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Abstract

In this paper we are concerned with the global minimization of a possibly non-smooth and
non-convex objective function constrained on the unit hypersphere by means of a multi-agent
derivative-free method. The proposed algorithm falls into the class of the recently introduced
Consensus-Based Optimization. In fact, agents move on the sphere driven by a drift towards an
instantaneous consensus point, which is computed as a convex combination of agent locations,
weighted by the cost function according to Laplace’s principle, and it represents an approximation
to a global minimizer. The dynamics is further perturbed by an anisotropic random vector field
to favor exploration. The main results of this paper are about the proof of convergence of the
numerical scheme to global minimizers provided conditions of well-preparation of the initial datum.
The proof of convergence combines a mean-field limit result with a novel asymptotic analysis, and
classical convergence results of numerical methods for SDE. The main innovation with respect
to previous work is the introduction of an anisotropic stochastic term, which allows us to ensure
the independence of the parameters of the algorithm from the dimension and to scale the method
to work in very high dimension. We present several numerical experiments, which show that
the algorithm proposed in the present paper is extremely versatile and outperforms previous
formulations with isotropic stochastic noise.

Keywords: high-dimensional optimization, derivative-free optimization, geometric optimization,
consensus-based optimization, anisotropic stochastic Kuramoto-Vicsek model, Fokker-Planck equa-
tions, signal processing and machine learning
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1 Introduction

In this paper we are concerned with the global minimization of a possibly non-convex objective function
E : Rd → R constrained on the unit hypersphere Sd−1 = {v ∈ Rd : |v| = 1}

v∗ ∈ arg min
v∈Sd−1

E(v). (1)

We are particularly interested in the case where E is a continuous function and its point-wise evalua-
tions are accessible, but it may not be necessarily smooth enough to allow evaluations of its derivatives.
Additionally we shall consider the problem of making such optimization feasible in very high dimen-
sion.
The optimization problem (1) is ubiquitous in the natural sciences, engineering or computer science. A
classical example with applications in moderate dimension d is the Weber problem, where one wishes
to find the median barycenter on a three dimensional sphere [45]. Likewise, a variety of nonlinear
optimization problems on a sphere need to be performed over the surface of the Earth in geophysics,
climate modeling, or global navigation [7,13]. High-dimensional man-made optimization problems on
the hypersphere appear in machine learning, see, e.g., [21], where the authors show that the problem
of identification of a generic deep neural network can be reformulated through second order differen-
tiation into an optimization problem over the sphere of the type arg minv∈Sd−1 ‖PW(v⊗ v⊗ · · · ⊗ v)‖,
where W is a suitable subspace of symmetric tensors, PW is the orthoprojector onto W, and ‖ · ‖ is
the tensor spectral norm. The same type of optimization is used for efficiently computing symmetric
rank-1 tensor decompositions [34]. Similarly, finding the largest and smallest Z-eigenvalues of an even
order symmetric tensor [50] is equivalent to calculate the maximum and minimum values of a homoge-
neous polynomial associated with a tensor on a unit sphere, respectively. The minimization of quartic
function over the hyperspheres is used in the minimization of the empirical risk in phase retrieval
problems [8,12,24]. Other spherical optimization problems which have non-smooth objectives include
the robust subspace detection [38,41] or the sparse principal component analysis (PCA) [1].

For applications where the analytic form of the objective function is costly or impossible to access,
derivative-free methods in nonlinear optimization have been widely considered [6,39,49,54]. One may
refer to monographs and reviews [15, 36] for more general theory and literature review on derivative-
free methods. However, all these methods are based on an individual agent iteration and may not
necessarily come with global convergence guarantees in the case the objective function is non-convex,
as in the examples we mentioned above.
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In this paper we are concerned with derivative-free solutions to tackle global non-convex optimization,
which fall into the class of metaheuristics, see [18, 31, 33, 44, 48]. Despite the tremendous empirical
success of these techniques, it is still quite difficult to provide mathematical guarantees of robust
convergence to global minimizers, because of the random component of metaheuristics, which would
require to discern the stochastic dependencies. Such analysis is often a very hard task, especially for
those methods that combine instantaneous decisions with memory mechanisms.

Recent work by Pinnau, Carrillo et al. [10, 46] introduced Consensus-based Optimization (CBO)
which is a multi-agent derivative-free method defined as instantaneous stochastic and deterministic
decisions in order to establish a consensus among agents on the location of the global minimizers
within a domain. Certainly CBO is a significantly simpler mechanism with respect to more sophis-
ticated metaheuristics, which may include different features including memory of past exploration.
Nevertheless, it seems to be powerful and robust enough to tackle many interesting non-convex opti-
mizations of practical relevance also in high-dimensional problems in machine learning [11], and most
importantly, it allows for proofs of convergence [10,29].

By now, CBO methods have been generalized also to optimizations over manifolds [23,24,35] and
several variants have been explored, which use additionally, for instance, personal best information
[52] or connect CBO with other metaheuristic methods such as Particle Swarm Optimization [28].
In particular in [23, 24], we introduced a novel numerical CBO method to solve optimizations on
hyperspheres, defined as follows: generate V i0 , i = 1, . . . , N sample vectors according to ρ0 ∈ Sd−1

and iterate for n = 0, 1, . . .

Ṽ in+1 ← V in + ∆tλP (V in)V α,En + σ|V in − V α,En |P (V in)∆Bin

−∆t
σ2

2
(V in − V α,En )2(d− 1)V in, (2)

V in+1 ← Ṽ in+1/|Ṽ in+1|, i = 1, . . . , N,

where ∆Bin are independent normal random vectors normally distributed as N (0,∆t). We name this
method the isotropic Kuramoto-Vicsek CBO (KV-CBO) as it is very much inspired by the homoge-
neous version of the kinetic Kolmogorov-Kuramoto-Vicsek model [16, 17, 53]. As one can notice, this
scheme is derivative-free as only point evaluations of E are used in the computation of V α,En , which is
defined as

V α,En =
1

Nα

N∑
j=1

wEα(V jn )V jn , Nα =

N∑
j=1

wEα(V jn ), (3)

where wEα(V jn ) = exp(−αE(V jn )). This iteration corresponds to the discrete time Euler-Maruyama
approximation of the Kuramoto-Vicsek (KV) stochastic differential equation system

dV it = λP (V it )vα,E(ρ
N
t )dt+ σ|F it (ρN )|P (V it )dBit −

σ2

2
(d− 1)(F it (ρN ))2 V it

|V it |2
dt (4)

where F it (ρN ) := V it − vα,E(ρNt ) with

vα,E(ρ
N
t ) =

N∑
j=1

V jt e
−αE(V jt )∑N

i=1 e
−αE(V it )

=

∫
Rd ve

−αE(v)dρNt∫
Rd e

−αE(v)dρNt
, with ρNt :=

1

N

N∑
i=1

δV it (5)

and the projection operator P onto the tangent space on the sphere is given by P (v) = I−|v|−2(v⊗v),
and satisfies P (v)v = 0, and v · P (v)y = 0 for all y ∈ Rd. A discussion on the mechanism of the
dynamics is extensively provided in [23,24].
The proof of convergence of the method (2) is based on a three level approximation argument: the
discrete time approximation (2) is shown by standard arguments of numerical approximation of SDE
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[47] to approximate the solution of the first order stochastic differential equations (SDEs) (4). Then the
large agent limit for N →∞ is approximated by the solution ρt of a deterministic partial differential
equation of mean-field type. Finally the large time behavior of the solution ρt of such a deterministic
PDE to converge to a Dirac delta near a global minimizer can be analyzed by classical calculus.
The combination of these three approximations yields the convergence of the method in terms of a
quantitative estimate of the error to a global minimizer [24].

1.1 Scope of the paper and main result

The scope of the present paper is to introduce a version of the CBO method for optimizations on
hyperspheres (1) that also implements an anisotropic noise and to prove its convergence to global
minimizers without explicit dependence of the parameters on the dimension. Inspired by the work [11],
let us introduce an anisotropic variant of the isotropic KV-CBO from (4), that is, we replace the
diffusion term σ|V it − vα|P (V it )dBit by the anisotropic term

σP (V it )D(V it − vα,E(ρNt ))dBit := σ

d∑
k=1

P (V it )(V it − vα,E(ρNt ))kdB
i(k)
t ek (6)

and Bit for t ≥ 0 and i = 1, ..., N denote N independent standard Brownian motions in Rd with

components B
i(k)
t for k = 1, ..., d, namely, they are d independent 1-dimensional Brownian motions.

The stochastic term (6) is essentially the projection of the anisotropic noise term of the Euclidean
space in which the sphere is embedded onto the tangent space of the sphere. This means that the
coordinate direction of the embedding Euclidean space are playing a privileged role in this model and
they will influence its dynamics. In particular, cardinal positions on the sphere, e.g., the north pole,
are privileged locations for minimizers where the effect of the anisotropy will be maximal and render
the independence on the dimension of the optimization algorithm more pronounced. The construction
of a method which possesses locally fully anisotropic noise uniformly on the sphere would require a
moving frame approach, which is not only very difficult to analyze from a theoretical point of view,
but it is also extremely computational intensive, especially in high-dimension.

The anisotropic KV-CBO method takes now the form: generate V i0 , i = 1, . . . , N sample vectors
uniformly on Sd−1 and iterate for n = 0, 1, . . .

Ṽ in+1 ← V in + ∆tλP (V in)V α,En + σP (V in)D(V in − V α,En )∆Bin

−∆t
σ2

2

(
|V in − V α,En |2 +D(V in − V α,En )2 − 2

∣∣D(V in − V α,En )V in
∣∣2)V in, (7)

V in+1 ← Ṽ in+1/|Ṽ in+1|, i = 1, . . . , N,

where ∆Bin are independent normal random vectors N (0,∆t) and D(V in − V α,En )2 := diag((V in −
V α,En )2

1, · · · , (V in − V α,En )2
d) ∈ Rd×d. The main result of this paper is summarized concisely by the

following statement.

Theorem 1.1. Assume E ∈ C2(Sd−1) and that for any v ∈ Sd−1 there exists a minimizer v? ∈ Sd−1

of E (which may depend on v) such that it holds

|v − v?| ≤ C0|E(v)− E|β , (8)

where β,C0 are some positive constants and E := infv∈Sd−1 E(v). We also denote E := supv∈Sd−1 E(v),

Cα,E = eα(E−E), and Cσ = σ2

2 . Additionally for any ε > 0 assume that the initial datum and
parameters are well-prepared in the sense of Definition 2.1 for a time horizon T ∗ > 0 and parameter
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α∗ > 0 large enough. Then, the iterations {V in := V i∆t,n : n = 0, . . . , nT∗ ; i = 1 . . . N} generated by (7)
fulfill the following error estimate

E

∣∣∣∣∣ 1

N

N∑
i=1

V inT∗ − v
∗

∣∣∣∣∣
2
 . C1(∆t)2m︸ ︷︷ ︸

Discr. err.

+ C2N
−1︸ ︷︷ ︸

Mean−field lim.

+ C3ε
2︸︷︷︸

Laplace princ.

, (9)

where m = 1/2 is the order of approximation of the numerical scheme. The constant C1 depends
linearly on the dimension d and the number of particles N , and possibly exponentially on T ∗ and the
parameters λ and σ; the constant C2 depends linearly on the dimension d, polynomially in Cα∗,E , and
exponentially in T ∗; the constant C3 depends on C0 and β. The convergence is exponential with rate

λϑ− 4Cα∗,ECσ > 0, (10)

for a suitable 0 < ϑ < 1.

A few comments about this result are in order: The quantitative error bound (9) is composed of
three terms. The first term is about the approximation error of the numerical scheme. The second is
the quantitative estimate of the mean-field approximation of the large agent limit for N → ∞. The
last error estimate is due to the large time behavior of the mean-field approximation and the Laplace’s
principle.

The smoothness of the objective function E is exclusively needed because of our proving technique
based on differential calculus to establish well-posedness of SDE, PDE, and large-time behavior. The
method (7) is effectively derivative-free and it can be used for non-smooth objective functions E as no
evaluation of derivatives is required for its realization.

The well-preparation of the initial conditions and of the parameters essentially requires the initial
distribution ρ0 of the agents to have small variance and be centered not too far from one of the
minimizers v∗ of E . This suggests that the convergence is local, but for symmetric objective functions
E(v) = E(−v), as in our numerical experiments below, the condition is generically satisfied because of
symmetry and therefore the result is essentially of global convergence in these cases. Most importantly,
the well-preparation of the parameters do not require their dependence on the dimension.

1.2 Proof of the main result and organization of the paper

The proof of Theorem 1.1 follows similar arguments as developed in the papers [23, 24], where we
analyzed the convergence of the isotropic version of the method. Hence, some of the reasoning will be
reported more concisely and we will refer to the corresponding results in [23, 24] in case no essential
innovation is needed to be explained.

Proof. The proof of Theorem 1.1 goes through the following fundamental steps, which are devel-
oped in more detail in Section 2. The iterative algorithm (7) is the discrete-time (Euler-Maruyama)
approximation of the SDE system

dV it = λP (V it )vα,E(ρ
N
t )dt+ σP (V it )D(F it (ρN ))dBit −

σ2

2
|F it (ρN )|2 V it

|V it |2
dt

− σ2

2
D(F it (ρN ))2 V it

|V it |2
dt+ σ2

∣∣D(F it (ρN ))V it
∣∣2 V it
|V it |4

dt, (11)

for i = 1, · · · , N , where F it (ρN ) = V it − vα,E(ρNt ), and λ, σ > 0 are suitable drift and diffusion param-
eters respectively. Its well-posedness is established in Theorem 2.1. We also establish in Theorem 2.2
the well-posedness of the an auxiliary self-consistent nonlinear SDE satisfying

dV t = λP (V t)vα,E(ρt)dt+ σP (V t)D(V t − vα,E(ρt))dBt −
σ2

2
|V t − vα,E(ρt)|2

V t

|V t|2
dt
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− σ2

2
D(V t − vα,E(ρt))2 V t

|V t|2
dt+ σ2

∣∣D(V t − vα,E(ρt))V t
∣∣2 V t

|V t|4
dt , (12)

with the initial data V 0 distributed according to ρ0 ∈ P(Sd−1) and ρt = law(Vt), and vα,E(ρt) =∫
Sd−1 vω

E
α(v) dρt∫

Sd−1 ωEα(v) dρt
. We further prove by Theorem 2.3 that ρt solves the mean-field equation

∂tρt = λ∇Sd−1 · ((〈vα,E(ρt), v〉v − vα,E(ρt))ρt) +
σ2

2

d∑
i=1

∂2
vSi

((v − vα,E(ρt))2
i ρt) (13)

− σ2

2
(d− 2)∇Sd−1 · (D(v − vα,E(ρt))2vρt) +

σ2

2
(d− 2)(d− 1)|D(v − vα,E(ρt))v|2ρt

− σ2

2
(d− 1)

d∑
i=1

∂vSi ((v − vα,E(ρt))
2
i ρt)vi, t > 0, v ∈ Sd−1 ,

with the initial data ρ0 ∈ P(Sd−1). Then we show in Theorem 2.4

sup
t∈[0,T ]

sup
i=1,...,N

E|V it − V
i

t|2 . N−1 → 0,

as N → ∞, where ((V
i

t)t≥0)i=1,...,N are N identical copies of solutions to (12). So they are i.i.d.
with the common law ρt satisfying the mean-field PDE (13). The mean-field limit will be achieved
through the coupling method [20, 51]. Finally we investigate in Theorem 2.5 the large time behavior
of ρt: Let ε > 0 and assume that the initial datum and parameters are in the sense of Definition 2.1
for a time horizon T ∗ > 0 and parameter α∗ > 0 large enough. Then E(ρT∗) =

∫
Sd−1 vdρT?(v) well

approximates a minimizer v∗ of E ,
|E(ρT∗)− v∗| ≤ ε .

The concluding step takes into account all the approximation results. By using the order m = 1/2
numerical scheme (7) (see, e.g., [30]), Theorem 2.4 and Theorem 2.5, and combining them by using
triangle-like and Jensen inequalities we obtain

E

∣∣∣∣∣ 1

N

N∑
i=1

V i∆t,nT∗ − v
∗

∣∣∣∣∣
2
 . E

∣∣∣∣∣ 1

N

N∑
i=1

(V i∆t,nT∗ − V
i
T∗)

∣∣∣∣∣
2
+ E

∣∣∣∣∣ 1

N

N∑
i=1

(V iT∗ − V
i

T∗)

∣∣∣∣∣
2


+ E

∣∣∣∣∣ 1

N

N∑
i=1

V
i

T∗ − E(ρT∗)

∣∣∣∣∣
2
+ |E(ρT∗)− v∗|2 . (∆t)2m +N−1 + ε2 .

The dependence of the constants on model parameters, dimension, and number of agents can be read
from the respective literature and proofs in this paper and are explicitly mentioned in the statement
of the theorem. This concludes the proof.

The theoretical results are illustrated and validated by extensive numerical experiments in Section
3. There we show the actual numerical implementation of the method and we discuss possible rel-
atively simple algorithmic improvements, which allow for computationally efficient realizations, such
as numerically stable implementation of large choices of the parameter α or variance based discarding
of agents to reduce the complexity.
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2 Well-posedness, mean-field limit, and large time asymp-
totics

This section focuses on proving the well-posedness for the agent system (11), the mean-field dynamic
(12) and the mean-field PDE (13). We also verify the mean-field limit of the the agent system (11)
towards the nonlinear PDE (13). We conclude with the analysis of the asymptotic behavior of the
solution to the PDE (13).

2.1 Well-posedness of the SDE

We assume the objective function E is locally Lipschitz continuous. To begin we shall assume that
the agent system (11) is assumed to evolve in the whole space Rd instead of on the sphere Sd−1

directly. We choose this embedding because it provides an explicit and computable representation of
the system and it allows for a global description. The difficulty in showing first the well-posedness
of (11) in the ambient space Rd is that the projection P (V it ) is not defined for V it = 0 (singularity),

and
V it
|V it |2

,
V it
|V it |4

is unbounded for V it = 0 (blow-up) . In order to overcome this problem, we regularize

the diffusion and drift coefficients, that is, we replace them with appropriate functions P1, P2 and
P3 respectively: let P1 be a d × d matrix valued map on Rd with bounded derivatives of all orders
such that P1(v) = P (v) for all |v| ≥ 1

2 , and P2, P3 be a Rd valued map on Rd, again with bounded
derivatives of all orders, such that P2(v) = v

|v|2 and P3(v) = v
|v|4 if |v| ≥ 1

2 . For later use, let us

denote [N ] = {1, . . . , N}. Additionally, we regularize the locally Lipschitz continuous function E : Let
us introduce Ẽ satisfying the following assumptions:

Assumption 2.1. The regularized extension function Ẽ : Rd → R is globally Lipschitz continuous
and satisfies the properties

1. Ẽ(v) = E(v) when |v| ≤ 3
2 , and Ẽ(v) = 0 when |v| ≥ 2;

2. There exists some L > 0 such that Ẽ(v)− Ẽ(u) ≤ L|v − u| for all u, v ∈ Rd;

3. −∞ < Ẽ := inf Ẽ ≤ Ẽ ≤ sup Ẽ =: Ẽ < +∞ .

Given such P1, P2, P3 and Ẽ satisfying Assumption 2.1, we introduce the following regularized
agent system

dV it = λP1(V it )vα,Ẽ(ρ
N
t )dt+ σP1(V it )D(F̃ it (ρN ))dBit −

σ2

2
|F̃ it (ρN )|2P2(V it )dt (14)

− σ2

2
D(F̃ it (ρN ))2P2(V it )dt+ σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2 P3(V it )dt (15)

for i ∈ [N ], where F̃ it (ρN ) := V it − vα,Ẽ(ρNt ) with vα,Ẽ(ρ
N
t ) =

∫
Rd vω

Ẽ
α(v)dρNt∫

Rd ω
Ẽ
α(v)dρNt

and ωẼα(v) = e−αẼ(v).

Our first theorem states the well-posedness for the interacting agent system (11):

Theorem 2.1. Let ρ0 be a probability measure on Sd−1 and, for every N ∈ N, (V i0 )i∈[N ] be N i.i.d.
random variables with the common law ρ0. For every N ∈ N, there exists a path-wise unique strong
solution ((V it )t≥0)i∈[N ] to the agent system (11) with the initial data (V i0 )i∈[N ]. Moreover it holds that

V it ∈ Sd−1 for all i ∈ [N ] and any t > 0.

Proof. Given P1, P2, P3 and Ẽ , the SDE (15) has locally Lipschitz continuous coefficients according
to [23, Lemma 2.1], so it admits a path-wise unique local strong solution by standard SDE well-
posedness result [19, Chap. 5, Theorem 3.1]. Moreover, it follows from Itô’s formula that as long as
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|V it | ≥ 1/2, it holds

d|V it |2 = 2λV it · P (V it )vα,Ẽ(ρ
N
t )dt+ 2σV it · P (V it )D(F̃ it (ρN ))dBit − σ2|F̃ it (ρN )|2dt

− σ2V
i
t ·D(F̃ it (ρN ))2V it

|V it |2
+ 2σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2
|V it |2

dt

+

d∑
`=1

σ2

(
(F̃ it (ρN ))2

` +

d∑
k=1

(F̃ it (ρN ))2
k

(V
i(`)
t )2(V

i(k)
t )2

|V it |4
− 2(F̃ it (ρN ))2

`

(V
i(`)
t )2

|V it |2

)
dt

= −σ2|F̃ it (ρN )|2dt+ σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2
|V it |2

dt+

d∑
`=1

σ2(F̃ it (ρN ))2
`dt

+

d∑
`=1

d∑
k=1

σ2(F̃ it (ρN ))2
k

(V
i(`)
t )2(V

i(k)
t )2

|V it |4
dt− 2

d∑
`=1

σ2(F̃ it (ρN ))2
`

(V
i(`)
t )2

|V it |2
dt

= −σ2|F̃ it (ρN )|2dt+ σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2
|V it |2

dt+ σ2|F̃ it (ρN )|2dt

+ σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2
|V it |2

dt− 2σ2

∣∣∣D(F̃ it (ρN ))V it

∣∣∣2
|V it |2

dt = 0 , (16)

where F̃ it (ρN ) := V it − vα,Ẽ(ρ
N
t ), V

i(k)
t is the k-th component of V it , and we have used the fact

V it ·D(F̃ it (ρN ))2V it = |D(F̃ it (ρN ))V it |2 and P (V it )V it = 0 in the second equality. Hence |V it | = |V i0 | = 1
for all t > 0, which ensures that the solution keeps bounded at any finite time, hence we have a global
solution. Since all V it have norm 1, the solution to the regularized system (15) is a solution to (11),
which provides the global existence of solutions to (11).

To show path-wise uniqueness let us consider two solutions to (11) for the same initial distribution
and Brownian motion. According to the above argument these two solutions stay on the sphere for
any t ≥ 0, hence they are solutions to the regularized system (15), whose solutions are path-wise
unique due to the locally Lipschitz continuous coefficients. Hence we have uniqueness for solutions to
(11).

The following theorem states the well-posedness for the nonlinear mean-field dynamic (12).

Theorem 2.2. Let Ẽ satisfy Assumption 2.1. For any T > 0, there exists a unique process V ∈
C([0, T ],Rd) satisfying the nonlinear SDE (12) for any initial data V 0 ∈ Sd−1 distributed according to
ρ0 ∈ P(Sd−1). Moreover V t ∈ Sd−1 for all t ∈ [0, T ].

Proof. The proof can be done similarly as in the proof of [23, Theorem 2.2], so we only provide a
sketch here. For any given ξ ∈ C([0, T ],Rd), a distribution ρ0 on Sd−1 and V 0 with law ρ0, we can
uniquely solve the SDE

dV t = λP1(V t)ξtdt+ σP1(V t)D(V t − ξt)dBt −
σ2

2
|V t − ξt|2P2(V t)dt

− σ2

2
D(V t − ξt)2P2(V t)dt+ σ2

∣∣D(V t − ξt)V t
∣∣2 P3(V t)dt ,

and obtain the solution V t ∈ Sd−1 for all time. This introduces ρt = law(Vt) and ρ ∈ C([0, T ],Pc(Rd)).
Setting T ξ := vα,Ẽ(ρ) ∈ C([0, T ],Rd) we define the map

T : C([0, T ],Rd)→ C([0, T ],Rd), ξ 7→ T (ξ) := vα,Ẽ(ρ) (17)
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Then we apply Leray-Schauder fixed point theorem to T , see, e.g., [27, Chapter 10], which provides a
solution to the regularized version of (12) :

dV t = λP1(V t)vα,Ẽ(ρt)dt+ σP1(V t)D(V t − vα,Ẽ(ρt))dBt −
σ2

2
|V t − vα,Ẽ(ρt)|

2P2(V t)dt

− σ2

2
D(V t − vα,Ẽ(ρt))

2P2(V t)dt+ σ2
∣∣∣D(V t − vα,Ẽ(ρt))V t

∣∣∣2 P3(V t)dt (18)

with law(V t) = ρt. We can also easily obtain the uniqueness as the Step 4 in the proof of [23, Theorem
2.2].

Following the same argument as in (16), we can easily verify that |V t| = |V 0| = 1 for all t ∈ [0, T ].
Similar to Theorem 2.1, the unique solution to the regularized SDE (18) obtained through the fixed
point theorem is also the unique solution to the nonlinear SDE (12) due to the fact that |V t| = 1 for
all t ∈ [0, T ].

2.2 Well-posedness of the PDE

We prove the well-posedness for the PDE (13) in the next theorem. Let us first recall some properties of
the gradient operator for functions on the sphere and its calculus. The operator∇Sd−1 = (∂vS1 , · · · , ∂vSd)

denotes the gradient operator on the sphere Sd−1, which satisfies∫
Sd−1

∇Sd−1f(v)dv = (d− 1)

∫
Sd−1

vf(v)dv (19)

and ∫
Sd−1

f(v)∇Sd−1 ·A(v)dv = −
∫
Sd−1

A(v) · ∇Sd−1f(v)dv + (d− 1)

∫
Sd−1

A(v) · vf(v)dv (20)

for regular function f : Sd−1 → R and regular vector field A : Sd−1 → Rd (not necessary tangent),
see for example [25].

Theorem 2.3. Let (V t)0≤t≤T be the unique solution obtained in Theorem 2.2 up to any time T > 0,
and denote ρt as the law of V t, which is concentrated on the sphere Sd−1. Then the restriction of ρt
on the sphere is the unique solution to the nonlinear PDE (13).

Proof. Let (V t)0≤t≤T be the unique solution to (12) obtained in the last theorem with the initial data
V 0 distributed according to ρ0 ∈ P(Sd−1). For any ϕ ∈ C∞c (Rd), it follows from Itô’s formula that

dϕ(V t) = ∇ϕ(V t) ·
(
λ
(
I − V tV

T

t

)
vα,E(ρt)−

σ2

2
|F t(ρ)|2V t −

σ2

2
D(F t(ρ))2V t

+ σ2
∣∣D(F t(ρ))V t

∣∣2 V t)dt+ σ∇ϕ(V t) · P (V t)D(F t(ρ))dBt

+
σ2

2

d∑
i

(∂2
viϕ)(V t − vα,E)2

i +
σ2

2

d∑
i,j=1

∂2
vi,vjϕ

[
− (V t − vα,E)2

iV
(j)

t V
(i)

t

− (V t − vα,E)2
jV

(j)

t V
(i)

t + V
(j)

t V
(i)

t

∣∣D(F t(ρ))V t
∣∣2 ]dt ,

where F t(ρ) := V t− vα,E(ρt), and we have used |V t|2 = 1. Taking expectation on both sides of above
identity, we show that the law ρt of V t as a measure on Rd satisfies

d

dt

∫
Rd
ϕ(v)dρt(v) =

∫
Rd
∇ϕ(v) ·

(
λ(I − vvT )vα,E(ρt)−

σ2

2
|v − vα,E(ρt)|2v

9



− σ2

2
D(v − vα,E(ρt))2v + σ2 |D(v − vα,E(ρt))v|2 v

)
dρt(v)

+

∫
Rd

σ2

2

d∑
i

(∂2
viϕ)(v − vα,E)2

i dρt(v) +
σ2

2

d∑
i,j=1

∂2
vi,vjϕ

[
− (v − vα,E)2

i vjvi

− (v − vα,E)2
jvjvi + vjvi |D(v − vα,E(ρt))v|2

]
dt . (21)

As we have proved that |V t|2 = 1, we have supp(ρt) ⊂ Sd−1 for any t. Let us now define the restriction
µt of ρt on Sd−1 by ∫

Sd−1

Φ(v)dµt(v) =

∫
Rd
ϕ(v)dρt(v) (22)

for all continuous maps Φ ∈ C(Sd−1), where ϕ ∈ Cb(Rd) equals Φ on Sd−1. Let now Φ ∈ C∞(Sd−1)
and define a function ϕ ∈ C∞c (Rd) such that

ϕ(v) = Φ

(
v

|v|

)
for all

1

2
≤ |v| ≤ 2 . (23)

Then ϕ defined above is 0-homogeneous in v in the annulus 1/2 ≤ |v| ≤ 2, so that ∇ϕ(v) · v = 0 for
all v in the support of ρt. Hence,

d

dt

∫
Sd−1

Φ(v)dµt(v) =
d

dt

∫
Rd
ϕ(v)dρt(v) =

∫
Rd

σ2

2

d∑
i

(∂2
viϕ)(v − vα,E)2

i dρt(v)

+

∫
Rd
∇ϕ(v) ·

(
λ(I − vvT )vα,E(ρt)−

σ2

2
D(v − vα,E(ρt))2v

)
dρt(v) .

Notice that ∇Sd−1Φ(ω) = ∇ϕ(ω) for all ω ∈ Sd−1. Therefore

d

dt

∫
Sd−1

Φ(v)dµt(v) =

∫
Sd−1

σ2

2

d∑
i

(∂2
vSi

Φ)(v − vα,E)2
i dµt(v)

+

∫
Sd−1

∇Sd−1Φ(v) ·
(
λ(I − vvT )vα,E(µt)−

σ2

2
D(v − vα,E(µt))2v

)
dµt(v) .

where ωα,E(µt) =
∫
Sd−1 ωe

−αE(ω) dµt∫
Sd−1 e−αE(ω) dµt

. Thus we obtain a weak solution µ to the PDE (13).

As for the uniqueness, it can be derived from the uniqueness of the solution (V t)0≤t≤T to the
nonlinear SDE (12). We refer to [23, Section 2.3] for more details.

2.3 Mean-field limit

The well-posedness of (11), (13), and (12) obtained above provides all the ingredients we need for the

mean-field limit. Let ((V
i

t)t≥0)i∈[N ] be N independent copies of solutions to (12). They are i.i.d. with
the same distribution ρt. Assume that ((V it )t≥0)i∈[N ] is the solution to the agent system (11). Since

|V it| = |V it | = 1 for all i and t, ((V
i

t)t≥0)i∈[N ] and ((V it )t≥0)i∈[N ] are solutions to the corresponding

regularized systems (18) and (15) respectively. We denote below by ρNt = 1
N

∑N
j=1 δV jt

, ρt = law(Vt)

and Cα,Ẽ = eα(Ẽ−Ẽ).

The mean-field limit states that the i.i.d. mean-field dynamics ((V
i

t)t≥0)i∈[N ] can well approximate
the interacting agent system ((V it )t≥0)i∈[N ] in the following sense:
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Theorem 2.4 (Mean-field limit). For any T > 0, under the Assumption 2.1, let ((V it )t∈[0,T ])i∈[N ]

and ((V
i

t)t∈[0,T ])i∈[N ] be respective solutions to (11) and (12) up to time T with the same initial data

V i0 = V
i

0 and same Brownian motions Bit. Then there exists a constant C > 0 depending only on λ, α,
d, σ, ‖∇P1‖∞, ‖P1‖∞,‖∇P2‖∞, ‖P2‖∞, ‖∇P3‖∞, ‖P3‖∞, L and Cα,Ẽ , such that

sup
i=1,··· ,N

E[|V it − V
i

t|2] ≤ CTeCT 1

N
, (24)

holds for all 0 ≤ t ≤ T .

Proof. We only provide a sketch of the proof here, since it is almost the same as the proof of [23,

Theorem 3.1]. Notice that ((V
i

t)t≥0)i∈[N ] and ((V it )t≥0)i∈[N ] are also solutions to the corresponding

regularized systems (18) and (15) respectively. We apply Itô’s formula to d(V it − V
i

t)
2 and take

expectation on both sides, then it is easy to obtain that

E[|V it − V
i

t|2]

≤E[|V i0 − V
i

0|2] + C

∫ t

0

sup
i=1,··· ,N

E[|V is − V
i

s|2]ds+ C

∫ t

0

E[|vα,Ẽ(ρ
N
s )− vα,Ẽ(ρs)|

2]ds

≤E[|V i0 − V
i

0|2] + C

∫ t

0

sup
i=1,··· ,N

E[|V is − V
i

s|2]ds+ CT
1

N
,

where C > 0 depends only on λ, α, d, σ, ‖∇P1‖∞, ‖P1‖∞,‖∇P2‖∞, ‖P2‖∞,‖∇P3‖∞, ‖P3‖∞,L and
Cα,Ẽ . Here we have used the large deviation bound

sup
t∈[0,T ]

E
[
|vα,Ẽ(ρ

N
t )− vα,Ẽ(ρt)|

2
]
≤ CN−1

from [23, Lemma 3.1]. Applying Gronwall’s inequality with E[|V i0 −V
i

0|2] = 0, one concludes (24).

2.4 Global optimization guarantees

In this section, we address the convergence of the stochastic Kuramoto-Vicsek agent system (11) to
global minimizers of some cost function E over the sphere Sd−1. We now define the expectation and
variance of ρt as

E(ρt) :=

∫
Sd−1

vdρt(v) V (ρt) :=
1

2

∫
Sd−1

|v − E(ρt)|2dρt(v). (25)

A simple computation yields 2V (ρt) = 1 − E(ρt)
2. In particular, as soon as V (ρt) is small, one has

E(ρt)
2 ≈ 1. Since E(ρt) = E[V t], it follows from (12) that

d

dt
E(ρt) = −

∫
Sd−1

ηtdρt −
∫
Sd−1

(
σ2

2
(Gt(ρ))2 +

σ2

2
D(Gt(ρ))2 − σ2 |D(Gt(ρ))v|2

)
vdρt ,

where Gt(ρ) := v − vα,E(ρt) and ηt := λ〈vα,E(ρt), v〉v − λvα,E(ρt) ∈ Rd .
Throughout this section, the locally Lipschitiz objective function E satisfies the following additional

properties

Assumption 2.2.

1. E ∈ C2(Rd) obtains its global minimum value on the sphere;
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2. For v ∈ Sd−1, it holds 0 ≤ E := inf
v∈Sd−1

E ≤ E(v) ≤ sup
v∈Sd−1

E =: E <∞;

3. ‖∇E‖∞ ≤ c1 and ‖∇2E‖∞ ≤ c2 for all v ∈ Sd−1;

5. det(∇2E(v∗)) > 0 for any minimizer v∗ ∈ Sd−1;

6. For any v ∈ Sd−1 there exists a minimizer v∗ ∈ Sd−1 of E (which may depend on v) such that it
holds |v − v∗| ≤ C0|E(v)− E|β , where β,C0 are some positive constants.

Below we denote Cα,E := eα(E−E), εα := O( 1
α ) and Cσ := σ2

2 . The notation O( 1
α ) stands for the

fact that there exists some constant C1 depending only on d, 1/ρ0(v∗) and det(∇2E(v∗)), such that
|O( 1

α )| ≤ C1
1
α holds for α sufficiently large.

Definition 2.1. For any given T > 0, we say that the initial datum and the parameters are well-
prepared if ρ0 ∈ Pac(Sd−1) ∩ L2(Sd−1), and parameters V (ρ0), λ, d, α, 0 < δ � 1 satisfy

C
2 max{1,β}
α,E

(
V (ρ0) +

λCT
λϑ− 16CσCα,E

δ
d−2
4

) 1
2 min{1,β}

+ εβα <
δ − ϑ
C∗

; (26)

V (ρ0) +
λCT

λϑ− 16CσCα,E
δ
d−2
4 ≤ min

{
‖ωαE ‖2L1(ρ0)

T
,
‖ωαE ‖4L1(ρ0)

Tλ2
,

3

8

}
(27)

and for any 0 < ϑ < δ
λϑ− 16CσCα,E > 0 , (28)

where CT is a constant depending only on λ, σ, T and ‖ρ0‖2, and C∗ > 0 is a constant depending
only on c1, c2, β, C0 (c1, c2, β, C0 are used in Assumption 2.2). Both CT and C∗ need to be subsumed
from the proof of Proposition 2.2 and they are both dimension independent.

Remark 2.1. Notice here the term 16CσCα,E = 8σ2Cα,E appearing above is dimension d independent.
This is because we have used component-wise noises in the system (11). However in [24, Definition
3.1] 16CσCα,E is replaced by 4Cd,σCα,E = 2(d− 1)σ2Cα,E , which is dimension d dependent due to the
isotropic noises used there.

We shall prove the following result.

Theorem 2.5. Let us fix ε1 > 0 small and assume that the initial datum and parameters {εα∗ , δ, ϑ, λ, σ}
are well-prepared for a time horizon T ∗ > 0 and parameter α∗ > 0. Additionally, we assume that ρ0

has a probability density function (still denoted as ρ0) being continuous at any global minimizer v∗

and ρ0(v∗) > 0. Then E(ρT∗) well approximates a minimizer v∗ of E, and the following quantitative
estimate holds

|E(ρT∗)− v∗| ≤ ε, (29)

for

ε := C(C0, c1, c2, β)

(
(1 + Cβα∗,E)

(
λCT∗

λϑ− 16CσCα∗,E
δ
d−2
4 + ε1

)min{1, β2 }
+ εβα∗

)
, (30)

where εα∗ = O( 1
α∗ ).

Next we recall the definition vα,E(ρt) :=
∫
Sd−1 vω

E
α(v)dρt(v)

‖ωEα‖L1(ρt)
=

∫
Sd−1 ve

−αE(v)dρt(v)

‖e−αE‖L1(ρt)
, and summarize

some useful estimates of vα,E(ρt) and V (ρt) from [24, Lemma 3.1].

Lemma 2.1. Let vα,E(ρt) be defined as above. It holds that
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1. ∫
Sd−1

|v − vα,E(ρt)|2dρt ≤ 4
e−αE

‖ωEα‖L1(ρt)
V (ρt) ≤ 4Cα,EV (ρt) ; (31)

2. ∫
Sd−1

|v − vα,E(ρt)|dρt ≤ 2
e−αE

‖ωαE ‖L1(ρt)
V (ρt)

1
2 ≤ 2Cα,EV (ρt)

1
2 . (32)

We also need a lower bound on the norm of the weights ‖ωαE ‖L1(ρt).

Lemma 2.2. Let c1, c2 be the constants from the Assumption 2.2 on E. Then we have

d

dt
‖ωαE ‖2L1(ρt)

≥ −b1(σ, d, c1, c2, E)α2e−2αEV (ρt)− b2(c1)λαe−2αEV (ρt)
1
2 (33)

with b1, b2 > 0.

Proof. The derivative of ‖ωαE ‖L1(ρt) is given by

d

dt

∫
Sd−1

ωαE (v)dρt

=

∫
Sd−1

d∑
i=1

σ2

2
(Gt(ρ))2

i ∂
2
vSi
ωαE + λP (v)vα,E(ρt) · ∇Sd−1ωαE −

σ2

2
D(Gt(ρ))2v · ∇Sd−1ωαE dρt

= : I + II + III ,

where Gt(ρ) = v − vα,E(ρt). The gradient and the Laplacian of the weight function can be computed
as

∇Sd−1ωαE (v) = ∇ωαE
(
v

|v|

) ∣∣∣∣
|v|=1

=
1

|v|

(
I − vvT

|v|2

)
∇ωαE

∣∣∣∣
|v|=1

, (34)

∂vSiω
α
E (v) = ∂viω

α
E − viv · ∇ωαE

∣∣∣∣
|v|=1

, (35)

and

∂2
vSi
ωαE (v) = ∂vi(∂vSiω

α
E

(
v

|v|

)
)

∣∣∣∣
|v|=1

=
∂2
viω

α
E

|v|
−
∑d
j=1 ∂

2
vivjω

α
E vjvi

|v|3
− v · ∇ωαE

|v|2
+
v2
i v · ∇ωαE
|v|4

− vi∂viω
α
E

|v|2
+
v2
i v · ∇ωαE
|v|4

−
∑d
j=1 ∂

2
vivjω

α
E vjvi

|v|3
+
v2
i∇2ωαE : vvT

|v|5

∣∣∣∣
|v|=1

. (36)

We further have

∇ωαE = −αe−αE∇E , ∂viω
α
E = −αe−αE∂viE , ∂2

vivjω
α
E = α2e−αE∂viE∂vjE − αe−αE∂2

vivjE .

We estimate the term I as follows

I =
σ2

2

∫ d∑
i=1

(Gt(ρ))2
i

(
∂2
viω

α
E − 2

d∑
j=1

∂2
vivjω

α
E vjvi − v · ∇ωαE

13



+ 2v2
i v · ∇ωαE − vi∂viωαE + v2

i∇2ωαE : vvT
)
dρt(v)

≥ σ2

2

∫ d∑
i=1

(Gt(ρ))2
i

(
−(1 + 2d+ d2)(α2c21 + αc2)− 4αc1

)
e−αEdρt(v)

≥ −σ
2

2

(
(d+ 1)2(α2c21 + αc2) + 4αc1

)
e−2αE V (ρt)

‖ωEα‖L1(ρt)
, (37)

where we have used that ‖∇E‖2 ≤ c1; ‖∇2E‖∞ ≤ c2 and estimate (31). For the term II we directly
use argument from [24, Lemma 3.2] and get

II ≥ −4αλc1e
−2αE V (ρt)

1
2

‖ωEα‖L1(ρt)
. (38)

For III we compute

III =

∫
Sd−1

−σ
2

2
D(Gt(ρ))2v · ∇Sd−1ωαE dρt =

∫
Sd−1

α
σ2

2
D(Gt(ρ))2v · (I − vvT )∇Ee−αEdρt

≥ −ασ
2

2
c1e
−αE

∫
Sd−1

|Gt(ρ)|2dρt ≥ −2c1ασ
2 e−2αE

‖ωEα‖L1(ρt)
V (ρt) , (39)

where we have used estimate (31) in the last inequality.
Combining the inequalities (37), (38) and (39) yields

1

2

d

dt
‖ωEα‖2L1(ρt)

= ‖ωEα‖L1(ρt)
d

dt
‖ωEα‖L1(ρt)

≥ −σ
2

2

(
(d+ 1)2(α2c21 + αc2) + 8αc1

)
e−2αEV (ρt)− 4αλc1e

−2αEV (ρt)
1
2

=: −b1(d, σ, c1, c2, E)α2e−2αEV (ρt)− b2(c1)λαe−2αEV (ρt)
1
2 , (40)

which completes the proof.

Next lemma provides a well-known quantitative version of Laplace’s principle.

Lemma 2.3. Let E fulfill Assumption 2.2 and suppose that ρ0 ∈ Pac(Sd−1) has a probability density
function (still denoted as ρ0) on Sd−1 which is continuous at any global minimizer v∗ and ρ0(v∗) > 0.
Then, we have

− 1

α
log

∫
Sd−1

e−αE(v)dρ0(v) =: − 1

α
log

∫
Sd−1

e−αE(v)ρ0(v)dv = E +O
(

1

α

)
, α→∞ .

Proof. Following the proof of [29, Proposition 3.1], we choose D to be a ball with radius 2, which
contains the sphere Sd−1.

Using the above lemmas we can prove the following proposition as in [24, Proposition 3.1].

Proposition 2.1. For any given time horizon T > 0, assume that

VT := sup
0≤t≤T

V (ρt) ≤ min

{
‖ωαE ‖2L1(ρ0)

T
,
‖ωαE ‖4L1(ρ0)

Tλ2
,

3

8

}
.
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Then there exists a minimizer v∗ of E such that it holds∣∣∣∣ E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C(C0, c1, c2, β)
(

(Cα,E)
βV (ρt)

β
2 + εβα

)
for all t ∈ [0, T ] (41)

where εα = O( 1
α ), Cα,E = eα(E−E), and C0, c1, c2, β are used in Assumption 2.2.

Proof. It follows from Lemma 2.2 that

‖ωαE ‖2L1(ρt)
≥ ‖ωαE ‖2L1(ρ0) − b1α

2e−2αE
∫ t

0

V (ρs)ds− b2λαe−2αE
∫ t

0

V (ρs)
1
2 ds

≥ ‖ωαE ‖2L1(ρ0) − b1α
2e−2αETVT − b2αe−2αETλV

1
2

T

≥ ‖ωαE ‖2L1(ρ0) − b1α
2e−2αE‖ωαE ‖2L1(ρ0) − b2αe

−2αE‖ωαE ‖2L1(ρ0) ,

where we have used the assumption VT ≤ min

{
‖ωαE ‖

2
L1(ρ0)

T ,
‖ωαE ‖

4
L1(ρ0)

Tλ2

}
. The above inequality implies

− 1

α
log ‖ωαE ‖L1(ρt) ≤ −

1

α
log ‖ωαE ‖L1(ρ0) −

1

2α
log
(
1− b1α2e−2αE − b2αe−2αE) .

Note that Lemma 2.3 states

− 1

α
log ‖ωαE ‖L1(ρ0) − E = O

(
1

α

)
, α→∞ , (42)

which yields that

− 1

α
log ‖ωαE ‖L1(ρt) − E ≤ −

1

α
log ‖ωαE ‖L1(ρ0) − E −

1

2α
log
(
1− b1α2e−2αE − b2αe−2αE)

= O
(

1

α

)
− 1

2α
log
(
1− b1α2e−2αE − b2αe−2αE) ≤ O( 1

α

)
=: εα .

Let us assume that VT ≤ 3
8 , then 1

2 ≤ |E(ρt)| ≤ 1 . Following the same argument as in [24, Proposition
3.1], we obtain ∣∣∣∣− 1

α
log ‖ωαE ‖L1(ρt) − E

(
E(ρt)

|E(ρt)|

)∣∣∣∣ ≤ 2

√
2

3
c1Cα,EV (ρt)

1
2 .

Hence we have

0 ≤ E
(
E(ρt)

|E(ρt)|

)
− E ≤ E

(
E(ρt)

|E(ρt)|

)
− −1

α
log ‖ωαE ‖L1(ρt) +

−1

α
log ‖ωαE ‖L1(ρt) − E

≤ 2

√
2

3
c1Cα,EV (ρt)

1
2 + εα ,

which yields that∣∣∣∣ E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C0

∣∣∣∣E ( E(ρt)

|E(ρt)|

)
− E

∣∣∣∣β ≤ C(C0, c1, β)
(

(Cα,E)
βV (ρt)

β
2 + εβα

)
.

by the inverse continuity 6. in Assumption 2.2, where v∗ is a minimizer of E .
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The next ingredient is proving the monotone decay of the variance V (ρt) under assumptions of
well-preparation (see Definition 2.1).

Proposition 2.2. Let us fix T > 0 and choose α such that the parameters and the initial datum are
well-prepared in the sense of Definition 2.1. Then it holds

V (ρt) ≤ V (ρ0)e−(λϑ−4Cα,ECσ,d)t +
λCT

λϑ− 16CσCα,E
δ
d−2
4 for all t ∈ [0, T ] . (43)

Proof. Let us compute the derivative of the variance (where Cσ = σ2

2 )

d

dt
V (ρt) =

1

2

d

dt

(∫
Sd−1

v2dρt − E(ρt)
2

)
=

1

2

d

dt

(
1− E(ρt)

2

)
= −E(ρt)

d

dt
E(ρt)

= E(ρt)

∫
Sd−1

ηtdρt + Cσ

∫
Sd−1

(Gt(ρ))2〈E(ρt), v〉dρt

+ Cσ

∫
Sd−1

〈E(ρt), D(Gt(ρ))2v〉dρt + 2Cσ

∫
Sd−1

|D(Gt(ρ))v|2〈E(ρt), v〉dρt

= λ

∫
Sd−1

〈vα,E , v〉〈E(ρt), v〉 − 〈E(ρt), vα,E〉dρt + D ,

where D denotes the diffusion term

D := Cσ

∫
Sd−1

(Gt(ρ))2〈E(ρt), v〉dρt + Cσ

∫
Sd−1

〈E(ρt), D(Gt(ρ))2v〉dρt

+ 2Cσ

∫
Sd−1

|D(Gt(ρ))v|2〈E(ρt), v〉dρt .

Note that comparing to [24, Proposition 3.2], the only difference here is the diffusion term D. Applying
estimate (31) it is easy to obtain that

D ≤ 4Cσ

∫
Sd−1

|Gt(ρ)|2dρt ≤ 16CσCα,EV (ρt) . (44)

By the assumption that ρ0 ∈ L2(Sd−1) (see Definition 2.1), we have the solution ρt is not just a mea-
sure but it is a square integrable function, and for any given T > 0 it satisfies ρ ∈ L∞([0, T ];L2(Sd−1)).
This can be proved through a standard argument of PDE theory, for which we refer to [24, Theorem
4.1] or [3, Theorem 2.4]. The rest of proof is precisely the same as the proof in [24, Proposition 3.2],
where we only need to replace 4Cα,ECσ,d by 16CσCα,E .

Proof. (of Theorem 2.5) The proof follows the same arguments as in [24, Theorem 3.1] by using
Proposition 2.2 and Proposition 2.1.

3 Numerical implementation and tests

In this section we present several tests and examples of application of the CBO method based on the
anisotropic stochastic Kuramoto-Vicsek (KV) system. First, we briefly discuss some implementation
aspects, including accelerated algorithms and convergence criteria (see also [24] for more details).
Next, we test the method against its corresponding isotropic version [23, 24] with respect to some
well-known prototype test functions in high dimensions. We consider a wide range of test function, as
well as, machine learning applications like robust linear regression and the phase retrieval problem.
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(a) Ackley (b) Rastrigin (c) Griewank

(d) Salomon (e) Alpine (f) X.-S.-Y. random

Figure 1: Test functions in dimension d = 3 constrained over the sphere S2. Functions are plotted
as contour lines over the surface of the sphere. For visualization purposes only the upper part of
the sphere is reported and in some cases the size of the search space has been reduced. The global
minimum corresponds to the direction v∗ = (0, 0, 1)T in all cases.

3.1 Discretization of the anisotropic KV system

We discuss the discretization of the KV system (11). Since we consider constrained dynamics on a
hypersphere, we rely on a projection scheme of the general form

Ṽ in+1 = V in + Φ(∆t, V in,∆B
i
n),

V in+1 =
Ṽ in+1

|Ṽ in+1|
,

(45)

where the function Φ(∆t, ·,∆Bin) : Rd → Rd defines the scheme, ∆t is the time step, V in ≈ V it |t=n∆t

is the ith agent at time n∆t, and ∆Bin = Bin+1∆t − Bin∆t are independent normal random vectors
sampled from N(0,∆t).
As efficiency of the numerical solver in high-dimension is of paramount importance, in our numerical
experiments we rely on projection methods of the type (45) based on the simple Euler-Maruyama
scheme

Φ(∆t, V in,∆B
i
n) = ∆tλP (V in)V α,En + σP (V in)Dn,i∆B

i
n (46)

−∆t
σ2

2

(
|V in − V α,En |2 +D2

n,i − 2
∣∣Dn,iV

i
n

∣∣2)V in i = 1, · · · , N .

In the sequel we analyze in more details some computational aspects and improvements related to the
standard approach based on a direct application of (45)-(46). Let us point out that the set of three
computational parameters, ∆t, σ and λ, defining the scheme can be reduced, since we can rescale the

time by setting τ = λ∆t, ν2 = σ2

λ , to obtain a scheme, which depends only on two parameters τ and
ν.
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Evaluation of V α,En

Let us observe that the computation of V α,En is crucial and that a straightforward evaluation using

V α,En = 1
Nα

∑N
j=1 w

E
α(V jn )V jn for Nα =

∑N
j=1 w

E
α(V jn ), where wEα(V jn ) = exp(−αE(V jn )) is generally

unstable since for large values of α � 1 the value of Nα is close to zero. On the other hand, the use
of large values of α is essential for the performance of the method. A way to overcome this is based
on the following numerical technique

wEα(V jn )

Nα
=

exp(−αE(V jn ))∑N
j=1 exp(−αE(V jn ))

exp(αE(V ∗n ))

exp(αE(V ∗n ))
=

exp(−α(E(V jn )− E(V ∗n )))∑N
j=1 exp(−α(E(V jn )− E(V ∗n )))

where V ∗n := argminV ∈{V in}Ni=1
E(V ), is the location of the agent with the minimal function value in the

current population. This ensures that for at least one agent V jn = V ∗n , we have E(V jn )−E(V ∗n ) = 0 and

therefore, exp(−α(E(V jn )−E(V ∗n ))) = 1. For the sum this leads to
∑N
j=1 exp(−α(E(V jn )−E(V ∗n ))) ≥ 1,

so that the division does not induce a numerical problem.

Batch algorithms

The computation of V α,En may be accelerated by using the random approach presented in [4] (see
Algorithm 4.7). Namely, by considering a random subset JM of size M < N of the indexes {1, . . . , N}
and computing V α,E,JMn = 1

N
JM
α

∑
j∈JM wEα(V jn )V jn , NJM

α =
∑
j∈JM wEα(V jn ). Similarly, we will stabi-

lize the above computation by centering it at V JM ,∗n := argminV ∈{V jn}j∈JM
E(V ). The random subset

is typically chosen at each time step. As a further randomization variant, at each time step, we may
partition agents into disjoint subsets JkM , k = 1, . . . , S of size M such that SM = N and compute the
evolution of each batch separately (see [11,32] for more details).

Convergence criteria

There are different convergence criteria that can be adopted. In the following experiments, besides
checking convergence to a minimizer, we adopt the following standard criteria in heuristic global
minimization algorithms. We check that the absolute change in the value of V α,En over the last nstall
iterations is less than a given tolerance δstall. More precisely, we stop the iteration if |V α,En − V α,En−1| <
δstall, for nstall consecutive iterations or the maximum number of iterations nT has been reached.

Fast algorithms

Since we expect that asymptotically the variance of the system goes to zero because of the con-
sensus dynamics, we may accelerate the simulation by discarding agents in time accordingly to the
variance of the system [4]. This also influences the computation of V α,En by increasing the random-
ness and reducing the possibilities to get trapped in a local minimum. For a set of Nn agents,
let us define at the time (n + 1)∆t the empirical variance as Σn+1 = 1

Nn

∑Nn
j=1(V jn+1 − V̄n+1)2,

V̄n+1 = 1
Nn

∑Nn
j=1 V

j
n+1. In the case where the trend to consensus is monotonic Σn+1 ≤ Σn, we can

discard agents uniformly at the time step (n + 1)∆t accordingly to the ratio Σn+1/Σn ≤ 1 without
affecting their theoretical distribution. One way to realize this is to define the new number of agents

as Nn+1 =
[[
Nn

(
1 + µ

(
Σn+1−Σn

Σn

))]]
, where [[ · ]] denotes the integer part and µ ∈ [0, 1]. For µ = 0 we

have the usual algorithm where no agents are discarded whereas for µ = 1 we achieve the maximum
speed up.

We report in Algorithm 1 the details of the method, which includes the speed-up techniques just
discussed.
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Algorithm 1: Fast KV-CBO method

Set N0 = N and generate V i0 , i = 1, . . . , N0 sample vectors uniformly on Sd−1

Compute the variance Σ0 of V i0
for n = 0 to nT do

Generate ∆Bin independent normal random vectors N(0,∆t)
if M ≤ Nn then

select a batch JM and compute V α,En

else
use (3)

end if
Ṽ in+1 ← V in + Φ(∆t, V in,∆B

i
n)

V in+1 ← Ṽ in+1/|Ṽ in+1|, i = 1, . . . , Nn
Compute the variance Σn+1 of V in+1

Set Nn+1 ← max{Nmin, [[Nn (1 + µ ((Σn+1 − Σn)/Σn))]]} and discard uniformly Nn −Nn+1 samples
end for

3.2 Numerical experiments

3.2.1 Test functions constrained over a d-dimensional sphere

In this subsection we consider some classical non convex test functions [42] constrained over Sd. All
functions have global minimum at v∗ = (0, 0, . . . , 1)T (see Figure 1 for d = 3).
(a) The Ackley function:

E(V ) = −A exp

(
− ab√

d
|V − v∗|

)
− exp

(
1

d

d∑
k=1

cos(2πb(Vk − v∗k))

)
+ e+B, (47)

with A = 20, a = 0.2, b = 32, B = 20. The Ackley function has several local minima in a nearly flat
outer region, and a large hole at the centre.
(b) The Rastrigin function:

E(V ) =
b2

d
|V − v∗|2 − A

d

d∑
k=1

cos(2πb(Vk − v∗k)) +B, (48)

with A = 10, b = 5.12 and B = 10. The Rastrigin function has many widespread local minima. It is
highly multi-modal with locations of the minima regularly distributed.
(c) The Griewank function:

E(V ) = Ab2|V − v∗|2 −
d∏
k=1

cos

(
b(Vk − v∗k)√

k

)
+B, (49)

with A = 1/4000, b = 600, B = 1. The function is non separable and has a huge number of regularly
distributed local minima in the search space.
(d) The Salomon function:

E(V ) = A cos (2πb|V − v∗|) + ab|V − v∗|+B, (50)

with a = 0.1, b = 100, A = −1, B = 1. It is non-separable and has a large number of local minima.
The global minimum has a small area relative to the search space.
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(e) The Alpine function:

E(V ) = b

d∑
k=1

|(Vk − v∗k) sin(b(Vk − v∗k))− a(Vk − v∗k)| , (51)

with a = 0.1 and b = 10. The function has several local minima and is non-differentiable.
(f) The Xin-She Yang (XSY) stochastic function:

E(V ) =

d∑
k=1

ξk|b(Vk − v∗k)|k, (52)

with b = 5 and ξk uniform random variables in [0, 1]. The function takes random values and is non-
differentiable.
In all our simulations we initialize the agents with a uniform distribution over the sphere [40,43]. We
count one run as successful if ‖V α,EnT − v

∗‖∞ ≤ 0.05, where V α,EnT is the minimizer found by the KV
method at the final time nT . We also compute the expected error in the computation of the minimum
by considering averages of |V α,EnT − v

∗| over 100 runs. In all computations we have fixed δstall = 10−4,
nstall = 250 and nT = 20000. We compare the results obtained using the isotropic KV method [23,24]
with the anisotropic KV method proposed in this paper. Here we did not try to compute the optimal
set of parameters for each test case, but for a given dimension d we fix for each scheme a value of ∆t
and σ and consider various possible values of N and M . The values α = 5 × 104 and µ = 0.1 have
been selected for both solvers in all examples as a good compromise between efficiency and accuracy.
The minimum number of agents Nmin has been fixed to 10 and the variance reduction test has been
performed each 10 iterations. In the following table we reported the rate of success, the final error
‖V α,EnT − v

∗‖∞, the average number of agents during the simulation Navg and the average number of
iterations navg needed. As a consequence, a measure of the computational cost of the simulation is
obtained as Navg × navg.

In table 1 we report the results for d = 20 using a variable number of agents N between 50 and
200. The batch size was chosen as the 60% of the initial number of agents. The specific values and
the corresponding batch sizes M are shown in the table. The value of σ in the isotropic case has been
taken in order to match the condition σ2(d − 1) < 2. In this high dimensional case it is clear that
the isotropic KV-CBO method has difficulties when functions have a strong multi-modal behavior
like the Rastrigin, Alpine and XYS random functions. For the Rastrigin and XSY random functions,
the success rates of the isotropic KV were always at 0%. For the Alpine functions the isotropic KV
yielded only slightly better success rates of 5% if we choose a larger number of agents. On the other
hand, the anisotropic KV-CBO method reaches successful rates between 85% and 100% for these three
functions. The convergence to the minimum in the case of the Salomon function is extremely slow for
the isotropic method that reaches the maximum number of iterations allowed. The only exception is
the case of the Griewank function, where the isotropic method has proven to be more efficient and
more accurate. We report in Table 2 the results for the Rastrigin and XSY random function for a
specific set of parameters which permits to recover 100% success rate with the anisotropic method.
Finally we also considered the minimum rotated by an angle π/8 from a cardinal point. This test
is extremely challenging for both methods, and for the same set of parameters optimal convergence
properties are observed for Ackley, Griewank, and Salomon functions, while no convergence is found
for Rastrigin and XYS random. However, both KV-methods can solve perfectly these latter problems
as well, if the initial data is sufficiently concentrated around the global minimum, e.g., according to a
von-Mises-Fisher distribution.
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Table 1: Comparison of isotropic (σ = 0.3, ∆t = 0.05) and anisotropic (σ = 5, ∆t = 0.0025) KV-CBO
methods for various agent numbers for the selected test functions constrained on Sd with d = 20.

Function Isotropic KV-CBO Anisotropic KV-CBO

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200
M = 30 M = 60 M = 120 M = 30 M = 60 M = 120

Ackley Rate 100% 100% 100% 100% 100% 100%
Error 3.61e-02 3.30e-02 2.49e-02 1.31e-02 2.99e-03 7.52e-04
Navg 23.2 30.4 53.3 24.4 41.4 79.7
navg 2610.7 2040.2 1821.6 2803.1 2561.4 2365.3

Rastrigin Rate 0% 0% 0% 73% 83% 92%
Error - - - 7.57e-03 2.68e-03 1.53e-03
Navg 24.5 28.2 45.5 21.6 40.6 70.3
navg 2884.3 1990.9 1739.4 2989.1 2540.3 2077.8

Griewank Rate 100% 100% 100% 100% 100% 100%
Error 2.02e-02 1.95e-02 2.14e-02 2.01e-02 2.23e-02 2.46e-02
Navg 26.7 37.2 66.0 25.0 44.2 84.9
navg 2535.9 2088.2 1787.7 2893.2 2637.8 2504.8

Salomon Rate 100% 100% 100% 100% 100% 100%
Error 1.89e-02 1.85e-02 1.62e-02 3.76e-02 2.38e-02 1.85e-02
Navg 13.9 16.7 25.7 13.8 18.1 28.2
navg 20000 20000 20000 5069.8 5366.1 5746.8

Alpine Rate 0% 2% 5% 94% 99% 100%
Error - 2.65e-02 3.10e-02 2.65e-02 2.74e-02 2.66e-02
Navg 13.9 15.7 22.8 14.2 17.2 24.2
navg 5442.7 4606.9 4110.9 2341.2 2126.3 1991.0

XSY random Rate 0% 0% 0% 60% 78% 85%
Error - - - 7.25e-02 7.28e-02 6.46e-02
Navg 16.7 20.5 33.3 14.5 18.7 27.2
navg 20000.0 20000.0 20000.0 8248.5 7370.4 6549.0

3.2.2 Robust PCA for Synthetic Data

In this section we investigate the KV method for robust PCA of a centered point cloud Q = {x(i) ∈
Rd : i = 1, ...,P} in a Euclidean space. Our robust PCA method [37, 38, 41] consists of the following
two steps: 1. definition of an energy function that does not weight outlying data points too heavily,
and 2. minimization of this energy function with the anisotropic KV method. For the first task we
set

Ep(v) :=

P∑
i=1

|(I − v ⊗ v)x(i)|p =

P∑
i=1

(
|x(i)|2 − |〈x(i), v〉|2

)p/2
, v ∈ Sd−1, (53)

which for 0 < p < 2 is a difficult non-convex optimization problem, see [24] for details. We consider
a synthetic point cloud with cell-wise and case-wise contamination generated by the Haystack model,
see [38]. More precisely, we chose a vector w ∈ Sd−1 uniformly at random and then sample the inliers
from a Gaussian with rank-1 covariance matrix Σin = w ⊗ w. We then perturb these inliers by
adding Gaussian noise within the ambient space Rd representing the cell-wise contamination of the
point cloud. In summary, the inliers are sampled as

x
(i)
in ∼ N (0,Σin + 10−4Id) (54)

for i = 1, ...,Pin. Note, that these samples remain very close to the one-dimensional subspace span{w}
we wish to detect and therefore do not constitute outliers by any means. Indeed the distance of the
samples to the subspace is 10−4d in expectation.
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Table 2: Anisotropic KV-CBO method for Rastrigin (∆t = 0.05, σ = 10) and XSY random ((∆t =
0.01, σ = 5)) functions with α = 5× 107.

Rastrigin N = 50 N = 100 N = 200 XSY N = 50 N = 100 N = 200
M = 30 M = 60 M = 120 random M = 30 M = 60 M = 120

Rate 99% 100% 100% Rate 100% 100% 100%
Error 1.40e-02 1.08e-02 8.03e-03 Error 3.91e-02 3.99e-02 3.85e-02
Navg 36.9 65.3 129.6 Navg 12.0 14.1 17.9
navg 3024.6 2819.2 3063.7 navg 15112.4 14519.2 14753.4

To make the problem more difficult we add outliers or case-wise contamination, that is, data points
that could be sampled from any other distribution, say, a Gaussian with a different covariance matrix.
Here we sample the outliers as

x
(i)
out ∼ N (0,Σout) (55)

for i = 1, ...,Pout, where we choose Σout = Id/d. We scale the covariance matrix as proposed to

achieve E|x(i)
in |2 ≈ E|x(i)

out|2 which annihilates the option of screening for outliers by looking at the
norm of the data points. Next, we note that the minimizer of Ep is, in general, not equal to the

direction w we used to sample the inliers x
(i)
in ; the proposed energy function assigns a lower weight to

the ouliers x
(i)
out than the standard SVD energy, but the weight will not be zero.

For our numerical experiment we fix p = 1 and the total number of points to P = Pin + Pout = 200
and chose the number of outliers Pout as a certain percentage of P ranging from 5% to 95%. In Table
3 we compared the error to the noiseless SVD (no outliers) solution of the KV methods in dimension
d = 100 with a version of it, which we call Gradient-KV method (GKV), that implements also gradient
steps (see Section 3.2.2 below), and the state of the art algorithm Fast Median Subspace (FMS) [37],
which is based on an iteratively re-weighted minimization very much in the spirit of a quasi-Newton
method. Despite the fact that the KV method is derivative-free and the objective function E1 is
non-smooth and highly non-convex, with a proper tuning of the problem dependent parameters σ,∆t,
its performances in terms of accuracy are comparable with the GKV and FMS, which do use some
gradient information. When the algorithm is not fed with appropriate parameters, then it may fail to
obtain high accuracy as it is shown in Table 4. However, a small modification of the KV method to
include “parsimonious” gradient information as in GKV returns to solve the reconstruction problem
with a high accuracy.

Gradient-KV method

The standard KV method is a zero order method that does not evaluate the tangential gradient of
the cost function ∇Sd−1Ep. The modification that we propose reads as follows: every `-th iteration of
the KV method we randomly choose one agent with which we perform a gradient descent step where
the step size is chosen with a backtracking line-search which we iterate until the Armijo condition
is satisfied, see [2]. We injection of gradient information is parsimonious, as we do not compute the
gradient for every iteration and for every agent, but rather sparsely iteration-wise and agent-wise To
be practical, the parameter ` might by chosen, for instance, as ` = 10.

Next, it is clear that a fixed step size hn = h for all iterations n does not make sense for complex
non-convex objective functions. Instead we use a backtracking line search method to find an appro-
priate step size hn. The basic idea is the following: the optimal step size h?n in the gradient descent
method is given by

h?n = arg min
h>0

φ(h), φ(h) = Ep(V jn − h∇Sd−1f(V jn )).
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Algorithm 2: Gradient KV (single iteration)

Randomly choose one agent V jn
Compute the tangential gradient ∇Sd−1Ep(V jn )
Perform a line search to find an appropriate step size hj
Update V jn with gradient descent

Ṽ jn ← V jn − hj∇Sd−1Ep(V jn ), V jn ← Ṽ jn/|Ṽ jn |.

Continue with the (standard) KV method (with all the agents)

Since this optimization problem is not quickly solvable in general, we rely on heuristic methods to
find an appropriate step size hn. We start with an initial step size h0

n = 1 and check whether the
sufficient decrease condition or Armijo condition

Ep(V jn − h0
n∇Sd−1Ep(V jn )) ≤ Ep(V jn )− ch0

n|∇Sd−1Ep(V jn )|2

is satisfied, where we chose c = 10−4. If the condition is satisfied we set hn = h0
n, otherwise we set

h1
n = τh0 with, say, τ = 1/2 and check again whether the sufficient decrease condition is satisfied.

Table 3: Error to noiseless SVD solution (no outliers). Numerical comparison of the anisotropic KV
and Gradient-KV method in dimension d = 100 with a point cloud generated by the Haystack model.
We chose p = 1. The total number of points was P = 200. We chose tuned parameters for the KV
methods, namely, N = 100, M = 50, σ = 1, ∆t = 0.5 and T = 1000.

Outliers 5% 25% 50% 75% 95%

KV 6.10e-03 3.57e-03 4.49e-03 4.39e-03 7.09e-03
GKV 7.53e-04 8.21e-04 1.01e-03 1.44e-03 3.95e-03
FMS 6.85e-04 8.27e-04 1.04e-03 1.51e-03 3.82e-03

Table 4: Same experiment as above with a generic time step ∆t = 0.05 instead of the perhaps unusually
larger ∆t = 0.5. The results for FMS are exactly the same as in the table above. The performance of
the standard anisotropic KV method depends on the tuning of parameters.

Outliers 5% 25% 50% 75% 95%

KV 5.86e-01 6.04e-01 5.84e-01 5.69e-01 6.95e-01
GKV 7.42e-04 8.07e-04 1.05e-03 1.47e-03 3.68e-03
FMS 6.85e-04 8.27e-04 1.04e-03 1.51e-03 3.82e-03

3.2.3 Robust computation of eigenfaces

In this section we discuss the numerical results of the anisotropic KV on real-life data. The setup
is the same as in [24]: we chose a subset of P = 421 similar looking pictures of the 10K US Adult
Faces Database, [5] of size 64 × 45, which yields a point cloud X ∈ R2880×421. We then add 6 and
12 outliers (pictures of animals and plants on a white background). We compare the results of the
isotropic KV, the anisotropic KV, the anisotropic GKV, and FMS. We quantify the quality of the
eigenface with the Peak Signal-to-Noise ratio, see Table 5. With such as small number of agents, i.e.,
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N = 500, the isotropic KV fails to perform a reasonable reconstruction with a visibly poor result. In
our previous work [24] we showed that this method would succeed with high accuracy if one would use
at least N = 2500 agents. Instead the anisotropic KV and GKV show high accuracy result already
with a moderate number of agents and anisotropic GKV turns out to be significantly faster than the
anisotropic KV. Finally, let us stress that the eigenface from Figure 2 and Figure 3 is clearly not
located at cardinal positions, for which the anisotropic algorithm is expected to work best. In fact it
is not even a component-wise sparse image.

(a) SVD
no outliers

(b) SVD
with outliers

(c) isotropic KV
N = 500

(d) anisotropic KV
N = 500

(e) anisotropic
GKV N = 500

Figure 2: Eigenfaces of the point cloud with no outliers computed by SVD (a), with outliers by SVD
(b), isotropic KV (c), anisotropic KV (d), and anisotropic Gradient-KV (e). The batch size is always
chosen as M = 10% · N . We have used: p = 1, α = 105,∆t = 0.25, nT = 105, µ = 0 and σ = 0.02
(isotropic noise) and σ = 1 (anisotropic noise).

(a) SVD
no outliers

(b) SVD
with outliers

(c) isotropic KV
N = 500

(d) anisotropic KV
N = 500

(e) anisotropic
GKV N = 500

Figure 3: Eigenfaces for a point cloud with 12 outliers. We chose p = 0.5, the other parameters are
the same as in Figure 2.

3.2.4 The Phase Retrieval Problem

We consider the phase retrieval problem from quadratic measurements in Rd: Reconstruct z∗ ∈ Rd
from measurements of the form

yi = |〈v∗, ai〉|2 + wi, i = 1, ...,M , (56)

where wi is adversarial noise, and ai are a set of known vectors. That is, we measure only the (squared)
magnitude of 〈v∗, ai〉, and not the phase (or the sign, in the case of real valued vectors). We solve
problem (56) in the noiseless case, i.e., w = 0, by empirical risk minimization. As discussed in [24] the
unconstrained empirical risk minimization can be recast without loss of generality as a constrained
optimization problem on the sphere once the lower frame bound A of {ai}Mi=1 is known., i.e., we aim
at minimizing

E(v) :=
1

M

M∑
i=1

∣∣|〈v, ai〉|2 − yi∣∣2 , (57)
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Table 5: Peak Signal-to-Noise Ratios for the eigenfaces from above. The reference image is always
Figure 2 (a), that is, the eigenface for the point cloud with no outliers computed by SVD. We note
that for the point cloud with 6 outliers (Figure 2) the standard anisotropic KV with N = 500 agents
produced the best eigenface in terms of PS2N ratio; the computation took around 6 hours on a
standard 2.6 GHz processor. The computation of the corresponding eigenface with the Gradient-KV
method in column (e) took around 20 minutes. Note that the eigenface computed by FMS is not
displayed in Figures 2 - 3 due to space limitations.

(b) (c) (d) (e) FMS

Figure 2 15.98 9.36 21.05 20.68 20.68
Figure 3 12.31 9.16 14.78 14.29 14.28

Figure 4: Success rate in terms on number of frame vectors M (left) and Signal-to-Noise ratio (right)
for a Gaussian frame in dimension d = 30. We have used: N = 500, M = 50, ∆t = 0.5, α = ∞
and σ = 1 (anisotropic) resp. σ = 0.2 (isotropic). We have further used T = 2000 (left) and
T = 5000 (right). The results are averaged over 100 runs. We note that the standard isotropic KV
fails to reconstruct the signal with N = 500 agents. This is consistent with our findings in the robust
computation of eigenfaces, see Figures 2 - 3. The isotropic KV method proved successful in [24] with
at least N = 104 agents.

over the sphere Sd.
In Figure 4 we compare Algorithm 1 with its isotropic version and three relevant state of the art

methods for phase retrieval, namely Wirtinger Flow (fast gradient descent method) [8,14], Hybrid In-
put Output/Gerchberg-Saxton’s Alternating Projections (alternating projection methods) [22, 26, 55]
and PhaseMax/PhaseLamp (convex relaxation and its multiple iteration version) [9]. For the com-
parsion we used the Matlab toolbox PhasePack1 [12] and our own code2. The numerical experiments
show that the anisotropic KV is significantly superior with respect to its isotropic version and it is
able to perform nearly as gradient based state-of-the-art methods such as Wirtinger Flow (which is
actually a gradient flow).

1https://www.cs.umd.edu/∼tomg/projects/phasepack/
2https://github.com/PhilippeSu/KV-CBO
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4 Conclusion

We presented a new consensus-based model for global optimization on the sphere, with an anisotropic
random exploration term. The main result of this paper is about the proof of the convergence provided
conditions of well-preparation of the initial datum. We presented also several numerical experiments
in low dimension and synthetic examples in order to illustrate the behavior of the method and we
tested the algorithms in high dimension against state of the art methods in a couple of challenging
problems in signal processing and machine learning. When it comes to computing minimizers near
cardinal positions, we documented the tremendous advantage of the anisotropic scheme (7) over its
isotropic counterpart (2) in synthetic numerical experiments for the optimization of very challenging
test functions. Despite the evidence that the advantage of the anisotropic method is particularly
efficient in high-dimension for minimizers near cardinal points, we also show in Section 3.2.2 that the
anisotropic scheme (7) significantly outperforms the isotropic one (2) in real-life applications in high-
dimension, namely in phase retrieval problems and in robust linear regression. In these applications
there is no guarantee that minimizers are near cardinal positions. Hence, these real-life experiments
suggest that, despite the anisotropy we introduced is dependent on the embedding of the sphere in
the Euclidean space, the anisotropic numerical scheme should be the preferred choice in practice and
it is extremely efficient also in high-dimension.
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