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Abstract.
Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many

applications to assess the differences between the sets in terms of their distributions. Indices for this task
are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility
with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most
non-compact and non-commutative groups. We show here that if one considers an affine connection structure
instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling T 2 statistic,
Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate
counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice
of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consis-
tent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee
configurations and epidemiological shape data. Significant differences are revealed in both cases.
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1. Introduction. Manifold-valued data occur in many applications [18, 54, 58, 61] and
it can often be conceived as elements of a Lie group. Examples include representations of
skeletal systems (e.g., in robotics [53]), inferences of anatomical structures by evaluating
diffusion tensor fields in medicine [6, 7, 8, 57], position- and motion-independent recognition
of objects in computer vision [40, 74, 75, 76], or analysis of covariance matrices (e.g., in feature-
based image analysis [73]). The algorithmic tasks involved in Lie group-based computations
are correspondingly diverse: They range from computation of geometric means [46, 47], to
function approximation and regression [35, 63, 78], numerical solution of differential equations
[42], numerical minimization [68], signal processing [9, 10, 16, 29], image analysis [11, 25], as
well as computer vision [15, 50, 51, 59, 70, 71].

Another area where Lie-group-valued measurements are regularly performed is shape
analysis: The idea is to represent shapes of objects as deformations of a common reference,
as introduced by D’Arcy Thompson over 100 years ago [69]; the deformations are usually
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elements of a Lie group. For example, in [1, 13], configurations of the human spine are en-
coded in a product group consisting of translations and rotations. Classical matrix groups
are also used in physically motivated shape spaces [4, 77] as well as in the characterization of
volume [79] and surface [3] deformations. Important algorithmic tasks are matching, analysis
and statistics of shapes [30, 41, 66, 67, 72].

For data analysis in Lie groups, it is necessary to generalize methods of multivariate sta-
tistics to the Lie group setting. Keeping in mind that Lie groups possess symmetries since
they act on themselves via translations, it is desirable to look for generalizations that respect
these symmetries. The task, then, is to derive methods that are invariant/equivariant under
in-group translations (from both left and right). This property is not only an established the-
oretical criterion for selection of statistical methods [34], but it also has practical advantages:
In shape analysis, for example, it avoids a bias due to the choice of reference and, at the same
time, different data configurations [1, 3, 79]. In machine learning applications, equivariant
convolutional networks have been shown to perform very well on Lie groups [22, 28].

Although geometrically-defined statistical methods from Riemannian geometry have long
been used, they respect the symmetries only if a bi-invariant Riemannian metric exists on
the Lie group at hand. However, this is often not the case: particularly relevant examples
for applications are the group of rigid body transformations and the general linear group in
dimensions greater than one.

To overcome the problems of the Riemannian approach, Pennec and Arsigny generalized
the notions of mean, covariance and Mahalanobis distance to Lie groups using a (non-metric)
affine structure [55]. The quantities defined in this way have the desired invariance/equivari-
ance properties under translations. We build on this work to derive bi-invariant (i.e., invariant
under translation from both left and right) generalizations of the Hotelling T 2 statistic and
Bhattacharyya distance for data in Lie groups that follow a generalized normal distribution.
Both are well-known indices from multivariate statistics and are used to measure dissimilar-
ities between two probability distributions. As such they have found numerous applications,
for example, in statistical hypothesis testing [52], feature extraction [19], and image process-
ing [33]. In contrast to generalizations based on Riemannian structures [39, 49], the proposed
quantities are not only bi-invariant, but also reduce to the multivariate formulations in the
case of Euclidean spaces. To illustrate the potential, we use the newly defined notions to
construct hypothesis tests for two prospective applications. First, we detect differences in the
configuration of human knees under osteoarthritis when compared to healthy controls. Sec-
ond, we test for differences in shape of the right hippocampus of patients in early Alzheimer’s
disease; thereby, both a local and a global test confirm effects known from the literature.
Python implementations of our proposed methods, which were also used for the tests, are
available online as part of the Morphomatics library [2].

This article is based in part on the workshop paper [36], but includes both theoretical and
experimental extensions: We provide a rigorous mathematical formulation of the underlying
concepts, including new discussions of the symmetry properties of the proposed indices under
an exchange of the data sets and on the behavior of the indices under inversion of the data.
Furthermore, we derive the connection between the bi-invariant Bhattacharyya distance and
its version for densities and propose a bi-invariant Hellinger distance. Finally, we extend the
previous experiments to include a global hypothesis test for the equality of shape distributions
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and a local test based on the Bhattacharyya distance and perform a new hypothesis test for
differences in the SE(3)-valued configuration of the knee under osteoarthritis.

2. Theoretical Background. Let (p1, . . . , pm) and (q1, . . . , qn) be two data sets in Rd,
each with i.i.d. normally distributed elements, and let p and q denote the respective sample
means. Assuming homoscedasticity (i.e., that both distributions share the same covariance
matrix) the data’s pooled sample covariance is given by

(2.1) Ŝ =
1

m+ n− 2

 m∑
i=1

(pi − p)(pi − p)T +

n∑
j=1

(qj − q)(qj − q)T

 .

Since the covariances are the same, Ŝ is an unbiased estimator of the pooled covariance. The
multivariate Hotelling T 2 statistic is then defined as the square of the Mahalanobis distance
scaled by mn/(m+ n):

(2.2) t2
(
(pi), (qi)

)
=

mn

m+ n
(p− q)T Ŝ−1(p− q).

It measures the difference of p and q weighted by the inverse of the pooled covariance. There-
fore, directions in which high variability was observed are weighted less than those with little
spreading around the corresponding components of the mean.

If additionally the variances of both distributions differ, the Bhattacharyya distance [43]
is a suggested index for assessing the dissimilarity between them. Denoting the matrix de-
terminant by det, the respective sample covariance matrices by Spi and Sqi , and setting
S̄ = (Spi + Sqi)/2, it is defined by

(2.3) DB

(
(pi), (qi)

)
=

1

8
(p− q)T S̄−1(p− q) +

1

2
ln

(
det(S̄)√

det(Spi) det(Sqi)

)
.

Note that the first summand (without the constant factor) differs from Hotelling’s T 2 statistic
only by the use of the averaged covariance matrix instead of the pooled one.

A fundamental property of both the Hotelling’s T 2 statistic and the Bhattacharyya dis-
tance is invariance under data translations (e.g., t2

(
(pi + v), (qi + v)

)
= t2

(
(pi), (qi)

)
for all

v ∈ Rd). It is thus highly desirable that generalizations of these quantities also exhibit this
invariance property. We achieve this for Lie groups by considering them as affine manifolds.

2.1. Affine Manifolds and Lie Groups. In the following, we summarize the relevant facts
of affine manifolds and (finite-dimensional) Lie group theory; we also explain how the Rie-
mannian is integrated in the affine setting. For more information on Lie groups see [37]
and [60]; the latter is also a good reference on affine manifolds. Additional information on
differential geometry can, for example, be found in [24]. In the following we use “smooth”
synonymously with “infinitely often differentiable”.

Let M be a smooth manifold. We denote the tangent space at p ∈ M by TpM , and
the sets of smooth functions and vector fields on M by C∞(M) and Γ(TM), respectively. If
X ∈ Γ(TM), then Xp denotes its value in TpM . Given X,Y ∈ Γ(TM), an affine connection ∇
yields a way to differentiate Y along X; the result ∇XY ∈ Γ(TM) being again a vector field. If
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M is additionally endowed with a Riemannian metric (i.e., a smoothly varying inner product
on the tangent spaces), then (for every such metric) there is a unique affine connection called
Levi-Civita connection. Whenever we speak of a Riemannian manifold in the following, we
mean a smooth manifold that is endowed with the Levi-Civita connection of some arbitrary
Riemannian metric.

With γ′ = dγ
dt , we can define a geodesic γ : [0, 1] → M by ∇γ′γ′ = 0 as a curve without

acceleration. An important fact is that every point p ∈ M has a so-called normal convex
neighborhood U . Each pair q, r ∈ U can be joined by a unique geodesic [0, 1] ∋ t 7→ γ(t; q, r)
that lies completely in U . Furthermore, with γ′(0; p, q) = v, this defines the exponential
Expp : TpM →M of the connection ∇ at p by

Expp(v) = γ(1; p, q).

It is a local diffeomorphism with local inverse

Logp(q) = γ′(0; p, q).

In the case of Riemannian manifolds, Exp and Log are called Riemannian exponential and
logarithm, respectively.

A Lie group G is a smooth manifold that (in addition) has a compatible group structure;
that is, there is a smooth (not necessarily commutative) group operation G × G ∋ (g, h) 7→
gh ∈ G with corresponding identity element e ∈ G such that the inversion map g 7→ g−1 is
also smooth. Vector spaces (with addition) are instances of Lie groups. Another example
is the general linear group GL(n), that is, the set of all bijective linear mappings on an n-
dimensional vector space V , where the group operation is the composition of mappings (i.e.,
a matrix multiplication), with e being the identity map. Whenever we speak of matrix groups
in the following, arbitrary closed subgroups of GL(n) are meant.

For each g ∈ G the group operation defines two automorphisms on G: the left and right
translation Lg : h 7→ gh and Rg : h 7→ hg. Their derivatives dhLg and dhRg at h ∈ G map
tangent vectors v ∈ ThG bijectively to the tangent spaces TghG and ThgG, respectively. In
particular, it holds that

TgG = {deLg(v) : v ∈ TeG} = {deRg(w) : w ∈ TeG}.

Thus, each Xe ∈ TeG determines a smooth vector field X ∈ Γ(TG) by Xg = deLg(Xe) for
all g ∈ G. It is called left invariant because XLg(h) = dhLg(Xh) for all h ∈ G, that is,
the value at a left translated point is the left translated vector. (For matrix groups with
identity matrix I we get the simple equation dILA(M) = AM for an element A and a matrix
M in the tangent space at I.) Together with the Lie bracket they form the so-called Lie
algebra g ⊂ Γ(TG) of G. (Remember that the Lie bracket of X,Y ∈ Γ(TG) is defined by
[X,Y ] = XY − Y X ∈ Γ(TG)1.) Furthermore, the converse also holds: every left invariant

1This is to be understood as a differential operator, i.e., if ψ ∈ C ∞(G), then [X,Y ]ψ ∈ C ∞(G), where
([X,Y ]ψ)(g) measures the failure to commute when taking directional derivatives of ψ at g in directions Xg

and Yg.
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vector field is uniquely determined by its value at the identity. Consequently, TeG and g are
isomorphic2.

Since deLg is bijective for every g ∈ G (and Lg smooth in g), any basis of TeG determines
a unique global frame (a smooth choice of basis for each tangent space) of left invariant vector
fields. In particular, for each g ∈ G any basis of TeG can be smoothly transported to a basis
of TgG without dependence on the “path” (“take the basis from the corresponding global
frame”). Because of this, we can view TeG as the reference tangent space of G.

Of course, right invariant vector fields are defined analogously and have parallel properties
to left invariant fields.

The integral curve αX : R → G through e of an invariant (left or right) vector field
X ∈ Γ(TG) determines a unique 1-parameter subgroup of G since αX(s + t) = αX(s)αX(t)
for all s, t ∈ R. The group exponential exp : TeG→ G is then defined by

exp(Xe) = αX(1).

It is also a diffeomorphism in a neighborhood V of e and, hence, we can define the group
logarithm log as its inverse there. In the case of matrix groups they coincide with the matrix
exponential and logarithm. Important for us will be the inverse consistency of the group
logarithm, that is, for all g ∈ V

(2.4) log(g−1) = − log(g).

Central to our constructions will be the canonical Cartan-Shouten (CCS) connection ∇
of G. On g, it is defined by

∇XY =
1

2
[X,Y ], X, Y ∈ g;

see [60, Ch. 6]. We can extend it to general vector fields, since g provides global frames. If we
endow G with its CCS connection, then geodesics and left (or right) translated 1-parameter
subgroups coincide; that is, for any geodesic γ in G with γ(0) = g both t 7→ g−1γ(t) and
t 7→ γ(t)g−1 are 1-parameter subgroups of G. Thus, on a Lie group G endowed with the CCS
connection, the local exponential and logarithm of the connection are given by

Expg(v) = g exp
(
dgLg−1(v)

)
= exp

(
dgRg−1(v)

)
g, v ∈ TgG,

Logg(h) = deLg log(g
−1h) = deRg log(hg

−1), h ∈ U ;(2.5)

see [57, Cor. 5.1]. On the other hand, the CCS connection is the Levi-Civita connection of
an invariant Riemannian metric only if the latter is bi-invariant, that is, invariant under left
and right translations [31].3 This is the only case in which Expe ≡ exp and Loge ≡ log on
a Lie group with invariant Riemannian structure. Unfortunately, there are many Lie groups
that do not possess a bi-invariant metric. A well-known example is the group of rigid body
transformations SE(3) (or, more generally, the special Euclidean group SE(n) for n > 1).

2To be exact, TeG with the bracket [Xe, Ye] := [X,Y ]e is isomorphic to g with its Lie bracket.
3In the published version, “invariant” is missing. There are examples of so-called non-perfect [23, Thm.

2.2] Lie groups for which there is a Riemannian metric that is neither left nor right invariant but whose Levi
Civita connection is the CCS connection [23, Rem. 2.1].
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Indeed, any Lie group that is not a direct product of compact and commutative groups does
not have have a bi-invariant metric [45], including GL(n), GL+(n), the special linear group
SL(n) (i.e., all linear, orientation and volume preserving transformations of Rn), and the
Heisenberg group [56] (again, all for n > 1).

Another fundamental automorphism of G is the conjugation Cg : h 7→ ghg−1. Important
to us will be its differential at the identity, which we call group adjoint and denote by Ad(g).
It acts bijectively on vectors v ∈ TeG by

Ad(g)v = dg−1Lg(deRg−1(v)) = dgRg−1(deLg(v)).

For matrix groups this reduces to Ad(A)(M) = AMA−1 for elements A and matricesM in the
tangent space at the identity. The group adjoint yields the following crucial relation [55, Thm.
6]: For f, g ∈ G such that log(fg−1) exists, it links logarithms of left and right translated
points according to

(2.6) log(gf−1) = Ad(f) log(f−1g).

2.2. The Group Mean. The fact that bi-invariant metrics generally do not exist on Lie
groups makes the construction of (statistical) notions that are invariant/equivariant under
translations from both left and right very difficult in the Riemannian setting. On the other
hand, Lie groups that are endowed with their CCS connections possess the natural prereq-
uisites. Following Pennec and Arsigny, we define the mean in a Lie group as an exponential
barycenter [55, Def. 3].

Definition 2.1 (Group mean). Let G be a Lie group endowed with its CCS connection and
let g1, . . . , gm ∈ V ⊆ G, V being simply-connected, such that log(g−1gi) exists for all g ∈ V
and i = 1, . . . ,m. Then, we call g ∈ G group mean of g1, . . . , gm if

(2.7)
m∑
i=1

Logg(gi) = 0.

Note that, because of (2.5), equation (2.7) is equivalent to both

m∑
i=1

log(g−1gi) = 0 and
m∑
i=1

log(gig
−1) = 0.

From this we can see that the elements g1, . . . , gm must be “sufficiently localized” to obtain
a mean value; because if they are too far apart, the logarithm may not be defined. The most
general result known so far on existence and uniqueness is the following: If U ⊆ G is a CSLCG
(convex with semilocal convex geometry) neighborhood and g1, . . . , gm ∈ U , then their group
mean exists and is unique. The details can be found in Appendix A.

Central properties of the group mean are summarized in the following theorem [56, Thm.
5.13].

Theorem 2.2 (Equivariance of the group mean). Let G be a Lie group endowed with its
CCS connection and g be a group mean of g1, . . . , gm ∈ V ⊆ G. Then, for any f ∈ G, the
group means of the left translated data (fg1, . . . , fgm), right translated data (g1f, . . . , gmf)
and inverted data (g−1

1 , . . . , g−1
m ) are fg, gf and g−1, respectively.
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According to the theorem, group means are equivariant under the group operations. These
are very favorable properties that make (statistical) data analysis more robust.

Finally, group means can be computed efficiently with a fixed point iteration [56, Thm.
5.14].

2.3. Sample Covariance and Bi-invariant Mahalanobis Distance. In [55], Pennec and
Arsigny also define the sample covariance of Lie-group-valued data (g1, . . . , gm) with group
mean g. Denoting the vector of coordinates of a tangent vector as well as the representing
matrix of a (bi)linear map in any given basis by [·], it is the (2,0)-tensor

Σ∗
gi =

1

m

m∑
l=1

Logg(gl)⊗ Logg(gl) ∈ TgG⊗ TgG,

where the tensor product ⊗ means that in any basis of TgG, the representing matrix is given
by [Σ∗

gi ] = 1/m
∑

l[Logg(gl)][Logg(gl)]
T . From this, they define the bi-invariant Mahalanobis

distance of f ∈ G to the distribution of the gi by

(2.8) µ2(g,Σ∗
gi
)(f) =

[
Logg(f)

]T [
Σ∗−1
gi

][
Logg(f)

]
,

if Logg(f) = log(g−1f) exists. (Here, Σ∗−1
gi denotes the inverse of Σ∗

gi .) The distance (2.8) is
left and right invariant, that is,

µ2(g,Σ∗
gi
)(f) = µ2(hg,Σ∗

hgi
)(hf) = µ2(gh,Σ∗

gih
)(fh)

for all h ∈ G and all f such that Logg(f) exists; see [56, p. 181].

3. Bi-invariant Dissimilarity Measures for Sample Distributions on Lie Groups. In this
section we derive bi-invariant extensions of the Hotelling T 2 statistic and Bhattacharyya
distance to a Lie group G that is endowed with its CCS connection. To this end, we always
consider a CSLCG neighborhood U of a Lie group G.

3.1. Extending the Hotelling T 2 Statistic. To generalize Hotelling’s T 2 statistic, we
define a slightly modified sample covariance. This is motivated by the fact that TeG is the
reference tangent space for the whole group.

Definition 3.1 (Centralized sample covariance). Given data (g1, . . . , gm) in U with group
mean g, its left-centralized sample covariance is defined as the (2,0)-tensor

Σgi =
1

m

m∑
l=1

log(g−1gl)⊗ log(g−1gl) ∈ TeG⊗ TeG,

which in local coordinates is[
Σgi

]
=

1

m

m∑
l=1

[
log(g−1gl)

][
log(g−1gl)

]T
.
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Since we only use the centralized covariance that is defined under left translations of the data,
we will drop the word “left” in the following. The centralized covariance will be fundamental
for our constructions since it allows to compare the variability of data sets with different means
in a single tangent space; this, in turn, makes it possible to transfer notions from multivariate
statistics. Taking advantage of the bi-invariance property we also have

µ2(g,Σ∗
gi
)(f) = µ2(e,Σgi )

(g−1f).

Moreover, we can now define the pooled covariance at the identity:

Definition 3.2 (Pooled sample covariance). Given data sets (g1, . . . , gm) and (h1, . . . , hn) in
U with group means g and h, their left-pooled sample covariance is defined by

Σ̂gi,hi
=

1

m+ n− 2
(mΣgi + nΣhi

) .

As for the centralized covariance, we drop the word “left” for the pooled covariance. Further-
more, because there is no danger of confusion, we only write Σ̂ from now on.

In order to obtain bi-invariant indices from the newly-defined notions, we need to un-
derstand how they transform under joint translations of the data. For this, we denote the
centralized covariance of data that was jointly left or right translated with f ∈ G by f • Σgi

and Σgi •f , respectively, (i.e., f •Σgi = Σfgi and Σgi •f = Σgif ); furthermore, inv•Σgi = Σg−1
i

denotes the centralized covariance of the inverted data points. We also extend these definitions
linearly to weighted sums of covariances. Then, we have the following lemma.

Lemma 3.3. Given data (g1, . . . , gm) in U , its centralized covariance is invariant under left
translations, while under right translations with f ∈ G it transforms according to[

Σgi • f
]
=
[
Ad(f−1)

][
Σgi

][
Ad(f−1)

]T
.

Furthermore, if the data points are inverted, then[
inv • Σgi

]
=
[
Ad(g)

][
Σgi

][
Ad(g)

]T
.

Proof. Using the equivariance of the mean gives

[
f • Σgi

]
=

1

m

m∑
l=1

[
log
(
g−1f−1fgl

) ][
log
(
g−1f−1fgl

)
]T =

[
Σgi

]
,

and applying (2.6) yields[
Σgi • f

]
=

1

m

m∑
l=1

[
log
(
f−1g−1glf

) ][
log
(
f−1g−1glf

) ]T
=

1

m

m∑
l=1

[
Ad
(
f−1

) ][
log
(
g−1gl

) ][
log
(
g−1gl

)
]T
[
Ad
(
f−1

) ]T
=
[
Ad
(
f−1

) ][
Σgi

][
Ad
(
f−1

) ]T
.
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After inverting the data points we find, using Theorem 2.2, (2.4), and (2.6), that[
inv • Σgi

]
=

1

m

m∑
l=1

[
log
(
gg−1

l

) ][
log
(
gg−1

l

) ]T
=

1

m

m∑
l=1

(−1)2
[
log
(
glg

−1
) ][

log
(
glg

−1
) ]T

=
[
Ad(g)

][
Σgi

][
Ad(g)

]T
.

We can translate this directly to the pooled covariance:

Corollary 3.4. The pooled covariance is invariant under left translations of the data and
transforms under right translations with f ∈ G according to[

Σ̂ • f
]
=
[
Ad
(
f−1

) ][
Σ̂
][
Ad
(
f−1

) ]T
.

If the data is inverted, then we have[
inv • Σ̂

]
=

1

m+ n− 2

(
m
[
Ad(g)

][
Σgi

][
Ad(g)

]T
+ n

[
Ad
(
h
) ][

Σhi

][
Ad
(
h
) ]T)

.

In particular, if g = h, then [
inv • Σ̂

]
=
[
Ad(g)

][
Σ̂
][
Ad(g)

]T
.

With this, we propose the following generalization of the Hotelling T 2 statistic for Lie groups,
using the abbreviated notation

(
(gi), (hi)

)
for
(
(g1, . . . , gm), (h1, . . . , hn)

)
:

Definition 3.5 (Bi-invariant Hotelling T 2 statistic). Let (g1, . . . , gm) and (h1, . . . , hn) be
data sets in U with group means g and h such that log(g−1h) exists, and let Σ be their pooled
sample covariance. Then, the bi-invariant Hotelling T 2 statistic is defined by

t2
(
(gi), (hi)

)
=

mn

m+ n
µ2
(e,Σ̂)

(
g−1h

)
.

This definition is independent of the chosen basis of TeG [55, p. 39]. Furthermore, it
reduces to (2.2) when G = Rn. This is a consequence of the existence of a common reference
tangent space; as the latter is missing in Riemannian manifolds, reduction to the multivari-
ate case is problematic using the Riemannian approach. Indeed, the only generalization of
Hotelling’s T 2 statistic to Riemannian manifolds known to the authors does not have this
property; see Appendix B for more on this.

The following theorem shows that the newly defined notion has the invariance properties
we aimed for and does not depend on the order of the data sets.

Theorem 3.6 (Properties of the bi-invariant Hotelling T 2 statistic). Let (g1, . . . , gm) and
(h1, . . . , hn) be data sets in U with group means g and h, respectively. The bi-invariant
Hotelling T 2 statistic has the following properties:
(i) it is symmetric,
(ii) it is invariant under left and right translations,
(iii) if g = h, then it is invariant under inversion.
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Proof. Note first that the pooled covariance is independent of the order of the data groups.
Thus, using (2.4), property (i) follows from

t2
(
(gi), (hi)

)
=

mn

m+ n
(−1)2

[
log
(
h
−1
g
) ]T [

Σ̂
]−1[

log
(
h
−1
g
) ]

= t2
(
(hi), (gi)

)
.

Next, we show (ii). Invariance under left translations follows directly since f and f−1

cancel out as in the proof of Lemma 3.3. Let f ∈ G. Then, using Theorem 2.2, (2.6),
and Corollary 3.4, we find

t2
(
(gif), (hif)

)
=

mn

m+ n

[
log
(
f−1g−1hf

) ]T [
Σ̂ • f

]−1[
log
(
f−1g−1hf

) ]
=

mn

m+ n

[
log
(
g−1h

) ]T [
Ad(f−1)

]T [
Ad(f−1)

]−T [
Σ̂
]−1

[
Ad
(
f−1

) ]−1[
Ad
(
f−1

) ][
log
(
g−1h

) ]
= t2

(
(gi), (hi)

)
.

Finally, (iii) follows immediately from log(e) = 0.

Note that although the statistic is not invariant under inversion in general, the fact that
equality of means is invariantly detected makes it also interesting (e.g., to perform hypothesis
tests for equality of means) when invariance under inversion is of interest. (Nevertheless, the
authors are not aware of any such application.)

Remark 3.7. Observe that we could replace left by right-centralized sample covariances in
all definitions of this section. The Hotelling T 2 statistic will then be different in general, but
it will have the same invariance properties as Definition 3.5.

3.2. Extending the Bhattacharyya Distance. Since the first summand of the multivariate
Bhattacharyya distance (2.3) coincides with a Hotelling T 2 statistic, we can generalize it using
the bi-invariant Hotelling T 2 statistic. To this end, we begin with the definition of the averaged
sample covariance:

Definition 3.8 (Averaged sample covariance). Given data sets (g1, . . . , gm) and (h1, . . . , hn)
in U with group means g and h, their left-averaged sample covariance is defined by

Σgi,hi
=

1

2
(Σgi +Σhi

).

Again, in the following we drop the word “left” and the subscripts. Since it only differs in the
weighting, the averaged covariance has the same properties as the pooled covariance.

Corollary 3.9. The averaged covariance is invariant under left translations of the data and
transforms under right translations with f ∈ G according to[

Σ • f
]
=
[
Ad
(
f−1

) ][
Σ
][
Ad
(
f−1

) ]T
.

If the data is inverted, then we have[
inv • Σ

]
=

1

2

([
Ad(g)

][
Σgi

][
Ad(g)

]
+
[
Ad
(
h
) ][

Σhi

][
Ad
(
h
) ])

.
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In particular, if g = h, then [
inv • Σ

]
=
[
Ad(g)

][
Σ
][
Ad(g)

]T
.

With this, we can generalize the Bhattacharyya distance to Lie groups:

Definition 3.10 (Bi-invariant Bhattacharyya distance). Let (g1, . . . , gm) and (h1, . . . , hn) be
data sets in U with group means g and h. Then, the bi-invariant Bhattacharyya distance is
defined by

DB

(
(gi), (hi)

)
=

1

8
µ2
(e,Σ)

(
g−1h

)
+

1

2
ln

 det
([

Σ
])

√
det
([

Σgi

])
det
([

Σhi

])
 .

The following theorem shows that the attribute “bi-invariant” is indeed justified.

Theorem 3.11 (Properties of the bi-invariant Bhattacharyya distance). Let (g1, . . . , gm) and
(h1, . . . , hn) data sets in U with group means g, h, respectively. The bi-invariant Bhattacharyya
distance has the following properties:
(i) it is symmetric,
(ii) it does not depend on the chosen basis,
(iii) it is invariant under left and right translations,
(iv) if g = h, then it is invariant under inversion.

Proof. Note that we can focus on the second summand, since for the first all results can
be shown as in the proof of Theorem 3.6 (replacing the pooled by the averaged covariance).
Thus, (i) follows immediately, since Σ is invariant under an exchange of the data sets.

Next we show (iii). Let f ∈ G and ρf = det(Ad(f−1)); note that ρf ̸= 0. Invariance of
the second summand under left translations follows from Lemma 3.3 and Corollary 3.9. They
further imply that

det
([

Σ • f
])

√
det
([

Σgi • f
])

det
([

Σhi
• f
]) =

ρ2f det
([

Σ
])

ρ2f

√
det
([

Σgi

])
det
([

Σhi

]) ,
which yields invariance under right translations. The proofs of (ii) and (iv) work analogously
(using Corollary 3.9 for (iv) and replacing group adjoints with basis transformations for (ii)).

Note that in Definition 3.10 we take determinants of matrix representations of (2,0)-tensors
instead of (0,2)-tensors like in the Euclidean case (for background information see, e.g., [24,
Ch. 4]). This does not make a difference since lowering indices with any (auxiliary) metric
does not have an influence on the ratio of the determinants in Definition 3.10; the additional
terms (i.e., the matrix representation of the metric) cancel out analogously to those introduced
by translations (i.e., matrix representations of group adjoints) in the proofs of Theorems 3.6
and 3.11.
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Remark 3.12. A notion from multivariate statistics that is intimately related to the Bhat-
tacharyya distance is the Hellinger distance H [38] (see also [52, p. 51]):

(3.1) H
(
(pi), (qi)

)
=
√
1− 1/ exp

(
DB

(
(pi), (qi)

))
for data sets (p1, . . . , pm) and (q1, . . . , qn) in Rd. It has found various applications: for example,
in decision trees [21], internet telephony [65], and data visualization [62].

By using the bi-invariant Bhattacharyya distance in (3.1), we directly obtain a bi-invariant
Hellinger distance on Lie Groups with the same invariance properties.

3.3. Connection of the Bi-invariant Bhattacharyya Distance to Densities. In the mul-
tivariate setting, the Bhattacharyya distance has a more general integral definition for distri-
butions with probability density function (pdf). We show in this section that the bi-invariant
Bhattacharyya distance is compatible with this view. Like in Euclidean space, we obtain it
for Gaussian-like distributions from the generalized integral definition. On the other hand, in
contrast to our definition, the integral version has the drawback that it is not bi-invariant in
general.

Let P and Q be two random variables on Rd with pdfs p and q, respectively. The Bhat-
tacharyya distance then takes the form

DB(p, q) = − ln

(∫
Rd

√
pq dx

)
,

which reduces to (2.3) for two normal distributions. In this section we investigate classes of
Lie groups and distributions for which the above (or more precisely an analog) integral reduces
to the bi-invariant Bhattacharyya distance.

On a Lie group G of dimension d, integrals of functions are defined via differential d-forms4;
see, for example, [60, Ch. 26]. For our purpose, it suffices to recount how one integrates over
the domain of a single chart. (In general, integrals are defined via so-called partitions of
unity.)

Let Φ : V → U be a diffeomorphism between V ⊆ Rd and a neighborhood U ⊆ G (i.e.,
an inverse chart) and ω a d-form on U . Then, there is a unique φ ∈ C∞(Φ(V )) such that the
pullback5 of ω along the diffeomorphism Φ is given by Φ∗(ω) = φdx (dx being the ordinary
volume form on Rd). The integral of ω over U is then defined by∫

U
ω =

∫
V
Φ∗(ω) =

∫
V
φdx

if the right-hand side exists.
In the affine setting there is no canonical volume form on G. Instead, we must choose

a reference measure, that is, a nonzero left invariant d-form dg on G (a left Haar measure)

4Remember that [37, Sec. 1.3] on a smooth manifold M , a differential d-form ω smoothly assigns to each
p ∈M an alternating d-linear map ωp : (TpM)d → R. If ψ ∈ C ∞(M), then ψ ω is also a d-form on M .

5Let F :M → N be a diffeomorphism of two smooth d-dimensional manifolds M,N and ω a d-form on N .
The pullback F ∗(ω) of ω along F is a d-form on M defined by F ∗(ω)(X1, . . . , Xd) = ω(dF (X1), . . . , dF (Xd))
for X1, . . . , Xd ∈ Γ(TM). Note that F ∗(ψ ω) = (ψ ◦ F )F ∗(ω) for all ψ ∈ C ∞(N).
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consistent with the orientation of G (which we choose such that exp is orientation preserving).
Luckily, a different choice of reference measure only leads to multiplying each integral with the
same constant, which is why the actual choice of dg depends (up to considerations of machine
precision when working on a computer) only on one’s taste. Thus, from now on we assume
that dg is arbitrary but fixed. Then, the integral of a function ψ ∈ C∞(U) is defined by

(3.2)

∫
U
ψ dg.

This, in turn, allows to define pdfs on G as (not necessarily smooth) functions µ ≥ 0 on
G such that

∫
G µdg = 1 (see, e.g., [18]). Consequently, we get the integral version of the

Bhattacharyya distance on Lie groups:

(3.3) Dint
B (µ, ν) = − ln

(∫
G

√
µν dg

)
for pdfs µ, ν on G.

Note that, in general, (3.2) is left invariant (i.e.,
∫
G ψ ◦ Lh dg =

∫
G ψ dg for each h ∈ G

and ψ ∈ C∞(G) whose integral exists) but not right invariant.6 Thus, in contrast to Defi-
nition 3.10, (3.3) cannot generally be bi-invariant. For this to hold, we need a unimodular
Lie group, that is, a Lie group with bi-invariant volume form. (A well-known example of a
non-unimodular Lie group is the group of invertible affine transformations of Rn.) Therefore,
we will only be interested in the unimodular case. Since then distributions can be “moved
around via translations” without changing integrals, we can consider w.l.o.g. those centered
at e.

In the following, let E : Rd → TeG be any orientation-preserving vector space isomorphism
(which we obtain from choosing a basis of TeG). Further, let e ⊆ TeG be a neighborhood of
0 ∈ TeG such that first exp |e is a diffeomorphism onto the neighborhood W = exp(e) of e,
and second there is an orientation-preserving diffeomorphism Φ : TeG→ e between the whole
of TeG and e. Lemma A.5 shows that we can always choose e := log(W ) where W is any

CSLCG neighborhood of e. Now, we can define ẽxp = exp ◦Φ ◦ E and l̃og = E−1 ◦ Φ−1 ◦ log.
Note that the latter is a chart of W with image Rd. In order to identify densities on G that
connect both versions of the Bhattacharyya distance we first need the lemma below.

Lemma 3.13. Let G be a d-dimensional Lie group and g ∈ G. Further, let p, q be pdfs on
Rd and ẽxp∗(dg

∣∣
W
) = ϕ dx with 0 < ϕ ∈ C∞(Rd). Define

(3.4) µ(g) =

{
(p/ϕ ◦ l̃og)(g), g ∈W,

0, g ∈ G \W,

and

(3.5) ν(g) =

{
(q/ϕ ◦ l̃og)(g), g ∈W,

0, g ∈ G \W.

6We have a similar problem when we start with a right-invariant volume form.
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Then, µ and ν are pdfs on G with∫
G

√
µν dg =

∫
Rd

√
pq dx.

Proof. Clearly, µ, ν ≥ 0. Furthermore, since µ and ν are only supported in W and
l̃og ◦ ẽxp = IdRd , we find

∫
G µdg =

∫
G ν dg = 1 and∫

G

√
µν dg =

∫
W

√
µν dg =

∫
Rd

ẽxp∗(
√
µν dg) =

∫
Rd

(
√
µν ◦ ẽxp)ϕ dx =

∫
Rd

√
pq dx.

We can write the function ϕ also more explicitly. Denoting dyi = l̃og
∗
(dxi), i = 1, . . . , d, there

is 0 < ψ ∈ C∞(G) such that dg
∣∣
W

= ψ dy1 ∧ · · · ∧ dyd
7. Hence, the transformation rule for

forms of maximal degree (i.e., the dimension of the underlying manifold) implies

(3.6) ẽxp∗(dg
∣∣
W
) = det(d ẽxp)(ψ ◦ ẽxp) dx1 ∧ · · · ∧ dxd

and, thus, ϕ = det(d ẽxp)(ψ ◦ ẽxp).
In the following, N (x, [Σ]) denotes the multivariate normal distribution on Rd with mean

x and covariance matrix [Σ]. The following proposition establishes a connection between the
bi-invariant Bhattacharyya distance and the integral version.

Proposition 3.14. Let G be a d-dimensional unimodular Lie group with CCS connection,
and let p be the pdf of N (0, [Σgi ]) and q the pdf of N ([log(g−1h)], [Σhi

]) on Rd. From p and
q, define pdfs µ and ν on G by (3.4) and (3.5). Further, let (g1, . . . , gm) and (h1, . . . , hn) be
data sets in a CSLCG neighborhood U ⊆ exp(e) ⊆ G with group means g and h, respectively.
Then,

Dint
B (µ, ν) = DB

(
(gi), (hi)

)
.

Proof. The assertion follows from Lemma 3.13 and the fact that the Bhattacharyya dis-
tance between two multivariate normal distributions is of the form (2.3).

According to the proposition, “scaled push-forwards” of the multivariate normal distribu-
tion provide a connection between both versions of the Bhattacharyya distance. Densities
connected to the these were investigated for SE(n) in [17]—also with an emphasis on bi-
invariance. Note that the requirement U ⊆ exp(e) is not needed in the proof but is introduced
to ensure that the data samples have non-vanishing probabilities under p and q. If one wants
to choose p and q, for example, to build a model, setting e = log(U) seems sensible because
thereby the locality condition that we impose on the data for DB is met. On the other hand,
larger domains could be used if “outliers” should be possible. An interesting special case are
Lie groups whose exponentials are global diffeomorphisms. Examples are simply connected,
nilpotent Lie groups (like the Heisenberg group, which allows for a unique mean in the entire
group [57, pp. 198–199]); they are unimodular and the pullback of the Lebesgue measure un-
der the logarithm is a bi-invariant Haar measure [20]. Thus, in a simply-connected, nilpotent
Lie group, dg can be chosen such that ψ ≡ 1 in (3.6).

7Here, ∧ denotes the “wedge product” of differential forms. Any form of maximal degree d can be written
as the wedge product of d coordinate 1-forms multiplied by a smooth function; see, e.g., [37, Sec. 1.3].



BI-INVARIANT DISSIMILARITY MEASURES FOR SAMPLE DISTRIBUTIONS IN LIE GROUPS 15

4. Experiments. In this section, we use the proposed indices for hypothesis tests in two
application fields. Although we have chosen two specific contexts, the testing procedures
described below can be used in many other application fields.

4.1. Configurations of the Knee Joint under Osteoarthritis. In the first part, we inves-
tigate configurations of the human knee joint under osteoarthritis (OA). The relative position
of the femur with respect to the tibia is described by a rigid-body transformation. Using both
the Hotelling T 2 statistic and Bhattacharyya distance in a two-sample test, we infer a signif-
icant difference between knee configurations of people with severe OA and healthy controls;
we thus find the well-known joint space narrowing that is indicative for OA.

4.1.1. Data Description. The first data set, which was also used in [77], is derived from
the Osteoarthritis Initiative8 (OAI). The OAI is a longitudinal study of knee osteoarthritis that
provides (among others) publicly accessible clinical evaluation data and radiological images
from 4,796 men and women of age 45–79. By means of a special support plate it was made
sure that the patients’ legs were constrained to the same posture. From the baseline data
set (i.e., the images from the initial visits), we chose 58 severely diseased subjects and 58
healthy subjects according to their Kellgren-Lawrence score [44]. The sets were balanced in
order to maximize the statistical power of our hypothesis test. For the 116 subjects, surfaces in
correspondence of the distal femora and proximal tibiae were extracted from the respective 3D
weDESS MR images (0.37×0.37 mm matrix, 0.7 mm slice thickness). The correspondence was
then used to consistently extract (i.e., cut out) the condylar regions of the femura and tibiae;
results from one subject can be seen on the left of Figure 1. A supervised post-processing
procedure was used to ensure the quality of the segmentations and the correspondence of the
resulting meshes (8,988 vertices for each femur and 8,320 for each tibia). During the process,
the relative positions of femur and tibia, which are present in the raw data through the global
coordinate system of the scanner, are maintained.

4.1.2. Encoding Relative Positions in SE(3). Remember that, with O(n) denoting the
group of orthogonal matrices in dimension n, the Euclidean group E(3) = O(3) ⋉ R3 is a
semidirect product with group operation (R, v)(Q,w) = (RQ, v+Rw) for (R, v), (Q,w) ∈ E(3).
The group of rigid-body motions is the subgroup SE(3) = SO(3)⋉R3.

Since for each femur-tibia pair the relative position is encoded in the coordinates of the
meshes, we can capture it by calculating the rigid body transformation in SE(3) that moves
the distal femur onto the proximal tibia. More precisely, let (Of , of ), (Ot, ot) ∈ E(3) be local
orthonormal reference frames for the femur and tibia, respectively. (The vector part yields
the origin, while the matrix columns represent the coordinate axes.) Then, after translating
the meshes so that of is moved to the origin (i.e., applying (0,−of ) ∈ SE(3) to both frames),
the rotation-translation pair P = (R, v) ∈ SE(3) that maps the reference frame (Of , of ) of the
femur to the reference frame (Ot, ot) of the tibia encodes the relative position of the bones.
Now, since

(OtO
T
f , ot − of )(Of , 0) = (Ot, ot − of ),

8https://nda.nih.gov/oai/

https://nda.nih.gov/oai/
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Figure 1. Visualization of the knee bones and the computed orthonormal frames. On the left, the distal
femur (top) and the proximal tibia (below) are shown; the meshes (and their relative position) were reconstructed
from OA data. The space between both (i.e., the joint space) is filled with cartilage, ligaments, and menisci (all
not shown). On the right, we depict the orthonormal frames that correspond to both meshes.

we have

P = (R, v) = (OtO
T
f , ot − of ).

Now, in order to compute this we need to choose frames. We determine each reference frame
from the principal component analysis of the vertices of the corresponding triangle mesh:
While we pick the center of gravity as origin, the axes are chosen as unit vectors pointing along
the principal directions; the latter is done in a consistent way throughout the population for
both bone types; the resulting frames from one subject are visualized on the right of Figure 1.

Note that, in this context, left and right translations of P with elements from SE(3)
correspond to different choices of reference frames (with the same orientations) for the femur
and tibia, respectively.

Finally, we want to point out that this approach of representing relative positions by
elements of the special Euclidean group is also used in many other applications, for example,
medical image analysis [13], robotics [53], human action recognition [75], radar detection [10,
16], and state description of molecules [12]. Thus, the permutation test outlined below can
directly be applied to data from these domains.

4.1.3. Bi-invariant Permutation Test. We use a non-parametric permutation setup to
test whether there is a difference between the knee configurations of people with OA and
healthy controls. The reason is that we do not want to make assumptions about how both
groups are distributed, but rather learn this from the data. After the 116 femur-tibia pairs

have been processed as described in Subsection 4.1.2, we obtain a set (P
(H)
1 , . . . , P

(H)
58 ) in

SE(3) of transformations derived from healthy controls and a set (P
(OA)
1 , . . . , P

(OA)
58 ) coming

from patients with OA. We consider the null hypothesis H0 of equal distributions underlying

both groups, that is, P (H) H0∼ P (OA). As test statistic T we use (and thus compare) both the
bi-invariant Hotelling T 2 statistic t2 and the bi-invariant Bhattacharyya distance DB.
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We initialize the test by computing the baseline

T0 = T ((P
(H)
i ), (P

(OA)
i )).

Then, we perform 10,000 random permutations of the joint set

(Z1, . . . , Z116) =
(
P

(H)
1 , . . . , P

(H)
58 , P

(OA)
1 , . . . , P

(OA)
58

)
;

that is, denoting the l-th permutation by σl, we compute the values

Tl = T
(
(Zσl(1), . . . , Zσl(58)), (Zσl(59), . . . , Zσl(116))

)
, l = 1, . . . , 10000.

With 1a≥b being 1 if a ≥ b and 0 else, the p-value for the statistic T is then given by

pT =
1

10000

10000∑
l=1

1Tl≥T0 ;

it is the proportion of test statistics that are greater than the one computed for the original
(unpermuted) groups. A standard level to reject the null hypothesis is pT < 0.05; in this case,
the difference between the distributions is called significant. Performing the test with each
statistic, we obtain

pt2 ≈ 0.00019 and pDB
< 10−5.

Thus, the differences are significant for both statistics. This result is in accordance with what
is known about OA: Part of the disease is the so-called joint space narrowing—a decrease in
distance between femur and tibia as consequence of degenerating cartilage. Note that we can
deduce a posteriori that the sample size was sufficient to detect significant differences with an
error probability smaller than 0.05.

4.2. Hippocampi Shapes under Alzheimer’s. In the second part, we analyze hippocam-
pal atrophy patterns due to mild cognitive impairment (MCI) by applying and thereby com-
paring the derived Hotelling T 2 statistic and Bhattacharyya distance. MCI is a common
condition in the elderly and often represents an intermediate stage between normal cognition
and Alzheimer’s disease. As is consistently reported in neuroimaging studies, atrophy of the
hippocampal formation is a characteristic early sign of MCI. Using both a local and global
two-sample test, we infer significant differences in distribution of shapes of right hippocampi
between a cognitive normal and the MCI group, in agreement with the literature.

4.2.1. Data Description. For our experiments we prepared a data set consisting of 26
subjects showing mild cognitive impairment (MCI) and 26 cognitive normal (CN) controls
from the open access Alzheimer’s Disease Neuroimaging Initiative9 (ADNI) database. ADNI
provides, among others, 1632 brain magnetic resonance images collected on four different
time points with segmented hippocampi. We established surface correspondence (2280 ver-
tices, 4556 triangles) in a fully automatic manner employing the deblurring and denoising
of functional maps approach [27] for isosurfaces extracted from the available segmentations.
The data set was randomly assembled from shapes for which segmentations were simply con-
nected and remeshed surfaces were well-approximating (≤ 10−5 mm root mean square surface
distance to the isosurface).

9http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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Figure 2. Group means of right hippocampi for cognitive normal (orange, transparent) and impaired (grey)
subjects overlaid.

4.2.2. Lie Group-based Shape Space. To model the shapes of the hippocampi, we use the
representation from [3]. Given n homogeneous objects in the form of triangle meshes Ti ⊂ R3

that are in correspondence and Procrustes aligned [32], their shapes are described in terms
of (a power) of the Lie group GL+(3) of real 3-by-3 matrices with positive determinant. To
obtain this representation, we view each mesh Ti as the result of a deformation ϕi of a common
reference T ⊂ R3; that is, each ϕi : T → Ti is an orientation-preserving, simplicial isomorphism
that yields a semantic correspondence. The underlying idea is that the derivatives of these
deformations comprise the shape information, because they provide a local characterization
of the deformation without being influenced by the location in space. Thus, the Jacobian
Dϕi constitutes the shape representation of the i-th object. Let m be the (necessarily same)
number of triangles of each mesh. Since each Dϕi is constant on the faces Fj of T , there are

3-by-3 matrices G
(i)
j with det(G

(i)
j ) > 0 such that Dϕi

∣∣
Fj

= G
(i)
j ∈ GL+(3) for all i = 1, . . . , n,

and j = 1, . . . ,m. The i-th shape is thus given by (G
(i)
1 , . . . , G

(i)
m ) ∈ GL+(3)m. Note that the

above GL+(3) model stems from a continuous formulation [77, Sec. 2] that admits consistent
and convergent discretizations.

The task of obtaining a surface immersion whose Jacobian is closest to given differential
coordinates leads to a variational problem. Its minimizer is given by the solution of the well-
known Poisson equation for which fast numerical methods exist. Furthermore, as a global
variational approach, the minimizer given by the Poisson equation tends to distribute errors
uniformly such that local gradient field inconsistencies are attenuated.

4.2.3. Hippocampal Atrophy Patterns in CN vs. MCI. To test for a difference in distri-
bution between the CN and MCI groups we extend the permutation test setup from Subsec-
tion 4.1.3 and perform a local (i.e., triangle-wise) and a global test. After encoding the shapes
as described in Subsection 4.2.2, the group means for the CN and MCI set are computed with
the iterative algorithm from [55, Alg. 1]. A well-known [48] phenomenon in patients that de-
velop MCI is a loss of total hippocampal volume; it can be clearly observed in the qualitative
comparison of both mean shapes shown in Figure 2.

4.2.4. Local Test. In the following, when we speak of the i-th differential coordinate we

mean the i-th element of the differential coordinates (vector). For i = 1, . . . , 4556 let G
(CN)
i

and G
(MCI)
i denote the i-th differential coordinate of the mean hippocampi from the CN and



BI-INVARIANT DISSIMILARITY MEASURES FOR SAMPLE DISTRIBUTIONS IN LIE GROUPS 19

MCI group, respectively. (We choose the first mesh of the CN group as reference object). In
order to identify subregions that contribute to differences in mean shape between the groups,
we perform triangle-wise, partial tests. For every triangle independently we consider the null
hypothesis H0 that the distribution of its differential coordinate is the same for both groups,

that is, G
(CN)
i

H0∼ G
(MCI)
i .

To test this hypothesis, we perform a permutation and compare again the bi-invariant
Hotelling T 2 statistic and Bhattacharyya distance as test statistics. First, we perform inde-
pendent tests for each triangle using the testing procedure from Subsection 4.1.3. Therefore,
denoting the test statistic by T again, we start by computing

T i
0 = T

(
(G

(CN)
i ), (G

(MCI)
i )

)
.

We then perform 10,000 (random) permutations of the full set

(Zi,1, . . . , Zi,52) =
(
G

(CN)
i,1 , . . . , G

(CN)
i,26 , G

(MCI)
i,1 , . . . , G

(MCI)
i,26

)
;

here the second subscript enumerates the subjects of the groups. Then, we compute the
statistics

T i
l = T

(
(Zi,σl(1), . . . , Zi,σl(26)), (Zi,σl(27), . . . , Zi,σl(52))

)
, l = 1, . . . , 10000.

The p-value of the i-th triangle for test statistic T is then given by

p
(i)
T =

1

10000

10000∑
l=1

1T i
l ≥T i

0
.

For each triangle, we reject H0, if p
(i)
T < 0.05 and call the difference between both groups

significant. Using the bi-invariant Hotelling T 2 statistic and Bhattacharyya distance as test
statistics, the described test is bi-invariant (in this case in GL+(3)). In particular, because of
right-invariance, the results are independent from the reference that was chosen to compute
the differential coordinates. (Left-invariance would allow to jointly transform the differential
coordinates of the subjects by elements from GL+(3), which, e.g., could be of interest for a
better numerical performance of an algorithm.)

Because of the large number of tests we apply Benjamini-Hochberg false discovery correc-
tion at the level α = 0.05 to identify triangles with significant differences, for which we reject
H0. In Figure 3, we visualize the triangles with significant differences, showing the respective
p-values for both statistics.

In line with literature on MCI [48], the obtained results suggest more differentiated mor-
phometric changes beyond homogeneous volumetric decline of the hippocampi. The Bhat-
tacharyya distance detects more significant differences, which is expected because it also
takes covariances into account. Interestingly, there are also some areas where the Hotelling T 2

statistic seems to be more sensitive. This is probably the case when, for the Bhattacharyya
distance, small but significant differences in the mean become insignificant due to largely
coinciding covariances.
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Figure 3. Group tests for differences in the distribution of right hippocampi for cognitive normal and
impaired subjects. Results for the bi-invariant Hotelling T 2 statistic are shown at the top and for the Bhat-
tacharyya distance at the bottom. Each triangle of the CN mean is color coded according to its p-value (FDR
corrected) using the colormap 0.0 0.05.

4.2.5. Global Test. Complementary to the local test is a global test that includes the
overall pattern of the covariance structures thus being sensitive to spatial dependencies across
the shape. In the construction of the test we follow the approach from [64].

For each triangle we first map the T i
l to an approximate uniform distribution in [0, 1]

by applying the corresponding empirical cumulative distribution function (cdf) Ci. More
precisely, we compute

Ci(T
i
l ) =

1

10000

10000∑
r=1

1T i
r≤T i

l
, i = 1, . . . , 4556, l = 0, . . . , 10000.

Then, setting C̃i(T
i
l ) = 0.9998Ci(T

i
l )− 0.00001 and denoting the cdf of the standard normal

distribution by ϕ, the data is mapped to U i
l = ϕ−1(C̃i(T

i
l )). The latter follow an approximate

standard normal distribution for each triangle.
Using the sample covariance matrix Σ = 1/9999UUT (where U = [U1, . . . , U10000] = [U i

l ]),
a suitable test statistic is now given by the squared Mahalanobis distance; this yields

(4.1) M0 = UT
0 Σ

−1U0, Ml = UT
l Σ

−1Ul, l = 1, . . . , 10000.

We then call the difference in global shape significant, when

p =
1

10000

10000∑
l=1

1Ml≥M0 < 0.05.

In order to account for the irregularity in surface triangulations, the sample covariance op-
erator and thus Mahalanobis distance in (4.1) can be extended in terms of an adapted inner
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product that weights each component by the corresponding triangle’s area. In this experi-
ment, we adhere to the standard formulation (4.1), as the studied hippocampi surfaces are
meshed uniformly.

Applying this test to the values obtained from the local test yielded p-values smaller than
1/105 for the bi-invariant Hotelling T 2 statistic and Bhattacharyya distance revealing that
both are sensitive to the underlying morphological changes.

5. Discussion. In this work, we generalized established dissimilarity measures between
sample distributions to Lie groups. These new indices are, in particular, invariant under
translations, which yields analyses that are unbiased from the position of the data sets in
the group. As an application, we constructed nonparametric two-sample tests based on the
proposed measures for both local and global hypothesis tests of shapes and used them for
group tests on malformations of right hippocampi due to mild cognitive impairment.

An interesting question, both theoretically and practically, is: Given a Lie group, to what
extent is there smeariness of the group mean [26]? An answer would give an indication on the
size a data set should have for reliable results.

In order for the Mahalanobis distances to be well-defined, the sample covariance operator
needs to be invertible; this is frequently violated, most importantly when the number of
observations is lower than the number of variables. A common approach in such situations
is to resort to the pseudo-inverse of the covariance. Doing this in (2.8), however, will not
result in a bi-invariant notion of Mahalanobis distance; the reason for this lies in the fact that
taking pseudo-inverses of matrix products is in general more difficult than inverses. Since
high dimensional data is common today, extending the proposed expressions to such scenarios
poses another interesting direction for future work.

Appendix A. Existence and Uniqueness of the Group Mean. Let G be a Lie Group with
affine connection. If U ⊆ G is a normal convex neighborhood and g1, . . . , gm ∈ U , then there
always exists a group mean g ∈ U [56, Thm. 5.3]. Nevertheless, it need not be unique. For the
latter to be ensured we need a stronger notion of convexity that was proposed by Arnaudon
and Li in [5]. In the following, we summarize their ideas; for more details, including examples,
we refer to their article or [56] and the references therein.

First, we need the following definitions. (Remember that a real-valued function on a
smooth manifold is called convex, if its restriction to any geodesic is convex.)

Definition A.1. A function ρ : U × U → R≥0 that is convex with respect to the product
structure is called separating function if it vanishes on the diagonal of U ×U and only there.

Definition A.2 (p-convexity). Let ρ and d be a smooth separating function and an auxiliary
Riemannian distance function on U , respectively. We say that U has a p-convex geometry if
there are constants c, C ∈ R with 0 < c < C and an even integer p ≥ 2 such that

cd(f, g)p ≤ ρ(f, g) ≤ Cd(f, g)p

for all f, g ∈ U .

For general smooth manifolds it is known that not all normal convex neighborhoods have a
p-convex geometry. On the other hand, Whiteheads theorem ensures that each point in G has
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a 2-convex neighborhood. Importantly, if the normal convex neighborhood U has a p-convex
geometry for any p ∈ 2N, then this is enough to ensure the uniqueness of the group mean.
Nevertheless, there is a weaker condition that still yields uniqueness.

Definition A.3. (CSLCG neighborhood [5]) We say that U is convex with semilocal convex
geometry (CSLCG) if every compact subset K ⊂ U has a relatively compact neighborhood UK

with pK-convex geometry for some pK ∈ 2N depending on K.

Observe that if U has a p-convex geometry for some p ∈ 2N, then it is CSLCG. We have the
following result, which is a special case of [5, Prop. 2.4].

Proposition A.4. Let G be a Lie group with affine connection. Further, let U ⊆ G be a
CSLCG neighborhood and g1, . . . , gm ∈ U . Then, there exists a unique group mean g ∈ U of
g1, . . . , gm.

The following lemma provides a property of CSLCG neighborhoods that is needed in this
work.

Lemma A.5. Let G be a d-dimensional Lie group with affine connection and U ⊆ G be a
CSLCG neighborhood. Then, U is diffeomorphic to Rd.

Proof. Let g ∈ U . Since U is a normal convex neighborhood, Logg(U) ⊆ TgG is well-
defined and star-shaped about 0 ∈ TgG. The claim now follows since any star-shaped domain
in a d-dimensional vector space is diffeomorphic to Rd [14, Thm. 5.1].

Appendix B. Hotelling’s T 2 statistic for Riemannian manifolds. In [49, Sec. 3.3],
Muralidharan and Fletcher introduce a generalization of Hotelling’s T 2 statistic to Riemannian
manifolds M , i.e., for samples (p1, . . . , pm), (q1, . . . , qn) in M . The centers of the data sets are
then given by the Fréchet means p, q ∈ M , respectively. Assuming that p, q are unique, the
difference between the means can be replaced by the Riemannian logarithms vp = Logp(q) ∈
TpM or vq = Logq(p) ∈ TqM . Depending on the choice, the vectors are from different tangent
spaces. Then, sample covariance matrices can be defined by[

Wpi

]
= 1

m

∑m
i=1

[
Logp(pi)

][
Logp(pi)

]T
,
[
Wqi

]
= 1

n

∑n
i=1

[
Logq(qi)

][
Logq(qi)

]T
.

Since there is no canonical way to compare vectors from different tangent spaces, Muralidharan
and Fletcher propose to calculate a generalized T 2 statistic at both means and average the
results. This leads to the generalized Hotelling T 2 statistic

(B.1) t2
(
(pi), (qi)

)
= 1

2

([
Logp(q)

]T [
W−1

pi

][
Logp(q)

]
+
[
Logq(p)

]T [
W−1

qi

][
Logq(p)

])
for Riemannian manifolds.

Note, however, that in the Euclidean case the statistics (2.2) and (B.1) do not coincide.
To see this, observe first that in this case Logp(q) = −Logq(p) = q − p by the standard
identification of tangent spaces. Hence, we get from (B.1) that

t2
(
(pi), (qi)

)
= (p− q)T 1

2

(
W−1

pi +W−1
qi

)
(p− q).

Thus, it is enough to show that Ŝ−1 ̸= 1/2
(
W−1

pi +W−1
qi

)
in general for the pooled sample

covariance Ŝ. But this is true—not only because of scaling—since for symmetric positive
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definite matrices P1, P2 (of the same size) we have P−1
1 + P−1

2 ̸= (P1 + P2)
−1 in general (and

any such matrix can be a pooled sample covariance as can be seen with the help of the singular
value decomposition).

Acknowledgments. We are grateful for the open-access data sets of the Osteoarthritis
Initiative (OAI)10 and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)11. Further-
more, we are thankfull for F. Ambellan’s help in establishing dense correspondences of the
hippocampal surface meshes.

REFERENCES

[1] R. L. Adler, J. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, Newton’s method on Rie-
mannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002),
pp. 359–390, https://doi.org/10.1093/imanum/22.3.359.

[2] F. Ambellan, M. Hanik, and C. von Tycowicz, Morphomatics: Geometric morphometrics in non-
euclidean shape spaces, 2021, https://doi.org/10.12752/8544. https://morphomatics.github.io/.

[3] F. Ambellan, S. Zachow, and C. von Tycowicz, An as-invariant-as-possible GL+(3)-based statis-
tical shape model, in Proc. 7th MICCAI workshop on Mathematical Foundations of Computational
Anatomy, Springer, 2019, pp. 219–228, https://doi.org/10.1007/978-3-030-33226-6 23.

[4] F. Ambellan, S. Zachow, and C. von Tycowicz, Rigid motion invariant statistical shape modeling
based on discrete fundamental forms, Med. Image Anal., 73 (2021), p. 102178, https://doi.org/10.
1016/j.media.2021.102178.

[5] M. Arnaudon and X.-M. Li, Barycenters of measures transported by stochastic flows, Ann. Probab., 33
(2005), pp. 1509–1543, https://doi.org/10.1214/009117905000000071.

[6] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and simple
calculus on diffusion tensors, Magn. Reson. Med., 56 (2006), pp. 411–421, https://doi.org/10.1002/
mrm.20965.

10Osteoarthritis Initiative is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-
AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a
branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators.
Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, Glaxo-
SmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National
Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily
reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.

11Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is
funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug
Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,
Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-
La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Re-
search; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier;
Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research
is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by
the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern
California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory
for Neuro Imaging at the University of Southern California.

https://doi.org/10.1093/imanum/22.3.359
https://doi.org/10.12752/8544
https://doi.org/10.1007/978-3-030-33226-6_23
https://doi.org/10.1016/j.media.2021.102178
https://doi.org/10.1016/j.media.2021.102178
https://doi.org/10.1214/009117905000000071
https://doi.org/10.1002/mrm.20965
https://doi.org/10.1002/mrm.20965


24 M. HANIK, H.-C. HEGE, C. VON TYCOWICZ

[7] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Geometric means in a novel vector space
structure on symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 328–
347, https://doi.org/10.1137/050637996.

[8] M. Bacák, R. Bergmann, G. Steidl, and A. Weinmann, A second order nonsmooth variational
model for restoring manifold-valued images, SIAM J. Sci. Comput., 38 (2016), pp. A567–A597, https:
//doi.org/10.1137/15M101988X.

[9] F. Barbaresco, Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices
& information geometry, in 2008 IEEE Radar Conference, IEEE, 2008, pp. 1–6, https://doi.org/10.
1109/RADAR.2008.4720937.

[10] F. Barbaresco, Lie group statistics and Lie group machine learning based on Souriau Lie groups thermo-
dynamics & Koszul-Souriau-Fisher metric: New entropy definition as generalized Casimir invariant
function in coadjoint representation, Entropy, 22 (2020), p. 642, https://doi.org/10.3390/e22060642.

[11] E. J. Bekkers, M. W. Lafarge, M. Veta, K. A. Eppenhof, J. P. Pluim, and R. Duits, Roto-
translation covariant convolutional networks for medical image analysis, in International Conference
on Medical Image Computing and Computer-Assisted Intervention, Springer, 2018, pp. 440–448,
https://doi.org/10.1007/978-3-030-00928-1 50.

[12] S. Benoit, D. D. Holm, and V. Putkaradze, Helical states of nonlocally interacting molecules and
their linear stability: a geometric approach, J. Phys. A Math, 44 (2011), p. 055201, https://doi.org/
10.1088/1751-8113/44/5/055201.

[13] J. Boisvert, F. Cheriet, X. Pennec, H. Labelle, and N. Ayache, Geometric variability of the
scoliotic spine using statistics on articulated shape models, IEEE Trans. Med. Imaging, 27 (2008),
pp. 557–568, https://doi.org/10.1109/TMI.2007.911474.

[14] R. Bott and L. W. Tu, Differential forms in algebraic topology, vol. 82, Springer, Berlin, 1982, https:
//doi.org/10.1007/978-1-4757-3951-0.

[15] E. Calabi, P. J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker, Differential and numerically
invariant signature curves applied to object recognition, Int. J. Comput. Vis., 26 (1998), pp. 107–135,
https://doi.org/10.1023/A:1007992709392.
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