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MINIMAL PAIRS OF CONVEX SETS WHICH SHARE
A RECESSION CONE

JERZY GRZYBOWSKI AND RYSZARD URBAŃSKI

Abstract. Robinson introduced a quotient space of pairs of con-
vex sets which share their recession cone. In this paper minimal
pairs of unbounded convex sets, i.e. minimal representations of
elements of Robinson’s spaces are investigated. The fact that a
minimal pair having property of translation is reduced is proved.
In the case of pairs of two-dimensional sets a formula for an equiv-
alent minimal pair is given, a criterion of minimality of a pair of
sets is presented and reducibility of all minimal pairs is proved.
Shephard–Weil–Schneider’s criterion for polytopal summand of a
compact convex set is generalized to unbounded convex sets. An
application of minimal pairs of unbounded convex sets to Hart-
man’s minimal representation of dc-functions is shown. Examples
of minimal pairs of three-dimensional sets are given.

1. Introduction

For a family C(Rn) of all nonempty closed convex subsets of Rn the
addition A + B := {a + b | a ∈ A, b ∈ B} is called a Minkowski or
vector or algebraic sum of these sets. For A,B ∈ C(Rn) the modified
addition A+̇B := cl (A+B) turns the family C(Rn) into a commutative
semigroup with a neutral element {0}. Moreover, for all A,B ∈ C(Rn)
and all s, t > 0 we have s(tA) = s(tA), t(A+̇B) = tA+̇tB, (s+ t)A =
sA+̇tA, 1A = A, and 0A = {0}. A relation (A,B) ∼ (C,D) :⇐⇒
A+̇D = B+̇C is not transitive because in C(Rn) a cancellation law
A+̇B = B+̇C =⇒ A = C does not hold true. Therefore, the family
C(Rn) cannot be embedded into a vector space.

However, the family B(Rn) of all nonempty closed bounded convex
subsets of R

n can be embedded into a vector space, see Minkowski
[24]. In a case of infinitely dimensional topological vector spaces a
semigroup of nonempty closed bounded convex sets can be embed-
ded into Minkowski–R̊adström–Hörmander space, see R̊adström [29],
Hörmander [23], Drewnowski [11] and Urbański [36].
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Quotient classes of pairs of convex sets are elements of Minkowski–
R̊adström–Hörmander spaces. Sets in a given class can be arbitrar-
ily large. The best representation of such a class would be inclusion-
minimal pair. Inclusion-minimal pairs were studied by Bauer [5], Scholtes
[26, 34], Pallaschke [15, 16, 27, 28] and by the authors [12, 13, 19, 20]
in connection with quasidifferential calculus. Quasidifferential calculus
was developed by Demyanov and Rubinov [8] and studied by many au-
thors including Zhang, Xia, Gao and Wang [38] Basaeva, Kusraev and
Kutateladze [4], Antczak [2], Abbasov [1], Dolgopolik [10] and others.

MRH spaces and basic facts about minimal pairs of convex sets are
presented in Section 7. An embedding of a semigroup of convex sets is
enabled by a cancellation law which was studied for its own sake by the
authors [20] and recently generalized to cornets by Molnár and Páles
[25].

Robinson [30] proved an order cancellation law

A+B ⊂ B + C =⇒ A ⊂ C. (olc)

for A,B,C from a family of unbounded closed convex sets CV (R
n)

sharing a common recession cone V . Here, V is a closed convex cone in
R

n and a recession cone is defined as reccA := {x ∈ R
n | x+ A ⊂ A}.

A family CV (R
n) with Minkowski addition is a semigroup by Corollary

9.1.1 in [31] and as such can be embedded into a vector space. In
this family the closed convex cone V is a neutral element, A+̇B =
A + B, and multiplication by 0 has to be modified by 0A := V for
A,B ∈ CV (R

n). Since a cancellation law holds true, the relation ”∼”
is transitive. We put [A,B] := [(A,B)]∼.

Theorem 1.1. (Robinson, [30]) The family of quotient classes R̃n
V :=

C2
V (R

n)/∼ with with the addition [A,B] + [C,D] := [A + C,B + D]

and the multiplication t[A,B] :=

{
[tA, tB], t > 0
[−tB,−tA], t < 0

is a smallest

vector space into which the semigroup CV (R
n) can be embedded.

The embedding is defined by CV (R
n) ∋ A 7−→ [A, V ] ∈ R̃

n
V . In the

vector space R̃n
V the neutral element is [V, V ] and the opposite element

to [A,B] is −[A,B] = [B,A].

If the cone V is trivial, i.e. V = {0} the family CV (R
n) coincides with

a well studied family B(Rn) of all nonempty compact convex sets, i.e.
of convex bodies.

Robinson’s theorem was generalized for closed convex sets in a Banach
space by Bielawski and Tabor [6].
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Balashov and Polovinkin in their interesting paper [3] extended to un-
bounded sets the notion of generating sets. In a similar manner this
paper extends to unbounded sets the notion of minimal pairs of sets.

In Section 2 we present a definition and a theorem of existence of
minimal pairs of sets from CV (R

n) and the property of translation of
minimal pairs. We give properties of a kernel of minimality B∗ of a
pair (A,B), i.e. a set of all such points x that a pair (A− x,B − x) is
minimal. We also give a number of examples.

In Section 3 we prove that a minimal pair of sets is reduced if and only
if it has the property of translation.

Properties of minimal pairs of two-dimensional sets are studied in Sec-
tion 4. We give a criterion for being a summand in Proposition 4.2, a
formula for an equivalent minimal pair in Theorem 4.4, a criterion of
minimal pair in Theorem 4.5 and prove the reducibility of all minimal
pairs in Theorem 4.6.

We generalize Shephard–Weil–Schneider’s criterion, i.e. Th. 3.2.11 in
[33], to polytopal summands of unbounded convex sets in Theorem 5.2.
We also extend Bauer’s criterion [5] of reduced pairs of polytopes to
V -polytopes in Theorem 5.5.

In Section 6 we present an application of minimal pairs of unbounded
convex sets to a minimal, according to Hartman [22], representation of
dc-functions.

We complete our paper with two appendices. In Section 7 we present
selected facts from [16] on minimal pairs of bounded convex sets used in
our proofs. In Section 8 we present Minkowski duality between convex
sets and sublinear functions needed in the proof of Theorem 5.2.

2. Minimal pairs of unbounded convex sets

Let V be a closed convex cone in R
n and A,B ∈ CV (R

n). A quotient
class [A,B] is ordered in the following way

(A1, B1) ≺ (A2, B2) ⇐⇒ A1 ⊂ A2, B1 ⊂ B2.

If a recession cone V is not trivial then a pair (A+v, B+v), v ∈ V \{0}
is smaller than (A,B) hence no pair (A,B) ∈ C2

V (R
n) is minimal.

Therefore, we say that a pair (A,B) is 0-minimal if (A,B) is a minimal
element in a subset {(C,D) ∈ [A,B] | 0 ∈ D} of a quotient class [A,B].

The definition of 0-minimality seems very natural. In the case of a
semigroup B(Rn) = C{0}(R

n) of bounded closed convex sets the ex-
istence of a minimal pair is guaranteed by the fact that a chain of
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compact sets has a nonempty intersection. In the case of CV (R
n) an

intersection of a chain of sets containing 0 contains the cone V .

Every quotient class [A,B] ∈ C2
V (R

n)/∼ contains a 0-minimal pair. The
following theorem was proved by Grzybowski and Przybycień [18] in
much more general, possibly infinite dimensional, case.

Theorem 2.1 (existence of a 0-minimal pair). For every pair

(A,B) ∈ C2
V (R

n) with 0 ∈ B there exists an equivalent 0-minimal pair

(A′, B′) such that A′ ⊂ A,B′ ⊂ B.

Unlike in the case of minimal pairs of compact convex sets a pair
(A,B) ∈ C2

V (R
n) may be 0-minimal and a translated pair (A−x,B−x)

may not. We call a set B∗ := {x ∈ B | (A− x,B − x) is 0-minimal } a
kernel of minimality of the pair (A,B). Obviously, B∗ ⊂ B.

By LV = V ∩ (−V ) we denote the subspace of lineality of the cone V .
Let us notice that for a pair (A,B) ∈ C2

V (R
n) we have the following

equality

{b ∈ B | (A− b, B − b) ≺ (A,B)} = B ∩ (−V ). (∗)

The following proposition holds true.

Proposition 2.2. Let (A,B) ∈ CV (R
n). If x ∈ B∗ then B∩ (x−V ) =

x+ LV .

Proof. Let b ∈ B∩(−V ), then from (∗) we have (A−b, B−b) ≺ (A,B).
Assume that 0 ∈ B∗. Then the pair (A,B) is 0-minimal and we get
B − b = B. Hence b ∈ LV and LV ⊂ B ∩ (−V ) ⊂ LV . If x ∈ B∗ then
(A− x,B − x) is 0-minimal and (B − x) ∩ (−V ) = LV . �

Proposition 2.2 says that the kernel of minimality is contained in the
subset of minimal elements of B with respect to the preorder 6V gen-
erated by the cone V . Notice also that if the cone V is nontrivial then
the set B∗ is contained in the boundary of B.

Lemma 2.3 (B∗ is an extreme subset of B). Let (A,B) ∈ CV (R
n).

If x, y ∈ B and (x+ y)/2 ∈ B∗ then x, y ∈ B∗.

Proof. Denote z = (x+y)/2. By Theorem 2.1 there exists a 0-minimal
pair (A′−x,B′−x) ≺ (A−x,B−x). Hence z = (x+y)/2 ∈ (B′+B)/2
and the pair

(
A′

2
+

A

2
− z,

B′

2
+

B

2
− z) ≺ (A− z, B − z).

Since the pair (A− z, B− z) is 0-minimal, we obtain B′/2+B/2 = B.
By the cancellation law (olc) we get B′/2 = B/2, and B′ = B. Then
the pair (A− x,B − x) is 0-minimal, and x ∈ B∗. �
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Corollary 2.4. Let (A,B) ∈ C2
V (R

n). If E ⊂ B is a convex extreme

subset of B and the relative interior of E intersects with B∗ then E ⊂
B∗.

Let A ∈ C(Rn), u, u1, ..., uk ∈ R
n. Let A(u) be a support set de-

fined by A(u) = {a ∈ A | 〈a, u〉 = max
x∈A

〈x, u〉}. Let A(u1, ..., uk) =

A(u1, ..., uk−1)(uk) be an iterated support set. Notice that any subset
of A is a convex extreme subset of A if and only if it is an iterated
support set of A. In particular a singleton consisting of an extreme
point of A is an extreme subset of A.

If A,B,C,D ∈ CV (R
n) and ū = (u1, ..., uk) ∈ (Rn)k and V (u1) = LV

then the following significant facts hold true

(A+B)(ū) = A(ū) +B(ū)

and

(A,B) ∼ (C,D) =⇒ (A(ū), B(ū)) ∼ (C(ū), D(ū)).

The following proposition shows that kernels of minimality of pairs
(A,B) and (B,A) ”lie on the same side”, respectively, of sets B and
A.

Proposition 2.5. Let (A,B) ∈ CV (R
n), ū = (u1, ..., uk) ∈ (Rn)k

and V (u1) = LV . If B(ū) ⊂ B∗ then A(ū) ⊂ A∗ where A∗ = {x ∈
A | (B − x,A− x) is 0-minimal }.

Proof. Let y ∈ A(ū). Then by Theorem 2.1 there exists a 0-minimal
pair (B′−y, A′−y) ≺ (B−y, A−y). Since y ∈ A′ ⊂ A and y ∈ A(ū), we
obtain A′(ū) ⊂ A(ū). Since (B′, A′) ∼ (B,A), we get B′+A = A′+B,
and B′(ū) + A(ū) = A′(ū) +B(ū) ⊂ A(ū) +B(ū). Hence by the order
law of cancellation B′(ū) ⊂ B(ū). Consider any x ∈ B′(ū). Since
B(ū) ⊂ B∗, the pair (A − x,B − x) is 0-minimal. Moreover, x ∈ B′

and (A′ − x,B′ − x) ≺ (A− x,B− x). Then B′ = B, and we have just
proved that y ∈ A∗ �

A pair (A,B) or a class [A,B] is said to have a property of translation

of 0-minimal pairs if all equivalent 0-minimal pairs in [A,B] are con-
nected by translation. This property of translation is distinct from a
property of translation of minimal pairs of bounded sets. If the cone
V is not trivial we write just ’property of translation’ because there is
no possibility of misunderstanding.

For (A,B) ∈ C
2
{0}(R

n) a property of translation of 0-minimal pairs
follows from a property of translation of minimal pairs but not the
other way around. All pairs of flat compact convex sets from C2

{0}(R
2)

satisfy the property of translation of minimal pairs [5, 12, 34], but



6 JERZY GRZYBOWSKI AND RYSZARD URBAŃSKI

Example 2.10(i) presents a number of equivalent 0-minimal pairs not
connected by translation.

Proposition 2.6 (characterization of a kernel of 0-minimal pair).
Let a 0-minimal pair (A,B) ∈ C2

V (R
n) have the property of translation.

Then the following assertions hold :

(a) The set {(A − x,B − x) | x ∈ B∗} is a set of all 0-minimal pairs

of the class [A,B].
(b) x ∈ B∗ if and only if B ∩ (x− V ) = x+ LV .

(c) B = B∗ + V .

Proof. (a) Let (C,D) ∈ [A,B] be a 0-minimal pair, then by a property
of translation D = B − z for some z ∈ R

n. Since 0 ∈ D we get z = x
for a some x ∈ B.

(b) Let (B − x) ∩ (−V ) = LV , we have 0 ∈ B − x. By (a) there
exist a 0-minimal pair (A− z, B − z) such that B − z ⊂ B − x. Hence
(B−x)−(z−x) = B−z ⊂ B−x. Now, by (∗) applied to (A−x,B−x)
we get z−x ∈ (B−x)∩(−V ) = LV . Hence B−z = B−x+V −(z−x) ⊃
B − x and we get B − z = B − x.

(c) By (a) for any b ∈ B there exists x ∈ B∗ such that B − x ⊂ B − b.
Then B+b−x ⊂ B, and b−x ∈ V . Therefore, b = x+(b−x) ⊂ B∗+V ,
and we get B∗ + V ⊂ B ⊂ B∗ + V . �

Remark 2.7. Let us notice that in case of a 0-minimal pair (A,B)
not having the property of translation the equality B = B∗ + V may

hold true, see the pair (Â0, B̂0) in Example 2.10(ii), or not, see the pair

(Â1, B̂1) in Example 2.10(ii).

Obviously, any pair (A, V ) has property of translation. Moreover, it
is a unique 0-minimal pair in a quotient class [A, V ]. The following
example gives all 0-minimal pairs in a quotient class [V,B].

Example 2.8. Let n = 2, A = V = {0} × R+ be a ray and B =
{(x1, x2) ∈ R

2 | x2 > x2
1} be an epigraph of a quadratic function. A pair

(A,B) is obviously 0-minimal. By Proposition 2.6 a pair (A−x,B−x)
is 0-minimal if and only if B ∩ ((x1, x2)−V ) = {(x1, x2)}, where LV =
{(0, 0)}. This equality holds true exactly when x2 = x2

1, x1 ∈ R. The
set B∗ is equal to the boundary of the set B. Notice that A∗ = {(0, 0)}.

In R
3 there exist equivalent minimal pairs not connected by transla-

tion. The following example was given as Example 4.1 in [18]. In that
example a pair (C,D) – not showed here – was incorrectly presented
as 0-minimal.

Example 2.9. Let V = {x ∈ R
3 | x1 = x2 = 0, x3 6 0},

B = conv {(−1,−1, 0), (−1, 1,−1), (1, 1, 0), (1,−1,−1)}+ V ,
A = conv (B ∪ {(−2, 0,−1), (2, 0,−1)}) + V ,



MINIMAL PAIRS OF CONVEX SETS WHICH SHARE A RECESSION CONE 7

F = conv {(0,−1,−1), (0, 0, 0), (0, 1,−1)}+ V and
E = conv (F ∪{(−1,−1,−2), (−1, 1,−1), (1, 1,−2), (1,−1,−1)})+V .
In Figure 2.1 we can see upper faces of sets A,B,E, F ∈ CV (R

3), where
V = {x ∈ R

3 | x1 = x2 = 0, x3 6 0}, large dots represent the origin, and
numbers denote the third coordinate of vertices. It can be checked that
A+ F = B +E and that both pairs (A,B) and (E, F ) are 0-minimal.

0-1

0 -1

B

.
0-1

0 -1
-1-1

A

.

.

.

.

-1

0

-1 F

-1

0

-1

-2

-1

-1

-2
E

.

Figure 2.1. Two equivalent minimal pairs of unbounded convex sets
not connected by translation from Example 2.9.

Let us notice that if a given pair (A,B) does not have a property of
translation and (B−x)∩ (−V ) = LV then a pair (A−x,B−x) may or
may not be 0-minimal. The following example shows such possibility.

Example 2.10 (i). Let V = {(0, 0)} ⊂ R
2, A,B ∈ CV (R

2), B = conv
{(0, 0), (2, 0)} and A = conv (B ∪ {(1, 1)}). Let p0 ∈ B, p1 ∈ {x ∈
R

2 | x2 6 min(1 − |x1 − 1|, 0)}, p2 ∈ {x ∈ R
2 | 1 − |x1 − 1| < x2 < 0}.

Denote Bi = conv {
(
(B − pi) ∪ {(0, 0)}

)
, i = 0, 1, 2, A0 = A− p0,A1 =

conv {
(
(A− p1) ∪ {(0, 0)}

)
, A2 = conv {

(
(A − p2) ∪ {(0, 0), (1, 1)}

)
if

(p2)1 < 0 and A2 = conv {
(
(A − p2) ∪ {(0, 0), (−1, 1)}

)
if (p2)1 > 2.

The sets Ai, Bi, i = 0, 1, 2 are represented in Figure 2.2.

A0

.
B00

B1

.
0

A1 B2

0
.

A2

Figure 2.2. Pairs of sets described in Example 2.10(i).

All pairs of sets (Ai, Bi), i = 0, 1, 2 are equivalent to (A,B). We are
going to prove that each pair (Ai, Bi) is 0-minimal. Assume that
(C,D) ≺ (Ai, Bi) and 0 ∈ D ⊂ Bi. By Theorem 7.4 a pair of poly-
gons is minimal if and only if they have at most one pair of parallel
edges that lie on the sam side of polygons. Then the pair of a triangle
and a segment is minimal. Since the segment B contains 0, the pairs
(A,B), (A0, B0) are minimal and 0-minimal. By Theorem 7.1, i.e. ex-
istence of equivalent minimal pair contained in a given pair, and by
Theorem 7.2, i.e. uniqueness-up-to-translation of equivalent minimal
pairs of flat sets, the set D contains a translate of B, namely B − pi.
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Then obviously D = Bi. Hence Ai + Bi = Ai + D = Bi + C, and by
the law of cancellation C = Ai. Therefore, the pairs (Ai, Bi), i = 0, 1, 2
are 0-minimal.

It can be proved that there are no other 0-minimal pairs in the quotient
class [A,B]. Notice that (B0)∗ = B0, (B1)∗ = (B2)∗ = {(0, 0)}. By
Proposition 2.5 we obtain (A0)∗ = A0, (A1)∗ = {(0, 0)} and (A2)∗ =
conv {(0, 0), (1, 1)} if (p2)1 < 0 or (A2)∗ = conv {(0, 0), (−1, 1)} if
(p2)1 > 2.

(ii) Let V ⊂ R
3 be a cone such that {x ∈ V | x3 > 0} = {(0, 0, 0)}.

Denote Â = (A × {0}) + V and B̂ = (B × {0}) + V . It can be

proved that all 0-minimal pairs in [Â, B̂] are (Âi, B̂i), i = 0, 1, 2 where

Âi = (Ai × {0}) + V and B̂i = (Bi × {0}) + V and Ai, Bi are sets

from (i). Notice that (B̂0)∗ = B0 × {0} and B̂0 = (B̂0)∗ + V , but

(B̂1)∗ = {(0, 0, 0)} and B̂1 6= V = (B̂0)∗ + V .

3. Reduced pairs of unbounded convex sets

Let us extend a notion of reduced pair of bounded sets from B2(Rn)
introduced by Bauer [5]. A pair (A,B) ∈ C2

V (R
n) is reduced if [A,B] =

{(A+M,B +M) |M ∈ CV (R
n)}.

In this section we show a relationship between reduced pairs and the
property of translation of 0-minimal pairs.

Proposition 3.1. Let V be a closed convex cone. If a pair (A,B) ∈
C2
V (R

n) is reduced then it has the property of translation.

Proof. Let a pair (C,D) ∈ [A,B] be 0-minimal. Then (C,D) = (A +
M,B +M) for some M ∈ CV (R

n). Since 0 ∈ D = B +M , there exists
b ∈ B such that−b ∈ M . Then A−b ⊂ A+M = C,B−b ⊂ B+M = D.
Since (C,D) is 0-minimal, we obtain C = A− b,D = B − b. �

Proposition 3.2. Let V ⊂ R
n be a closed convex cone. If a pair

(A,B) ∈ C2
V (R

n) has the property of translation, then every 0-minimal

pair (C,D) ∈ [A,B] is reduced .

Proof. Let a pair (C,D) ∈ [A,B] be 0-minimal. Let b ∈ B. By
Proposition 2.6(a) there exists 0-minimal pair (C − x,D − x), x ∈ D∗

such that C−x ⊂ A− b,D−x ⊂ B− b. We obtain D+ b−x ⊂ B, and
b−x ∈ B−̇D := {y |D+y ⊂ B}. Then b = x+(b−x) ∈ D+(B−̇D) ⊂
B, and B ⊂ D + (B−̇D) ⊂ B. Hence B = D + (B−̇D). Then
A+D = D+(B−̇D)+C, and by the cancellation law A = C+(B−̇D).
�

Propositions 3.1 and 3.2 can be summed up in the following theorem.
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Theorem 3.3 (equivalence of reducibility and property of trans-
lation). Let V be a closed convex cone. A pair (A,B) ∈ C2

V (R
n) is

reduced if and only if this pair has the property of translation and is a

translate of some 0-minimal pair.

Corollary 3.4. Let V ⊂ R
n be a closed convex cone. If a pair (A,B) ∈

C2
V (R

n) has the property of translation, then (B,A) has the property of

translation.

Proof. If (A,B) has the property of translation then by Proposition
3.2 some equivalent pair (C,D) is reduced, i.e. [A,B] = {(C +M,D+
M) |M ∈ CV (R

n)}. Hence the pair (D,C) is reduced and by Proposi-
tion 3.1 the class [B,A] has the property of translation. �

Theorem 3.3 shows a difference between the property of translation of
minimal pairs and the property of translation of 0-minimal pairs. There
exists a broad class of minimal pairs of compact convex sets that satisfy
the property of translation not being reduced pairs. For example all
pairs of convex polygons (A,B) with exactly one pair (A(u), B(u)) of
parallel edges (see Theorem 7.4). The authors can prove that if in a pair
(A,B) ∈ B2(R3) a set A is a tetrahedron and for all triangular faces
A(u) the pairs (A(u), B(u)) are minimal then (A,B) is minimal and has
the property of translation. Such pair (A,B) may be a pair of convex
polyhedra and possess one or more pairs (A(v), B(v)) of parallel edges.
By Theorem 5.5, i.e. Bauer’s criterion for reduced polytopes the pair
(A,B) is not reduced. Sufficient and necessary condition for having the
property of translation in R

3 is not known. On the other hand every
0-minimal pair having the property of translation of 0-minimal pairs is
inevitably reduced.

4. Minimal pairs of unbounded planar convex sets

In order to prove propositions and theorems of this section we need to
present the notion and properties of an arc-length function fA corre-
sponding to a planar set A. Let us consider a nonempty unbounded
closed convex set A ⊂ R

2. Let a recession cone V of A be pointed
and unbounded . Obviously, V is a planar convex angle of a measure
π − 2ϑ with ϑ ∈ (0, π/2]. Assume that the negative part of the x-axis
bisects the angle V . We construct an arc-length function fA following
the approach from [18].

Let u ∈ R
2 and a support set of A in the direction of u be a set

A(u) := {a ∈ A|〈u, a〉 = maxb∈A〈u, b〉}. Obviously, the support set
A(u) is a singleton, a segment, a ray or an empty set. Let HA :
(−ϑ, ϑ) −→ bdA be a boundary function, where HA(t) is the center of
the set A(cos t, sin t), which is either a segment or a singleton. We also
denote by fA : (−ϑ, ϑ) −→ R an arc length function of A, with a value
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fA(t), t > 0 equal to the length of the arc contained in the boundary
bdA joining points HA(0) and HA(t). If t < 0 let a value fA(t) be op-
posite to the length of the arc joining HA(0) and HA(t). The function
fA is non-decreasing, fA(0) = 0 and fA(t) =

1
2
(fA(t

+) + fA(t
−)) where

f(t+) = lims→t+ f(s), f(t−) = lims→t− f(s), for t ∈ (−ϑ, ϑ).

On the other hand, let f be any non-decreasing real function defined
on an open interval (−ϑ, ϑ), such that

f(0) = 0 and f(t) =
1

2
(f(t+) + f(t−)), t ∈ (−ϑ, ϑ). (∗∗)

We define the function Hf : (−ϑ, ϑ) −→ R
2 with the help of Stieltjes

integral

Hf (t) :=





t∫
0

(− sin s, cos s)df(s), t > 0,

−
0∫
t

(− sin s, cos s)df(s), t < 0.

We denote Af := cl conv(imHf) + V . Then we have AfA = A−HA(0)
and fAf

= f . The following proposition summarizes properties of the
correspondence between non-decreasing functions and convex sets.

Proposition 4.1. Let A,B ∈ CV (R
2) and f, g be non-decreasing func-

tions satisfying (∗∗). The following formulas hold true:
fA+B = fA + fB, ftA = tfA for t > 0,
Af+g = Af + Ag, Atf = tAf for t > 0,
fAg

= g, AfB = B −HB(0) = B −midpointB(u), u = (1, 0),
fV ≡ 0, Af = V for f ≡ 0.

Proposition 4.2 (criterion of planar summands). A set A ∈
CV (R

2) is a summand of B ∈ CV (R
2) if and only if a function fB − fA

is non-decreasing.

Proof. If B = A+C then fB−fA = fC . On the other hand if a function
g = fB − fA is non-decreasing then B −HB(0) = A−HA(0) + Ag. �

The following proposition is needed in the proof of Theorem 5.2, i.e. a
criterion for polytopal summands.

Proposition 4.3 (criterion of a polygonal summand). Let P be

a convex polygon, K ∈ C(R2). Assume that the recession cone of K is

not a straight line. Then P is a summand of K if and only if for all

u ∈ S1 the support set K(u) is empty or contains a translate of P (u).

Proof. =⇒) If K = P + L for some closed convex set L, and a face
K(u) is nonempty then K(u) = P (u) + L(u), and K(u) contains a
translate of P (u).
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⇐=) If the cone V =reccK = K−̇K is a plane or a half-plane than the
theorem obviously holds true. Otherwise V is an angle of a measure
π − 2ϑ, 0 < ϑ 6 π/2. We may assume that the x-axis is bisecting the
cone V and that the negative part of the x-axis is contained in V .

It is enough to show that P+V is a summand ofK. Arc-length function
fP+V is locally constant and noncontinuous only at t ∈ (−ϑ, ϑ) such
that a support set (P + V )(u), u = (cos t, sin t) is a side of P . Since
every segment (P + V )(u), having length equal to f+

P+V (t)− f−
P+V (t),

is contained in some translate of a segment K(u), of the lengh equal
to f+

K(t)− f−
K(t), the difference of arc-length functions g = fK − fP+V

is non-decreasing. By Proposition 4.2 the set P + V is a summand of
K. �

Let us define the ordering of non-decreasing functions taking value 0
at 0. For two functions f, g we say that f precedes g if and only if g−f
is nondecreasing. Next two theorems on 0-minimal pairs in a plane
correspond to Theorem 3.1 and Corollary 3.2 from [18].

Theorem 4.4 (formula for an equivalent 0-minimal pair). Let

(A,B) ∈ C2
V (R

2). Denote gA := fA − inf(fA, fB) and gB := fB −
inf(fA, fB). Then the pair (AgA + HA(0) − HB(0), AgB) is 0-minimal

and belongs to [A,B].

Theorem 4.5 (criterion of 0-minimality). Let (A,B) ∈ C
2
V (R

2).
The pair (A,B) is minimal if and only if inf(fA, fB) ≡ 0 and 0 ∈
B(cost, sint) for some t ∈ (−θ, θ).

Theorem 4.6 (0-minimal pair is reduced). Let V be a pointed

unbounded convex cone in R
2. Then every 0-minimal pair (A,B) ∈

C
2
V (R

2) is reduced.

Proof. Let (C,D) ∈ [A,B]. Then A+D = B + C, fA + fD = fB + fC
and HA(0) + HD(0) = HB(0) + HC(0). We have fC + inf(fA, fB) ≺
inf(fC + fA, fC + fB) and inf(fC + fA, fC + fB) − fC ≺ inf(fA, fB).
Then fC+inf(fA, fB) = inf(fC+fA, fC+fB) = inf(fC+fA, fD+fA) =
fA+inf(fC , fD). Hence gC := fC− inf(fC , fD) = fA− inf(fA, fB) = fA.
In a similar way gD := fD − inf(fC , fD) = fB − inf(fA, fB) = fB. Thus
(C,D) = (AfC+HC(0), AfD+HD(0)) = (AgC+Ainf(fC ,fD)+HC(0), AgD+
Ainf(fC ,fD) + HD(0)) = (AfA + Ainf(fC ,fD) + HC(0), AfB + Ainf(fC ,fD) +
HD(0)) = (A−HA(0) + Ainf(fC ,fD) +HC(0), B −HB(0) + Ainf(fC ,fD) +
HD(0)) = (A+Ainf(fC ,fD) +HD(0)−HB(0), B +Ainf(fC ,fD) +HD(0)−
HB(0)). �

5. Criterion for polytopal summands



12 JERZY GRZYBOWSKI AND RYSZARD URBAŃSKI

In this section we generalize Shephard–Weil–Schneider criterion for a
polytope being a summand of compact convex subset of Rn. The fol-
lowing Theorem 5.1 (Theorem 3.2.11. in [33]) was proved by Shephard
[35] in the case of a polytope K and by Weil [37] in the case of compact
convex K. A strengthening of the theorem appeared in Grzybowski,
Urbański and Wiernowolski [21].

Theorem. 5.1 (Shephard–Weil–Schneider criterion). Let P,K ∈
B(Rn), n > 2, P be a polytope. Then P is a summand of K if and only

if the support set K(u) contains a translate of P (u), whenever P (u) is
an edge of P , u ∈ Sn−1.

The next theorem, a generalization of Theorem 5.1 to an unbounded
convex set K, is based on Schneider’s proof from [32] presented in
Encyclopedia of Mathematics and its Applications 151 [33].

Theorem 5.2 (criterion for a polytopal summand). Let K ∈
C(Rn), n > 2, a recession cone V of K be pointed and P ⊂ R

n be a

polytope. Then P is a summand of K if and only if every nonempty

bounded support set K(u) contains a translate of P (u), whenever P (u)
is an edge of P , u ∈ Sn−1.

Proof. =⇒) If a polytope P is a summand of K then there exists
a set A ∈ C(Rn) such that K = P + A. If a support set K(u) is
nonempty then it is a Minkowski sum of respective support setsK(u) =
P (u) + A(u). Hence K(u) contains a translate of P (u), whether P (u)
is an edge or not.

⇐=) We are going to apply Minkowski duality between convex sets and
sublinear functions. Basic facts on Minkowski duality are presented in
Section 8. Since the cone V :=reccK is pointed, the effective domain
domhK has a nonempty interior. If a difference of support functions
g := hK − hP is convex in the interior of domhK then a function
g = hK−hP is sublinear and lower semicontinuous. ThenK = P+∂g|0,
and P is a summand of K. Hence we need to prove that the function g
is convex over int domhK . Notice that intV ◦ ⊂ domhK ⊂ V ◦, where
V ◦ is a polar of the cone V .

Let x, y ∈ int domhK . If 0 lies between x and y then 0 ∈ int domhK

and domhK = R
n. Hence V = {0}. This is true only if K is bounded.

In this case the polytope P is a summand of K by Theorem 5.1.

Otherwise, lin{x, y} is a two-dimensional subspace of R
n. Let pr:

R
n −→ lin{x, y} be a perpendicular projection. Images prK and prP

of K and P by projection pr are two-dimensional convex sets. For any
z ∈ lin{x, y} equalities hK(z) = hprK(z) and hP (z) = hprP (z) hold true
for respective support functions. Assume that every side of the con-
vex polygon prP , that is (prP )(u), u ∈ lin{x, y} is equal to an image
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pr(P (u)) of a single edge P (u) of the polytope P . It simply means
that the support set P (u) is an edge of P . Then if a set (prK)(u) =
pr(K(u)), u ∈ lin{x, y} is nonempty then (prK)(u) contains a trans-
late of pr(P (u)) = (prP )(u) since K(u) contains a translate of P (u).
Hence by Proposition 4.3 the set prP is a summand of prK. Thus
hprK − hprP is a convex function, and the function g = hK − hP re-

stricted to lin{x, y} is also convex. Therefore, g(x+y

2
) 6 g(x)+g(y)

2
.

If not every side of prP is equal to a projection of a single edge of
P then still there exists a sequence (yn) tending to y such that any
side of polygon prnP , where prn is a perpendicular projection onto the
subspace lin{x, yn}, is equal to a projection of single edge P (u) of P .

Since the function g = hK −hP is continuous in the interior of domhK ,
we obtain

g

(
x+ y

2

)
= lim

n−→∞
g

(
x+ yn

2

)
6 lim

n−→∞

g(x) + g(yn)

2
=

g(x) + g(y)

2
.

Since g is continuous in int domhK and x, y are arbitrary, we have just
proved that g is convex in int domhK . On the other hand g = hK −hP

is lower semicontinuous, hence convex in all Rn. Therefore, by Theorem
8.1, we obtain K = P + ∂g|0. �

Remark 5.3. Notice that in Theorem 5.2 the assumption of recession
cone being pointed is necessary. For example let K be a straight line in
R

n and let P be any polytope not contained in a straight line parallel
to K. Then P is not a summand of K. However, if a support set K(u)
is not empty then K(u) = K, and K(u) is unbounded.

Let us extend a notion of polytope to unbounded sets sharing a pointed
recession cone V . By PV (R

n) := {P + V |P ∈ P(Rn)}, where P(Rn) is
a family of all nonempty polytopes in R

n, we denote the family of sums
of polytopes and the cone V . We call elements of the family PV (R

n)
by V -polytopes. V -polytope is the smallest convex set with a recession
cone V containing a given finite set of points. The following theorem
is straightforward corollary from Theorem 5.2.

Theorem 5.4 (criterion for a V -polytopal summand). Let V be

a pointed convex cone, K ∈ CV (R
n), n > 2, and P ∈ PV (R

n). Then P
is a summand of K if and only if a nonempty bounded support set K(u)
contains a translate of P (u), whenever P (u) is an edge of P , u ∈ Sn−1.

Let A,B ∈ C(Rn). We call two bounded support sets A(u) and B(u)
equiparallel edges if they are parallel line segments. Bauer in [5] gave
the following necessary and sufficient criterion for reduced pairs of poly-
topes.
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Theorem 5.5 (Bauer’s criterion for reduced pair of polytopes).
A pair (A,B) of polytopes in R

n is reduced if and only if A and B have

no equiparallel edges.

The next theorem generalizes Bauer’s criterion to reduced pairs of V -
polytopes.

Theorem 5.6 (criterion for reduced pair of V -polytopes). Let

V be a pointed convex cone. Then a pair (A,B) ∈ P2
V (R

n) is reduced

if and only if A and B have no equiparallel edges.

Proof. ⇐=) Let A and B have no equiparallel edges. Assume that
A+D = B + C =: E for some C,D ∈ CV (R

n). In order to prove that
A + B is a summand of E, let (A + B)(u) be an edge. Since A and
B have no equiparallel edges, A(u) and B(u) cannot be line segments
both at the same time. Then one of these, say B(u), is a singleton and
(A +B)(u) is a translate of A(u). Hence the set E(u) = A(u) +D(u)
contains a translate of (A + B)(u). By Theorem 5.4, the set A +B is
a summand of E = A +D = B + C. Therefore, E = A + B +M for
some M ∈ CV (R

n). By the cancellation law (C,D) = (A+M,B+M).

=⇒) If A(u) and B(u) are parallel edges then we can construct a pair
(A′, B′) equivalent to (A,B) such that A ⊂ A′, B ⊂ B′ and no translate
of A(u) is contained in A′(u). This construction was given by Bauer in
Theorem 5.3 [5] for a pair of polytopes. �

6. Application. Minimal representation of a difference of
convex functions

Let V ⊂ R
n+1 be a nontrivial closed convex cone such that V ∩ {x ∈

R
n+1 | xn+1 > 0} = {0}. A pair (A,B) ∈ C2

V (R
n+1) is H-minimal

if (A,B) is a minimal element in the family {(C,D) ∈ [A,B] | 0 ∈
D and ∀x ∈ D : xn+1 6 0}. The definition of H-minimality corre-
sponds to Hartman’s [22] definition of a minimal representation of a
dc-function f = g − h, i.e. a difference of convex functions g and h,
defined on the open unit ball in R

n.

Let us notice that for two convex and lower semicontinous functions
g, h : Rn −→ R ∪ {+∞} we can find corresponding cosed convex sets
A,B such that

g(x) = hA(x, 1), h(x) = hB(x, 1), x ∈ R
n.

The sets A,B are defined by

A := {(x, t) ∈ R
n × R | ∀y : 〈(x, t), (y, 1)〉 6 g(y)}

= {(x, t)|∀y : 〈x, y〉+ t 6 g(y)}, (∗ ∗ ∗)

B := {(x, t)|∀y : 〈x, y〉+ t 6 h(y)}.
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Indeed, by Theorem 8.2 the set A is a subdifferential of such a lower
semicontinuous sublinear function ĝ, that ĝ(x, t) = tg(x/t), t > 0 and
ĝ(x, t) = +∞, t < 0. In fact A = hypo (−g∗) i.e. the convex set A is
equal to a hypograph of a function −g∗ where g∗ is a convex conjugate
of g [31]. We also have B = hypo (−h∗).

Hartman, defining minimal representation of a dc-function f = g − h
in section 6 of [22], requires that g, h are as small as possible under
conditions of h 6 0 and h(0) = 0. The function h is non-negative if
and only if 0Rn+1 ∈ B. Besides, h(0) 6 0 implies B ⊂ R

n × R−. If
B ⊂ R

n×R− then h(0) = hB(0, 1) = sup
(x,t)∈B

〈(x, t), (0, 1)〉 = sup
(x,t)∈B

t 6 0.

Hartman considers dc-function f = g − h defined on an interior of a
unit ball B in R

n. In order to represent convex functions g, h by convex
sets we extend them outside of int B by g(x) = h(x) = ∞ for x 6∈ B

and g(x) = lim inf
y→x,‖y‖<1

g(y), h(x) = lim inf
y→x,‖y‖<1

h(y) for ‖x‖ = 1.

Since effective domains of g and h contain an open Euclidean unit ball
and are contained in a closed unit ball B, the sets A and B share
recession cone V defined by V = {(x, t) ∈ R

n × R | t 6 −‖x‖2}. From
previous considerations follows the next theorem.

Theorem 6.1. A representation f = g−h of a dc-function is minimal

according to Hartman if and only if a pair of sets (A,B), where A,B
are defined by (∗ ∗ ∗), is H-minimal in C2

V (R
n+1) .

If we replace in Hartman’s definition an open unit ball with an interior
of a closed convex set K containing 0 then corresponding sets A and B
share a recession cone V defined by V :=

⋃
t>0

t(K◦ × {−1}) where K◦

is a polar of K.

The following proposition is obvious.

Proposition 6.2. A pair (A,B) ∈ C
2
V (R

n+1) is H-minimal if and only

if it is 0-minimal and B ⊂ {x ∈ R
n+1 | xn+1 6 0}.

In Example 2.10(ii) all equivalent 0-minimal pairs are H-minimal. Ob-
viously, 0-minimal pairs may not be H-minimal. See the next example.

Example 6.3. Let T : R3 −→ R
3, T (x1, x2, x3) := (x1, x2, sx1 + tx2 +

x3), s, t ∈ R. Consider convex sets from Example 2.10(ii). For i =

0, 1, 2 the pairs (T (Âi), T (B̂i)) are 0-minimal. The pair (T (Âi), T (B̂i))
is H-minimal if and only if −s(pi)1 − t(pi)2 6 0 and s(2 − (pi)1) −

t(pi)2 6 0. For example the pair (T (Â0), T (B̂0)) where T (x1, x2, x3) :=
(x1, x2, x1 + x3), p0 = (0, 0) is 0-minimal and not H-minimal.
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Obviously, any pair which is 0-minimal and not H-minimal does not
contain a H-minimal pair.

Theorem 6.4 (existence of H-minimal pairs). Let (A,B) ∈
C2
V (R

n+1). There exists an equivalent H-minimal pair (A′, B′) such

that A′ ⊂ A− b, B′ ⊂ B − b for some b ∈ B.

Proof. Let b ∈ B and bn+1 = max
x∈B

xn+1. By Theorem 2.1 there exists a

0-minimal pair (A′, B′) contained in (A− b, B− b). Since B′ ⊂ B− b ⊂
{x ∈ R

n+1 | xn+1 6 0}, the pair (A′, B′) is H-minimal. �

Remark 6.5. It is possible that among equivalent pairs of sets a H-
minimal pair is unique even if this pair does not have the property of

translation. For example the pair (T (B̂0) − (1, 1, 1), T (Â0) − (1, 1, 1))
from Example 6.3, where T (x1, x2, x3) := (x1, x2, x2 + x3), p0 = (0, 0),

is a unique H-minimal pair in the quotient class [T (B̂0), T (Â0)]. Notice

that T (Â0) − (1, 1, 1) = conv{(0, 0, 0), (−1,−1,−1), (1,−1,−1)} + V ,

T (B̂0)− (1, 1, 1) = conv{(−1,−1,−1), (1,−1,−1)}+ V . Convex func-
tions corresponding to these two sets are g(x1, x2) := |x1| − x2 − 1
and h(x1, x2) := max(0, |x1| − x2 − 1). They are the unique Hartman-
minimal convex functions, such that f(x1, x2) := min(0, |x1|−x2−1) =
g(x1, x2)− h(x1, x2).

Proposition 6.6. Let a pair (A,B) ∈ C2
V (R

n+1) be reduced and V ∩
{x ∈ R

n+1 | xn+1 > 0} = LV . Then a pair (A − x,B − x), x ∈ B
is H-minimal if and only if xn+1 = sup

y∈B
yn+1 = hB(u), where u =

(0, ..., 0, 1) ∈ R
n+1.

Proof. By Theorem 3.3 the pair (A,B) has property of translation.
Proposition follows from criterion of 0-minimality in Proposition 2.6(b)
and from characterization of H-minimality in Proposition 6.2. �

The following example shows, that reducibility (property of transla-
tion) in the assumptions of Proposition 2.6(b) is essential.

Example 6.7. Consider a pair (Â1, B̂1) in Example 2.10(ii). This pair

is H-minimal but not reduced. If x ∈ B̂1 then (Â1 − x, B̂1 − x) is H-

minimal if and only if x = 0. Still (Â0−x, B̂0−x) is H-minimal if and

only if x ∈ (B̂0)∗, i.e. x = (x1, ..., xn+1) ∈ B̂0 and xn+1 = sup
y∈B̂0

yn+1 = 0.

7. Appendix. Minimal pairs of closed bounded convex sets

Let B(Rn) be a family of all nonempty compact convex sets, i.e. convex
bodies. The idea of treating compact convex sets as numbers or, rather,
as vectors goes back to Minkowski [24]. A semigroup of nonempty
bounded closed convex subsets B(X) of a vector spaceX was embedded
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into a topological vector space in the case of a normed space X by
R̊adström [29], a locally convex space X by Hörmander [23] and a
topological vector space by Urbański [36]. The embedding was possible
thanks to an order cancellation law:

A+B ⊂ cl (B + C) =⇒ A ⊂ C for A,B,C ∈ B(X).

For a concise proof of an order cancellation law in a more general set-
ting we refer the reader to Proposition 5.1 in [14]. Convex sets are em-

bedded into Minkowski–R̊adström–Hörmander space X̃ = B2(X)/∼ of
quotient classes, where a relation of equivalence is defined by (A,B) ∼
(C,D) :⇐⇒ cl (A+D) = cl (B + C).

A new motivation to study pairs of convex sets came from quasidifferen-
tial calculus of Demyanov and Rubinov [8, 9], where a quasidifferential
Df(x0) is a pair of convex sets (A,B) = (∂f |x0

, ∂f |x0
) called sub- and

superdifferential. Rather than a pair of sets (A,B) a quasidifferential
is a quotient class [A,B] := [(A,B)]∼.

The best representation of a quotient class [A,B] is a reduced pair, i.e.
a pair (A,B) such that [A,B] = {(A+C,B+C) |C ∈ B(X)}. Then all
translates of (A,B) give all minimal elements of [A,B]. Reduced pairs
were studied by Bauer [5]. However, not every quotient class [A,B]
contains a reduced pair. We say that a pair (A,B), or a quotient
class [A,B] has property of translation if all minimal pairs in [A,B] are
translates of each other. There exist not reduced minimal pairs that
have property of translation. The following theorem holds true.

Theorem 7.1. ([19, 26]) Let X be a reflexive Banach space. For every

pair (A,B) ∈ B2(X), there exists an inclusion-minimal pair (C,D) ∈
[A,B] such that C ⊂ A,D ⊂ B.

Caprari and Penot [7] proved existence of inclusion minimal pairs in a
quotient class [A,B] ∈ C(X)×K(X)/∼ where K(X) is a family of all
nonempty compact convex subsets of a locally convex vector space X .

Theorem 7.2. ([5, 12, 34]) Let (A,B) ∈ B2(R2). A minimal pair in

[A,B] is unique up to translation.

Theorem 7.2 basically states that every minimal pair of two-dimensional
compact convex sets has property of translation.

Example 7.3. ([12]) In R
3 we have equivalent minimal pairs not

connected by translation .
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A B C
❜❜✧✧

D E F

Figure 7.1. Three equivalent minimal pairs not connected by
translation.

In Figure 7.1 the solid B is a regular octahedron, D is an elongated
octahedron, F is a hexagon, A is a rhombohedron and E is a cubocta-
hedron.

In [13, 15, 27] more quotient classes [A,B] with no unique minimal pair
were found in R

3. However, the set of all equivalent minimal pairs was
never effectively described for a quotient class [A,B] with no unique
minimal element. All these results enabled calculus of pairs of convex
sets in a way analogous to fractional arithmetics [28].

The following theorem states a necessary and sufficient criterion for
minimal pairs of convex polygons.

Theorem 7.4 (Theorem 3.5 in [16]). A pair (A,B) of flat polytopes
is minimal if and only if A and B have at most one pair of parallel

edges that lie on the same side of the polytopes.

8. Appendix. Minkowski duality

In this section we present Minkowski duality between closed convex
sets and sublinear functions.

A 4-tuple (X,R+,+, ·), where an operation of addition ’+’ and of mul-
tiplication by nonnegative numbers ’·’ are defined for elements of the
set X , is called an abstract convex cone if (1) the pair (X,+) is a
commutative group and for all x, y ∈ X and all s, t > 0 we have (2)
1x = x, (3) 0x = 0, (4) s(tx) = (st)x, (5) t(x + y) = tx + ty and (6)
(s+ t)x = sx+ tx.

If a set A belongs to the family C(Rn) of all nonempty closed convex
subsets of Rn then its support function hA is defined by

hA := sup
a∈A

〈a, ·〉.

Minkowski addition A+̇B of sets belonging to C(Rn) is defined by
A+̇B := cl(A + B). Obviously, if one of these sets is bounded then
A+̇B = A +B.

If a function h : Rn −→ R ∪ {∞} belongs to the family S
∞
lsc(R

n) of all
sublinear (positively homogenous and convex) lower semicontinuous
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functions then its subdifferential at 0 is a closed convex set defined by
∂h|0 := {x ∈ R

n | 〈x, ·〉 6 h}.

Both 4-tuples (C(Rn),R+, +̇, ·) and (S∞
lsc(R

n),R+,+, ·) are abstract con-
vex cones and Minkowski duality establishes isomorphic relationship
between these cones.

Theorem 8.1. The mapping S
∞
lsc(R

n) ∋ h 7−→ ∂h|0 ∈ C(Rn) is an

isomorphic bijection from an abstract convex cone S
∞
lsc(R

n) onto an ab-

stract convex cone C(Rn). The mapping C(Rn) ∋ A 7−→ hA ∈ S
∞
lsc(R

n)
is an inverse mapping. Moreover, a restriction of the mapping to the

subfamily of finite sublinear functions S(Rn) is an isomorphic bijection

from a subcone S(Rn) onto a subcone B(Rn) of all nonempty bounded

closed convex sets.

Theorem 8.1 is stated in [17] in a general case for a dual pair (X, Y )
of linear spaces over R where 〈·, ·〉 is such a bilinear function, that
functions {〈y, ·〉}y∈Y separate points in X and functions {〈·, x〉}x∈X
separate points in Y .

Let h : Rn −→ R ∪ {∞} be a sublinear lower semicontinous function.
An effective domain domh ⊂ R

n is a convex cone, its closure cl domh
is a closed convex cone.

Let V be a closed convex cone in R
n. A characteristic function χV is de-

fined by χV (x) :=

{
0, x ∈ V,
∞, x 6∈ V.

A subdifferential of χV at 0 coincides

with a polar cone V ◦. Therefore, ∂(χV )|0 = V ◦, and hV = χV ◦ .

By S
∞
lsc,V (R

n) we denote a subfamily of sublinear functions with finite
values in the relative interior of V and infinite outside of V . Values
of such a function on the relative boundary of V are determined by
its values in the relative interior. A 4-tuple (S∞

lsc,V (R
n),R+,+, ·) is

an abstract convex cone after modifying multiplication by 0 in the
following way 0h =: χV .

By CV (R
n) we denote all closed convex sets A having their recession

cone reccA := A−̇A = {x | x + A ⊂ A} equal to V . Again the family
CV (R

n) is an abstract convex cone after modifying multiplication by 0
with a formula 0A = V [30].

Theorem 8.2. The mapping S
∞
lsc,V (R

n) ∋ h 7−→ ∂h|0 ∈ CV ◦(Rn) is an
isomorphic bijection from an abstract convex cone S

∞
lsc,V (R

n) onto an

abstract convex cone CV ◦(Rn). The mapping CV ◦(Rn) ∋ A 7−→ hA ∈
S
∞
lsc,V (R

n) an is an inverse mapping.
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Proof. In view of Theorem 8.1 it is enough to prove that for any func-
tion h ∈ S

∞
lsc(R

n) closed convex cones V1 =cl domh and V2 =recc(∂h|0)
are mutually polar.

Notice that h = h + χV1
. By Theorem 8.1 we obtain ∂h|0 = ∂h|0 +

∂(χV1
)|0 = ∂h|0 + V ◦

1 . Then V ◦
1 ⊂ ∂h|0−̇∂h|0 =recc(∂h|0) = V2.

On the other hand ∂h|0 = ∂h|0 + V2. By Theorem 8.1 we get h =
h + hV2

= h + χV ◦

2
. Hence domh ⊂ V ◦

2 , and V1 ⊂ V ◦
2 . Therefore,

V2 ⊂ V ◦
1 . �
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