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Abstract

While there have been many results on lower bounds for Max Cut in
unweighted graphs, the only lower bound for non-integer weights is that
by Poljak and Turźık (1986). In this paper, we launch an extensive study
of lower bounds for Max Cut in weighted graphs. We introduce a new
approach for obtaining lower bounds for Weighted Max Cut. Using it,
Probabilistic Method, Vizing’s chromatic index theorem, and other tools,
we obtain several lower bounds for arbitrary weighted graphs, weighted
graphs of bounded girth and triangle-free weighted graphs. We pose
conjectures and open questions.

1 Introduction

In this paper G = (V (G), E(G), w) will denote a connected weighted graph
with weight function w : E(G) → R+, where R+ is the set of non-negative
reals. Let A and B be a partition of V (G). Then the cut (A,B) of G is the
bipartite subgraph of G induced by the edges between A and B. The Maxi-

mum Weighted Cut problem (MWC) is a well-known NP-hard optimization
problem on graphs [14], where given a weighted graph G, the aim is to find
the maximum weight of a cut of G. This weight will be denoted by mac(G).

Lower bounds for mac(G) are of interest e.g. for designing heuristics and
branch-and-bound algorithms for computing mac(G). There are many publi-
cations where lower bounds on mac(G) have been studied. However, almost
all of them are either for the unweighted case i.e. the weight of every edge
equals 1 (see e.g. [1, 3, 5, 7, 15, 16]) (In what follows, the weight of every edge
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is an unweighted graph will be equal to 1) or for graphs with integral weights
(see e.g. [2, 5]).

As far as we know, the only easily computable lower bound for the general
weighted case is that of Poljak and Turźık [15]: mac(G) ≥ w(G)/2+w(Tmin)/4,
where Tmin is a minimum weight spanning tree of G. Note that here and in
the rest of the paper, for a subgraph H of G, w(H) =

∑

e∈E(H) w(e).
In Section 2, we introduce a generic lower bound for mac(G) and show that

the Poljak-Turźık bound can be easily obtained from the generic bound. We
prove that unfortunately the lower bound is NP-hard to compute. However,
the bound can be used to obtain other lower bounds which are computable in
polynomial time, see Theorems 3.1, 4.1, 4.3, 5.4, Lemma 5.11 and Proposition
2.3.

In Section 3, we prove that the Poljak-Turźık bound can be improved
by replacing a minimum weight spanning tree by a DFS tree (i.e. a tree
that can be obtained by using a depth-first search algorithm): mac(G) ≥
w(G)/2 + w(D)/4, where D is a DFS tree of G. Theorem 3.3 shows that
we cannot replace D in the new bound (called below the DFS bound) by an
arbitrary spanning tree. The DFS tree bound is stronger then the Poljak-
Turźık bound because while the Poljak-Turźık bound requires the spanning
tree to be of minimum weight, for the DFS bound we can use an arbitrary DFS
tree. We also prove that unfortunately replacing an arbitrary DFS tree with
a DFS tree of maximum weight would make the bound no longer computable
in polynomial time unless P = NP. The last result holds even for triangle-tree
tree graphs studied later in the paper. We complete Section 3 by observing
another new bound: mac(G) ≥ (w(G) + w(M))/2, where M is a maximum
weight matching of G.

In Section 4, we study graphs of bounded girth. The girth of a graph is
the length of its shortest cycle. We show that if the girth g of G is even then
mac(G) ≥ w(G)

2 + g−1
2g w(Dmax), where Dmax is a maximum weight DFS tree of

G. This bound can be extended to the case where the girth is odd by replacing
g with g−1. We also prove that when G is triangle-free then the Poljak-Turźık
bound can be improved as follows: mac(G) ≥ w(G)/2 + w(Tmax)/4, where
Tmax is a maximum weight spanning tree. This is in sharp contrast with
Theorem 3.3, which shows that the last bound does not hold for arbitrary
graphs. Note that w(Tmax) can be computed in polynomial time while it is
NP-hard to compute w(Dmax). We complete the section by a conjecture that

mac(G) ≥ w(G)
2 + 3

8 · w(T ) for a triangle-free graph G and a spanning tree T
of G.

Section 5 is devoted to triangle-free graphs G with bounded maximum
degree ∆(G). In Subsection 5.1 we study triangle-free graphsG with ∆(G) ≤ 3.
Inspired by the result of Bondy and Locke [6] that a triangle-free graph G
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with ∆(G) ≤ 3 has a bipartite subgraph with at least 4
5 |E(G)| edges, we

conjecture that mac(G) ≥ 4w(G)/5 for a weighted triangle-free graph G with
∆(G) ≤ 3 (see Conjecture 5.3). Theorem 5.4 proved in Section 6 shows that
mac(G) ≥ 8

11 · w(G) for a weighted triangle-free graph G with ∆(G) ≤ 3.
Theorem 5.4 allows us to prove Theorem 5.5 (also proved in Section 6) which

states that mac(G) ≥ w(G)
2 + 0.3193 · w(T ) for a triangle-free graph G with

∆(G) ≤ 3 and a spanning tree T of G. We show that Conjecture 5.3 implies
the conjecture of Section 4 for triangle-free graphs of maximum degree at most
3 as well as Conjecture 5.8, which states that every triangle-free graph G with
∆(G) ≤ 3 has an edge set E′ such that every 5-cycle of G contains exactly one
edge from E′. Thus, if Conjecture 5.3 holds, it implies a somewhat unexpected
structural result for unweighted graphs.

Subsection 5.2 is devoted to triangle-free graphs G with maximum degree
bounded by arbitrary ∆. The main results of this section are Theorems 5.10
and 5.12, which give different bounds of the type mac(G) ≥ a∆ ·w(G), where
a∆ depends only on ∆. The proof of Theorem 5.10 easily follows from results
of Shearer [16]. The bound of Theorem 5.12 is stronger than that of Theorem
5.10 if and only if ∆ ≤ 16.

We conclude the paper in Section 7.
Our proofs rely in particular on the Probabilistic Method and Vizing’s

chromatic index theorem.

2 Generic Bound

The following theorem is a generic bound, which is used in the next section to
obtain new lower bounds for mac(G). These new lower bounds immediately
imply a well-known lower bound of Poljak and Turźık [15].

Let B(G) denote the set of bipartite subgraphs R of G such that every
connected component of R is an induced subgraph of G. Every graph in B(G)
is called a B-subgraph of G.

Theorem 2.1. If R ∈ B(G), then mac(G) ≥ (w(G) + w(R))/2.

Proof. Let R1, R2, . . . , Rℓ be connected components of R and let Xi, Yi be
partite sets of Ri, i ∈ [ℓ]. For each i ∈ [ℓ], randomly and uniformly assign
Xi color 1 or 2 and Yi the opposite color. Note that this is a proper coloring
of R. Let A be all vertices of color 1 and let B be all vertices of color 2.
Now every edge in R deterministically lies in the cut induced by (A,B) and
every edge not in R lies in the cut induced by (A,B) with probability 1/2.
Therefore the average weight of the cut (A,B) is w(R)+w(E(G)−E(R))/2 =
(w(G) + w(R))/2. Thus, mac(G) ≥ (w(G) + w(R))/2.
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Using the well-known derandomization method of conditional probabilities
[4, Section 15.1], given R ∈ B(G), in polynomial time we can find a cut of G
of weight at least (w(G) + w(R))/2. Note that, in the definition of B(G), the
requirement that every connected component of R is an induced subgraph of
G, is necessary as otherwise the term w(E(G)−E(R))/2 in the average weight
of the cut (A,B) is incorrect.

Let rmax be the maximal weight of a B-subgraph of G. By Theorem 2.1,
mac(G) ≥ (w(G) + rmax)/2. Unfortunately, it is NP-hard to compute rmax,
which follows from the next theorem.

Theorem 2.2. Let H be an unweighted graph. It is NP-hard to compute the
maximum number of edges in a B-subgraph of H.

Proof. The proof is by reduction from the Independent Set problem. In
this problem, given a graph F and a natural number k, we are to decide
whether F contains an independent set of size at least k. It is well-known that
Independent Set is NP-complete.

Let F be an instance of the Independent Set problem where we want
to determine if F has an independent set of size k. Let n be the number of
vertices in F and let Q be a set of n2 vertices outside of F . Construct a new
graph H by adding all edges between F and Q. We will show that H has a
B-subgraph with at least kn2 edges if and only if F contains an independent
set of size at least k. Indeed, if F contains an independent set I of size at least
k, then H has a B-subgraph with at least kn2 edges, as the subgraph induced
by I ∪Q is such a subgraph.

Conversely, assume that H has a B-subgraph, B, with at least kn2 edges.
As at most

(

n
2

)

< n2 edges in E(B) belong to E(F ) we must have at least (k−
1)n2+1 edges in E(B) belonging to the cut (V (F ), Q). Now let C1, C2, . . . , Cl

be the connected components of B that contain vertices from Q and let Xi =
V (F ) ∩ V (Ci) for all i ∈ [l]. Note that for all i ∈ [l], Xi is an independent
set in F , as if some edge uv belonged to F [Ci] then u, v and any vertex from
Q∩V (Ci) would form a 3-cycle in B. Let xmax = max{|Xi| | i ∈ [l]} and note
that no vertex in Q is incident with more than xmax edges in E(B). As there
are at least (k − 1)n2 + 1 edges in E(B) belonging to the cut (V (F ), Q), this
implies that xmax > k− 1 which implies that F has an independent set of size
at least k. This completes the proof.

The following is a simple corollary of Theorem 2.1 as a matching in G is a
B-subgraph of G.

Proposition 2.3. Let M be a maximum weight matching of G. Then mac(G) ≥
(w(G) + w(M))/2.
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The bound of Proposition 2.3 is tight. Indeed, let n be an even posi-
tive integer and let Kn be unweighted. Then clearly mac(Kn) = n2/4. Also,
(w(Kn) +w(M))/2 = 1

2

(n
2

)

+ n/4 = n2/4.
It is not hard to construct examples of weighted graphs for which the

bound of Proposition 2.3 is larger than the Poljak-Turźık bound; e.g. consider
a weighted graph with a spanning tree of weight zero and at least one edge of
positive weight.

3 New Bounds for Arbitrary Connected Graphs

Throughout this section, G is connected. A DFS tree is a tree constructed by
Depth First Search [8].

Theorem 3.1. If D is a DFS tree of G then mac(G) ≥ w(G)/2 + w(D)/4.

Proof. Let D be rooted at vertex u. Let Li be the set of vertices of D at
distance i from u in D. Let Hi be the subgraph of D induced by the set of
edges of D between vertices Li and Li+1. Note that each Lj is an independent
set of G. Since D is a DFS tree, G has no cross edges with respect to D i.e.
edges xy such that x is not a descendent of y and y is not a descendent of x
in D [8]. Hence, each Hj is an induced bipartite subgraph of G. Let G1 be
the disjoint union of graphs Hi with odd i and G2 the disjoint union of graphs
Hi with even i. Since Gj (j ∈ {0, 1}) is a disjoint union of graphs from B(G),
we have G0, G1 ∈ B(G). Hence, by Theorem 2.1, mac(G) ≥ (w(G)+w(Gj ))/2
for j = 0, 1. These bounds and w(G1) + w(G2) = w(D) imply mac(G) ≥
w(G)/2 + w(D)/4.

Note that the above bound immediately implies the following corollary, by
Poljak and Turźık (as w(D) ≥ w(Tmin) when D is a DFS tree and Tmin is a
minimum weight spanning tree of G).

Corollary 3.2. Let Tmin be a minimum weight spanning tree of G. Then
mac(G) ≥ w(G)/2 + w(Tmin)/4.

As some DFS trees may have much larger weight than a minimum weight
spanning tree of G, the bound of Theorem 3.1 is, in general, stronger than
that of Poljak and Turźık. The following theorem implies that D cannot be
replaced by an arbitrary spanning tree T in Theorem 3.1.

Theorem 3.3. Let ε > 0 be arbitrary. There exists (infinitely many) edge-
weighted graphs G with a spanning tree T such that mac(G) < w(G)/2+εw(T ).

Proof. Let W be any positive integer strictly larger than 1
4ε . Let l be any

integer such that:

l >
W 2

4Wε− 1
.
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Let G = Kl+1 and let x ∈ V (G) be arbitrary. Let w : E(G) → N be a weight
function such that w(e) = W if e is an edge incident with x and let w(e) = 1
otherwise. Let T be the spanning star K1,l with x as the root. Note that
w(T ) = Wl. Let θ = w(G)/2 + ε w(T ) and note that the following holds.

θ =
1

2

(

l

2

)

+Wl

(

1

2
+ ε

)

=
l(l − 1)

4
+Wl

(

1

2
+ ε

)

We will now bound mac(G) from above. Let (A,B) be any partition of V (G)
and without loss of generality assume that x ∈ A. Let G′ be the graph
obtained from G by replacing x with an independent set, X, containing W
vertices, such that N(v) = V (G) \ {x} for all v ∈ X. Let all edge-weights of
G′ be one. Note that the weight of the cut (X ∪A \ {x}, B) in G′ is the same
as the weight of the cut (A,B) in G and as (A,B) is an arbitrary cut in G we
must have mac(G′) ≥ mac(G). As the maximum number of edges in a cut in
a graph on W + l vertices is at most ((W + l)/2)2 the following must hold.

mac(G) ≤ mac(G′) ≤
(

W + l

2

)2

=
(W + l)2

4

Recall that l > W 2

4Wε−1 , which implies that l(4Wε−1) > W 2. Adding 2Wl+ l2

to both sides gives us the following:

l2 + 4lW

(

1

2
+ ε

)

− l > 2Wl +W 2 + l2

Dividing both sides by 4 and recalling our bounds for θ and mac(G) implies
the following:

mac(G) ≤ 2Wl +W 2 + l2

4
<

l(l − 1)

4
+ lW

(

1

2
+ ε

)

= θ

Unfortunately, it is NP-hard to compute the maximum weight of a DFS
tree in a weighted graph even in the class of triangle-free graphs, i.e. graphs
that do not contains K3 as a subgraph.

Theorem 3.4. It is NP-hard to compute the maximum weight of a DFS tree
in a weighted triangle-free graph.

Proof. We will reduce from the Hamilton (x, y)-path problem proved to be
NP-complete in [13] for triangle-free graphs (it is NP-complete already for grid
graphs). In this problem, given a triangle-free graph G and two vertices x, y
of G, we are to decide whether G has a Hamilton path with end-vertices x and
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y. Given such a graph G and x, y ∈ V (G) we create a new weighted graph G′

as follows (see Figure 1).
Let V (G) = {v1, v2, . . . , vn} and let V (G′) = V (G) ∪ Z ∪ {z}, where Z =

{z1, z2, . . . , zn}. Let E(G′) = E(G) ∪ {zivi, zzi | i = 1, 2, . . . , n}. Note that G′

is triangle-free. Assume that vn = y and let the weight of all edges zivi be 1
for i = 1, 2, . . . , n − 1 and let the weight of all other edges in G′ be 2. Note
that the maximum weight of a spanning tree in G′ is at most 2(|V (G′)| − 1).

v1 v2 v3 vn−1 vn

z1 z4 z2 zn−1 zn

z

G· · ·

· · ·

Figure 1: The graph G′ in Theorem 3.4. The thick edges have weight 2 and
the thin edges have weight 1.

We first show that there is a DFS tree rooted at x of weight 2(|V (G′)|−1)
in G′ if and only if G contains a Hamilton (x, y)-path. Assume that G contains
a Hamilton (x, y)-path, P . Then E(P ) together with the edge vnzn and all
edges from z to Z form a DFS tree rooted at x where all edges have weight 2.

Conversely assume that there is a DFS tree, T ′, in G′, rooted in x, of weight
2(|V (G′)| − 1). This implies that all edges in T ′ have weight 2. As no edge of
weight 1 is used in T ′, the only edge between T = T ′[V (G)] and T ′ −V (G) is
yzn. Thus, T is a tree. Note that T does not have a vertex vj with j < n as
a leaf since otherwise T ′ would have edge vjzj , which is impossible. Thus, T
is just a Hamilton path of G from x to y.

This shows that there is a DFS tree rooted at x of weight 2(|V (G′)| − 1) if
and only if G contains a Hamilton (x, y)-path.

Now create the graph G∗ by taking two copies, G′
1 and G′

2, of G′ and
adding an edge of weight 2 between the copy of vertex x in G′

1 and the copy of
vertex x in G′′

1. Note that G
∗ is triangle-free. If there is a Hamilton (x, y)-path

in G, then as shown above, there is a DFS tree in G′ rooted at x, where all
edges have weight 2, which implies that there is DFS tree in G∗ where all
edges have weight 2 (rooted in one of the copies of x).

Conversely assume that there is a DFS tree, T ∗, in G∗ where all edges have
weight 2. Without loss of generality, assume the root of T ∗ lies in G′

1. Then
T ∗[V (G′

2)] is a DFS tree in G′
2 rooted at its copy of x, which by the above
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implies that there is a Hamilton (x, y)-path in G.
Therefore, if we can decide whether there is a DFS-tree in G∗ (which is

triangle-free) only containing edges of weight 2, then we can decide whether
G has a Hamilton (x, y)-path. This completes our proof.

4 Bounded Girth Families of Connected Graphs

Throughout this section, G is connected. The girth of G is the minimum
number of edges in a cycle of G. The depth of a rooted tree is the maximum
number of edges in a path from the root to a leaf.

Theorem 4.1. Let k be a positive even integer. If the girth of G is at least
k, then mac(G) ≥ w(G)

2 + k−1
2k w(D), for every DFS tree D in G.

Proof. Let G be any graph with girth at least k and let D be any DFS-tree in
G. Let r denote the root of D and let Li be the set of vertices of D reached
from r by a path with i edges. Note that L0 = {r}.

For j = 0, 1, . . . , k − 1, let Gj be the subgraph induced by the edges of T
minus those between Li and Li+1 for all i = j (mod k). Also add to Gj the
edges of G − V (D) linking vertices in the same connected component of Gj

(see Figure 2 for an illustration of the Gi’s). Since D is a DFS tree, D has no
cross edges i.e. edges xy such that x is not a descendent of y and y is not a
descendent of x [8]. As the girth of G is at least k, every connected component
of Gj consists of a tree of depth at most k − 1 plus possibly some edges from
the leaves to its root (if the leaves are at distance k − 1 from the root). Since
every connected component of Gj is an induced subgraph of G and k is even,
we note that every connected component of Gj belongs to B(G) and and by
Theorem 2.1, mac(G) ≥ (w(G) + w(Gj))/2 for every j = 0, 1, . . . , k − 1.

As every edge of T belongs to k− 1 of the k subgraphs Gj ’s, we note that
summing the equations mac(G) ≥ (w(G)+w(Gj ))/2 for all j = 0, 1, . . . , k− 1
gives us the following:

k ·mac(G) ≥ k
w(G)

2
+

k−1
∑

j=0

w(Gj)

2
= k

w(G)

2
+ (k − 1)

w(T )

2

Dividing the above inequality by k gives us the desired bound.

To see that the lower bound of Theorem 4.1 is tight, consider the un-
weighted cycle Ck+1, where k is even. Then mac(Ck+1) = k and the lower
bound of Theorem 4.1 equals

k + 1

2
+

k − 1

2k
k = k.
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v1

v2

v3

v4

v5

v6

v7

v8

v9

(a)

v1

v2

v3

v4

v5

v6

v7

v8

v9

G0

v1

v2

v3

v4

v5

v6

v7

v8

v9

G1

v1

v2

v3

v4

v5

v6

v7

v8

v9

G2

v1

v2

v3

v4

v5

v6

v7

v8

v9

G3

Figure 2: We illustrate the proof of Theorem 4.1 with the example shown
in (a), where we see a DFS tree (thick edges) of a graph G. The remaining
graphs depict G0, G1, G2 and G3, respectively, where k = 4.

Note that in Theorem 4.1, k is assumed to be even. When the girth g is
odd we can use Theorem 4.1 with k = g − 1. This implies the following:

Corollary 4.2. Let g be a positive odd integer. If the girth of G is at least g,
then mac(G) ≥ w(G)

2 + g−2
2(g−1)w(D), for every DFS tree D in G.

Corollary 4.2 is tight for the cycle Cg as the lower bounds for Cg and
mac(Cg) are both equal to g − 1 in this case.

Recall that a graph of girth at least 4 is called triangle-free.
By Theorem 4.1 for a triangle-free graph G, we have mac(G) ≥ w(G)

2 +
3
8w(D), where D is a DFS tree. However, by Theorem 3.4 finding a DFS tree
of maximum weight is NP-hard.

The lower bound in the next theorem is of interest as it implies that for a
maximum weight spanning tree Tmax of a triangle-free graph of G, mac(G) ≥
w(G)/2 + w(Tmax)/4, which is stronger than the Poljak-Turźık lower bound.

Theorem 4.3. Let G be a triangle-free graph and let T be a spanning tree of
G. Then mac(G) ≥ w(G)/2 +w(T )/4.

Proof. Let T be rooted at vertex u. Let Li the set of vertices of T at distance
i from u in D. Let Hi be the subgraph of T induced by the set of edges
of T between vertices Li and Li+1. Since G is triangle-free, the children of
any node in T form an independent set. Thus, every Hi is a disjoint union
of stars. Let G0 be the disjoint union of graphs Hi with even i and G1 the

9



disjoint union of graphs Hi with odd i. Thus, G0, G1 ∈ B(G). Hence, by
Theorem 2.1, mac(G) ≥ (w(G) + w(Gj))/2 for j = 0, 1. These bounds and
w(G0) + w(G1) = w(T ) imply mac(G) ≥ w(G)/2 + w(T )/4.

Note that in Theorem 4.3, T can be any spanning tree. By Theorem 3.3
no similar bound holds if we drop the condition that G is triangle-free. In
fact, for every ε > 0 there exist graphs G with spanning tree T such that
mac(G) < w(G)/2 + ε · w(T ).

Define θ to be the largest value such that mac(G) ≥ w(G)
2 + θ ·w(T ) holds

for all spanning trees T in a triangle-free graph G.

Proposition 4.4. 1
4 ≤ θ ≤ 3

8

Proof. Theorem 4.3 implies that θ ≥ 1/4. Now consider the cycle C5 with
weight 1 on all edges. Then w(C5) = 5, w(T ) = 4 for all spanning trees T and
mac(C5) = 4, which implies that θ ≤ 3/8.

We think that determining the optimal value of θ is an interesting open
problem. In fact, we guess that θ = 3/8.

Conjecture 4.5. Let G be triangle-free and let T be a spanning tree of G.
Then mac(G) ≥ w(G)

2 + 3w(T )
8 .

5 Triangle-free Graphs with Bounded Maximum

Degree

Another interesting problem is to determine what happens to θ if we restrict
ourselves to fixed maximum degrees. That is, we let θ∆ be defined as the
largest number for which the following holds: If G is triangle-free graph with
∆(G) ≤ ∆ then mac(G) ≥ w(G)

2 + θ∆ · w(T ).
It is not difficult to prove that θ1 = 1/2 (as if ∆(G) ≤ 1 then G is bipartite)

and θ2 = 3/8 (due to C5). This implies the following, by Proposition 4.4.

Proposition 5.1. 0.375 = 3
8 = θ2 ≥ θ3 ≥ θ4 ≥ . . . ≥ θ ≥ 1

4 = 0.25

In the rest of this section, we will first study triangle-free graphs with max-
imum degree at most 3 (Subsection 5.1) and then those of arbitrary bounded
maximum degree (Subsection 5.2).

5.1 Triangle-free subcubic graphs

A graph is subcubic if its maximum degree is at most 3. Triangle-free subcubic
graphs have been widely studied, see e.g. [6, 12, 17]. We will discuss such
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graphs next, before moving to the more general case of triangle-free graphs of
bounded maximum degree.

The following result is well-known.

Theorem 5.2. [6] If G is triangle-free subcubic graph then there exists a
bipartite subgraph of G containing at least 4

5 |E(G)| edges.

We conjecture that the above theorem can be extended to the weighted
case as follows.

Conjecture 5.3. Let G be a triangle-free subcubic graph, then mac(G) ≥
4
5w(G).

Note that Theorem 5.2 implies that Conjecture 5.3 holds in the case when
all weights equal 1. As a support of Conjecture 5.3, one can easily show that
if G is a triangle-free subcubic graph, then mac(G) ≥ 2

3w(G), as follows. As
G is triangle-free with ∆(G) ≤ 3 it is known that G is 3-colorable, by Brook’s
Theorem. Let V1, V2, V3 be the three color classes in a proper 3-coloring of G
and assume that without loss of generality w(V1, V2) is the maximum value in
{w(V1, V2), w(V1, V3), w(V2, V3)}, where w(Vi, Vj) is the total weight of all edges
between Vi and Vj . For each vertex v ∈ V3 add it to V1 if w(v, V2) ≥ w(v, V1)
and otherwise add it to V2. This results in a bipartition (V1, V2) with weight
at least 2

3w(G).
In Section 6, we will provide a proof of the following theorem, which ap-

proaches Conjecture 5.3 even more.

Theorem 5.4. Let G be an edge-weighted triangle-free subcubic graph. Then
mac(G) ≥ 8

11 · w(G).

Theorem 5.4 will be used to prove the following theorem in Section 6.

Theorem 5.5. Let G be an edge-weighted triangle-free subcubic graph and let
T be an arbitrary spanning tree in G. Then mac(G) ≥ w(G)

2 + 0.3193 · w(T ).

The above theorem implies the following corollary.

Corollary 5.6. 0.3193 ≤ θ3 ≤ 3
8 = 0.375.

Note that if Conjecture 4.5 holds for triangle-free subcubic graphs, then
θ3 = 3/8.

Proposition 5.7. Conjecture 5.3 implies Conjecture 4.5 for triangle-free sub-
cubic graphs.
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Proof. Let G be a triangle-free subcubic graph and let T be any spanning tree
in G. As any tree is bipartite, we note that mac(G) ≥ w(T ). Conjecture 5.3
would imply that mac(G) ≥ 4

5w(G). Thus, we have the following, which
completes the proof.

mac(G) ≥ 3

8
w(T ) +

5

8

(

4

5
w(G)

)

=
3

8
w(T ) +

1

2
w(G)

The well-known pentagon conjecture of Erdös [9] states that a triangle-
free graph G on n vertices has at most (n/5)5 5-cycles. The bound is tight
as every graph obtained from C5 by replacing every vertex x by a set of n/5
independent vertices (with the same adjacencies as in C5) has exactly (n/5)5

5-cycles. This conjecture was proved independently in [10] and [11].
Let us consider another conjecture, which is on 5-cycles in triangle-free

subcubic graphs.

Conjecture 5.8. Every triangle-free subcubic graph G contains a set E′ of
edges, such that every 5-cycle in G contains exactly one edge from E′.

Note that Conjecture 5.8 holds for all triangle-free subcubic graphs, G,
where every edge belongs to equally many 5-cycles, say k, by the following
argument. By Theorem 5.2, there exists a bipartite subgraph of G with at
least 4|E(G)|/5 edges. Let E′ be all the edges not in this subgraph. In G
there are k|E(G)|/5 distinct 5-cycles and each of them is covered by (at least)
one of the at most |E(G)|/5 edges in E′. As each edge in E′ can cover at most
k 5-cycles, we note that every 5-cycle is covered exactly once, which implies
that Conjecture 5.8 holds for G. As a special case, Conjecture 5.8 holds for
the Petersen Graph, where every edge lies in four 5-cycles. For example, in
Figure 3, the edge set E′ = {x1y1, y3y4, x3x4} intersects every 5-cycle of the
Petersen Graph exactly once.

The following result is a link between Conjectures 5.3 and 5.8, which pro-
vided Conjecture 5.3 holds, demonstrates that a lower bound on mac(G) can
be used to establish a structural result on unweighted graphs.

Proposition 5.9. Conjecture 5.3 implies Conjecture 5.8.

Proof. Let G = (V,E) be a triangle-free graph with maximum degree 3. For
each e ∈ E, define w(e) to be the number of 5-cycles that contain e in G. If
there are exactly c distinct 5-cycles in G, then w(G) = 5c. Let B = (V, F )
be a maximum weight bipartite subgraph in G and let E′ = E \ F. Note
that every 5-cycle in G must contain an edge from E′, which implies that
w(E′) ≥ c. If Conjecture 5.3 holds, then mac(G) ≥ 4w(G)/5, which implies
that w(E′) ≤ w(G)/5 = c. Therefore, w(E′) = c, which implies that every
5-cycle contains exactly one edge from E′, and thus Conjecture 5.8 holds.

12
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Figure 3: Petersen graph with E′ in boldface

5.2 Triangle-free graphs with arbitrary bounded maximum de-

gree

Using Shearer’s randomized algorithm [16] we can obtain the following bound.

Theorem 5.10. Let G be a weighted triangle-free graph with ∆(G) ≤ ∆.
Then mac(G) ≥ s∆ · w(G), where s∆ = 1

2 +
1

4
√
2∆

.

Proof. Shearer’s randomized algorithm takes G as an input and constructs a
random cut C of G as follows. In Step 1, we partition V (G) randomly and
uniformly into two sets A and B. Call a vertex x in G good if more than half
of the vertices adjacent to it lie in the other set. If exactly half of the vertices
adjacent to x lie in the other set call x good with probability 1/2. Otherwise
call x bad. In Step 2, leave the good vertices where they are and redistribute
the bad vertices randomly and uniformly into A and B. The edges between A
and B induce the cut C.

It is shown in the proof of Theorem 1 in [16] that an edge uv of G is in C
with probability θuv =

1
2 +

1
4(ρu − 1

2 ) +
1
4 (ρv − 1

2), where ρx is the probability
that x ∈ {u, v} is good after Step 2 provided that u, v are put into different
sets in Step 1. Let fx = ρx − 1

2 , where x ∈ {u, v}. It follows from the proof of
Theorem 1 and from Lemma 1 in [16] that for x ∈ {u, v}

fx ≥ 1

2
√

2 · deg(x)
≥ 1

2
√
2∆

Observe that the expected value of the weight of C is
∑

uv∈E

w(uv)θuv =

W (G)/2 +
∑

uv∈E

w(uv)(fu + fv)/4 ≥

W (G)/2 + (1/4
√
2∆)W (G)

13



Thus, the expected weight of C is at least s∆ · w(G), where s∆ = 1
2 + 1

4
√
2∆

.

Hence, G has a cut with at least such a weight.

Note that we can find a cut of G of weight at least s∆ ·w(G) in polynomial
time using the derandomization method of conditional probabilities [4]. Also
note that for ∆(G) ≤ 3, the bound in Theorem 5.10 is as follows: mac(G) ≥
0.602 · w(G). However, Theorem 5.4 provides a significantly better bound:
mac(G) ≥ 0.727 · w(G). This indicates that Theorem 5.10 can be improved
at least for small values of ∆ and indeed Theorem 5.12 provides such an
improvement Theorem 5.10 for small values of ∆. The following lemma will
be used to prove Theorems 5.4 and 5.12.

Lemma 5.11. Let G be a weighted triangle-free graph with ∆(G) ≤ ∆ and let
M be a matching in G. Then mac(G) ≥ ∆

2∆−1(w(G) − w(M)) + w(M).

Proof. Let G andM be defined as in the statement of the theorem and ∆(G) ≤
∆. Let G1 be the graph obtained by contracting each edge ei ∈ M to a vertex
xi. If G1 has parallel edges, for every pair u, v of vertices with parallel edges,
delete all but one of the parallel edges and let the weight of the remaining
edge between u and v be the sum of the original edges. We will denote the
resulting graph by G2. Note that w(G2) = w(G) − w(M) and G2 is a simple
graph with ∆(G2) ≤ 2∆− 2.

By Vizing’s theorem, G2 has a proper c-edge-coloring, where c ≤ 2∆ − 1.
Let M ′′

i denote the edges of color i in such a proper c-edge-coloring (i ∈ [c]).
Note that M ′′

i is a matching in G2. Observe that M ′′
i corresponds to an

induced matching in G (via G1) denoted by Mi. Note that the parallel edges
do not create a problem with the matchings since G is triangle-free. Every
component C in G[M ∪Mi] has at most four vertices (otherwise, contraction
of edges of M in C would create a pair on non-parallel edges of Mi in G1,
which is impossible). Hence, G[M ∪Mi] ∈ B(G) (as G is triangle-free). Thus,

Theorem 2.1 implies that mac(G) ≥ w(G)+w(M)+w(Mi)
2 . Summing the above

over i = 1, 2, . . . , c and noting that every edge not in M belongs to one of the
matching Mi, we have

c ·mac(G) ≥ c

2
(w(G) + w(M)) +

w(G) − w(M)

2
.

Hence,

mac(G) ≥ w(G)+w(M)
2 + w(G)−w(M)

2c

≥ w(G)+w(M)
2 + w(G)−w(M)

2(2∆−1)

= ∆
2∆−1 (w(G) − w(M)) + w(M)
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Theorem 5.12. Let G be a weighted triangle-free graph with ∆(G) ≤ ∆. Then
mac(G) ≥ t∆ · w(G), where t∆ = 1/2 + (3∆− 1)/(4∆2 + 2∆− 2).

Proof. By Vizing’s theorem, G has a (∆ + 1)-coloring. Let Mi be the edges
with color i ∈ [∆ + 1], and note that Mi is a matching. Using Lemma 5.11
for each Mi, we obtain mac(G) ≥ ∆

2∆−1 (w(G) − w(Mi)) + w(Mi) for every
i ∈ [∆ + 1]. By summing up these inequalities and simplifying the resulting
inequality (by using the fact that w(M1) +w(M2) + · · ·+w(M∆+1) = w(G)),
we obtain the following:

mac(G) ≥ 1
∆+1

∑∆+1
i=1

(

∆
2∆−1 (w(G) − w(Mi)) + w(Mi)

)

= 1
∆+1

∑∆+1
i=1

(

∆
2∆−1w(G) + ∆−1

2∆−1w(Mi)
)

= ∆
2∆−1w(G) + 1

∆+1 × ∆−1
2∆−1w(G)

=
(

1
2 + 3∆−1

4∆2+2∆−2

)

w(G)

Let us compare the bounds of Theorems 5.10 and 5.12. We have t∆ > s∆
if and only if ∆ ≤ 16. In fact, a selected number of values of s∆ and t∆ can
be seen below.

∆ s∆ t∆

1 0.6768 1.0000

2 0.6250 0.7778

3 0.6021 0.7000

4 0.5884 0.6571

· · · · · · · · ·
16 0.5442 0.5446

17 0.5429 0.5421

Since t3 = 0.7, we have mac(G) ≥ 0.7w(G) for a triangle-free G with
∆(G) ≤ 3. The gap between 0.7 and the coefficient 0.8 of Conjecture 4.5 is
just 0.1, but it does not seem to be easy to bridge this gap as the proof of
Theorem 5.4 in the next section shows.

Lemma 5.11 seems interesting in its own right and gives rise to the following
open problem.

Open Problem 5.13. For each ∆ ≥ 1 determine the maximum value, c∆,
such that for every edge-weighted triangle-free graph G with maximum degree
at most ∆ and matching M in G, the following holds.

mac(G) ≥ c∆(w(G) − w(M)) + w(M)
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The following proposition determines c1, c2 and c3 precisely.

Proposition 5.14. c1 = 1, c2 =
2
3 and c3 = 0.6.

Proof. By Lemma 5.11 we note that c1 ≥ 1, c2 ≥ 2
3 and c3 ≥ 0.6. Clearly

c1 ≤ 1 (consider unweighted K2 and M = ∅), which implies that c1 = 1.
If G is an unweighted 5-cycle and M is a matching of size two in G, then

mac(G) = 4 = 2
3(|E(G)| − |E(M)|) + |E(M)|, which implies that c2 ≤ 2

3 .
Therefore c2 =

2
3 .

Let G be the Petersen graph depicted in Figure 4. That is, the edge set con-
sists of the edges of two 5-cycles, Cx = x1x2x3x4x5x1 and Cy = y1y2y3y4y5y1
and the matching M = {x1y1, x2y4, x3y2, x4y5, x5y3}. Let the weight of the
edges in M be 10 and the weight of all other edges in G be 1. Then w(M) = 50
and w(G) − w(M) = 10. This implies that any maximum weight cut, (A,B),
must include all edges on M . As Cx and Cy are both 5-cycles at most 4 edges
from each can belong to (A,B). If four edges from Cx belongs to (A,B) then
we note that at most 2 edges from Cy belong to (A,B) (if all edges in M be-
long to (A,B)) and analogously if four edges from Cy belongs to (A,B) then
we note that at most 2 edges from Cx belong to (A,B). This implies that
mac(G) ≤ w(M)+ 6 = w(M)+ 0.6(w(G)−w(M)). Therefore c3 ≤ 0.6, which
implies that c3 = 0.6.

x1

x2

x3x4

x5

y1

y4

y2y5

y3

Figure 4: Petersen graph G and matching M in boldface

Proposition 2.3 implies that c∆ ≥ 0.5 for all ∆ ≥ 1, which by Theorem 5.14
implies that the following holds.

0.6 = c3 ≥ c4 ≥ c5 ≥ · · · ≥ 0.5

We will finish this section with the following asymptotic result for c∆.

Proposition 5.15. We have lim∆→∞ c∆ = 0.5.
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Proof. Since the sequence is monotonically decreasing and bounded by 0.5,
the limit exists and it is at least 0.5. Suppose the limit L is larger than 0.5.

Alon [1] proved that there exists some absolute positive constant c′ so that
for every m there exists a triangle-free graph G with m edges for which no
bipartite subgraph has m/2+ c′ ·m4/5 edges. Let all edges of G be of weight 1
and letM be a matching of G. If |E(G)| is large enough for c′m4/5 < (L−0.5)m
to hold, we have

mac(G) ≤ m/2 + c′m4/5

< Lm
≤ Lm+ (1− L)|M |
= L(m− |M |) + |M |
≤ c∆(G)(m− |M |) + |M |

This contradiction completes the proof.

6 Proofs of Theorems 5.4 and 5.5

We first need the following lemmas.

Lemma 6.1. Let k be any positive integer and let T be any spanning tree in
a graph G and let e∗ ∈ E(T ) be arbitrary. If for all e ∈ E(G) \ E(T ) we
have that T + e contains no odd cycle of length 2k− 1 or less, then mac(G) ≥
w(G)
2 + k−1

2k w(T ) + 1
2kw(e

∗).

Proof. Let G, T , e∗ and k be defined as in the lemma. Let e∗ = r1r2 and
let Li contain the vertex u if and only if i = min{dT (r1, u), dT (r2, u)}, where
dT (ri, u) denotes the distance from ri to u in T . Note that L0 = {r1, r2}.

For j = 0, 1, . . . , k − 1, let Gj be the subgraph induced by the edges of T
minus those between Li and Li+1 for all i = j (mod k).

Let T ∗ be an arbitrary component in Gj (for any j ∈ {0, 1, . . . , k − 1}).
As T ∗ is a subgraph of T we note that T ∗ is a tree. Let e ∈ E(G) \ E(T )
have both end-points in V (T ∗). We will now show that T ∗ + e contains no
odd-cycle. Let C be the unique cycle in T ∗ + e. By the construction of Gj

we note that the path C − e has length at most 2k − 1 (in fact, if C does not
contain e∗, then the length is at most 2k − 2) and that the cycle C therefore
has length at most 2k. As T + e contains no odd cycle of length 2k− 1 or less
(and 2k is even) we note that T ∗ + e contains no odd-cycle.

Therefore G[V (T ∗)] is bipartite, which implies that G[V (T ∗)] belongs to
B(G) and and by Theorem 2.1, mac(G) ≥ (w(G) + w(Gj))/2 for every j =
0, 1, . . . , k − 1.

As e∗ belongs to all the k subgraphs Gj and every edge of T−e∗ belongs to
k − 1 of the k subgraphs Gj , we note that summing the equations mac(G) ≥
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(w(G) + w(Gj))/2 for all j = 0, 1, . . . , k − 1 gives us the following:

k ·mac(G) ≥ k
w(G)

2
+

k−1
∑

j=0

w(Gj)

2
= k

w(G)

2
+ (k − 1)

w(T )

2
+

w(e∗)

2

Dividing the above inequality by k gives us the desired bound.

Lemma 6.2. Let G be a subcubic edge-weighted graph and let T be a spanning
tree in G. Let r be the length of a shortest odd cycle in T + e for any edge
e ∈ E(G) \ E(T ). Let p be arbitrary such that 0 ≤ p ≤ 1. Then the following
bound holds.

mac(G) ≥ p+ 1

2
w(T ) +

1− pr−1

2
(w(G) − w(T )).

Proof. Let G, T , r and p be defined as in the lemma. Pick each edge of T with
probability p and denote the resulting set of edges by E∗. Let T ∗

1 , T
∗
2 , . . . , T

∗
l

be the connected components of the graph G∗ = (V (G), E∗). Note that all T ∗
i

are subtrees of T (some of which may contain only one vertex).
Let (Xi, Yi) be a bipartition of T ∗

i for all i = 1, 2, . . . , l. For each i ∈ [l],
randomly and uniformly assign Xi color 1 or 2 and Yi the opposite color. Let A
be all vertices of color 1 and let B be all vertices of color 2. Now every edge in
E∗ lies in the cut induced by (A,B). Consider an arbitrary edge e ∈ E(G)\E∗

and let e = uv. Assume that u ∈ V (T ∗
i ) and v ∈ V (T ∗

j ). We will show the
following claims.

Claim 1: If e ∈ E(T ) \ E∗, then e lies in the cut induced by (A,B) with
probability 1

2 (given E∗).

Proof of Claim 1: Note that i 6= j, as adding the edge e to G∗ does
not create a cycle (all edges belong to the tree T ). Therefore u and v will
be assigned colors 1 and 2 randomly and independently. This completes the
proof of Claim 1.

Claim 2: If e ∈ E(G)\E(T ), then e lies in the cut induced by (A,B) with

probability at least 1−pr−1

2 .

Proof of Claim 2: Let Ce denote the unique cycle in T + e.
First consider the case when i = j and |E(Ce)| is even. In this case e lies

in the cut induced by (A,B) with probability 1 (given E∗).
Now consider the case when i = j and |E(Ce)| is odd. By the definition of

r in the statement of the lemma we must have |E(Ce)| ≥ r. Furthermore all
edges in Ce − e belong to E∗. So this case only happens with probability at
most pr−1 (as each edge in Ce − e has probability p of belonging to E∗).

Finally, if i 6= j then e lies in the cut induced by (A,B) with probability
1
2 (given E∗).
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So with probability at least 1− pr−1, we are in a case where e will belong
to the cut induced by (A,B) with probability at least 1/2. Therefore e will
belong to the cut induced by (A,B) with probability at least 1

2 × (1 − pr−1).
This completes the proof of Claim 2.

We now return to the proof of Lemma 6.2. If e ∈ E(T ) then by Claim 1 and
the law of total probability, the probability that e belongs to the cut induced
by (A,B) is p + (1 − p)12 = 1+p

2 . By Claim 2, if e ∈ E(G) \ E(T ) then e lies

in the cut induced by (A,B) with probability at least 1−pr−1

2 . This completes
the proof.

Recall the statement of Theorem 5.4.

Theorem 5.4. Let G be an edge-weighted triangle-free graph with ∆(G) ≤ 3.
Then mac(G) ≥ 8

11w(G).

Proof. We will first show that we may restrict our attention to 3-regular
triangle-free graphs. Let G′ be equal to K3,3 where one edge uv has been
subdivided. That is, uv has been replaced by a path uwv. For every vertex,
s ∈ G we add 3− dG(s) copies of G

′ to G and add an edge from each w-vertex
in the G′s to s. Note that the resulting graph is 3-regular and triangle-free.
Furthermore giving all the new edges a weight of zero, shows that if the the-
orem holds for this new graph then it also holds for G. We may therefore
without loss of generality assume that G is 3-regular.

By Brook’s Theorem we note that χ(G) ≤ 3. Let c : V (G) → {1, 2, 3} be
a proper 3-coloring of G and let V1, V2, V3 be the color classes of c. For a given
vertex v ∈ V (G), if a color appears exactly once in N(v) (i.e. one vertex of
N(v) has a color i and the other two vertices of N(v) have a color j 6= i), we
let s(v) be the neighbor of v with that color. Otherwise, s(v) is not defined.

Define the digraph D∗ such that V (D∗) = V (G) and the arc set of D∗ is
as follows:

A(D∗) = {vs(v) | v ∈ V (G) & s(v) is defined}
Let ∆+(D∗) denote the maximum out-degree of D∗. Note that ∆+(D∗) ≤

1 by the construction of D∗ and that D∗ may contain 2-cycles. If uvu is a
2-cycle in D∗ then s(u) = v and s(v) = u. Let G∗ = UG(D∗) i.e. G∗ is
the underlying graph of D∗ and contains all edges of the form vs(v), where
v ∈ V (G).

For every edge e ∈ E(G), let V ∗(e) = {v | vs(v) = e} and let Ai =
{e | |V ∗(e)| = i} for i = 0, 1, 2. That is, A0 contains all edges e that are not of
the form vs(v) for any v, A2 contains all edges uv where s(u) = v and s(v) = u
and A1 = E(G) \ (A0 ∪ A2). Also note that E(G∗) = A1 ∪ A2. We will now
prove the following claims.

Claim A: mac(G) ≥ w(A0) +
2
3w(A1) +

1
3w(A2).
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Proof of Claim A: For all i ∈ {1, 2, 3}, we define

Ci = E(G) \ {vs(v) | v ∈ Vi & s(v) is defined}.

Note that Ci induces a bipartite graph as every vertex in Vi only has edges to
one of the two other sets. So mac(G) ≥ w(Ci) for i = 1, 2, 3. Note that every
edge in Ai appears in 3− i of the sets C1, C2, C3, which implies the following:

mac(G) ≥ 1

3
(w(C1) + w(C2) + w(C3)) = w(A0) +

2

3
w(A1) +

1

3
w(A2).

This completes the proof of Claim A.

Claim B: If p1p2 ∈ E(G) and p2p3 ∈ A(D∗), where p1 6= p3, then
{c(p1), c(p2), c(p3)} = {1, 2, 3}. This implies that c(p1) = 6− c(p2)− c(p3).

Furthermore, if R = r1, r2, r3, . . . , rs is a directed path in D, then c(r1) =
c(r4) = c(r7) = . . . and c(r2) = c(r5) = c(r8) = . . . and c(r3) = c(r6) = c(r9) =
. . ..

Proof of Claim B: As all edges in G, and therefore also arcs in D∗, go
between different Vi-sets, we note that c(p1) 6= c(p2) and c(p2) 6= c(p3). As
p2p3 ∈ A(D∗) we have s(p2) = p3, which implies that there is only one edge
from p2 to Vc(p3). Furthermore this edge is p2p3. Therefore p1 6∈ Vc(p3) as
otherwise p2 would have two edges to Vc(p3). So, c(p1) 6= c(p3). This implies
that c(p1), c(p2) and c(p3) take on three distinct values, which completes
the proof of the first part of Claim B. The second part of Claim B follows
immediately from the first part.

Claim C: Let e ∈ A0 and assume that C is a cycle in G∗ + e containing
e. Then |E(C)| = 0 (mod 3).

Proof of Claim C: Let C be a cycle in G∗ + e containing e, where e ∈ A0.
Let P be the path C − e and assume P = p1p2p3 . . . pl. Note that e = p1pl.
Assume without loss of generality that c(p1) = 1 and c(pl) = 2. We now
consider the following two cases.

Case C.1. p1p2p3 . . . pl or plpl−1pl−2 . . . p1 is a directed path in D∗.
Assume without loss of generality that p1p2p3 . . . pl is a directed path in

D∗. As c(p1) = 1 and c(pl) = 2, we note that c(p2) = 3 and c(p3) = 2, by
Claim B. Therefore, as c(pl) = 2 = c(p3) we must have that l is divisible by 3,
by Claim B, which completes the proof of Case C.1.

Case C.2. p1p2p3 . . . pl and plpl−1pl−2 . . . p1 are not directed paths in D∗.
As ∆+(D∗) ≤ 1 this implies that there exists a pi ∈ {p2, p3, . . . , pl−1}

such that pi has two in-neighbors in P. Let P ′ = p1p2 . . . pi and let P ′′ =
plpl−1pl−2 . . . pi and note that P ′ and P ′′ are both directed paths in D∗. As
c(p1) = 1 and c(pl) = 2 we note that, by Claim B, c(pl−1) = c(p2) = 3.
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If c(pi) = 1 then |E(P ′)| = 0 (mod 3) and |E(P ′′)| = 2 (mod 3), implying
that |E(C)| = 0 (mod 3) as desired. If c(pi) = 2 then |E(P ′)| = 2 (mod 3)
and |E(P ′′)| = 0 (mod 3), implying that |E(C)| = 0 (mod 3) as desired. And
finally if c(pi) = 3 then |E(P ′)| = 1 (mod 3) and |E(P ′′)| = 1 (mod 3) again
implying that |E(C)| = 0 (mod 3) as desired. This completes the proof for
Case C.2.

Claim D: If C is a cycle in G∗ then |E(C)| = 0 (mod 3) and C contains
no chord in G.

Proof of Claim D: Let C = p1p2p3 . . . plp1 be a cycle of length l in G∗.
As ∆+(D∗) ≤ 1 we note that C is a directed cycle in D∗. Without loss of
generality assume that c(p1) = 1 and c(p2) = 2 (otherwise rename the Vi’s).
By Claim B we note that c(pl) = 3 (due to the path plp1p2) and c(p3) = 3
(due to the path p1p2p3). Continuing using Claim B we note that the following
holds.

c(pl) = 3, c(p1) = 1, c(p2) = 2, c(p3) = 3,

c(p4) = 1, c(p5) = 2, c(p6) = 3, c(p7) = 1, . . .

We see that c(pj) = 3 if and only if j is divisible by three, which implies that
l is divisible by three (as c(pl) = 3). Therefore |E(C)| = 0 (mod 3).

For the sake of contradiction assume that C has a chord, pipj in G, where
i < j. Consider the two cycles

C1 = pipi+1 . . . pjpi and C2 = pjpj+1 . . . plp1p2 . . . pipj

By Claim C we note that |E(C1)| and |E(C2)| are both divisible by three.
However |E(C1)| + |E(C2)| = |E(C)| + 2 (as the edge pipj is counted twice).
This is a contradiction as |E(C1)|+ |E(C2)| is divisible by three, but |E(C)|+
2 is not (as |E(C)| is divisible by three, by our above arguments), which
completes the proof of Claim D.

Claim E: If P is a (u, x)-path in D∗, Q is a (v, x)-path in D∗ and there
exists an arc xy ∈ D∗, such that |A(P )|, |A(Q)| ≥ 1 and yx is not an arc on
either P or Q, then uv 6∈ E(G).

Proof of Claim E: Let P = p1p2 . . . pa (a ≥ 2) and Q = q1q2 . . . qb (b ≥ 2),
where p1 = u, q1 = v and pa = qb = x and let xy ∈ A(D∗) be defined as in the
statement of Claim E.

Without loss of generality assume that c(x) = 2 and c(y) = 3. Using
Claim B on the paths Py and Qy we note that all arcs in P and in Q go from
V1 to V2 or from V2 to V3 or from V3 to V1 in D∗.

Assume for the sake of contradiction that uv ∈ E(G) (i.e. p1q1 ∈ E(G)).
As p1p2, q1q2 ∈ A(D∗) and p1q1 ∈ E(G), Claim B implies the following:

c(p2) = 6− c(p1)− c(q1) = c(q2)
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As all arcs in P and in Q go from V1 to V2 or from V2 to V3 or from V3 to
V1 in D∗ this implies that c(p1) = c(q1) (as c(p2) = c(q2)), a contradiction to
p1q1 ∈ E(G). This completes the proof of Claim E.

Claim F: mac(G) ≥ 1
2w(A0) +

7
8w(A1) + w(A2).

Proof of Claim F: For a set U of vertices of G, let G[U ] denote the subgraph
of G induced by U. Let G∗

1, G
∗
2, . . . , G

∗
r denote the connected components in G∗

and let D∗
1,D

∗
2 , . . . ,D

∗
r be the maximal subgraphs in D∗ such that UG(D∗

i ) =
G∗

i . Let Fi denote all edges in E(G) \ E(G∗) with both endpoints in V (G∗
i ).

Note that the edge set of G[V (G∗
i )] is exactly E(G∗

i )∪E(Fi). Furthermore note
that each D∗

i is either an in-tree (an in-tree is an oriented tree, where exactly
one vertex, the root, has out-degree 0 and all other vertices have out-degree
1) or D∗

i contains one directed cycle (possibly a 2-cycle) and all vertices have
out-degree one in D∗

i . We now consider the following cases (for i = 1, 2, . . . , r):

Case F.1. D∗
i is an in-tree. If f ∈ Fi then by Claim C we note that any

cycle in G∗
i + f has length divisible by three. As G is triangle-free this implies

that any odd cycle in G∗
i +f has length at least nine. Lemma 6.1 (with k = 4)

now implies the following.

mac(G[V (G∗
i )]) ≥ 1

2(w(Fi) + w(G∗
i )) +

k−1
2k w(G∗

i )
≥ 1

2w(Fi) +
7
8w(G

∗
i )

(1)

Case F.2. D∗
i contains a directed 2-cycle. Let C = c1c2c1 be the cycle in

D∗
i . As in the proof of Case F.1 we note that if f ∈ Fi then, by Claim C, any

cycle in G∗
i + f has length divisible by three. As G is triangle-free this again

implies that any odd cycle in G∗
i + f has length at least nine. Lemma 6.1

(with k = 4) now implies the following, where we let e∗ in Lemma 6.1 be the
edge c1c2.

mac(G[V (G∗
i )]) ≥ 1

2(w(Fi) + w(G∗
i )) +

k−1
2k w(G∗

i ) +
1
2kw(c1c2)

≥ 1
2w(Fi) +

7
8w(G

∗
i ) +

1
8w(c1c2)

(2)

Case F.3. D∗
i contains a directed cycle of length greater than two. Let

C = c1c2 . . . clc1 be the cycle in D∗
i . Note that by Claim D, l is divisible by

3 and C contains no chord in G. Note that every u ∈ V (D∗
i ) \ V (C) has a

unique directed path from u to V (C) (as G∗
i is connected and ∆+(D∗

i ) ≤ 1).
Let pe(u) = cj if and only if the unique path from u to V (C) ends in cj .
Define Cj as follows (see Figure 5 for an illustration).

Cj = {v |v ∈ V (D∗
i ) \ V (C) & pe(v) = cj} ∪ {cj}

We will now show that if u ∈ Cj and v ∈ Ck, where j 6= k, then uv 6∈
E(G) \ E(C). For the sake of contradiction assume that uv ∈ E(G) \ E(C).
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c1 c2

c3c4c5c6

C1 C2

C3

C4C5

C6

Figure 5: An illustration of the sets Ci’s in Claim F.3.

As uv 6∈ E(C) and C has no chords in G we note that u 6= cj or v 6= ck.
Without loss of generality assume that u 6= cj . Let P be the unique path from
u to cj in D∗

i and let Q be the unique path from v to ck followed by the path
from ck to cj using the arcs of C. As cjcj+1 ∈ D∗

i (and cj+1cj is not an arc in
D∗

i , as l ≥ 3, and therefore also not an arc on A(P )∪A(Q)), Claim E implies
that uv 6∈ E(G), a contradiction. Therefore uv 6∈ E(G) \E(C), as desired.

Also, G∗
i [Cj ] is a tree (possibly containing only one vertex) for all j. Anal-

ogously to Case F.1 we note that, for every f ∈ Fi, any odd cycle in G∗
i [Cj]+f

has length at least nine. Lemma 6.1 (with k = 4) now implies the following:

mac(G[Cj ]) ≥ 1
2(w(G

∗
i [Cj ]) + w(Fi ∩ E(G[Cj ]))) +

k−1
2k w(G∗[Cj])

≥ 1
2w(Fi ∩ E(G[Cj ])) +

7
8w(G

∗[Cj ])

Recall that either l is even or l ≥ 9. In this case picking an optimal
weighted cut in each Cj and adding all edges of C if |E(C)| is even or all edges
of C except the cheapest one if |E(C)| is odd, we obtain the following (as if
|E(C)| is odd then |E(C)| ≥ 9).

mac(G[V (G∗
i )]) ≥

8

9
w(C) +

1

2
w(Fi) +

7

8
w(E(G∗

i ) \ E(C))

As 8/9 > 7/8 this implies the following:

mac(G[V (G∗
i )]) ≥

1

2
w(Fi) +

7

8
w(G∗

i ) (3)

This completes Case F.3.

Note that every edge in A2 ∩ E(G∗
i ) is considered in Case F.2 above and

in this case Inequality (2) holds. Therefore any edge in A2 ∩E(G∗
i ) is counted

7
8 +

1
8 times. Now combining Inequality (1), Inequality (2) and Inequality (3)

we obtain the following.
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mac(G[V (G∗
i )]) ≥ w(A2 ∩ E(G∗

i )) +
1

2
w(Fi) +

7

8
w(E(G∗

i ) \A2)

Let (Xi, Yi) be a maximum weight cut of G∗
i and for each i ∈ [r], randomly

and uniformly assign Xi color 1 or 2 and Yi the opposite color. Let A be
all vertices of color 1 and let B be all vertices of color 2. Now every edge in
(Xi, Yi) lies in the cut induced by (A,B) and every edge between different G∗

i ’s
lies in the cut induced by (A,B) with probability 1/2. Let W be the weight
of all edges between different G∗

i ’s and note that the average weight of the cut
(A,B) is as follows.

W

2
+

r
∑

i=1

mac(G[V (G∗
i )])

If e ∈ E(A0) then e either belongs to some Fi or is an edge between different
G∗

i ’s (and in this case is counted in W ), while if e ∈ E(A1) ∪ E(A2) then e
belongs to some G∗

i . Therefore the following holds (as mac(G) is greater than
or equal to the average weight of the cut (A,B)).

mac(G) ≥ 1

2
w(A0) +

7

8
w(A1) + w(A2)

This completes the proof of Claim F.

Claim G: mac(G) ≥ 3
5w(A0) +

3
5w(A1) + w(A2).

Proof of Claim G: As ∆+(D∗) ≤ 1 we note that all edges in A2 form a
matching in G (i.e. they have no endpoints in common). By Lemma 5.11
(with ∆ = 3 and M = A2) we note that mac(G) ≥ 3

5 (w(G)−w(A2))+w(A2).
As w(G) − w(A2) = w(A0) + w(A1) this implies Claim G.

We now return to the proof of Theorem 5.4. By Claims A, F and G, the
following three inequalities hold.

(1) mac(G) ≥ w(A0) +
2
3w(A1) +

1
3w(A2).

(2) mac(G) ≥ 1
2w(A0) +

7
8w(A1) + w(A2).

(3) mac(G) ≥ 3
5w(A0) +

3
5w(A1) + w(A2).

Taking 9
22 times inequality (1) plus 8

22 times inequality (2) plus 5
22 times

inequality (3), implies the following:

mac(G) ≥
(

9
22 + 8·1

22·2 +
5·3
22·5

)

w(A0) +
(

9·2
22·3 + 8·7

22·8 +
5·3
22·5

)

w(A1)

+
(

9·1
22·3 + 8

22 + 5
22

)

w(A2)

= 16
22 (w(A0) + w(A1) + w(A2)) =

8
11 · w(G)
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Recall the statement of Theorem 5.5.

Theorem 5.5. Let G be an edge-weighted triangle-free graph with ∆(G) ≤ 3

and let T be an arbitrary spanning tree in G. Then mac(G) ≥ w(G)
2 +0.3193 ·

w(T ).

Proof. By Lemma 6.2, with p = 0.85 and r = 5 and Theorem 5.4, we obtain
the following inequalities.

(a) mac(G) ≥ p+1
2 w(T ) + 1−pr−1

2 (w(G) − w(T ))
≥ 0.925 · w(T ) + 0.23899687(w(G) − w(T ))

(b) mac(G) ≥ 8
11 · w(T ) + 8

11(w(G) − w(T ))

Taking 0.46545 times inequality (a) plus 0.53455 times inequality (b) gives us
the following inequality, which completes the proof.

mac(G) ≥ 0.8193 · w(T ) + w(G) − w(T )

2
.

7 Conclusion

In this paper, we study lower bounds of the maximum weight mac(G) of a cut
in a weighted graph G. We obtain lower bound for arbitrary graphs, graphs
of bounded girth, and triangle-free graphs of bounded maximum degree. We
posed a number of conjectures and an open problem. We conjecture that
if G is a weighted triangle-free graph and T is a spanning tree of G, then
mac(G) ≥ w(G)

2 + 3w(T )
8 . We also conjecture that mac(G) ≥ 4w(G)/5 for

a weighted triangle-free subcubic graph G. Bondy and Locke [6] proved that
the last conjecture holds for unweighted triangle-free subcubic graphs, in other
words for weighted triangle-free subcubic graphs where each edge has the same
weight. The following conjecture is related to the main topic of the paper:
every triangle-free subcubic graph G contains a set E′ of edges, such that
every 5-cycle in G contains exactly one edge from E′.

Acknowledgement We are grateful to Noga Alon for suggesting Theorem
5.10 and to the referees for numerous suggestions which significantly improved
the presentation.
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