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Local Minimum Principle for an Optimal Control Problem
with a Nonregular Mixed Constraint

A.V. Dmitruk∗, N.P. Osmolovskii†

Abstract

We consider the simplest optimal control problem with one nonregular mixed
constraint G(x, u) 6 0, i.e. when the gradient Gu(x, u) can vanish on the surface
G = 0. Using the Dubovitskii–Milyutin theorem on the approximate separation
of convex cones, we prove a first order necessary condition for a weak minimum
in the form of the so-called “local minimum principle”, which is formulated in
terms of functions of bounded variation, integrable functions, and Lebesgue-
Stieltjes measures, and does not use functionals from (L∞)∗ . Two illustrative
examples are given. The work is based on the book by Milyutin [3].

Keywords: normed space, convex cone, dual cone, approximate separation
theorem, mixed constraint, phase point, Pontryagin function, Lebesgue-Stieltjes
measure, singular measure, costate equation.

1 Introduction

Consider the optimal control problem on a fixed interval of time [t0, t1] :

J (x, u) := J(x(t0), x(t1)) → min, (1)

ẋ = f(x, u), (2)

G(x, u) 6 0, (3)

where the functions J : R
2n → R, f : R

n+m → R
n, and G : R

n+m → R are
continuously differentiable. This problem will be called Problem P.

Condition (3) is called mixed state-control constraint or simply mixed constraint.
The presence of this constraint determines the main difficulties in obtaining necessary
optimality condition for this problem. These difficulties largely disappear if one as-
sumes that the gradient Gu(x, u) does not vanish at the points (x, u) ∈ R

n+m where
G(x, u) = 0. In this case we say that the mixed constraint (3) is regular. Traditionally,
the regularity assumption (properly modified for more general problems) is present in
the works on necessary optimality conditions for problems with mixed constraints (see
e.g. [7]–[16]). One of the few exceptions is the recent work [17], which will be discussed
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later. Note that the regularity assumption for mixed constraint does not allow one to
consider the pure state constraint g(x) 6 0 as a special case of the mixed constraint.
In this paper, we do not impose any assumptions on the mixed constraint (3), except
for the smoothness condition for the function G.

A pair (x, u) ∈ R
n+m is called phase point (of the mixed constraint) if G(x, u) = 0

and also Gu(x, u) = 0. As mentioned above, it is the presence of such points, which
creates the main difficulties in studying the problem and, in addition, gives rise to the
main changes even in the formulation of the necessary optimality conditions compared
to the regular case.

We consider Problem P for x ∈ AC([t0, t1],R
n) and u ∈ L∞([t0, t1],R

m), using
the notation

w = (x, u) ∈ W = AC([t0, t1],R
n)× L∞([t0, t1],R

m)

and ξ = (x0, x1) = (x(t0), x(t1)). The norm of a pair w = (x, u) is

‖w‖ = ‖x‖AC + ‖u‖∞ = |x(t0)| +
∫ t1

t0

|ẋ(t)| dt + ess sup
t∈[t0,t1]

|u(t)|.

Obviously, the local minimum in this norm is equivalent to the standard weak mini-
mum1. The goal of this paper is to obtain first-order necessary conditions for a weak
minimum in problem (1)–(3) in the form of the so-called local minimum principle
(LMP)2.

As is known, an efficient method for obtaining LMP in constrained problems was
proposed by Dubovitskii and Milyutin in [1]. The idea was simple (and therefore
became very popular): at the minimum point, one should consider the convex cones
of first order approximation for the cost and constraints, that should not intersect.
Then the separation theorem is applied and the resulting Euler–Lagrange (stationarity)
equation is analyzed. This leads to a LMP with multipliers from the spaces dual to
the image spaces of the constraints.

However, a difficulty arises in this method: since the image space of the mixed con-
straints is L∞ , the separating functionals should belong to the conjugate space (L∞)∗,
which has an essentially complex structure. In problems with regularmixed constraints,
one can prove that the corresponding multipliers are represented by functions from L1

(see [9, 15]). Unfortunately, this is not possible for problems with nonregular mixed
constraints.

To overcome this difficulty, Dubovitskii and Milyutin [2] proposed the idea of not
exact but approximate separation of the cones. For the case of two cones, it looks
as follows. Let Y and X be normed spaces with Y ∗ = X, let H0, H1 ⊂ Y and
Ω0, Ω1 ⊂ X be nonempty convex cones, Ω1 open, such that H∗

0 = Ω0 and H∗
1 = Ω1 ,

where the bar denotes the closure in the strong topology of X and the star denotes
the dual (conjugate) cone.

Let x0
1 ∈ Ω1 be a given point. Then the following is true: if Ω0∩Ω1 = Ø, then for

any ε > 0 there exist h0 ∈ H0 and h1 ∈ H1 such that 〈x0
1, h1〉 = 1 and ‖ h0+h1‖ < ε.

The converse is also true.
1By definition, the latter is the minimum in the norm ||x||C + ||u||∞ .
2Dubovitskii and Milyutin used the term local maximum principle [2]. Both these terms are not

completely adequate; nevertheless, following the authors’, we use the above term.
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A similar result for a finite number of cones allowed Dubovitskii and Milyutin to
obtain in [2] the LMP in a problem with a finite number of mixed constraints, given
as inclusions to closed sets in R

n+m. However, the book [2] is published in Russian in
a small number of copies and is very difficult to read.

Many years later, Milyutin presented the same result in the book [3], where he
considered a general problem with nonregular mixed constraints. This time these
constraints are given by smooth functions, in the form of a finite number of inequal-
ities like (1.3) and equalities g(x, u) = 0, assuming that the latter satisfy the full
rank condition: rank gu(x, u) = dim g on the surface g(x, u) = 0, but without any
assumptions on the joint independency of the derivatives Gu(x, u), gu(x, u). The prob-
lem admits also a finite number of endpoint constraints of the form F (x(t0), x(t1)) 6 0
and K(x(t0), x(t1)) = 0. Moreover, the smoothness assumption for the inequality con-
straints, both the endpoint and mixed ones, were essentially weakened to just the
convexity of their directional derivatives at the reference point, while the equality con-
straints were always assumed to be smooth. The problem can also admit a pure control
constraint of the inclusion type u2(t) ∈ U(t) on a part of control components, where
the full control vector is split into two parts: u = (u1, u2), and U(t) is a measurable
set-valued mapping. In this case, the full rank condition should be considered w.r.t.
the first group only: rank gu1

(x, u1, u2) = dim g, as well as the (non)regularity of
all the collection of mixed constraints. For this general problem, Milyutin obtained
a necessary condition for a weak minimum (the local maximum principle), and fur-
ther developed it to a necessary condition for a strong minimum (the global maximum
principle). A brief account of these results can be found in [18].

Compared to the book [2], the presentation of LMP in [3] is much clearer, with
shorter proofs, but still difficult even for Russian-speaking readers. Moreover, these
results have never been published in English. All this has led to the fact that the
Dubovitskii–Milyutin’s general theory of the maximum principle for nonregular mixed
constraints, which in our opinion is an outstanding achievement in optimal control,
still remains unknown even to specialists.

Because of the difficulties in the study, mentioned above, the nonregular mixed
constraints until recently remained outside the scope of specialists’ interests in the
West. However, now this interest has arisen, as evidenced by the paper [17]. Without
analyzing this publication, we will only say that the authors did not achieve the goal
that could be set: to get rid of the functionals from (L∞)∗ in the final result, which
are still present in [17], though in integral form. At the same time, the Dubovitskii–
Milyutin’s LMP is devoid of this drawback.

All this prompted us to write this article. To be as clear as possible in presentation of
the specificity caused by the mixed constraints, we chose the simplest possible problem
for the first study: it includes the Mayer cost functional, the control system, and
just one mixed constraint. (A more general problem will be considered in our future
paper.) In many ways, we follow the ideas of the book [3], and yet our presentation
differs markedly from that book. We hope that this publication will draw attention of
specialists to the ideas and results contained in [3].

The paper is organized as follows. In Section 2, we give definitions of the closure
of a measurable set and a measurable function with respect to the measure, proposed
by Dubovitskii and Milyutin, and recall some facts about equiintegrable sequences of
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functions in L1, which are used in the proof of LMP. Section 3 is devoted to the
approximate separation theorem for a finite number of convex cones, which plays a
key role in the proof of LMP. We formulate LMP in Section 4 and give two illustrative
examples in Section 5. The proof of LMP is given in Section 6.

2 Preliminaries

2.1 The closure with respect to a measure

We start with an important concept introduced by Dubovitskii and Milyutin in [2].
Let M ⊂ R be a (Lebesgue) measurable set. The set

clmM = {t ∈ R : mes (ω ∩M) > 0 for any open set ω ∋ t}

is called closure of M with respect to (the Lebesgue) measure.
Obviously, clmM is a closed set. Moreover, clmM ⊂ M, but not the reverse.

However, mes M 6 mes (clmM) (since almost all t ∈ M are points of its density),
but not the reverse.

In fact, clmM is the topological support of the measure dµ that has density
dµ/ dt = χM (t), where χM is the characteristic function of the set M .

Now, let û : [t0, t1] → R
m be a measurable function. Consider its graph Γ =

{(t, û(t)) : t ∈ [t0, t1]} and the projector π : R1+m → R, (t, v) 7→ t. The set

clm (û) = {(t, v) ∈ R
1+m : mes π(O ∩ Γ) > 0 for any open set O ∋ (t, v)}

is called the closure of the function û with respect to (the Lebesgue) measure, or in
short, the closure in measure of û. (Note that this definition can be applied in fact to
any measurable set Γ ⊂ R

1+m, and hence, to any measurable set-valued function.)

The following simple properties of clm (û) should be noted. By Br(u) we denote
the closed ball in R

m of radius r centered at u, and by Oε(t, u) the open set {(t′, u′) :
|t′ − t| < ε, |u′ − u| < ε}.

Lemma 1 If û ∈ L∞([t0, t1],R
m), then a) clm (û) is a compact set in [t0, t1] × R

m,
which does not depend on the choice of a particular representative of the function û,
and b) the projector π is surjective on clm (û), i.e. π clm (û) = [t0, t1].

Proof.Obviously, the set clm (û) is closed and bounded, which proves the first
assertion. To prove the second one, suppose the contrary, i.e. that ∃ t∗ /∈ π clm (û). Set
r = ‖û‖∞ . Then, for any u ∈ Br(0) there is an ε > 0 such that mes π(Oε(t∗, u)∩ Γ) =
0. Since Br(0) is compact, there exists a finite number of εi > 0 and ui ∈ Br(0),
i = 1, . . . , k such that the union C :=

⋃
i Oεi(t∗, ui) gives mes π(C ∩ Γ) = 0. Define

ε∗ = min εi and ω = (t∗ − ε∗, t∗ + ε∗). Obviously, the set Z = ω ×Br(0) is contained
in C, whence mes π(Z ∩ Γ) = 0. But the latter means that |û(t)| > r for a.a. t ∈ ω,
and then ‖û‖∞ > r, a contradiction. �

In fact, passing from û to clm (û), we obtain a set-valued mapping

clm (û)(·) : t 7→ {v : (t, v) ∈ clm (û) }
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such that û(t) ∈ clm (û)(t) for almost all t ∈ [t0, t1]. Clearly, this mapping is upper
semicontinuous.

Another way to define the closure in measure is clm (û) :=
⋂

u∼û Graph (u), where
the equivalence u ∼ û means that u(t) = û(t) for almost all t ∈ [t0, t1]. One can
easily show that

clm (û) =
⋂

mes E= t1−t0

Graph (û|E) ,

where this time the intersection is taken over all measurable subsets E ⊂ [t0, t1] of full
measure, and by definition Graph (û|E) = {(t, u) ∈ R

1+m : t ∈ E, u = û(t)}.
Note also that, if x̂(t) is a continuous function, then

clm (x̂, û)(t) = (x̂(t), clm (û)(t)) for all t ∈ [t0, t1]. (4)

2.2 Uniformly integrable families of functions

A family F of functions from L1([t0, t1],R
m) is called uniformly integrable (or equi-

integrable) if for any ε > 0 there is a δ > 0 such that for any measurable set E ⊂ [t0, t1]
of mes E < δ we have

∫
E
| λ(t)| dt < ε, ∀λ ∈ F .

Obviously, this is equivalent to the fact that the functions of F possess a common
modulus of integrability, i.e. a function ν : R+ → R+ such that ν(δ) → 0 as δ → 0+,
and for any measurable set E ⊂ [t0, t1] we have

∫

E

| λ(t)| dt 6 ν(mes E), ∀λ ∈ F .

Since the functions of L1([t0, t1],R
m) generate absolutely continuous vector-valued

measures on [t0, t1], a uniformly integrable family of functions generates a uniformly
absolutely continuous family of vector-valued measures.

We will use these concepts in the case when F is a sequence of functions λk ∈
L1([t0, t1],R

m), k = 1, 2, . . . . By the Dunford–Pettis theorem [4, 5], any uniformly
integrable sequence λk ∈ L1 contains an L∞ -weakly convergent subsequence λks.
The latter means that there exists a function λ ∈ L1 such that, for any u ∈ L∞ we
have ∫ t1

t0

〈λks, u〉 dt →
∫ t1

t0

〈λ, u〉 dt (s → ∞).

We write in this case λks w
⇀ λ (s → ∞).

In general, it is impossible to extract a weakly convergent sequence from an arbitrary
bounded set of functions in L1, since this set can be not uniformly integrable. Never-
theless, the following important fact holds true (see, e.g. [6] and references therein)3.

Lemma 2 (The biting lemma.) Let a sequence λk ∈ L1([t0, t1],R) be bounded, i.e.
‖λk‖1 6 const for all k = 1, 2, . . . . Then there exists a sequence of measurable sets
Ak ⊂ [t0, t1] such that mes Ak → (t1− t0) and the sequence λk

A := λkχAk is uniformly
integrable, hence it contains a weakly convergent subsequence.

3 Dubovitskii and Milyutin, being not aware of these works, proved this fact independently in [2, 3].
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2.3 Functions of bounded variation and charges

Denote by R
n∗ the space of row vectors of the dimension n, and by BV ([t0, t1],R

n∗)
the space of functions p : [t0, t1] → R

n∗ of bounded variation for which the values
p(t0 − 0) and p(t1 + 0) are also defined. By definition, the jump of p at a point
t ∈ [t0, t1] is [p](t) := p(t + 0) − p(t − 0). We define the Radon measure (or charge)
dp, which corresponds to the function p, by the following condition: if [a, b] ⊂ [t0, t1],
then

∫
[a,b]

dp = p(b + 0) − p(a − 0). Note that we always prefer to denote Radon

measures on [t0, t1] by dp, rather than p or p( dt), as is customary. This makes it
possible to distinguish measures from the functions of bounded variation that define
them, without introducing new notation.

If l : C([t0, t1],R
n) → R is a linear continuous functional, then by the Riesz

theorem, there exists a function p ∈ BV ([t0, t1],R
n∗) such that

〈l, x〉 =
∫ t1

t0

x(t) dp ∀ x ∈ C([t0, t1],R
n), (5)

but this function is not unique4. It is unique under the additional requirement that the
function p vanishes at t0 (or at t1 ) and is one-way continuous, for example continuous
from the left. For the definiteness, we will assume that the functions p ∈ BV are left-
continuous, i.e., p(t− 0) = p(t) for all t ∈ [t0, t1], and p(t0) = 0. If p belongs to BV,
we write dp ∈ C∗, keeping in mind the relations (5).

If the function p ∈ BV ([t0, t1],R
n∗) is absolutely continuous, then the measure dp

and the functional l defined by (5) are also called absolutely continuous.

We say that t∗ ∈ [t0, t1] is a point of continuity of a measure dp if [p](t∗) = 0,
i.e., if the measure dp has no atom at this point. Recall that the measure dp can
have atoms in at most countably many points. Therefore, the set of continuity points
of dp is dense in [t0, t1] . A point t∗ ∈ [t0, t1] where the measure dp has an atom,
i.e., [p](t∗) > 0, is often called a jump point of the measure.

As usual, we say that a sequence of measures dpk weakly* converges to a measure
dp ∈ C∗ (i.e. C− converges in C∗ ) if

∫ t1

t0

x(t) dpk →
∫ t1

t0

x(t) dp as k → ∞

for all x ∈ C([t0, t1],R
n), and we write in this case dpk

∗
⇀ dp.

Let λk be a sequence of functions in L1 . Consider the corresponding sequence of
absolutely continuous measures dpk := λk dt. Assume that dpk is weakly* convergent
to some measure dp ∈ C∗, that is λk dt

∗
⇀ dp . Denote by Θ ⊂ [t0, t1] the set of all

continuity points of the measure dp . Then for any τ0, τ1 ∈ Θ with τ0 < τ1 , we have
∫

[τ0,τ1]

λk(t) dt →
∫

[τ0,τ1]

dp (k → ∞).

4 Strictly speaking, we should write dp x, but it is more convenient to write xdp.
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3 An approximate separation theorem

Let X and Y be normed spaces, such that X = Y ∗. Let Ω ⊂ X be a nonempty
convex cone and Ω its closure. We say that a cone H ⊂ Y is thick on the cone Ω (or
is predual to Ω) if H∗ = Ω. Here H∗ denotes the conjugate cone of H, consisting
of all linear continuous functionals that are nonnegative on H (in other words, H∗ is
the polar cone of (−H) ). We will need the following properties of these cones.

Lemma 3 Let x0 ∈ int Ω. Then the set SecH = {h : 〈x0, h〉 = 1} is bounded, and
its conical hull is H \ {0}.

Proof. Suppose ∃hk ∈ SecH with ‖hk‖ = rk → ∞. Setting h̃k = hk/rk
we have ‖h̃k‖ = 1 and 〈x0, h̃k〉 → 0. Let x0 + Bδ ⊂ Ω for some δ > 0, where

Bδ is the closed ball in X of radius δ, centered at zero. Then 〈x0 + Bδ, h̃k〉 > 0,

whence 〈Bδ, h̃k〉 > −o(1). But here the infimum of the left hand side equals −δ, a
contradiction.

Thus, SecH is bounded. To prove the second assertion, take any nonzero h ∈ H.
Since H∗ = Ω, we have 〈Ω, h〉 > 0, and since x0 ∈ int Ω, we have α := 〈x0, h〉 > 0,
whence h/α ∈ SecH, q.e.d. �

Now, let be given two convex cones H0 , H1 ⊂ Y and two convex cones Ω0 , Ω1 ⊂
X, such that H∗

0 = Ω0 and H∗
1 = Ω1 , where again X = Y ∗. The following theorem

is an approximate analog of the Hahn–Banach separation theorem for the case of two
convex cones, in which the separating functionals are taken not from the dual but from
the predual space.

Theorem 1 Let Ω1 be open and x0
1 ∈ Ω1 . Then Ω0 ∩ Ω1 = Ø ⇐⇒ ∀ ε > 0

∃ (h0, h1) ∈ H0 ×H1 such that 〈x0
1, h1〉 = 1 and ‖h0 + h1‖ < ε.

Proof. (⇐=) Suppose, on the contrary, that ∃ x̂ ∈ Ω0 ∩ Ω1 . Without loss of
generality assume that ‖x0

1‖ = ‖x̂‖ = 1 and Br(x̂) ⊂ Ω1 for some r > 0, where
Br(x̂) is the closed ball in X of radius r centered at x̂. Set ε = r/2 and take any
pair (h0, h1) with the above properties. They imply ‖h1‖ > 1. Set y = h0+h1 . Then
‖y‖ 6 ε and h0 + h1 − y = 0, whence

〈x̂, h0〉 + 〈x̂, h1 − y〉 = 0. (6)

The first summand here is nonnegative. Now, the inequality 〈x̂− Br, h1〉 > 0 implies
that 〈x̂, h1〉 > sup〈Br, h1〉 > r, and since |〈x̂, y〉| 6 ε, the second summand in (6) can
be estimated as 〈x̂, h1 − y〉 > r − ε = r/2 > 0, so the sum in (6) cannot be zero, a
contradiction.

(=⇒) We have to show that inf ‖H0 + SecH1‖ = 0. Suppose the contrary: this
inf > r > 0, i.e. the distance from the set SecH1 to the cone −H0 is greater than r.
Therefore, (−H0) ∩ (SecH1 + Br) = Ø. Then, by the classical separation theorem,
∃ x̂ ∈ X, ‖x̂‖ = 1, such that 〈x̂,−H0〉 6 0 and 〈x̂, SecH1 + Br〉 > 0. The first
relation implies x̂ ∈ H∗

0 = Ω0 , and the second one 〈x̂, SecH1〉 > sup〈x̂, Br〉 = r, i.e.
∀h1 ∈ SecH1 we have 〈x̂, h1〉 > r. By Lemma 3 ‖SecH1‖ 6 d for some d > 0. Take
any positive ε < r/d . Then it follows that for any h1 ∈ SecH1

〈x̂+Bε , h1〉 > r − sup 〈Bε , h1〉 > r − εd > 0,
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and since the conical hull of SecH1 is H1\{0}, we get x̂+Bε ⊂ H∗
1 = Ω1 , so x̂ ∈ Ω1.

Thus, x̂ ∈ Ω0 ∩ Ω1 , and since Ω1 is open, there exists an element x′ ∈ Ω0 ∩ Ω1 , a
contradiction. �

Note that in the proof of implication =⇒, instead of separating the cones Ω0 and
Ω1 by an element of X∗, we use the classical theorem to separate the cone H0 and
an extension of the cone H1 by an element of X.

The general case. Now, let be given a finite number of convex cones Ω0 ,Ω1,
. . . , Ωm in X, among which the last m are open, and convex cones H0 ,H1, . . . , Hm

in Y such that H∗
i = Ωi for all i = 0, 1, . . . , m (i.e. each Hi is thick on Ωi). As

before, X = Y ∗. Let be also given elements x0
i ∈ Ωi , i = 1, . . . , m, of the open

cones. The following theorem is an approximate analog of the Dubovitskii–Milyutin
“multi-separation” theorem for convex cones5 (see [1, Theorem 2.1]).

Theorem 2 Ω0 ∩ Ω1 ∩ . . . ∩ Ωm = Ø ⇐⇒ ∀ ε > 0 ∃hi ∈ Hi , i = 0, 1, . . . , m,
such that m∑

i=1

〈 x0
i , hi〉 = 1 and ‖ h0 +

m∑

i=1

hi‖ < ε. (7)

The first of these conditions can be regarded as a normalization condition, while
the second one is an approximate Euler–Lagrange equation. Note that the cone Ω0

does not appear in the first condition, it appears only in the second one.

Proof. (⇐=) Without loss of generality assume that
∑m

1 ‖x0
i ‖ = 1. We have to

show that all Ωi do not intersect. Suppose, on the contrary, ∃ x̂ ∈ ⋂n

i=0 Ωi . Without
loss of generality assume that ‖x̂‖ = 1, and let r > 0 be such that Br(x̂) ⊂ Ωi for all
i > 1.

Set ε = r/2 and take any collection (h0, h1, . . . , hm) of elements in H0, H1, . . . , Hm ,
respectively, satisfying (7). The first of these conditions together with the relation∑m

1 ‖x0
i ‖ = 1 imply that max

16i6m
‖hi‖ > 1. Let, for definiteness, ‖hm‖ > 1.

Set y =
∑m

0 hi . Then ‖y‖ 6 ε and
∑m−1

0 hi + hm − y = 0, whence

m−1∑

i=0

〈 x̂, hi〉 + 〈x̂, hm − y〉 = 0. (8)

The first m summands here are nonnegative. Now, the inequality 〈x̂ − Br, hm〉 > 0
implies that 〈x̂, hm〉 > sup〈Br, hm〉 > r, and since |〈x̂, y〉| 6 ε, the last summand in
(8) can be estimated as 〈x̂, hm − y〉 > r − ε = r/2 > 0, so the left hand side in (8)
cannot be zero, a contradiction.

(=⇒) We prove by induction. Suppose the theorem holds for all m′ < m open
cones and consider the case of m open cones.

If Ω0 ∩ Ωm = Ø, then by Theorem 1 ∀ ε > 0 ∃h0 ∈ H0 and hm ∈ Hm such that
〈x0

m, hm〉 = 1 and ‖h0+hm‖ < ε. Choosing all hi for i = 1, . . . , m−1 to be arbitrary
sufficiently small elements of Hi , we get

∑m

1 〈x0
i , hi〉 > 1 and ‖h0 +

∑m

1 hi‖ < 2ε.
Obviously, this implies the statement of Theorem.

5In [1], the condition for separating the cones was called the Euler–Lagrange equation.
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Now, suppose that W0 := Ω0∩ Ωm 6= Ø. Set K0 = H0+Hm and notice that in this
case K∗

0 = Ω0∩Ωm = Ω0 ∩ Ωm = W 0 , that is K0 is thick on W0. (The second equality
holds because both Ω0 and Ωm are convex and the last one is open.) Consider the
cones K0 , H1 , . . . , Hm−1 ⊂ Y and the corresponding cones W0 ,Ω1 , . . . , Ωm−1 ⊂ X,
where the last collection does not intersect. The dual cones to the first ones are equal
to the closure of the last ones, so we have the situation of Theorem 2 for m − 1
open cones. By the premise of induction, ∀ ε > 0 ∃ k0 , h1 , . . . , hm−1 from the cones
K0 , H1 , . . . , Hm−1 , respectively, such that

m−1∑

1

〈x0
i , hi〉 = 1 and ‖ k0 +

m−1∑

1

hi‖ < ε.

Setting here k0 = h0+hm with some h0 ∈ H0 and hm ∈ Hm , we obtain
∑m−1

1 〈x0
i , hi〉+

〈x0
m, hm〉 > 1 and still ‖h0 +

∑m−1
1 hi + hm‖ < ε. Multiplying the obtained collection

by some λ 6 1 we get the required. �

4 Local minimum principle

Consider the set

N (G) := {(x, u) ∈ R
n+m : G(x, u) = 0, Gu(x, u) = 0}.

Clearly, N (G) is closed. It is called the set of phase points. We assume that this set
is nonempty (otherwise the mixed constraint is regular).

Define the following set-valued mapping (x, u) ∈ R
n+m ⇒ S(x, u) ⊂ R

n∗ :

(i) if (x, u) ∈ N (G), then S(x, u) = {Gx(x, u)},

(ii) if (x, u) /∈ N (G), then S(x, u) = Ø.

Thus, S(x, u) is a singleton {Gx(x, u)} or an emptyset.

For any nonempty set M ⊂ R
n+m we define S(M) =

⋃
(x,u)∈M S(x, u).

Let ŵ = (x̂, û) ∈ W be a given admissible process in Problem P investigated for
optimality. Denote for short ξ̂ = (x̂(t0), x̂(t1)). Let us formulate the conditions of local
minimum principle for the process ŵ.

Recall that for the function û we introduced (in Sec. 2) the set-valued mapping
clm (û)(t) = {u ∈ R

m : (t, u) ∈ clm (û)}, and recall also that
(
x̂(t), clm (û)(t)

)
=

clm (ŵ)(t) for all t ∈ [t0, t1]. Define a set

D := {t ∈ [t0, t1] : clm (ŵ)(t) ∩ N (G) 6= Ø}. (9)

Since the set clm (ŵ) is compact and N (G) is closed, D is a closed (possibly empty)
subset in [t0, t1]. Denote by χD its characteristic function.

For any t ∈ D consider the set convS(clm (ŵ)(t)) = convS
(
x̂(t), clm (û)(t)

)
,

where conv stands for the convex hull. We call it the set of possible directions of
jumps of the adjoint variable at the point t.

9



For any nonempty set M ⊂ R
n+m we define Gx(M) =

⋃
(x,u)∈M Gx(x, u).

It follows from the definitions that for any t ∈ D we have

S(clm (ŵ)(t)) = Gx

(
clm (ŵ)(t) ∩N (G)

)
6= Ø.

Now, define the Pontryagin function H(x, u, p) = p f(x, u), where p ∈ R
n∗ is a

costate (adjoint) row-vector.

The conditions of local minimum principle (LMP) at the point ŵ are as follows:
there exist multipliers

α̂0 ∈ R, p̂ ∈ BV ([t0, t1],R
n∗), λ̂ ∈ L1([t0, t1],R), dη̂ ∈ C∗([t0, t1],R),

(10)
such that

α̂0 > 0, λ̂ > 0, λ̂ G(ŵ) = 0, dη̂ > 0, dη̂ · χD = dη̂, (11)

α̂0 + ‖λ̂‖1 +

∫

[t0,t1]

dη̂ > 0, (12)

and a dη̂ -measurable essentially bounded function ŝ : [t0, t1] → R
n∗ such that

ŝ(t) ∈ convS
(
x̂(t), clm (û)(t)

)
for almost all t in dη̂ −measure, (13)

moreover, the following adjoint equation in terms of measures:

− dp̂ = Hx(ŵ, p̂) dt + λ̂ Gx(ŵ) dt + ŝ dη̂, (14)

and the transversality conditions:

− p̂(t0−) = α̂0Jx0
(ξ̂), p̂(t1+) = α̂0Jx1

(ξ̂) (15)

are fulfilled, and finally, the stationarity condition with respect to the control is satis-
fied:

Hu(ŵ, p̂) + λ̂ Gu(ŵ) = 0. (16)

The last equation means that Hu(ŵ(t), p̂(t)) + λ̂(t)Gu(ŵ(t)) = 0, a.e. in [t0, t1],
where ”a.e.” means ”almost everywhere with respect to the Lebesgue measure”.

Condition (13) means that there exists a set R ⊂ D of full dη̂ -measure (i.e.,∫
R
dη̂ =

∫
[t0,t1]

dη̂ ) such that the inclusion in (13) holds for all t ∈ R .

The values ŝ(t) for t /∈ D are of no importance.

Note that conditions (10)–(16) differ from that for problems with regular mixed
constraints only by the presence of the term ŝdη̂ in the adjoint equation (14). If
D = Ø , this term vanishes.

The adjoint equation can be understood in the integral form: for almost all t

p̂(t) = p̂(t0 − 0) +

∫ t

t0

(
Hx(ŵ, p̂) + λ̂ Gx(ŵ)

)
dτ +

∫ t+0

t0−0

ŝ(τ) dη̂(τ).

(The last integral is taken over the interval [t0, t] including its endpoints.)

Remark. It is convenient to introduce the so-called augmented Pontryagin function
H(x, u, p, λ) = p f(x, u) + λG(x, u), whence the costate equation (14) and the

10



stationarity condition in the control (16) take the following shorter form, respectively:

−dp̂ = Hx(ŵ, p̂, λ̂) dt + ŝdη̂, (17)

Hu(ŵ, p̂, λ̂) = 0. (18)

Theorem 3 If ŵ is a weak local minimum in Problem P, then it satisfies the local
minimum principle (10)–(16).

Some particular cases.

1. Let t∗ be an isolated point in D and the function û be continuous at t∗ .
Then clm (û)(t∗) = û(t∗) and s(t∗) = Gx(ŵ(t∗)), so the measure dη̂ can have an
atom at this point: dη̂({t∗}) > 0, and the costate variable have the jump [p](t∗) =
−Gx(ŵ(t∗)) dη̂({t∗}).

If the control û has a discontinuity of the first kind at t∗ , then (clm û)(t∗) consists
of two points: û(t∗ − 0) and û(t∗+0). If both the corresponding points (x̂(t∗), û(t∗ −
0)) and (x̂(t∗), û(t∗ + 0)) belong to N (G), then s(t∗) = s0Gx(x̂(t∗), û(t∗ − 0)) +
s1Gx(x̂(t∗), û(t∗ + 0)), where s0 > 0, s1 > 0, s0 + s1 = 1, and the costate variable
has the jump [p](t∗) = −s(t∗) dη̂({t∗}).

2. Consider the case when the function G does not depend on u, i.e. G(x, u) =
g(x). Then the mixed constraint (3) reduces to a pure state constraint g(x) 6 0. In
this case N (g) = {(x, u) : g(x) = 0}, i.e., each point on the boundary of the state
constraint6 is a phase point, the set D = {t : g(x̂(t)) = 0} consists of contact points,
and by setting R = D, we get s(t) = g′(x̂(t)) at any point t ∈ D.

Consequently, the formulation of LMP in this case is as follows: there exist multi-
pliers α̂0 ∈ R, p̂ ∈ BV ([t0, t1],R

n∗), λ̂ ∈ L1([t0, t1],R), and dη̂ ∈ C∗([t0, t1],R) such
that

α̂0 > 0, λ̂ > 0, λ̂ g(x̂) = 0, dη̂ > 0, g(x̂) dη̂ = 0,

α̂0 + ‖λ̂‖1 +
∫
[t0,t1]

dη̂ > 0,

−dp̂ = Hx(ŵ, p̂) dt+ g′(x̂)
(
λ̂ dt+ dη̂

)
,

−p̂(t0−) = α̂0Jx0
(ξ̂), p̂(t1+) = α̂0Jx1

(ξ̂),

Hu(ŵ, p̂) = 0,

where H(x, u, p) = pf(x, u). Setting λ̂dt + dη̂ =: dµ̂, we get

α̂0 > 0, dµ̂ ∈ C∗([t0, t1],R), dµ̂ > 0, g(x̂) dµ̂ = 0, α̂0 +
∫
[t0,t1]

dµ̂ > 0,

−dp̂ = Hx(ŵ, p̂) dt + g′(x̂) dµ̂.

The transversality conditions and the condition Hu(ŵ, p̂) = 0 do not change. Thus we
obtain the well-known conditions of LMP for the problem with a state constraint.

6 To be precise, this is indeed the boundary if g′(x) 6= 0 on it.
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5 Examples

Example 1: the measure dη̂ has atoms

Let [t0, t1] be a fixed interval, t0 < t1, x ∈ R, u ∈ R. Consider the problem

J := x(t0) x(t1) → min, ẋ = u, G :=
1

2
u2 − x+ 1 6 0.

Conditions G = 0, Gu = 0 select here the only phase point (x, u) = (1, 0). Since
(x− 1) > 1

2
u2, we always have x > 1, hence inf J > 1. Then, the process x̂(t) ≡ 1,

û(t) ≡ 0 is a solution to the problem. Therefore, D = [t0, t1].

Further, we have (removing the hats over the multipliers): H = p u, H = p u +
λG, Hu = p + λ u, Hx = −λ, s = Gx = −1. The condition Hu = 0 gives
p + λû = 0, whence p(t) = 0 for all t ∈ (t0, t1), and therefore p(t0+) = p(t1−) = 0.
The transversality conditions give p(t0−) = −α0 x(t1) = −α0, p(t1+) = α0 x(t0) =
α0, so the jumps of p at the endpoints are: [p](t0) := p(t0+) − p(t0−) = α0 and
[p](t1) := p(t1+)− p(t1−) = α0.

The adjoint equation −dp = Hx dt + sdη reduces to dp = λdt + dη, λ > 0,
dη > 0. Since p(t) = 0 for t ∈ (t0, t1), we have λ = 0 and dp = dη.

If α0 = 0, then dp = dη = 0, which contradicts the nontriviality condition (12).
Therefore, we can set α0 = 1. Then the measure dp is the sum of δ -functions at t0
and t1, respectively, and the same is true for dη.

Example 2: the measure dη̂ is absolutely continuous

Fix any T > 0 and consider the problem on the interval [−T, T ] :

ẏ = x, ẋ = u, G(y, x, u) =
1

2
u2 − x 6 0,

J = y(T )− y(−T ) − m

2

(
x(−T ) + x(T )

)
→ min,

(19)

where m ∈ (0, T ) is a given number.

Here y(T ) − y(−T ) =
∫ T

−T
x dt, so the variable y is in fact inessential. The set

N (G) = {(x, u) : G = 0, Gu = 0} consists of the only point (x, u) = (0, 0),
and since (Gy, Gx) = (0,−1), the direction of possible jumps of the costate vector
p = (py, px) is s = (sy, sx) = (0,−1), where the subscripts indicate coordinates, not
partial derivatives.

Set b = T −m, and consider the following process:

x̂(t) = û(t) = 0 on the interval [−b, b],

x̂(t) = 1
2
(t− b)2 and û(t) = t− b on [b, T ],

x̂(t) = 1
2
(t+ b)2 and û(t) = t + b on [−T,−b].

Obviously, this process is admissible. Let us show that it is globally optimal in the
problem. To do this, choose any value h ∈ [0, T ], fix the endpoints x(−T ) = x(T ) =
1
2
h2, and find the minimum of

∫ T

−T
x dt under the given mixed constraint G 6 0, i.e.

12



|u| 6
√
2 x. Clearly, this minimum is attained at the lowest possible curve, i.e. the one

satisfying ẋ =
√
2 x on [0, T ], x(T ) = h, and symmetrically on [−T, 0]. Therefore,

x(t) = 0 on the interval [−T + h, T − h],

x(t) = 1
2
(t− T + h)2 on [T − h, T ],

x(t) = 1
2
(−t + T − h)2 on [−T, −T + h].

(20)

Then J(h) = 1
3
h3 − m

2
h2, and we have to find the minimum of this function over

h ∈ [0, T ]. The equation J ′(h) = h2 −mh = 0 has the only positive solution h = m,
and since J ′(h) < 0 for h < m, and J ′(h) > 0 for h > m, we conclude that J(h)
has a global minimum over h ∈ [0, T ] at h = m. Clearly, no h > T can give a smaller
cost value, so h = m provides the global minimum of J(h), and the corresponding
curve (20), coinciding with x̂(t), provides the global minimum in problem (19).

Let us check the LMP for this curve. According to Theorem 3, there exist α0 > 0,
λ ∈ L1, λ(t) > 0 a.e. on [−T, T ], a measure dη ∈ C∗ supported on D = [−b, b],
the function s = (sy, sx) = (0,−1) a.e. in [−b, b] w.r.t. dη, and the function p =
(py, px) ∈ BV, such that this collection is nontrivial:

α0 + ‖λ‖1 +

∫

[t0,t1]

dη > 0, (21)

generates the augmented Pontryagin function H = pyx + pxu + λ (1
2
u2 − x), and

satisfies the conditions (14)–(16).

The condition Hu = 0 gives px + λu = 0. Since Hy = 0 and sy = Gy = 0,
the adjoint equation −dpy = Hy dt+ sy dη reduces to dpy = 0, whence py = const.
The transversality conditions for py are: py(−T ) = −α0Jy(−T ) = α0 and py(T ) =
α0Jy(T ) = α0. Consequently, py = α0.

Since Hx = py = α0 and sx = Gx = −1 (a.e. in [−b, b] w.r.t. dη), the adjoint
equation −dpx = Hx dt+ sx dη has the form

− dpx = α0 dt− λdt− dη. (22)

The transversality conditions for px are:

px(−T ) = −α0Jx(−T ) = α0m/2 , px(T ) = α0Jx(T ) = −α0m/2 . (23)

If α0 = 0, then py ≡ 0, and (22) with (23) reduce to px = λdt + dη > 0 and
px(−T ) = px(T ) = 0, whence λ = 0 and dη = 0, which contradicts the nontriviality
(21). Thus, we can set α0 = 1, and also py = 1. Then

dpx = (λ− 1) dt+ dη, px(−T ) = m/2 , px(T ) = −m/2 .

Since u = 0 on D = [−b, b] and px = −λu, we get px = 0 and λdt + dη = dt
there. So, dη is absolutely continuous on D and is not unique: both λ and η̇ are
just nonnegative and bounded by the relation λ(t) + η̇(t) = 1.

Consider the interval (b, T ]. We have there dη = 0,

x = (t− b)2/2, u = ẋ = t− b, px = −λ u = −λ(t− b), ṗx = λ− 1,
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whence λ̇(t − b) = 1 − 2λ. Setting σ = λ − 1/2 and τ = t − b, we get σ̇ τ = −2σ,
which easily gives σ = c/τ 2, and so, λ = 1

2
+ c/τ 2 with some constant c. Then c = 0

and λ = 1/2 (otherwise λ /∈ L1), whence px = −1
2
(t− b) < 0 and px(b+ 0) = 0, so

the jumps [px](b) = [η](b) = 0.

The symmetric picture is on the interval [−T,−b). Here λ = 1/2, px = −1
2
(t +

b) > 0 and px(−b− 0) = 0, so the jumps [px](−b) = [η](−b) = 0.

6 Proof of LMP

In this section we prove Theorem 3. We will assume that

ess sup
t∈[t0,t1]

G(ŵ(t)) = 0, (24)

otherwise the mixed constraint is redundant for the weak minimality of the process ŵ.
For any δ > 0, define a set

Mδ = {t ∈ [t0, t1] : G(ŵ(t)) > −δ}.

In view of (24), mes Mδ > 0 for all δ > 0.

6.1 Application of approximate separation theorem

Let us consider as independent variables in Problem P the pair (x0, u) ∈ R
n × L∞,

while the state x(t) is determined by the latter as the solution to equation (2) with the
initial condition x(t0) = x0 , so that x = x(x0, u) is a nonlinear operator of (x0, u),
which maps R

n × L∞ to the space C. The Problem P has then the form

J(x0, x(x0, u)(t1)) → min, G(x(x0, u)(t), u(t)) 6 0. (25)

Note that the weak minimality of the pair ŵ = (x̂, û) in Problem P is equivalent to
the local minimality of the pair (x̂(t0), û) in Problem (25).

1. Let ŵ = (x̂, û) be a reference process. Consider the equation in variations for
the control system (2):

˙̄x = fx(ŵ) x̄ + fu(ŵ) ū, x̄(t0) = x̄0 , (26)

and define the corresponding linear operator

A : (x̄0, ū) ∈ R
n × L∞([t0, t1],R

m) → x̄ ∈ C([t0, t1],R
n),

where x̄ is the solution to (26) for the given pair (x̄0, ū).

Recall the following well-known fact, which relates to the nonlinear operator (x0, u) →
x defined by the original equation (2) with x(t0) = x0 . This operator maps a neigh-
borhood of the point (x̂(t0), û) ∈ R

n × L∞([t0, t1],R
m) to the space C([t0, t1],R

m)
endowed with its standard norm ‖x‖C = maxt |x(t)| .
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Lemma 4 The operator A is the Frechet derivative at (x̂(t0), û) of the nonlinear
operator (x0, u) → x. Hence, for any solution w̄ = (x̄, ū) to (26), there is a correction
x̃ε parametrized by ε > 0 with x̃ε(t0) = 0 and ‖x̃ε‖C = o(ε) as ε → 0+, such that
the pair wε = (x̂+ εx̄+ x̃ε, û+ εū) satisfies (2) with the initial condition x̂0 + εx̄0 .

2. Introduce a Banach space Y = R
n∗ × L1([t0, t1],R

m∗) × R with elements y =
(c0, v, r), and its dual space X = Y∗ = R

n × L∞([t0, t1],R
m) × R with elements

κ = (x0, u, q). The pairing between these spaces is given by

〈y,κ〉 = c0 x0 +

∫ t1

t0

v(t) u(t) dt + rq.

To prove Theorem 3, we follow the Dubovitskii–Milyutin approach. First of all, we
define, in the space X , the following cones of first order approximations of the cost
and constraint. For any δ > 0 we set

Ω0 = {κ ∈ X : Jx0
(ξ̂) x0 + Jx1

(ξ̂) x(t1) + q < 0, where x = A(x0, u) },

Ωδ = {κ ∈ X : ess sup
t∈Mδ

(
Gx(ŵ) x+ Gu(ŵ) u

)
+ q < 0, where x = A(x0, u) },

Ω = {κ ∈ X : q > 0}.

Obviously, all these cones are convex, open, and nonempty (since the first two
contain the triple (0, 0,−1), and the last one contains (0, 0, 1) ).

Remark. In what follows, our aim will be to separate these cones by elements of the

predual space Y. The variable q and the third cone Ω are introduced because without q

the second cone Ωδ can be empty, which prevents application of the separation theorem. To

avoid the analysis of this case that can be tedious, we, following [3], introduce the additional

variable q > 0. The price for this trick is negligible in the case of present simplest problem P.

In a more general problem, it would be a bit more essential, but still acceptable.

The first step in the Dubovitskii–Milyutin approach is to show that the cones of
first order approximations do not intersect.

Lemma 5 If ŵ is a weak minimum in problem P, then for any δ > 0

Ω0 ∩ Ωδ ∩ Ω = Ø. (27)

Proof. Suppose, on the contrary, there exist a δ > 0 and a

κ̄ = (x̄0, ū, q̄) ∈ Ω0 ∩ Ωδ ∩ Ω.

Set x̄ = A(x̄0, ū), w̄ = (x̄, ū), and take the curve wε = (x̂+ εx̄+ x̃ε, û+ εū) from
Lemma 4. Since G(ŵ) 6 0 a.e. on [t0, t1], and G′(ŵ)w̄ = G′

x(ŵ) x̄+G′
u(ŵ) ū < −q̄ < 0

on Mδ , we have for sufficiently small ε > 0 :

G(wε) = G(ŵ) + εG′(ŵ)w̄ + o(ε) < −εq̄ + o(ε) < 0 a.e. on Mδ .

For a.a. t /∈ Mδ , we have G(ŵ) 6 −δ, whence we obviously obtain G(wε) 6 −δ/2 < 0
for small ε > 0, so the pair wε satisfy the mixed constraint of problem (25).
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Now, consider the reference endpoints ξ̂ = (x̂0, x̂1) and set x̄1 = x̄(t1), ξ̄ =
(x̄0, x̄1). Since κ̄ ∈ Ω0 and q̄ > 0, we have J ′(ξ̂)ξ̄ = Jx0

(ξ̂)x̄0 + Jx1
(ξ̂)x̄1 < −q̄ < 0,

and then, for sufficiently small ε > 0

J (wε) = J(x̂0 + εx̄0, x̂1 + εx̄1 + x̃ε(t1)) =

= J(ξ̂) + εJ ′(ξ̂) ξ̄ + J ′
x1
(ξ̂) x̃ε(t1) + o(ε) < J(ξ̂)− ε q̄ + o(ε) < J (ŵ),

which contradicts the weak minimality at ŵ. The lemma is proved. �

3. Next, we define cones H0, Hδ, H in Y that are thick on Ω0, Ωδ, Ω, respectively.
Let us start with the cone Ω0 . Consider a functional l : Rn × L∞ → R such that

l(x0, u) := Jx1
(ξ̂) x(t1), where x = A(x0, u).

As is known, one can give its explicit dependence of (x0, u). To this end, introduce the
usual adjoint function p0 ∈ AC determined by the adjoint equation to (26):

−ṗ0 = p0fx(ŵ) with p0(t1) = Jx1
(ξ̂).

Then, obviously d
dt
(p0 x) = p0fu(ŵ) u, whence integrating we get

Jx1
(ξ̂) x(t1) = p0(t0) x0 +

∫ t1

t0

p0 fu(ŵ) u dt ∀ (x0, u) ∈ R
n × L∞.

Consequently,

Jx0
(ξ̂)x0 + Jx1

(ξ̂) x(t1) + q =
(
Jx0

(ξ̂) + p0(t0)
)
x0 +

∫ t1

t0

p0fu(ŵ) u dt + q (28)

for all κ = (x0, u, q) ∈ X . Define a triple

ŷ0 = (Jx0
(ξ̂) + p0(t0), p0fu(ŵ), 1) ∈ Y .

In view of (28), Ω0 is an open half-space: Ω0 = {κ ∈ X : 〈ŷ0,κ〉 < 0}, and its closure
is Ω0 = {κ ∈ X : 〈ŷ0,κ〉 6 0}. Setting H0 = {−α0 ŷ0 : α0 > 0}, we obtain
H∗

0 = Ω0 , that is H0 is thick on Ω0 .

4. Consider the cone Ωδ . First, we claim that

Ωδ = {κ ∈ X : ess sup
t∈Mδ

(
Gx(ŵ) x+ Gu(ŵ) u

)
+ q 6 0, where x = A(x0, u) }.

Indeed, for any such κ, taking a smaller q′ < q we get a point κ
′ ∈ Ωδ , q.e.d.

Define a cone Hδ consisting of all functionals yδ = (c0, v, r) ∈ Y that for all
κ = (x0, u, q) ∈ X act as follows:

〈yδ,κ〉 = −
∫ t1

t0

λ(t)
(
Gx(ŵ) x + Gu(ŵ) u + q

)
dt, where x = A(x0, u),

and λ ∈ L1 is an arbitrary nonnegative function concentrated on Mδ, that is λ > 0
and λχMδ

= λ, where χMδ
is the characteristic function of the set Mδ .

Lemma 6 H∗
δ = Ωδ .
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Proof. If yδ ∈ Hδ and κ ∈ Ωδ , then obviously 〈yδ,κ〉 > 0, whence κ ∈ H∗
δ .

Therefore, Ωδ ⊂ H∗
δ . Let us prove the converse inclusion Ωδ ⊃ H∗

δ .

Indeed, take any κ̄ ∈ H∗
δ , that is 〈yδ, κ̄〉 > 0 for all yδ ∈ Hδ. This means that

〈yδ, κ̄〉 = −
∫ t1

t0

λ(t)
(
Gx(ŵ) x̄ + Gu(ŵ) ū + q̄

)
dt > 0

for all nonnegative functions λ ∈ L1 concentrated on Mδ . This obviously implies
Gx(ŵ) x̄ + Gu(ŵ) ū + q̄ 6 0 a.e. on Mδ , that is κ̄ ∈ Ωδ . Thus, H∗

δ ⊂ Ωδ , q.e.d.
�

5. Take any yδ ∈ Hδ and the corresponding function λ ∈ L1. Represent it in the
canonical form yδ = (c0, v, r). In fact, we only have to find a representation of the
term

∫
λ(t)Gx(ŵ) xdt. To this aim, define a function pδ ∈ AC from the equation

−ṗδ = pδfx(ŵ) + λGx(ŵ), pδ(t1) = 0.

Since ẋ = fx(ŵ) x+ fu(ŵ) u, we have d
dt
(pδ x) = −λGx(ŵ) x + pδfu(ŵ) u, whence

∫ t1

t0

λGx(ŵ) x dt = pδ(t0) x0 +

∫ t1

t0

pδfu(ŵ) u dt.

Then, for any κ = (x0, u, q) ∈ X we have

〈yδ,κ〉 = −pδ(t0) x0 −
∫ t1

t0

((
pδfu(ŵ) + λGu(ŵ)

)
u + λq

)
dt, and so

yδ = −
(
pδ(t0), pδfu(ŵ) + λGu(ŵ),

∫ t1

t0

λdt

)
.

6. Finally, consider the cone Ω. Set ŷ = (0, 0, 1) ∈ Y and H = {αŷ : α > 0}.
Then H∗ = Ω, that is H is thick on Ω.

7. Set κ
0 = (0, 0, 1) ∈ X (here x0 = 0, u = 0, q = 1 ). Obviously,

−κ
0 ∈ Ω0 ∩ Ωδ , κ

0 ∈ Ω.

Now, we apply Theorem 2 to condition (27). According to this theorem, for any
δ > 0 and any ε > 0 there exist functionals

y0 ∈ H0, yδ ∈ Hδ, y ∈ H (29)

such that

〈y0, −κ
0〉 + 〈yδ, −κ

0〉 = 1, (30)

‖y0 + yδ + y‖ < ε. (31)

(Here we choose the cone Ω to be excluded from the normalization condition (30).)

Analysis of these conditions will lead to the local minimum principle.
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6.2 Analysis of conditions (29)–(31)

According to the definitions of H0, Hδ, and H, conditions (29) mean that

y0 = −α0

(
p0(t0) + Jx0

(ξ̂), p0fu(ŵ), 1
)
, α0 > 0,

yδ = −
(
pδ(t0), pδfu(ŵ) + λGu(ŵ),

∫ t1

t0
λdt

)
, λ > 0, λχδ = λ,

y = α (0, 0, 1), α > 0.

Condition (30) gives

α0 +

∫ t1

t0

λdt = 1. (32)

In view of this relation, we get

−(y0 + yδ + y) =

=
(
α0p0(t0) + pδ(t0) + α0Jx0

(ξ̂), (α0p0 + pδ)fu(ŵ) + λGu(ŵ), 1− α
)
.

Set p = α0p0 + pδ. Then

− ṗ = pfx(ŵ) + λGx(ŵ), p(t1) = α0Jx1
(ξ̂), (33)

and −(y0 + yδ + y) =
(
p(t0) + α0Jx0

(ξ̂), pfu(ŵ) + λGu(ŵ), 1− α
)
.

Condition (31) implies

| p(t0) + α0Jx0
(ξ̂)| + ‖ pfu(ŵ) + λGu(ŵ)‖1 + |1− α| < ε. (34)

Recall that such α0 , α, λ, p exist for all δ > 0 and ε > 0.

Thus, there exist two countable sequences {(αk
0, α

k, λk, pk)}∞k=1 and {δk}∞k=1, where
δk → 0+,

αk
0 ∈ R, αk ∈ R, λk ∈ L1, pk ∈ AC, (35)

αk
0 > 0, αk > 0, λk > 0, λkχM

δk
= λk, (36)

−δk 6 G(ŵ(t)) 6 0 a.e. on Mδk (37)

(the latter follows from the definition of Mδ), such that

αk → 1, αk
0 + ‖λk‖1 = 1, (38)

−ṗk = pkfx(ŵ) + λkGx(ŵ), (39)

pk(t0) + αk
0Jx0

(ξ̂) → 0, pk(t1) = αk
0Jx1

(ξ̂), (40)

‖ pkfu(ŵ) + λkGu(ŵ)‖1 → 0. (41)

Hereinafter, we do not write the condition k → ∞. Note also that superscript k
is always used to denote the number of a member in the sequence and never used to
denote the degree.

Without loss of generality we assume that αk
0 → α̂0 > 0. Then

α̂0 + ‖λk‖1 → 1. (42)
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Moreover, conditions (40) imply

pk(t0) → −α̂0Jx0
(ξ̂), pk(t1) → α̂0Jx1

(ξ̂). (43)

It follows that the sequences pk(t0) and pk(t1) are bounded, and in view of (42) the
norms ‖λk‖1 are also bounded. Therefore, by (39) and the Gronwall’s inequality, the
norms ‖pk‖∞ are uniformly bounded as well.

Now, we rewrite the adjoint equation (39) in the form of measures:

− dpk = pkfx(ŵ) dt + λkGx(ŵ) dt. (44)

Define a measure
dµk := λk Gx(ŵ) dt. (45)

Equation (44) then takes the form

− dpk = pkfx(ŵ) dt + dµk. (46)

Clearly, the sequence ‖dµk‖ is bounded. Without loss of generality we assume that
dµk weakly* converges to some measure dµ̂ ∈ C∗ (i.e. C− converges in C∗ ), and
denote this as

dµk ∗
⇀ dµ̂. (47)

Conditions (47), (46), and (43) imply that there is a function p̂ ∈ BV such that
at every point t ∈ [t0, t1] of continuity of the limiting measure dµ̂ (hence almost
everywhere) we have pk(t) → p̂(t), and moreover,

−dp̂ = p̂ fx(ŵ) dt + dµ̂, (48)

−p̂(t0−) = α̂0Jx0
(ξ̂), p̂(t1+) = α̂0Jx1

(ξ̂). (49)

Since the sequence ‖pk‖∞ is bounded, we also have

‖pk − p̂‖1 → 0. (50)

Now, our aim is to find a more detailed representation of the measure dµ̂.

6.3 Representation of the absolutely continuous part of dµ̂

1. Since the sequence ‖λk‖1 is bounded, then, according to Lemma 2, there exists
a sequence of measurable sets Ak ⊂ [t0, t1] such that mes Ak → (t1 − t0), and the
sequence λk

A := λkχAk is uniformly integrable, hence it contains a weakly convergent
(with respect to L∞) subsequence. Without loss of generality we assume that the
sequences λk

A itself weakly converges to some function λ̂ ∈ L1 :

λk
A

w
⇀ λ̂. (51)

Since λk
A > 0 for all k, we have λ̂(t) > 0 a.e. in [t0, t1] and

‖λk
A‖ → ‖λ̂‖. (52)
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Further, conditions λkχM
δk

= λk > 0 (see (36)), and λk
A = λkχAk imply in view

of (37) that |λk
A(t)G(ŵ(t))| 6 λk

A(t) δ
k a.e. on [t0, t1], hence ‖λk

AG(ŵ)‖ → 0. The
more so, λk

AG(ŵ) → 0 weakly in L1.

On the other hand, (51) implies λk
AG(ŵ)

w
⇀ λ̂G(ŵ), whence

λ̂(t)G(ŵ(t)) = 0 a.e. in [t0, t1], (53)

i.e., the complementary slackness condition in (11) holds true.

2. Consider more thoroughly condition (41). Define a function pkA := pkχAk ∈ L∞.
Since the set Bk := [t0, t1]\Ak has mes Bk → 0, and the sequence ‖pk‖∞ is bounded,
we get ‖pkA − pk‖1 = ‖ pkχBk‖1 → 0, which in view of (50) yields

‖pkA − p̂‖1 → 0. (54)

Condition (41) means that pkfu(ŵ) + λkGu(ŵ) = zk, where ‖ zk‖1 → 0. Multiplying
it by χAk , we get pkA fu(ŵ) + λk

AGu(ŵ) = zkA := zkχAk , ‖ zkA‖1 → 0. This and

condition (54) imply ‖ p̂ fu(ŵ) + λk
AGu(ŵ)‖1 → 0. Finally, since λk

A

w
⇀ λ̂, we obtain

p̂ fu(ŵ) + λ̂ Gu(ŵ) = 0, i.e. condition (16) of LMP holds true.

3. Now, introduce the sequence λk
B := λkχBk ∈ L1 . Obviously, λk

B > 0 and
λk
A + λk

B = λk. Note that both λk
A and λk

B are supported on Mδk , since they are
restrictions of λk supported on Mδk . Therefore, if we narrow the set Bk to the set
Mδk ∩ Bk, the function λk

B would not change. So, we will assume that Bk ⊂ Mδk ,
that is Bk = Mδk \ Ak. Setting

dµk
A = λk

A Gx(ŵ) dt, dµk
B = λk

B Gx(ŵ) dt,

we obtain two sequences of measures dµk
A and dµk

B in C∗. Since by (45) dµk =

λk Gx(ŵ) dt, we have dµk
A + dµk

B = dµk. Since λk
A

w
⇀ λ̂, we have

dµk
A

∗
⇀ dµ̂A := λ̂ Gx(ŵ) dt. (55)

Since dµk ∗
⇀ dµ̂ and dµk

A

∗
⇀ dµ̂A, there exists a measure dµ̂B ∈ C∗ such that

dµk
B

∗
⇀ dµ̂B, dµ̂A + dµ̂B = dµ̂.

Now we aim to specify the measure dµ̂B , and this is the main part of our study.

6.4 Representation of the singular part of dµ̂

1◦. We have λk
B := λkχBk , where Bk = Mδk \ Ak, mes Bk → 0, and

dµk
B = λk

B Gx(ŵ) dt
∗
⇀ dµ̂B . (56)

Since the sequence of norms ‖λk‖1 is bounded, the sequence of measures λkχBk dt
in C∗ is also bounded. Therefore, without loss of generality we assume that there is a
measure dη̂ ∈ C∗ such that dη̂ > 0 and

λk
B dt = λk χBk dt

∗
⇀ dη̂. (57)
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Since ‖λk‖1 = ‖λk
A‖1 + ‖λk

B‖1 , conditions (42) and (52) imply

α̂0 + ‖λ̂‖1 + ‖λk
B‖1 → 1. (58)

Moreover, since λk
B > 0, relation (57) yields ‖λk

B‖1 → ‖dη‖, whence

α̂0 + ‖λ̂‖1 + ‖dη‖ = 1, (59)

which is equivalent to the nontriviality condition (12).

There are two possible cases: ‖dη‖ = 0 and ‖dη‖ > 0. In the first, trivial case,
‖λk

B‖1 → 0, the more so ‖dµk
B‖ → 0, then dµ̂B = 0, i.e. the singular part of dµ̂

does not appear in the LMP. Setting here ŝ = 0 and R = Ø, we obtain the costate
equation (14) with properties (13) that are trivially satisfied.

2◦. Consider now the main case, where

‖dη‖ = lim
k

‖λk
B‖1 =: rB > 0. (60)

Here we will slightly narrow the sets Bk in order to obtain more properties of λk
B . To

do this, we need the following

Lemma 7 Let be given two sequences of functions an > 0 and bn > 0 in L1([t0, t1],R),
and a sequence of measurable sets Bn ⊂ [t0, t1] of mes Bn → 0 such that

∫

Bn

an(t) dt → 1,

∫

Bn

bn(t) dt → 0.

Then there is a sequence of measurable sets En ⊂ Bn such that

an(t) > 0 a.e. on En ,

∫

En

an(t) dt → 1, and ess sup
t∈En

bn(t)

an(t)
→ 0.

Proof. Narrowing if necessary the sets Bn , we assume that an(t) > 0 a.e. on Bn .

Take any sequence ωn → 0+ such that

∫

Bn

bn(t) dt = o(ωn), and define a sequence

of sets En = {t ∈ Bn : bn(t) 6 ωn an(t)}. Then

∫

Bn\En

an(t) dt 6
1

ωn

∫

Bn\En

bn(t) dt 6
1

ωn

∫

Bn

bn(t) dt → 0,

which gives the required properties. �

3◦. Consider the L1− functions

σk := pkfu(ŵ) + λkGu(ŵ). (61)

According to (41), ‖ σk‖1 → 0. Then also

∫

Bk

(1 + | σk|) dt → 0. By Lemma 7, there

exists a sequence of measurable sets Ek ⊂ Bk such that λk
B(t) > 0 a.e. on Ek,

∫

Ek

λk
B dt → rB > 0, and ωk := ess sup

Ek

1 + |σk|
λk
B

→ 0. (62)
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The first relation here means that

∫

Bk\Ek

λk
B dt → 0, therefore (56) and (57) imply

λk
B Gx(ŵ)χEk dt

∗
⇀ dµ̂B , λk

B χEk dt
∗
⇀ dη̂.

Set λk
E := λk

BχEk = λkχEk . Then λk(t) = λk
E(t) a.e. on Ek,

λk
E dt

∗
⇀ dη̂, λk

E Gx(ŵ) dt
∗
⇀ dµ̂B , (63)

so the ”narrowed” sequence λk
E has the same limit properties as the original λk

B does.

Since Ek ⊂ Mδk , relations (37) imply

− δk 6 G(ŵ(t)) 6 0 a.e. on Ek. (64)

Moreover, in view of definition (61), for all k

Gu(ŵ) =
σk − pkfu(ŵ)

λk
a.e. on Ek.

The second condition in (62) and the boundedness of the sequence ‖pk‖∞ imply

εk := ess sup
Ek

|Gu(ŵ)| = ess sup
Ek

∣∣σk − pkfu(ŵ)
∣∣

λk
→ 0,

whence
|Gu(ŵ(t))| 6 εk a.e. on Ek. (65)

4◦. We will need the following constructions. Recall that we introduced the set
of phase points N (G) := {(x, u) ∈ R

n+m : G(x, u) = 0, Gu(x, u) = 0} and assumed
that this set is nonempty.

Now, for any δ > 0 and ε > 0, introduce its extension up to δ, ε :

Nδ,ε(G) := {(x, u) ∈ R
n+m : −δ 6 G(x, u) 6 0, |Gu(x, u)| 6 ε }.

Obviously it is closed, and N (G) =
⋂

δ>0, ε>0Nδ,ε(G).

By analogy with the mapping S(x, u), for any δ > 0 and ε > 0, define a set-valued
mapping

(x, u) ∈ R
n+m ⇒ Sδ,ε(x, u) ⊂ R

n∗ :

(i) if (x, u) ∈ Nδ,ε(G) , then Sδ,ε(x, u) = {Gx(x, u)},

(ii) if (x, u) /∈ Nδ,ε(G) , then Sδ,ε(x, u) = Ø.

Obviously, this mapping is compact-valued, upper semicontinuous, and

⋂

δ>0, ε>0

Sδ,ε(x, u) = S(x, u) for all (x, u). (66)
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For any nonempty set M ⊂ R
n+m, define

Sδ,ε(M) :=
⋃

(x,u)∈M

Sδ,ε(x, u).

and Sδ,ε(Ø) = Ø. Clearly, if M is compact, the set Sδ,ε(M) is compact as well. Note
that for any M ⊂ R

n+m we have Sδ,ε(M) = Sδ,ε(M ∩ Nδ,ε(G)).
Now, consider the reference process ŵ(t) = (x̂(t), û(t)). We will assume that the

corresponding set D, defined in (9), is nonempty, i.e. there exists a point t∗ ∈ [t0, t1]
such that clm (ŵ)(t∗) ∩ N (G) 6= Ø.

Since the set clm (û) is compact, the set Sδ,ε(x̂(t), clm (û)(t)) is also compact for
any t and upper semicontinuous in t.

For any points τ0 < τ1 in [t0, t1], define a set

Qδ,ε[τ0, τ1] :=
⋃

t∈[τ0,τ1]

Sδ,ε(x̂(t), clm (û)(t)). (67)

By the above argument, the right hand side here is a compact set. Moreover, relation
(66) implies that

Q[τ0, τ1] :=
⋂

δ>0, ε>0

Qδ,ε[τ0, τ1] =
⋃

τ∈[τ0,τ1]

S(x̂(τ), clm (û)(τ)), (68)

and this set is also compact.
Finally, for any t∗ , if τ0 → t∗ − 0 and τ1 → t∗ + 0, then obviously

Q[τ0, τ1] → S(x̂(t∗), clm (û)(t∗)). (69)

in the Hausdorf sense.

5◦. Now we can describe the relationship between the measures dµ̂B and dη̂.
Recall that ‖dη̂‖ > 0 by (60).

Lemma 8 The measure dµ̂B admits a representation

dµ̂B = ŝ(t) dη̂ (70)

with some dη̂ -measurable essentially bounded function ŝ : [t0, t1] → R
n∗, and there is

a set R ⊂ D of full dη̂ -measure (i.e.,
∫
R
dη̂ =

∫
[t0,t1]

dη̂ ) such that

ŝ(t) ∈ conv S
(
x̂(t), clm (û)(t)

)
for all t ∈ R. (71)

Proof. a) In view of (63), | dµ̂B| 6 M dη̂, where M = ‖Gx(ŵ)‖∞ . Hence,
the measure dµ̂B is absolutely continuous with respect to dη̂ , and therefore, by the
Radon-Nikodym theorem it admits representation (70), where ŝ(t) is a dη̂ -measurable
function taking values in R

n∗ and satisfying |ŝ(t)| 6 M a.e. in dη̂.

b) Let us prove inclusion (71) with some R ⊂ D of full dη̂ -measure. Fix a point
t∗ ∈ [t0, t1] with the following properties:
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(i) if t∗ ∈ [τ0, τ1] ⊂ [t0, t1], τ0 < τ1, then
∫
[τ0,τ1]

dη̂ > 0,

(ii) if t∗ ∈ [τ0, τ1] ⊂ [t0, t1], τ0 < τ1 , τ0 → t∗, τ1 → t∗, then7

ŝ[τ0,τ1] :=

∫
[τ0,τ1]

dµ̂B∫
[τ0,τ1]

dη̂
→ ŝ(t∗), (72)

As is known, the set of such points t∗ has a full dη̂ -measure in [t0, t1] (since it includes
the Lebesgue points of the function ŝ with respect to the measure dη̂). Denote this
set by R. We have

∫
R
dη̂ =

∫
[t0,t1]

dη̂.

Take any [τ0, τ1] containing t∗ . Then
∫
[τ0,τ1]

λk
E dt > 0 for all sufficiently large k.

(Otherwise λk
E = 0 a.e. in [τ0, τ1] for a subsequence k → ∞, which implies that also

dη̂ = 0 in [τ0, τ1], a contradiction with the choice of t∗).

Therefore, we can define a row-vector

sk[τ0,τ1] :=

∫
[τ0,τ1]

λk
E Gx(ŵ) dt∫

[τ0,τ1]
λk
E dt

. (73)

Let Θ be the set of continuity of the measures dµ̂B and dη̂, i.e., the set of all
those t, which are not atoms neither of dµ̂B nor of dη̂. Note that Θ is dense in
[t0, t1]. If τ0, τ1 ∈ Θ, then

sk[τ0,τ1] → ŝ[τ0,τ1] as k → ∞, (74)

since both the numerator and denominator tend to the corresponding limits.

Notice that the right hand side of (73) is a “convex combination” of the vectors
Gx(ŵ(t)), in its continuous version.

c) In view of (64) and (65), we have ŵ(t) ∈ Nδkεk(G) a.e. on Ek, and so

Gx(ŵ(t)) ∈ Sδkεk(x̂(t), û(t)) a.e. on Ek.

Since û(t) ∈ clm (û)(t) a.e. on [t0, t1], we get

Gx(ŵ(t)) ∈ Sδkεk(x̂(t), clm (û)(t)) a.e. on Ek. (75)

Recall that t∗ ∈ R. Take any [τ0, τ1] containing t∗ . The last inclusion and defi-
nition (67) imply that for almost all t ∈ Ek ∩ [τ0, τ1]

Gx(ŵ(t)) ∈
⋃

τ∈[τ0,τ1]

Sδkεk(x̂(τ), clm (û)(τ)) = Qδkεk [τ0, τ1] ,

and the more so, for almost all t ∈ Ek ∩ [τ0, τ1]

Gx(ŵ(t)) ∈ conv Qδkεk [τ0, τ1].

7 If τ0 = t∗ we do not need to tend τ0 → t∗, so only tend τ1 → t∗ . The same concerns τ1 .
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By the Caratheodory theorem, the right hand side here is a convex compact set. Then,
the definition (73) gives (since λk

E is supported on Ek) :

sk[τ0,τ1] ∈ conv Qδkεk [τ0, τ1] .

Now, assume that τ0, τ1 ∈ Θ, τ0 < t∗ < τ1 . Taking the limit as k → ∞ in view of
(74) and (68), we get

ŝ[τ0,τ1] ∈ conv Q(x, u)[τ0, τ1] .

Finally, taking the limit as τ0 → t∗ , τ1 → t∗ along Θ in view of (72) and (69), we
obtain

ŝ(t∗) ∈ convS(x̂(t∗), clm (û)(t∗)). (76)

Thus, the set S(x̂(t∗), clm (û)(t∗)) is nonempty, which by the definition (9) means that
t∗ ∈ D. Since the point t∗ ∈ R is arbitrary, it follows that R ⊂ D. Consequently,
inclusion (71) holds.

d) For t ∈ [t0, t1] \R we can redefine (if necessary) ŝ(t) by zero, without violating
the conditions of LMP. The lemma is proved. �

Thus, in view of this lemma and (55), the adjoint equation (48) takes the form

− dp̂ = p̂fx(ŵ) + dµ̂A + dµ̂B = p̂fx(ŵ) + λ̂ Gx(ŵ) dt+ ŝdη̂, (77)

i.e. condition (14) holds true.

Thus, all conditions (10)–(12) of the local minimum principle are satisfied.
Theorem 3 is completely proved.
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