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Abstract

In this paper, we propose a class of adaptive multiresolution (also called

adaptive sparse grid) ultra-weak discontinuous Galerkin (UWDG) methods

for solving some nonlinear dispersive wave equations including the Korteweg-

de Vries (KdV) equation and its two dimensional generalization, the Zakharov-

Kuznetsov (ZK) equation. The UWDG formulation, which relies on repeated

integration by parts, was proposed for KdV equation in [7]. For the ZK equa-

tion which contains mixed derivative terms, we develop a new UWDG for-

mulation. The L2 stability and the optimal error estimate with a novel local

projection are established for this new scheme on regular meshes. Adaptivity

is achieved based on multiresolution and is particularly effective for captur-

ing solitary wave structures. Various numerical examples are presented to

demonstrate the accuracy and capability of our methods.
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1 Introduction

In this paper, we are interested in numerically solving dispersive equations

including the Korteweg-de Vries (KdV) equation in one-dimension (1D) [21]

ut + f(u)x + uxxx = 0, (1.1)

and the Zakharov-Kuznetsov (ZK) equation in two-dimension (2D) [31]

ut + f(u)x + uxxx + uxyy = 0. (1.2)

Our work can be easily generalized to 3D ZK equation. For simplicity of

discussion, we did not include it in this paper.

The KdV-type equations first arise in the study of shallow wave propa-

gations, and later are widely used to describe the propagation of waves in a

variety of nonlinear and dispersive media. In the literature, these equations

have wide applications in scientific fields including acoustics, nonlinear op-

tics, hydromagnetics, and among others [3]. As an important model in the

family of KdV-type equations, the ZK equation (1.2) is a high dimensional

generalization of the 1D KdV equation (1.1), which governs the behavior of

weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and

hot isothermal electrons in the presence of a uniform magnetic field. It was

found that the solitary wave solutions of the ZK equation are inelastic [2].

A vast amount of numerical methods have been developed to solve KdV-

type equations, including finite difference method, finite volume method,

finite element method as well as spectral method. In this paper, we are in-

terested in further exploring discontinuous Galerkin (DG) method, which is

a class of finite element method using discontinuous piecewise polynomials
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for numerical solutions [9, 8]. The main advantages of DG method include

flexibility in handling geometry, provable convergence properties and accom-

modating h-p adaptivity. Various DG schemes have been applied to solve

the KdV-type equations. In [29, 26, 27], local DG (LDG) schemes are in-

vestigated to solve the KdV-type equations, including the ZK equation. Hy-

bridizable DG (HDG) is used to solve 1D KdV equations in [11]. In contrast

of LDG schemes which need to introduce auxiliary variables and rewrite the

equation into first order system, direct DG (DDG) schemes [30] and ultra-

weak DG (UWDG) schemes [7, 5, 13] are developed to simulate the 1D KdV

equation. While optimal L2-error estimates of various types of semi-discrete

DG schemes are obtained for the 1D KdV equation [28, 11, 13, 5] using vari-

ous projection techniques, only sub-optimal error estimates of LDG schemes

are available for the ZK equation [27]. Also, the ZK equation, which con-

tains mixed derivative term, has not been considered yet under the UWDG

framework. One aim of this work is to design stable and accurate UWDG

scheme for the ZK equation, which can also shed light on the design of the

UWDG formulation for general mixed derivative terms. We showed that by

applying integration by parts in a proper order and continuing to integrate

on the trace of elements until the technique can no longer be used, the re-

sulting weak formulation will yield a L2 stable scheme. Further, a novel local

projection can be designed to prove optimal L2 error estimate on regular

meshes.

KdV-type equations admit solitary wave solutions, which means that the

solutions often contain localized structures. This makes adaptivity very ap-

pealing in efficient numerical simulations, which is another aim of this work.

In particular, this paper continues our line of research [15, 17, 18, 23, 16] on

the development of adaptive multiresolution DG methods. The adaptivity in

our proposed schemes is realized through the hierarchical polynomial spaces
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and multiresolution analysis (MRA), which has built in error indicators. By

further incorporating the sparse tensor product in 2D space, adaptive mul-

tiresolution UWDG schemes for the ZK equation are capable of capturing

solitary waves efficiently. Two classes of multiwavelets are employed in our

schemes to attain MRA. First, the Alperts orthonormal multiwavelets are

adopted as the DG basis functions [25], and then the interpolatory multi-

wavelets [24] are introduced to deal with the nonlinear terms in the scheme.

The organization of the paper is as follows. In Section 2, we review the

UWDG method for the KdV equation and present our new UWDG method

for the ZK equation. The L2 stability and the optimal error estimate on

the ZK equation will be provided. In Section 3, we review the fundamentals

of Alpert’s and interpolatory wavelets and propose adaptive multiresolution

UWDG schemes for both the KdV equation and the ZK equation. In Section

4, we provide several numerical examples to illustrate the capability of our

proposed adaptive multiresolution UWDG method. Concluding remarks are

given in Section 5.

2 Semi-discrete UWDG schemes

In this section, we will present the UWDG method for the KdV equation

and the ZK equation on full grid, which serve as the building blocks of

the adaptive multiresolution UWDG methods. Specifically, we review the

UWDG method proposed in [7] for the KdV equation. Moreover, we develop

a new UWDG method for the ZK equation with proofs on L2 stability and

optimal error estimates.

2.1 KdV equation

Let the computational domain be the interval Ω ⊂ R, which is divided into

N intervals Ω =
⋃Nx

i=1 Ii with Ii = (xi− 1
2
, xi+ 1

2
), xi = 1

2
(xi− 1

2
+ xi+ 1

2
), hi =
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xi+ 1
2
− xi− 1

2
, and h = maxi hi. Define the DG finite element space as

V k
h = {v ∈ L2(Ω) : v|Ii ∈ P k(Ii), ∀i = 1, . . . , Nx}, (2.1)

where P k(Ii) represents all polynomials of degree at most k on Ii. Then, the

semi-discrete UWDG scheme proposed in [7] is based on repeated integration

by parts, and to find uh ∈ V k
h , such that for any test function vh ∈ V k

h , there

holds the equality:∫
Ω

(uh)tv
hdx =

∫
Ω

f(uh)vhxdx+

∫
Ω

uhvhxxxdx−
Nx∑
i=1

(f̂i+ 1
2
(vh)−

i+ 1
2

− f̂i− 1
2
(vh)+

i− 1
2

)

−
Nx∑
i=1

(ûh
i+ 1

2
(vhxx)

−
i+ 1

2

− ûh
i− 1

2
(vhxx)

+
i− 1

2

) +
Nx∑
i=1

((ũhx)i+ 1
2
(vhx)−

i+ 1
2

− (ũhx)i− 1
2
(vhx)+

i− 1
2

)

−
Nx∑
i=1

((ǔhxx)i+ 1
2
(vh)−

i+ 1
2

− (ǔhxx)i− 1
2
(vh)+

i− 1
2

). (2.2)

Here, f̂ , ûh, ũhx and ǔhxx are numerical fluxes and will be chosen as follows.

For the convection term, the global Lax-Friedrichs flux

f̂((uh)+, (uh)−) =
1

2
(f((uh)+) + f((uh)−))− α((uh)+ − (uh)−))

with α = max |f ′(u)| is used. Numerical fluxes about u are taken by following

the alternating principle [7]

ûh
i+ 1

2
= uh(x−

i+ 1
2

), (ũhx)i+ 1
2

= uhx(x
+
i+ 1

2

), (ǔhxx)i+ 1
2

= uhxx(x
+
i+ 1

2

) (2.3)

or alternatively

ûh
i+ 1

2
= uh(x+

i+ 1
2

), (ũhx)i+ 1
2

= uhx(x
+
i+ 1

2

), (ǔhxx)i+ 1
2

= uhxx(x
−
i+ 1

2

). (2.4)

As shown in [5, 13], optimal error estimate can be obtained for the semi-

discrete the scheme (2.2), when no convection term presents in (1.1). Also

energy conserving schemes can be designed by switching the fluxes (2.3)-(2.4)

to central fluxes.
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2.2 ZK equation

In this part, we present a new ultra-weak DG scheme for solving the ZK

equation (1.2). For simplicity, we only consider periodic boundary condition

here and similar results can be obtained for Dirichlet boundary conditions.

Given a rectangular domain Ω ⊂ R2, we have a shape regular partition

of Ω into rectangular cells Ω =
⋃
i,jKi,j with Ki,j = Ii × Jj = [xi− 1

2
, xi+ 1

2
]×

[yj− 1
2
, yj+ 1

2
] for i = 1 . . . , Nx and j = 1 . . . , Ny. Let xi = 1

2
(xi− 1

2
+ xi+ 1

2
),

yj = 1
2
(yj− 1

2
+ yj+ 1

2
), hxi = (xi+ 1

2
− xi− 1

2
), hyj = (yj+ 1

2
− yj− 1

2
) and h =

maxi,j(hxi , hyj). The DG finite element space is defined as

Vk
h = {v ∈ L2(Ω) : v|Ki,j

∈ Qk(Ki,j), ∀i = 1 . . . , Nx, j = 1 . . . , Ny}, (2.5)

where Qk(Ki,j) denotes the space of tensor product polynomials of degree at

most k in each dimension.

The main idea of UWDG scheme is to repeatedly apply integration by

parts so all the spatial derivatives are shifted from the solution to the test

function in the weak formulations. Due to the existence of the mixed deriva-

tive in the ZK equation, we apply integration by part in a proper order and

continue to integrate on the trace of elements until the integration by part

can no longer be used. This will result in some terms involving the vertices

of each element which does not appear in the previous DG method. Specifi-

cally, we propose our new UWDG scheme for (1.2) as follows: find uh ∈ Vk
h,

such that for any test function vh ∈ Vk
h,∫

Ω

uht (v
h)dxdy =

∫
Ω

f(uh)vhxdxdy +

∫
Ω

uhvhxxxdxdy +

∫
Ω

uhvhxyydxdy (2.6)

−
Nx∑
i=1

Ny∑
j=1

∫
Jj

f̂i+ 1
2
,y(v

h)−
i+ 1

2
,y
− f̂i− 1

2
,y(v

h)+
i− 1

2
,y
dy

−
Nx∑
i=1

Ny∑
j=1

∫
Jj

(ǔhxx)i+ 1
2
,y(v

h)−
i+ 1

2
,y
− (ǔhxx)i− 1

2
,y(v

h)+
i− 1

2
,y
dy
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+
Nx∑
i=1

Ny∑
j=1

∫
Jj

(ũhx)i+ 1
2
,y(v

h
x)−
i+ 1

2
,y
− (ũhx)i− 1

2
,y(v

h
x)+
i− 1

2
,y
dy

−
Nx∑
i=1

Ny∑
j=1

∫
Jj

ûh
i+ 1

2
,y

(vhxx)
−
i+ 1

2
,y
− ûh

i− 1
2
,y

(vhxx)
+
i− 1

2
,y
dy

+
Nx∑
i=1

Ny∑
j=1

∫
Ii

(ǔhy)x,j+ 1
2
(vhx)−

x,j+ 1
2

− (ǔhy)x,j− 1
2
(vhx)+

x,j− 1
2

dx

+
Nx∑
i=1

Ny∑
j=1

−(ǔhy)i+ 1
2
,j+ 1

2
(vh)−,−

i+ 1
2
,j+ 1

2

+ (ǔhy)i− 1
2
,j+ 1

2
(vh)+,−

i− 1
2
,j+ 1

2

+
Nx∑
i=1

Ny∑
j=1

(ǔhy)i+ 1
2
,j− 1

2
(vh)−,+

i+ 1
2
,j− 1

2

− (ǔhy)i− 1
2
,j− 1

2
(vh)+,+

i− 1
2
,j− 1

2

−
Nx∑
i=1

Ny∑
j=1

∫
Jj

(ũh)i+ 1
2
,y(v

h
yy)
−
i+ 1

2
,y
− (ũh)i− 1

2
,y(v

h
yy)

+
i− 1

2
,y
dy

+
Nx∑
i=1

Ny∑
j=1

(ũh)i+ 1
2
,j+ 1

2
(vhy )−,−

i+ 1
2
,j+ 1

2

− (ũh)i+ 1
2
,j− 1

2
(vhy )−,+

i+ 1
2
,j− 1

2

+
Nx∑
i=1

Ny∑
j=1

−(ũh)i− 1
2
,j+ 1

2
(vhy )+,−

i− 1
2
,j+ 1

2

+ (ũh)i− 1
2
,j− 1

2
(vhy )+,+

i− 1
2
,j− 1

2

−
Nx∑
i=1

Ny∑
j=1

∫
Ii

(ûh)x,j+ 1
2
(vhxy)

−
x,j+ 1

2

− (ûh)x,j− 1
2
(vhxy)

+
x,j− 1

2

dx,

Here, the numerical fluxes on the element interfaces are chosen as

(ǔhxx)i+ 1
2
,y = uhxx(x

+
i+ 1

2

, y), (ũhx)i+ 1
2
,y = uhx(x

+
i+ 1

2

, y), (ûh)i+ 1
2
,y = uh(x−

i+ 1
2

, y),

(ǔhy)x,j+ 1
2

= uhy(x, y
+
j+ 1

2

), (ũh)i+ 1
2
,y = uh(x+

i+ 1
2

, y), (ûh)x,j+ 1
2

= uh(x, y−
j+ 1

2

),

(2.7)

and the numerical fluxes on the element vertices are taken to be

(ǔhy)i+ 1
2
,j+ 1

2
= uhy(x

−
i+ 1

2

, y+
j+ 1

2

), (ũh)i+ 1
2
,j+ 1

2
= uh(x+

i+ 1
2

, y−
j+ 1

2

), (2.8)
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and f̂ is taken as the global Lax-Friedrichs flux. The notations in (2.6) for

vh are

(vh)±
i+ 1

2
,y

:= vh(x±
i+ 1

2

, y), (vh)±
x,j+ 1

2

:= vh(x, y±
j+ 1

2

), (vh)±,±
i+ 1

2
,j+ 1

2

:= vh(x±
i+ 1

2

, y±
j+ 1

2

).

(2.9)

Remark 2.1. The numerical fluxes can also be alternatively chosen as

(ǔhxx)i+ 1
2
,y = uhxx(x

−
i+ 1

2

, y), (ũhx)i+ 1
2
,y = uhx(x

+
i+ 1

2

, y), (ûh)i+ 1
2
,y = uh(x+

i+ 1
2

, y),

(ǔhy)x,j+ 1
2

= uhy(x, y
−
j+ 1

2

), (ǔhy)i+ 1
2
,j+ 1

2
= uhy(x

−
i+ 1

2

, y−
j+ 1

2

),

(ũh)i+ 1
2
,y = uh(x+

i+ 1
2

, y), (ũh)i+ 1
2
,j+ 1

2
= uh(x+

i+ 1
2

, y+
j+ 1

2

),

(ûh)x,j+ 1
2

= uh(x, y+
j+ 1

2

). (2.10)

2.2.1 L2 stability

We show the L2 stability on the ultra-weak DG scheme (2.6)-(2.9) for ZK

equation (1.2) in the following proposition:

Proposition 2.2. The numerical solution to the DG scheme (2.6)-(2.9) sat-

isfies the L2 stability

d

dt

∫
Ω

(uh(x, y, t))2dxdy ≤ 0. (2.11)

Proof. By taking v = uh in (2.6), we obtain

0 =

∫
Ω

uhuht dxdy −
∫

Ω

f(uh)uhxdxdy +
Nx∑
i=1

Ny∑
j=1

∫
Jj

f̂i+ 1
2
,yu

h(x−
i+ 1

2

, y)− f̂i− 1
2
,yu

h(x+
i− 1

2

, y)dy

+

∫
Ki,j

uhxu
h
xxdxdy −

∫
Jj

uhx(x
+
i+ 1

2

, y)uhx(x
−
i+ 1

2

, y)− uhx(x+
i− 1

2

, y)uhx(x
+
i− 1

2

, y)dy

−
∫
Ki,j

uhuhxyydxdy +

∫
Ii

uhxy(x, y
+
j+ 1

2

)uh(x, y−
j+ 1

2

)− uhxy(x, y+
j− 1

2

)uh(x, y+
j− 1

2

) dx

− (uhy(x
−
i− 1

2

, y+
j+ 1

2

)− uhy(x+
i− 1

2

, y+
j+ 1

2

))uh(x+
i− 1

2

, y−
j+ 1

2

)

+ (uhy(x
−
i− 1

2

, y+
j− 1

2

)− uhy(x+
i− 1

2

, y+
j− 1

2

))uh(x+
i− 1

2

, y+
j− 1

2

)
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−
∫
Jj

uhy(x
+
i+ 1

2

, y)uhy(x
−
i+ 1

2

, y)− uhy(x+
i− 1

2

, y)uhy(x
+
i− 1

2

, y) dy

− (uh(x+
i+ 1

2

, y+
j− 1

2

)− uh(x+
i+ 1

2

, y−
j− 1

2

))uhy(x
−
i+ 1

2

, y+
j− 1

2

)

+ (uh(x+
i− 1

2

, y+
j− 1

2

)− uh(x+
i− 1

2

, y−
j− 1

2

))uhy(x
+
i− 1

2

, y+
j− 1

2

)

+

∫
Ii

uh(x, y−
j+ 1

2

)uhxy(x, y
−
j+ 1

2

)− uh(x, y−
j− 1

2

)uhxy(x, y
+
j− 1

2

) dx.

=

∫
Ω

uhuht dxdy −
∫

Ω

f(uh)uhxdxdy +
Nx∑
i=1

Ny∑
j=1

∫
Jj

f̂i+ 1
2
,yu

h(x−
i+ 1

2

, y)− f̂i− 1
2
,yu

h(x+
i− 1

2

, y)dy

+

∫
Jj

1

2
[uhx]

2
i+ 1

2
,y
dy +

∫
Ki,j

uhyu
h
xy dxdy

−
∫
Jj

uhy(x
+
i+ 1

2

, y)uhy(x
−
i+ 1

2

, y)− uhy(x+
i− 1

2

, y)uhy(x
+
i− 1

2

, y) dy.

Denote F (u) =
∫ u

f(u)du, we can further get

d

dt

∫
Ω

1

2
(uh)2dxdy +

Nx∑
i=1

Ny∑
j=1

∫
Jj

[F (uh)]i+ 1
2
,y − f̂i+ 1

2
,j[u

h]i+ 1
2
,ydy (2.12)

+

∫
Jj

1

2
[uhx]

2
i+ 1

2
,y
dy +

∫
Jj

1

2
[uhy ]

2
i+ 1

2
,y
dy = 0

with [u] := u+ − u−. Notice that [F (u)]− f̂ [u] ≥ 0 due to the monotonicity

of numerical flux f̂ . Therefore, we obtain

d

dt

∫
Ω

1

2
(uh)2dxdy ≤ 0 (2.13)

and it completes the proof.

2.2.2 Optimal error estimate

In this subsection, we will prove the optimal error estimate of the UWDG

scheme (2.6)-(2.9) for the following simplified ZK equation

ut + uxyy = 0, (2.14)

8



with periodic boundary conditions.

In this simplified case, the semi-discrete scheme (2.6)-(2.9) reduces to:

find uh ∈ Vk
h, such that for any test function vh ∈ Vk

h∫
Ω

uht v
h dxdy =

Nx∑
i=1

Ny∑
j=1

Hi,j(u
h, vh) (2.15)

where

Hi,j(u
h, vh) =

∫
Ki,j

uhvhxyy dxdy +

∫
Ii

uhy(x, y
+
j+ 1

2

)vhx(x, y−
j+ 1

2

)− uhy(x, y+
j− 1

2

)vhx(x, y+
j− 1

2

) dx

− uhy(x−i+ 1
2

, y+
j+ 1

2

)vh(x−
i+ 1

2

, y−
j+ 1

2

) + uhy(x
−
i− 1

2

, y+
j+ 1

2

)vh(x+
i− 1

2

, y−
j+ 1

2

)

+ uhy(x
−
i+ 1

2

, y+
j− 1

2

)vh(x−
i+ 1

2

, y+
j− 1

2

)− uhy(x−i− 1
2

, y+
j− 1

2

)vh(x+
i− 1

2

, y+
j− 1

2

)

−
∫
Jj

uh(x+
i+ 1

2

, y)vhyy(x
−
i+ 1

2

, y)− uh(x+
i− 1

2

, y)vhyy(x
+
i− 1

2

, y) dy

+ uh(x+
i+ 1

2

, y−
j+ 1

2

)vhy (x−
i+ 1

2

, y−
j+ 1

2

)− uh(x+
i+ 1

2

, y−
j− 1

2

)vhy (x−
i+ 1

2

, y+
j− 1

2

)

− uh(x+
i− 1

2

, y−
j+ 1

2

)vhy (x+
i− 1

2

, y−
j+ 1

2

) + uh(x+
i− 1

2

, y−
j− 1

2

)vhy (x+
i− 1

2

, y+
j− 1

2

)

−
∫
Ii

uh(x, y−
j+ 1

2

)vhxy(x, y
−
j+ 1

2

)− uh(x, y−
j− 1

2

)vhxy(x, y
+
j− 1

2

) dx.

(2.16)

To obtain the optimal error estimates for the semi-discrete UWDG scheme

(2.15)-(2.16), we first introduce a special local projection. For each index i, j

and k ≥ 1, we define the projection Π? : H2(Ki,j)→ Qk(Ki,j), which satisfies∫
Ki,j

(Π?u− u)ϕdxdy = 0, ∀ϕ ∈ P k−1(Ii)⊗ P k−2(Jj), (2.17)∫
Ii

(Π?u− u)y(x, y
+
j− 1

2

)ϕ(x) dx = 0 ∀ϕ ∈ P k−1(Ii), (2.18)∫
Ii

(Π?u− u)(x, y−
j+ 1

2

)ϕ(x) dx = 0 ∀ϕ ∈ P k−1(Ii), (2.19)∫
Jj

(Π?u− u)(x+
i− 1

2

, y)ϕ(y) dy = 0 ∀ϕ ∈ P k−2(Jj), (2.20)

Π?u(x+
i− 1

2

, y−
j+ 1

2

) = u(xi− 1
2
, yj+ 1

2
), (2.21)
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(Π?u)y(x
−
i+ 1

2

, y+
j− 1

2

) = uy(xi+ 1
2
, yj− 1

2
). (2.22)

The projection Π? is well-defined and holds the optimal approximation prop-

erty.

Proposition 2.3. The projection Π? defined by (2.17)-(2.22) on the cell

Ki,j exists and is unique for any smooth function u ∈ Hk+1(Ki,j), and the

projection has the optimal approximation:

‖u− Π?u‖L2(Ki,j) ≤ Chk+1‖u‖Hk+1(Ki,j) (2.23)

where C is independent of the element Ki,j and the mesh size h.

Proof. The proof is given in Appendix A.

Then we can prove the following error estimate.

Theorem 2.4. Suppose that uh is the numerical solution of the UWDG

scheme (2.15)-(2.16) and the exact solution to the ZK equation (2.14) u(x, y, t) ∈
C1(0, T ;Hk+1(Ω)), then the L2-error satisfies the following estimation

‖u(·, T )− uh(·, T )‖L2(Ω) ≤ C(T + 1)hk+1 sup
0≤t≤T

‖ut(·, t)‖Hk+1(Ω), (2.24)

where k ≥ 1 is the degree of the piecewise tensor product polynomials in finite

element spaces Vk
h, and the constant C only depends on k but is independent

of the mesh size h.

Proof. Denote the error by e := u − uh = (u − Π?u) + (Π?u − uh). Thanks

to the consistency of the scheme (2.15), we have the following error equation

∫
Ω

(u− uh)tv dxdy =
Nx∑
i=1

Ny∑
j=1

Hi,j(u− uh, v) ∀v ∈ Vk
h. (2.25)
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Thus, we have∫
Ω

(Π?u− uh)tv dxdy −
Nx∑
i=1

Ny∑
j=1

Hi,j(Π
?u− uh, v)

=

∫
Ω

(Π?u− u)tv dxdy −
Nx∑
i=1

Ny∑
j=1

Hi,j(Π
?u− u, v) ∀v ∈ Vk

h. (2.26)

From the definition of the projection Π?u in (2.17)-(2.22) and the bilinear

form (2.16), it is easy to verify

Hi,j(Π
?u− u, v) = 0, ∀v ∈ Qk(Ki,j),∀i, j. (2.27)

Next, by taking v = Π?u − uh ∈ Vk
h in (2.26) and applying the Cauchy-

Schwarz inequality, we have the estimate

1

2

d

dt
‖Π?u− uh‖2 ≤ ‖Π?ut − ut‖‖Π?u− uh‖

≤ Chk+1‖ut‖Hk+1(Ω)‖Π?u− uh‖ (2.28)

Here, we also use the L2 stability in Proposition 2.2. Finally, by integrating

the above equation over t ∈ [0, T ] and using the initial projection, we obtain

the optimal error estimate (2.24).

3 Adaptive multiresolution UWDG schemes

In this section, we will present our adaptive multiresolution UWDG schemes

for the KdV equation and the ZK equation.

3.1 Multiresolution analysis and multiwavelets

We first review the fundamentals of MRA of DG approximation spaces and

the associated multiwavelets. The L2 orthonormal Alpert’s multiwavelets [1]

are presented and will be used later. We also introduce a set of key notations.
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Our construction of the UWDG schemes starts with the hierarchical de-

composition of the DG finite element space. Without loss of generality, we

assume the computational domain to be the unit interval Ω = [0, 1]. We

define a set of nested grids Ω0, Ω1, . . . on Ω, for which the n-th level grid Ωn

consists of 2n uniform cells:

Ijn = (2−nj, 2−n(j + 1)], j = 0, . . . , 2n − 1.

The piecewise polynomial space of degree at most k ≥ 1 on grid Ωn for n ≥ 0

is denoted by

V k
n := {v ∈ L2(Ω) : v ∈ P k(Ijn), ∀ j = 0, . . . , 2n − 1}. (3.1)

Observing the nested structure

V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ V k

3 ⊂ · · · ,

we can define the multiwavelet subspace W k
n , n = 1, 2, . . . as the orthogonal

complement of V k
n−1 in V k

n with respect to the L2 inner product on [0, 1], i.e.,

V k
n−1 ⊕W k

n = V k
n , W k

n ⊥ V k
n−1.

By lettingW k
0 := V k

0 , we obtain a hierarchical decomposition V k
n =

⊕
0≤l≤nW

k
l ,

i.e., MRA of space V k
n . A set of orthonormal basis can be defined on W k

l

as follows. When l = 0, the basis v0
i,0(x), i = 0, . . . , k are the normalized

shifted Legendre polynomials in [0, 1]. When l > 0, we will use the Alpert’s

orthonormal multiwavelets [1] as the bases, which have been employed to de-

velop a class of sparse grid DG methods for solving PDEs in high dimensions

[25, 14, 23, 16]. In this paper, we adopt the notation

vji,l(x), i = 0, . . . , k, j = 0, . . . , 2l−1 − 1.

for Alpert’s multiwavelets.

12



We then follow a tensor-product approach to construct the hierarchical

finite element space in multi-dimensional space. Denote l = (l1, · · · , ld) ∈
Nd

0 as the mesh level in a multivariate sense, where N0 denotes the set of

nonnegative integers. Then we can define the tensor-product mesh grid Ωl =

Ωl1 ⊗ · · ·⊗Ωld and the corresponding mesh size hl = (hl1 , · · · , hld). Based on

the grid Ωl, we denote I jl = {x : xm ∈ (hmjm, hm(jm + 1)),m = 1, · · · , d} as

an elementary cell, and

Vk
l := {v : v ∈ Qk(I jl ), 0 ≤ j ≤ 2l − 1} = V k

l1,x1
× · · · × V k

ld,xd

as the tensor-product piecewise polynomial space, where Qk(I jl ) represents

the collection of polynomials of degree up to k in each dimension on cell I jl . If

we use equal mesh refinement of size hN = 2−N in each coordinate direction,

the grid and space will be denoted by ΩN and Vk
N , respectively. Based on a

tensor-product construction, the multi-dimensional increment space can be

defined as

Wk
l = W k

l1,x1
× · · · ×W k

ld,xd
.

The basis functions in multi-dimensions are defined as

vji,l(x) :=
d∏

m=1

vjmim,lm(xm), (3.2)

for l ∈ Nd
0, j ∈ Bl := {j ∈ Nd

0 : 0 ≤ j ≤ max(2l−1− 1,0)} and 1 ≤ i ≤ k+ 1.

Using the notation of

|l|1 :=
d∑

m=1

lm, |l|∞ := max
1≤m≤d

lm.

and the same component-wise arithmetic operations and relations as defined

in [25], we reach the decomposition

Vk
N =

⊕
|l|∞≤N
l∈Nd

0

Wk
l . (3.3)
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When d = 2, it is easy to see that Vk
N is the same space of Vk

h in Section 2.2

with uniform partition and Nx = Ny = 2N . On the other hand, a standard

choice of sparse grid space [25, 14] is

V̂k
N =

⊕
|l|1≤N
l∈Nd

0

Wk
l ⊂ Vk

N . (3.4)

We skip the details about the property of the space, but refer the readers to

[25, 14]. In Section 3.2, we will describe the adaptive scheme which adapts

a subspace of Vk
N according to the numerical solution, hence offering more

flexibility and efficiency.

For nonlinear convection terms in the KdV equation (1.1) and the ZK

equation (1.2), we use the interpolatory multiwavelets based on Hermite

interpolations introduced in [24]. The treatment of the nonlinear convection

terms is the same as that in the adaptive multiresolution DG scheme for

solving conservation laws in [17]. For saving space, we omit the details and

refer readers to [24, 17].

3.2 Semi-discrete schemes

Based on the construction of MRA of DG approximation space, we are ready

to present the adaptive multiresolution UWDG schemes for simulating the

KdV equation (1.1) and the ZK equation (1.2). For illustrative purposes, we

first introduce some basis notation about jumps and averages for piecewise

functions defined on a grid ΩN . Denote by Γ the union of the boundaries for

all the elements in the partition ΩN . In 2D case, Γ is further decomposed

into two parts: Γ = Γx ∪ Γy with Γx and Γy are the union of the boundaries

in x- and y- directions, respectively. The jump and average of q ∈ L2(Γ)

and q ∈ [L2(Γ)]d are defined as follows. Suppose e is an edge (degenerate

to a point in 1D) shared by elements T+ and T−, we define the unit normal
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vectors n+ and n− on e pointing exterior to T+ and T−, and then

[q] = q−n− + q+n+, {q} =
1

2
(q− + q+),

[q] = q− · n− + q+ · n+, {q} =
1

2
(q− + q+).

Moreover, in 2D case, we denote S the set of all the vertices in the partition

ΩN . For any p = (xp, yp) ∈ S, we denote

{[v]}p = −v(x−p , y
−
p )− v(x+

p , y
+
p ) + v(x−p , y

+
p ) + v(x−p , y

+
p ) (3.5)

which will be used for the special treatment in the UWDG scheme for the

ZK equation.

The semi-discrete multiresolution UWDG scheme for KdV equation is to

find uh ∈ V, such that for any test function vh ∈ V,∫
Ω

(uh)tv
hdx =

∫
Ω

Ih[f(uh)]vhxdx+
∑
e∈Γ

(
Ih[f̂(uh)][vh]

)
e

+

∫
Ω

uhvhxxxdx

+
∑
e∈Γ

(
ûh[vhxx]

)
e
−
∑
e∈Γ

(
(ũhx)[v

h
x ]
)
e

+
∑
e∈Γ

(
(ǔhxx)[v

h]
)
e
, (3.6)

where the choices of f̂ , ûh, ũhx and ǔhxx are the same as in (2.3)-(2.4). Here, V

is a subspace of Vk
N which dynamically evolves over time [15]. The adaptive

procedure follows the technique developed in [15] to determine the UWDG

function space that dynamically evolves over time. The main idea is that

in light of the distinguished property of the orthonormal multiwavelets, we

keep track of multiwavelet coefficients as a natural error indicator for refining

and coarsening, aiming to efficiently capture the soliton solutions. For the

details, we refer readers to [15, 17].

In (3.6), we follow the approach in [17] and apply the multiresolution

Hermite interpolation Ih to efficiently compute the nonlinear terms. It is

required that the polynomial degree of Hermite interpolation M ≥ k+1 [17].
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For example, if we take quadratic polynomials for the DG space, then it is

required to apply a cubic interpolation operator to treat the nonlinear terms.

Similarly, the semi-discrete adaptive multiresolution UWDG for ZK equa-

tion is to find uh ∈ V, such that for any test function vh ∈ V, the following

equation holds,∫
Ω

uht v
hdxdy =

∫
Ω

Ih[f(uh)]vhxdxdy +

∫
Ω

uhvhxxxdxdy +

∫
Ω

uhvhxyydxdy (3.7)

+
∑
e∈Γy

∫
e

Ih[f̂ ][vh] + ǔhxx[v
h]− ũhx[vhx ] + ûh[vhxx] + ũh[vhyy]ds

−
∑
e∈Γx

∫
e

ǔhy [v
h
x ]− ûh[vhxy]ds+

∑
p∈S

(ǔhy{[vh]} − ũh{[vh]})p,

Here, the numerical fluxes are given in (2.7)-(2.8). A sparse grid UWDG

scheme can be defined similarly if V = V̂k
N .

4 Numerical examples

In this section, we present several numerical examples to demonstrate the

performance of the proposed adaptive multiresolution UWDG schemes for

solving the KdV equation and the ZK equation. For the time discretiza-

tion, we employ the third-order implicit-explicit (IMEX) Runge-Kutta (RK)

method in [22]. All adaptive calculations are obtained by k = 2, unless oth-

erwise stated. The maximum mesh level N is set to be 8. DoF = dim(V)

refers to the number of Alpert’s multiwavelets basis functions in the adap-

tive grids. The coarsening threshold η is taken to be ε/10 with ε to be the

refinement threshold [15].
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4.1 KdV equation

Example 4.1 (accuracy test for the KdV equation). We first test accuracy

of our scheme for the nonlinear KdV equation on the domain [0, 1]:

ut +

(
u2

2

)
x

+ uxxx = s(x, t). (4.1)

By adding the additional source term

s(x, t) = 2π cos(2π(x− t))(−4π2 − 1 + sin(2π(x− t))), (4.2)

we have an explicit exact solution to test the accuracy:

u(x, t) = sin(2π(x− t)) (4.3)

The periodic boundary condition is applied here.

Similar as in [4, 15], two types rates of convergence will be investigated.

The first one is the convergence rate with respect to the error thresold:

Rεl =
log(el−1/el)

log(εl−1/εl)
,

where el is the standard L2 error with refinement parameter ε. The second

one is the convergence rate with respect to degrees of freedom:

RDoFl
=

log(el−1/el)

log(DoFl/DoFl−1)
.

For reference, the numerical results with UWDG scheme on full grid for

k = 2 are shown in Table 4.1. We observe clear third-order accuracy. Table

4.2 presents the accuracy of the UWDG schemes with adaptivity, from which

we can observe the effectiveness of our adaptive scheme.

Example 4.2 (solitons for the KdV equation). In this example, we consider

the nonlinear KdV equation on the domain [0, 1]:

ut +

(
u2

2

)
x

+ σuxxx = 0 (4.4)
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with periodic boundary conditions.

We first consider the single soliton case with the exact solution [10]:

u(x, t) = 3c sech2(κ(x− ct− x0)) (4.5)

with c = 0.3, x0 = 0.5, σ = 5 × 10−4 and κ = 1
2
(c/σ)1/2. The numerical

solutions and the active elements at t = 0.1 and t = 0.8 are presented in

Figure 4.1. We can see that our adaptive algorithm can capture the evolution

of solitons with steep gradients efficiently. The active elements are moving

with the soliton.

Next, we consider the double soliton collision which has the initial condi-

tion [10]:

u(x, 0) = 3c1 sech2(κ1(x− x1)) + 3c2 sech2(κ2(x− x2)), (4.6)

with c1 = 0.3, c2 = 0.1, x1 = 0.45, x2 = 0.65, σ = 1.21 × 10−4 and κi =
1
2
(ci/σ)1/2 for i = 1, 2. The numerical solutions and the active elements at

Table 4.1: Example 4.1: accuracy test for KdV equation in 1D. Full grid,
k = 2. t = 0.1.

N L1-error order L2-error order L∞-error order

k = 2

2 2.67e-01 - 3.47e-01 - 6.56e-01
3 3.19e-02 3.07 3.82e-02 3.18 6.90e-02 3.25
4 2.46e-03 3.70 2.78e-03 3.78 5.94e-03 3.54
5 2.88e-04 3.09 3.32e-04 3.07 8.96e-04 2.73
6 3.58e-05 3.01 4.15e-05 3.00 1.15e-04 2.96

Table 4.2: Example 4.1: accuracy test for KdV equation in 1D. Adaptive
scheme, k = 2, t = 0.1.

ε DoF L2-error RDoF Rε

k = 2

1e-2 24 3.82e-2 - -
1e-3 48 2.78e-3 3.78 1.14
1e-4 90 7.14e-4 2.16 0.59
1e-5 180 5.60e-5 3.67 1.11
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Figure 4.1: Example 4.2: nonlinear KdV equation in 1D, single soliton.
t = 0.1 and t = 0.8. N = 8 and ε = 10−4. Left: numerical and exact
solutions at t = 0.1 and t = 0.8; right: active elements at t = 0.1 and
t = 0.8.
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t = 0, 0.7 and 1 are shown in Figure 4.2. It is observed that our adaptive

scheme is able to simulate a clean interaction where no dispersive tail or

supplementary soliton are created.

The last case in this example is the triple soliton splitting which has the

initial condition [29]

u(x, 0) =
2

3
sech2

(
x− x0√

108σ

)
, (4.7)

with x0 = 0.5 and σ = 2.5 × 10−5. The numerical solutions and the active

elements at t = 0, 0.5 and 1 are shown in Figure 4.3. Again, we observe

that our adaptive algorithm can capture the steep gradients of the soliton

efficiently. Moreover, the solution profiles are comparable to the results in

[29].

4.2 ZK equation

Example 4.3 (accuracy test for the simplified ZK equation). We test the

convergence order of UWDG scheme on full and sparse grids for the simplified

ZK equation:

ut + uxyy = 0, (4.8)

with the periodic boundary conditions. The exact solution is taken to be

u(x, y, t) = sin(2π(x+ y) + 8π3t)). (4.9)

The numerical results with full grid and sparse grid for k = 1, 2, 3 are

shown in Table 4.3 and Table 4.4, respectively. We observe clearly (k + 1)

order of accuracy for full grid, which verifies our optimal error estimate in

Theorem 2.4. Moreover, slightly more than (k + 1
2
) order of accuracy is

observed for sparse grid, which is consistent with approximation results for

sparse grid, e.g. see [25] for results on elliptic equations.
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Figure 4.2: Example 4.2: nonlinear KdV equation in 1D, double soliton.
t = 0, 0.7 and 1. N = 8 and ε = 10−4. Left: numerical solutions at t = 0,
0.7 and 1; right: active elements at t = 0, 0.7 and 1.
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Figure 4.3: Example 4.2: nonlinear KdV equation in 1D, triple soliton split-
ting. t = 0, 0.5 and 1. N = 8 and ε = 10−4. Left: numerical solutions at
t = 0, 0.5 and 1; right: active elements at t = 0, 0.5 and 1.
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Example 4.4 (accuracy test for the ZK equation). We consider the ZK

equation

ut +

(
u2

2

)
x

+ uxxx + uxyy = s(x, y, t) (4.10)

with periodic boundary conditions. We add a particular source term

s(x, y, t) = 2π cos(2π(x+ y + t))(1− 8π2 + sin(2π(x+ y + t))) (4.11)

such that the exact solution is

u(x, y, t) = sin(2π(x+ y + t)). (4.12)

In Table 4.5 and Table 4.6, we present the convergence order for full grid

and sparse grid in the case of k = 2 and k = 3, from which (k+1)-th order is

clearly observed for the full grid. The convergence order for the sparse grid

is between k and (k + 1). The accuracy with the adaptive method is shown

Table 4.3: Example 4.3: accuracy test for the simplified ZK equation. Full
grid, k = 1, 2, 3. t = 0.01.

N L1-error order L2-error order L∞-error order

k = 1

2 8.31e-01 - 9.75e-01 - 2.00e+00 -
3 3.52e-01 1.24 3.93e-01 1.31 6.40e-01 1.64
4 8.50e-02 2.05 9.43e-02 2.06 1.47e-01 2.12
5 2.08e-02 2.03 2.31e-02 2.03 3.59e-02 2.03
6 5.18e-03 2.01 5.75e-03 2.01 8.93e-03 2.01

k = 2

2 3.02e-02 - 4.08e-02 - 1.19e-01 -
3 3.55e-03 3.09 4.75e-03 3.10 1.60e-02 2.90
4 4.53e-04 2.97 5.84e-04 3.02 1.97e-03 3.02
5 5.75e-05 2.98 7.27e-05 3.01 2.42e-04 3.02
6 7.26e-06 2.99 9.07e-06 3.00 2.98e-05 3.02

k = 3

2 2.22e-03 - 2.93e-03 - 7.59e-03 -
3 1.64e-04 3.76 2.17e-04 3.75 5.77e-04 3.72
4 9.57e-06 4.10 1.31e-05 4.06 3.85e-05 3.91
5 6.22e-07 3.94 8.52e-07 3.94 2.55e-06 3.92
6 3.90e-08 4.00 5.35e-08 3.99 1.60e-07 3.99
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in Table 4.7. The RDOF is larger than the full grid case (k+ 1)/d. Moreover,

it is observed that to reach the same error of magnitude, it takes much fewer

DoFs of k = 3 than k = 2.

Example 4.5 (cylindrically symmetric solitons for the ZK equation). We

investigate a cylindrically symmetric solitary solution and its evolutions as

well as interactions for the ZK equation [19, 12]

ut + (3u2)x + σ(uxxx + uxyy) = 0. (4.13)

This type of solitary solution, also called the bell-shaped pulse, has the initial

value

u(x, y, t) =
c

3

10∑
n=1

an

(
cos(2n arccot(

√
c

2
r))− 1

)
(4.14)

where c is the velocity of the soliton wave solution and r =
√

(x− x0)2 + (y − y0)2.

Table 4.4: Example 4.3: accuracy test for the simplified ZK equation. Sparse
grid, k = 1, 2, 3. t = 0.01.

N L1-error order L2-error order L∞-error order

k = 1

2 7.60e-01 - 8.66e-01 - 1.80e+00 -
3 6.67e-01 0.19 7.56e-01 0.20 1.59e+00 0.18
4 4.10e-01 0.70 4.87e-01 0.63 1.06e+00 0.58
5 1.67e-01 1.29 1.92e-01 1.35 4.27e-01 1.32
6 5.31e-02 1.66 6.24e-02 1.62 1.81e-01 1.24

k = 2

2 2.04e-01 - 2.58e-01 - 7.13e-01 -
3 3.73e-02 2.45 4.73e-02 2.45 1.67e-01 2.10
4 5.63e-03 2.73 7.53e-03 2.65 4.38e-02 1.93
5 9.11e-04 2.63 1.20e-03 2.65 7.93e-03 2.46
6 1.30e-04 2.81 1.73e-04 2.79 1.18e-03 2.75

k = 3

2 1.10e-02 - 1.36e-02 - 5.63e-02 -
3 1.08e-03 3.34 1.43e-03 3.25 9.37e-03 2.59
4 7.93e-05 3.77 1.07e-04 3.74 7.17e-04 3.71
5 6.02e-06 3.72 7.89e-06 3.76 5.76e-05 3.64
6 4.15e-07 3.86 5.55e-07 3.83 4.86e-06 3.57
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Table 4.5: Example 4.4: accuracy test for the ZK equation (4.10). Full grid,
k = 2, 3, t = 0.01.

N L1-error order L2-error order L∞-error order

k = 2

2 1.85e-01 - 2.24e-01 - 5.04e-01 -
3 3.85e-02 2.26 4.40e-02 2.35 8.80e-02 2.52
4 5.56e-03 2.79 6.25e-03 2.82 1.12e-02 2.97
5 7.17e-04 2.95 8.04e-04 2.96 1.40e-03 3.00
6 9.01e-05 2.99 1.01e-04 2.99 1.74e-04 3.01

k = 3

2 1.92e-02 - 2.29e-02 - 4.44e-02 -
3 2.41e-03 2.99 2.73e-03 3.06 4.95e-03 3.16
4 1.36e-04 4.15 1.54e-04 4.15 2.79e-04 4.15
5 9.44e-06 3.85 1.06e-05 3.85 1.89e-05 3.89
6 5.96e-07 3.99 6.71e-07 3.99 1.18e-06 4.00

Table 4.6: Example 4.4: accuracy test for the ZK equation (4.10). Sparse
grid, k = 2, 3, t = 0.01.

N L1-error order L2-error order L∞-error order

k = 2

2 2.80e-01 - 3.42e-01 - 1.14e+00 -
3 6.86e-02 2.03 8.50e-02 2.01 3.06e-01 1.89
4 1.23e-02 2.48 1.49e-02 2.51 5.13e-02 2.58
5 2.59e-03 2.25 3.28e-03 2.18 1.72e-02 1.57
6 2.92e-04 3.15 3.63e-04 3.17 2.14e-03 3.01

k = 3

2 3.28e-02 - 3.96e-02 - 1.23e-01 -
3 2.78e-03 3.56 3.32e-03 3.58 1.16e-02 3.40
4 1.84e-04 3.91 2.27e-04 3.87 9.22e-04 3.66
5 1.45e-05 3.67 1.82e-05 3.64 9.63e-05 3.26
6 9.50e-07 3.93 1.18e-06 3.95 5.55e-06 4.12
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The coefficients are [19]

a1 = −1.25529873, a2 = 0.21722635, a3 = 0.06452543,

a4 = 0.00540862, a5 = −0.00332515, a6 = −0.00281281, (4.15)

a7 = −0.00138352, a8 = −0.00070289, a9 = −0.00020451,

a10 = −0.00003053.

In this test, we take x0 = y0 = 0.5 and σ = 1/1024 in (4.13). The stable

propagation of a single pulse is presented in Figure 4.4. The active elements

automatically move with the soliton and the soliton shape is well preserved

in the time evolution.

Example 4.6 (soliton collisions for the ZK equation). Next, we proceed to

show the collision of two pulses with the initial condition:

u(x, y, t) =
2∑
j=1

cj
3

10∑
n=1

an

(
cos(2n arccot(

√
cj

2
rj))− 1

)
(4.16)

with rj =
√

(x− xj)2 + (y − yj)2, j = 1, 2 and the coefficients an for n =

1, . . . , 10 are the same as those given in (4.15). Here, we simulate two

Table 4.7: Example 4.4, accuracy test for the ZK equation (4.10). Adaptive
scheme, k = 2 and k = 3. t = 0.01.

ε DoF L2-error RDoF Rε

k = 2

1e-01 108 1.97e-01 - -
1e-02 288 3.26e-02 1.83 0.78
1e-03 720 4.54e-03 2.15 0.86
1e-04 1656 6.01e-04 2.43 0.88

k = 3

1e-01 96 1.50e-01 - -
1e-02 192 2.30e-02 2.71 0.82
1e-03 320 2.75e-03 4.16 0.92
1e-04 768 3.71e-04 2.29 0.87

26



x

0.0

0.5

1.0

y
0.0

0.5

1.0

u

0

1

2

3

(a) numerical solutions at t = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

DoF = 4716

(b) active elements at t = 0

x

0.0

0.5

1.0

y
0.0

0.5

1.0

u

0

1

2

3

(c) numerical solutions at t = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

DoF = 6021

(d) active elements at t = 0.1

x

0.0

0.5

1.0

y
0.0

0.5

1.0

u

0

1

2

3

(e) numerical solutions at t = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

DoF = 6588

(f) active elements at t = 0.2

Figure 4.4: Example 4.5: ZK equation, single soliton. t = 0, 0.1 and 0.2.
N = 8 and ε = 10−4. Left: numerical solutions; right: active elements.
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cases with different parameters. The first case is the direct collision of

two dissimilar pulses solution. The parameters are c1 = 4 and c2 = 1,

(x1, y1) = (1/2, 1/2), (x2, y2) = (5/8, 1/2) and ε = 1/4096. The numerical

results are shown in Figure 4.5. It is observed that two pulses merge with

each other and form a profile with only one-peak. Then two pulses with

different amplitudes reappear by emitting ripples [19]. The evolution of the

numerical solutions is similar to Figure 17 in [26]. The second case is the de-

viated collision of two dissimilar pulses solution. The parameters are c1 = 4

and c2 = 1, (x1, y1) = (1/4, 7/16), (x2, y2) = (1/2, 1/2), ε = 1/1024. The

numerical results are presented in Figure 4.6. The performance is similar to

Figure 18 in [26].

Example 4.7 (lump solitons for the ZK equation). We consider the lump

solutions for the ZK equation [20]:

ut + (3u2)x + σ(uxxx + uxyy) = 0, (4.17)

with the initial condition

u(x, y, 0) = Ae−κ((x−x0)2+(y−y0)2) (4.18)

with σ = 1/6400, A = 0.4, κ = 320 and (x0, y0) = (1
2
, 1

2
).

The numerical solutions and the active elements are presented in Figure

4.7. It is observed that the lump initial condition evolves into a lump soliton

followed by a tail of radiation within a caustic. The solution profiles are

comparable to [20].

5 Conclusion

In this work, we propose a class of adaptive multiresolution ultra-weak DG

methods for solving dispersive equations including the KdV equation in
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Figure 4.5: Example 4.5: ZK equation, direct collision of two dissimilar
pulses solution. t = 0, 0.04 and 0.1. N = 8 and ε = 10−4. Left: numerical
solutions; right: active elements.
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Figure 4.6: Example 4.5: ZK equation, deviated collision of two dissimilar
pulses solution. t = 0, 0.1 and 0.15. N = 8 and ε = 10−4. Left: numerical
solutions; right: active elements.
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Figure 4.7: Example 4.5: ZK equation, lump solitons. t = 0 and 0.2. N = 8
and ε = 10−4. Left: numerical solutions; right: active elements.
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one dimension and the ZK equation in two dimension. In particular, we

propose a new ultra-weak DG method for the ZK equation. We prove

the L2 stability of the scheme and the optimal error estimate by a care-

fully designed local projection. Numerical examples are presented to il-

lustrate the accuracy and capability of capturing the soliton waves. The

code generating the results in this paper can be found at the GitHub link:

https://github.com/JuntaoHuang/adaptive-multiresolution-DG.

Appendix A Proof of Proposition 2.3

In this appendix, we present the proof of Proposition 2.3. We first prove the

existence and uniqueness of the projection and then prove the approximation

property.

Note that the procedure to find Π?u ∈ Qk(Ki,j) is to solve a linear system

with a square matrix, so the existence and uniqueness are equivalent. Thus,

we only need to prove the uniqueness of the projection Π?. By assuming that

u(x, y) = 0, we would like to prove that Π?u = 0.

Notice that (Π?u)y(x, y
+
j− 1

2

) ∈ P k(Ii). Then, (2.18), (2.22) and the ex-

istence and uniqueness of the 1D right Gauss-Radau projection [6] on Ii

implies

(Π?u)y(x, y
+
j− 1

2

) = 0, ∀x ∈ Ii. (A.1)

Similarly, (2.19), (2.21) and the existence and uniqueness of the 1D left

Gauss-Radau projection [6] on Ii implies

Π?u(x, y−
j+ 1

2

) = 0, ∀x ∈ Ii. (A.2)

By using (A.1) and (A.2), we can write Π?u(x, y) in the following formulation

Π?u(x, y) =

∫ y
j+1

2

y

(s− yj− 1
2
)G(x, s) ds (A.3)

32

https://github.com/JuntaoHuang/adaptive-multiresolution-DG


for some G(x, s) ∈ P k(Ii)⊗ P k−2(Jj).

Plugging in (A.3) into (2.20), we have∫ y
j+1

2

y
j− 1

2

∫ y
j+1

2

y

(s− yj− 1
2
)G(x+

i− 1
2

, s) dsϕ(y) dy (A.4)

=

∫ y
j+1

2

y
j− 1

2

∫ y

y
j− 1

2

ϕ(s) ds(y − yj− 1
2
)G(x+

i− 1
2

, y) dy

=0, ∀ϕ(y) ∈ P k−2(Jj)

Taking
∫ y
y
j− 1

2

ϕ(s) ds = (y − yj− 1
2
)G(x+

i− 1
2

, y) ∈ P k−1(Jj) in (A.4), we imme-

diately get

G(x+
i− 1

2

, y) = 0, ∀y ∈ Jj. (A.5)

Therefore, we can make further decomposition of G(x, y) in (A.3) and have

Π?u(x, y) =

∫ y
j+1

2

y

(s− yj− 1
2
)(x− xi− 1

2
)H(x, s) ds, (A.6)

for some H(x, s) ∈ P k−1(Ii)⊗ P k−2(Jj).

Finally, plugging in (A.6) into (2.17), we have∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

∫ y
j+1

2

y

(s− yj− 1
2
)(x− xi− 1

2
)H(x, s) dsv(x, y) dydx (A.7)

=

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

∫ y

y
j− 1

2

v(x, s) ds(y − yj− 1
2
)(x− xi− 1

2
)H(x, y) dydx

=0 ∀v(x, y) ∈ P k−1(Ii)⊗ P k−2(Jj).

Taking
∫ y
y
j− 1

2

v(x, s) ds = (y − yj− 1
2
)H(x, y) ∈ P k−1(Ii) ⊗ P k−1(Jj) in (A.7),

we have H(x, y) ≡ 0. Therefore Π?u(x, y) ≡ 0. We finish the proof of the

existence and uniqueness of the projection Π?.

We now turn to the proof of the approximation property. Note that the

projection Π? is a local projection on Ki,j. Thus, we do the standard scaling
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arguments ξ := 2(x−xi)
hxi

and η :=
2(y−yj)

hyj
and only consider the reference cell

[−1, 1]× [−1, 1]. We denote

Π?u(x, y) =

(k+1)2∑
m=1

amLm(ξ, η), (A.8)

where {Lm}(k+1)2

m=1 is a set of basis functions of Qk([−1, 1] × [−1, 1), e.g.,

{Lm}(k+1)2

m=1 = {1, ξ, η, . . . , ξkηk}. We collect the coefficients in (A.8) in a

vector a = (a1, a2, . . . , a(k+1)2)
T . From the existence and uniqueness of the

projection, we can solve a square linear system

Aa = b (A.9)

to get a = A−1b.

Notice that each component of b is bounded by some norms of u:

‖b‖l∞ ≤ C(‖û(ξ, η)‖L∞([−1,1]×[−1,1]) + ‖ûη(ξ, η)‖L∞([−1,1]×[−1,1]))

= C(‖u(x, y)‖L∞(Ki,j) + hyj‖uy(x, y)‖L∞(Ki,j))

where û(ξ, η) := u(1
2
hxiξ + xi,

1
2
hyjη+ yj). Moreover, A only depends on the

constant k. We have

‖a‖l∞ ≤ C(‖u(x, y)‖L∞(Ki,j) + hyj‖uy(x, y)‖L∞(Ki,j)) (A.10)

and thus

‖Π?u(x, y)‖L∞(Ki,j) ≤ C(‖u(x, y)‖L∞(Ki,j) + hyj‖uy(x, y)‖L∞(Ki,j)). (A.11)

Since the projection is a local projection which preserves the polynomial up to

degree k-th, the boundedness of the projection and standard approximation

theory implies,

‖Π?u(x, y)− u(x, y)‖L2(Ki,j) ≤ Chk+1‖u‖Hk+1(Ki,j). (A.12)
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