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Abstract

Model calibration or data inversion is one of fundamental tasks in uncertainty quan-

tification. In this work, we study the theoretical properties of the scaled Gaussian

stochastic process (S-GaSP), to model the discrepancy between reality and imperfect

mathematical models. We establish the explicit connection between Gaussian stochas-

tic process (GaSP) and S-GaSP through the orthogonal series representation. The

predictive mean estimator in the S-GaSP calibration model converges to the reality at

the same rate as the GaSP with a suitable choice of the regularization and scaling pa-

rameters. We also show the calibrated mathematical model in the S-GaSP calibration

converges to the one that minimizes the L2 loss between the reality and mathematical

model, whereas the GaSP model with other widely used covariance functions does not

have this property. Numerical examples confirm the excellent finite sample performance

of our approaches compared to a few recent approaches.

KEYWORDS: model misspecification; Bayesian prior; scaled Gaussian stochastic pro-

cess prior; convergence; interpretability; orthogonal series representation.
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1 Introduction

In scientific and engineering studies, mathematical models are developed by scientists and

engineers based on their expert knowledge to reproduce the physical reality. With the rapid

development of the computational technique in recent years, many mathematical models are

implemented in computer code, often referred as computer models or simulators.

Some parameters of the mathematical model are often unknown or unobservable in exper-

iments. For example, the Kı̄lauea volcano recently has one of the biggest eruptions in 2018.

The location and volume of the magma chamber, as well as the magma supply and storage

rate of this volcano, however, is unobservable. Some field data, such as the satellite inter-

ferograms and GPS measurement of the ground deformation were used to estimate these

parameters for the Kı̄lauea volcano (Anderson and Poland, 2017; Anderson et al., 2019).

Using the field observations to estimate the parameters in the mathematical model, and to

identify the possible discrepancy between the mathematical model and the reality is widely

known as the model calibration or data inversion.

For any observable input x ∈ X , denote yF (x) as the field observation and fM(x,θ) as

a mathematical model with unobservable calibration parameters θ ∈ Θ. Furthermore, let

yR(x) = E[yF (x)] represent the reality. A routinely used framework to calibrate imperfect

mathematical model is

yF (x) = fM(x,θ) + δ(x) + ε, (1)

where ε is the noise and δ(·) is a discrepancy function between the reality and mathematical

model. Since the mathematical model is often developed by experts, we assume the mean and

trend of the observations are properly modeled in the mathematical model. The discrepancy

function was modeled as a Gaussian stochastic process (GaSP) in Kennedy and O’Hagan

(2001) and the framework has been widely studied in recent years (Goldstein and Rougier,

2004; Bayarri et al., 2007; Higdon et al., 2008). As both the mathematical model and
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discrepancy function are jointly estimated in the calibration, the predictions of the field data

were found to be more accurate compared to the ones based on the mathematical model or

a nonparametric regression alone. It was found in following-up studies that, however, the

variability of the observations can be explained mostly by the discrepancy function in this

approach, leaving the calibrated mathematical model far away from the reality, which results

in an identifiability problem between the calibration parameters and discrepancy function

(Tuo and Wu, 2016; Plumlee, 2017).

A few recent studies measure the goodness of calibration in terms of the L2 loss between

the calibrated mathematical model and reality (Tuo and Wu, 2015; Wong et al., 2017). These

studies seek to find an estimator of θ that converges to θL2 , which minimizes the L2 distance

between the reality and mathematical model, i.e.,

θL2 := argminθ∈Θ

∫
x∈X

[yR(x)− fM(x,θ)]2dx. (2)

In Tuo and Wu (2015), for instance, the reality is first estimated through a nonparametric

regression model without the assistance of the mathematical model. The calibration pa-

rameters are then estimated by minimizing the L2 loss between the calibrated mathematical

model and the estimator of the reality. Consequently, the calibrated mathematical model

by the two-step approach typically fits the observation in terms of L2 distance. For some

complex applications, however, it is crucial to jointly estimate the reality and calibration

parameters, as the mathematical model is often developed based on expert knowledge, and

thus helpful for predicting the reality.

In this work, we study the theoretical properties of the scaled Gaussian stochastic process

(S-GaSP), a new approach for modeling the discrepancy function proposed in Gu and Wang

(2018). We establish the connection between GaSP and S-GaSP through the orthogonal

representation of the process. We show that the predictive mean from S-GaSP converges to

the reality at the same rate as the one from GaSP with a suitable choice of the regularization
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and scaling parameters. Furthermore, with the same regularization and scaling parameters,

the calibration parameters in the S-GaSP can also converge to θL2 , whereas GaSP calibration

with other widely used kernels does not enjoy this property. Although these two convergence

properties can be achieved using the aforementioned two-step approaches (Tuo and Wu,

2015; Wong et al., 2017), finite sample studies suggest that the predictive accuracy of the

reality improves in the S-GaSP calibration, as the calibration parameters and discrepancy

are jointly estimated. Besides, since the sampling model is fully specified, the model and

parameter uncertainty in the S-GaSP calibration can be naturally assessed through the

posterior distributions in a Bayesian approach. A close comparison of S-GaSP and other

approaches is detailed in Section 5.

This paper is organized as follows. In Section 2, we introduce the S-GaSP along with

the orthogonal series representation and joint estimation in calibration. Two convergence

properties are discussed in Section 3. In Section 4, we introduce the discretized S-GaSP

along with the parameter estimation under the Frequentist framework and Bayesian frame-

work. A comparison between the S-GaSP calibration with other alternatives are discussed

in Section 5. Section 6 provides some numerical studies comparing the S-GaSP calibration

approach and other approaches. We conclude this work in Section 7. The proof of the

theoretical results and other supporting evidence of our approaches are given in the sup-

plementary materials. The GaSP calibration, S-GaSP calibration and calibration without a

discrepancy function are implemented in the RobustCalibration R package available on CRAN.

2 The scaled Gaussian stochastic process

Denote δ(·) ∼ GaSP(0, σ2K(·, ·)) with variance σ2 and correlation function K(·, ·) such

that, for any inputs {xi}ni=1, the marginal distribution (δ(x1), ..., δ(xn))T follows a multivari-

ate normal distribution with covariance Cov(xi,xj) = σ2K(xi, xj). In order to have the

mathematical model explain more variability, we introduce a new prior distribution of the

4



discrepancy function, which places more probability mass on the smaller random L2 distance

between the mathematical model and reality, as this measure quantifies how well a mathe-

matical model fits the reality. The scaled Gaussian stochastic process calibration model is

defined as the following hierarchical model:

yF (x) = fM(x,θ) + δz(x) + ε,

δz(x) =
{
δ(x) |

∫
ξ∈X δ

2(ξ)dξ = Z
}
,

δ(·) ∼ GaSP(0, σ2K(·, ·)),

Z ∼ pZ(·), ε ∼ N(0, σ2
0),

(3)

where conditional on all parameters, the default choice of pZ(·) is defined as

pZ(z) =
gZ(z)pδ(Z = z)∫∞

0
gZ(t)pδ(Z = t)dt

, (4)

with gZ(z) being a non-increasing scaling function and pδ(Z = z) being the density of Z at

z induced by a GaSP with mean 0 and covariance σ2K(·, ·).

We call δz(·) in (3) the scaled Gaussian stochastic process (S-GaSP). Given Z = z, the

S-GaSP becomes a GaSP constrained at the space
∫

x∈X δ
2(x)dx = z. Note that Z is the L2

distance between the reality and mathematical model. By construction, the measure for Z

induced by S-GaSP has more prior probability mass near 0 than the one by GaSP as g(·)

is a non-decreasing function, reflecting one’s belief that the mathematical model should be

calibrated to fit the reality.

It is easy to see that when gZ(·) is a constant function, S-GaSP reduces to GaSP without

any constraint. Conditioning on all parameters, we assume

gZ(z) =
λz
2σ2

exp

(
−λzz

2σ2

)
, (5)

with a scaling parameter λz. We select pZ(·) in (4) and gZ(·) in (5) for the computational
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results in this work, as any marginal distribution of δz still follows a multivariate normal

distribution (Gu and Wang, 2018, Lemma 2.3). Other scaling functions may also be used,

but we do not pursue this direction in this study.

2.1 Orthogonal series representation and marginal distribution

Based on Karhunen-Loève theorem, GaSP with a stationary kernel admits the following

representation for any x ∈ X

δ(x) = σ
∞∑
k=1

√
ρkZkφk(x), (6)

where Zk
i.i.d.∼ N(0, 1), ρk and φk(·) are the kth eigenvalue and eigenfunction of the kernel

K(·, ·), respectively. The S-GaSP can also be represented as an orthogonal series given below.

Lemma 1 (Karhunen-Loève expansion for the S-GaSP). Assume pZ(·) and gZ(·) are defined

in (4) and (5), respectively. For any x ∈ X , the S-GaSP defined in (3) has the following

representation

δz(x) = σ
∞∑
k=1

√
ρk

1 + λzρk
Zkφk(x),

where Zk
i.i.d.∼ N(0, 1), ρk and φk(·) are the kth eigenvalue and eigenfunction of the kernel

K(·, ·), respectively.

The covariance function of the S-GaSP can also be decomposed as an infinite orthogonal

series, which is an immediate consequence of the fact that the S-GaSP is indeed a GaSP

with a transformed kernel (see Lemma 2.3 in Gu and Wang (2018) and Lemma 1).

Corollary 1. Assume pZ(·) and gZ(·) are defined in (4) and (5), respectively. The marginal

distribution of the S-GaSP defined in (3) follows a multivariate normal distribution

[δz(x1), ..., δz(xn) | σ2Rz] ∼ MN(0, σ2Rz),
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where the (i, j) entry of Rz is

Kz(xi,xj) =
∞∑
k=1

ρk
1 + λzρk

φ(xi)φ(xj). (7)

Corollary 1 implies that the ith eigenvalue of the kernel function Kz(·, ·) in the S-GaSP

is ρz,k := ρk/(1 + λzρk) and the kth eigenfunction φk(·) is the same as the one in the GaSP.

The form (7) does not give an explicit expression for the kernel in the S-GaSP. Instead of

truncating the series, one may discretize the integral
∫

x∈X δ
2(x)dx, which leads to an explicit

expression of the covariance matrix, discussed in Section 4.

The following Corollary 2 provides a decomposition of Z in the S-GaSP, which follows

from Lemma 2.1 in Gu and Wang (2018) and Corollary 1.

Corollary 2. Assume the same conditions in Lemma 1 hold. The distribution of Z =∫
x∈X δ

2(x)dx induced by the S-GaSP follows

Z ∼ σ2

∞∑
k=1

ρk
1 + λzρk

χ2
k(1),

where {χ2
k(1)}∞k=1 are independent chi-squared random variables with one degree of freedom.

Denote H and Hz as the reproducing kernel Hilbert space attached to GaSP with kernel

K(·, ·) and S-GaSP with kernel Kz(·, ·), respectively. Let the native norm associated with

K(·, ·) and Kz(·, ·) be 〈·, ·〉H and 〈·, ·〉Hz , respectively. We conclude this subsection by the

explicit connection between the inner product of GaSP and that of S-GaSP.

Lemma 2. Assume pZ(·) and gZ(·) are defined in (4) and (5), respectively. Let h(·) =∑∞
i=1 hiφi(·) and g(·) =

∑∞
i=1 giφi(·) be the elements in H. It holds that

〈h, g〉Hz = 〈h, g〉H + λz〈h, g〉L2(X ).
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2.2 Joint estimation in the S-GaSP calibration

With the specification of pZ(·) in (4) and gZ(·) in (5), after marginalizing out δz = [δz(x1),

..., δz(xn)], the marginal distribution of the field observations in (3) follows a multivariate

normal distribution

[yF | θ, σ2
0, λ, λz] ∼ MN(fMθ , σ2

0((nλ)−1Rz + In)) (8)

with the regularization parameter λ := σ2
0/(nσ

2) and the (i, j) entry of Rz defined in (7).

Denote Lz(θ) as the likelihood for θ in (8). We show below that the following joint

estimator of (θ, δz(·)) can be written as a penalized kernel ridge regression estimator (KRR),

where both the RKHS norm and L2 norm of the discrepancy function are penalized simul-

taneously.

Lemma 3. The maximum likelihood estimator θ̂λ,λz ,n := argmaxθ∈Θ Lz(θ) and predictive

mean δ̂λ,λz ,n(·) := E[δz(·) | yF , θ̂λ,λz ,n, λ, λz] are the same as the estimators of the penalized

KRR,

(θ̂λ,λz ,n, δ̂λ,λz ,n(·)) = argmin
δ(·)∈H,θ∈Θ

1

n

n∑
i=1

(yF (xi)− fM(xi,θ)− δ(xi))2 + λ‖δ‖2Hz (9)

with ‖δ‖2Hz = ‖δ‖2H + λz‖δ‖2L2(X ).

In Lemma 3, both the L2 norm and native norm of the discrepancy function are penalized

in S-GaSP calibration. When the discrepancy function is modeled as a GaSP, however, the

L2 norm of the discrepancy function is not penalized (see supplementary materials). This

property of the S-GaSP calibration is the key to guarantee that, under some regularity

conditions, the estimated calibration parameters in joint estimator converges to θL2 defined

in (2). A more detailed discussion is provided in Section 3.
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3 Convergence properties of the S-GaSP calibration

We discuss two convergence properties of the S-GaSP calibration in this section. First, the

predictive mean estimator of the reality converges to the truth at the optimal rate with a

suitable choice of the regularization and scaling parameters. Second, the estimated calibra-

tion parameters by S-GaSP calibration converge to θL2 when sample size increases. These

two properties are obtained by jointly estimating the discrepancy function and calibration

parameters in (9).

3.1 Convergence to the reality

Let us first consider the following nonparametric regression model,

y(xi) = f(xi) + εi, εi
i.i.d.∼ N(0, σ2

0), i = 1, . . . , n, (10)

where f is assumed to follow the zero-mean S-GaSP prior with the default choice of pZ(·)

and gZ(·) in (4) and (5), respectively. This is a special case where the mathematical model

is zero and we will soon extend it to the general case when the mathematical model is not

zero. For illustration purposes, we follow Tuo and Wu (2015) to assume that x1, . . . ,xn are

independently sampled from Unif([0, 1]p).

Assume the underlying truth f0(·) := Ey[y(·)] resides in the p-dimensional Sobolev space

Wm
2 (X ) =

{
f(·) =

∞∑
k=1

fkφk(·) ∈ L2(X ) :
∞∑
k=1

k2m/pf 2
k <∞

}
(11)

with smoothness m > p/2 and {φk(·)}∞k=1 being a sequence of the orthonormal basis of

L2(X ). For any integer vector k = (k1, ..., kp)
T and a function f(x1, ..., xp) : X → R, denote

Dk the mixed partial derivative operator Dkf(·) := ∂|k|f(·)/∂k1x1...∂kpxp with |k| =
∑p

i=1 ki.

For any function in Wm
2 (X ), we have ‖Dkf(·)‖L2(X ) <∞ for any |k| < m.

Recall that λ = σ2
0/(nσ

2) in (8). By Lemma 3, the posterior mean estimator of f(·) with

9



a S-GaSP prior is equivalent to the KRR estimator below

f̂λ,λz ,n = argmin
f∈H

[
1

n

n∑
i=1

(y(xi)− f(xi))
2 + λ‖f‖2H + λλz‖f‖2L2(X )

]
. (12)

Recall {ρk}∞k=1 and {φk}∞k=1 are the sequence of the eigenvalues and eigenfunctions of

the reproducing kernel K(·, ·) associated with H, respectively. For all k, we assume the

eigenvalues satisfy

cρk
−2m/p ≤ ρk ≤ Cρk

−2m/p, (13)

for some constants cρ and Cρ > 0. For all k ∈ N+ and x ∈ X , we assume the eigenfunctions

are bounded uniformly,

sup
x∈X
|φk(x)| ≤ Cφ, (14)

where Cφ > 0 is a constant depending on the kernel K(·, ·).

We are now ready to state the convergence rate of the S-GaSP for the nonparametric

regression model in (10).

Theorem 1. Assume the eigenvalues and eigenfunctions of K(·, ·) satisfy (13) and (14),

respectively. Further assume f0 ∈ Wm
2 (X ) and denote β := (2m − p)2/{2m(2m + p)}.

Consider the nonparametric regression model (10). For sufficiently large n, any α > 2 and

Cβ ∈ (0, 1), with probability at least 1− exp{−(α− 2)/3} − exp
(
−nCββ

)
,

‖f̂λ,λz ,n − f0‖L2(X ) ≤ 2
[√

2
(
‖f0‖L2(X ) + ‖f0‖H

)
+ CKσ0

√
α
]
n−

m
2m+p

and

‖f̂λ,λz ,n − f0‖H ≤ 2
[√

2
(
‖f0‖L2(X ) + ‖f0‖H

)
+ CKσ0

√
α
]

by choosing λ = n−2m/(2m+p) and λz = λ−1/2, where CK is a constant only depending on the

kernel K(·, ·).
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The proof of Theorem 1 is more challenging compared to the proof of convergence of

Gaussian stochastic process regression in Yang et al. (2017a). First λz can go to infinity

in Theorem 1, and consequently ||δ||Hz is unbounded, wheres ||δ||H was typically assumed

bounded in proving the convergence of a nonparametric regression approach. Second we

generalize the proof to multivariate inputs. Thus, we substantially modify the tools to prove

Theorem 1, given in the supplementary materials.

The conditions in Theorem 1 can be relaxed in various ways. From the proof of Theo-

rem 1, it is easy to see that if λ = O(n−2m/(2m+p)) and λz ≤ O(λ−1/2), the estimator still

converges to the truth in L2 distance with the same rate O(n−m/(2m+p)). Second the design

can be generalized to other space filling design. Besides, although the stationarity of the pro-

cess is often assumed for the computational purpose, it is not required in Theorem 1. Note

the regularity parameter and kernel parameters are held fixed in Theorem 1. We discuss the

estimation of λ and the parameters in the kernel function in Section 4.1.

We are ready to discuss the convergence of estimating the reality in the calibration. The

estimator for the reality in the S-GaSP calibration model is defined as follows

ŷRλ,λz ,n(x) := fM(x, θ̂λ,λz ,n) + δ̂λ,λz ,n(x)

for any x ∈ X , where (θ̂λ,λz ,n, δ̂λ,λz ,n) is the estimator of the penalized KRR obtained by

minimizing the loss in (9). The following Corollary 3 gives the convergence rate of the S-

GaSP calibration model in predicting the reality. Similar to the extensions for Theorem 1,

the conditions in Corollary 3 can be relaxed by letting λ = O(n−2m/(2m+p)) and λz ≤ O(λ−1/2)

to obtain the same convergence rate.

Corollary 3. Assume yR(·) − fM(·,θ) ∈ Wm
2 (X ) for any θ ∈ Θ and supθ∈Θ‖yR(·) −

fM(·,θ)‖H < ∞. Let the eigenvalues and eigenfunctions of K(·, ·) satisfy (13) and (14),

respectively. For sufficiently large n, any α > 2 and Cβ ∈ (0, 1), with probability at least
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1− exp{−(α− 2)/3} − exp(−nCββ),

‖ŷRλ,λz ,n(·)− yR(·)‖L2(X ) ≤ 2

[√
2

(
sup
θ∈Θ
‖yR(·)− fM(·,θ)‖L2(X )

+ sup
θ∈Θ
‖yR(·)− fM(·,θ)‖H

)
+ CKσ0

√
α

]
n−

m
2m+p ,

by choosing λ = n−2m/(2m+p) and λz = λ−1/2, where CK is a constant only depending on the

kernel K(·, ·) and β = (2m− p)2/(2m(2m+ p)).

We illustrate the convergence using the following function studied in Yang et al. (2017a),

where yR(·) lies in the Sobolev space Wm
2 (X ) with m = 3 and X = [0, 1].

Example 1. Let the reality be yR(x) = 2
∑∞

j=1 j
−6 cos(5π(j − 0.5)x) sin(5j), and consider

yF (x) = yR(x) + ε, where ε ∼ N(0, 0.052) independently. Let fM(x, θ) = θ. The goal is to

predict yR(x) at x ∈ [0, 1] and estimate θ.

As a motivating example, we let K(·, ·) follow the Matérn kernel in (19) with the range

parameter γ = 1, as the reproducing kernel Hilbert space attached to the GaSP with this

kernel is equal to Sobolev space W3
2 (X ). We test 50 configurations with the number of

observations n ∈ [exp(5), exp(10)], and the design points {xi}ni=1 are equally spaced in [0, 1].

In each configuration, N = 100 simulation replicates are implemented. We first compute the

average root of the mean squared error below:

AvgRMSEfM+δ =
1

N

N∑
i=1

√√√√ 1

n∗

n∗∑
j=1

(ŷRi (x∗j)− yRi (x∗j))
2, (15)

where ŷRi (x∗j) is an estimator of the reality at x∗j for j = 1, ..., n∗. The subscript fM + δ

indicates both the calibrated mathematical model and discrepancy function can be used for

prediction.

For both GaSP and S-GaSP calibration, the joint estimator, i.e. the predictive mean

of the reality and maximum marginal likelihood estimator of the calibration parameters
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Figure 1: Prediction and calibration by the GaSP and discretized S-GaSP calibration models
for Example 1. In the left panel, the AvgRMSEfM+δ of the GaSP calibration and that of the
discretized S-GaSP calibration are graphed as the red triangles and blue dots, respectively;
the black curve is n−m/(2m+p)/5, representing the upper bound by Corollary 3 (up to a
constant). In the right panel, the natural logarithm of the RMSEθ of the GaSP calibration
and that of the discretized S-GaSP calibration are graphed as the red triangles and blue
circles, respectively; the black line is log(n−m/(2m+p)/40), the upper bound from Theorem 2
(up to a constant). λ = n−2m/(2m+p) × 10−4 and λz = λ−1/2 are assumed.

discussed in Lemma 3, is implemented for each experiment at each configuration. In the left

panel of Figure 1, the predictive mean estimator of the reality in both GaSP and S-GaSP

estimator converges to the reality at the same rate, which matches the theoretical upper

bound from Corollary 3. Here for computational purpose, we graph the results of discretized

S-GaSP calibration, which replaces the integral
∫

x∈X δ
2(x)dx in the S-GaSP model in (3) by

(1/n)
∑n

i=1 δ
2(xi) in Figure 1. The discretized S-GaSP calibration is discussed in Section 4.

To evaluate whether the calibrated mathematical model (here only a mean parameter) fits

the data, we use the root of the mean squared error between the estimator of the calibration

parameters and the L2 minimizer θL2 as follows RMSEθ =
√

1
N

∑N
i=1(θ̂i − θL2)

2, where θ̂i

is an estimator of θ in the ith experiment.

Although the GaSP and the S-GaSP perform equally well in prediction for Example 1,

the estimator of the calibration parameter in the discretized S-GaSP calibration converges

to the L2 minimizer, but that in the GaSP calibration does not converge to θL2 , shown in

the right panel of Figure 1. This problem is caused by the difference between the RKHS
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norm and the L2 norm. As illustrated in Lemma 3, both the RKHS norm and L2 norm of

the discrepancy function are penalized in the S-GaSP calibration model, whereas the GaSP

calibration model does not penalize the L2 norm of the discrepancy function. In Section 3.2,

we further show that under some regularity conditions, the calibrated parameters in the S-

GaSP calibration do converge to the L2 minimizer with the same choice of the regularization

parameter and scaling parameter in Corollary 3.

3.2 Convergence of calibration parameters

We first list some regularity conditions for the convergence of calibration parameters.

A1 θL2 is the unique solution of (2) and it is an interior point of Θ.

A2 The Hessian matrix
∫ ∂2(yR(x)−fM (x,θ))2

∂θ∂θT
dx is invertible in a neighborhood of θL2 .

A3 For all j = 1, ..., q, it holds that supθ∈Θ

∥∥∥∂fM (·,θ)
∂θj

∥∥∥
H
<∞.

A4 The function class {yR(·)− fM(·,θ) : θ ∈ Θ} is Donsker.

A5 supθ∈Θ ‖yR(·)− fM(·,θ)‖H <∞.

A6 The eigenvalues and eigenfunctions of K(·, ·) satisfy (13) and (14), respectively.

Assumptions A1 to A3 are regularity conditions of θL2 and the mathematical model

yM(·,θ) around θL2 . Assumptions A4 to A6 guarantee the KRR estimator δ̂z,θ converges to

yR(·)−fM(·,θ) uniformly for each θ ∈ Θ in terms of the L2 loss. We have the following result

in Theorem 2 that guarantees the convergence of calibration parameters. As the calibration

parameters and discrepancy function are estimated jointly in our approach, we extend the

tools of proving the convergence of the two-step calibration approach (Tuo and Wu, 2015)

to prove Theorem 2, given in the supplementary materials.

Theorem 2. Under assumptions A1 to A6, the estimated parameters in (9) follow

θ̂λ,λz ,n = θL2 +Op(n
− m

2m+p ),
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by choosing λ = O(n−2m/(2m+p)) and λz = O(λ−1/2).

Note that λ = O(n−2m/(2m+p)) and λz = O(λ−1/2) also guarantee the predictive mean

estimator in the S-GaSP calibration converges to the reality at the rate O(n−m/(2m+p)) in

terms of the L2 loss. The convergence rate of the calibration parameter is slightly slower than

O(n−1/2) obtained in the two-step approach (Tuo and Wu, 2015). Though the O(n−1/2) rate

may be obtained by choosing λ = O(n−2m/(2m+p)) and λz = O(λ−1/2), we should be aware

that, however, the L2 minimizer is not the true calibration parameter, but the one that

minimizes the L2 distance between the calibrated mathematical model and reality. At the

finite sample scenarios, the residuals between reality and calibrated mathematical model

with the L2 minimizer may behave like noises, rather than a smooth function, which may be

hard to be accurately estimated by a nonparametric model of the discrepancy function. In

comparison, the joint estimate of the discrepancy function and calibration parameters was

found have a smaller predictive error in Example 2, 3 and 4.

On the contrary, the calibrated parameters of the GaSP calibration typically do not

converge to the L2 minimizer. Let ∂fM (·,θ̂)
∂θj

:= ∂fM (·,θ)
∂θj

|θ=θ̂. A key difference between the GaSP

and the S-GaSP calibration is stated in the following Corollary 4, which is an immediate

consequence from the proof of Theorem 2.

Corollary 4. Under assumptions A1 to A6, the estimator for the calibration parameters in

the S-GaSP calibration in (9) satisfies

1

λ z

〈
δ̂λ,λz ,n(·), ∂f

M(·, θ̂λ,λz ,n)

∂θj

〉
H

+

〈
δ̂λ,λz ,n(·), ∂f

M(·, θ̂λ,λz ,n)

∂θj

〉
L2(X )

= 0;

Further assuming the mathematical model is differentiable at θ̂λ,n in (S7), the estimator of

the calibration parameters in the GaSP calibration satisfies

〈
δ̂λ,n(·), ∂f

M(·, θ̂λ,n)

∂θj

〉
H

= 0,
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for any θj, j = 1, ..., q.

To ensure the convergence of an estimator θ̂ to the L2 minimizer, one typical requirement

is that 〈δ̂L2(·),
∂fM (·,θ̂)
∂θj

〉L2(X ) = op(1). It is easy to see that the S-GaSP satisfies this condition

with 1/λz = o(1). However, because of the difference between the RKHS norm and L2 norm,

the estimated parameters θ̂λ,n in the GaSP calibration model can be far away from the L2

minimizer. As a result, the calibrated mathematical model may not fit the data in the GaSP

calibration model, as found in previous studies (Tuo and Wu, 2015; Wong et al., 2017). For

Example 1, the estimated parameters in the discretized S-GaSP calibration converges to the

L2 minimizer when the sample size increases, whereas the parameters in GaSP calibration

with an unscaled kernel function do not converge, as shown in the right panel of Figure 1.

4 Discretized scaled Gaussian stochastic process

We address the computational issue in the S-GaSP calibration in this section. Instead of

truncating the kernel function in (7) by the first several terms, we select NC distinct points

to discretize the input space [0, 1]p and replace
∫

ξ∈X δ(ξ)2dξ by (1/NC)
∑NC

i=1 δ(x
C
i )2 in the

S-GaSP model in (3).

Here we let the discretization points be the observed inputs, i.e. xCi = xi for i = 1, ..., NC

and NC = n. The discretized S-GaSP is to replace δz in Equation (3) by

δzd(x) =

{
δ(x) | 1

n

n∑
i=1

δ(xi)
2 = Zd

}
(16)

with density pZd(·) defined in (4). After marginalizing out Zd, it follows from Lemma 2.4 in

Gu and Wang (2018) that δzd(·) is a zero-mean GaSP with the covariance function

σ2Kzd(xa,xb) = σ2(K(xa,xb)− rT (xa)R̃
−1r(xb)) (17)

for any xa,xb ∈ X , where R̃ := R + nIn/λz.
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Recall λ = σ2
0/(nσ

2). We have the following predictive distribution of the discretized

S-GaSP calibration model.

Theorem 3. Assume δzd(·) in (16) with pZd(·) and gZd(·) defined in (4) and (5), respectively.

The predictive distribution of the field data at any x ∈ X by the discretized S-GaSP calibration

model in (16) is a multivariate normal distribution

yF (x) | yF ,θ, σ2
0, λ, λz ∼ MN(µ̂zd(x), σ2

0((nλ)−1K∗zd(x,x) + 1)),

where µ̂zd(x) = fM(x,θ) + rT (x)
1+λλz

(
R + nλ

1+λλz
In

)−1 (
yF − fMθ

)
, and K∗zd(x,x) = K(x,x) −

rT (x)

[
In +

(
R + nλ

1+λλz
In

)−1
n

(1+λλz)λz

]
R̃−1r(x), with r(x) = (K(x,x1), ..., K(x,xn))T and

R̃ = R + n
λz

In with the (i, j) entry of R being K(xi,xj).

Theorem 3 indicates that the predictive mean of the discretized S-GaSP calibration model

shrinks the predictive mean towards the mean function. When λz = 0, the shrinkage is zero

and the discretized S-GaSP becomes the GaSP.

Interestingly, when the observations contain no noise, the predictive mean and variance

of the field data from the GaSP calibration model and the discretized S-GaSP calibration

model are exactly the same, stated in the following Lemma 4.

Lemma 4. Assume the conditions in Theorem 3 hold. If σ2
0 = 0, the predictive distribution

of the field data at any x ∈ X by the discretized S-GaSP model in (16) is a multivariate

normal distribution with the predictive mean and variance as follows

E[yF (x) | yF ,θ, λ, λz] = fM(x,θ) + rT (x)R−1(yF − fMθ ),

V[yF (x) | yF ,θ, λ, λz] = σ2
(
K(x,x)− rT (x)R−1r(x)

)
,

where r(x) = (K(x,x1), ..., K(x,xn))T and the (i, j) entry of R is K(xi,xj).
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4.1 Emulating slow computer models and parameter estimation

We discuss the computational issue and the parameter estimation in this section. All the

approaches are implemented in the new RobustCalibration R package available on CRAN

Gu (2018b). First, some mathematical models are the numerical solutions of partial differen-

tial equations implemented as computer code,which is computationally expensive to run. In

these cases, one often uses a statistical emulator to approximate the computer model based

on a set of model runs (Sacks et al., 1989; Santner et al., 2003). The GaSP emulator from

the RobustGaSP R package is used to emulate the computer model when it is expensive to

run.

We next discuss estimating the regularization parameters and kernel parameters, which

were held fixed in some studies. In practice, estimating these parameters can improve pre-

dictive performance. For any xa = (xa1, ...., xap)
T and xb = (xb1, ...., xbp)

T , the kernel is often

assumed to have a product form in model calibration (Kennedy and O’Hagan, 2001):

K(xa,xb) =

p∏
i=1

Ki(di), (18)

where di = |xai − xbi| for i = 1, ..., p, and Ki(·) is a one dimensional kernel function. One

widely used kernel function is the Matérn kernel (Handcock and Stein, 1993). When the

roughness parameter is a half-integer, the Matérn kernel has an explicit expression. For

example, the Matérn kernel with roughness parameter being 5/2 has the following expression

Ki(di) =

(
1 +

√
5di
γi

+
5d2i
3γ2i

)
exp

(
−
√

5di
γi

)
, (19)

for i = 1, ..., p. A good feature of the Matérn kernel is the sample path of a GaSP is bνi − 1c

times differentiable, where νi is the roughness parameters.

Denote γ = (γ1, ..., γp)
T the unknown range parameters in the covariance. The pa-

rameters in the discretized S-GaSP calibration model are the calibration parameters θ, the
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variance parameter of the noise σ2
0, regularization parameter λ = σ2

0/(nσ
2), scaling pa-

rameter λz and range parameters γ. Simple algebra shows σ̂2
0,MLE = λS2

zd
, where S2

zd
=

(yF − fMθ )T R̃−1zd (yF − fMθ ) with R̃zd = (R−1 + λzIn/n)
−1

+ λnIn and R̃−1zd = λz/(ng) +

(R + nλIn/g)−1/g2 with g = λλz + 1. Marginalizing out δz(·) and plugging σ̂2
0,MLE into the

likelihood of the discretized S-GaSP calibration model in (16), one has the profile likelihood

`zd(θ,γ, λ, λz) ∝ −
1

2
log |R̃zd| −

n

2
log(S2

zd
). (20)

One may numerically maximize the profile likelihood in (20) to estimate the parameters.

Note λz reflects one’s tolerance of how good a mathematical model should predict the reality

without the discrepancy function and thus this parameter may be chosen based on the

expert knowledge. Because of the conditions discussed in Theorem 2, λz may be fixed to be

proportional to λ−1/2 or be related to the sample size. For all numerical examples, we fix λz =

(λ||γ̃||)−1/2, where λ = σ2
0/(σ

2n) and γ̃ = (γ̃1, ..., γ̃p)
T , with γ̃i being the normalized range

parameter (normalized by the length of each coordinate of the input variable). The inclusion

of the range parameters is due to the confounding issue between the range parameter and

the variance parameter of the process, whereas the ratio of these parameters can typically

be estimated consistently from the data (Zhang, 2004).

In the RobustCalibration package, we implement the Bayesian method of estimating

the parameters and making predictions. The prior is assumed to follow π(θ,γ, η, σ2) ∝

π(θ)π(γ, η)/σ2 with η = σ2
0/σ

2 being the nugget parameter. Here π(γ, η) is chosen as the

joint robust prior for the kernel parameters (Gu, 2018a; Gu et al., 2018), and π(θ) may be

specified by the user to reflect experts’ knowledge. We assume a uniform distribution of π(θ)

in the numerical examples for demonstration purposes. Compared to the MLE approach,

the uncertainty of the parameters can be assessed naturally through the posterior samples.
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5 Comparison between different calibration approaches

We compare a few calibration approaches in this section. First, one of most popular frame-

work is the GaSP calibration approach (Kennedy and O’Hagan, 2001), which models the

discrepancy in (1) as a GaSP. The mathematical model and discrepancy function are jointly

estimated under the Bayesian framework. The S-GaSP approach is an extended version of

GaSP calibration by placing more prior probability mass of the L2 norm of the discrepancy

near zero. Consequently, the calibrated mathematical models in the S-GaSP calibration fit

the data better than the ones in the GaSP calibration.

The S-GaSP calibration approach was inspired by a few pioneering approaches seeking to

find the L2 minimizer of the calibration parameters (Tuo and Wu, 2015; Wong et al., 2017;

Plumlee, 2017). The orthogonal Gaussian process proposed in Plumlee (2017) constrains the

derivatives of the random L2 norm of the discrepancy to be zeros, equivalently giving more

prior probability mass of calibration parameters at the stationary points of the calibration

parameters in terms of the L2 loss. The S-GaSP model explores another transformation that

avoids putting more prior probability mass at local maxima of L2 loss of the discrepancy, and

that has a closed-form likelihood function. The L2 calibration was proposed in (Tuo and Wu,

2015), where the reality is first estimated by nonparametric regression, and the calibration

parameters are estimated by minimizing the L2 loss between the reality and mathematical

model. The LS calibration is proposed in (Wong et al., 2017), where the calibration parame-

ters are estimated by first minimizing the squared loss between the mathematical model and

observations, and a nonparametric approach is applied to estimate the difference between

the reality and mathematical model.

We use the following example to illustrate that jointly estimating the discrepancy function

and calibration parameters can be helpful for predicting the reality.

Example 2. Let yF (x) = yR(x) + ε, where ε independently follows N(0, 0.052) and yR(x) =

g1+g2, with g1 =
∑∞

j=1 j
−1 cos(5π(j−0.5)x) sin(5j) and g2 =

∑∞
j=1 j

−6 cos(5π(j−0.5)x) sin(5j).
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Figure 2: Comparison of different approaches in Example 2. In the left panel, the logarithm
of the AvgRMSEfM+δ of four calibration approaches are graphed at the logarithm of different
sample sizes. The histogram of the estimated calibration parameter of each experiment of
different approaches are given in the middle panel and the right panel.

Let mathematical model be fM(x) = g1θ. The goal is to predict yR(·) and estimate θ.

We compare the GaSP, S-GaSP, L2 and LS calibration approaches using Example 2.

The GaSP model is used as the nonparametric regression approach in the first step of L2

calibration and the second step of the LS calibration. We assume kernel function K(·, ·)

follows Matérn kernel function in (19) for all methods. The calibration parameter, variance

and kernel parameters are estimated by the maximum likelihood estimator.

In the left panel of Figure 2, we found the predictive error by the GaSP and S-GaSP

calibration is considerably smaller than the LS calibration and L2 calibration approach. This

is because the reality contains g1 =
∑∞

j=1 j
−1 cos(5π(j − 0.5)x) sin(5j), which is hard to be

predicted by a nonparametric regression approach alone. The mathematical model specified

herein, however, can explain this term with calibration parameter close to 1. The estimated

calibrated parameter in both GaSP and S-GaSP is indeed close 1 in all experiments, which

leads to better predictive performance.

The L2 minimizer of the calibration parameters in this example is around 1.775. Note

that the estimated calibration parameter S-GaSP calibration may not converge to the L2

minimizer when sample size increases. This is because ||yR(·) − fM(·, θ)||H is unbounded

when θ 6= 1, which violates the assumption A5. The calibrated computer computer with

calibration parameter being around 1 improves the predictive accuracy and interpretation,
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as the residual discrepancy term is a smooth term that is easy to be predicted.

The GaSP and S-GaSP calibration approaches are always more accurate in predicting

the reality than the two-step approaches. Indeed, for Example 5 discussed in the numerical

comparison, the predictions in the L2 calibration approach is the best among all methods,

as the observations can be easily predicted through a nonparametric regression without

the mathematical model. When the reality is complicated, the joint estimation by GaSP

and S-GaSP calibration approaches seems to have a smaller predictive error, which will be

illustrated by a few more numerical examples.

As the sampling model of the observations is well-defined in both GaSP calibration

and S-GaSP calibration, a Bayesian approach can be implemented and the uncertainty of

the parameters can be assessed naturally through their posterior distributions. For the L2

calibration, the asymptotic distribution of the estimator of the calibration parameter may

be used to approximately quantify the uncertainty in parameter estimation (Tuo and Wu,

2015). A bootstrap approach is developed to assess the uncertainty of parameters for the

LS calibration approach (Wong et al., 2017).

For a fast mathematical model, The computational complexity of all methods are typ-

ically dominated by nonparametric estimation of the discrepancy function, which is O(n3)

in general with n being the number of observations. Though the computation complexity

is similar, the two-step approaches such as L2 calibration and LS calibration are typically

faster than the joint estimation in GaSP and S-GaSP calibration approach, as the kernel

parameters and calibration parameters are estimated in two different steps.

6 Numerical study

In this section, we numerically compare the performance of several methods for calibration

and prediction. We consider two loss functions as follows.

i. The L2 loss between the reality and its estimator: L2(ŷ
R(·)) = ‖yR(·)− ŷR(·)‖2L2

.
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ii. The L2 loss between the reality and calibrated mathematical model: L2(θ̂) = ‖yR(·) −

f̂M(·, θ̂)‖2L2
, where θ̂ is the estimator of the calibration parameter.

The first criterion is our primary consideration, because the out of sample prediction for

the reality examines how well we can reproduce the reality. The second criterion describes

how well the calibrated mathematical model fits reality in terms of the L2 loss (Tuo and

Wu, 2015). The parameters in a mathematical model often have scientific interpretation,

whereas a non-linear discrepancy function might not be interpretable. Thus the discrepancy

function is not used for prediction in the second criterion.

To numerically evaluate the performance under two prediction criteria, we first compute

AvgRMSEfM+δ in Equation (15) of different methods. We compute AvgRMSEfM through

replacing ŷRi (x∗j) in Equation (15) by the calibrated computer model output. For assessing

the uncertainty in predictions, we also compute the average length of predictive interval and

proportion of the observations covered by the 95% predictive interval defined below:

LCI(95%) =
1

Nn∗

N∑
j=1

n∗∑
i=1

length{CIij(95%)} ,

PCI(95%) =
1

Nn∗

N∑
j=1

n∗∑
i=1

1{yRj (x∗i ) ∈ CIij(95%)} ,

where CIij(95%) is the 95% predictive interval; N and n∗ are the total number of experiments

and the number of held-out test data in each experiment, respectively. An efficient method

should have small AvgRMSEfM+δ and AvgRMSEfM , short predictive interval and PCI(95%)

close to the nominal 95%. For the real examples, we replace the test reality output by the

held-out observations for out-of-sample predictions.

We numerically compare 5 different methods. The first and second methods are the GaSP

calibration and S-GaSP calibration, respectively, both implemented in the full Bayesian

framework. The scaling parameter of the S-GaSP is fixed to be λz = (λ||γ̃||)−1/2, where λ =

σ2
0/(σ

2n) and γ̃ = (γ̃1, ..., γ̃p)
T , with γ̃i being the normalized range parameter (normalized
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by the length of each coordinate of the input variable). The rest of model parameters

and calibration parameters are sampled from posterior distributions. The third and fourth

approaches are the L2 calibration and LS calibration, respectively. The GaSP regression

using the RobustGaSP R package is used to estimate the reality in the first step of the L2

calibration, and the residual (between the calibrated mathematical model and reality) in the

second step of the LS calibration. The kernel function K(·, ·) is assumed to follow (19) in

all methods for demonstration purposes. We also include the method with no discrepancy

function computed under the Bayesian framework. The GaSP, S-GaSP and no-discrepancy

calibration approaches are implemented in the RobustCalibration R package.

6.1 Simulated exanple

Example 3. Let yF (x) = yR(x) + ε, where x = (x1, x2) ∈ [0, 1]2, yR(x) = sin(0.2πx1)x2 +

sin(2πx1)x2+1 and ε
i.i.d.∼ N(0, 0.12). The mathematical model is fM(x,θ) = sin(θ1x1)x2+θ2

with θ1 ∈ [0, 10] and θ2 ∈ R.

We first consider a simulated study in Example 3 and test two configurations, where with

sample sizes of the observations are taken to be n = 25 and n = 50, respectively. For each

configuration, we test N = 100 experiments with n∗ = 2500 reality output equally spaced in

each interval held-out for testing. The input variable in each experiment is generated from

the maximin Latin hypercube design (Santner et al. (2003)).

The predictive errors by different approaches are given in Table 1. First the AvgRMSEfM+δ

of all methods are better than AvgRMSEfM for almost all methods, indicating that a non-

parametric model can improve the predictive performance. Second, the GaSP and S-GaSP

calibration approaches performs better than the two-step LS and L2 calibration methods in

terms of AvgRMSEfM+δ. Though around 95% of the held out test data are covered by the

95% predictive interval in all methods, the average lengths of the predictive interval by the

GaSP and S-GaSP calibration are shorter than the two-step approaches.

For the L2 calibration approach, the mathematical model is not used in the first step, as
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n=25 GaSP S-GaSP L2 LS No-discrepancy
AvgRMSEfM+δ 0.0556 0.0558 0.103 0.0702 /
AvgRMSEfM 0.143 0.131 0.131 0.131 0.130
LCI(95%) 0.206 0.209 0.434 0.389 0.654
PCI(95%) 0.931 0.932 0.921 0.958 0.987
n=50 GaSP S-GaSP L2 LS No-discrepancy
AvgRMSEfM+δ 0.0405 0.0403 0.0655 0.0437 /
AvgRMSEfM 0.144 0.130 0.128 0.128 0.128
LCI(95%) 0.153 0.152 0.439 0.402 0.632
PCI(95%) 0.938 0.935 0.992 0.997 0.991

Table 1: Predictive performance by different methods for Example 3.
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Figure 3: The reality in an experiment of Example 3 is graphed in the left panel. The
residuals between the reality and prediction by a GaSP regression (without the mathematical
model) are graphed in the middle panel, whereas those by the S-GaSP calibration are graphed
in right panel. The middle and right panels have the same scale of color.

the parameters in the mathematical model are estimated in the second step to minimize the

L2 loss. The high frequency term (sin(2πx1)x2) makes the predictions by the nonparametric

regression less accurate than jointly estimate of the calibration parameters and discrepancy

function, as the high frequency term can be explained by the mathematical model. The

comparison between predictions by using the nonparameteric regression alone and S-GaSP

calibration in the first experiment with n = 60, for example, is shown in Figure 3. Indeed

the S-GaSP calibration seems to have a smaller predictive error.

The estimated calibration parameters of Example 3 are graphed in Figure 4. In the left

panel, the estimation of θ1 using the LS, L2 and no-discrepancy methods is close to the L2
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Figure 4: Boxplots of the estimated calibration parameters from the GaSP, the S-GaSP, L2

and LS calibration approaches for each experiment in Example 3. The solid lines are the L2

minimizer, which is around 6.48 and 1.15 for θ1 and θ2, respectively.

minimizer (graphed as the solid line), whereas the estimation of θ1 using the GaSP and the

S-GaSP is, in fact, closer to 2π. This is because the model complexity is naturally built into

the calibration: an estimated θ1 that is close to 2π makes the prediction better, since the

high frequency term can be approximately explained by the mathematical model.

The GaSP calibration approach produces the largest AvgRMSEfM compared to other

calibration methods AvgRMSEfM , as illustrated in Table 1. This is probably caused by the

estimation of θ2 (a mean parameter) shown in the right panel in Figure 4. The estimates

of θ2 by the S-GaSP calibration, LS, L2 and no-discrepancy methods are all close to the L2

minimizer, whereas the one in the GaSP calibration seems to be smaller the other ones.

Example 3 indicates that the calibrated mathematical model that minimizes the L2 loss

between the reality and mathematical model might not always be the optimal choice for

predictions. In this example, when θ1 is estimated to be close to 2π, the predictive accuracy

can be improved significantly, and the calibrated computer model only produces slightly

larger error than the one by the L2 minimizer. The other parameter, θ2, is a mean parameter.

The two types of errors are both small when θ2 is estimated to be close to the L2 minimizer.

The S-GaSP calibration model seems to do well in both sides. It predicts the reality as
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accurately as the GaSP calibration model with the assistance of the calibrated mathematical

model. The calibrated mathematical model using the S-GaSP is also closer to the reality

than the one using the GaSP calibration.

6.2 Chemical system interaction

Example 4. Consider the system interaction between two chemical substances y1 and y2:

ẏ1(t) = 10θ1−3y1(t)

ẏ2(t) = 10θ1−3y1(t)− 10θ2−3y2(t)

where 2 repeated observations of the second chemical substance are measured at each of the

6 time points t = 10, 20, 40, 80, 160, 320 in Box and Coutie (1956). The goal is to estimate

θ1 and θ2, and to predict the values of the chemical substance across time.

We consider (θ1, θ2) ∈ [0.5, 1.5]2. As the number of observations are limited, we first

perform a leave-one-out comparison by holding out two repeated observations for prediction

at each time point. We replace the reality in each criterion by the held-out observations to

test each approach. The predictive performance of the leave-one-out comparison for Example

4 is given in Table 2.

GaSP S-GaSP L2 LS No-discrepancy
AvgRMSEfM+δ 4.98 5.05 10.2 7.80 /
AvgRMSEfM 11.8 10.4 9.34 10.9 9.63
LCI(95%) 32.8 44.6 52.5 42.6 47.0
PCI(95%) 100% 100% 91.7% 100% 100%

Table 2: Predictive performance by different methods for Example 4.

First the predictive error AvgRMSEfM+δ is smaller than AvgRMSEfM in both GaSP

and S-GaSP calibration, indicating that jointly estimating the mathematical model and

discrepancy function improves the predictive accuracy than the two-step approaches. On
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Figure 5: Posteriors samples of calibration parameters and predictions from the GaSP, S-
GaSP and no-discrepancy calibration approaches. The shaded area in the right panel is the
predictive interval of the reality from the S-GaSP calibration approach.

the other hand, the GaSP calibration has the largest predictive error using the calibrated

mathematical model alone. The L2 calibration and no-discrepancy calibration have a smaller

error AvgRMSEfM compared to other methods. The S-GaSP calibration has relatively small

predictive error under both predictive criteria.

The left panel in Figure 5 gives posterior samples of calibration parameters by different

methods in Example 4. When there is no discrepancy function, the posterior samples of

the calibration parameters are close to (1.1, 0.8), which is inline with the result in Box and

Coutie (1956). The estimated calibration parameters of the no-discrepancy method is close

to the L2 and LS methods, whereas the posterior samples of the calibration parameters from

the GaSP calibration and S-GaSP calibration reflects more uncertainty.

The predictions in the GaSP, S-GaSP and no-discrepancy calibration are graphed in right

panel of Figure 5. The calibrated mathematical model in the S-GaSP calibration seems to fit

the reality better than the one by the GaSP calibration. The calibrated mathematical model

in the no-discrepancy calibration fits the observations the best, as the residuals between the

mathematical model and observations are assumed to be random noises. Although we do not

know the reality of this example, the predictive performance of GaSP and S-GaSP calibration

is better than the other approaches as shown in the first row in Table 2, suggesting that there

might be a systematic discrepancy between the observations and the mathematical model.
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6.3 Ion Channel experiments

In the last example, we consider calibrating the mathematical model for sodium ion channels

using real observations from whole cell voltage clamp experiments (Plumlee et al., 2016).

Example 5. The data sets consists of 19 observations of normalized current needed to main-

tain the membrane potential at −35mV over time (Plumlee, 2017). Denote the input variable

x the natural logarithm of time. The mathematical model has the following expression:

fM(x,θ) = eT1 exp[exp(x)A(θ)]e4,

where ei is a column vector with 1 at the ith element and 0 for the rest of components, the

first exp is the matrix exponential, θ = (θ1, θ2, θ3)
T , and

A(θ) =



−θ2 − θ3 θ1 0 0

θ2 −θ1 − θ2 θ1 0

0 θ2 −θ1 − θ2 θ1

0 0 θ2 −θ1


The range of calibration parameter considered herein is θi ∈ [0, 10] for i = 1, 2, 3.

We first consider a leave-one-out comparison for the ion channel experiment. The pre-

dictive errors by different approaches are given in Table 3. First the average root of mean

squared errors under two criteria are all very small. Here since the input variable is only

one dimensional and the real observations (graphed in the bottom left panel in Figure 6)

seems to be very smooth, using the GaSP regression by the RobustGaSP R package gives very

high predictive accuracy already. Including the mathematical model does not improves the

prediction accuracy in this example. Therefore, the predictive error by the L2 calibration is

the smallest, as the GaSP regression without the mathematical model is used for predicting

the reality in the first step.
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GaSP S-GaSP L2 LS No-discrepancy
AvgRMSEfM+δ 1.77× 10−3 1.52× 10−3 8.26× 10−4 2.17× 10−3 /
AvgRMSEfM 1.13× 10−2 5.62× 10−3 4.83× 10−3 6.49× 10−3 6.45× 10−3

LCI(95%) 5.64× 10−3 9.58× 10−3 9.45× 10−3 5.80× 10−3 2.58× 10−2

PCI(95%) 94.7% 100% 84.2% 78.9% 84.2%

Table 3: Predictive performance by different methods for Example 5.

In the second place, the GaSP calibration approach has a substantial larger predictive

error by using the calibrated computer model alone, shown in the second row in Table 3.

Besides, the lengths of predictive intervals are all very small in all approaches. The predictive

interval of the GaSP calibration seems to be most faithful for uncertainty assessment, as the

proportion of the observations covered in the interval are closest to the nominal level.

The posterior samples and estimation of the reality by different calibration approaches

are graphed in Figure 6. For better visualization, we thin the posterior samples by 10

and only graph one tenth of the total posterior samples. In this example, the posterior

samples of the S-GaSP are closer to the ones with the no-discrepancy calibration. Due

to this reason, the calibrated computer model by the S-GaSP calibration (graphed as the

dashed blue curve in the lower right panel) fits the observations well, whereas the calibrated

computer model by the GaSP calibration (graphed as the dashed red curve in the lower right

panel) underestimates the values of the observations. This identifiability issue of the GaSP

calibration in this example was also reported in (Plumlee, 2017), whereas the calibrated

mathematical model fits the observations reasonably well in the S-GaSP calibration.

7 Concluding remarks

We have introduced the scaled Gaussian stochastic process (S-GaSP) for the calibration and

prediction. We showed that under certain some routinely used assumptions, the predictive

mean of the S-GaSP calibration model converges to the reality as fast as the GaSP calibra-

tion with some suitable choice of the regularization parameter and scaling parameter. The
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Figure 6: The posterior samples and predictions from no-discrepancy calibration, S-GaSP
and GaSP calibration. The shaded area in the bottom right panel is the 95% predictive
credible interval of the mean of the observations.

estimated calibration parameters in the S-GaSP calibration converges to the L2 minimizer

with the same choice of the regularization parameter and scaling parameter, whereas those in

the GaSP calibration typically do not converge to the L2 minimizer. The results rely on the

the orthogonal series representation of the processes studied in this work. The computational

complexity of the discretized S-GaSP calibration is the same as the GaSP calibration. Both

GaSP, S-GaSP calibration and calibration without a discrepancy function were implemented

in the RobustCalibration R package under the Bayesian framework.

The numerical studies indicate that jointly estimating the calibration parameters and

discrepancy function in GaSP and S-GaSP calibration can improve the predictive accuracy,

if the reality are too complicated to be predicted precisely by nonparametric regression

alone. The mathematical model, which typically contains some information of the trend and

shape of the reality function, can be helpful in predictions. We also empirically found that
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the calibrated mathematical model that minimizes the L2 distance between the reality and

mathematical model may not always be the best for reducing the predictive error, as the

residuals may contain information that could be hard to be modeled by the nonparamet-

ric regression. The S-GaSP calibration give as least as accurate predictions as the GaSP

calibration, and the calibrated mathematical model by the S-GaSP calibration fits the real

observations much closer than the one by the S-GaSP calibration in almost all examples.

We outline a few extensions of the S-GaSP model below. From the theoretical per-

spective, we did not study the convergence of the discretized S-GaSP, whereas the numerical

studies indicate the convergence rate from the discretized S-GaSP is the same as the S-GaSP.

Secondly we illustrated that the S-GaSP calibration can be implemented in both Frequentist

and Bayesian ways. The contraction rate of the S-GaSP under the Bayesian framework,

however, was not studied. The studies of the contraction rate of the GaSP regression may

be extended to achieve this goal (Van der Vaart and Van Zanten, 2009; Bhattacharya et al.,

2014). Thirdly, we fix the scaling parameter in the S-GaSP calibration as a function of the

sample size, whereas historical information may be used to develop a reasonable prior for

this parameter (Salter et al., 2019). Furthermore, the S-GaSP calibration framework may

be extended to include a model of correlated noises, as the field observations may contain

time series and images (Anderson and Poland, 2017).
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Supplementary materials for a theoretical framework of the scaled

Gaussian stochastic process in prediction and calibration

All the formulas in this supplementary materials are cross-referenced in the main body of

the article. We first give a brief introduction of the Gaussian stochastic process model and

reproducing kernel Hilbert space in Section S1. The proof for Section 2 is given in Section S2.

The proof for Theorem 1 and two auxiliary lemmas are provided in Section S3. Section S4

encloses the proof for Theorem 2 and provides additional results regarding the convergence

of S-GaSP calibration when kernel parameters are estimated.

S1 Background: Gaussian stochastic process

Assume the mean and trend of the reality are properly modeled in the mathematical model.

Consider to model the unknown discrepancy function in the calibration model (1) via a

real-valued zero-mean Gaussian stochastic process δ(·) on a p-dimensional input domain X ,

δ(·) ∼ GaSP(0, σ2K(·, ·)), (S1)

where σ2 is a variance parameter and K(xa,xb) is the correlation for any xa,xb ∈ X , pa-

rameterized by a kernel function. For simplicity, we assume X = [0, 1]p in this work.

For any {x1, ...,xn}, the outputs (δ(x1), ..., δ(xn))T follow a multivariate normal distri-

bution

[δ(x1), ..., δ(xn) | σ2,R] ∼ MN(0, σ2R), (S2)

where the (i, j) entry of R is K(xi,xj). Some frequently used kernel functions include

the power exponential kernel and the Matérn kernel. We defer the issue of estimating the

parameters in the kernel function in Section 4 and assume K(·, ·) is known for now.

The reproducing kernel Hilbert space (RKHS), denoted as H, attached to the Gaussian
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stochastic process GaSP(0, σ2K(·, ·)), is the completion of the space of all functions

x→
k∑
i=1

wiK(xi,x), w1, ..., wk ∈ R, x1, ...,xk,x ∈ X , k ∈ N,

with the inner product

〈
k∑
i=1

wiK(xi, ·),
m∑
j=1

wjK(xj, ·)

〉
H

=
k∑
i=1

m∑
j=1

wiwjK(xi,xj).

For any function f(·) ∈ H, denote ‖f‖H =
√
〈f, f〉H the RKHS norm or the native

norm. Because the evaluation maps in RKHS are bounded linear, it follows from the Riesz

representation theorem that for each x ∈ X and f(·) ∈ H, one has f(x) = 〈f(·), K(·,x)〉H.

Denote L2(X ) the space of square-integrable functions f : X → R with
∫

x∈X f
2(x)dx <

∞. We denote 〈f, g〉L2(X ) :=
∫

x∈X f(x)g(x)dx the usual inner product in L2(X ). By Mercer’s

theorem, there exists an orthonormal sequence of continuous eigenfunctions {φk}∞k=1 with a

sequence of non-increasing and non-negative eigenvalues {ρk}∞k=1 such that

K(xa,xb) =
∞∑
k=1

ρkφk(xa)φk(xb), (S3)

for any xa,xb ∈ X .

The RKHS H contains all functions f(·) =
∑∞

k=1 fkφk(·) ∈ L2(X ) with fk = 〈f, φk〉L2(X )

and
∑∞

k=1 f
2
k/ρk < ∞. For any g(·) =

∑∞
k=1 gkφk(·) ∈ H and f(·), the inner product can

be represented as 〈f, g〉H =
∑∞

k=1 fkgk/ρk. For more properties of the RKHS, we refer to

Chapter 1 of Wahba (1990) and Chapter 11 of Ghosal and Van der Vaart (2017).
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S1.1 The equivalence between the maximum likelihood estimator

and the kernel ridge regression estimator in calibration

Assume one has a set of observations yF :=
(
yF (x1), ..., y

F (xn)
)T

and mathematical model

outputs fMθ := (fM(x1,θ), ..., fM(xn,θ))T , where θ = (θ1, ..., θq)
T ∈ Θ ⊂ Rq is a q-

dimensional vector of the calibration parameters.

Denote the regularization parameter λ := σ2
0/(nσ

2). For the calibration model (1) with

δ modeled as a GaSP in (S1), the marginal distribution of yF follows a multivariate normal

after marginalizing out δ,

[yF | θ, σ2
0, λ] ∼ MN(fMθ , σ2

0((nλ)−1R + In)). (S4)

Let L(θ) be the likelihood for θ in (S4) given the other parameters in the model. For any

given λ, the maximum likelihood estimator (MLE) of θ is denoted as

θ̂λ,n := argmax
θ∈Θ

L(θ). (S5)

Conditioning on the observations, θ̂λ,n and λ, the predictive mean of the discrepancy function

at any x ∈ X has the following expression

δ̂λ,n(x) := E[δ(x) | yF , θ̂λ,n, λ] = rT (x)(R + nλIn)−1
(
yF − fM

θ̂λ,n

)
(S6)

with r(x) = (K(x1,x), ..., K(xn,x))T and In being the n-dimensional identity matrix.

It is well-known that the predictive mean in (S6) can be written as the estimator for

the kernel ridge regression (KRR). In the following lemma, we show that (θ̂λ,n, δ̂λ,n(·)) is

equivalent to the KRR estimator.

Lemma S1. The maximum likelihood estimator θ̂λ,n defined in (S5) and predictive mean es-

timator δ̂λ,n(·) defined in (S6) can be expressed as the estimator of the kernel ridge regression
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as follows

(θ̂λ,n, δ̂λ,n(·)) = argmin
θ∈Θ,δ(·)∈H

`λ,n(θ, δ),

where

`λ,n(θ, δ) =
1

n

n∑
i=1

(yF (xi)− fM(xi,θ)− δ(xi))2 + λ‖δ‖2H. (S7)

Proof of Lemma S1. By the representer lemma (Rasmussen, 2006; Wahba, 1990), for any

θ ∈ Θ and x ∈ X , one has

δ̂λ,n,θ(x) =
n∑
i=1

wi(θ)K(xi,x). (S8)

Denote wθ = (w1(θ), ..., wn(θ))T . Since 〈K(xi, ·), K(xj, ·)〉H = K(xi,xj), (S7) becomes to

find θ and wθ that minimize

1

n
(yF − fMθ −Rwθ)T (yF − fMθ −Rwθ) + λwT

θ Rwθ. (S9)

For any θ, solving the minimization for (S9) with regard to wθ gives

ŵθ = (R + nλIn)−1(yF − fMθ ). (S10)

Then plugging ŵθ into (S9), based on the Woodbury matrix identity, one has

1

n
(yF − fMθ −Rŵθ)T (yF − fMθ −Rŵθ) + λŵT

θ Rŵθ

=
1

n
(yF − fMθ )T [(In −R(R + nλIn)−1)T (In −R(R + nλIn)−1)]

+ λ(yF − fMθ )T (R + nλIn)−1R(R + nλIn)−1(yF − fMθ )

= λ(yF − fMθ )T (R + nλIn)−1(yF − fMθ ), (S11)
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which shows that the minimizer of θ on right-hand side of (S11) is the same as the MLE of

θ in (S5). Finally, plugging the estimator θ̂λ,n into (S9), the result follows from the KRR

estimator of δ(·) in (S8) with the weights in (S10).

Although modeling the discrepancy function by the GaSP typically improves the pre-

diction accuracy of the reality, the penalty term of (S7) only contains ‖δ‖H to control the

complexity of the discrepancy. As the RKHS norm is not equivalent to the L2 norm, the

calibrated computer model could deviate a lot from the best performed mathematical model

in terms of the L2 loss (Tuo and Wu, 2015). In Section 2, we introduce the scaled Gaussian

stochastic process that predicts the reality as accurately as the GaSP with the aid of the

mathematical model, but has more prior mass on the small L2 distance between the reality

and mathematical model. As a consequence, the KRR estimator of the new model penalizes

both ‖δ‖H and ‖δ‖L2(X ) simultaneously.

S2 Proof for Section 2

Proof of Lemma 1. By Karhunen-Loève expansion, we have

δ(x) = σ
∞∑
i=1

√
ρiZiφi(x)

with Zi
i.i.d∼ N(0, 1). Denote Wk =

∑∞
i=k+1 ρiZ

2
i for any k ∈ N+. From the definition of

Z =
∫

x∈X δ
2(x)dx and

∫
x∈X φ

2
i (x)dx = 1 for any i ∈ N+, it is straightforward to see that

Z = σ2(ρ1Z
2
1 + · · ·+ ρkZ

2
k +Wk). (S12)

In the following expressions, we are conditioning on all parameters and they are dropped
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for simplicity. From the construction of

δz(x) =

{
δ(x) |

∫
x∈X

δ2(x)dx = Z

}

and Z ∼ pZ(·), the joint density of (Z1, ..., Zk,Wk) in the S-GaSP can be expressed as

pδz(Z1 = z1, ..., Zk = zk,Wk = wk)

=

∫ ∞
0

pδ (Z1 = z1, ..., Zk = zk,Wk = wk | Z = z) pZ(Z = z)dz

∝
∫ ∞
0

pδ (Z = z, Z1 = z1, ..., Zk = zk,Wk = wk)

pδ(Z = z)
gZ(Z = z)pδ(Z = z)dz

∝ pδ(Z1 = z1, ..., Zk = zk)pδ(Wk = wk)×∫ ∞
0

pδ(Z = z | Z1 = z1, ..., Zk = zk,Wk = wk) exp

(
−λzz

2σ2

)
dz

∝ pδ(Z1 = z1, ..., Zk = zk)pδ(Wk = wk)×∫ ∞
0

1
{
z = σ2(ρ1z

2
1 + · · ·+ ρkz

2
k + wk)

}
exp

(
−λzz

2σ2

)
dz

∝ exp

(
−1

2

k∑
i=1

z2i

)
pδ(Wk = wk) exp

[
−λz

2

(
k∑
i=1

ρiz
2
i + wk

)]

=

{
k∏
i=1

exp

[
−1

2
(1 + λzρi)z

2
i

]}
pδ(Wk = wk) exp(−λzwk/2) ,

where 1 in the fourth step is a Dirac delta function.

After integrating out Wk, it is clear that Zi’s are independently distributed as N(0, 1/(1+

λzρi)) under the measure induced by the S-GaSP. Since k is arbitrary, we have

δz(x) = σ

∞∑
i=1

√
ρi

1 + λzρi
Ziφi(x)

with Zi
i.i.d.∼ N(0, 1), from which the proof is complete.

Proof of Lemma 2. First note that for any xa,xb ∈ X , we haveK(xa,xb) =
∑∞

i=1 ρiφi(xa)φi(xb)

and Kz(xa,xb) =
∑∞

i=1 ρz,iφi(xa)φi(xb) with ρz,i = ρi/(1+λzρi). For h(·) =
∑∞

i=1 hiφi(·) ∈ H
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and g(·) =
∑∞

i=1 giφi(·) ∈ H, one has

〈h, g〉Hz =
∞∑
i=1

1

ρz,i
higi =

∞∑
i=1

1

ρi
higi + λz

∞∑
i=1

higi = 〈h, g〉H + λz〈h, g〉L2 .

Proof of Lemma 3. We show below that for any θ ∈ Θ and any x ∈ X , one has

δ̂λ,λz ,n(x) =
n∑
i=1

wz,i(θ)Kz(xi,x). (S13)

For any δ(·) ∈ H, decomposing it into the linear combination of the basis {λzKz(xi, ·)}ni=1

and the orthogonal complement v(·) gives

δ(·) =
n∑
i=1

w̃z,i(θ)λzKz(xi, ·) + v(·),

where 〈v(·), λzKz(·,xi)〉Hz = 0 for i = 1, ..., n.

To evaluate δ(·) at xj for any j = 1, ..., n, we have

δ(xj) =

〈
n∑
i=1

w̃z,i(θ)λzKz(xi, ·) + v(·), Kz(xj, ·)

〉
Hz

=
n∑
i=1

w̃z,i(θ)λzKz(xi,xj),

which is independent from v(·). Hence the first term on right-hand side of (9) is also inde-

pendent from v(·). For the second term on right-hand side of (9), since v(·) is orthogonal to

{Kz(xi, ·)}ni=1, plugging in the decomposition of δ(·), we have

λ‖δ‖2Hz = λ(‖
n∑
i=1

w̃z,i(θ)λzKz(xi, ·)‖2Hz + ‖v‖2Hz)

≥ λ‖
n∑
i=1

w̃z,i(θ)λzKz(xi, ·)‖2Hz .
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Thus choosing v(·) = 0 does not change the first term on right-hand side of (9), but also

minimizes the second term on right-hand side of (9). Letting wz,i(θ) = w̃z,i(θ)λz, we have

proved (S13). The rest of the proof can be derived similarly as the proof for Lemma S1, so

it is omitted here.

S3 Proof for Section 3.1

We prove Theorem 1 in this Section. Two auxiliary lemmas used for the proof of Theorem

1 are given after the proof.

Proof for Theorem 1. Define a new inner product on H as

〈f, g〉λ = (1 +
√
λ)〈f, g〉L2(X ) + λ〈f, g〉H (S14)

Let f =
∑∞

k=1 fkφk and g =
∑∞

k=1 gkφk be elements in H. Then

〈f, g〉λ = (1 +
√
λ)

∞∑
k=1

fkgk + λ
∞∑
k=1

fkgk
ρk

=
∞∑
k=1

(
1 +
√
λ+

λ

ρk

)
fkgk.

By letting µk by µ−1k = 1 +
√
λ+ λ/ρk, we can define a new reproducing kernel

Kλ(x,x
′) =

∞∑
k=1

µkφk(x)φk(x
′) (S15)

Since c−1ρ k−2m/p ≤ ρk ≤ C−1ρ k−2m/p and |φi(·)| < Cφ for some positive constants cρ, Cρ and

Cφ, bounding the sums by integrals, we have

sup
x,x′

Kλ(x,x
′) ≤ C2

φ

∞∑
k=1

1

1 + λcρk2m/p
≤ C2

φ

∞∑
k=1

∫ k

k−1

1

1 + λcρx2m/p
dx

= C2
φc
−p/2m
ρ λ−p/2m

∫ ∞
0

(λcρ)
p/2m

1 + {(λcρ)p/2mx}2m/p
dx

= C2
φc
−p/2m
ρ λ−p/2m

∫ ∞
0

1

1 + x2m/p
dx.
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Thus

sup
x,x′

Kλ(x,x
′) ≤ C2

Kλ
−p/(2m), (S16)

for some constant CK depending on K. Define the following linear operators Fλ : H → H

and Pλ : H → H via

(Fλg)(x) =

∫
X
g(x′)Kλ(x,x

′)dx′, and (Pλg)(x) = g(x)− (Fλg)(x),

Clearly, we have

〈f, Fλg〉λ =
∞∑
k=1

〈f, φk〉L2(X )〈g, φk〉L2(X ) = 〈f, g〉L2(X ),

〈f, Pλg〉λ = 〈f, g〉λ − 〈f, Fλg〉λ =
√
λ〈f, g〉L2(X ) + λ〈f, g〉H. (S17)

Denote the loss function

`nλ(f) =
1

n

n∑
i=1

(yi − f(xi))
2 +
√
λ‖f‖2L2(X ) + λ‖f‖2H,

and the estimator f̂nλ := argminf∈H `nλ(f). Let D`nλ(f) : H → H be the Frechét derivative

of `nλ evaluated at f . Clearly, for any g ∈ H,

D`nλ(f)g =
2

n

n∑
i=1

(f(xi)− yi)〈Kλ(xi, ·), g(·)〉λ + 2〈Pλf, g〉λ

=

〈
2

n

n∑
i=1

(f(xi)− yi)Kλ(xi, ·) + 2(Pλf)(·), g(·)

〉
λ

. (S18)

It follows that D`nλ(f̂nλ)g = 0 for all g ∈ H, and hence, Snλ(f̂nλ)(·) = 0, where

Snλ(f)(·) =
1

n

n∑
i=1

(yi − f(xi))Kλ(xi, ·)− (Pλf)(·).
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Define Sλ(f)(·) = Ey,x(Snλ(f)(·)). Then

Sλ(f)(·) =

∫
x∈X

(f0(x)− f(x))Kλ(x, ·)dx− (Pλf)(·)

= (Fλ(f0 − f))(·)− (Pλf)(·) = (Fλf0)(·)− f(·),

and therefore, Sλ(Fλf0)(·) = 0. Let ∆f = f̂nλ − Fλf0. By the definitions of Snλ and Sλ, we

have

{
Snλ(f̂nλ)− Sλ(f̂nλ)

}
(·)− {Snλ(Fλf0)− Sλ(Fλf0)} (·)

=
{
Snλ(f̂nλ)− Snλ(Fλf0)

}
(·)−

{
Sλ(f̂nλ)− Sλ(Fλf0)

}
(·)

=
1

n

n∑
i=1

{
Fλf0(xi)− f̂nλ(xi)

}
Kλ(xi, ·) + Pλ

{
(Fλf0)(·)− f̂nλ(·)

}
+ f̂nλ(·)− (Fλf0)(·)

= − 1

n

n∑
i=1

∆f(xi)Kλ(xi, ·)− (Pλ∆f)(·) + (∆f)(·)

= − 1

n

n∑
i=1

∆f(xi)Kλ(xi, ·) + Ex {∆f(x)Kλ(x, ·)} .

On the other hand, Snλ(f̂nλ)(·) = Sλ(Fλf0)(·) = 0 and Sλ(f̂nλ)(·) = (Fλf0)(·) − f̂nλ(·) =

−∆f(·). Therefore,

{
Snλ(f̂nλ)− Sλ(f̂nλ)

}
(·)− {Snλ(Fλf0)− Sλ(Fλf0)} (·) = ∆f(·)− Snλ(Fλf0)(·).

Define the event

An(t) =

{∥∥∥∥∥ 1

n

n∑
i=1

g(xi)Kλ(xi, ·)− Ex{g(x)Kλ(x, ·)}

∥∥∥∥∥
λ

< t‖g‖λ for all g ∈ H

}
.
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Applying Lemma S3 on g(·)/‖g‖λ,

Px{An(t)} ≥ 1− 2 exp

{
−λp(6m−p)/(4m2)

(
nt2

κK

)}

for some constant κK > 0. The deviation threshold t will be specified later, and from now

we consider data points (xi, yi)
n
i=1 over the event An(t).

Over the event An(t), we have

{
Snλ(f̂nλ)− Sλ(f̂nλ)

}
(·)− {Snλ(Fλf0)− Sλ(Fλf0)} (·)

= − 1

n

n∑
i=1

∆f(xi)Kλ(xi, ·) + Ex {∆f(x)Kλ(x, ·)}

= ∆f(·)− Snλ(Fλf0)(·),

implying that

‖∆f − Snλ(Fλf0)‖λ =

∥∥∥∥∥ 1

n

n∑
i=1

∆f(xi)Kλ(xi, ·)− Ex {∆f(x)Kλ(x, ·)}

∥∥∥∥∥
λ

≤ t‖∆f‖λ.
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Now we proceed to bound ‖Snλ(Fλf0)‖λ. Write

‖Snλ(Fλf0)‖λ

=

∥∥∥∥∥ 1

n

n∑
i=1

{yi − Fλf0(xi)}Kλ(xi, ·)− (PλFλf0)(·)

∥∥∥∥∥
λ

≤

∥∥∥∥∥ 1

n

n∑
i=1

{f0(xi)− Fλf0(xi)}Kλ(xi, ·)− {Fλ(f0 − Fλf0)}(·)

∥∥∥∥∥
λ

+

∥∥∥∥∥ 1

n

n∑
i=1

εiKλ(xi, ·)

∥∥∥∥∥
λ

=

∥∥∥∥∥ 1

n

n∑
i=1

{f0(xi)− Fλf0(xi)}Kλ(xi, ·)− Ex[{f0(x)− Fλf0(x)}Kλ(x, ·)]

∥∥∥∥∥
λ

+

∥∥∥∥∥ 1

n

n∑
i=1

εiKλ(xi, ·)

∥∥∥∥∥
λ

≤ t‖f0 − Fλf0‖λ +

∥∥∥∥∥ 1

n

n∑
i=1

εiKλ(xi, ·)

∥∥∥∥∥
λ

,

where the last inequality is due to the construction of the event An(t). To bound the second

term of the preceding display, we let σλ = [Kλ(xi,xj)]n×n and ε = [ε1, . . . , εn]T . By the

Hanson-Wright inequality (Rudelson et al., 2013), for all x > 0, we have

Px

[
εTσλε ≥ σ2

0

{
tr(σλ) + 2

√
tr(σ2

λ)x+ 2‖σλ‖Fx2
}]
≤ e−x

2

.

Since by the Cauchy-Schwarz inequality,

tr(Σλ) =
n∑
i=1

‖Kλ(xi, ·)‖2λ =
n∑
i=1

Kλ(xi,xi) ≤ C2
Knλ

−p/(2m),

tr(Σ2
λ) ≤

n∑
i=1

n∑
j=1

‖Kλ(xi, ·)‖L2(X )‖Kλ(xj, ·)‖L2(X ) ≤ C4
Kn

2λ−p/m,

‖σλ‖F =
√

tr(Σ2
λ) ≤ C2

Knλ
−p/(2m),
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it follows that

tr(Σλ) + 2
√

tr(Σ2
λ)x+ 2‖Σλ‖Fx2 ≤ C2

Knλ
−p/(2m)(1 + 2x+ 2x2). (S19)

Set the event Bn to be

Bn =

{∥∥∥∥∥ 1

n

n∑
i=1

eiKλ(xi, ·)

∥∥∥∥∥
λ

< σ0CKn
−1/2λ−p/(4m)α1/2

}
,

where α = 2 + 3x2. Since 1 + 2x + 2x2 ≤ 2 + 3x2 = α, by taking x =
√

(α− 2)/3, we have

P(Bn) ≥ 1− exp(−(α− 2)/3) for any α > 2. Putting all pieces obtained above together, we

have

‖∆f‖λ ≤ ‖∆f − Snλ(Fλf0)‖λ + ‖Snλ(Fλf0)‖λ

≤ t‖∆f‖λ + t‖f0 − Fλf0‖λ + σ0CKn
−1/2λ−p/(4m)α1/2

= t‖∆f‖λ + t‖Pλf0‖λ + σ0CKn
−1/2λ−p/(4m)α1/2, (S20)

over the event An(t) ∩ Bn. Now take λ = n−2m/(2m+p). Choose any Cβ ∈ (0, 1) and let

t =
√
κK/(n(1−Cβ)β log(2)). Then, for sufficiently large n,

Px{An(t)} ≥ 1− 2 exp

{
−n

βt2

κK

}
≥ 1− exp

{
−nCββ

}
,

where β = (2m− p)2/(2m(2m+ p)), and therefore,

‖∆f‖λ ≤ ‖Pλf0‖λ + 2σ0CKn
−m/(2m+p)α1/2,
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with probability at least

P{An(t) ∩Bn)} = 1− P{Acn(t) ∪Bc
n}

≥ 1− P{Acn(t)} − P(Bc
n) = 1− exp{−(α− 2)/3} − exp{−nCββ}

for sufficiently large n. Observe that

‖Pλf0‖2λ =

∥∥∥∥∥
∞∑
k=1

(1− µk)〈f0, φk〉L2(X )φk(·)

∥∥∥∥∥
2

λ

=
∞∑
k=1

(1− µk)2

µk
〈f0, φk〉2L2(X )

=
∞∑
k=1

(
√
λ+ λ/ρk)

2

1 +
√
λ+ λ/ρk

〈f0, φk〉2L2(X ) ≤
∞∑
k=1

2λ+ 2(λ/ρk)
2

1 + λ/ρk
〈f0, φk〉2L2(X )

≤ 2λ
∞∑
k=1

〈f0, φk〉2L2(X ) + 2λ
∞∑
k=1

1

ρk
〈f0, φk〉2L2(X )

= 2λ‖f0‖2L2(X ) + 2λ‖f0‖2H

≤ 2n−2m/(2m+p)
(
‖f0‖L2(X ) + ‖f0‖H

)2
.

Hence, we proceed to compute

‖f̂nλ − f0‖L2(X ) ≤ ‖f̂nλ − f0‖λ

≤ ‖f̂nλ − Fλf0‖λ + ‖Fλf0 − f0‖λ

= ‖∆f‖λ + ‖Pλf0‖λ

≤
(

2
√

2(‖f0‖L2(X ) + ‖f0‖H) + 2σ0CKα
1/2
)
n−m/(2m+p)

with probability at least 1 − exp{−(α − 2)/3} − exp
(
−nCββ

)
for sufficiently large n. The

bound for ‖f̂λ,λz ,n − f0‖H follows immediately by the definition of || · ||λ, completing the

proof.

The following the Lemma S2 is Theorem 3.6 in Pinelis (1994), which is needed for the

proof of Lemma S3.
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Lemma S2. Let (Xj)
∞
j=0 be a sequence of random elements in a Hilbert space H with norm

‖ ·‖H. Suppose that (Xj)
∞
j=0 forms a martingale in the sense that E(Xj | X0, . . . , Xj−1) = Xj

a.s., and that the difference sequence (Dj)
∞
j=1 = (Xj − Xj−1)

∞
j=1 satisfies ‖Dj‖2H ≤ b2j a.s.

and
∑∞

j=1 b
2
j ≤ b2∗. Then for any t ≥ 0,

P
(

sup
j≥1
‖Xj‖H ≥ t

)
≤ 2 exp

(
− t2

2b2∗

)
.

The following maximum inequality for functional empirical processes in the Sobolev space

Wm
2 (X , 1), which generalizes Lemma 5.1 in Yang et al. (2017a) to multivariate functions, is

of fundamental importance to the proof of Theorem 1.

Lemma S3. Denote Wm
2 (X , 1) = {f ∈ Wm

2 (X ) : ‖f‖λ ≤ 1}. Suppose x1, . . . ,xn are inde-

pendently and uniformly drawn from X . Then there exists some constant κK depending on

the kernel K, such that for any t > 0,

Px

(
sup

g∈Wm
2 (X ,1)

∥∥∥∥∥ 1

n

n∑
i=1

[g(xi)Kλ(xi, ·)− Ex {g(x)Kλ(x, ·)}]

∥∥∥∥∥
λ

≥ t

)

≤ 2 exp

{
−λ

d(6m−d)/(4m2)nt2

κK

}
.

Proof of Lemma S3. We follow the argument used in the proof of Lemma 6.1 in Yang

et al. (2017b). Denote

{Znλ(g)}(·) =
1

n

n∑
i=1

[g(xi)Kλ(xi, ·)− Ex{g(x)Kλ(x, ·)}].

Fix g, h ∈ H, n, and λ, consider the following sequence of martingale (Xj)
∞
j=0 in H:

Xj =


0, if j = 0,

j{Zjλ(g)− Zjλ(h)}, if j = 1, . . . , n

Xn, if j ≥ n+ 1.
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Clearly, for j = 1, . . . , n,

(Xj −Xj−1)(·) = {g(xj)− h(xj)}Kλ(xj, ·)− Ex[{g(xj)− h(xj)}Kλ(xj, ·)]

and Xj −Xj−1 = 0 for j ≥ n+ 1. Observe that

‖Kλ(xj, ·)‖λ =
√
〈Kλ(xj, ·), Kλ(xj, ·)〉λ =

√
Kλ(xj,xj) ≤ CKλ

−d/(4m)

with probability one. Therefore, with probability one, we have

‖Xj −Xj−1‖2λ ≤ 4C2
Kλ
−d/(2m)‖g − h‖2L∞

for j = 1, . . . , n, and hence, we invoke the bounded difference inequality for martingales in

Banach space (Lemma S2) to derive

P (‖Znλ(g)− Znλ(h)‖λ ≥ t) = P (‖n{Znλ(g)− Znλ(h)}‖λ ≥ nt)

≤ P
(

sup
j≥1
‖j{Zjλ(g)− Zjλ(h)}‖λ ≥ nt

)
≤ 2 exp

{
− nt2

8C2
Kλ
−d/(2m)‖g − h‖2L∞

}
.

Applying Lemma 8.1 in Kosorok (2008), we obtain the following bound

‖‖Znλ(g)− Znλ(h)‖λ‖ψ2
≤
√

24C2
K√

n
λ−d/(4m)‖g − h‖L∞ , (S21)

where ‖ · ‖ψ2 is the Orlicz norm associated with ψ2(s) = exp(s2)− 1.

Now let τ = {log(3/2)}1/2 and set φ(x) = ψ2(τx). Clearly, φ(1) = 1/2, and φ(x)φ(y) ≤

φ(xy) for any x, y ≥ 1. Applying Lemma 8.2 in Kosorok (2008), the Orlicz norm of the

maximum of finitely many random variables can be bounded by the maximum of these
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Orlicz norms as follows:

∥∥∥∥max
1≤i≤k

(τξi)

∥∥∥∥
ψ2

=

∥∥∥∥max
1≤i≤k

ξi

∥∥∥∥
φ

≤ 2φ−1(k) max
1≤i≤k

‖ξi‖φ =
2

τ
ψ−12 (k) max

1≤i≤k
‖τξi‖ψ2 ,

namely,

∥∥∥∥max
1≤i≤k

ξi

∥∥∥∥
ψ2

≤ 2

τ
ψ−12 (k) max

1≤i≤k
‖ξi‖ψ2 , (S22)

where {ξi}ki=1 are finitely many random variables.

Next we apply the “chaining” argument. Let ε > 0 be some constant to be determined

later. Construct a sequence of function classes (Gj)∞j=0 in Hλ(1) satisfying the following

conditions:

(i) For any Gj and any hj, gj ∈ Gj, ‖hj − gj‖L∞ ≥ ε/2j, and Gj is maximal in the sense

that for any gj /∈ Gj, there exists some hj ∈ Gj such that ‖hj − gj‖ < ε/2j.

(ii) For any Gj+1, and any gj+1 ∈ Gj+1, select a unique element gj ∈ Gj such that ‖gj+1 −

gj‖L∞ ≤ ε/2j. Thus, there exists a finite sequence (g0, g1, . . . , gj+1) such that ‖gi −

gi+1‖L∞ ≤ ε/2i for i = 0, . . . , j, and gi ∈ Gi.

Therefore, for any gj+1, hj+1 ∈ Gj+1 with ‖gj+1 − hj+1‖L∞ ≤ ε, there exists two sequences

(gi)
j+1
i=0 , (hi)

j+1
i=0 , such that gi, hi ∈ Gi, max{‖gi − gi+1‖L∞ , ‖hi − hi+1‖L∞} ≤ ε/2i, and that

‖g0 − h0‖L∞ ≤
j∑
i=0

(‖gi − gi+1‖L∞ + ‖hi − hi+1‖L∞) + ‖hj+1 − gj+1‖L∞

≤ 2

j∑
i=0

ε

2i
+ ε ≤ 5ε,

and hence, by (S21) one has

‖‖Znλ(g0)− Znλ(h0)‖λ‖ψ2 ≤
5
√

24C2
K√

n
λ−p/(4m)ε. (S23)
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We also notice that Gj ⊂ Hλ(1) ⊂ {f ∈ H : ‖f‖H ≤ λ−1/2}, and therefore, the cardinality

of Gj can be bounded by the metric entropy of {f ∈ H : ‖f‖H ≤ λ−1/2}, which is known in

the literature (Edmunds and Triebel, 2008):

log |Gj| ≤ logN[·]
(
ε/2j, {f ∈ H : ‖f‖H ≤ λ−1/2}, ‖ · ‖L∞

)
≤ c0λ

−p/(2m)
( ε

2j

)−p/m
,

where c0 is some absolute constant.

Now suppose g, h are arbitrary functions in Hλ(1) such that ‖g − h‖L∞ ≤ ε/2. For any

j ≥ 2, there exists gj, hj ∈ Gj such that

max{‖gj − g‖L∞ , ‖hj − h‖L∞} ≤ ε/2j,

and hence, ‖gj − hj‖L∞ ≤ ε. Therefore, for any j ≥ 2,

∥∥∥∥∥ sup
g,h∈Wm

2 (X ,1),‖g−h‖L∞≤ε
‖Znλ(g)− Znλ(h)‖λ

∥∥∥∥∥
ψ2

≤
∥∥∥∥ sup
g,h∈Wm

2 (X ,1),‖g−h‖L∞≤ε

(
‖Znλ(g)− Znλ(gj)‖λ + ‖Znλ(gj)− Znλ(hj)‖λ

+ ‖Znλ(hj)− Znλ(h)‖λ
)∥∥∥∥

ψ2

≤ 2
√

24C2
K√

n
λ−d/(4m) max {‖g − gj‖L∞ , ‖h− hj‖L∞}

+

∥∥∥∥∥ sup
g,h∈Wm

2 (X ,1),‖g−h‖L∞≤ε
‖Znλ(gj)− Znλ(hj)‖λ

∥∥∥∥∥
ψ2

≤ 2
√

24C2
K√

n

λ−d/(4m)ε

2j
+

∥∥∥∥ max
gj ,hj∈Gj ,‖gj−hj‖L∞≤ε

‖Znλ(gj)− Znλ(hj)‖λ
∥∥∥∥
ψ2

.

We focus on the second term of the preceding display. Fix j ≥ 2, for any gj, hj ∈ Gj,

consider the finite sequences (g0, g1, . . . , gj) and (h0, h1, . . . , hj) such that gi, hi ∈ Gi and
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‖gi − gi+1‖L∞ ≤ ε/2i, i = 1, . . . , j − 1. Invoking the inequality (S22), we have

∥∥∥∥ max
gj ,hj∈Gj ,‖gj−hj‖L∞≤ε

‖Znλ(gj)− Znλ(hj)‖λ
∥∥∥∥
ψ2

≤
∥∥∥∥ max
gj ,hj∈Gj ,‖gj−hj‖L∞≤ε

‖{Znλ(gj)− Znλ(hj)} − {Znλ(g0)− Znλ(h0)}‖λ
∥∥∥∥
ψ2

+

∥∥∥∥ max
g0,h0∈G0,‖gj−hj‖L∞≤ε

‖Znλ(g0)− Znλ(h0)‖λ
∥∥∥∥
ψ2

≤
∥∥∥∥ max
gj ,hj∈Gj ,‖gj−hj‖L∞≤ε

‖{Znλ(gj)− Znλ(hj)} − {Znλ(g0)− Znλ(h0)}‖λ
∥∥∥∥
ψ2

+
2

τ

√
log (1 + |G0 × G0|) max

(g0,h0)∈G0×G0,‖gj−hj‖L∞≤ε
‖‖Znλ(g0)− Znλ(h0)‖λ‖ψ2

.

Clearly, the second term can be bounded by inequality (S23):

2

τ

√
log (1 + |G0 × G0|) max

(g0,h0)∈G0×G0,‖gj−hj‖L∞≤ε
‖‖Znλ(g0)− Znλ(h0)‖λ‖ψ2

≤

(
10
√

24C2
K

τ

)
λ−p/(4m)ε√

n

√
log {1 + exp (2c0λ−p/(2m)ε−p/m)},

since

|G0 × G0| = |G0|2 ≤ exp(2 logN[·](ε, {‖f‖λ ≤ 1}, ‖ · ‖L∞))

≤ exp(2c0λ
−p/(2m)ε−p/m), (S24)
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it suffices to bound the first term. Write

∥∥∥∥ max
gj ,hj∈Gj ,‖gj−hj‖L∞≤ε

‖{Znλ(gj)− Znλ(hj)} − {Znλ(g0)− Znλ(h0)}‖λ
∥∥∥∥
ψ2

≤ 2

j−1∑
i=0

∥∥∥∥ max
(gi,gi+1)∈Gi×Gi+1,‖gi−gi+1‖L∞≤ε/2i

‖Znλ(gi+1)− Znλ(gi)‖λ
∥∥∥∥
ψ2

≤ 2

j−1∑
i=0

2

τ

√
log(1 + |Gi| × |Gi+1|)

× max
(gi,gi+1)∈Gi×Gi+1,‖gi−gi+1‖L∞≤ε/2i

‖‖Znλ(gi+1)− Znλ(gi)‖λ‖ψ2

≤ 4
√

24C2
Kλ
−p/(4m)

τ
√
n

j−1∑
i=0

√
log
[
1 + exp

{
2c0λ−p/(2m) (ε/2i)−p/m

}]
ε/2i,

where inequalities (S21) and (S22) are applied. Bounding the sum by integral, we have

j−1∑
i=0

√
log
[
1 + exp

{
2c0λ−p/(2m) (ε/2i)−p/m

}]
ε/2i

≤
j−1∑
i=0

∫ ε/2i

ε/2i+1

√
log{1 + exp(2c0λ−p/(2m)x−p/m)}dx

≤
∫ ε

0

√
log{1 + exp(2c0λ−p/(2m)x−p/m)}dx.

Putting all pieces above together, we obtain the following bound:

∥∥∥∥∥ sup
g,h∈Wm

2 (X ,1), ‖g−h‖L∞≤ε
‖Znλ(g)− Znλ(h)‖λ

∥∥∥∥∥
ψ2

.
λ−p/(4m)

√
n

[
ε

2j
+

∫ ε

0

√
log{1 + exp(2c0λ−p/(2m)x−p/m)}dx

+ ε
√

log{1 + exp(2c0λ−p/(2m)ε−p/m)}
]
.
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By taking j →∞, we can let the first term in the squared bracket tend to 0, and hence,

∥∥∥∥∥ sup
g,h∈Wm

2 (X ,1), ‖g−h‖L∞≤ε
‖Znλ(g)− Znλ(h)‖λ

∥∥∥∥∥
ψ2

.
λ−p/(4m)

√
n

[ ∫ ε

0

√
log{1 + exp(2c0λ−p/(2m)x−p/m)}dx

+ ε
√

log{1 + exp(2c0λ−p/(2m)ε−p/m)}
]

.
λ−p/(4m)

√
n

∫ ε

0

√
log{1 + exp(2c0λ−p/(2m)x−p/m)}dx.

Now we take h = 0, which implies Znλ(h) = 0 by the construction of Znλ. Furthermore, by

the property of reproducing kernel Kλ and the Cauchy-Schwarz inequality,

‖g − h‖L∞ ≤ sup
x∈X
|g(x)| = sup

x∈X
|〈g(·), Kλ(x, ·)〉λ|

≤ sup
x∈X
‖g‖λ

√
〈Kλ(x, ·), Kλ(x, ·)〉λ ≤ CKλ

−p/(4m).

Taking ε = CKλ
−p/(4m), we obtain

∥∥∥∥∥ sup
g∈Wm

2 (X ,1)
‖Znλ(g)‖λ

∥∥∥∥∥
ψ2

≤

∥∥∥∥∥ sup
g∈Wm

2 (X ,1),‖g‖L∞≤ε
‖Znλ(g)‖λ

∥∥∥∥∥
ψ2

≤

∥∥∥∥∥ sup
g,h∈Wm

2 (X ,1),‖g−h‖L∞≤ε
‖Znλ(g)− Znλ(h)‖λ

∥∥∥∥∥
ψ2

. n−1/2λ−p/(4m)

∫ ε

0

√
log{1 + exp(2c0λ−p/(2m)x−p/m)dx

. n−1/2λ−p(6m−p)/(8m
2).
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Hence, invoking Lemma 8.1 in Kosorok (2008), we finally obtain

P

(
sup

g∈Wm
2 (X ,1)

‖Znλ(g)‖λ > t

)
≤ 2 exp

{
− nt2

κ2Kλ
−p(6m−p)/(4m2)

}
,

for some absolute constant κK depending on K only, completing the proof.

S4 Proof for Section 3.2

Denote θ̂z := θ̂λ,λz ,n, δ̂z(·) := δ̂λ,λz ,n(·) and `z(θ, δ) := `λ,λz ,n(θ, δ) in (9).

We need the following Corollary 5 and Lemma S4 to prove theorem 2. Corollary 5 is a

direct consequence of Theorem 1. We repeatedly use the fact that for any f(·) ∈ L2(X ) ,

there exists a constant Cρ such that ‖f‖L2(X ) ≤ Cρ‖f‖H in the following proof.

Corollary 5. Denote δ̂z,θ = argminδ∈H `z(θ, δ) for each θ ∈ Θ. Under the Assumptions

A1 to A6, for sufficiently large n and any α > 2 and Cβ ∈ (0, 1), with probability at least

1− exp{−(α− 2)/3} − exp{−nCββ}, one has

sup
θ∈Θ
‖δ̂z,θ(·)− (yR(·)− fM(·,θ))‖L2(X )

≤ 2

[√
2

(
sup
θ∈Θ
‖yR(·)− fM(·,θ)‖L2(X )

+ sup
θ∈Θ
‖yR(·)− fM(·,θ)‖H

)
+ CKσ0α

1/2

]
n−

m
2m+p ,

and

sup
θ∈Θ
‖δ̂z,θ(·)‖H ≤ (2

√
2 + 1) sup

θ∈Θ
‖(yR(·)− fM(·,θ))‖H

+ 2
√

2 sup
θ∈Θ
‖yR(·)− fM(·,θ)‖L2(X ) + 2

√
2CKσ0α

1/2

by choosing λ = n−2m/(2m+p) and λz = λ−1/2, where CK is a constant depending on the kernel

K(·, ·).
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Lemma S4. Under assumptions A1 to A6,

(i) it holds that

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))
2

−
∫

x∈X
(yR(x)− fM(x,θ)− δ̂z,θ(x))2dx

∣∣∣∣ = op(n
−1/2),

and

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))εi

∣∣∣∣∣ = op(n
−1/2);

(ii) for any j = 1, ..., q, one has

1

n

n∑
i=1

(yR(xi)− fM(xi, θ̂z)− δ̂z(xi))
∂fM(xi, θ̂z)

∂θj

=

∫
x∈X

(yR(x)− fM(x, θ̂z)− δ̂z(x))
∂fM(x, θ̂z)

∂θj
dx + op(n

−1/2).

Proof. Denote

Wm
2 (H, B) :=

{
f(·) =

∞∑
j=1

fjφ(·) ∈ L2(X ) :
∞∑
j=1

j2m/pf 2
j ≤ B2

}
,

and

s2i (θ, δ) := (yR(xi)− fM(xi,θ)− δ(xi))2,

ui(θ, δ) := (yR(xi)− fM(xi,θ)− δ(xi))εi,

r2i (θ, δ) := (yR(xi)− fM(xi,θ)− δ(xi))
∂fM(x,θ)

∂θj

for (θ, δ) ∈ Θ×Wm
2 (X , B) and some B > 0 that will be specified later. Define the empirical
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processes

s̄2(θ, δ) :=
1√
n

n∑
i=1

{s2i (δ,θ)− Exi [s
2
i (δ,θ)]},

ū(θ, δ) :=
1√
n

n∑
i=1

{ui(δ,θ)− Exi,εi [ui(δ,θ)]},

r̄(θ, δ) :=
1√
n

n∑
i=1

{ri(δ,θ)− Exi [ri(δ,θ)]},

where

Exi [s
2
i (θ, δ)] =

∫
x∈X

(yR(x)− fM(x,θ)− δ(x))2dx,

Exi,εi [ui(θ, δ)] =

∫
x∈X

(yR(x)− fM(x,θ)− δ(x))εidx = 0,

Exi [ri(θ, δ)] =

∫
x∈X

(yR(x)− fM(x,θ)− δ(x))
∂fM(x,θ)

∂θj
dx.

By Assumptions A3 and A4, the function classes {∂fM(·,θ)/∂θj : θ ∈ Θ} and F = {yR(·)−

fM(·,θ),θ ∈ Θ} are Donsker. Note that, by definition, Wm
2 (X , B) is also Donsker. Since

both Wm
2 (X , B) and F are uniformly bounded, the function classes

{(yR(·)− fM(·,θ)− δ(·))2 : θ ∈ Θ, δ ∈ Wm
2 (X , B)}, and{

(yR(·)− fM(·,θ)− δ(·))∂f
M(·,θ)

∂θj
: θ ∈ Θ, δ ∈ Wm

2 (X , B)

}

are also Donsker classes. Furthermore, letting fθ,δ(ε,x) = (yR(x)−fM(x,θ)−δ(x))ε, observe

that for any (θ1, δ1) and (θ2, δ2), the distance

{
E0

[
(fθ1,δ1 − fθ2,δ2)2

]}1/2
= σ0‖fM(·,θ1)− δ1(·)− fM(·,θ2) + δ2(·)‖L2(X )

≤ σ0
[
‖fM(·,θ1)− fM(·,θ2)‖L2(X ) + ‖δ1(·)− δ2(·)‖L2(X )

]
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can be bounded by the L2(X )-distance of functions in {fM(·,θ) : θ ∈ Θ} and δ(·) ∈

Wm
2 (X , B). In addition, by Assumption A4 {fM(·,θ) : θ ∈ Θ} and Wm

2 (X , B) are Donsker

classes, it follows that the function class

{fθ,δ ∈ C(R×X ) : θ ∈ Θ, δ ∈ Wm
2 (X , B)}

is also Donsker, since its metric entropy can be upper bounded by those of {fM(·,θ) : θ ∈ Θ}

and Wm
2 (X , B). By Theorem 2.4 in Mammen and Van de Geer (1997), for any t1 > 0 and

any B > 0, there exists t2, t
′
2, t
′′
2 > 0 such that

lim sup
n→∞

P

(
sup

‖δ‖H≤B,θ∈Θ, ‖yR(·)−fM (·,θ)−δ(·)‖L2(X )≤t2
|s̄2(θ, δ)| > t1

)
< t1, (S25)

lim sup
n→∞

P

(
sup

‖δ‖H≤B,θ∈Θ, ‖yR(·)−fM (·,θ)−δ(·)‖L2(X )≤t′2
|r̄(θ, δ)| > t1

)
< t1, (S26)

lim sup
n→∞

P

(
sup

‖δ‖H≤B,θ∈Θ, ‖yR(·)−fM (·,θ)−δ(·)‖L2(X )≤t′′2
|ū(θ, δ)| > t1

)
< t1. (S27)

Note that by Corollary 5, supθ∈Θ ‖δ̂z,θ‖H is asymptotically tight, and therefore for any

ε > 0, there exists B0 > 0 and some integer N ∈ N+, both depending on ε, such that

P (supθ∈Θ ‖δ̂z,θ‖H > B0) ≤ ε/3 for all n > N . Now take B = B0, t1 = ε/3. Then we can

choose t2 to be a value that satisfies (S25), t′2 satisfying (S26), and t′′2 satisfying (S27). By

Corollary 5 and Assumption A5, supθ ‖δ̂z,θ(·)− (yR(·)− fM(·,θ))‖L2(X ) = OP (n−2m/(2m+p)),

and hence there exists t3 > 0, depending on ε and n, such that for all n > N , it holds that

P

(
sup
θ∈Θ
‖yR(·)− fM(·,θ)− δ̂z,θ(·)‖L2(X ) ≥ t3

)
< ε/3.

Without loss of generality, we may require t3 ≤ min{t2, t′2, t′′2} by taking sufficiently large n.
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Then for sufficiently large n, we obtain

P

(
sup
θ∈Θ
|s̄2(θ, δ̂z,θ)| > ε

)
≤ P

(
sup

supθ ‖δ̂z,θ‖H≤B0,θ∈Θ, ‖yR(·)−fM (·,θ)−δ̂z,θ(·)‖L2(X )≤t2
|s̄2(θ, δ̂z,θ)| > t1

)

+ P

(
sup
θ∈Θ
‖yR(·)− fM(·,θ)− δ̂z,θ(·)‖L2(X ) > t2

)
+ P

(
sup
θ∈Θ
‖δ̂z,θ‖H > B0

)
< ε/3 + ε/3 + ε/3 = ε,

and similarly,

P

(
sup
θ∈Θ
|r̄(θ, δ̂z,θ)| > ε

)
< ε and P

(
sup
θ∈Θ
|ū(θ, δ̂z,θ)| > ε

)
< ε.

Therefore,

1√
n

sup
θ∈Θ
|s̄(θ, δ̂z,θ)|

= sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))
2

−
∫

x∈X
(yR(x)− fM(x,θ)− δ̂z,θ(x))2dx

∣∣∣∣ = op(n
−1/2),

and

1√
n

sup
θ∈Θ
|ū(θ, δ̂z,θ)| = sup

θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))εi

∣∣∣∣∣ = op(n
−1/2),
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completing the proof of (i). The proof of (ii) can be completed by observing that

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi, θ̂z)− δ̂z(xi))
∂fM(xi, θ̂z)

∂θj

−
∫

x∈X
(yR(x)− fM(x, θ̂z)− δ̂z(x))

∂fM(x, θ̂z)

∂θj
dx

∣∣∣∣∣
=

1√
n
|r̄(θ̂z, δ̂z,θ̂z)| ≤

1√
n

sup
θ∈Θ
|r̄(θ, δ̂z,θ)| = op(n

−1/2).

Proof for Theorem 2. Without loss of generality, it suffices to prove the case when λz =

λ−1/2. For the general case when λz = O(λ−1/2), the proof follows similarly. We first show

θ̂z →p θL2 . By the definition of θ̂z, θL2 , and the theory of M-estimators (see, Theorem

5.7 in Van der Vaart (2000)), it suffices to show that λ−1/2(`z(θ, δ̂z,θ) − σ2
0) →p ‖yR(·) −

fM(·,θ)‖2L2(X ) uniformly for each θ ∈ Θ. Note that

`z(δ̂z,θ(·),θ)

=
1

n

n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))
2 +

1

n

n∑
i=1

εilon2
i

+
2

n

n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))εi + λ‖δ̂z,θ‖2H +
√
λ‖δ̂z,θ‖2L2(X )

:= An +Bn + Cn +Dn + En.

For An, by Lemma S4 (i) and Corollary (5), one has

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))
2

∣∣∣∣∣ = op(n
−1/2) (S28)

Since E[Bn] = σ2
0 and V[Bn] = O(n−1), Chebyshev’s inequality implies (1/n)

∑n
i=1 εilon

2
i =
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σ2
0 +Op(n

−1/2) for Bn. For Cn, Lemma S4 (i) guarantees that

sup
θ∈Θ

2

n

n∑
i=1

(yR(xi)− fM(xi,θ)− δ̂z,θ(xi))εi = op(n
−1/2)

Since λ = O(n−2m/(2m+p)), by the asymptotic tightness of supθ ‖δ̂z,θ‖H (Corollary 5), one

has supθ∈Θ λ‖δ̂z,θ‖2H = op(n
−1/2). By putting the above all pieces together, we obtain

sup
θ∈Θ

∣∣∣λ−1/2(`z(δ̂z,θ(·),θ)− σ2
0)− ‖δ̂z,θ‖2L2(X )

∣∣∣ = Op((λn)−1/2). (S29)

For any θ, by the Cauchy-Schwarz inequality, one has

∣∣∣‖δ̂z,θ‖2L2(X ) − ‖yR(·)− fM(·,θ)‖2L2(X )

∣∣∣
≤ ‖(δ̂z,θ(·)− (yR(·)− fM(·,θ))‖L2(X )‖δ̂z,θ(·) + yR(·)− fM(·,θ)‖L2(X )

Recall that

sup
θ∈Θ
‖(δ̂z,θ(·)− (yR(·)− fM(·,θ))‖L2(X ) = Op(n

−m/(2m+d))

by Corollary 5 and Assumption A4. Using Assumptions A4 and the asymptotic tightness of

supθ ‖δ̂z,θ‖H (Corollary 5), one has

‖δ̂z,θ(·) + yR(·)− fM(·,θ)‖L2(X )

≤ ‖δ̂z,θ(·)‖L2(X ) + sup
θ∈Θ
‖yR(·)− fM(·,θ)‖L2(X )

≤ Cρ‖δ̂z,θ(·)‖H + sup
θ∈Θ
‖yR(·)− fM(·,θ)‖H = Op(1).

Thus

sup
θ∈Θ

∣∣∣‖δ̂z,θ‖2L2(X ) − ‖yR(·)− fM(·,θ)‖2L2(X )

∣∣∣ = Op(n
−m/(2m+d)),
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and hence,

sup
θ∈Θ

∣∣∣λ−1/2(`z(θ, δ̂z,θ)− σ2
0)− ‖yR(·)− fM(·,θ)‖2L2(X )

∣∣∣ = op(1),

from which we conclude θ̂z →p θL2 .

Next we derive the convergence rate of θ̂z. Apply the Fréchet derivative on `z with regard

to δ(·) and the partial derivative on `z with regard to θj, j = 1, ..., q. For any g(·) ∈ H, δ̂z

and θ̂z satisfy

0 = − 2

n

n∑
i=1

(yFi − f(xi, θ̂z)− δ̂z(xi))g(xi) + 2λ〈δ̂z(·), g(·)〉H

+ 2
√
λ〈δ̂z(·), g(·)〉L2(X ), (S30)

0 = − 2

n

n∑
i=1

(yFi − f(xi, θ̂z)− δ̂z(xi))
∂fM(xi, θ̂z)

∂θj
. (S31)

Choosing g(·) = ∂fM (·,θ̂z)
∂θj

and plugging (S31) into (S30), one has

√
λ

〈
δ̂z(·),

∂fM(·, θ̂z)
∂θj

〉
H

+

〈
δ̂z(·),

∂fM(·, θ̂z)
∂θj

〉
L2(X )

= 0. (S32)

Substituting (S31) into (S32) and by Lemma S4 (ii), we have

0 = − 1

n

n∑
i=1

(yFi − f(xi, θ̂z)− δ̂z(xi))
∂fM(xi, θ̂z)

∂θj

= −
∫

(yR(x)− fM(x, θ̂z))
∂fM(x, θ̂z)

θj
dx +

〈
δ̂z(·),

∂fM(·, θ̂z)
∂θj

〉
L2(X )

− 1

n

n∑
i=1

εi
∂fM(xi, θ̂z)

∂θj
+ op(n

−1/2)

=

∫
∂(yR(x)− fM(x, θ̂z))

2

∂θj
dx−

√
λ

〈
δ̂z(·),

∂fM(·, θ̂z)
∂θj

〉
H

− 1

n

n∑
i=1

εi
∂fM(xi, θ̂z)

θj
+ op(n

−1/2).
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Applying Taylor expansion to the first term on the right-hand side at θL2 , for any j = 1, ..., q,

we obtain

{∫
∂2(yR(x)− fM(x, θ̃z))

2

∂θj∂θ
dx

}T

(θ̂z − θL2)

=

{∫
∂2(yR(x)− fM(x,θL2))

2

∂θj∂θ
dx + op(1)

}T
(θ̂z − θL2)

=
√
λ

〈
δ̂z(·),

∂fM(·, θ̂z)
∂θj

〉
H

+
1

n

n∑
i=1

εi
∂fM(xi, θ̂z)

∂θj
+ op(n

−1/2), (S33)

where θ̃z lies within the q dimensional rectangle between θL2 and θ̂z. Observe that Corollary

5 and assumption A3 imply

∣∣∣∣∣
〈
δ̂z,

∂fM(·, θ̂z)
∂θj

〉
H

∣∣∣∣∣ ≤ ‖δ̂z‖H
∥∥∥∥∂fM(·,θL2)

∂θj
+ op(1)

∥∥∥∥
H

= Op(1).

Now we consider the second term. Define the empirical process

Gn(θ) =
1√
n

n∑
i=1

[
εi
∂fM(xi,θ)

∂θj
− εi

∂fM(xi,θL2)

∂θj

]
.

and denote

fθ(ε,x) = ε
∂fM(x,θ)

∂θj
− ε∂f

M(x,θL2)

∂θj
.

Since

Eεilon,x
{

[fθ1(ε,x)− fθ2(ε,x)]2
}

= Eεilon,x

[
ε2
(
∂fM(x,θ1)

∂θj
− ∂fM(x,θ2)

∂θj

)2
]

= σ2
0

∥∥∥∥∂fM(x,θ1)

∂θj
− ∂fM(x,θ2)

∂θj

∥∥∥∥2
L2(X )

,

therefore the function class {fθ(ε,x) ∈ C(R×X ) : θ ∈ Θ} is Donsker by Assumption A3,

and hence, Gn(θ) converges weakly to a tight Gaussian stochastic process, denoted by G(·).

W.l.o.g., we may takeG(·) a version that has uniformly continuous sample paths (see Chapter
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6 in Van de Geer (2000)). Since Gn(θL2) = 0 for all n, it follows that G(θL2) = 0. By the

consistency of θ̂z and the continuous mapping theorem (Van der Vaart, 2000), Gn(θ̂z) =

G(θL2) + op(1) = op(1). Therefore,

1

n

n∑
i=1

εi
∂fM(xi, θ̂z)

∂θj
=

1√
n
Gn(θ̂z) +

1

n

n∑
i=1

εi
∂fM(xi,θL2)

∂θj
= Op(n

−1/2)

To sum up,

{∫
∂2(yR(x)− fM(x,θL2))

2

∂θ∂θT
dx + op(1)

}
(θ̂z − θL2)

= Op(n
−m/(2m+p)) +Op(n

−1/2) + op(n
−1/2) = Op(n

−m/(2m+p)),

completing the proof.

S5 Proof and additional results for Section 4

The identities in the Lemma S5 are used repeatedly in the proof of the Theorem 3 and

Lemma 4.

Lemma S5. Denote σ2Rzd the covariance matrix of (δzd(x1), ..., δzd(xn))T , where the (i, j)

entry being σ2Kzd(xi,xj) defined in (17). Denote rzd(x) = (Kzd(x,x1), ..., Kzd(x,xn))T for

any x ∈ X . One has the following identities

R−1zd = R−1 +
λz
n

In, (S34)

rTzd(x) =
n

λz
rT (x)R̃−1 = rT (x)R−1Rzd , (S35)

for any x ∈ X .
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Proof. By the definitions of Rzd and the Woodbury Identity, one has

Rzd = R−RR̃−1R = R

(
In −

(
In +

λz
n

R−1
)−1)

= R

(
λz
n

R + In

)−1
=

(
R−1 +

λz
n

In

)−1
,

from which (S34) follows.

Equation (S35) can be shown similarly by noting rTzd(x) = rT (x) − rT (x)R̃−1R and the

Woodbury Identity.

Proof of Theorem 3. The predictive mean is as follows

µ̂z(x) = E[yF (x) | yF ,θ, σ2
0, λ, λz]

= fM(x,θ) + rzd(x)T (Rzd + nλIn)−1 (yF − fMθ )

= fM(x,θ) + r(x)TR−1Rzd (Rzd + nλIn)−1 (yF − fMθ )

= fM(x,θ) + r(x)TR−1

(
In + nλ

(
R−1 +

λz
n

In

)−1)
(yF − fMθ )

= fM(x,θ) +
r(x)T

(1 + λλz)

(
R−1 +

nλ

1 + λλz
In

)−1
(yF − fMθ ),

where the last two equalities follow from (S35) and (S34), respectively.

The predictive variance can be obtained using (S35) and (S34) as follows

K∗z (x,x) = Kzd(x,x)− rTzd(x) (Rzd + nλIn)−1 rzd(x)

= K(x,x)− rT (x)R̃−1r(x)

− (1 + λλz)
−1r(x)T

(
R−1 +

nλ

1 + λλz
In

)−1
n

λz
R̃−1r(x)

from which the result follows.
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Proof of Lemma 4. When σ2
0 = 0, the predictive mean is as follows

E[yF (x) | yF ,θ, σ2
0, λ, λz] =fM(x,θ) + rzd(x)TR−1zd (yF − fMθ )

=fM(x,θ) + r(x)TR−1RzdR
−1
zd

(yF − fMθ )

=fM(x,θ) + r(x)TR−1(yF − fMθ ).

The predictive variance can be obtained similarly.
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