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Abstract

We consider a model of a simple financial system consisting of a lever-
aged investor that invests in a risky asset and manages risk by using
Value-at-Risk (VaR). The VaR is estimated by using past data via an
adaptive expectation scheme. We show that the leverage dynamics can
be described by a dynamical system of slow-fast type associated with a
unimodal map on [0, 1] with an additive heteroscedastic noise whose vari-
ance is related to the portfolio rebalancing frequency to target leverage.
In absence of noise the model is purely deterministic and the parameter
space splits in two regions: (i) a region with a globally attracting fixed
point or a 2-cycle; (ii) a dynamical core region, where the map could ex-
hibit chaotic behavior. Whenever the model is randomly perturbed, we
prove the existence of a unique stationary density with bounded variation,
the stochastic stability of the process and the almost certain existence and
continuity of the Lyapunov exponent for the stationary measure. We then
use deep neural networks to estimate map parameters from a short time
series. Using this method, we estimate the model in a large dataset of
US commercial banks over the period 2001–2014. We find that the pa-
rameters of a substantial fraction of banks lie in the dynamical core, and
their leverage time series are consistent with a chaotic behavior. We also
present evidence that the time series of the leverage of large banks tend
to exhibit chaoticity more frequently than those of small banks.
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1 Introduction

Leverage is one of the most critical and controversial concepts in finance. On
one side, borrowing is essential in many economic activities, while, on the other,
it is intrinsically connected with risk. The recent literature (see, e.g., [37, 2, 45,
3, 1, 61]) has highlighted, both theoretically and empirically, an essential source
of risk deriving from leverage, namely its procyclical nature. The seminal pa-
pers [2] and [3] argued that when assets are evaluated at mark-to-market, an
increase in market prices of assets decreases the so-called “quasi-market lever-
age ratio” –, roughly the ratio of total assets to equity capital – and this leaves
room to build up debt for banks that operate through leverage or Value-at-Risk
(VaR) constraints1. Banks typically use the additional debt to expand the asset
side of the balance sheet by purchasing more assets and, due to finite liquidity,
this leads to a further increase in prices. This positive feedback between prices
and balance sheets provides the additional source of systemic risk associated
with procyclicality. As an empirical support, [2] and [3] shows that cycles of
expansion (contraction) in the banks’ balance sheet size go hand in hand with
increases (decreases) in leverage, a behavior that has been witnessed since the
1960s but exacerbated during the 2007–2009 financial crisis. The creation of
negative externalities in financial systems populated by VaR constrained finan-
cial institutions following standard mark-to-market and risk management rules
has been investigated in e.g., [62, 31, 52]. These works confirm that the bal-
ance sheet dynamics of financial intermediaries are far from being passive and
exogenous and can create market instability and result in what has been called
by [32] endogenous risk.

This risk sometimes manifests itself in an abrupt and violent manner, via
the so-called fire sales. A sudden drop in prices leads to a revaluation of the
asset side of the balance sheet, and when the VaR constraint is violated, banks
must deleverage by massively selling part of their portfolio. Due to the finite
liquidity, this leads to a further decrease of prices affecting other banks’ bal-
ance sheets. This mechanism creates an exceptionally threatening environment
if many banks hold similar positions and use the same VaR model to man-
age their risk since they are forced to sell the same assets contemporaneously
(overlapping portfolio contagion), leading to a destabilizing spiral. The theoret-
ical and empirical literature on fire sales and their impact on the market price
dynamics is vast and growing, see e.g.,[50, 22, 43, 28, 23, 29, 33].

Investors’ expectations provide a further positive feedback between past and

1Here, VaR is the loss in market value of the bank’s portfolio over one period that is ex-
ceeded with probability 1−α, where α is the associated confidence level. VaR constraints were
imposed on the banks’ trading book under Basel II. However, many other leveraged institu-
tions, not subject to Basel II, also used VaR constraints in their internal risk management.
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future risk. To implement the VaR constraint (and any risk management mecha-
nism), banks must estimate the riskiness of the investments and their dependen-
cies. The estimation of the expected risk is usually performed by using historical
data; thus when past volatility is high, the VaR constraint becomes more bind-
ing, forcing financial institutions to trade more, increasing the future volatility
endogenously. This additional feedback adds new threats to the systemic sta-
bility of financial markets, as shown, for example, by [55].

Our contribution. In order to fully understand the leverage dynam-
ics and its role in financial systemic risk, it is paramount to model the effect of
leverage targeting, risk expectations, asset prices, and of all the above-described
feedbacks. In this paper, we present and analyze a stylized yet realistic model,
and we show that leverage dynamics can be described by a discrete-time slow-
fast dynamical system ([36] and [16]) with heteroscedastic noise. This fact makes
our model amenable to the tools of dynamical systems theory. It allows us to
fully characterize in a mathematically rigorous way the stability properties of
the financial system depending on its parameters. We then employ a method-
ology based on deep neural networks to estimate the model’s parameters on
empirical data. Finally, we use such a methodology to estimate the model in a
large dataset of US commercial banks over 2001–2014, finding that the lever-
age of large banks tends to exhibit chaotic behavior more frequently than small
banks.

More precisely, building on [30] and [55], we consider a representative in-
vestor (bank for short), which evaluates the VaR capital requirement at discrete
points in time t ∈ N. This evaluation leads the bank to choose the maximum
possible leverage, which is inversely proportional to the portfolio’s expected risk.
At each t the bank computes the expected volatility by using a straightforward
yet realistic backward-looking method using past returns and uses it to set its
desired leverage. The unitary time scale of the interval used to make decisions
on leverage is the slow component of our model. During the unitary time in-
terval (t, t+ 1], the bank rebalances its portfolio to target the leverage without
changing the risk expectations. The rebalancing occurs in n time sub-intervals
within (t, t+ 1]. The time scale 1/n, with n ∈ N characterizes the so-called fast
component of the model. In particular, slow variables evolve as a function of
averages over fast variables. Starting from this model, we make the following
contributions.

First, we show that a deterministic unimodal map perturbed with an addi-
tive and heteroscedastic noise describes the dynamics of leverage in our model
on the unit interval. The variance of the noise is related to the frequency of
portfolio rebalancing n to target leverage. The parameter space of the determin-
istic map has two regions: (i) a region where the map has a globally attracting
fixed point or a 2-cycle; (ii) the so-called dynamical core region, where the map
can exhibit chaotic behavior2. Then, in order to improve the understanding of

2Roughly speaking, a dynamical system is defined chaotic if small changes in initial condi-
tions produce large changes in long-term outcomes and any auto-correlation function decays
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the anatomy of leverage cycles, we consider a more general class of maps and
describe the leverage dynamic using a Markov chain parametrized by the rebal-
ance time n and we study the regime of finite n, as well as the limit for n→∞.
The stability of Markov chains is a relatively well studied topic (see e.g., [5] or
[57] and references therein). However, some specific properties of the stochastic
kernel that defines our model do not allow us to apply general results available
[14, 15] (e.g., we do not know if our chain is Harris recurrent) and therefore
we introduce an original approach to this type maps; see [40] for another type
of heteroscedastic nonlinear autoregressive process applied to financial time se-
ries. In particular, we prove the existence of many stationary measures with
bounded variation densities. The proof hinges on the spectral properties of the
Markov operator associated with our chain on suitable Banach spaces and the
quasi-compactness of such an operator. The stationary measure’s uniqueness is
achieved when the chain perturbs the unimodal map, which is either topologi-
cally transitive or admits an attracting periodic orbit; such maps correspond to
a major part of the parameter space.

Second, in order to rigorously establish the existence of chaotic behavior in
leverage time series of banks and to detect it in financial datasets, we define an
average Lyapunov3 exponent by integrating the logarithm of the derivative of
the unimodal map with respect to the stationary measure, a definition that is
suitable for the Markov chain approach. We show that the average Lyapunov
exponent still allows us to discriminate periodic and chaotic behaviors: it is
negative when we perturb a contracting map (and then the realizations of the
process fluctuate around the fixed point), and it becomes positive by perturbing
the dynamical core region. We also show that the average Lyapunov exponent
depends continuously on the Markov chain parameters and relate it to the dif-
ferent chaotic behavior of the unperturbed unimodal map. Finally, we show the
weak convergence of the unique stationary measure to the invariant measure of
the unimodal map; namely we prove the weak stochastic stability of the system.

The third contribution of the paper is the estimation of the proposed model
to real data to identify evidences of chaotic behavior. Our dataset consists of the
time series of leverage of about 5, 000 US commercial banks in the period 2001-
2014. The time series are very short (59 observations), thus standard estimation
methods perform poorly. For instance, maximum likelihood estimation is not
feasible for two reasons.First, the likelihood function is highly non-convex, so
that standard optimization methods may perform poorly on short time series.
Second, although the likelihood function for the process itself can be written
explicitly, it may happen that in many cases we observe only a certain iterate of
the process, e.g., we observe only one slow time scale portfolio decision event out
of two. Therefore, we propose to use a Convolutional Neural Network (CNN)
([51]) to estimate the parameters of the map. Our CNN takes as input the
one-dimensional time-series and gives the map’s corresponding parameters as
output. We train the CNN via extensive simulations of the model, considering

to zero, resulting in unpredictability of the system dynamics in the long-run ([34])
3We remind that for deterministic systems, the Lyapunov exponents characterize the di-

vergence of nearby orbits, allowing us to distinguish between regular and chaotic dynamics.
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different regions of the parameter space, and test its robustness and effectiveness
4. Remarkably, we find that the parameters of a sizable fraction of banks lie in
the map’s dynamical core and that the large banks’ leverage tends to be more
chaotic than one of the small ones. As a robustness check, the identification of
chaotic/periodic behavior is compared with a non-parametric approach where
the map is not specified and estimators of indicators (such as the Lyapunov
exponent [73]), which assume different values in the two regimes, are used to
classify finite length time series. We use the Chaos Decision Tree Algorithm
[71], which combines several tools into an automated processing pipeline that
can detect the presence (or absence) of chaos in noisy recordings, even for dif-
ficult edge cases. When applying the Chaos Decision Tree Algorithm to our
data set., the results corroborate the CNN approach’s findings concerning the
chaotic behavior for a significant subset of typically large banks.

Related literature. The present paper aims to combine several strands
of literature.

From a methodological point of view, it is naturally related to the litera-
ture on the application of dynamical systems theory to the problem of systemic
risk in financial markets [26, 27, 63, 25, 11], while, from the financial perspec-
tive, it is related to the literature on the impact of risk management on the
leverage cycle [2, 3, 68]. These two strands were partially connected, for in-
stance, in [10, 11, 30, 55] which study the impact of risk management practice
on the dynamical properties of leverage cycles and how leverages cycles might
be controlled. Similarly to these works, we develop a fully dynamic model of
endogenous leverage cycles, and we show that the endogenous dynamics induced
by leverage management and historical risk estimation can be very rich (i.e., one
can observe dynamics ranging from stable fixed points to chaos), but, contrary
to them, we study in a mathematically rigorous way the properties of the re-
sulting model. The approach we proposed also differs from [39] who shows the
existence of leverage cycles but uses a two-period general equilibrium model.
Finally, we mention the works of [9] and [24] which show that the deleveraging
of banks may amplify asset return shocks and lead to large fluctuations in re-
alized returns which in turn can cause spillover effects between different assets.
Differently from these papers, we explicitly model the existence of an additional
feedback driven by the estimation of risk used in leverage decision.

Our work is also partially related to the literature on fire sales and their im-
pact on the market price dynamics, e.g., [50, 22, 43, 28, 23, 29, 33]. The main
differences are the following. First, in our model we do not consider “extreme”
events leading to fire sale spillovers, but “normal” market conditions. Second,
the previous works do not focus on the role of risk expectation feedbacks in
financial systems. Instead, our model quantifies the impact of a possible mis-
match between perception and reality of market condition due to the historical
estimation of banks’ perceived portfolio risk.

4We decide to use CNN because when employed for time-series analysis they may increase
the accuracy up to 30% and train the models twice faster than other algorithms such as
Recurrent Neural Networks and Long Short Term Memory ([64]).
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In addition, the present paper has a point of comparison with the agent-
based model of leveraged investors in [63] and [70]. The main difference is that
in their model the bank is a dummy agent with infinite capital whose only role
is to provide credit to funds. In contrast, in our model the banks are the key
strategic agents. Again, another important difference is the mathematically rig-
orous approach that we adopt.

Finally, our estimation method connects with the vast literature on param-
eter estimation of dynamical systems via NN such as, for example, [58, 53, 65]
which employ multi-layer NN and recurrent networks to identify and control
nonlinear deterministic dynamical systems.

Outline of the paper. In Section 2 we present the financial model of a
representative bank managing its leverage. In Section 3 we recall some facts
about unimodal maps and Markov chains and then define the class of chains
that we study. We also represent our model in terms of random transformations.
In Section 4 we show the existence and uniqueness of an absolutely continuous
stationary measure and establish its convergence to the invariant measure of
the deterministic map. This allows us to define the Lyapunov exponent and
prove its continuity with respect to the model parameters. We also discuss
chaotic indicators naturally arising from the random maps representation of the
process. The last part of the paper concerns numerical and empirical analyses.
Specifically, Section 5 presents some numerical investigations of the bifurcation
diagram and Lyapunov exponent of the map. Section 6 proposes an estimation
method of the map based on the use of deep neural networks and Section 7
presents an empirical application to a large set of leverage time series of US
banks, showing evidence of chaotic behavior. Finally, in Section 8 we draw
some conclusions and outline some potential extensions of our work.

2 From the structural model to the dynamical
system

The stylized model of the leverage dynamics we are going to present is a special
case of the model of [55] (which in turn builds on [30]) restricted to the case of
a single (representative) financial institution and of a single investment asset.
Specifically, we consider a representative financial institution (a bank, hereafter)
taking investment decisions at discrete times t ∈ N, which defines the slow time
scale. At each time t, the balance sheet of the financial institution is endowed
with an amount of equity Et and of asset At; the leverage is defined as λt :=
At/Et. Financial institutions are confronted with a VaR type of constraints, in
line with the literature on bank behaviour ([2, 21]), given by VaR = ασe,tAt ≤
Et. The scaling constant α depends on the return distribution5 and on the VaR
constraint, whereas σe,t is the expected volatility at time t of the portfolio, which
in this simple model is composed by a risky representative investment. Thus,
at each time t the bank (re-)computes σe,t and chooses the optimal leverage,

5For example, if returns are Gaussian and the probability of VaR is 5%, it is α = 1.64.
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which results to be inversely related to the volatility σe,t and given by:

λt =
1

ασe,t
. (1)

Then, in the interval [t, t+ 1] the bank trades the risky investment to keep the
leverage close to the above defined target (1). The trading process occurs on
the points of a grid obtained by subdividing [t, t+1] in n sub-intervals of length
1/n (the fast time scale). The dynamics of the investment return is made of
two components:

rt+k/n = εt+k/n + et+(k−1)/n, k = 1, 2, . . . ,n, (2)

the exogenous component εt+k/n coming from external shocks and the endoge-
nous component et+(k−1)/n. The former is a white noise term with variance
σ2
ε , while the latter depends on the banks’ demand for the risky investment in

the previous step. Having identified its optimal leverage, the bank adjusts the
demand for the risky investment at time t + k/n by computing the difference
between the desired amount of asset A∗t to reach λt and the actual one At.
Because the bank’s asset is composed by the risky investment, an investment
return rt+k/n modifies At and the bank trades at each grid point to reach the
target leverage. In order to achieve this, at each time t+k/n the bank’s demand
for the risky investment is

Dt+k/n = (λt − 1)A∗t+(k−1)/nrt+k/n, (3)

where A∗t+(k−1) is the target asset size in the previous step; see [30, 55] for an

explicit derivation of (3). In particular, any profit and loss from investments in
the chosen risky asset (which is given by A∗t+(k−1)/nrt+k/n) will directly result
in a change in the risky asset value amplified by the current degree of leverage
(being the leverage greater than one). Assuming a linear price impact function,
the endogenous component of the return rt+k/n is given by:

et+k/n =
1

γ

Dt+k/n

Ct+k/n
,

where Ct+k/n = A∗t+(k−1)/n is a proxy of the market capitalization of the risky
asset, and γ is a parameter expressing the market liquidity of the investment.
Using the expression in Equation (3) for Dt+k/n, the endogenous component is
given by

et+k/n =
λt − 1

γ
et+(k−1)/n := φtet+(k−1)/n,

where we set φt := λt−1
γ . Therefore, in the period [t, t + 1] the return rt+k/n

follows an AR(1) process with autoregression parameter φt and idiosyncratic
variance σ2

ε .
Finally, to close the model, we specify how the bank forms expectations σe,t
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on future volatility at time t. Here we assume, as in [55], that the representative
bank uses adaptive risk expectations, which implies that

σ2
e,t = ωσ2

e,t−1 + (1− ω)σ̂2
e,t,

where ω ∈ [0, 1] is a parameter weighting between the expectation at t− 1 and
the estimation σ̂2

e,t of volatility obtained by the return data in [t−1, t]. As done
in practice (e.g., [44]), we assume that the representative bank estimates the
sample variance of the returns in [t− 1, t] to compute σ̂2

e,t, i.e.

σ̂2
e,t = V̂ar

[
n∑
k=1

rt−1+k/n

]

=

(
1 + 2

φ̂t−1(1− φ̂nt−1)

1− φ̂t−1

− 2
(nφ̂t−1 − n− 1)φ̂n+1

t−1 + φ̂t−1

n(1− φ̂t−1)2

)
nσ̂2

ε

1− φ̂2
t−1

, (4)

where the last expression gives the aggregated variance of an AR(1) process

as a function of the AR estimated parameters φ̂t−1 and σ̂2
ε . In particular, the

estimator σ2
e,t can be seen as a stochastic term depending on λt−1 and whose

variance goes to zero when n → ∞. In the following, we will assume that
these are the Maximum Likelihood (ML) estimators. We remind that when n

is large, φ̂t−1 is a Gaussian distributed variable with mean φt−1 and variance
(1− φ2

t−1)/n.
In conclusion, the following system of equations describes the leverage dy-

namics: λt =
(
ω 1
λ2
t−1

+ (1− ω)α2σ̂2
e,t

)−1/2

,

rs = φt−1rs−1/n + εs, s = t− 1 + k/n, k = 1, 2, . . . ,n,
(5)

In the first equation, the variable λt defines the slow variable and describes the
slow component of the dynamics. In the second, the return evolution of the
risky investment rs describes the fast component of the dynamics. Since slow
variables evolve depending on the averages of the fast variables, the model is a
slow-fast deterministic-random dynamical system. We now derive an expression
for the variable φt valid when n is large. For these values of n, the map for λt
reduces to

λt =

(
ω

1

λ2
t−1

+
(1− ω)α2

nσ̂2
ε

(1− φ̂t−1)2

)−1/2

,

and so, using the relation φt = λt−1
γ , the desired map becomes

φt = − 1

γ
+

1

γ

(
ω

(1 + γφt−1)2
+

(1− ω)α2
nσ̂2

ε

(1− φ̂t−1)2

)−1/2

. (6)

At this point, a few remarks are in order. When changing n also σ2
ε changes,

since the AR(1) can be seen as the discretization of a continuous time stochastic
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process (namely an Ornstein-Uhlenbeck process). A simple scaling argument
shows that the quantity Σε = σ2

εn is instead constant and independent from

the discretization step 1/n. In the limit n→∞, it is φ̂t → φt, thus the map in
Equation (6) becomes purely deterministic6. The map in this case has a fixed

point φ∗ = 1−α
√

Σε
1+αγ

√
Σε

. By replacing this condition in (6) and assuming that the

risky asset is very liquid (γ � 1), the map becomes

φt '

(
ω

φ2
t−1

+

(
1− φ∗

φ∗

)2
(1− ω)

(1− φ̂t−1)2

)−1/2

. (7)

In the large n limit the ML estimator φ̂t−1 is a Gaussian variable with mean
φt−1 and variance (1− φ2

t−1)/n. Therefore, it holds that

φ̂t−1 = φt−1 + ηt−1,

where ηt−1 ∼ N (0, (1− φ2
t−1)/n). If the noise ηt−1 is small (i.e. n is large), we

can perform a series expansion, obtaining

φt '
|φt−1(1− φt−1)|√
bφ2
t−1 + ω(1− φt−1)2

(1 + ζt−1),

where b = b(ω, φ∗) is given by

b = (1− ω)

(
1− φ∗

φ∗

)2

(8)

and the noise term

ζt−1 =
−bφ2

t−1

(1− φt−1)(bφ2
t−1 + ω(1− φt−1)2)

ηt−1.

Finally, in this approximation, the map becomes:

φt+1 = T (φt; θ) + σ(φt; θ)εt, (9)

where εt ∼ N (0, 1) and θ is a vector of parameters. In our setting θ = (b, ω,n)
and the deterministic map T does not depend on n. Specifically,

T (φt; θ) =
|φt(1− φt)|√
bφ2
t + ω(1− φt)2

(10)

and

σ(φt; θ) =
bφ3
t

√
1− φ2

t
√
n
(
bφ2
t + ω(1− φt)2

)3/2 . (11)

In particular, the process φt is constructed by perturbing with a heteroscedas-
tic additive noise σ(φt; θ)εt the deterministic map T (φt; θ) of the unit interval

10



Figure 1: Plot of the deterministic component T (φ), φ∗ = 0.73, ω = 0.4 (b = 0.082).

I = [0, 1]. Fig 1 provides a pictorial representation of the map T . Notice that
the process φt is a (continuous state) Markov chain since the distribution of
φt only depends on φt−1: this is a simple yet crucial observation that will be
heavily used in the next section.

As said in the Introduction, one of the purposes of the present paper is to
rigorously establish the possibility of chaotic behavior in leverage time series of
banks and to detect it in financial datasets. To this end, in the next sections
we develop a rigorous mathematical theory of additive unimodal maps with
heteroscedastic noise as in Equation (9), with (10) being its representative.
This theory will allow us to study, e.g., the existence of a stationary measure,
the stochastic stability, and the Lyapunov exponent for this class of models. It
is worth noting that our results remain valid for any noise εt in (9), not only
Gaussian.

3 The mathematical model

We first describe the class of unimodal maps with which we will work (Subsection
3.1). Then, we define the Markov chain describing our model (Subsections 3.2),
and we show that our leverage model can be described in terms of this Markov
chain (Subsection 3.3). Finally, we present a different yet equivalent approach
based on random transformations to define our model (Subsection 3.4).

6This is the deterministic skeleton, whose properties are discussed in detail in [55].
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3.1 Unimodal maps

We consider unimodal maps [15] T : I → I of class at least C3 with T (0) =
T (1) = 0 and with a non-degenerate critical point7 at c: T ′(c) = 0. The map
T is strictly increasing on [0, c) and strictly decreasing on (c, 1]. Moreover, we
suppose that T satisfies the following assumptions:

(A1) T has negative Schwarzian derivative: S(T ) :=
T ′′′

T ′
− 3

2

(
T ′′

T ′

)2

< 0.

(A2) the maximum ∆ := T (c) < 1,

(A3) the critical point is quadratic: T ′′(c) 6= 0.

The map T arising from our financial model (10) satisfies the above assumptions,
as we verified numerically.

In order to establish the possibility of chaotic behavior in leverage time
series, we partition the parameter space for the map (10) by using the theory
of unimodal maps (see, for instance, the review [69]):

(C1) If ∆ ≤ c, then a globally attractive fixed point exists.

(C2) If c < T (∆) < ∆, then there is a globally attracting fixed point or a
2-cycle in (c,∆).

(C3) If T (∆) < c < ∆, we can reduce the study to the so-called dynamical core
[T (∆),∆], which is mapped onto itself and absorbs all initial conditions
(except 0 which is a fixed point).

Figure 2: Partition of the parameter space for the unimodal map (10) according to
the classification (C1)–(C3).

7The critical point for (10) is c =
(
1 + 3

√
b/ω
)−1

.
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Figure 2 reports a pictorial representation of the partition of the parameter
space according to the classification (C1)–(C3). Following this classification, we
will say that:

(1) T is periodic if there is a globally attracting fixed point or a globally
attracting cycle.

(2) T is chaotic if T is topologically transitive8 on the interval [T (∆),∆] and
T admits a unique invariant Borel probability measure which is absolutely
continuous with respect to the Lebesgue measure 9.

Subsection A.1 of Appendix A collects additional important results on the
class of unimodal maps presented in this section. We will refer to these results
in the rest of the paper. Notice that there are unimodal maps that are neither
periodic nor chaotic, as follows from Theorem A.1.

3.2 Coupling with a stochastic process

We define now the continuous state Markov chain {Xt : t ∈ N} describing our
model. For the reader’s convenience, Subsection A.2 of Appendix A recalls
some basic, yet important, properties of such chains. The chain {Xt : t ∈ N}
is obtained as a deterministic unimodal map T : I → I satisfying (A1)–(A3),
coupled with a stochastic process, namely, by perturbing T with an additive
noise. Starting from (9) as our main motivation, on the one hand, we consider a
more general class, and on the other, we impose some mild technical restrictions
that are necessary for rigorous analysis.

Since the noise varies in a neighborhood of 0, we will need to extend the
state space on the negative axes. However, we will see in a moment that such
an extension is irrelevant for the asymptotic behavior of the perturbed system,
whose random trajectories spend all the time, but a relatively short transient,
on the positive unit interval.

We fix T and parametrize the chain by the rebalance time n (which is roughly
inverse to the variance of the noise), consequently indexing with n the chain

(X
(n)
t ), the transition probabilities P

(n)
x and the stochastic kernel pn(x, y) where

it is necessary. We will be interested in the limit for n→∞.
We also need to assume that the noise is compactly supported, so trajectories

of the process stay bounded. Compared to the Gaussian noise in (9), this is done
by truncating the distribution tails that are exponentially small for large n, see
Section 3.3 for the main example.

Denote by Γ := 1 − ∆ the gap between T (c) and 1. We now extend the
domain of definition of T to the larger interval [−Γ, 1] (which, by abuse of
notation, will be still denoted by I) so that T is continuous at 0 and on [−Γ, 0)

8A map T on a topological space X is called topologically transitive if for all nonempty
open sets U, V ⊂ X, there exists n such that T−nU ∩ V 6= ∅.

9Notice that, since T satisfies (C3), T (x) > x for any x < T (∆), in particular, T ′(0) > 1.
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is C4 smooth, positive and decreasing, with T (−Γ) < ∆.10

To construct the chain, we need to define transition probabilities. Let gx,n(y)
be a probability density supported on a compact interval [−s(x), s(x)]. We
assume that

• 0 < s(x) < Γ/2 for x ∈ (0, 1),

• T (x)− s(x) > 0 for x ∈ (0, 1− Γ/2],

• T (x)− s(x) > x for x small (in particular, T ′(0) > 1).

We set for simplicity s(x) := 0 for x ≤ 0 (meaning P
(n)
x = δT (x)); Lemma B.4

shows that this choice does not affect the dynamics. We will also assume that
both the mean and the variance of gx,n decrease to 0 as n→∞ and, for every
ε > 0,

sup
x∈[ε,1−ε]

|gx,n|TV <∞. (12)

Fix any initial distribution ρ0 ∈ BV and define transition probabilities

P (n)
x (A) :=

∫ s(x)

−s(x)

1A(T (x) + y)gx,n(y)dy, (13)

which correspond to the stochastic kernel

pn(x, y) = gx,n(y − T (x)). (14)

Informally speaking, the probability that the chain steps from x to A will be
high whenever T (x) falls in A. Equivalently, we can write

X
(n)
t+1 = T (X

(n)
t ) + Yt+1, where Yt+1 ∼ gx,n. (15)

The values of X
(n)
t+1 are spread in a neighborhood of T (x) due to the addition of

the random variable Yt+1.

3.3 The leverage model

Now, we will slightly modify (9) to satisfy the technical assumptions listed
above. The unimodal map is

T (x) =
|x(1− x)|√

bx2 + ω(1− x)2
, (16)

10A similar extension was considered in [15] to allow perturbations with additive noise;
in particular, it was supposed that T (I) ⊂ int(I) and that T admits an extension to some
compact interval J ⊃ I, preserving all the previous properties and satisfying T (∂J) ⊂ ∂J .
Notice that with this extensions the map T is not any more of class C4 as prescribed in
Appendix A.1. However, this regularity persists on the interval (0, 1) and this will be enough
for the subsequent considerations.
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where the parameters φ∗ and ω are such that T satisfies assumptions (A1)–(A3).
It always has a negative Schwarzian derivative, as we verified numerically, and
the critical point is quadratic. The condition T (∆) < c < ∆ < 1 defines a
nonempty subset of parameters (see Fig. 2). Notice that T ′(0) = 1/

√
ω > 1.

We want gx,n to be (truncated) normal with a variance close to (11). For
this, let us denote by Na(0, σ) the smoothed truncated normal distribution with

the density g(y) = ca,σχa(y)e−
y2

2σ2 , where ca,σ is so that
∫
g(y)dy = 1 and χa is

a smooth bump function supported on [−a, a].11 For instance, we may set

χa(y) =


1, if |y| ≤ (1− ε)a,
Ψ(y±(1−ε)a

εa ), if (1− ε)a < |y| ≤ a,
0, if |y| > a,

where Ψ(t) = e
1− 1

1−t2 is the standard C∞ bump function on [−1, 1]. We set

σn(x) :=
bx3
√

1− x2

√
n
(
bx2 + ω(1− x)2

)3/2 . (17)

Denote σ(x) := σ1(x) and σmax := maxx∈[0,1] σ(x). Set

gx,n(y) := cx,nχs(x)(y)e
− y2

2σ2
n
(x) , (18)

where

s(x) :=
σ(x)

σmax
min

{Γ

2
, T (1−Γ

2
)
}

and cx,n :=

(∫ s(x)

−s(x)

χs(x)(y)e
− y2

2σ2
n
(x) dy

)−1

.

We can then rewrite (15) as

X
(n)
t+1 = T (X

(n)
t ) + σn(Xt)Zt+1, Zt+1 ∼ Nbn(0, 1), (19)

with bn :=
√
n

σmax
min{Γ

2 , T (1 − Γ
2 )} → ∞ as n → ∞. The fact that for n fixed,

gx,n are rescaled copies of the same distribution will be used in Section 3.4 to
explicitly describe random maps associated to the process. We get the following
stochastic kernel:

pn(x, y) = cx,nχs(x)(y − T (x))e
− (y−T (x))2

2σ2
n
(x) . (20)

Notice also that the support of pn(x, y) does not depend on n (see Fig. 3).
Finally, (12) holds, because |gx,n|TV = 2cx,n and the latter is proportional

to 1/σn(x), which is bounded on [ε, 1− ε].

In particular, the evolution of our system/model is given by the Markov chain
{Xt : t ∈ N}, which produces a perturbation affecting the deterministic map

11The smoothness of the truncation function is only used in the proof of Theorem 4.12.
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Figure 3: Support of the kernel (20).

T at each step. In the next subsection, we proceed differently by replacing the
deterministic orbit Tn(x), x ∈ I, with a composition of (possibly different) maps
Tk close to T and chosen in an i.i.d. way, which is called random transformations.
Importantly, we will provide an explicit construction of the maps Tk together
with their distribution, which will be crucial in proving the weak stochastic
stability of our system.

3.4 Random transformations

Our model was defined as a Markov chain. We now present a slightly different,
yet equivalent, point of view. Namely, we will pick up a family of maps Tη : I →
I, η ∈ [0, 1], in such a way that

Leb{η : Tη(x) ∈ A} = Px(A) (21)

for all A ⊂ I. We can then define a stochastic process

x̄t+1 = Tηt+1(x̄t), (22)

where ηt are independent and uniformly distributed in [0, 1]. We can write
x̄t = Tηt ◦· · ·◦Tη1 x̄0, where (ηt)t∈N is an i.i.d. stochastic process, i.e. the process
(22) follows the orbits under the concatenation of randomly chosen maps from
the family. One can show that the two processes are equivalent, see, for instance,
[47]. Conversely, starting with a family of maps Tη, one can use (21) to define
transition probabilities Px and thus a Markov chain.

Rewriting (21) as Px(A) =
∫ 1

0
1A(Tη(x))dη and plugging into (31) we get

the disintegration formula for the Markov operator:

L =

∫
Lηdη, (23)
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where Lη are the transfer operators associated with Tη. In particular, a measure
µ is stationary for the Markov chain if and only if it satisfies µ =

∫
Lηµdη, i.e.,

for all A ⊂ I,

µ(A) =

∫
µ(T−1

η A)dη. (24)

Equation (24) is usually taken as the definition of a stationary measure for the
family of random maps. Every such measure corresponds to a product measure
that is invariant for the skew-product with the Bernoulli shift in the base and
the maps Tη in the fibers; we refer to [4, Section 2] for details.

Figure 4: Random maps (25) for φ∗ = 0.5, ω = 0.2, n = 10, 100, 1000, η = k/16.

As follows from (19), the random maps for the main example have the form

Tη(x) = T (x) + qn(η)σn(x), (25)

where qn is the quantile function of the truncated normal distribution Nbn(0, 1).
Indeed, since qn maps the uniform measure on [0, 1] to the truncated standard
Gaussian measure on [−bn, bn], we have

Px(A) =P{T (x) + σn(x)Zt ∈ A}
= Leb{η : T (x) + σn(x)qn(η) ∈ A}
= Leb{η : Tη(x) ∈ A}.

We can equivalently rewrite (25) as

Tη(x) = T (x) + q̃n(η)σ(x), (26)

where q̃n is the quantile function of Nb1(0, 1
n

). Notice that for different n, the
set {Tη}η∈[0,1] consists of the same maps, however the ones close to T = T 1

2
are

given bigger weights for large n. More precisely, for every δ > 0, we have

sup
η∈[δ,1−δ]

sup
x∈I
|Tη(x)− T (x)| ≤ σmax sup

η∈[δ,1−δ]
|q̃n(η)| −−−−→

n→∞
0. (27)
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4 Theoretical study of the mathematical model

We first establish the existence of a unique stationary measure for the Markov
chain defined in Subsection 3.2 (Subsection 4.1). Then, we prove its weak
stochastic stability (Subsection 4.2). Finally, we prove the existence and some
regularity properties of the Lyapunov exponent for the slow component of our
dynamical system (Subsection 4.3). In order to not weigh down the reading of
this section, we decide to confine all the proofs in Appendix B.

4.1 Existence and uniqueness of the stationary measure

We establish the existence of a unique stationary measure for the chain. We
here only mention the techniques used in the proofs. The existence of station-
ary measures will be accomplished in the following steps: we first prove the
Lasota-Yorke inequality; as a consequence, we will get a finite number of er-
godic absolutely continuous stationary measures whose supports are mutually
disjoint up to sets of zero Lebesgue measure. The uniqueness will be proved
by showing that all the previous components share a measurable set of positive
Lebesgue measure.

Before stating the existence Theorem 4.1, we need to introduce the following
notation. For any ε > 0, we define the interval Iε,Γ := [ε, 1− Γ/2].

Theorem 4.1. The Markov chain defined in Section 3.2 admits finitely many
ergodic stationary measures with densities in BV , the space of bounded variation
function on the unit interval equipped with the complete norm ‖f‖BV = |f |TV +
‖f‖1; see Appendix A, Subsection A.1. Moreover, there is ε > 0 such that
suppµ ⊂ Iε,Γ for any such measure µ.

Proof. See Appendix B, Subsection B.1.

Remark 4.2. It is worth noticing that the prior result is entirely independent
of the structure of the unimodal map T . In this respect, we could consider
maps admitting attracting periodic points or Cantor sets of measure zero but
still producing smooth stationary measures when perturbed with our additive
noise.

We now state the main result of this section.

Theorem 4.3. If T is either periodic or chaotic, then the Markov chain defined
in Section 3.2 admits a unique stationary measure µ with BV density. Moreover,
suppµ contains a neighbourhood of the periodic cycle if T is periodic, or the
interval [T (∆),∆] if T is chaotic.

Proof. See Appendix B, Subsection B.2.

We conclude this subsection with the following consideration. From a fi-
nancial point of view, should the stationary measure not be unique, it would
imply that, depending on the initial conditions, different banks could experience
completely different dynamics corresponding to different stationary measures.
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When this occurs in physical systems, one speaks of phase transitions and coex-
istence of different mutually singular states. In our case, this would imply, for
instance, that policy measures could not be universal.

4.2 Stochastic stability

Once we consider random perturbations of a deterministic dynamics, an im-
portant question is to investigate the stochastic stability of the system, which
means to determine if a sequence of stationary measure will converge, in a sense
to be precised, to the invariant measure of the unperturbed map. In our case,
the sequence of probability measures is given by µn := hndx. These measures
belong to the set of Borel probability measures on the unit interval, which is a
compact metric space with the weak-* topology12. There will be therefore at
least one subsequence (µnk)k≥1 converging to a probability measure µ∞ on I.
Our objective is to prove that: (i) µ∞ is invariant, (ii) it is the same for any con-
vergent subsequence, if more than one, and (iii) it coincides with µ. Whenever
that happens, we will say that our random system is weakly stochastic stable.
This result could be strengthened by showing that ‖hn − h‖1 → 0, which is
called the strong stochastic stability. However, we are not able to obtain this
result. Instead, we now give a sufficient condition to get the weak stochastic
stability:

(Aq) There exist q > 1 and Cq > 0 such that for all n ≥ 1 we have ‖hn‖q ≤ Cq.

We will see in the next subsection that with the preceding assumption, we
can prove the convergence of the Lyapunov exponent (Theorem 4.10) and then
verify it numerically, which is an indirect indication of the validity of (Aq).

Theorem 4.4. Under Assumption (Aq) and when the map T is chaotic, the
Markov chain defined in Section 3.2 is weakly stochastic stable, i.e., the station-
ary probabilities converge to the unique T -invariant probability in the weak-*
topology as n→∞.

Proof. See Appendix B, Subsection B.3

It follows from Proposition B.8 that Assumption (Aq) cannot be satisfied in
the periodic case, since the limiting T -invariant measure is singular and sup-
ported on the periodic orbit, so Theorem 4.4 only covers the chaotic case. We
will now give proof in the periodic case under the following assumption:

(As) For all n sufficiently large and all x ∈ suppµn we have |T ′(x)| ≤ τ < 1.

Proposition 4.5. If T is periodic and satisfies (As), then the Markov chain
defined in Section 3.3 is weakly stochastic stable.

Proof. See Appendix B, Subsection B.4.

12The weak-* topology is given by the family of seminorms ‖ρ‖ϕ =
∫
ϕdρ, ρ ∈M, ϕ ∈ C0.
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Remark 4.6. It follows from the proof that Proposition 4.5 remains valid for
the general class of Markov chains defined in Section 3.2 whenever (27) holds,
which is in turn the case when T and gx,n are sufficiently smooth.

Remark 4.7. We conjecture that, if T is periodic with the attracting periodic
orbit O, then hn → 0 uniformly on compact sets K ⊂ I \ O as n → ∞. This
property, which we checked numerically, straightens the previous result. In
particular,

(Ac) If T is periodic and the critical point c does not belong to the attracting
periodic orbit, then hn → 0 uniformly in a neighbourhood of c as n→∞.

4.3 Lyapunov exponent

4.3.1 Average Lyapunov exponent

We are interested in the existence of the Lyapunov exponent for the slow com-
ponent, which in our case is defined Pµ-almost surely as the limit

Λ = lim
n→∞

1

n

n−1∑
t=0

log |T ′(Xt)| (28)

along the chain (Xt)t≥0. We provide two motivations for such a choice. First,
we want to reproduce the Lyapunov exponent of the unperturbed map T in
the limit of zero noise, which we will get in Theorem 4.10; Second, we want
an indicator that kept the memory of the underlying slow dynamics played by
the map T . We will, in particular, show that such an exponent is negative for
periodic T , even in the presence of mixing stationary measures.

We now return to (28); if the chain admits a unique stationary probability
µ, then, by the ergodic theorem for Markov chains, the above limit equals∫

log |T ′|dµ, (29)

assuming log |T ′| ∈ L1(µ).

Remark 4.8. The Lyapunov exponent (29) was called the average Lyapunov
exponent in [38, 59]. It was associated with the phenomenon of noise-induced
order, which happens when the perturbed systems admit a unique stationary
measure depending on some parameter, say θ, and the Lyapunov exponent
depends continuously on θ and exhibits a transition from positive to negative
values, see also [54] for experimental evidence of this fact. We will partially
prove this phenomenon below by combining Corollary 4.11 and Theorem 4.12,
and show it numerically in Section 5.2.

A unimodal map T is said to have a critical point of order l if there is a
constant D such that D−1|x − c|l−1 ≤ |T ′(x)| ≤ D|x − c|l−1. In this case it
was proved in [60] that the invariant density for T is in Lq, with q < l

l−1 . We
will assume that T has a critical point of order 2. It is easy to check that (16)
satisfies this assumption. Consequently, log |T ′| is in Lp for any p ≥ 1.
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Theorem 4.9. If T is periodic or chaotic, the limit (28) exists almost surely.

Proof. The integral (29) is finite, because log |T ′| is in L1 and the unique sta-
tionary measure µ has bounded density, as we proved in Section 4.1.

Once we know that the Lyapunov exponent exists almost surely, it is natural
to ask how it depends on the model parameters, for instance, the length n of
the fast component series. We have the following result:

Theorem 4.10. Suppose one of the following is satisfied: (a) T verifies (Aq);
(b) T is periodic and verifies (As) and (Ac). Then the Lyapunov exponent (28)
converges to the Lyapunov exponent of the deterministic map T as n→∞.

Proof. See Appendix B, Subsection B.5.

Corollary 4.11. Under the assumptions of Theorem 4.10 and for n large
enough, Λ is positive if T is chaotic, and negative if T is periodic.

In some cases, the negativity of the Lyapunov exponent can be shown rel-
atively easily, see Example B.9. We also provide some numerical examples in
Section 5.2.

4.3.2 Continuity of the Lyapunov exponent

Denote by Θ := {θ = (φ∗, ω,n) ∈ (0, 1)2 × (0,∞) | maxTθ < 1} the (extended)
parameter space. In order to prove the continuity of the Lyapunov exponent,
we will assume that Tθ(x) ∈ C3(Θ × [0, 1]) and pθ(x, y) ∈ C2(Θ × (0, 1)2). It
is straightforward that our main example defined in Section 3.3 satisfies this
assumption. Let Θ̃ ⊂ Θ be the set of parameters θ for which there is a unique
stationary measure µθ with a density hθ ∈ BV ; we proved in Section 4.1 that
this is the case if Tθ is periodic or chaotic, but our numerical investigations
confirm that in fact Leb(Θ \ Θ̃) = 0.

Theorem 4.12. The mapping Θ̃ 3 θ 7→ Λθ ∈ R is continuous.

Proof. See Appendix B, Subsection B.6.

We conclude this section with the following two remarks.

Remark 4.13. In (28) we use the derivative of the deterministic map only to
define the Lyapunov exponent. However, in Subsection 3.4 we define our process
using the perspective of the random transformation. This leads naturally to
define the Lyapunov exponent of the cocycle given by the derivative computed
along the random orbit, named Random Lyapunov Exponent (RLE). We analyze
it in Appendix B, Subsection B.7. Also, We discuss the so-called entropy
formula allowing us to equate the random Lyapunov exponent with the random
entropy, which is the random generalization of the Kolmogorov-Sinai entropy.
Finally, we describe the interesting situation of a stationary state with zero
random entropy but which mixes exponentially fast.
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Remark 4.14. For the stochastic stability and the Lyapunov exponent, we
mainly discuss the relation between finite n (thus noisy system) and infinite n
(purely deterministic system). Thus our results indicate in which sense what
we learn for a noisy system is informative about the deterministic backbone. In
our empirical analysis we will do not study or use directly neither the stationary
measure nor the Lyapunov exponent (mainly because we have very short time
series), however the ”continuity” we observe from finite to infinite n suggests
that the properties we observe empirically for finite n are informative of the
underlying deterministic dynamics.

5 Numerical results

In this section, we describe and discuss some numerical experiments in support
of our rigorous theoretical investigations. Specifically, we present the bifurcation
diagram associated with the unimodal map (16) and compute the corresponding
Lyapunov exponents for both the deterministic and the stochastic version of the
map, see Subsections 5.1 and 5.2, respectively.13

5.1 Bifurcation diagram

In this subsection, we analyse the dynamics of the unimodal map (16). The bi-
furcation diagram of a dynamical system shows how a typical orbit’s asymptotic
distribution varies as a parameter’s function. For our map, either the memory
parameter ω or the parameter φ∗ can be employed as the bifurcation parame-
ter. Fig. 5 shows the bifurcation diagram as a function of φ∗ (the bifurcation
diagram as a function of ω looks similar). The choice of the parameters for this
plot corresponds to a vertical segment in the parameter space (see Fig. 2) with
ω = 0.5 and φ∗ varying in a neighbourhood of the dynamical core area. As
explained in Appendix A.1, the invariant set of the unimodal map (16) could be
an attracting periodic orbit, a Cantor set of measure zero, or a finite union of
intervals with a dense orbit, depending on the parameters ω and φ∗. Specifically,
there is an attracting fixed point or a 2-cycle outside the dynamical core region,
whereas in the dynamical core, the situation is more complex as small param-
eter variations can change the dynamics from chaotic to periodic and back, as
we see in Fig. 5. To identify the signature of a chaotic behavior more precisely,
in the following subsection, we compute the Lyapunov exponent as a function
of φ∗.

5.2 Lyapunov exponent

The Lyapunov exponent for the deterministic map (16) is positive if and only
if T admits an absolutely continuous invariant measure, see Theorem A.3 in

13The code to reproduce all the figures and tables of this section are available from the
corresponding author upon reasonable request.
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Figure 5: Bifurcation diagram for T in the dynamical core region (ω = 0.5).

Figure 6: Lyapunov exponents for deterministic and stochastic maps (ω = 0.5).

ω

φ∗

(a)

φ∗

(b)

Figure 7: Contour plot of the average Lyapunov exponents for (a) deterministic and
(b) stochastic maps (n = 1).
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Appendix A.1. Fig. 6 shows the estimated Lyapunov exponent in the same slice
of the parameter space as in Fig. 5. Notice that the exponent becomes a smooth
function of φ∗ when we add even a very small noise, in agreement with the results
of Section 4.3.2. Fig. 7 shows the contour plot of the Lyapunov exponent as a
function of φ∗ and ω both for the deterministic map (16) and for the stochastic
process described in Section 3.3. The right panel shows a clear noise-induced
regularization phenomenon. In fact, for the stochastic version of the map, the
intricate fine structure in the parameter dependence of the Lyapunov exponent
disappears and is replaced by a smooth dependence.

To provide a numerical exemplification of the stochastic stability and of
Theorem 4.10, we computed average (28) and random (44) Lyapunov exponents,
as well as the Lyapunov exponent for the deterministic map (16), for different
values of φ∗, ω and n. The results are presented in Table 1. Within each row,
the two sub rows are ALE and RLE, respectively: the two agree very well, in
most cases, up to the precision of the numerical computation. In both cases, we
sampled 128 independent realizations of the process, each of length of 10, 000.

φ∗ ω DC Per.
Lyapunov exponent

n
Det.

1 103 106 109

0.845 0.557 yes no
0.287 0.287 0.349 0.341

0.340
0.286 0.286 0.349 0.341

0.795 0.390 yes no
0.345 0.346 0.389 0.398

0.400
0.345 0.346 0.389 0.399

0.904 0.627 yes no
0.557 0.557 0.560 0.550

0.552
0.558 0.557 0.560 0.550

0.821 0.439 yes yes
0.378 0.375 −0.051 −0.159 −0.158
0.378 0.375 −0.052 −0.159

0.944 0.826 yes yes
0.296 0.297 0.049 −0.123 −0.122
0.297 0.296 0.052 −0.123

0.766 0.323 yes yes
0.320 0.324 0.286 −0.076 −0.046
0.320 0.325 0.286 −0.076

0.258 0.837 no yes
−0.243 −0.248 −0.248 −0.248 −0.248−0.286 −0.248 −0.248 −0.248

0.908 0.804 no yes
−0.284 −0.285 −0.365 −0.362 −0.362−0.286 −0.287 −0.366 −0.362

0.541 0.227 no yes
−0.619 −0.441 −0.380 −0.380 −0.380−0.578 −0.446 −0.380 −0.380

Table 1: Average and random Lyapunov exponents for different values of n compared
to the Lyapunov exponent for the deterministic map. DC stands for dynamical core,
Per. for periodic, and Det. for the Lyapunov exponent of the deterministic map.
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6 Estimating the map parameters via deep neu-
ral networks

We now consider the problem of estimating the map’s parameters from (short)
time series. This fact is motivated by the fact that in Section 7 we empirically
investigate a dataset of US commercial bank’s leverage. We will consider the
time series of the bank’s leverage as realizations of the process described in
Section 3.3 and will estimate for each bank the model parameters. Each time
series is very short, composed of only 59 points.

Given the random nature of the map, one could use maximum likelihood es-
timation to estimate the parameters. However, this approach is not feasible for
two reasons. First, the likelihood function is highly non-convex, so standard op-
timization methods may perform poorly. Second, although the likelihood func-
tion for the process itself can be written explicitly, in many cases, the observed
time series are systematically undersampled, preventing an explicit calculation
of the likelihood function. For example, we may observe only one slow time
scale, corresponding to portfolio rebalancing, out of two, or even out of three
(i.e. the bank’s risk assessment and portfolio composition may be updated more
frequently than our quarterly observations, for instance at a monthly frequency).
If we observe, for instance, only the second iterate of the process,

φt+2 = T (T (φt; θ); θ) + σ(φt; θ)εt) + σ(φt+1; θ)εt+1, t ∈ Z,

the transition probabilities p(φt+2|φt; θ), t ∈ Z, are no longer Gaussian (as it
would be the case if we observe the first iterate). Hence, there is no effective
formula for the likelihood function.

For this reason, to estimate the parameters of the map, we propose to use a
convolutional neural network (CNN) consisting of a sequence of convolutional
layers followed by a sequence of dense, or fully connected, layers (see [41, Chap-
ter 9] for more details). In order to deal with the possibility that the observed
time series are realizations of certain iterates of the process, we separately op-
timize two CNN architectures to be used sequentially. First, we optimize a
CNN (henceforth denoted by CNN1) for estimating the number of iterates be-
tween observations: it takes as input time series of length 59 (as our empirical
data) and outputs the corresponding value k of the map’s iterate that generated
the time-series. Second, for each value of k, we optimize a CNN (henceforth
denoted by CNN2(k)), having the same inputs, to output the corresponding pa-
rameters (φ∗, ω) that generated the time-series. Once the parameters (φ∗, ω) are
estimated, the noise variance (and therefore n) can be estimated by standard
methods. To train CNN1 and CNN2(k) we used a training set of one million
samples simulated from the model in Section 3.3 with values of the parame-
ters θ = (φ∗, ω,n) which uniformly span the parameter space. For both steps,
when simulating the series, the system’s initial state was taken randomly from
a uniform distribution on [0, 1]. This fact is especially important because of
the relatively short length of the series. Therefore, based only on simulations,
the NN approach, contrary to the maximum likelihood one, can also work for
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partial observations. The selected14 CNN models show a good performance.
We tested our methods on a testing set of 100,000 out of sample time series.
Fig. 8 shows the accuracy of CNN1 to estimate the iterates on test data. We
choose k = 1, 2, 3 because of our empirical application of Section 7. The MSE
of CNN2(k) on the test set is about 0.001 for each k. Since both φ∗ and ω are
uniformly distributed in [0, 1], the MSE is quite small and the NN effective.

Figure 8: Accuracy of the CNN1 model used to estimate the iterates.

7 Chaos in real bank leverage time series

In this section, we perform an empirical analysis of a large set of banks’ leverage
time series. We first describe the data set. Next, through CNN1 and CNN2(k),
we estimate the iterate k as well as the parameters (φ∗, ω) of the model and
discuss the results, investigating the relationship between the estimated parame-
ters and the bank’s size. Finally, to perform an independent analysis supporting
our conclusions, we apply the Chaos Decision Tree Algorithm [71] to these time
series and compare the resulting classification with the one obtained with CNN
estimates.

7.1 Data set

We use the data set of US Commercial Banks and Savings and Loans Asso-
ciations provided by the Federal Financial Institutions Examination Council
(FFIEC). For the sake of completeness, we provide a description of it, referring
to [35] and references therein for further details. A Commercial Bank is de-
fined15 officially by the FFIEC as: “[. . . ] a financial institution that is owned
by stockholders, operates for a profit, and engages in various lending activities”.
Commercial banks quarterly fill the Consolidated Report of Condition and In-
come (generally referred to as Call Report) as required by the FFIEC. A Savings

14Appendix C reports details on the selected CNN models, and on the procedure we em-
ployed to choose such models.

15See http://www.ffiec.gov/nicSearch/FAQ/Glossary.html.
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and Loan Associations, instead, is a financial institution that accepts deposits
primarily from individuals and channels its funds primarily into residential mort-
gage loans. Starting from the first quarter of 2012 they are required to file the
same reports of Commercial Banks; thus they have been included in the data set
since then. The data provided by the Call reports have been publicly available
since 1986, although the required details have increased over time. To have a
good compromise between the fine structure of data and reasonably populated
statistics, we follow [35] and consider the period time going from March 2001 to
December 2014, for a total of 59 quarters. Also, we consider only the financial
institutions present in the data set in all the quarters for a total of 5, 031 banks.
The financial leverage λt of each institution at time t is defined as the ratio
between the sum of its assets and its equity at time t. In particular, the latter
is given by Et = At−Lt where Lt represents the liabilities and At the assets of
the bank, thus λt = At/Et.

7.2 Estimation via neural networks

In order to estimate the parameters of the map on the just-described data set,
we need to fix the value of the liquidity parameter γ; remind that we consider
the linear transformation φt = (λt − 1)/γ. In this work, we assume that the
liquidity parameter γ of the risk investment is the same for all the banks in our
data set. Admittedly, this is a simplifying assumption, coherent with the so-
called assumption of statistical equivalence for risky investments (see also [55]),
which allows for an analytical tractability of the model; a complete exploration
of a relaxation of this hypothesis is beyond the scopes of the present paper and
is, therefore, left for future work. In order to fix its value, we exclude 662 time
series (out of 5, 031) that contain outliers, which we define to be values that are
two standard deviations away from the mean. We then set γ to the maximum
over the remaining 4, 369 series, obtaining γ = 15.969.

Since the time series that we analyze contain quarterly data and portfolio
decisions may be made more frequently, it is natural to assume that the observed
time series are realizations of certain iterates of the process; we assume k ∈
{1, 2, 3}. Fig. 9a displays the output of CNN1. It turns out that only a small
percentage (about 1%) of the banks in our data set rebalance their portfolios
at a quarterly frequency. Most banks seem to rebalance either every six weeks
(k = 2, about 55%) or every month (k = 3, about 43%). One may ask if the
portfolio re-balancing frequency is related to the size of the bank (defined as the
average across the 59 quarters of the sum of the dollar-amount of all the types of
assets detained by it), for example, because larger banks manage more actively
their portfolio. Fig. 9b shows the box plots of the logarithm of the size of the
banks for k = 1, 2, 3. We observe that there is not a statistically significant
difference among them.

Once the number of iterates k has been identified, we proceed to the study of
the chaotic behaviour of the time series. We divide the banks in the three groups
identified by k and employ CNN2(k) in order to estimate the parameters (φ∗, ω).
In Fig. 10a we plot the estimates of φ∗ against those of ω; pairs belonging to
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(a) Number of banks by iterate. (b) Log bank size by iterate.

Figure 9: Results on the iterate of the process.

the dynamical core region are displayed in red, whereas those falling outside
the dynamical core region are displayed in blue. Interestingly, the percentage of
banks for which the estimates (φ∗, ω) are in the dynamical core region is about
12%. Moreover, Fig. 10b indicates that k is very often equal to two for these
banks.

(a) Parameters distribution by DC. (b) Parameters distribution by iterate.

Figure 10: Estimated parameters for iterates in {1, 2, 3}.

We now ask if bank size is related with the fact that the estimated pair (φ∗, ω)
is or not in the dynamical core region. Fig. 11a shows the probability density
functions of the logarithm of the banks size, by considering separately banks
inside and outside the dynamical core, and Fig. 11b displays the corresponding
probability-probability plot. To test that the difference between the distribution
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of bank sizes in and outside the dynamical core region is statistically significant,
we perform the Kolmogorov-Smirnov test of the null hypothesis that the two
samples have the same distribution. The statistics of the test is 9.31 × 10−2

corresponding to a p-value of 5.9× 10−4. This latter value shows that the two
subsamples have different distributions.

Summarizing, we have found that the parameters of a sizable fraction of
banks lie in the dynamical core region and that the dynamics of the leverage of
the larger banks tend to be more frequent in the dynamical core than that of
the smaller banks.

(a) Probability density functions. (b) Probability-probability plot.

Figure 11: Results on the parameters of the process and bank size.

7.3 Classification via the Chaos Decision Tree Algorithm

Finally, we perform an independent analysis on the bank’s leverage time series
by making use of the recently proposed Chaos Decision Tree Algorithm (CDTA)
[71], described in detail in Appendix F. This is a non-parametric method which
classifies an input time series as chaotic, periodic, or stochastic16. We perform
this analysis for two reasons. First, we know that chaotic behavior can be present
only for series generated by our map with parameters in the dynamical core.
Thus we test whether the series classified as chaotic by CDTA have estimated
parameters in the dynamical core. The second reason is to count how many
banks in the dynamical core are identified as chaotic or periodic by CDTA.
The Appendix also contains the results of the application of CDTA to data
simulated by our map for different time series length, level of noise n, and
number of iterates k.

Applying CDTA, we find that 64% of the banks are classified as stochastic,
∼ 12% as periodic and ∼ 23% as chaotic. The consistency between the classifi-

16Notice that the definitions of chaotic and periodic for the CDTA differ from the ones
given in Subsection 3.1, see Appendix D.
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cation made by CDTA and the partition ‘dynamical core’ and ‘not dynamical
core’ of the parameters space (φ∗, ω) found by the NN model can be assessed by
looking at Table 2. We find that a large fraction of series outside the dynamical
core are classified as stochastic by CDTA, while a third of banks in the dynam-
ical core is classified as chaotic. This fraction is significantly smaller for banks
outside the dynamical core. Thus, despite the agreement is not perfect, we find
a reasonable consistency between the conclusions of the two methods and, more
importantly, find significant (and independent) support to the conclusion that
a sizable fraction of bank time series are described by a chaotic dynamics.

Periodic Chaotic Stochastic
Non dynamical core 382 (9.98%) 648 (16.93%) 2798 (73.09%)
Dynamical core 107 (20.34%) 176 (33.46%) 243 (46.20%)

Table 2: Number of banks by classes.

Finally, the findings reported in the previous subsection suggest a positive
relation between the size of a bank and the probability that the dynamics of
the (corresponding) leverage time series is chaotic. To verify this observation
by using the CDTA classification, we first rank the banks in quintiles according
to their size and within each quintiles we compute the percentage of banks that
are detected to be stochastic, periodic and chaotic. Table 3 collects the results.
In a nutshell, banks having a larger size have, on average, a larger percentage
of leverage time series detected as chaotic. A χ2-test applied to contiguous
quintiles rejects the hypothesis of independence of the CDTA classification from
the quintile, indicating that the difference in frequencies across quintiles are
statistically significant. Thus also the CDTA analysis confirms that larger banks
are more likely characterized by chaotic time series of leverage.

Statistics q1 q2 q3 q4 q5

Chaotic (%) 18.2 20.2 21.7 23.6 29.1
Periodic (%) 12.9 11.6 12.9 13 11.8

Stochastic (%) 68.6 67.3 65 63 58.9

Table 3: Fraction of banks classified as chaotic, periodic, or stochastic by CDTA
conditionally to the decile of the bank size.

8 Conclusions

Most risk management practices (for example, Value-at-Risk) assume that prices
are not affected by the actions of other financial institutions managing the risk
of their portfolio. In other words, these practices assume that risk is exogenous.
In reality, in the presence of limited liquidity, coordinated and homogeneous
risk management can create market instability and result in what is known
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as endogenous risk. This has the potential to amplify market instabilities and
create crashes through the well-known feedback between leverage, risk, and asset
prices. Additional and less considered feedback between past and future risks
is present because financial institutions use historical data to estimate both the
riskiness of their investments and their correlations. This creates new threats to
the systemic stability of financial markets. Studying how these two feedbacks
affect the leverage dynamics is paramount for understanding systemic risk.

In this paper, we consider a stylized model where both feedbacks are present.
We showed that the dynamics of the bank’s leverage are described by a unimodal
map on [0, 1] perturbed with additive and heteroscedastic noise. The perturbed
system can be described in two equivalent ways as a stationary Markov chain
or in terms of random transformations. In both cases, a fundamental object
is the stationary measure of the process, which allow us to properly define and
state all the statistical properties of the system. We are able to construct such a
measure and prove its uniqueness. Moreover, under a few assumptions, we show
the stochastic stability of the perturbed system, namely the weak convergence
of the stationary measure to the invariant measure for the unimodal map in
the zero noise limit. We also define an average Lyapunov exponent, still in
terms of the stationary measure, as a sensitive indicator of slow motion and
prove its continuity with respect to the parameters defining the system. We
show that, depending on the parameters, the average Lyapunov exponent can
be either negative or positive, leading to two qualitatively different (periodic-
and chaotic-like) leverage dynamics.

We then estimate the map’s parameters via a method based on deep neu-
ral networks, whose efficiency was tested in a large testing set. Assuming the
proposed unimodal map with heteroscedastic noise as data generating process
for the banks leverage, we estimated the parameters on quarterly data of about
5,000 US Commercial Banks via the proposes CNN architecture. By investigat-
ing the period from March 2001 to December 2014, for a total of 59 quarters,
we found that the parameters of a sizable fraction of banks lie in the dynamical
core region of the parameter space and that the large banks’ leverage tends to
be more chaotic than one of small ones. The latter finding was also corroborated
by using a non-parametric approach.

We believe that the proposed methodologies may offer revealing perspectives
for future works. For instance, it would be interesting to extend the employed
mathematical techniques to study a model in which more than one asset and
one bank are present in the system.
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Appendix A: Additional mathematical results of
Section 3

A.1: Unimodal maps

In this section, we remind some known results on the class of unimodal maps
introduced by [15].

First, we remind the following theorem of Blokh and Lyubich (we quote
the statement given in [69, Theorem 6]) on the structure of the invariant sets
(attractors) of a unimodal map.

Theorem A.1 ([18]). Let T : I → I be an S-unimodal map with nonflat
critical point c. Then T has a unique metric attractor A, such that the ω-limit
set ω(x) = A for Lebesgue almost all x ∈ I. The attractor A is of one of the
following types:

1. an attracting periodic orbit;

2. a Cantor set of measure zero;

3. a finite union of intervals with a dense orbit.

In the first two cases, A = ω(c).

Second, we remind that associated to T there is the transfer operator (also
called the Perron-Frobenius operator) L : L1 → L1 which is the positive linear
operator defined by the duality relation17∫

I

Lf g =

∫
I

f g ◦ T, f ∈ L1, g ∈ L∞.

In order to get useful information from this operator, we need to restrict the
functional space where it acts; we choose here the Banach space BV of bounded
variation functions on the unit interval equipped with the complete norm

‖f‖BV = |f |TV + ‖f‖1,

where |f |TV is the total variation of the function f ∈ L1. A chaotic map T will
admit a unique absolutely continuous invariant measure ν = ν ◦ T−1 supported

17Without mention of the contrary, all the Lp spaces in the paper will be intended with
respect to the Lebesgue measure. The latter will be denoted as dx or Leb.
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on the interval [T (∆),∆] with a density h ∈ BV ([15, Section 5, Corollary 1]).
Moreover, ν is mixing with exponential decay of correlations on BV observable,
namely there exists 0 < v < 1 and a constant C > 0 such that∣∣∣∫ Lnf gdx−

∫
fdx

∫
gdx

∣∣∣ ≤ Cvn‖f‖BV ‖g‖∞, (30)

see [15, Section 5, Corollary 3] and [72, Proposition 5.15].
Also, we quote a sort of analog of the theorem of Blokh and Lyubich given

above, for what concerns invariant measures for the map T . We give here the
statement of Theorem 9 in [69], where the fact that the map T is S-unimodal is
equivalent to say that it has a negative Schwarzian derivative. In particular, the
(weak) accumulation points of the empirical measures constructed by iterating
Lebesgue almost all initial points are characterized by Theorem A.2. These
limiting invariant measure will be equivalent to the Lebesgue measure on the
attractor if and only if the corresponding Lyapunov exponent is positive; this is
the content of Theorem A.3 below.

Theorem A.2 (see [56, Chapter V.1]). Let T be an S-unimodal map with
nonflat critical point. If T has a periodic attractor, or a Cantor attractor, then
T admits a unique SRB measure18 supported on the attractor.
If T admits an absolutely continuous invariant probability measure µ, then:

1. µ is a SRB measure;

2. the attractor A of T is an interval attractor;

3. suppµ = A, in particular, µ is equivalent to the Lebesgue measure on A.

Finally, we remind the following theorem by G. Keller, useful to compute
the Lyapunov exponent Λ for the map T .

Theorem A.3 ([46]). Let T : I → I be an S-unimodal map with nonflat critical
point. Then T admits an absolutely continuous invariant probability measure
if and only if limn→∞

1
n log |DTn(x)| = Λ > 0, for almost all x ∈ I.

Of course if T has a periodic attractor, the Lyapunov exponent will be
negative. The situation is different whenever T has a Cantor attractor. For
an S-unimodal map with nondegenerate critical point that also has a Cantor
attractor, the Lyapunov exponent will be 0, while there are families of unimodal
maps with critical point of sufficiently high order, which have Cantor attractors
with sensitive dependence on initial conditions, see [69, Section 5].

18We remind that an invariant measure µ is called a Sinai-Ruelle-Bowen (SRB) measure if

µ = lim
n→∞

1

n

n−1∑
k=0

δTk(x)

for Leb-a.e. x ∈ [0, 1], where δx is the Dirac mass at x.
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A.2: Continuous state Markov chains

In this section, we remind some basic properties of the continuous state Markov
chain. A Markov chain {Xt : t ∈ N} on the interval I is given by the transition
probabilities

Px(A) = P{Xt+1 ∈ A | Xt = x}

(the probability that a chain at x ∈ I will be in a set19 A ⊂ I after one step)
and an initial distribution ρ0(A) = P{X0 ∈ A}. In the particular case where all
Px, x ∈ I, and ρ0 are absolutely continuous (with respect to Leb) and are given
by densities p(x, ·) and h0, respectively, we have

Px(A) =

∫
A

p(x, y)dy, ρ0(A) =

∫
A

h0(y)dy.

The map p : I×I → R+ (known as the stochastic kernel) plays the role that the
transition matrix does in the theory of Markov chains with a finite state space.
For Px to be a probability, it should satisfy

∫
p(x, y)dy = 1 for every x ∈ I.

Denote with M the space of (real-valued) Radon measures on I. There is
an associated operator L : M→M (called the Markov operator corresponding
to P ) acting by

Lρ =

∫
Pxdρ(x), ρ ∈M, (31)

that is, Lρ(A) =
∫
Px(A)dρ(x) for every A ⊂ I, or, equivalently,∫

ϕdLρ =

∫∫
ϕ(y)dPx(y)dρ(x)

for all ϕ ∈ C0, where C0 denotes the Banach space of continuous functions on
I with the sup norm. We note that L : L1 → L1 is an isometry, where L1 is
intended, from now on, with respect to the Lebesgue measure. If the chain is
given by the kernel p, formula (31) restricted to L1 becomes

(Lh)(y) =

∫
p(x, y)h(x)dx, h ∈ L1. (32)

If ρt denotes the distribution of the random variable Xt, then the distribution
of Xt+1 is ρt+1 = Lρt. In other words, by fixing the distribution ρ0 for X0, the
entire sequence of future distributions can be obtained by iterating with L.

A measure µ ∈M+ is said to be stationary if

Lµ = µ.

Every stationary measure µ gives rise to a shift-invariant measure Pµ on the
sequences space Ω = {(xt)t∈N : xt ∈ I} of realizations of the process, such that
Pµ(xt ∈ A) = µ(A) for all t ∈ N (see, e.g., [49]). We say that µ is ergodic if Pµ

19 All sets considered will be assumed to be measurable. For brevity’s sake, we omit the
word ‘measurable’ everywhere in this text.
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is ergodic. In the next section, we will show that, under some mild conditions,
our model admits a unique (and thus ergodic) absolutely continuous stationary
probability µ with a density h ∈ BV . Then, by the Ergodic Theorem (see, e.g.,
[17, Remark C4.1]), for every f ∈ L1(µ),

1

n

n∑
t=1

f(Xt) −−−−→
n→∞

∫
fdµ, Pµ-almost surely.

In particular, realizations of the process are distributed in the state space ac-
cording to the measure µ.

Appendix B: Proofs of the results in Section 4

B.1: Proof of Theorem 4.1

In order to prove the theorem, we need some auxiliary results. We start by
showing that there are finitely many ergodic stationary densities of bounded
variation. The following lemma will be useful to that end.

Lemma B.1. For any ρ ∈ BV , if C := ess supx∈supp ρ |p(x, ·)|TV <∞, then

|Lρ|TV ≤ C‖ρ‖1 and ‖Lρ‖BV ≤ (C + 1)‖ρ‖1.

Proof. For the first inequality, we have

|Lρ|TV = sup
∑
i

∣∣∣∣∫ p(x, yi+1)ρ(x)dx−
∫
p(x, yi)ρ(x)dx

∣∣∣∣
≤ sup

∑
i

∫
|p(x, yi+1)ρ(x)− p(x, yi)ρ(x)| dx

≤
∫
|p(x, ·)|TV ρ(x)dx ≤ C‖ρ‖1.

The second inequality follows from the first one, since the Markov operator is
an isometry, i.e. ‖Lρ‖1 = ‖ρ‖1 for all ρ ∈ L1.

Then, we show in Proposition B.2 below that we get a finite number of ergodic
absolutely continuous stationary measures whose supports are mutually disjoint
up to sets of zero Lebesgue measure.

We say that a stochastic kernel p(x, y) has uniformly bounded variations if
|p(x, ·)|TV ∈ L∞, i.e. there is C > 0 such that |p(x, ·)|TV ≤ C for almost every
x ∈ I.

Proposition B.2. If the kernel p has uniformly bounded variations, then the
operator L is quasi-compact, and there exist finitely many ergodic stationary
measures with densities in BV and, moreover, their supports are mutually dis-
joint up to sets of zero Lebesgue measure.
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Proof. By Lemma B.1, for every n,

‖Lnρ‖BV = |Lnρ|TV + ‖Lnρ‖1 ≤ C‖Ln−1ρ‖1 + ‖ρ‖1 = (C + 1)‖ρ‖1.

In particular,

‖Lρ‖BV ≤ (C + 1)‖ρ‖1 ≤ η‖ρ‖BV + (C + 1)‖ρ‖1 (33)

for any η < 1. This is the Lasota-Yorke inequality. The latter, plus the fact that
BV is compactly embedded in L1, implies that the peripheral spectrum of L is
discrete and therefore the chain will admit finitely many (at least one) absolutely
continuous ergodic stationary measures, with supports that are mutually disjoint
up to sets of zero Lebesgue measure. Moreover, the essential spectral radius is
strictly smaller than the spectral radius (spectral gap). These properties, which
are consequences of the Ionescu-Tulcea-Marinescu theorem, are summarized by
saying that the operator L acting on BV is quasi-compact, see, e.g., [13, 20, 19]
for an exhaustive presentation of these results and [12, Section 2.3] for a specific
application to random systems.

Remark B.3. Let us mention that whenever the operator L is quasi-compact
and the largest eigenvalue, which is 1 in our case, is simple and therefore there is
only one stationary measure with density inBV , then the norm of ‖Lkf‖BV goes
exponentially fast to zero when k →∞, for f ∈ BV and

∫
fdx = 0 (exponential

decay of correlations). This fact will be extensively used in Section 4.3.

At this point, the following remark is in order. Since the variance (17) vanishes
at 0 and 1, the kernel (20) is in fact unbounded. However, we can still apply
Proposition B.2 under a suitable restriction of the domain of L. We first state
a general result which allows us to confine the stationary measures.

Lemma B.4. Under the assumptions of Section 3.2, there is ε > 0 such that any
stationary measure µ has suppµ ⊂ {0}∪ Iε,Γ. If µ is continuous, suppµ ⊂ Iε,Γ.

Proof. First, notice that any stationary measure is supported on the interval
KΓ := [−Γ/2, 1 − Γ/2]. Indeed, by invariance, µ(Kc

Γ) =
∫
Px(Kc

Γ)dµ(x) = 0,
because Px(Kc

Γ) = 0 for all x.
Fix ε > 0 such that T (x) − s(x) > x for x ∈ (0, ε). By choosing a smaller

ε if needed, we may also assume that T (x) − s(x) > ε for x ∈ [ε, 1 − Γ/2].
Then inf suppPx > min{x, ε} for every x ∈ KΓ \ {0}. This means that for any
realization (xt) of the process, either all xt = 0 (clearly, 0 is a fixed point, since
P0 = δ0) or all but finitely many xt > ε.

On the other hand, if µ([−Γ, ε) \ {0}) > 0, then by the Poincaré recurrence
theorem, applied to the shift on (Ω,Pµ), Pµ-almost surely there would exist a
realization (xt) with infinitely many 0 6= xt < ε, which is not possible, as we
showed above. This finishes the proof.

Proof of Theorem 4.1. By Lemma B.4, the density of any absolutely continuous
stationary measure belongs to the subspace Y := {h ∈ L1 | supph ⊂ Iε,Γ}.
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From the first part of the proof of Lemma B.4 it also follows that Y is L-
invariant. Moreover, the kernel (14) has uniformly bounded variations when
restricted to Iε,Γ×Iε,Γ. Indeed, |pn(x, ·)|TV = |gx,n|TV and the latter is bounded
on Iε,Γ by (12). We can therefore apply Proposition B.2.

B.2: Proof of Theorem 4.3

As for the proof Theorem 4.1, we need some preliminary lemmas. We begin
with the following simple lemma that links the topological dynamics of T with
the structure of any stationary measure.

Lemma B.5. For any stationary measure µ and any open set U , if µ(U) = 0,
then also µ(T−kU) = 0 for all k > 0.

Proof. It is enough to show that µ(T−1U) = 0, the result then follows by induc-
tion. By invariance we have 0 = µ(U) =

∫
Px(U)dµ(x) ≥

∫
T−1U

Px(U)dµ(x).
But for every x ∈ T−1U , T (x) ∈ U ∩ suppPx, and hence Px(U) > 0. Therefore
the latter integral can only be zero if µ(T−1U) = 0.

With the help of the following lemma we will show that the support of any
stationary measure contains the support of the T -invariant measure (atomic in
the periodic case). Recall that x ∈ suppµ iff µ(U) > 0 for any open U 3 x.

Lemma B.6. Let A ⊂ I be such that (1) T is topologically transitive on A
and (2)

⋃∞
k=0 T

−kU = I for any open set U ⊃ A. Then A ⊂ suppµ for any
stationary measure µ.

Proof. Given an open set U with U ∩ A 6= ∅, by transitivity A ⊂
⋃∞
k=0 T

−kU ,
and therefore

⋃∞
k=0 T

−kU = I. By Lemma B.5, µ(U) > 0.

Proof of Theorem 4.3. If T is periodic, a globally attracting cycle O satisfies the
assumptions of Lemma B.6, therefore O ⊂ suppµ for any stationary measure
µ. Let us show that suppµ contains an open neighbourhood of O. Recall
that p(x, y) > 0 if and only if y ∈ (T (x) − s(x), T (x) + s(x)), and T and s
are continuous. Given x0 ∈ O, let x1 ∈ O be such that x0 = T (x1). Since
(x1, x0) ∈ {(x, y) | p(x, y) > 0} and the latter set is open, we can find open
sets U 3 x1 and V 3 x0 such that p(x, y) > 0 for all x ∈ U , y ∈ V . Also
µ(U) > 0, because x1 ∈ suppµ. Denoting h the density of µ, by invariance we
get h(y) ≥

∫
U
p(x, y)dµ(x) > 0 for all y ∈ V , i.e. V ⊂ suppµ.

If T is chaotic, then T is topologically transitive when restricted to I∆ =
[T (∆),∆]. It also follows from (C3) that

⋃∞
k=0 T

−kI∆ = I, so again we can
apply Lemma B.6.

In both cases, we conclude that Leb(suppµ1∩suppµ2) > 0 for any stationary
measures µ1, µ2, and therefore by Proposition B.2 they must coincide. Hence
the stationary measure is unique.
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B.3: Proof of Theorem 4.4

The proof of Theorem 4.4 is based on Proposition B.8, where the following
lemma is employed.

Lemma B.7. For every x ∈ I, P
(n)
x converges to δTx in the weak-* topology as

n→∞, i.e.
∫
ϕdP

(n)
x → ϕ(Tx) for all ϕ ∈ C0(I).

Proof. For arbitrary ε > 0 we can split∫
ϕdP (n)

x =

∫
Bε(Tx)

ϕdP (n)
x +

∫
Bε(Tx)c

ϕdP (n)
x .

By Chebyshev’s inequality, P
(n)
x (Bε(Tx)c) ≤ Var2P

(n)
x /ε2 → 0 as n→∞, while

ϕ is bounded, so the second integral can be made arbitrarily small for n large.

Consequently, P
(n)
x (Bε(Tx)) → 1, and since ϕ is continuous, the first integral

can be made arbitrarily close to ϕ(Tx).

The proof of (i) below follows a suggestion in [6, Theorem D].

Proposition B.8. Let µ be a weak-* limit measure of a sequence µnk = hnkdx.
If hnk satisfy (Aq), then

(i) µ is absolutely continuous with density in Lq;

(ii) µ is invariant under T .

Proof. (i) Let ϕ ∈ C0(I). By Hölder’s inequality, with p = q
q−1 ,∣∣∣∫ ϕdµ

∣∣∣ =
∣∣∣ lim
k→∞

∫
ϕhnkdx

∣∣∣ ≤ lim
k→∞

‖hnk‖q‖ϕ‖p ≤ Cq‖ϕ‖p.

Therefore the map Lp 3 ϕ 7→
∫
ϕdµ ∈ R is continuous, since C0 is dense in

Lp, and therefore such a functional will be in Lq, namely µ = hdx, h ∈ Lq,
‖h‖q ≤ Cq.

(ii) It suffices to prove that any test function ϕ ∈ C0(I) satisfies∫
ϕhnkdy −

∫
ϕ ◦ Thnkdy → 0.

Since hnk = Lhnk =
∫
pnk(x, ·)hnk(x)dx, by changing the order of integration

in the first integral and subtracting the second, we get∫
hnk(x)

[∫
pnk(x, y)ϕ(y)dy − ϕ(T (x))

]
dx. (34)

Since the function ψnk(x) :=
∫
pnk(x, y)ϕ(y)dy−ϕ(T (x)) is uniformly bounded,

(34) ≤ ‖hnk‖q‖ψnk‖p ≤ Cq‖ψnk‖p.

By Lemma B.7, ψnk(x) → 0 for every x ∈ I, and therefore by dominated
convergence ‖ψnk‖p → 0.
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The weak stochastic stability now follows easily from the above results:

Proof of Theorem 4.4. Since T admits a unique invariant measure, µ must be
the same for all convergent subsequences in Proposition B.8, and therefore the
entire sequence µn converges to µ.

B.4: Proof of Proposition 4.5

Proof. Let us first consider the case when T has a globally attracting fixed
point x0. We need to show that for any test function ϕ ∈ C0(I) we have∫
ϕ(x)hn(x)dx → ϕ(x0) as n → ∞. Since hn is a fixed point of the random

transfer operator (23) and this operator is the dual of the random Koopman
operator ϕ 7→

∫
ϕ ◦ Tηdη (see, e.g., [4, Section 2] for details), the previous weak

limit leads to prove that the following quantity∫
I

∫
[0,1]k

(
ϕ(Tηk ◦ · · · ◦ Tη1(x))− ϕ(x0)

)
hn(x) dη̄ dx (35)

goes to 0 as n→∞, where k is an arbitrary fixed number and η̄ = (η1, . . . , ηk).
Given ε > 0, let ζ > 0 be such that |ϕ(x)−ϕ(x0)| < ε when |x− x0| < 2ζ

1−τ .
Fix k such that, for all n,

sup
x∈suppµn

|T k(x)− x0| < ζ. (36)

Next, fix δ > 0 such that

2‖ϕ‖∞(1− (1− 2δ)k) < ε. (37)

Finally, by (27), for all n sufficiently large, we have

sup
η∈[δ,1−δ]

sup
x∈I
|Tη(x)− T (x)| < ζ. (38)

We now split the integral (35) in the η̄ variable over the region E := [δ, 1− δ]k
and its complement. On Ec the absolute value of (35) is bounded by (37).
Notice that the integral over x takes place on the support of µn, where (As)
holds. Moreover, since the map [0, 1] 3 η 7→ Tη ∈ C2(I) is continuous, each Tη
maps suppµn to itself; see [7]. Therefore, for η̄ ∈ E and x ∈ suppµn, by (38)
and (As), we have

|Tη2 ◦Tη1(x)−T 2(x)| ≤ |Tη2(Tη1(x))−T (Tη1(x))|+ |T (Tη1(x))−T 2(x)| < ζ+τζ.

By induction we easily get |Tηk ◦ · · · ◦ Tη1(x) − T k(x)| < ζ
1−τ and therefore, in

view of (36), |Tηk ◦· · ·◦Tη1(x)−x0| < 2ζ
1−τ for all η̄ ∈ E and x ∈ suppµn. Then,

by the choice of ζ, |ϕ(Tηk ◦ · · · ◦ Tη1(x))− ϕ(x0)| < ε and the absolute value of
(35) over E is therefore bounded by ε.

It is straightforward to modify the above proof for the case when T has a
globally attracting periodic orbit of length m > 1. One needs to replace T
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with Tm, the latter will have m attracting fixed points. The corresponding
random maps of the form Tη̄ = Tη1 ◦ · · · ◦ Tηm will be parametrized by η̄ =
(η1, · · · , ηm) ∈ [0, 1]m endowed with the Lebesgue measure. We leave the details
to the reader.

B.5: Proof of Theorem 4.10

Proof. (a) Denote with µn = hndx the unique stationary measure associated to
n and with µ = hdx the unique invariant measure for T . We need to show that∫

log |T ′|dµn −−−−→
n→∞

∫
log |T ′|dµ. (39)

Let q > 1 be such that hn, h ∈ Lq and set p := q
q−1 . Since log |T ′| ∈ Lp, for any

ε > 0 there is ϕε ∈ C0 such that ‖ log |T ′| − ϕε‖p < ε. Write∫
log |T ′|dµn =

∫
(log |T ′| − ϕε)hndx+

∫
ϕεdµn

and ∫
log |T ′|dµ =

∫
(log |T ′| − ϕε)hdx+

∫
ϕεdµ.

Since log |T ′| − ϕε ∈ Lp and hn, h ∈ Lq, we have∫
| log |T ′| − ϕε|hndx ≤ ‖ log |T ′| − ϕε‖p‖hn‖q ≤ εCq,

and the same inequality holds for the integral with respect to µ. Finally, from

Theorem 4.4 we know that µn
w∗−−→ µ, hence

∫
ϕεdµn →

∫
ϕεdµ as n→∞.

(b) We know from Proposition 4.5 that
∫
ϕdµn → 1

|O|
∑
x∈O ϕ(x) for all

ϕ ∈ C0(I) as n→∞, since the T -invariant measure µ is atomic and supported
on the attracting periodic orbit O. Let us first consider the case when the
critical point c belongs to O; the right-hand side of (39) is then −∞. Denoting
fm(x) := max{log |T ′(x)|,−m} ∈ C0(I), for every m we have∫

log |T ′|dµn ≤
∫
fmdµn −−−−→

n→∞

1

|O|
∑
x∈O

fm(x) ≤ − m

|O|
+ C,

because fm ≤ C := sup log |T ′| and fm(c) = −m. Therefore
∫

log |T ′|dµn →
−∞ as n→∞.

If c /∈ O, we can fix a neighbourhood U 3 c given by (Ac) and split∫
log |T ′|dµn =

∫
U

log |T ′|dµn +

∫
Uc

log |T ′|dµn.

The first term is bounded by ‖ log |T ′|‖1 supU hn and vanishes as n → ∞ by
(Ac), while the second one converges to

∫
log |T ′|dµ by Proposition 4.5 (approx-

imate log |T ′|1Uc with a suitable continuous function).
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The following example illustrates Corollary 4.11.

Example B.9. Denote {x ∈ I | |T ′(x)| ≤ 1} = [m,M ] and ∆̄ := supx∈I T (x)+
s(x). If T (x) − s(x) > min{x,m} for all x ∈ (0, ∆̄], then, arguing as in the
proof of Lemma B.4, one can show that any continuous stationary measure
µ has suppµ ⊂ [m, ∆̄]. So if, moreover, ∆̄ ≤ M , then Λ < 0. Following
the classification given in Appendix A.1, let us consider the case T (c) < c,
where the map T exhibits a globally attracting fixed point. In this case, the
conditions above will be satisfied if s(x) is small enough, in other words, the
stationary measure will be supported in a neighbourhood of the fixed point,
where |T ′(x)| ≤ 1, leading to the negative Lyapunov exponent. For other cases,
we provide some numerical examples in Section 5.2.

B.6: Proof of Theorem 4.12

Proof. Fix an exhaustion of Θ by nested compact sets Θι and set Θ̃ι := Θι ∩ Θ̃.
It is enough to prove that the mapping Θ̃ι 3 θ 7→ Λθ ∈ R is continuous on each
Θ̃ι, and from now on we fix one of them. As we showed in Lemma B.4, for
each θ ∈ Θ, suppµθ ⊂ Iεθ = [εθ, 1 − εθ], and since εθ can be shown to depend
continuously on θ, we can find a single ε > 0 that works for all θ ∈ Θι.

Given θ, θ′ ∈ Θ̃ι we can write

|Λθ − Λθ′ | =
∣∣∣∫ log |T ′θ|hθdx−

∫
log |T ′θ′ |hθ′dx

∣∣∣ ≤
∫ ∣∣log |T ′θ|

∣∣|hθ − hθ′ |dx+

∫ ∣∣log |T ′θ| − log |T ′θ′ |
∣∣hθ′dx. (40)

To bound the second term in (40), first notice that, by Lemma B.1,

‖hθ′‖∞ ≤ ‖hθ′‖BV = ‖Lθ′hθ′‖BV ≤ C‖hθ′‖1 = C,

where

C = 1 + sup
θ∈Θι

sup
x∈Iε
|pθ(x, ·)|TV ≤ 1 + sup

θ∈Θι

sup
x,y∈Iε

∣∣∂pθ
∂y

(x, y)
∣∣ <∞

is finite, because ∂pθ
∂y (x, y) is continuous and Θι × I2

ε is compact. The second

term is thus bounded by C‖ log |T ′θ| − log |T ′θ′ |‖1 and, by Lemma B.11 below,
goes to 0 as θ′ → θ.

We now estimate the first term in (40). Since log |T ′θ| ∈ L1, it is enough to
bound ‖hθ − hθ′‖∞ which is again dominated by ‖hθ − hθ′‖BV . By invariance,

‖hθ − hθ′‖BV = ‖Lkθhθ −Lkθ′hθ′‖BV ≤ ‖Lkθ(hθ − hθ′)‖BV + ‖(Lkθ −Lkθ′)hθ′‖BV .

As we said in Remark B.3, the Markov operator Lθ enjoys the exponential
bound

‖Lkθf‖BV ≤ Cθζkθ ‖f‖BV
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for all k > 0 and f ∈ BV supported on Iε with
∫
fdx = 0, where the constants

Cθ > 0, 0 < ζθ < 1 depend on the parameter θ. Since hθ − hθ′ has zero mean,
we therefore have

‖Lkθ(hθ − hθ′)‖BV ≤ Cθζkθ ‖hθ − hθ′‖BV .

Then
(1− Cθζkθ )‖hθ − hθ′‖BV ≤ ‖(Lkθ − Lkθ′)hθ′‖BV ,

and for k sufficiently large, Cθζ
k
θ < 1. By a standard trick, expanding a tele-

scopic sum Lkθ − Lkθ′ =
∑k
j=1 L

k−j
θ (Lθ − Lθ′)Lj−1

θ′ , we get

‖(Lkθ − Lkθ′)hθ′‖BV ≤
k∑
j=1

‖Lk−jθ (Lθ − Lθ′)hθ′‖BV

≤
k∑
j=1

Cθζ
k−j
θ ‖(Lθ − Lθ′)hθ′‖BV ≤ Cθ

1

1− ζθ
‖(Lθ − Lθ′)hθ′‖BV .

Combining the above inequalities we come to the following estimate:∫ ∣∣log |T ′θ|
∣∣|hθ − hθ′ |dx ≤Mθ‖(Lθ − Lθ′)hθ′‖BV ,

where Mθ =
Cθ‖ log |T ′θ|‖1

(1−ζθ)(1−Cθζkθ )
. It therefore remains to bound ‖(Lθ − Lθ′)hθ′‖BV .

Since both hθ′ and (Lθ −Lθ′)hθ′ are supported on Iε and ‖hθ′‖∞ ≤ C, we have

‖(Lθ − Lθ′)hθ′‖1 =

∫
Iε

∫
Iε

|pθ(x, y)− pθ′(x, y)|hθ′(x)dxdy ≤M1‖θ − θ′‖,

whereM1 = C supθ∈Θι supx,y∈Iε ‖∇θpθ(x, y)‖ is finite because∇θpθ(x, y) is con-
tinuous and Θι×I2

ε is compact. Similarly, arguing as in the proof of Lemma B.1,
we get

|(Lθ − Lθ′)hθ′ |TV ≤
∫
Iε

|pθ(x, ·)− pθ′(x, ·)|TV hθ′(x)dx ≤M2‖θ − θ′‖,

with M2 = C supθ∈Θι supx,y∈Iε ‖∇θ
∂pθ
∂y (x, y)‖ <∞. Therefore, the first term in

(40) is bounded by Mθ(M1 +M2)‖θ − θ′‖. This finishes the proof.

Remark B.10. Clearly, the above proof works if we replace log |T ′| with any
continuous function. Therefore, the mapping Θ̃ 3 θ 7→ µθ ∈ M is continuous
with respect to the weak-* topology onM, i.e. Θ̃ 3 θ 7→

∫
ϕµθ ∈ R is continuous

for any ϕ ∈ C0(I). Theorem 4.12 is more delicate, however, because log |T ′θ| is
neither continuous nor bounded and also depends on θ.

Lemma B.11. ‖ log |T ′θ| − log |T ′θ′ |‖1 → 0 as θ′ → θ.
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Proof. First notice that the critical point cθ of the map Tθ depends continu-
ously on the parameter θ ∈ Θ. Indeed, since T ′θ is continuous on Θ × I, the
set {(θ, cθ)} = (T ′θ)

−1({0}) is closed, and then the map Θ 3 θ 7→ cθ ∈ I is
continuous by the closed graph theorem.

The functions log |T ′θ| and log |T ′θ′ | have logarithmic singularities at cθ and cθ′

respectively. We will show that these singularities cancel out as cθ′ approaches
cθ. As in the proof of Theorem 4.12, we may assume that θ, θ′ ∈ Θι, where Θι

is compact.
Let α := supθ∈Θι |T

′′′
θ |. As a direct consequence of the mean value theorem,

(|T ′′θ (cθ)| − 2αδ)|x− cθ| ≤ |T ′θ(x)| ≤ (|T ′′θ (cθ)|+ 2αδ)|x− cθ|

for all |x− cθ| ≤ 2δ, and the same inequality holds if we replace θ with θ′. Set
D±δ := |T ′′θ (cθ)| ± 3αδ; both D+

δ and D−δ are positive, since Tθ has quadratic
critical point (T ′′θ (cθ) < 0). If θ′ is sufficiently close to θ, then |cθ − cθ′ | < δ/2
and |T ′′θ (cθ)−T ′′θ (cθ′)| < δ, and for all |x− cθ| ≤ δ we then simultaneously have

D−δ |x− cθ| ≤ |T
′
θ(x)| ≤ D+

δ |x− cθ|,

D−δ |x− cθ′ | ≤ |T
′
θ′(x)| ≤ D+

δ |x− cθ′ |,

and hence ∣∣log |T ′θ| − log |T ′θ′ |
∣∣ ≤ log

D+
δ

D−δ
+
∣∣∣log

|x− cθ|
|x− cθ′ |

∣∣∣.
Given ε > 0 and θ ∈ Θι, we first fix δ > 0 such that log

D+
δ

D−δ
< ε

3 and then let

θ′ → θ. The integral of the second term is elementary and vanishes as cθ′ → cθ,

so
∫
Bδ(cθ)

∣∣log |x−cθ||x−cθ′ |
∣∣dx < ε

3 , provided θ′ and θ are sufficiently close, and∫
Bδ(cθ)

∣∣log |T ′θ| − log |T ′θ′ |
∣∣dx < 2ε

3
. (41)

Let us show that log |T ′θ| − log |T ′θ′ | → 0 uniformly on Bδ(cθ)
c. Denote

β := infx∈Bδ(cθ)c |T ′θ(x)| > 0. We have ‖T ′θ − T ′θ′‖∞ ≤ M‖θ − θ′‖, where M =

supθ∈Θι,x∈I ‖∇θT
′
θ(x)‖. Therefore infx∈Bδ(cθ)c |T ′θ′(x)| > β

2 if ‖θ − θ′‖ < β
2M .

Consequently,
∣∣log |T ′θ|− log |T ′θ′ |

∣∣ < 2M
β ‖θ− θ

′‖, and for ‖θ− θ′‖ < εβ
6M we have∫

Bδ(cθ)c

∣∣log |T ′θ| − log |T ′θ′ |
∣∣dx < ε

3
. (42)

Combining (42) with (41) we finally get ‖ log |T ′θ| − log |T ′θ′ |‖1 < ε.

B.7: Random Lyapunov exponent and random entropy

In (28) we used the derivative of the deterministic map only. Alternatively, if we
define the process using the random transformations (22), we are led to compute
the Lyapunov exponent of the cocycle given by the derivative computed along
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the random orbit, namely we define the random Lyapunov exponent (RLE) Λ̄
as

Λ̄ := lim
n→∞

1

n
log |D(Tηn ◦ · · · ◦ Tη1)(x)|, (43)

for almost every sequence (ηk) ∈ [0, 1]N with respect to the measure Leb⊗N (see
Section 3.4), and almost every x ∈ I with respect to the stationary measure µn.
By using the notation introduced in Section 3.4: x̄k(x) := Tηk ◦ · · · ◦ Tη1(x),
with x̄0(x) = x, formula (43) is equal to

Λ̄ = lim
n→∞

1

n

n∑
k=1

log |T ′ηk(x̄k−1)|, (44)

again for Leb⊗N-a.e. (ηk) ∈ [0, 1]N and µn-a.e. x ∈ I. By using the ergodic
theorem for random transformations, see [47] or [8, Section 3.1], we have that

Λ̄ =

∫
log |T ′η(x)|dµn(x)dη.

Notice that if we compare this random exponent with Λ, we see that the differ-
ence between the two is bounded by

|Λ− Λ̄| ≤
∫ ∣∣log |T ′η(x)| − log |T ′(x)|

∣∣dµn(x)dη.

By using expression (26) for Tη, we can bound the error term in a more explicit
way as

|Λ− Λ̄| ≤
∫ ∣∣∣∣log

∣∣∣1 +
q̃n(η)σ′(x)

T ′(x)

∣∣∣∣∣∣∣hn(x)dxdη.

Since σ′ is bounded over Iε,Γ, log |T ′| ∈ Lp, p ≥ 1, and finally ‖hn‖q ≤ Cq for
all n, we have

|Λ− Λ̄| ≤ Cq
∫ ∥∥∥∥log

∣∣∣1 +
q̃n(η)σ′

T ′

∣∣∣∥∥∥∥
p

dη.

We expect that this error converges to zero for large n, since the quantile func-
tion converge to zero almost everywhere. Table 1 in Section 5.2 shows that, in
fact, the error remains very small even for small values of n.

It is known that whenever the random Lyapunov exponent (43) is positive,
then it equals the random entropy, which is the random generalization of the
Kolmogorov-Sinai entropy: this equality is called the entropy formula. Roughly
speaking, the random entropy computes the limit of the Shannon entropy of the
join partition generated by the successive application of the backward images
of the random maps on an initial generating partition, aka the entropy rate.
We defer to [47, Theorem 1.3] for the precise definition and [8, Theorem 3.2]
for the connection with the RLE. What is important for us is that the random
entropy coincides with the much easier object which is the RLE when the latter
is positive.
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In Corollary 4.11 we proved that the Lyapunov exponent (28) may be neg-
ative, and there is strong numerical evidence that the RLE (44) is also neg-
ative for certain parameters; see Section 5.2. By assuming that the RLE is
negative or zero, we then get that the random entropy is also zero, by using an-
other important result connecting entropy and Lyapunov exponents, namely the
Margulis-Ruelle inequality (see for instance [66]), which states that the metric
entropy is bounded by the maximum between zero and the sum of the positive
Lyapunov exponents. The random version of this inequality, which we use, has
been proved by Kifer in [47, Theorem 1.4].

We should now stress the interesting fact that although the entropy is
zero, the Markov chain mixes exponentially fast, as we pointed out in Re-
mark B.3. This means that for any observables f ∈ L1, g ∈ BV the corre-
lations

∫
(Lk

n
f)(x)g(x)dx converge to

∫
f(x)dµn(x)

∫
g(x)dx exponentially fast

when k →∞. This result can be stated in a more suggestive way by relying on
random transformations. By using the notations introduced in Section 3.4, we
can in fact rewrite the previous correlation in terms of composition of randomly
chosen maps and say that there exist 0 < v < 1 and C > 0, depending only on
the system, such that, for all k ≥ 0,∣∣∣∣∫∫ f(x)g(Tηk ◦ · · · ◦ Tη1(x))dηdx−

∫
fdµn

∫
g(x)dx

∣∣∣∣ ≤ Cvk‖f‖1‖g‖BV .
This exponential decay of correlations is a consequence of the spectral gap pre-
scribed by the quasi-compactness of the Markov operator proved in Proposi-
tion B.2, and of the uniqueness of the absolutely continuous stationary measure,
see [12] for details; of course these properties hold even when the Lyapunov ex-
ponent is negative or zero.

Appendix C: Details on the CNN’s architectures

The architectures of CNN1 and CNN2(k) used in Section 6 are schematized in
Fig. 12. In particular the only difference between CNN1 and CNN2(k) is on
the dimension of the final layer (three and two, respectively) and on the loss
(categorical cross-entropy and mean square error, respectively). In general, a
convolutional layer is composed of nf filters and each filter is associated with one
kernel that is applied to a small moving window of the time-series; for instance,
in our first convolutional layer (indicated by Conv1D in Fig. 12) nf = 128 and
all the windows are of width 2 (this number is not displayed in the standard
Python output). The outputs of one convolutional layer are connected to the
next layer. The weights of these connections constitute the NN parameters to
be optimized. After seven convolutions, the output is passed to a sequence of
dense layers, which concludes the NN. We use the rectified linear unit (ReLU)
function as activation function.

Now, we describe the experimental setup. The implementation is carried
out in Python. To generate training and testing data we simulate one million
samples. CNN1 is optimized with the stochastic gradient descent method by
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Model CNN1: "convolutional_categorical_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 59, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 58, 128) 384
_________________________________________________________________
conv1d_2 (Conv1D) (None, 29, 64) 16448
_________________________________________________________________
conv1d_3 (Conv1D) (None, 15, 64) 8256
_________________________________________________________________
conv1d_4 (Conv1D) (None, 8, 64) 8256
_________________________________________________________________
conv1d_5 (Conv1D) (None, 4, 64) 8256
_________________________________________________________________
conv1d_6 (Conv1D) (None, 2, 64) 8256
_________________________________________________________________
conv1d_7 (Conv1D) (None, 1, 64) 8256
_________________________________________________________________
flatten (Flatten) (None, 64) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 8320
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
dense_3 (Dense) (None, 3) 195
=================================================================
Trainable params: 74,883

Model CNN2: "convolutional_model"
...
_________________________________________________________________
dense_3 (Dense) (None, 2) 130
=================================================================
Trainable params: 74,818

Figure 12: Architectures of the CNN1 model (Model CNN1) used to estimate the
iterate k and the CNN2(k) model (Model CNN2) used to estimate the parameters
(φ∗, ω) for each k. The two models differ only in the output layer. Meaning of the
table’s header: Layers(type) indicates the type of the employed layer (precisely, Conv1D
indicates the usage of a 1D convolution layer, Dense indicates the usage of a dense
layer). OutputShape : indicates the output shape of the layers, with None indicating
that we do not perform batching. Finally, Param # indicates the number of layer’s
parameters.

using the Adam algorithm [48], the categorical cross-entropy as loss function,
and the accuracy as metric, with a L2 regularization of weights equal to 10−7.
Instead, to optimize CNN2 we use the Mean Squablack Error (MSE) both as
loss function and as metric, again with a L2 regularization of weights equal to
10−7. The batch size is 32 in both cases. The seven convolutional and three
dense layers have a total of 74, 818 trainable parameters.

We point out that different CNN models with different ranges for layers,
dense units, and CNN filters were tested, but they gave us a lower accuracy
and a bigger MSE with respect the one selected. For the sake of space, we
do not report all the experimented architectures; the results and the Python
code are available from the authors upon request. Finally, the L2 regularization
(hyper-)parameter has been chosen as part of the training process by using the
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validation set as that value for which the validation MSE stops decreasing. For
instance, Fig. 13 shows the training MSE and the Validation MSE as a function
of the Regularization factor for CNN1.

Figure 13: Training MSE and the Validation MSE as a function of the Regularization
factor for CNN1

Appendix D: The Chaos Decision Tree Algorithm

The Chaos Decision Tree Algorithm [71] is a non-parametric chaos-detection tool
which has been developed with the goal of being especially robust to measure-
ment noise. It provides an automated processing pipeline which has been showed
to be able to detect the presence (or absence) of chaos in noisy recordings, even
for difficult edge cases. We use it in our work to identify periodic/chaotic time
series without any reference to our model. It is meant to provide an indepen-
dent check on the existence of chaotic behaviour in leverage time series and to
support the evidence that it may depend on the bank’s size.

The algorithm classifies a time-series as either stochastic or periodic, or
chaotic. We now briefly explain how the algorithm works. The first step is
to test if data are stochastic. This is done via surrogate-based approach by
comparing the permutation entropy of the original time-series to the permuta-
tion entropy of random surrogates of that time-series by using a combination
of Amplitude Adjusted Fourier Transform surrogates and Cyclic Phase Per-
mutation surrogates. If the permutation entropy of the original time-series
falls within either surrogate distribution, the time-series is classified as stochas-
tic. If the permutation entropy falls outside the surrogate distribution, then
the algorithm proceeds to de-noise the inputted signal by using the Schreiber’s
noise-blackuction algorithm [67]. Notice that the calculation of the permutation
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entropy relies on two parameters: the permutation order and the time-lag. The
time-lag has been set to 1 as suggested in [71]. The choice of the order of the
permutation is made in order to maximize the detection of chaotic series in our
model.

To test the CDTA algorithm on our model, we first consider the deterministic
map and generate 100 chaotic and 100 periodic time-series of length 59 from the
dynamical core. We then apply CDTA to these series for different values of the
permutation order (∈ {3, . . . , 8}). While the periodicity accuracy is maximized
for a value equal to 8 (92% of the periodic series are correctly detected as such
and the remaining 8% are labeled chaotic), the chaos detection accuracy is
maximized for a choice of the permutation order equal to 5 (65% of the series
are correctly detected as chaotic and the remaining periodic). Because of the
purpose of this paper, we fix the permutation order to 5, but we have checked
that the conclusions of our data analysis (in particular Table 4) would have been
the same with a different choice.

At this point, the algorithm checks for signal oversampling and, if the data
are over-sampled, the algorithm iteratively down-samples the data until they are
no longer over-sampled. Finally, CDTA performs the 0-1 chaos test [42] on the
input data. Ref. [71] points out that the 0-1 chaos test has been modified from
the original one to be less sensitive to noise. Then, it suppresses the correlations
arising from quasi-periodicity, and normalizes the standard deviation of the test
signal. The value for the parameter that suppresses signal correlations is chosen
based on ROC analyses. The modified 0-1 test provides a single statistic, K,
which approaches 1 for chaotic systems and approaches 0 for periodic systems.
The algorithm sets up a cutoff for K based on the length of the time-series. If
K is greater than the cutoff, the data are classified as chaotic, and if they are
smaller than or equal to the cutoff, they are classified as periodic.

Simulations In this section we present some numerical investigations show-
ing how CDTA performs when simulating (noisy) time-series from the map
described in Section 3.3. Specifically, we run the following two numerical exper-
iments:

(i) First, we simulate time-series from the dynamical core area (i.e. time-series
for which the pairs (φ∗, ω) satisfy condition (C3): T (∆) < c < ∆ < 1).
More precisely, we simulate 500 samples of different lengths and level of
noise, which is captured by the variable n.

(ii) Second, we simulate time-series from outside the dynamical core area (the
map T thus satisfies (C1) or (C2)). The remaining simulation setting
coincides with that in (i).

The procedures explained in (i)–(ii) are also repeated when T is replaced by
its k-th iterate T k, k = 2, 3; see discussion in Section 6. Table 4 collects the
results. We observe that when both n and the time series length are large,
CDTA classifies almost all the time series in the dynamical core as chaotic,
while those outside it are never classified as such. This is quite independent
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Iterate
Series

n
Dynamical core Not dynamical core

length S (%) P (%) C (%) S (%) P (%) C (%)

1

59
5 33.5 5.14 61.4 57.4 4.81 37.7
20 29.3 4.28 66.5 69.9 3.28 26.8
100 24.3 6.99 69.6 88.1 2.94 8.97

295
5 2.2 1.7 96.1 22.5 6.24 71.2
20 0.1 1.9 98 43.8 10.4 45.8
100 0 2.3 97.7 73.8 8.35 17.9

590
5 0 0.7 99.3 13.1 6.08 80.9
20 0 0.4 99.6 33.6 8.5 57.9
100 0 0.4 99.6 66.4 8.04 25.6

1180
5 0 0.1 99.9 10.9 3.44 85.6
20 0 0 100 27.7 5.57 66.8
100 0 0 100 60.2 5.29 34.5

2

59
5 75.7 2.17 22.2 83.8 1.33 14.9
20 80.1 1.65 18.2 92.8 0.26 6.91
100 86.6 1.43 11.9 96.6 0.56 2.81

295
5 39.4 0 60.6 40.5 3.26 56.2
20 38.6 0.6 60.8 70 3.7 26.3
100 21 1.2 77.8 83.9 2.96 13.1

590
5 27.6 0 72.4 25.6 3.23 71.2
20 10.6 0 89.4 52.3 4.24 43.4
100 4.8 0.6 94.6 74.7 2.88 22.4

1180
5 11 0 89 13.7 2.22 84.1
20 0.2 0 99.8 39.4 2.82 57.7
100 0.2 0 99.8 64.1 2.24 33.7

3

59
5 85.3 0.47 14.2 83.9 1.33 14.9
20 84.5 1.17 14.3 92.8 0.26 6.91
100 89.5 1.43 8.79 96.6 0.56 2.81

295
5 36 0 64 40.5 3.26 56.2
20 32.6 0.4 67 70 3.7 26.3
100 23 1.6 75.4 83.9 2.96 13.1

590
5 20.6 0 79.4 25.6 3.23 71.2
20 9.6 0 90.4 52.3 4.24 43.4
100 9.4 0.8 89.8 74.7 2.88 22.4

1180
5 6 0 94 13.7 2.22 84.1
20 2 0 98 39.4 2.82 57.7
100 2.8 0.8 96.4 64.1 2.24 33.7

Table 4: Percentage of time-series detected by the Chaos Decision Tree Algorithm as
stochastic (S), periodic (P) and chaotic (C) in the dynamical core and its complement
as a function of the time-series length and n for different iterates of the map.
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on k. By decreasing either n or the time series length, the classification is less
precise and this effect is stronger for larger values of k. In the regime of length
comparable with our empirical data (N = 59), roughly a third (for k = 1) or
up to 85% (for k = 3) of the time series in the dynamical core are classified
as stochastic, showing the limits of the CDTA when the time series are short
and/or the noise is large.
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