-)/\|¢i\4+1(g,~)||. We first
establish an estimate of the form (C.3) for u, and the eigenvalue Ap(g) of A, k. For all v € H, one has

H\I/(l)(g, ) (6.24)

ag,K

‘ag’K (ug,v) = Ap(9) (“971’)‘
< ”(I)iw—i_l(g’ ')||_1(|ag,K((I)iw+1(gv')71)) - )‘%(g) ((Ijiw-i_l(g?'),v)')

+HAp(9) = AL (@] [V]la x-
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By estimate (6.17), the asymptotic relation (6.21) and the fact that @Y T(g,-)| — |P KH 1 as
g — 400, there exists C7 > 0 such that for all g sufficiently large:

’ag,K (ug,v) = Ap(g) (ug,v)| < ~(M+1),

/]y 9 for all v € Hi.

This is precisely an estimate of the form (C.3).
We next need require, for large g, a lower bound on dis(Ap(g) ™!, U(A;%{) \ {Ap(g)™'}); see Corollary
C.3 . By Theorem 5.12, for g large: Aon—1(9; K) = Aoy (9; K) = Ap(g) is of multiplicity 2. Thus,

Ap(9) ™t = Xs(g;s K)Lifn=1

min (A2n—2(g; K)™' = Ap(9) "1 An(9) ™! = Aony1(g; K) 1) if n > 1
(6.25)

dis(Ap(9) ™! o (A )\ {Ap(9) ™)) =

We deduce, using Theorem 3.1, (6.22), Ap(g) — 62, and || @M F(g, )| — 1, that
b(g) = 1/2Ap(9) ltglla,.s dis(Ap(9) ™" o (A 3) \ {An(9)™"}) = C2 > 0, as g — +o0,
with 5
*2 IVP k2@ (63 —051) for n =1

Cy = 52

IV Pkl L2+ min(dy, o — 65,0, 65,0 — 05,041) for n > 1.

Therefore, for g sufficiently large, 0 < Cy g~ M+ < min(b(g),1). It follows using Corollary C.3 that for
g large, there exists WM (g,-) € L% an eigenfunction of A, k associated to the eigenvalue Ap(g) which
satisfies and || (g,-)|| = 1, and such that

6(9) Cy
gM+1

(6.26)

42p(g)~"
dis(Ap(g9)~", o (A, x \ {Ap(9)~'})’

The expression of C(g) comes from (C.4). Using (6.25), (6.26) and Theorem 3.1, one gets that C(g) —
C3 > 0, as g — 400 where the constant C3 can be easily made explicit. We conclude with (6.26) that
for g large enough, there exists Cy > 0 (independent of g) such that

C(g) = Ci(9) + An(9)~% + Ap(9)2 Mi(g; K) 2, with C1(g) =

oY Cy
— gM+1 :

g, )
1217 (g, )]l

H\p(l)(g’ ) —

ag‘K
O

In the following corollary we construct (more explicitly than in Theorem 6.5) an eigenfunction of
ker(Ay x — Ap(g)la) that is approximated by ®1 (g, )/||®M T (g,-)].

Corollary 6.6. Assume that b, satisfies the condition (S) for a fited n > 1 and let M € Ny. Then, for
g sufficiently large, {®1(g,-), P2(g,-)}, defined by

«({An(9)}) 217 (g, )

Dy(g,) = €Lk k- and ®(g,-) =PCP(g,-) € LKT , (6.27)
||EAgK({)\D( )} e (g,
is an orthonormal basis of ker(Agx — Ap(g9)Ia) with Ap(g) = Aon(9; K) = Aan—1(9; K) and there exists
C > 0 such that:
CI)M+1(g ) C rPC(I)M+1( ) C
1(9,) = —wg, < e and ||@a(g,) — A~ (6.28)
H 1217 (g, )| Nage — g™ H 127" (g, gt

36



Proof. We first prove that (6.27) is well-defined for g large enough. By Theorem 5.12, Ay, (g; K) =
Aon—1(9; K) = Ap(g) is an eigenvalue of multiplicity 2 of Ay k. Thus, from steps 1 and 2 of the proof
of Theorem 5.12; we know that for any fixed 7 satisfying 0 < n < min(de,v3 — d2) if n = 1 or 0 <
17 < min(da, — d2n—2, Vant1 — d2,) if n > 1, the relations (5.27) and (5.28) hold (for g large enough)

with {2, (9;K), Aon—1(9; K)} = {Ap(g)} (and A,k instead of A, k) and Ea__ , ((d2n — 71,020 + 1)) =
Es .« ({02n}). Hence, by Lemma 5.10, one has:

EAg,K(((;?n — 1,02 + 77)) = EAg,K({)‘D(g)}) — EAg,K (6271 — 1, 02n + 77) = EAOO,K({(SQH})v as g — +oo0.

Furthermore, as <I>{V[+1( )= PA K in L% with P4 K € ker(Aoo k — d2,14), it follows that

Es, s ({A0(9)}) 21779, ) = Ba s ({020 }) Prixc = Pl # 0, g — +oo.

Hence, ||E4, , ({An(9)}) @1 (g, )| # 0 for g large enough and thus ®1(g, -) is well-defined by (6.27) as a
normalized function of ker(Ay k —Ap(g)Id). Moreover, as Ey, . commutes with R (since Ej, ,, commutes
with Ay k) and Li . is an eigenspace of R, Li . is stable under E4 . Hence, as et (g,) € L s
one deduces that ®,(g,-) € L ,. Thus, (5.10) and ||[PC®:(g,-)|| = [|®1(g,-)|| = 1 give that $y(g,-) =
PCP1(g,-) is a normalized function of kerz(A, k — Ap(g)Id). Since Ap(g) is of multiplicity 2, we conclude
using (5.9) that {®1(g,-), P2(g,-)} is an orthonormal basis of ker(A; xk — Ap(g)Ia).

We now prove the estimate (6.28). For the remainder of the proof we use the compressed notation E,

for the projection Ey, . ({Ap(9)}) and || - ||a, for the norm || - |4, ,. First, one has:
q)M+1 A ]E @M‘Fl ]E q)M+1 @M‘i’l .
H@l(ga‘)_W(%) < H(I)l(g’ M+1 g, H ey g, }MH(% ) . (6.29)
12777 (g, )| e 191 |1 (1@} (g, )| e
Concerning the first term of the right hand side of (6.29), one observes with (6.27) that:
E @MJrl(ga ) - -
|@109,) = Tt 2| = B @Y (g, Y, | B (g, )17 = [0 (g, 1| (6:30)
127" (g, )| Mag
By (6.22),
1By 237 (g, ey < 1277 (9, )0y = VPN >0, (6.31)

where the inequality holds since the spectral projector E, is an orthogonal projection on ker(Agx —
Ap(9)1g) when one considers Hy endowed here with the Hilbert norm || - ||,, and thus in this functional
framework its operator norm in B(Hy, H) is 1. This last point is easily shown by using that for any
uw € Hg = DA 1/2) lul2 = ||A1/2u||2 (see relation (3.3)) and by decomposing u via the spectral
Theorem on an orthornormal basis of eigenfunctions of A; k. Moreover, one has

217 (g, ) — Eg@1" (g, )|

) ) L
[0+ (g, |72 = B, @2+ (g, )| < 1B, @+ (g, )1 123 (g, )] |
1 )

(6.32)

with ||E,®M (g, )"t — ||P, K|| ' =1 as g — +o0. Now, using the Theorem 6.5, one knows that for g
large enough, there exists a normalized eigenfunction ™) (g, -) of Ag k associated to the eigenvalue Ap(g)
such that (6.24) holds. Furthermore, E, is the orthogonal projection on the subspace ker(A, k —Ap(g) Id)
and the Li- norm is dominated by the || - [|o, (with a constant independent of g for g > 1). Thus, it
follows from (6.24) that for g large enough:

Mg C

q)M-i-l ;” 1 gv)” < W, (633)

[t - B < e
o (0.0 Tl gl < 1

for some C' > 0. Hence, combining (6.30), (6.31), (6.32) and (6.33), one concludes that there exists C' > 0
such that for g large enough:

C
= gM+L

qu)i\/[+1(g7 )

17 (g, ] (634

H‘I’1(97')_
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We now bound the second term of the right hand side of (6.29). One uses that the first inequality (6.33)
holds with the L -norm, || - |, replaced by the || [|4, (since the spectral projector B, € B(Hi, Hi) is an
orthogonal projection on ker(Ag x — Ap(g)la) when one considers Hy endowed with || - [|o, ). Moreover,
the second inequality of (6.33) holds in the norm || - [|o, by Theorem 6.5. Hence, one gets that:

E, 01"t (g P C

ga')
< —.
— gM+1

H 121 (g, )l @1 (g,-)]

(6.35)
ag
Combining (6.29), (6.34) and (6.35) leads to the first estimate of (6.28). Finally, using (B.6), one gets
that PC preserves the norm | - [|,, and thus the second estimate of (6.28) follows from the first one. [J

The following Corollary gives an approximation of the eigenstates in the Hg-norm. The difference
with Corollary 6.6 relies on the fact that for || - |4, , —norm, we require a quasi-mode function of order
M + 1 to obtain a remainder of order M + 1. Here, the quasi-mode function of order M is sufficient.
Indeed, one requires an approximation of order M + 1 (at least in the domain Q~, see Proposition 6.2)
for the norm || - [|4, x because of the coefficient o, that appears as a weight in this norm and induced a
multiplication by g of the asymptotic expansion in the domain Q2.

Corollary 6.7. (Asymptotic expansion of the eigenfunction in the ||| g1 norm) Assume that b satisfies
the condition (S) for a fized n > 1 and let M € Ny. For g large enough, we define an orthonormal basis

{®1(g,-), P2y, )} of ker(Agx — Ap(9)la) (with Ap(g) = A2n(9; K) = Aen—1(g; K)) by:

En, .« {An(9)}) 21 (g, )
s, « A0 (9)}) 21 ()]l

Then, there exists C > 0 such that for g large enough:

(I)(g’) el

%{,T and ¢2(97 ) = PC¢1(97 ) € L%(,?' (636)

(g, )

Mg .
= ottt iy < 75 T <

12 (g, ) e = g™+t

Proof. The existence of the orthonormal basis {®1(g,-), P2(g,-)} of ker(A;x — Ap(g)lq) for g large
enough has been proved in Corollary 6.6 for M > 1 and in Theorem 5.12 for M = 0. We proceed with
the notations: Ey for Ex, , ({Ap(9)}), [ - [z for || - ||, and f(g) for a function of the form f(g,-).

Let ®,(g) = E @M+ /||E, M7 (g)|| and ®4(g9) = PCP1(g). The functions ®;(g) for j = 1,2 are
defined as ®;(g, -) but with the index M + 1 > 1 replacing M. For g large enough:

H(Ih(g, ) and H%(g, ) (6.37)

21 (g) ~ = 1 (g)
®, (g —17H < ||®1(g) — B1(g +H<1>1 L H 6.38
|20~ gl < 1920 = 8@l + 8160~ g . (6:35)
We deal first with the second term of the right hand side of (6.38):
~ @M — ¢M+1 ¢M+1
H<I>1( M (9) H = H<I>1(9) - %H L H M+1 () M L (9) H (6.39)
122" (g)|| e 1@ (g)| a2 (g) |<I> (g) 111

By virtue of Corollary 6.6, the first term of the right hand side of (6.39) is bounded by C/gM*+! (since
the Hi-norm is dominated by the norm || ||a, ;. With a constant independent of g for g > 1).

We estimate now the second term of the right hand side of (6.39). From the definition (6.16) of
®M(g), the fact that ||<I>M(g)||H11( tends to ”P;?,K”H}l( > 0 and both [|®M(g)| and ||®M**(g)| tend to

IIP KH =1 (as ¢ = +00), one has for g large enough

|2 el I2172(0) — 2 @l gy, (U2 DI [2F WY
[ @l 1)l = [ (9l HO el )19 @)l
< Yo g gD Oyt gm0
< Cg—(M-H).
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Thus, the second term of the right hand side of (6.38) satisfies:

M (g)

[#:0 - Faia

—(M+1)

Hm <Cyg . (6.40)
We estimate now the first term of the right hand side of (6.38). To this aim, we first bound the norm of E,
in B(Hg, Hi) (with Hi is endowed with the standard H{ —norm). For g large enough, {®1(g), ®2(g)}
is an orthonormal basis of ker(A, k — Ap(g)la). Therefore, one has for all u € Hy:

IEgulls = [I(u, @1(9))@1(9) + (u, B2(g)) P2 2
< 2@ (9)]| el 191 (9) ]| 2
< 221 (g) 1 s (6.41)
(where we used for the first inequality that || @11 = |2z since by virtue of (B.6), the || - ||z norm

is preserved by PC). From (6.40), the definition (6.16) of ®}”(g) and the fact that ||P/'x| = 1, one

obtains: ||®1(g)||z — ||P, K||H1 as g — +oo. Thus, it leads with (6.41) that ||Eg[|pmz my ) is bounded
by a constant mdependent of g for large g. Therefore, there exists C' > 0 such that for g large enough:

P! M
D4(9) 9) SCH - H :
| I IE@Y (9)ll [IBg @Y (g)]] Nl
Hence, it yields:
[ — @M - _
[#10) =@l < O (Fgamrr i it + 192 L I, 21 7 (@)~ B2 ()]~
Eq @y (9)
E (I)]\/[+1 _IE (I)M
——a g L (19)|| Eq @1 ()]
IEg 1" (o) 1 Eg @1 (9)l
< Cig MY 4 G301 (g) — 21 (9)
< Cygm MY, (6.42)

(where we use that |[E,|| = 1 in B(L%,L%) and that ||[E,®) ™ (g)|, |[E,®Y (9)|| — |P KH =1 as
g — +00). Combining (6.38), (6.40) and (6.42) yields immediately the first estimate of (6. 37) Finally,
as PC preserves the norm [ - || 1 , the second estimate of (6.37) follows from the first one. O

6.6 Asymptotic expansion of the Dirac velocity , vp(g), for g > 1

We now present an asymptotic expansion of the Dirac velocity, vp(g), for g large. In contrast to the case
of honeycomb Schroedinger operators in the strong binding regime [22], where the asymptotic parameter
is an emergent hopping coefficient, which is exponentially small in the well-depth parameter, here the
asymptotic expansion is in powers of 1/g; the convergence is therefore slower. Comparing further, the
Bloch functions ®;(-,g) for j = 1,2 (defined formula (5.24)) have the following limit behavior (see
Corollary 6.7) in the H'—norm: ®1(g,-) = Px + O(1/g) and ®5(g,-) = e *"/3PB + O(1/g). P

and PBK are K—quasi-periodic superpositions of single inclusion Dirichlet states; PAK is supported on
the A— inclusions and Pn,K is supported on the B— inclusions and, very roughly speaking, play the
role of the atomic orbitals of the Schroedinger analysis; see [22]. In contrast to ground state quantum
atomic orbitals, these approximations are compactly and disjointly supported, rather than exponentially
localized in the well-depth parameter. The disjointness of the supports of ®,(-,g), 7 = 1,2 at leading

order implies, via (5.13), that vp(g) = vgj)g_1 + O(g~2). Hence, order zero term, ’Ug)), vanishes. A

rigorous proof that vg # 0 is an open question. In section 7, we numerically observe that v D) = 0 for
n = 1. Thus, for g large enough, (Ap(g),K) is a (non-degenerate) conical / Dirac point for the two first
dispersion surfaces.
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Theorem 6.8. Assume that 6, satisfies the condition (S) for a fited n > 1 and let M € Ny. Then, for g
sufficiently large, the Dirac velocity vp(g), defined by (5.13), in terms of the eigenstates ®;(g,-), j =1,2
(given by (6.36)) , associated with the eigenvalue Ap(g) = Aan—1(9; K) = Aan(g; K), has the following
asymptotic expansion:

Z v(m) O(g~ MDY with vgn) eER for m=1,...,M. (6.43)

Furthermore, the two first coefficients are explicitly given by:
o =0 and o} |2/ oV VPCP;‘_Kder/ ot VPC@g”dw} 1,-)7).
: 0

Proof. The proof is a straightforward application of the formula for vp(g), (5.13), and the asymptotic
expansions of ®;(g,-) for j = 1,2 in the H'—norm given by Corollary 6.7. We omit the detailed calcula-
tions. O

7 Transfer of Dirac points from the 2" and 3"¢ bands to the 1%
and 2" bands as ¢ 1; numerical results

In this section we corroborate the results of Sections 4 through 6 with numerical simulations. The
computations are implemented with Free Fem-++ [34] and displayed either with Matlab or with ParaView.
For these numerical experiments the fundamental periodic cell © contains two disc-shaped inclusions Q4
and QF of radius Ry = 0.2. The results displayed in Figures 2, 6, 7 and 8 are obtained using P, periodic
Lagrange finite elements on the same mesh of ).

300
A .-
250 -

200 -

150 - 01 =10

100 -

50

Figure 6: Transfer of Dirac cone with vertex at Dirac point, (K, Ap(g)), from 2"¢ and 3" bands for
1 < g < ge~13.1, to the 1% and 2" bands for g > 1. Solid curve: Dirac point energy, g — Ap(g), a
double eigenvalue with corresponding eigenspace C L%QT &) L%Q?. Dashed curve: simple eigenvalue with
1— dimensional eigenspace C L%(J. As g 1, Ap(g) converges from below to the lowest Dirichlet eigenvalue
of the domain Q4 U Q5.

The behavior of the first 3 dispersion surfaces as the contrast parameter, g, is varied is described in
Figure 2 of Section 1.3. Numerically illustrated are: the global behavior on B of these dispersion surfaces:
uniform convergence, existence of a gap, ... (Corollary 4.5), and their local behavior in a neighborhood
of the vertices of B: degeneracy, existence of Dirac points (Corollary 5.13).

Figure 6 displays a transfer of Dirac points from the 2"? and 3" bands to the 1% and 2" bands as the
contrast parameter g is increased by tracking the Dirac cone vertex at (K, Ap(g)) as g varies; see Definition
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Figure 7: |®1(g,-)| (left) and |®2(g,-)| (right) computed with formula (5.24) and (5.25) for Ap(g) =
X2(g; K) = A3(g; K) in the case of disc-shaped inclusions of radius Ry = 0.2 and for g = 8.9 (first row)
and 13 (second row).
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Figure 8: |®1(g,-)| (left) and |®2(g,-)| (right) computed with formula (5.24) and (5.25) for Ap(g) =
A1(g; K) = A2(g; K) in the case of disc-shaped inclusions of radius Ry = 0.2 and for g = 13.2 (first row)
and 100 (second row).

5.3. For g = 1, the operator A; x coincides with minus Laplacian (since o, = 1) with K—quasi-periodic
conditions. As shown in [23], A\1(1;K) = A2(1; K) = A3(1; K) is a triple eigenvalue. For 1 < g < g. =~ 13.1
(in particular, g = 8.9, ¢ = 13), a Dirac point occurs between the 2"¢ and 3"¢ bands and we observe:
M(g;K) < Aa(g;K) = As3(g; K) = Ap(g); the (solid curve) graphs of g — Aa(g; K) and g — A3(g; K)
coincide in Figure 6. It follows from the second relation in (5.11) (a consequence of symmetry) that for
9 < ger 9 — M(g;K) is (dashed) curve of simple L — eigenvalues of o(A, k). Thus, by Corollary 5.2,
A (K, g) belongs to 01 (Ak) for 1 < g < g.. That the Dirac point is located between the 2"¢ and the 37
bands indicates that g in the parameter range g < g. is not sufficiently large for our theorems to apply;
indeed for g sufficiently large we know from Corollary 5.13 and Corollary 4.5 that a Dirac point appears
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between the first and second bands and that there exists a gap between the second and the third band.
Increasing g, we find for g = g. ~ 13.1, the first 3 dispersion surfaces touch over K (and, by symmetry, over
all other vertices of B) at a triple eigenvalue A1 (g.; K) = Aa(gc; K) = A3(g.; K), and that for g > g. the
Dirac point transfers to an intersection of the first two bands: Ap(g) = M (g; K) = Aa2(g; K) < A3(9; K)
(since the graphs of g — A\ (g; K) and g — A2(g; K) coincide on Figure 6).

Figure 7 depicts, for g = 8.9, 13, the Bloch eigenfunctions ®1(g, -) and ®5(g,-) = PCP (g, -), which are
associated with the degenerate (multiplicity 2) Dirac eigenvalue Ap(g) = A2(g; K) = A3(g; K). @1(g, )
and ®2(g,-)), given by formulae (5.24) and (5.25)), are the “normalized projections” of Pﬁ‘K (resp.
PCP{}K = e’zﬂi/?’PfK) on the 2— dimensional kernel of A(g,K) — Ap(g)I.

The contrast g = 8.9 and the inclusion radius Ry = 0.2 were chosen equal to parameters used in
simulations of Floquet-Bloch modes in [38, Figure 4 page 71] for the first 2 TE bands for a square lattice
of circular allumina inclusions at a non-zero quasimomentum. Consistent with observations in [38] we
find, for this range of g, that ®; and ®5 are not well approximated by superposition of our Dirichlet
orbitals. However, once ¢ is increased to around 13 or beyond, the modes @1 (resp. ®3) become localized
on the sublattice, A4 (resp. Ap) and begin to look like superpositions of Dirichlet orbitals.

Figure 8, which depicts the behavior of the Bloch eigenfunctions for higher contrasts: g = 13.2, 100 >
ge, demonstrates the behavior predicted by Theorem 5.12 and its Corollary 5.13. In particular, Ap(g) is
now situated between the two first bands, and ®; given by by formula (5.24) (resp. @5 given by (5.25))
are spatially localized around the A—sites (resp. the B—sites). This localization is more pronounced for
g = 100 as predicted by Corollary 5.13; ®1(g,-) — Pﬁ‘K and ®y(g, ) — e 27/3 PfK as g — 0o, where
the function Pfél (resp. P{?K), defined by (5.22), has support equal to the A- inclusions (resp. on the
B-inclusions).

107! 10° 10° =

——g Polg) — 81l /b ——g > [|21(9) — Plkcllzz, =g [22(0) — ¢ T Plicl,
——grg! ——g = [21(9) = Picllm /11 Prx |, g 11%2(g) — e F PPy /| PPic
——grr g v grg?t
107 107

- e *
S -
103 1078 e !
*\

107 107
102 10° 10* 102 10° 10*

Figure 9: All graphs are represented in a logarithmic scale. In the left figure, one represents in blue
g~ [Ap(g) —61]/d1. In the center, one plots in blue g — [[®1(g,") — Pk,allzz and inred g — [[®1(g,-) —
Py allgy /I1Px.allgy - At the right, one plots in blue g — || ®2(g,-) — e~ 2mi/3 PfKHL?( and in red

! is plot in black as a reference graph.

g [®2(g,-) —e ™% PPyl /1 PP | 1y, - I each figure, g+ g~
Figures 9 and 10 are produced using a very fine mesh with P, periodic Lagrange finite elements to
simulate very large values of the contrast g. These figures concern the first two bands and are performed
for g varying from g = 10% to 10* with a constant step size Ag = 100. Here, g is large enough to be
in the regime of validity of Corollary 5.13; Ap(g) = M (g; K) = A2(g; K) is of multiplicity 2 and ®4(g,-)
and ®o(g,-) are given by formulae (5.24) and (5.25)). The 1/g rate of convergence of the eigenpairs
(Ap(9),®;(g,-)), j = 1,2 at K, predicted by the asymptotic analysis of the Section 6 (Corollary 6.7
and Theorem 6.3), is displayed in Figure 9. In the left figure, one observes that the relative error:
g — |Ap(g) — 61]/6, converges to zero, linearly in 1/g. The center and right figures make clear the 1/g
convergence of the relative error of ®1(g,-) — P{’x and ®5(g,-) — e #™/3PJ in the L? and H' norms.
The left panel of Figure 10 illustrates that the Dirac velocity vp(g) (defined by (5.13)) tends to 0 at
the rate 1/g. The right panel displays g — gvp(g), which indicates convergence to a positive constant
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Figure 10: The left graph sketches g — vp(g) (in blue) g — g~ (in black, as a reference curve) both in

a logarithmic scale whereas the right graph represents g — gvp(g).

~ 27.1. The asymptotic expansion (6.43) of Theorem 6.8 implies vp(g) = vg)g_l + O(g72) for g > 1.
Thus, numerically we observe vg) > 0. This provides, for g sufficiently large, a numerical verification
of the non-degeneracy condition (5.26) on the Dirac velocity, vp(g), associated with the energy quasi-
momentum pair (K, Ap); see Corollary 5.13 and Theorem 5.12. With this verification, Corollary 5.13
ensures, for g sufficiently large, the existence of Dirac points at a touching of the first two bands over the

6 vertices of the Brillouin zone.

8 Higher energy bands for disc-shaped inclusions

8.1 Eigenelements of the limiting operator (A ) for disc-shaped inclusions

Sections 4 through 6 discuss results on the convergence, as ¢ — oo, of band dispersion functions, the
existence of Dirac points, asymptotic expansions of the Floquet-Bloch eigenelements and the Dirac ve-
locity. These results require that b, the n'" Dirichlet eigenvalue of —Ap;, o4 for the single inclusion
04, satisfies the spectral isolation condition (S) of Definition 4.2. As we have seen, condition (S) holds
for the first eigenvalue, 51, for any inclusion shape Q4 satisfying the assumptions of Section 2.2. In this
section we demonstrate that condition (S) can be verified in many cases for n > 1. This enables us,
for disc-shaped inclusions, to obtain results on Dirac points occurring at energies deep within the band
spectrum, infinitely many such.

In this section, we take Q4 = B(v4, Ro) where B(v 4, Ro) is the open ball of radius Ry > 0 centered at
v4. The radius Ry is chosen so that the geometrical assumptions of Section 2.2 hold, namely Q4ANQB =
and QF N 9N = 0; in other words, the 2 disc-shaped inclusions do not overlap and do not intersect the
boundary of the unit cell. For this geometry, the spectrum o(—Ap;, ga) is expressible in terms of zeros
of the Bessel functions J,(z) for p € Ny. We first recall some properties of these zeros; see [59, chapter
XV] and Figure 11:

e For each p € Ny, the zeros of the Bessel functions J,(z) are real. Moreover, J,(z) has an infinite
number of positive zeros z, , arranged in an ascending order of magnitude and indexed by ¢ > 1.
These zeros are simple, i.e. J,(2,4) # 0 for ¢ > 1.

e The zeros of any 2 different Bessel functions, Jp, () and J,, (z) where p; # ps are distinct. Moreover,
for consecutive Bessel functions: J,(z) and J,11(2), they interlace:

0< 2p1 < 2p+1,1 < 2p2 < Zpt1,2 < 2p3 < ...
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Figure 11: Positive zeros z, 4 whose magnitude are below 10.

Using the above properties, one obtains that the discrete spectrum of —Ap;, g4 is given by

2
U(_ADir,QA) = {(2-;;,(;1) : (p7 q) € NO X N} = {Snv for n € N}7

where the listing of b, is with multiplicity. The corresponding eigenfunctions are given in terms of
Bessel functions. Indeed, if the nt"® Dirichlet eigenvalue of Q4, §, = (z’o7q/R)2 for some ¢ € N, then
ker(—Ap;, ga — 6,1d) is 1-dimensional and spanned by the normalized function p,, with

_J (ZO,q || Ral)

A
pn(m)—m, x e Q. (8.1)

However, if 6, = z§7q/R% for some p,q > 1, then ker(—Ap;, ga — SnId) is 2-dimensional and spanned by
the orthonormal set consisting of the functions:

Prs (@) = ﬂJp(Zp,Q|$|R61) in(p8) and py.(z) = \/EJP(Zp7q|x|RO_1)
’ V| T} (2p.q) | Ro “© NGEACSI

To obtain the normalization in (8.1) and (8.2), we use [59, formula (11) page 135, chapter 5]:

cos(ph), x=e€Qt (8.2

Ro
/0 Jg(zpvq r/Ro)rdr = R J;(zp7q)2/2.

This normalization is well-defined since J},(zp,4) # 0.

The next proposition states that the (infinitely many) Dirichlet eigenvalues of Q4, 6, which arise
from zeros of the zeroth order Bessel function, Jy(z), satisfy the spectral isolation condition (S).

Proposition 8.1. Let 8, = (zo’q/RO)2 for some n,q € N. Then, b, satisfies condition (S) of Definition
4.2. Furthermore, the corresponding normalized eigenfunction p,, defined by (8.1) (and extended by 0
on R2\ Q4), satisfies the symmetry relations (5.19) and (5.20) and is even. Thus all the results from
Sections 4 to 6 hold for such values of n.

Proof. 1f 6, = (zo7q/Ro)2 for some ¢ € N, then by (8.1) we have that 4, is a simple eigenvalue with p,,,
defined by (8.1), as an associated normalized eigenfunction. Moreover, by the identities: (z Ji(z))" =
x Jo(z) and Jy(z) = —J)(x) for x € R (see [59], equations (5) and (7) page 18), it follows that

[ ot = 2R IC0) 2 T e,y 20

20,4176(20,4)] 20,q

where sgn stands for the sign function. Thus, 6, satisfies the condition (S). Morever, it is clear that p,
satisfies the symmetry relations (5.19) and (5.20) and is even. O

Remark 8.2. The eigenvalues bn = (zp,q/Ro)2 with p,q > 1 satisfy neither of the two properties
of the condition (S). Specifically, (a) 0, is of multiplicity 2, and (b) (Pn.s,Pn,c) 15 an orthonormal
basis of ker(—Api, ga — d,1d) and both functions have zero mean. Hence, fQA u(xz)de = 0 for all

u € ker(—Apj, g4 — 5nId). Hence, the results of Sections 4 to 6 do not hold in such cases. The questions
of the existence of Dirac points and the asymptotic expansions of the Bloch eigenelements at the quasi-
momenta K, in the high contrast regime are not treated in this paper; only our gemeral results on the
convergence of the band functions of Section 3 apply in this setting.
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Figure 12: Dispersion maps k — Ao(k; g), A1(k;g), Ma2(k;g), Mis(k;g) for the case of two disks Q4
and QF of radius Ry = 0.2 per cell. The four maps are plotted along the contour of M-0-K-M of the
symmetry-reduced Brillouin zone in red (right) for the indicated values of the contrast g.

8.2 Numerical results for high energy bands

We continue our numerical investigations with the medium described in Section 7 with the mesh of P,
periodic finite elements, used to obtain the results of Figure 2. We are interested here in the energy
bands associated with the Dirichlet eigenvalue 56 = (20,2/ R0)2 where 2y o is the second positive zero of
the Bessel function Jy(z); using relation 8.1, the index n = 6 can be read off Figure 11 since the zeros
represented by green crosses (resp. red crosses) are associated with eigenvalues of the operator —Ap;. ga
of multiplicity 1 (resp. 2). By Proposition 8.1, since g is associated with a positive zero of Jo(z), it
satisfies the spectral isolation condition (S). Hence, all the results from Sections 4 to 6 apply to the case
n = 6, and thus to the associated dispersion surfaces k — A11(g; k) and k — A12(g; k).

Figure 12 displays the dispersion surfaces k — \;(g; k), j = 10, 11, 12, 13 over the boundary contour
of a symmetry-reduced Brillouin zone. The Dirac point is situated at K between the 12—th and 13—th
bands for ¢ = 60 and between the 11** and 12" bands for g = 20 and for the large contrast values g = 100
and 300, as predicted by Theorem 5.12. A (transitional) triple degeneracy occurs at K for g ~ 37.3 and
g =~ 84.7. Moreover, for large g, as predicted by Theorem 4.4 (applied with n = 6), one observes that:
(a) the 11*" band does not “become flat”. Indeed, it converges away from k = 0 to 56 = 011 = 012 and
at k = 0, numerically, one notes that it converges to 54 =07 = 55 = §109 < 011. Thus, one can conjecture
that 17 = 019 in Theorem 4.4.

(b) the 12" band converges uniformly to 56 = 011 = 010 and this band “becomes flat”.
(c) there exists a gap between the the 12t"th and 13*" bands.

Furthermore, since d; = ds = d9 = 010 (see Figure 11), one has by the interlacing property (3.10):
v1p = 619. Thus, as predicted by Proposition 3.6, the 10** band converges uniformly to 55 = d10.

In figure 13, the contrast values g = 84.8 and 300 are above the occurrence of the last triple (transition-
ing) point: g & 84.7 (see Figure 12). Thus, we are here in the high contrast regime predicted by Theorem
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Figure 13: |®1(g, )| (left) and |®2(g, )| (right) computed respectively with formula (5.24) and (5.25) for
Ap(g) = Mi1(g; K) = A2(g; K) in the case of disk-shaped inclusions of radius Ry = 0.2 and for g = 84.8
(first row) and g = 300 (second row).

5.12: Ap(g9) = Mi1(g; K) = A2(g; K) is of multiplicity 2 and the Dirac points are situated between these
two energy bands. Here, we display |®1(g,-)| and |®2(g, )|, computed with formula (5.24) and (5.25).
One observes a localization of ®; (resp. ®3) selectively in the A—inclusions (resp. on the B—inclusions).
Again, as predicted by Theorem 5.12, this localization is more pronounced as the contrast, g, increases.

9 Proof of Theorem 5.4 on conditions for the existence of Dirac points

9.1 Weak form of the Lyapunov-Schmidt / Schur complement reduction

By symmetry arguments (Remark 5.5) it suffices to prove Theorem 5.4 for K, = K. Furthermore,
relations (5.11) of Corollary 5.2, and assumptions 1 and 2 of Theorem 5.4 imply that Ap(g) is an eigenvalue
of multiplicity equal to 2 of Ay k. Thus, there exists n > 1 such that A\, (g; K) = A11(9; K) = Ap(9).
Hence, part 1 of Definition 5.3 of Dirac points has been proved for (K, Ap(g)). It remains to prove part
2 of this definition, concerning the conical character of the dispersion surfaces near (K, Ap).

We follow the framework developed in [23, 24] for the Schroedinger equation and in [43] for divergence
form elliptic operators with smooth coefficients to derive the asymptotic behavior of the two (Lipschitz)
dispersion surfaces A, 11(g; K+x) and A, (g; K+k) for k small, which touch at Ap(g) for £ = 0. Since A,
has discontinuous coefficients, we require a weak formulation of the Lyapunov-Schmidt / Schur reduction
of previous works [23, 24] that necessitates many technical adjustments.

We seek a non-trivial solution of the eigenvalue problem:

AgKin® =20, D(Agxin) ={u€ Hi . | Agxinu € Ly}, (9.1)

where A is near A\p and k is small perturbation of K. Such solutions (A, ®) depend on the asymptotic
parameter g but since g is fixed in this section, suppress this dependence. In particular, as ® € D(A; kyx),
we have the transmission conditions at the boundary of the inclusions: [®] =0 and [0,V -n] =0. We
can reformulate the eigenvalue problem in the space of periodic functions (independent of k) by setting
®(x) = (K T () Then, the eigenvalue problem (9.1) can be expressed in terms of the operator:

Ajrin = e—i(K+n)'wAg)K+n el(Ktr)x . ~VKir  0gVKtn, (Ve =V +ik)
acting on the domain:

D(Agxcin) = {u € Hy = H'(R?*/A) | Agnu € Lg = L*(R?/A)} .
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As the operator A%KJM is unitarily equivalent to Ag k4., it is self-adjoint, has a compact resolvent
on L*(R?/A) and the same sequence of eigenvalues (counted with multiplicity) as Ay kix. For ¢ €

D(A, K+x), the transmission boundary conditions are:
[¢] =0 and [0y VK4k ¢ - 1] = 0. (9.2)
The eigenvalue problem (9.1) is equivalent to
Agkind=X¢, ¢€DBykyx). 9.3)

In contrast to the previous studies [23, 24, 43], here AQ,KJM has discontinuous coefficients, o4. In
particular, one can not expand the operator Ag,KJm as in [23, 24, 43] since A97K+K and Ag,K do not
have the same domain. Indeed, at the boundary of the inclusions, the functions in D(Ag,K_m) satisfy the
jump conditions (9.2) whereas functions ¢ in D(A, k) satisfy [¢] = 0 and [0, Vi ¢-n] = 0. Nevertheless,
this expansion will be possible via a weak formulation of the Lyapunov-Schmidt / Schur complement
reduction.

Multiplication by a test function ¢ € H'(R?/A), integrating over €, and applying the divergence
theorem, one can show that the eigenvalue problem (9.3) is equivalent to the following weak formulation:
Find a function ¢ € H*(R?/A) such that:

/agvmm'vmw de = A / ¢ pdax, for all p € H'(R?/A). (9.4)
Q Q

For |k| small, we seek (A, ¢) with A = Ap + E, |E1| < 1, expecting that F;(k) = o(1) as k — 0. We
rewrite the problem (9.4) as:

SK((j)v T/’) = €E; (¢a 'l;[}) + bK,KZ(d)? T/’) + Ck:(d)v w)a Vw S Hl (RQ/A)v (95)

where for all u,v € H'(R?/A), the continuous sesquilinear forms sk, bk «,Cr and ep, are defined by:

sk (u,v) = (S¥u,v) = /agVKu-VKU—)\Du-ﬁdx,
Q

ep, (u,v) = (EPru,m) = El/u~6da:7

£ (9.6)
b (u,v) = (BE*u ) = f/crg [iku-Vkv+ Vku-ikv] de,

Q
¢ (u,v) = (Chu,n) = —|n|2/0gu-6dw,

Q

and (-, -) denotes the duality product between H*(R?/A) and its dual H'(R?/A)*. The bounded operators
SK, EE1 BK:® and C* € B(H!(R?/A), H*(R?/A)*) are associated to the different continuous sesqulinear
forms by the relation (9.6). Since g is fixed, we omit the dependence on g of these operators and their
associated continuous sesquilinear forms. So the weak formualtion (9.5) is equivalent to the following
linear equation:

S¥¢ = BK*¢ + C*¢ + EF1 g (9.7)
valued in H'(R%/A)* with unknown ¢ € H(R?/A).

Let
¢i = eiiK'm‘I)i, = 1, 2,

where {®1,®»} is the orthnormal basis for the L} eigenspace for the eigenvalue Ap in Theorem 5.4.

Thus {¢1, ¢} is an orthonormal basis for the L?(R2/A) of ker(A, x — Apld), i.e. the eigenspace for (9.3)
with k = 0. Let P denote the orthogonal projection of L?(R?/A) onto Vo = span{¢1, ¢2}:

Py f = (f,¢1)r2@2/n 01 + (f, d2)2(r2/a) d2, for any f € L*(R*/A)
and P; =1 —Pj. We seck a solution (E1, ¢) of (9.7) with

b= ¢(0) + ¢(1)
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where

¢V =Pip=a¢i+ B¢ € H(R*/A) and o) =P pe H(R?/A). (9.8)

Thus our eventual goal is to construct, for all & small: a = (¢, 1) 2(r2/A), B = (¢, P2)L2®R2 /M), éM and
E; such that (9.7) holds.

We first remark that the restriction to H'(R*/A) of Py and P, : Py : H'(R*/A) — Vy € H'(R?*/A)
and P, : HY(R%2/A) — Vy := P, HY(R?/A) C H*(R?/A) belong to B(H'(R?/A)). Therefore, Vy and V;
are closed subspaces of H!(R?/A) and we have the (non-orthogonal) decomposition H*(R?/A) = Vo @ V.
Thus, for test functions ¢ € H'(R?/A) we write: ¢ = () + (1) where () = P2 and PpD =P .
Furthermore, any operator M : H!(R?/A) — H'(R?/A)* is equivalent to an operator M : Vo & V; —
Vi @ V5, expressed in the equivalent block form:

M ¢\ _ (Moo M1 (60
oM ) = \Myy My ) \oM )°
where M;; € B(V;, V;) for i,j = 0,1. We next express (9.7) in the block form M(E;, k)¢ = 0.

First, since »©) € D(Ak), one can apply the divergence theorem and use that ¢(°) is an eigenfunction
of Ak for the eigenvalue Ep to obtain:

sk (6@, p W) = (§%6", p) = / Vi 0y Vi o — Ep ¢©] - 4 dz = 0.
Q
It implies that Sg; = 0. In the same way, we find S1g = 0 and Soo = 0. It is also straightforward to

see that: B = 0 and EX! = 0 since Vy and V; are orthogonal subspaces in Ly(R?/A). Hence the weak
formulation (9.7) of the eigenvalue problem for A, k1, is equivalent to the system:

(Eimen | dee ey (o,
Bio" +Cfo —SK +Ei + By +Cpy ) \oW 0

The linear eigenvalue problem (9.9) is to be solved, for k small, for #0 ¢ and E;. We shall solve
(9.9) by a Schur complement / Lyapunov-Schmidt reduction strategy. Namely, we first solve the second
equation in (9.9) for ¢(!) as a function of the two parameters o and 3, which specify ¢(©) = ag,+Bp2 € V.
We then substitute ¢)[a, 8] into the first equation in (9.9) to obtain a two-dimensional homogeneous

= (8), whose 2 X 2 matrix depends nonlinearly on £ and k. The
equation det M(E1, k; g) = 0 defines the two dispersion surfaces touching at (K, Ap) since it corresponds
to solution By = 0 and k = 0. We will show that there exists ko # 0 such that for all |k| < k¢ (and

g > 0), we can solve for E1(k;g).

system of equations M(E1, k; g) (g)

9.2 T-coercivity and inversion of the operator S¥

We now proceed with the reduction step. The key is to show that the (2, 2) entry of the operator in (9.9) is
invertible. The main step is to prove the invertiblity of S¥. One approach is to apply a weak formulation
of the Fredholm alternative [46]. Here, we present an alternative approach based on the notion of T-
coercivity, an explicit reformulation of the inf-sup theory which generalizes coercivity [6, 13], and can
be applied in cases where the standard Fredholm theory cannot be applied, e.g. to invert divergence
form elliptic operators with sign-changing coefficients in their principal part [6]. T-coercivity has the
additional appeal of simplicity; it reduces the invertibility of indefinite / non-coercive problems, e.g. for
bands n > 2 where the sesqulinear form is not coercive, to an application of the Lax-Milgram theorem.
The T-coercivity approach adopt here has been applied in the context of well-posdness and discretization
of Helmholtz operator problems in bounded domains [13].

We begin with a brief discussion of the T-coercivity approach. Let H be a Hilbert space for which the
complex conjugation is an antiunitary involution. Consider the general problem of finding v € H such
that

a(u,v) =1(v), forallve H, (9.10)
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where a and [ are respectively a continuous sesquilinear form H x H and a continuous linear form on
‘H. If the form a is not coercive on H, one can not directly apply the Lax-Milgram theorem to produce
a unique solution u € H. In such cases, the idea of T-coercivity is to construct (if possible) a bounded
isomorphism T of H such that the sesquilinear form: ar(u,v) = a(u, Tv) for u,v € H is coercive. One
then applies the Lax-Milgram theorem to find a unique solution u € H of

ar(u,v) = I(Tv), for all v € H. (9.11)

This solution depends continuously on [ € H*, since T is bounded. Furthermore since T : H — H is
an isomorphism, (9.11) is equivalent to (9.10), and thus (9.10) has a unique solution. This is further
equivalent to the bounded operator A from H to its dual H* defined by (Awu,7) = a(u,v) for all u,v € H
(where (-, ) stands for the duality product between H* and H) being invertible.

To apply the T-coercivity in the present setting, decompose L?(R?) as the orthogonal sum:

LPR*\A)=(Vi_eV) s W _eW), (9.12)
where
Vo = span{¢1,¢2} and
Vi._ = span of a basis of eigenfunctions of the n — 1 first eigenvalues of A(g, K).
For n = 1, we set V1 _ = {0}. Associated with the orthogonal decomposition (9.12) are 3 projection

operators: P _ : L2(R?*/A) — Vi _, P : L*(R*/A) — Vo and P, 4 : L*(R?*/A) — (Vi— & Vo)*
satisfying: P, _ + P +Py y =Tand P, _ +P, ; =P,. The restriction of P, _, P, Py 4 to H; (R2\ A)
belongs the B(H;(R?\ A)). We define V; , =P, , H'(R?/A), a subspace of P|  L?(R?/A). This yields
the following decomposition of V;:

Vi=Vi_- @V,

as a non-orthogonal sum of closed subspaces endowed with the H!— inner product and associated norm.
On the Hilbert space V;, we define a bounded isomorphism (an involution) T as follows. For any u € Vy,
we write the unique decomposition v = vy + u_, where uy € V; 4 and u_ € V; _. Then we define

Tu :=uy —u_.
Lemma 9.1. The operator Sty € B(Vi, (V1)*) has a bounded inverse (S¥)~ € B((V1)*, V).

Proof. We show that the invertibility of S¥ follows from the T-coercivity of the sesquilinear form sk on
V1. For the norm and inner product on L?(R?/A) we omit the subscript indicating the function space.
For all u = uy +u— € V; with ux € V; + we have

(sk u, Tu) = (AI%(U, AI%(TU) — Ap(u, Tu)
~ 1 ~1
= (Ag(us +u-), Ag(uy —u)) = Ap(ug +uuy —u_)
~ 1 ~ 1 ~1 ~1
= (AZuy, AZuy) — Apllus]® + Apflu_|® — (AZu—, Aku_). (9.13)

The last equality follows from the orthogonality of u; and u_ in L?(R?\ A) and that AI%{U, and Afl{qu
are also orthogonal in L2(R? \ A) (as an immediate consequence of the spectral theorem).

Since Ap(g) = An+1(9;K) = An(g; K) has multiplicity 2, one can choose n > 0 such that (1 —
M) Ant2(g; K) —Ap >0forn>1and Ap — (1 +7) A\—1(g; K) > 0 if n > 1. Thus, one gets:

1 ~1

)+ (1 =) (Afuy, Afuy) — Apllug?
) + (1= 1) Anra(9: K) = Ap] [lus||?
uy), (9.14)

~ 1 ~ 1
(Afur, Agus) — Aplluy|®

\

3
—~
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U++
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3
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1 1
where, in the last inequality, we used that (AZuy,AZui) > Anppo2(g; K)|lus|?. This is an immediate

1
consequence of the definition of the orthogonal prOJeCtOI‘ P, +, and the expression for AKu+ in an
orthonormal basis L?(R? \ A) with respect to which Ak is diagonal. Similarly, for the case n > 1:

1 S 1 ~1 1 ~1 <1
Apllu—|® = (Agu—,Agu_) = Apllu_|® = (1 +n)(Agu—, Agu_) +n (Agu_, Agu_)
1 1

> o= T+ (G K] lu-|? + 1 (Afu—, Agu_)

> (Aéu_,A%(u_) . (9.15)
In the last inequality, we used that (Ai _ Aiu_) < A—1(g; K)] [Ju—||?, a consequence of the definition
of P, _. Combining (9.13), (9.14) and (9.15) (using that © = u4 and u_ = 0 for the particular case
n = 1), we have:

(sxu, Tu) > n[(AI%{u+,AI%<u+) + (AI%{’UJ_,AI%(U_)]

> (Agu Akw)

> nmin(l, g) | Viul®

> C(K)nmin(1,9) [[ullFge\a)-

Therefore, the continuous sesqulinear form sk is T-coercive on V;. Hence, by the Lax Milgram lemma
S¥ € B(V1,(V1)*) has a bounded inverse (S¥)™* € B((V1)*, V1). O

9.3 Reduction to the determinant of a 2 X 2 matrix

Using the invertibility of S¥ (Lemma 9.1), we rewrite the second equation in (9.9) as
(T (s, B1)) ¢ = (ST) " [Blg"™ + CFoJo”, (9.16)

where Z(k, By) := (SK)"1[EE + BY® + C5] € B(V)). From the expression of the sesquilinear forms
er, bk and ¢, we see that EF1, BK:® and C* depend respectively linearly in Fj, linearly in & and
quadratically in k. Since (S¥)~! is bounded and independent of &, it follows that Z(k, E1) = O(|k|+|E1])
tends to zero as (k, E1) — 0 € R3. Thus, for |k| + |E;| sufficiently small, one has ||Z(k, E1)|| < 1 and
therefore that I — Z(k, E1) is invertible. Hence,

clk, By] = (1—E(r, B1)) ™ (SK) 7 BS" + €] € B(Vo, V1) (9.17)

is well-defined for |k| + |E1| sufficiently small. Relations (9.16), (9.17) and (9.8) imply, for || + |E1|
sufficiently small:
oV = [k, B1] ¢1 a + c[k, E1] ¢2 5. (9.18)

The expression (9.17) can be expanded in a Neumann series. Moreover, EF1 BX:* and C* depend,
respectively, linearly in Fy, linearly in k and quadratically in . Thus, for (E1,k) in a neighborhood,
U, of the origin: (E1,k) — c[k, E1] ¢;, for j = 1,2, are analytic as a mapping from (E1,k) € U into
V1 endowed with the H!—norm (for a discussion of the composition and product of analytic functions
defined and valued on a Banach space, see e.g. [9]). We also have

llcls, Er] @5l re/a) < Clk| for j =1,2, (E1,k) €U and some C > 0. (9.19)

Now substituting the expression of ¢(!) given by (9.18) into the first equation of (9.9) yields a closed
equation for «, 8, depending on (E, K):

0= [Efy +Bey™ + Cho) (¢1a+ B o) + [Bey™ + C§i] (clw, E1] 1 a + [, Er] d2 B)

valued in (V)*. Using that {¢1, ¢2} is an orthonormal basis of Vy, the latter equation may be expressed
equivalently as a system of two homogeneous linear equations for a and 3:

M(k, En) (g) =0, (9.20)
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where

M(k, Eq) = Er1ls + Ma(k) + Mp(k, Eq), (9.21)
(Boo"¢1,61) (Boo “¢2,¢1>)

M = , and 9.22

e < B?{)H¢17¢2> <B§)’H¢2,¢2> ‘ (9.22)

(
([Ch + + (Bgy™ + Cfy )elw Er]]é1,01) ([Chy + (Bey™ + Chy )k, E1]]¢27¢1>> (9.23)
<[ ( 017 + (CONI)C[KH El]]¢17%> <[(CSO + (Bg)?,i + (COK'I)C[KH El]]¢27%>

From (9.21), the analyticity of (E1,k) — c[k, E1] ¢; for j = 1,2 and the fact that EF1, BK:* and C*
depend respectively linearly in Ey, linearly in k and quadratically in k, it follows that (E1, k) — M(k, E1)
is analytic in a neighborhood U of the origin in R3. Furthermore from (9.21), we have that E; — Fyly
is linear in Ey, kK — M4 (k) is linear in k and from (9.19) and (9.23), the matrix entries of (Mp(-,-))i;
satisfy, for 4,5 = 1,2 and all (Ey,k) € U:

M (FL El) <

MB(H/uEl)ij = gij(El,li) + hl‘j(l-’\‘,) With |gij(E17K,)‘ S C|K|2 and |h”(K,)‘ S C|K|2 .

Here, C' > 0 and g;; and h;; are analytic functions of (E1, k) and k. The preceding arguments imply a
characterization of the dispersion surfaces in a neighborhood of (K, Ap).

Proposition 9.2. For (Ey,k) €U, a sufficiently small neighborhood of the origin in R®, A(g; K + k) =
Ap + E is an eigenvalue of the eigenvalue problem (9.1) if and only if

det M(k, E1) = 0. (9.24)
Here, the 2x2 complez-valued matrix M(k, E1) is given by (9.20), (9.21), (9.22) and (9.23). Furthermore,
(K, E1) — det M(k, E) is analytic on U.

9.4 Simplifications of the determinant using symmetries

We expect that for |E;| + |k| small, the leading behavior of F1(k,g) is given by the eigenvalues of the
matrix M (k). We now use honeycomb symmetry to simplify M (k).

Lemma 9.3. 1. For k € R?%:
. <B(I)<o’n¢i7%> =0 fori=1,2.
o (BE5"05,81) = (B3 1 6;) = ~2ik - [y0,®; VOide fori,j=1,2 andi# .
2. Let

Bp = _i/ 0,8, V&ydz - (L1) . (9.25)
Q

Then, vp = |Up|, with vp defined in (5.13) and one rewrites M (k) defined by (9.22) as

Ma(r) = (~ 0 ' Op (k1 —&-ikag)) .

Op (k1 — 1K2) 0
Proof. Using (9.6), one has for 4,5 = 1,2:
(Boo ™5, 6i) = — /Q oglik ¢ - Vidi + Vo) -1k di] da = (Byg"di, 6;). (9-26)
Since ¢; = ®;e” K% and Vk¢; = VO;e KT for i, j = 1,2 we have:
(B5570.5) = [ oylind; T8+ vV, T8 de, (9.27)

Q
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When i = j € {1, 2}, this latter expression simplifies to:

(BE* ;. 3:) = 2Tm (0,®;, k- VP;) = 2Tm (n : /

0B VE; d:):) . (9.28)
Q

Following the ideas developed in the proof of Proposition 4.8 of [43], we show that (Bé%’”qﬁi, ;) fori=1,2
vanish. We set that v =7 if i =1 and v =7 if i = 2. Then, one has

Q Q
Since R(0y®;) = 0y R®;, ®; € Ly ,,, RV = R*VR by (B.6) and |v| = 1, it follows that
/ag<I>Z-V<I>i de = u/ 0¢®; R*VR®; dx = Vﬂ/ 0g®; R*V®;dx = RT/ 0g®; VO,dx,
Q Q Q Q
where RT denotes the transpose of R. Multiplying by R on both sides yields:
R/ O'g(DZ‘V@i de = / Ug‘I)Z‘ Vq)zdili =0. (929)
Q Q

The last equality holds since 1 is not an eigenvalue of R. By (9.28), (]Bé%’”gbi,ﬁ) =0 fori=1,2.
We next simplify the expression (9.27) using that ®; = PC ®; for i # j. One has

(B ¢, di) = /ag[uc@ V&, + VPC[®;] - ik PCP;] dz
Q
oglik®; - VP, da:—/VPC i| - PCl—ikoy®;]dx (as PC(oyP;) = 04PCP;),
oglik®; - VP, da:—/’PC —V®,;]- PCl—ikoy®;]dx (as VPC = —PCV, see (B.6)),

I
:o\:a\:o\

oglik®; - VO, da — / VO, -iko,®;dx (since PC is anti-unitary),
Q
= =2iK '/O'Qq)j V(I)l dx . (930)
Q

Applying the reasoning for the case i = j, but now for j = 2 and 7 = 1, we have that equation (9.29) is
replaced by:

R/ 0P VO dx = T/ 04®, VO dx.
Q Q

It follows that for some a € C:
/ O'gq)g V<I>1da: = af, (931)
Q

where ¢ € ker(R — 71d) is displayed in (1.3). One deduces that

a=at- = [ 0,05 VPdz-E. (9.32)
Q

Setting op = —v/2ia and using (9.26), (9.30), (9.31) and (1.3) we have:

(Bé%’”(bg,%) = (Bé%’“¢1,@> = 2Kk -af=—V2ia(k, +iks) = Op (k1 + iK2).

Finally, by (9.32) and (1.3), we have op = —v/2ia is given by (9.25). O
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9.5 Conical behavior of the dispersion curves

Under the condition vp # 0, we conclude the locally conical behavior of the dispersion curves near the
Dirac point (K, Ap).

Proposition 9.4. Let g > 0 and vp(g) be defined by (5.13). Under the non-degeneracy condition:
vp(g) # 0, there exists ko such that for all |k| < ko the equation (9.24): det M(k, E1) = 0 has two
solutions Kk — ET (k) given by:

Ey (k) = £vup(9) k| (1 + Ef,es(K)),  |K] < ko,

1,res

where Kk +— EF

1res(K) are Lipschitz continuous functions which vanish at k = 0.

Proof. The proof is the same as for honeycomb Schroedinger operators. We refer to [23] for the details. [

A A, and transverse electric (TE) modes

In this section we explain how the elliptic operator A, arises in the study of transverse electric (TE)
waves in electromagnetism. Let €y and pg denote the vacuum dielectric constant and vacuum magnetic
permeability. Introduce Cartesian coordinates (x,y,z) € R3. Consider a dielectric (non-conducting)
medium with macroscopic permeability, u = o, macroscopic dielectric parameter e(z,y, z) and current
source density J(z,y,z). Let E and H denote, respectively, the electric and magnetic fields. Time
harmonic solutions of frequency w of Maxwell’s equations, (E, H)e ™! are governed by the system:

iweE+VAH=J and —iwpugH+VAE=0 inR3

We further restrict to the case of a medium, where the current density J and all medium coefficients
depend on the transverse variables x and y, but not on the longitudinal variables, z:

J=Jx)=J(z,y), e=¢e(x)=c(x,y), u=po, wherex = (z,y).
We seek modal solutions (i.e for J = 0), which are in a transverse electric (TE) polarization state:
E(x,z) = (EJ_(w),O)—r = (E;E(ac),Ey(:c),O)—r and H(x,z) = H,(x) e, = (O,O,HZ(IB))T.
Introduce the 2— dimensional scalar and vector operators:
Vio(z,y) i= (Oyv, —0v) " and curlv := d,v, — Oyv, where v = (vy,v,) " .

For any vector u(x) = (u, (x),0) + u.(x)e,, which is independent of z, we have identity: (V Au) () =
curlu (z)e, + (V+tu,(x),0) . Hence, transverse electric (TE) modes are obtained from solutions of

— V.- 'VH, = w?uo H., (A1)
where E | can be computed (for frequencies w # 0) from H,:
E| =i(ew)™' V*1H, .
We take £(x,y) = £(x) to be of the form:
€0 for  in the bulk,
() = : o
eog for x in the inclusions ,
a piecewise constant medium with contrast parameter g. Multiplication of (A.1) by eqg yields:
WA 2
AgH, = \H. , where A=g (7)
c

and A, is defined by (1.1) and (2.1) and ¢ = (ppeo)~'/? is vacuum speed of light. Thus, one observes
that one easily translates the key results on the bands A, (g; k) for Ay into the original electro-magnetic
setting by “using the change of variable”:

An(k,
wn,+(k,g) = *c M, Vn € N and any k € B.

9
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B Commutation of symmetry operators

In this section we present results on the commutation properties of the operators: rotation, inversion and
PC. Consider first the Dirichlet Laplacian for a single inclusion.

Proposition B.1. Let Q4 be a non-empty simply connected bounded open set of R? with Lipschitz
boundary 904 . Assume further that R(Q4) = Q4 and —Q4 = Q4. Let Rga : L2(Q4) — L2(Q4) and
Poa : L2(Q4) — L2(QA4) be the (unitary) rotation operator and (anti-unitary) inversion operator defined
by (5.15), and denote using the same notation: Raa : L2(Q4)2 — L2(Q*)? and Poa : L2(Q4)? —
L%(Q")? these operators acting on 2-dimensional vector fields. Then, RoaH}(Q4) € HY(QA) and
Poa HYH(QA) € HE(QA) and we have the commutation relations:

V(Rgau) = RRga(Vu) and V(Pgau) = —Pga(Vu), Yu € HH(QH), (B.1)
ARqgau=Rqa Au and APgau = Pqga Au, Yu e HLA ={ve HY(QY) | Ave L} (QY)}.  (B.2)

Finally, —Ap;, ga commutes with Roa and Pga. That is, D(—Ap;, ga) = H&A N HY(Q4) is stable
under Roa and Poa, and [—Api, g4, Roa] = [~Apiraa, Paa] =0 on D(—=Api; qa).

Proof. We summarize the ideas of the proof. Relations (B.1) and (B.2) are first proved for all z € Q4
and smooth functions v in D(Q4) (the space of C* functions compactly supported in Q%) by using the
chain rule as in [43, Lemma 3.3 and Theorem 3.2]. Then, using the density of D(Q4) in HE(Q4) (for
the H'-norm) and distribution theory, one extends (B.1) to any functions in H{(24) and proves the
stability of H(Q24) by Poa and Roa. Afterwards, one extends (B.2) to any functions in HJ 4 by using
distribution theory. Finally, from the stability of H}(224) by Rga and Pga and relation (B.2), one gets
that D(—Apj, 0a) = H} o4 ﬂHi)A is stable under Rqa and Pga. This last point and (B.2) imply that
—Api; g4 commutes with Roa and Pga. O

To deal with the case of elliptic operators with quasi-periodic conditions, we introduce for any k € B
the following Hilbert spaces on the open sets % (defined in (3.1)):

Li(QF) := {u | u € L*(0), for all bounded open sets O C QF, w is k—quasi-periodic on Q*},
HY(QF) = {u € Li(QF) | u € H(O), ¥V bounded open sets O C QF}.

These spaces are endowed with their standard inner products:
(U,U)LQ(Qi) = / uvdx and (f,g)Hl(Qi) = / fﬁd:c—l—/ Vdem (B3)
k 0+ ke Q+ Q+

Remark B.2. The functions of H,i(ﬂf) are k-quasi periodic functions that are H' on each periodic copy
of Q7 and satisfy a k—quasi-periodic boundary condition, i. e. the Dirichlet trace has no jump across
the border of the periodic cells: Uy, nyezz Onn and is k—quasi-periodic. This last condition relies on
the fact that these functions have to be H' on all bounded open subsets of Q~. Thus their Dirichlet trace
has to match at the boundary of the periodic cells. However, as the inclusions are disjoint, no condition
(except k—quasi-periodicity) is imposed on the Dirichlet trace on QT for functions of HL(QF).

We then introduce the space

L (09Q7) = {f € L2 .(097) | f(x +v) = *?f(x), for a.e z € 90T and all v € A}.

loc

Its inner product is defined by replacing QF by dQ* and dx by dv, in the left formula of (B.3). The
Dirichlet trace operator 75 : CL(QF) C HL(QF) — L7 (0Q1) (where CF*(QF), m € Ny stands for the
space of C™ smooth k—quasi-periodic functions f on Q% such that f and all its partial derivatives
of order less than m or equal to m admits a continuous extension on ﬁ) defined by A/E (u) = uloa+
extends by density to a continuous operator on H. ,i(ﬂi) Furthermore, its range is the Sobolev space
(see [30, 32, 47]):

_ 2
H(09") = {f € Li(091) | . Wd%dvy < o0} (B.4)
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endowed with its standard norm defined for all f € H, ,i/ (6QT) by:

2 _ 2 |f(z) — f(y)I?
1o, = W goney+ [ L a,00,, (B5)

The mapping v : Hj(QF) — H,i/z((?ﬂ'*') is also continuous (for the H,i/2 (0Q27) norm).

For K, a vertex of B, one denotes by Ro+ : Lk (QF) — Lk (9F) and PCqs : L (2F) —
L} (£2%), the rotation and PC operators defined as (5.1) and (5.5) but on the sets 2%. We also use
the notation R : Lk (2%)* — Lk (QF)? and PCq+ : Li (2%)? — L (2%)? for the equivalent
of these operators acting on 2D vector fields. Finally, Raoq+ : Lﬂ*(aﬂ“‘) — L%g (09") and PChq+ :
L3 (092%) — Lk (0Q") denote the same rotation and PC operators, but for scalar functions defined on
0", The justification for these definitions is similar to the ones of the operator R and PC (see (5.2)
and (5.5)). It relies, on one hand, on Q% and 9Q* being invariant under 27 /3 clockwise rotation and
inversion with respect to the center, . and, on the other hand, on the stability of K,—quasi-periodic
boundary conditions under these operators. Finally, to see that the adjoint of the unitary operators R,
and R}, are defined, interchange the rotation matrix R with its inverse R* in the definition of Ro+
and Rya+.

Lemma B.3. Let K, be any vertex of B. Then, the space Hk(ﬂi) 1s stable by R+ and PCq+ and
one has the following commutation relations:

V(Ra+u) = RRa+(Vu) and V(PCqsu) = —PCq+(Vu), VYue Hg (QF). (B.6)
Moreover, the trace operators 'yﬁ commute with Ra+ and PCq=+ in the following sense:
75 (Ra+u) = Roq+ (’y%u) and 735 (PCq=u) = PCoa+ (’ﬁSu), Yu € H11<* (QF). (B.7)

Proof. We summarize the idea of the proof of (B.6). The relations (B.6) are first proved for functions
in Ck_(92%) using the chain rule as in [43, Lemma 3.3, Theorem 3.2]. Thus, it follows that Cg (%) is
stable by the operators R+ and PCqx. The extension of the relations (B.6) to all functions of Hy_(QF)
and the stability of the space HIl< (Q%) under R+ and PCq+ are then proved by distribution theory
and density of C (QF) in Hi (QF) for the Hy_-norm.

Let u € Hi (22%). To prove (B.7) for the rotation operator, we use that Cf (QF) = Hg (2*) in
the Hi -norm. Thus, there exists a sequence (up)nen of Ck_(€2F) functions that converge to u for the
H11<*—n0rm. By (B.6), Rg=u, — Rq+u in Hll< By continuity of the Dirichlet trace operator, one has
YE(Razun) — vE(Raru) and vhu, — y5u in H%ﬁ(é)ﬂ*) (and thus also in Lg (99221)). Moreover,
by continuity of Roq=, one has 75 (Ra=t,) = Roat (Voun) — Raoax(You) in L3 (021). Therefore,
we conclude that 75 (Ro+u) = Rog=(75u) in L (9QF) and also in Hll{/f (027). The same reasoning
applies to the PC operator. O

The dual of H;/Z (0Q2T) is denoted H,;l/2 (092T) and is equipped with the norm:

||g||H’i/2(aﬂ+) = Sup | <gvf>H;1/2’H;/2 E
170,01/2 ey =1
Here, (-,-),,-1/2 ;1/2 denotes the duality product between H,:l/z(QQJF) and H;/2(8Q+) (see [30, 47]) for
k Ky 3
which (w, v)H_1/2 g1z = (u,ﬁ}H_l/z g2 forallu e H,;l/2 and all v € H;/Q.
k Tk k [EES

Let n denote the unit outward normal vector to . The Neumann trace (see e.g. Corollary 2.6 of
[30]) [Ou/On]* € H,c_l/2 (0Q21) is defined for a function

u € Hy A(QF) = {w € HL(QF) | Aw € L (9F)}

via the Green identity as the following continuous linear functional:

Oul* B _
<[37J m%(v)>H,l/2 g =E [ BuT+Vu-Vude, e HE(QF), (B.8)
k K 2
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which is well-defined as a linear form since v : HL(QF) — H ,i/ (") is surjective. It is continuous
since u € H,iyA(Qi) and vp admits a continuous right inverse &+ : H;/Z(GQJF) — HL(QF) (ie. a
continuous lift operator) such that v4(&%w) = w for all w € H;/Q(Gfﬁ) (see Proposition 1.1 of [30]).
If u € HZ(2F) (see [30, 32]) then [du/On]* € Li(0Q") and the duality bracket is nothing but the
integral [, [0u/On]* v dy,.

One now defines Ron+ and PCyqa+ as bounded operators from lei/Q (0Q27) to Hﬁi/Q (0921 by:

<R39+M,5>HE1/27H11</*2 = <w’R§Q+U>H}21/2,H}1</*2’ (B9)
<PC@Q+M7E>H};1/27HI1(/2 = <E7'PCBQ+U>H£1/2,H}1(/27

for all w € HIEI/ >(0Q2T) and all v € H11</*2(8Q+). These operators are well-defined since by virtue of
(B.4) and (B.5), it is clear that R}, (resp. PCyq+) is unitary (resp. anti-unitary) on Hgf(@ﬂ*).

Lemma B.4. Let K, be one vertex of B. Then the space H%*’A(ﬂi) 1s stable by the operators Ra+
and PCq+ and one has the following commutation relations:

ARg+ru=Rar Au and APCoiu=PCqo+ Au, VYuc H%{*’A(Qi). (B.10)

Moreover, the Neumann trace commutes with the rotation and PC operators in the following way:

[8Raiiu} : = Roqa+ [sz}i and [ngziu] - = PCoar+ [g%} i, Yu € Hi*,A(Qi). (B.11)

Proof. We only summarize the idea of the proof of (B.10). The relations (B.10) are first proved for
functions in Cg_(Q%F) using the chain rule as in [43, Lemma 3.3, Theorem 3.2]. The extension of the
relation (B.10) to all functions of H%<*,A(Qi) and the stability of HIICHA(Qi) by Rq+ and PCq+ are
proved by using distribution theory and density of CI%;* (ﬁ) in the Hilbert space H11< A(Qi) endowed
with the norm || - HH%(*‘A(Q:E): ||u|\fqll< @) = ||uH§{11( @) T ||Au||2L?(*(Qi)7 for all u € Hi A (QF).

We show now the relation (B.11). Let u € Hi A (£2%) be fixed and v be any functions in H_(QF).
First, as the spaces Hi (%) and H11<*7A(ﬂi) are stable by Rq+, one has Ro+v € Hi (QF) and
Rao=u € Hﬁ*,A(Qi). Thus, using the Green identity (B.8), one has on one hand:

ORq+ulEt —/—
<[ = } ,7§<v)>H_1/2 e = H AR, 0) 1z (@2) £ (VRawu, Vo) iz () (B.12)
K, K,
and on the other hand:
oult —— oult ————
Roq+ [*} A5()) = [7] Riai1p(0)) (B.13)
< on D >HK1/2,H11(/*2 < on ot ID >111Ki/2,H11(/*2

= =£(Au, RBiU)L%(* (Q*) + (Vu, vRBi'IJ)L%(*(Q:E)

(we use here that H (%) is stable by the rotation operator R§,. and that ’Y;(Rai v) = R§Q+7§(v),
these properties can be shown in the same way as in the proof of Lemma B.3 for the rotation operator
Ra= since Rg,: and R}, are defined by changing the rotation matrix R by its inverse R* in the
definition of R+ and Raq+).

Using (B.10) on the first term of the right hand side of (B.12), one obtains:

(ARQi ’LL,’U)L%((Q:(:) = (Rni A’U,,’U)L%((Qj:) = (Au,REiU)L%(Qi). (B14)
Then, for the second term, one has

(VRQ:EU,V’U)L%*(Qi) = (R*V(Rgiu),R*Vv)L%(* (%)
= (Rq+Vu, R*VU)L%(* (@) (since by (B.6), R*V(Rgzu)=Rq=(Vu)),
= (VU, ,R’;‘zi R*V Rﬂi R}‘ziv)L%{* (Q+)-
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Using again that R*VRq+ = Rq=V on Hi (QF) and that R,.v € Hi (QF) since Hi_(2%) is stable
by R+ leads to

(VRQj:U,V’U)L%(*(Qi) = (V’u,RBiRQiVREi’U)L%(*(Qi)
= (Vu, V’Raiv)L%(* (@) (since Rg+ is unitary). (B.15)

Thus, one concludes by (B.12) , (B.13), (B.14) and (B.15) that
8Rgiu + N ou
([ .

+ I
HY? - <R8§2+ {6711} 77D(U)>H§i/2

which yields the second relation (B.11) (since 7% is surjective). Finally, the equivalent property holds for

the PC operator by the same reasoning. O

1/27
)HK*

Proposition B.5. Let K. be one vertex of B and g be a positive real number. The operator Ak, 4
commutes with the operators R and PC, i.e. its domain D(Ax, 4) is stable under R and PC and the
commutators [Ak, 4, R] and [Ak, 4,P] vanish on D(Ak, 4).

Proof. We will show that R and Ak,  commute. The proof that PC and Ak, , commute is similar.
One has D(Ak, 4) = {u € Hi_ | =V -0,Vu € Lk }. Therefore, u € D(Ak, 4) is equivalent to u €
Hi A7), u € Hig A(27) and u satisfies the following transmission conditions on 0Q*: yju = ypu
and g [Ou/On]~ = [Ou/On]T.

Let v € D(Ak, ). From Lemma B.4, H%{*’A(Qi) is stable by Rq+. Thus, the restriction of
Ru to QF belongs to H%Q’A(Qi). The continuity on the Dirichlet trace of w and (B.7) implies that
75 (Ra+u) = v5(Ra-u). For the Neumann trace, as g[0u/0n]~ = [0u/0n] ", the relation (B.11) implies
that g[0Rq-u/0On]~ = [Rq+u/On]". Hence, Ru € D(Ak, ,) and thus D(Ak, 4) is stable by R.

Finally, let us prove that Ak, sRu = RAk, 4u. Using the Green identity and the definition of o4, we
have for all v € H :

(Ak, 4Ru, v)L%(* = (04VRu, V’U)L%(* = (gVRu, VU)L%(* @)+ (VRu, VU)L%(* (@+)- (B.16)
On the other hand, for all v € Hy :
(RAk. gu,v)rz = (A, gu, R™0)r2
(04Vu, VR*U)L%*
= (¢gVu, VREJ})L%(*(Q_) + (Vu, VR;HU)L?(*(Qﬂ. (B.17)
)

Therefore, by (B.16), (B.17) and (B.15), we have (Ak, ¢Ru,v) 2 = (RAk. gu,v)rz forallv e Hy .
Since Hy is dense in L , we have Ak sRu = RAk_ 4u and thus [Ak, ¢, R] vanishes on D(Ak, ). O

C From quasi-modes to genuine modes

To prove the asymptotic expansions of the Floquet-Bloch eigenpairs in Section 6, we use a corollary of
the following theorem on quasi-modes.

Theorem C.1. Let A : H — H be a linear compact self-adjoint positive operator on a Hilbert space H.
Let u € H with ||ullx = 1, A € C with Re(A) > 0 and n > 0 such that

|Au — Aully <,

(such a pair (u,\) is usually referred to as a quasi-mode of accuracy n of A). Then, there exists an
eigenvalue X, € o(A) satisfying

Furthermore, if there exists n. > n such that B(A,n.) No(A) = {\,}, there exists u, an eigenfunction,
associated with A, such that ||uy|l% =1 and

2
=l < 2.
s
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The proof of Theorem C.1 can be found for A > 0 in [50] (Lemma 1.1 p age 264), but it is easy to
check that their proof holds also for Re(A) > 0. We now reformulate this result for unbounded self-adjoint
operators A : D(A) C H — H that are positive definite and have a compact resolvent. In such setting,
one can introduce the closed sesquilinear form a associated to the operator A defined by:

a(u,v) = (A%U,A%’U)H, Yu,v € D(a) = D(A%).
As A is positive definite, one can introduce the inner product (-, -), defined on the Hilbert space D(a) by
(u,v)q = a(u,v), Vu,v € D(a),

and || - ||, its associated norm. Furthermore, as A is a self-adjoint operator with a compact resolvent,
D(a) = D(A?) is compactly embedded in H and dense in 7. Then, using the Riesz representation
theorem, one defines a bounded injective operator V : D(a) — D(a) by

(Vu,v)q = (u,v)y, Yu,v € D(a). (C.1)

One shows easily that the operator V is self-adjoint, positive and compact. Moreover, using (C.1), it is
straightforward to prove that: (\,,e,) is an eigenpair for A if and only if (A, !,e,) is an eigenpair for
V. Hence, 0(V) = o(A~1). The following two corollaries reformulate Theorem C.1 in this current setting
and provide eigenvalue and eigenfunction estimates. One one hand, they extend the notion of quasi-mode
for functions with less regularity (namely, functions that do not belong to D(A) but to the domain of
D(Az2)). On the other hand, they allow for estimation of the error in the quasi-mode approximation of
eigenfunctions of A in a stronger norm: || - ||, than the norm || - 5. See, for example, [18, 19] for the
eigenvalue estimate and [10] for the eigenfunction estimate in the context of a Dirichlet Laplacian. We
present the details of the eigenfunction estimate in a more general setting adapted to our problem.

Corollary C.2. (Eigenvalue estimate) Assume that there exists u € D(a) \ {0}, A € C with Re(A) > 0
and 0 <n < (|\| +1)7Yullo such that

la(u,v) = Au, v)x| < nllv|le; Yv € D(a) . (C.2)
Then there exists A\, € o(A) such that:

n
A= An] < (JA[+1) :
[ulla

Proof. The proof consists of rewriting the weak “quasimode estimate” (C.2) with the identity (C.1).
Then, one concludes by applying Theorem C.1 to the operator V and the quasimode (u/||uq, A7) (since
Re(A™1) > 0) by using the fact that (\,,e,) is an eigenpair of A if and only if (A}, e,) is an eigenpair
of V. The details are presented in the proof of Proposition 15 in [18]. O

With a good estimate of the eigenvalues, one can use the following result to estimate the eigenfunctions.
Let dis(+, O) denote the distance function to a set O, and let A; > 0 denote the smallest eigenvalue of A.

Corollary C.3. (Eigenfunction estimate) Let A, € o(A). Assume that there exists u € D(a) \ {0} with
lullg =1 and n € (0,1) satisfying

1
0 <n < S flulladis(Ay ', (A7) \ {A1})

such that
la(u,v) — A\ (u,v)n| < nllv]a, Yv € D(a). (C.3)

Then, there exists u,, an eigenfunction of A associated to A, such that |uy|ly =1 and
[u—unlla < Cn.
The positive constant C is given explicitly by:

C=Crt+ M +AIN 7 with Oy =4 (N, dis(hg!,o(A™D)\ (A7) (C.4)
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Proof. Using the definition (C.1) of the operator V, one can rewrite the inequality (C.3) as:
|(u — ApVu,v)o| < nljv]lq, Yo € D(a).
As, A\, > 0 and u # 0, it leads to

n
a ™ Anlulla

H u 1 u

lulla A llulla

Furthermore, as o(V) = o(A™1), by choosing 1. = 1/2 dis(A\;},0(A71) \ {\;!}), one has o(V) N
B(Ant,n.) = {\;'} and by assumption 7 (A, ||lulla)”" < 7. Therefore, the Theorem C.1 applied to
the operator V (using 7 (A, ||ull)~! for 1 in this Theorem) implies that there exists an eigenfunction i,
associated to A, for A (and to 1/A, for V) such that ||y,|l, =1 and

Cin

o™ ulla’

(C.5)

Iz
— = U
el "

with C7 > 0 defined by (C.4). It remains now to renormalize this last inequality with respect to the norm
I - l|%- To this aim, we introduce the vector w,, defined by wu,, = i, /||y ||%. Then, one has:

[u—unlla < [lu—|ullatnlla + [lullatn —unlla
< O+ llullatin —unlla  (using (C.5)). (C.6)
Then, we estimate the second term of the right hand side of (C.6). To this aim, one uses that

”an”g{ = (Vaman)a = Agl(ﬂmﬁn)a = )\7_Ll

and it follows that

1 _1
lllatin = wnll, = [(lulla = 1all3")a@n ||, = ‘HUIIa = Ad| <A [llullf = Anl (C.7)
Using the estimate (C.3) for v = u and the fact that ||ully = 1 yields
ellz = Xa| < nllufla- (C.8)

The last point is to dominate ||u||,. Using the estimate (C.8), the “Poincaré type inequality”: ||u||x/||ulla <
1/v/A1, |lull% =1 and that n < 1 leads to:

[Jull2 An [l An
lulla = 3—* <n+ <n+ <14+ = (C.9)
[ulla ulla l[ulla VA1
Finally, one concludes from (C.6), (C.7), (C.8) and (C.9) that:
i — unlle < Gy with € = C1 +An? + AZA] 2.
O

D Extensions to a larger class of elliptic operators

We mention here that our approach and results extend easily to a more general class of honeycomb
self-adjoint elliptic divergence form operators with anisotropic and spatially heterogeneous coefficients.
Our more general class of honeycomb operators is the operator Ay, where o, in (1.1) is now the matrix
valued-function o, given by

. { ay(x)Iy + bi(x)og for « in the inclusions (D.1)

g (az(x)Ilz + ba(x)o2), g > 1 for @ in the bulk,
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with o9 the Pauli matrix:

0 —i
09 — .

Here, a; and b;, i = 1,2 are assumed to be A-periodic bounded, scalar real-valued functions with a; and
by (rvestricted to QF = Q4 U QF) invariant under translation by vp — v4 (from the inclusion Q4 to the
inclusion Q7). Thus, Gy, given by (D.1), extends to give a Hermitian periodic matrix-valued function:
G4 € L°(R?/A). The scalar functions a; and b; are required to satisfy the symmetry relations:

ai(xe+ R(x —x.)) = ai(x), a;(2x. —x) = a;(x), fori=1,2 (D.2)
bi(x. + R(x —x.)) = bi(x), b;(2x, — x) = —b;(x), fori=1,2,

where R is the 27 /3— clockwise rotation matrix , v 4 the center of the inclusion A is the origin and x. is
the reference point indicated in Figure 1 and defined in Section 1.6. Finally, the matrix-valued functions
a;(x)ly + b;(x)og for ¢ = 1,2 are required to be uniformly positive definite. This more general class
of honeycomb operators, A4, which models a class of magneto-optic materials and bi-anisotropic meta-
materials, commutes with the required symmetry operators: R and PC; see [43]. We can also apply the
variational approach of [35] to study its high contrast behavior of dispersion surfaces. Furthermore, the
asymptotic expansions of the L% — Floquet-Bloch eigenpairs, their justification via the weak formulation
of the quasi-mode approach (Section 6), and the Lyapunov-Schmidt / Schur complement reduction scheme
of Section 9 all extend easily to this setting. Hence, all the results and proofs of this paper (except for
those in Section 8) can be adapted to this context.

In particular, one replaces the Dirichlet Laplacian: —A on the inclusions Q4UQP by the strictly elliptic
operator —V - (a;(x)Iy + by (x)02)V with Dirichlet boundary conditions on 24 UQE. One introduces the
spectral isolation condition (S) (see Definition 4.2) relative to this operator and (S) holds at least in this
more general setting for the first eigenvalue if b = 0 (see e.g. [36] pages 14-15). Finally, we point out that
the A—periodicity of a; and by, their invariance by translation by vp — v4 and the symmetry relations
(D.2) imply that a;(Rx) = a1(x), a1(—x) = a1(x) on Q4 and by (Rx) = bi(x), by(—x) = —bi(x) on
Q4. These latter relations are used to prove the commutation —V - (a1 (x)Iz + b1 (x)o2)V (equipped with
Dirichlet boundary conditions on 924) with the symmetries operators Rq, and PuaC defined on the
single inclusion Q4 (which corresponds in this more general setting to the relation (5.16) for the Dirichlet
Laplacian).
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