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Abstract. This paper is devoted to investigating the well-posedness and asymptotic behavior of a class of stochastic4
nonlocal partial differential equations driven by nonlinear noise. First, the existence of a weak martingale solution is estab-5
lished by using the Faedo-Galerkin approximation and an idea analogous to Da Prato and Zabczyk [12]. Second, we show6
the uniqueness and continuous dependence on initial values of solutions to the above stochastic nonlocal problem when there7
exist some variational solutions. Third, the asymptotic local stability of steady-state solutions is analyzed either when the8
steady-state solutions of the deterministic problem is also solution of the stochastic one, or when this does not happen. Next,9
to study the global asymptotic behavior, namely, the existence of attracting sets of solutions, we consider an approximation10
of the noise given by Wong-Zakai’s technique using the so called colored noise. For this model, we can use the power of11
the theory of random dynamical systems and prove the existence of random attractors. Eventually, particularizing in the12
cases of additive and multiplicative noise, it is proved that the Wong-Zakai approximation models possess random attractors13
which converge upper-semicontinuously to the respective random attractors of the stochastic equations driven by standard14
Brownian motions. This fact justifies the use of this colored noise technique to approximate the asymptotic behavior of the15
models with general nonlinear noises, although the convergence of attractors and solutions is still an open problem.16
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1. Introduction. Nowadays, a big amount of researchers develop stochastic systems to model phe-20

nomena from real world in a more realistic way, as can be seen in the published literature (for instance,21

[6, 8, 17, 19, 21, 25, 31] and references therein). In this paper, we are concerned with a stochastic version22

of a nonlocal partial differential equation, which has been well studied by M. Chipot and his collaborators23

(see [9, 10, 11]), to model the behavior of a migrating population in a bounded habitat or problems with24

magneto-elastic interactions. Precisely, we are interested in performing a rigorous study of well-posedness25

and dynamics of the following stochastic nonlocal reaction-diffusion equation,26 
∂u
∂t − a(l(u))∆u = f(u) + h(t) + g(t, u)dWdt ,

u = 0,

u(x, τ) = u0(x),

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(1.1)27

28

where τ ∈ R, function a ∈ C(R;R+) and there exist two positive constants m and m̃, such that29

(1.2) m ≤ a(s) ≤ m̃, ∀s ∈ R.30

Moreover, let l ∈ L(L2(O);R), f ∈ C(R) and there exist positive constants α1, α2, η, κ and p > 2, such31

that32

(1.3) (f(s)− f(r))(s− r) ≤ η(s− r)2, ∀s, r ∈ R,33
34

(1.4) − κ− α1|s|p ≤ f(s)s ≤ κ− α2|s|p, ∀s ∈ R.35

From (1.4), we can deduce that there exists β > 0, such that36

(1.5) |f(s)| ≤ β(|s|p−1 + 1), ∀s ∈ R.37
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2 J.H. XU, AND T. CARABALLO

In addition, let (Ω,F , {Ft}t≥0,P) be a stochastic basis with expectation E, K and U be two separable38

Hilbert spaces. Let W (t) be a cylindrical Wiener process with values in K defined on the stochastic39

basis. Denote by L2(K,U) the set of Hilbert-Schmidt operators from K to U . Eventually, let the initial40

value u0 ∈ L2(O) and non-autonomous term h ∈ L2
loc(R;H−1(O)). The operator l acting on u must be41

understood as (l, u), but for short we keep the notation l(u).42

Now, we impose smoothness condition on the domain, namely, we require O ⊂ RN to be a bounded43

open set of class Ck, with k ≥ 2 such that k ≥ N(p− 2)/(2p).44

Initially, our intention was to prove the well-posedness of problem (1.1) in the sense of Definition 2.645

by following the variational technique which was originally introduced by Pardoux in his thesis [23], and46

subsequently in many other papers dealing with stochastic partial differential equations in the variational47

framework (see, e.g. [5, 7, 8, 24]). However, on the one hand, the appearance of the nonlocal term a(·) in48

our problem makes the analysis more involved, since the main operator, a(l(u))∆u, does not satisfy the49

standard assumptions of monotonicity which are required in the aforementioned variational set-up. On the50

other hand, In the deterministic case (cf. [32]), the compactness method for nonlinear partial differential51

equations is somehow easier: when Lp bounds on the approximating solutions have been proved, the52

approximating equations readily give us estimates on the derivatives, and this implies strong convergence53

of some subsequence, while this strategy does not extend to the stochastic case since the solutions are54

not differentiable (cf. [14]). Therefore, by carrying out a careful analysis in a satisfactory way, some55

conclusions are obtained as follows:56

• When l ∈ L(L2(O);R), we are able to prove the existence of a solution (see Theorem 2.8) in a57

weaker sense, the so called martingale solution (see Definition 2.7).58

• One should expect some positive answers, in some particular cases, about existence of variational59

solution to problem (1.1). In fact, when l is not a bounded linear operator as in our current case,60

for instance, when the functional l is given by l(u) = ‖u‖2
H1

0
, the existence and uniqueness of61

solution of the following problem62 
ut − a(‖u‖2

H1
0
)∆u = f(u) + h(t), (t, x) ∈ (0,∞)×O,

u = 0, (t, x) ∈ (0,∞)× ∂O,
u(0, x) = u0(x), x ∈ O,

63

were shown in [3]. Moreover, recently, the authors studied in [4] the existence and uniqueness of64

variational solution to the stochastic version of the above problem,65 
ut = a(‖u‖2

H1
0
)∆u+ f(u) + h(t, x) + σ(u)dw(t), (t, x) ∈ (τ,∞)×O,

u = 0, (t, x) ∈ (τ,∞)× ∂O,
u(τ, x) = uτ (x), x ∈ O,

66

by using a monotone iterative approach. Let us point out the key point in the proof is to show
that the nonlocal term −a(‖u‖2

H1
0
)∆u is monotone. This holds true because in [4] it is imposed

that
s→ a(s2)s is non-decreasing.

However, in our case, it is not possible to prove the monotonicity of the operator −a(l(u))∆u since67

l ∈ L(L2(O);R).68

• If we adopted a Picard scheme as in [18, Chapter 3], defining operator A(v) := −a(l(un−1))∆v,
we could construct a sequence {un}∞n=1, whose limit could be the solution of our problem. In this
way, we would overcome the difficulty of proving monotonicity. However, in the last step to prove
{un}∞n=1 is a Cauchy sequence, we would not have enough regularity to ensure the stopping time

tnN := {τ ≤ t ≤ T : ‖un(t)‖ ≥ N},

is well defined, since un ∈ L2(Ω;L∞(τ, T ;L2(O)))∩L2(Ω;L2(τ, T ;H1
0 (O)))∩Lp(Ω;Lp(τ, T ;Lp(O)))69

for p > 2 by the Itô formula. As a result, we are not able to use a monotone iterative approach70
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method when l ∈ L(L2(O);R). As an alternative, we will show the existence of martingale solu-71

tions to problem (1.1).72

Next, we study the asymptotic local stability when there exist variational solutions to (1.1). Our73

analysis is intended in two directions: (i) We study the behavior of the solutions to the stochastic problem74

around steady-state solutions (equilibria) of the deterministic one (i.e. g ≡ 0), when the latter are not75

necessarily equilibria of the stochastic problem. In this case, we prove exponential convergence (in mean76

square and almost surely) of solutions to (1.1) towards some steady-state solution to the deterministic77

problem; (ii) When the deterministic and stochastic problems have a common steady-state solution, we78

prove a sufficient condition ensuring its asymptotic exponential stability in mean square. However, the79

global asymptotic dynamics cannot be carried out by applying the well-established theory of random80

dynamical systems in the case of nonlinear noisy terms. This leads us to proceed in a different way as we81

will describe below.82

Notice that, for the particular case in which the noise term is linear (additive or multiplicative), the83

existence of random attractors of (1.1) has been analyzed in [33] by exploiting the tools of the theory84

of random dynamical systems. However, when the noise is nonlinear, this theory cannot be applied in a85

suitable way because it is not proved yet that the stochastic problem (1.1) generates a random dynamical86

system. Recently, B. X. Wang and his collaborators (see, e.g., [15, 17, 22, 30]) have initiated a new87

approach to tackle the problem with nonlinear noise. The idea is to replace the noise in (1.1) by a Wong-88

Zakai approximation, denoted by ζδ(θtω), δ ∈ (0, 1] (see details in Section 4), whose integral
∫ t
0
ζδ(θsω) ds89

converges to the Brownian motion Wt(ω), uniformly for t in bounded intervals of time, as δ goes to zero.90

Therefore, we will analyze the following random non-autonomous problem driven by colored noise,91 
∂u
∂t − a(l(u))∆u = f(u) + h(t) + g(t, u)ζδ(θtω),

u = 0,

u(x, τ) = u0(x),

in O × (τ,∞),

on ∂O × (τ,∞),

in O.
(1.6)92

93

Observe that the above random problem can be analyzed for each fixed ω, therefore it generates a random94

dynamical system. Hence, the deterministic techniques can be adopted here to state the well-posedness95

and the existence of a random attractor.96

Naturally, one should expect, at least formally, that the random attractor of (1.6) converges in some97

sense to a random attractor of the limit problem when δ goes to zero. This is a hard problem, there are98

answers only in some special cases. Motived by the previous work, for instance [30], we will particularize99

our study in the cases of additive and multiplicative noise. Indeed, we first study the dynamics of100 
∂u
∂t − a(l(u))∆u = f(u) + φdWdt ,

u = 0,

u(x, τ) = u0,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(1.7)101

102

where, for simplicity, we consider an autonomous version, i.e., h = 0 and g(t, u) = φ ∈ H1
0 (O) ∩H2(O).103

The corresponding approximate problem is104 
∂uδ
∂t − a(l(uδ))∆uδ = f(uδ) + φζδ(θtω),

uδ = 0,

uδ(x, τ) = u0,δ,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(1.8)105

106

where functions a and f satisfy conditions (1.2)-(1.4) with p = 2 and β = Cf . Then, by using appropriate
changes of variable given by Ornstein-Uhlenbeck processes, we prove that both problems generate random
dynamical systems which possess random attractors, denoted by A and Aδ, respectively. Furthermore, it
is shown that Aδ converges upper-semicontinuously to A as δ goes to zero, and the solutions of problem
(1.8) converge to solutions of (1.7). More precisely, if {δn}∞n=1 is a sequence satisfying δn → 0 as n→ +∞,
uδn and u are the solutions of (1.8) and (1.7) with initial values u0,δn and u0, respectively, and if u0,δn → u0
strongly in L2(O) as n→ +∞, then for almost all ω ∈ Ω and t ≥ τ ,

uδn(t; τ, ω, u0,δn)→ u(t; τ, ω, u0) strongly in L2(O) as n→ +∞.
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4 J.H. XU, AND T. CARABALLO

Finally, we carry out a similar analysis in the case of multiplicative noise, i.e.,107 
∂u
∂t − a(l(u))∆u = f(u) + σu ◦ dWdt ,
u = 0,

u(x, τ) = u0,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(1.9)108

109

and the corresponding approximate problem is110 
∂uδ
∂t − a(l(uδ))∆uδ = f(uδ) + σu ◦ ζδ(θtω),

uδ = 0,

uδ(x, τ) = u0,δ,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(1.10)111

112

where ◦ denotes the Stratonovich sense in stochastic term.113

The analysis described above is developed in the following sections. Section 2 is devoted to proving the114

main theorem about existence and construction of a martingale solution. In Section 3, the local asymptotic115

behavior of solutions is considered, proving some exponential decay of solutions of the stochastic problem116

to the steady-state solutions of the deterministic one (i.e., g ≡ 0). The global asymptotic behavior of117

solutions is studied in Section 4 by considering the Wong-Zakai approximate problem of our original one118

(cf. (1.1)). The theory of random non-autonomous dynamical systems is carried out to prove the existence119

of a random non-autonomous attractor for the approximate system (cf. (1.6)), which can be considered120

as a reasonable approximation of the dynamics for our original problem. This claim is justified with121

the analysis developed in sections 5 and 6, where one can check that the attractors and solutions of the122

approximate problems converge, in appropriate sense.123

2. Existence of martingale solutions to problem (1.1). In this section, we use the Faedo-124

Galerkin approximation and an idea analogous to Da Prato and Zabczyk [12] showing the existence of125

a martingale solution to stochastic nonlocal problem (1.1). This theory has received increasing attention126

over the last years (see, e.g. [12, 13, 14, 26]). In what follows, we introduce some necessary notations and127

most of the hypotheses relevant to our analysis.128

2.1. Stochastic setting. Let {Ω,F ,P} be a complete probability space and F = {Ft}t∈[0,T ] an129

increasing and right continuous family of sub σ-algebras of F , such that F0 contains all of P-null sets of F .130

In this manuscript, all stochastic integrals are defined in the sense of Itô and EX denotes the mathematical131

expectation of the stochastic process X = X(t, ω) with respect to P. Given K and U two separable Hilbert132

spaces, W (t) a cylindrical Wiener process with values in K, we denote by L(K,U) the space of continuous133

linear mapping from K to U . By L2(K,U), which is a subspace of L(K,U) consisting of Hilbert-Schmidt134

operators from K to U . It is known that L2(K,U) is a Hilbert space and its norm is denoted by ‖·‖L2(K,U).135

Given p > 1, α ∈ (0, 1), let Wα,p(0, T ;U) be the Sobolev space of all functions u ∈ Lp(0, T ;U) such
that ∫ T

0

∫ T

0

|u(t)− u(s)|p

|t− s|1+αp
dtds <∞,

endowed with the norm

‖u‖pWα,p(0,T ;U) =

∫ T

0

|u(t)|pdt+

∫ T

0

∫ T

0

|u(t)− u(s)|p

|t− s|1+αp
dtds.

For any progressively measurable process f ∈ L2(Ω× [0, T ];L2(K,U)), we denote by I(f) the Itô integral
defined as

I(f)(t) =

∫ t

0

f(s)dW (s), t ∈ [0, T ].

Clearly, I(f) is a progressively measurable process in L2(Ω× [0, T ];U).136
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Lemma 2.1. ([14, Lemma 2.1]) Let p ≥ 2, 0 < α < 1
2 . Then, for any progressively measurable process

f ∈ Lp(Ω× [0, T ];L2(K,U)), we have

I(f) ∈ Lp(Ω;Wα,p(0, T ;U)),

and there exists a constant C(p, α) > 0, independent of f , such that

E‖I(f)‖pWα,p(0,T ;U) ≤ C(p, α)E
∫ T

0

‖f(t)‖pL2(K,U)dt.

2.2. Notations. We also introduce additional notations frequently used throughout the work, for137

simplicity, denote by H = L2(O), V = H1
0 (O) and V ∗ = H−1(O). Identifying H with its dual, we have138

the usual chain of dense and compact embeddings V ⊂ H ⊂ V ∗. We denote by | · |p the norm in Lp(O),139

| · | and ‖ · ‖∗ the norms in H and V ∗, by (·, ·) and ((·, ·)) the scalar products in H and V , respectively,140

and by < ·, · > the duality product between V and V ∗. At last, let C∞c (O) be the space of all functions141

of class C∞ with compact supports contained in O.142

Given real numbers a < b and p > 1, we will denote by Ip(a, b;H) the space of all processes X ∈143

Lp(Ω × (a, b),F ⊗ B((a, b)), dP ⊗ dt;H), where B((a, b)) denotes the Borel σ-algebra on (a, b), such that144

X(t) is Ft-measurable for a.e. t ∈ (a, b). Moreover, the space Ip(a, b;H) is a closed subspace of Lp(Ω ×145

(a, b),F ⊗ B((a, b)), dP⊗ dt;H).146

Denote by A = −∆ with Dirichlet boundary condition in our problem, and let D(A) be the domain of
A. In this way, the linear operator A : D(A) := V ∩H2(O) ⊂ V → H is positive, self-adjoint with compact
resolvent. We denote by 0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of A, and by e1, e2, · · · , a corresponding
complete orthonormal system in L2(O) of eigenvectors of A. Recall that for every v ∈ V , the Poincaré
inequality

λ1(O)|v|2 ≤ ‖v‖2

holds. In the sequel, unless otherwise specified, we write λ1 instead of λ1(O).147

2.3. Assumptions on g. Let g : (τ, T )×H → L2(H,H) satisfy:148

g1) g(t, 0) = 0 and ‖g(t, u)− g(t, v)‖L2(H,H) ≤ Lg|u− v|, ∀u, v ∈ H, a.e. t ∈ (τ, T );149

g2) For every ρ ∈ C∞c (O), the mapping H 3 u→< g(t, u), ρ >:= g(t, u)(ρ) ∈ H is continuous for a.e.150

t ∈ (τ, T ).151

Remark 2.2. We will show detailedly the proof of existence of martingale solutions to problem (1.1)152

in the next theorem. To present ideas clearly, we simply do estimations on g(u) instead of g(t, u). Indeed,153

the idea and procedures to obtain existence of martingale solutions to (1.1) with g(t, u) are similar, we154

only need to consider for every t ∈ (τ, T ], ũ(t) is F̃t-measurable, for more details, see [13].155

2.4. Preliminaries. We now recall the following results which will be needed to prove the existence156

of martingale solutions.157

Lemma 2.3. ([14, Theorem 2.1]) Let B0 ⊂ B ⊂ B1 be Banach spaces, B0 and B1 be reflexive, with
compact embedding of B0 in B. Let p ∈ (1,∞) and α ∈ (0, 1), let X be the space

X = Lp(0, T ;B0) ∩Wα,p(0, T ;B1)

endowed with the natural norm. Then the embedding of X in Lp(0, T ;B) is compact.158

Lemma 2.4. ([12, Skorohod theorem]) Let X be a complete, separable metric space. For an arbitrary159

sequence {µn}, which is tight on (X,B(X)), there exists a subsequence {µnk} which converges weakly to a160

probability measure µ, and a probability space (Ω,F ,P) with X-valued Borel measurable random variables161

xn and x, such that µn is the distribution of xn, µ is the distribution of x and xn → x, P-a.s.162

Lemma 2.5. ([26, Vitali’s convergence theorem]) Let p ∈ [1,∞), xn ∈ Lp(Ω), and xn converge to x in163

probability. Then the following statements are equivalent:164

1. limn→∞ xn = x in Lp(Ω);165

2. |xn|p is uniformly integrable;166
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6 J.H. XU, AND T. CARABALLO

3. limn→∞ E[|xn|p] = E[|x|p].167

Particularly, if supn E[|xn|q] < ∞ for some p < q < ∞, or if there exists a y ∈ Lp(Ω) such that |xn| < y168

for all n, then the above properties hold true.169

2.5. Definitions of solutions. We introduce the concepts of solution of problem (1.1).170

Definition 2.6. (Variational solution) A solution of (1.1) is a stochastic process u ∈ I2(τ, T ;V ) ∩171

L2(Ω;C(τ, T ;H)) ∩ Ip(τ, T ;Lp(O)) for all T ≥ τ , with the initial value u(τ) = u0 ∈ L2(Ω;H), such that172

u(t) = u0 +

∫ t

τ

a(l(u(s)))∆u(s)ds+

∫ t

τ

f(u(s))ds+

∫ t

τ

h(s)ds

+

∫ t

τ

g(u(s))dW (s), P-a.s. ∀t ∈ (τ, T ],

173

where the above integro-equality should be understood in V ∗+Lq(O), and q is the conjugate exponent of p.174

Definition 2.7. (Martingale solution) We say there exists a martingale solution of equation (1.1) if175

there exist176

• a stochastic basis (Ω̃, F̃ , ˜{Ft}t≥0, P̃);177

• a cylindrical Wiener process W̃ on the space H;178

• a progressively measurable process ũ : [τ, T ]× Ω̃→ H with P̃-a.e. paths

ũ(·, ω) ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H) ∩ Lp(τ, T ;Lp(O)),

such that for all t ∈ [τ, T ] and v ∈ V ∩ Lp(O),179

(ũ(t), v) +

∫ t

τ

a(l(ũ(s))) < Aũ(s), v > ds = (ũ0, v) +

∫ t

τ

(f(ũ(s)), v)ds

+

∫ t

τ

< h(s), v > ds+

(∫ t

τ

g(ũ(s))dW̃ (s), v

)
,

(2.1)180

where the identity holds P̃-a.s.181

2.6. Main results. We now prove the existence of martingale solutions to problem (1.1) after pre-182

senting all the required conditions, lemmas and techniques.183

Theorem 2.8. Assume that a ∈ C(R;R+) satisfies (1.2), f ∈ C(R) fulfills (1.3)-(1.4), g : H →184

L2(H,H) satisfies g1)-g2). Moreover, h ∈ L2
loc(R;V ∗) and l ∈ L(L2(O);R). Then, for every initial datum185

u0 ∈ H, there exists at least one martingale solution to problem (1.1).186

Proof. We split the proof into several steps.187

Step 1. Faedo-Galerkin approximation. Making use of spectral theory, we recall that {ei}∞i=1188

is the orthonormal basis of H consisting of the eigenfunctions of A in V . Observe that, thanks to the189

regularity imposed on the domain O, each eigenfunction ei ∈ Lp(O).190

Before going further, we first define two projection operators related to191

Pn : H −→ Vn := span[e1, · · · , en],

φ −→
n∑
i=1

(φ, ei)ei.
192

The first one is given by193

P 1
n : V ∗ −→ V ∗,

v −→ [φ ∈ V →< P 1
nv, φ >:=< v, Pnφ >].

194
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To define the second one, we recall that A = −∆ with homogeneous Dirichlet boundary condition, i.e. the
isomorphism from V into V ∗, which can be also seen as an unbounded operator in H. Let us consider the
domains of fractional powers of A,

D(Ak/2) = {u ∈ H :
∑
i≥1

λki (u, ei)
2 <∞}.

Now we are ready to define the second projection operator, which is given by195

P 2
n : Lq(O) −→ D(A−k/2),

v −→ [φ ∈ D(Ak/2)→< P 2
nv, φ >D(A−k/2),D(Ak/2):= (v, Pnφ)].

196

Observe that P 1
n and P 2

n are the continuous extensions in V ∗ and Lq(O) of Pn, respectively. Therefore,197

from now on we will denote both projections by Pn making an abuse of notation.198

Let us consider the classical Faedo-Galerkin approximation in the space Vn,199 {
dun(t) = [−a(l(un(t)))Aun(t) + Pnf(un(t)) + Pnh(t)] dt+ Png(un(t))dW (t), t ∈ (τ, T ],

un(τ) = Pnu0.
(2.2)200

201

In what follows, we will show for all n ∈ N, there exist three positive constants C1, C2 and C3, such that202

(2.3) E
[

sup
τ≤t≤T

|un(t)|2
]
≤ C1,203

204

(2.4) E
∫ T

τ

‖un(t)‖2dt ≤ C2,205

and206

(2.5) E
∫ T

τ

|un(t)|ppdt ≤ C3.207

Applying the Itô formula to |un|2 (n ≥ 1) and integrating from τ to T , we have208

|un(t)|2 = |Pnu0|2 + 2

∫ t

τ

a(l(un(s))) < −Aun(s), un(s) > ds+ 2

∫ t

τ

(Pnf(un(s)), un(s))ds

+ 2

∫ t

τ

< Pnh(s), un(s) > ds+ 2

∫ t

τ

(un(s), Png(un(s))dW (s))

+

∫ t

τ

‖Png(un(s))‖2L2(H,H)ds, a.e. t ∈ (τ, T ].

209

Making use of (1.2) and (1.4), we obtain210

|un(t)|2 + 2m

∫ t

τ

‖un(s)‖2ds+ 2α2

∫ t

τ

|un(s)|ppds ≤ |u0|2 + 2κ|O|(T − τ)

+ 2

∫ t

τ

‖h(s)‖∗‖un(s)‖ds+ 2

∫ t

τ

(un(s), Png(un(s))dW (s))

+

∫ t

τ

‖Png(un(s))‖2L2(H,H)ds, a.e. t ∈ (τ, T ].

211

Applying the Young inequality and taking into account of g1) to the above inequality, we arrive at212

|un(t)|2 +m

∫ t

τ

‖un(s)‖2ds+ 2α2

∫ t

τ

|un(s)|ppds ≤ |u0|2 + 2κ|O|(T − τ) +
1

m

∫ t

τ

‖h(s)‖2∗ds

+ Lg

∫ t

τ

|un(s)|2ds+ 2

∫ t

τ

(un(s), Png(un(s))dW (s)) .

(2.6)213
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8 J.H. XU, AND T. CARABALLO

Taking supremum and expectation on both sides of (2.6), by means of the Burkholder-Davis-Gundy in-214

equality, we derive215

E
[

sup
τ≤s≤t

|un(s)|2
]
≤ 2E|u0|2 + 4κ|O|(T − τ) +

2

m
E
∫ t

τ

‖h(s)‖2∗ds

+ 2
(
1 + 2C2

b

)
Lg

∫ t

τ

E
[

sup
τ≤r≤s

|un(r)|2
]
ds,

216

where Cb is the constant derived from Burkholder-Davis-Gundy estimate. By iterating the preceding217

inequality, we obtain218

E
[

sup
τ≤s≤t

|un(s)|2
]
≤
(

2E|u0|2 + 4κ|O|(T − τ) +
2

m
E
∫ t

τ

‖h(s)‖2∗ds
)

×
n−1∑
i=0

(2(1 + 2C2
b )Lg)

i(t− τ)i

i!
≤ e(2+4C2

b )Lg(T−τ)≤ const.
219

Moreover, it follows from (2.6) that220

mE
∫ t

τ

‖un(s)‖2ds ≤ E|u0|2 + 2κ|O|(T − τ) +
1

m
E
∫ t

τ

‖h(s)‖2∗ds+ Lg

∫ t

τ

E
[

sup
τ≤r≤s

|un(r)|2
]
ds,221

and222

2α2E
∫ t

τ

|un(s)|ppds ≤ E|u0|2 + 2κ|O|(T − τ) +
1

m
E
∫ t

τ

‖h(s)‖2∗ds+ Lg

∫ t

τ

E
[

sup
τ≤r≤s

|un(r)|2
]
ds.223

Thus, the desired results (2.3)-(2.5) are proved.224

Step 2. Tightness. For each n ∈ N, the solution un of the Galerkin equation defines a measure225

L(un) on L2(τ, T ;V )∩L∞(τ, T ;H)∩Lp(τ, T ;Lp(O)). Using lemmas 2.1 and 2.3, together with estimates226

(2.3)-(2.5), we will prove the tightness of this set of measures.227

Decompose now un as228

un(t) = Pnu0 −
∫ t

τ

a(l(un(s)))Aun(s)ds+

∫ t

τ

Pnf(un(s))ds+

∫ t

τ

Pnh(s)ds

+

∫ t

τ

Png(un(s))dW (s) = I1n + I2n + I3n + I4n + I5n.

(2.7)229

We will estimate each term of (2.7). Since u0 ∈ H, it is easy to check there exists a constant C4, such that

E|I1n|2 ≤ C4.

For I2n, by (1.2), (2.4), the Hölder inequality and Fubini Theorem, there exists a constant C5, such that230

E‖I2n‖2W 1,2(τ,T ;V ∗) = E‖I2n‖2L2(τ,T ;V ∗) + E‖dI
2
n

dt
‖2L2(τ,T ;V ∗)

= E
∫ T

τ

∥∥∥∥∫ t

τ

−a(l(un(s)))Aun(s)ds

∥∥∥∥2
∗
dt+ E

∫ T

τ

‖ − a(l(un(s)))Aun(s)‖2∗ds

≤ m̃2(T − τ)E
∫ T

τ

∫ t

τ

‖ −Aun(s)‖2∗dsdt+ m̃2E
∫ T

τ

‖ −Aun(t)‖2∗dt

≤ C
(
m̃2(T − τ)2 + m̃2

)
E
∫ T

τ

‖un(t)‖2dt ≤ C5.

231
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For I3n, let q = p
p−1 ∈ (1, 2) be the conjugate of p, we first derive the following estimate by (1.5),232

|f(un)|qq =

∫
O
|f(un)|qdx ≤ βq

∫
O

(|un|p−1 + 1)qdx ≤ 2q−1βq
∫
O
|un|q(p−1)dx+ 2q−1βq|O|

:= 2q−1βq|un|pp + 2q−1βq|O|.
233

Observe that Pnf(un) ∈ Lq(τ, T ;H−k(O)) since f(un) ∈ Lq(τ, T ;Lq(O)). By the above inequality, (2.5),234

the Hölder inequality and Fubini Theorem, there exists a constant C6, such that235

E‖I3n‖
q
W 1,q(τ,T ;H−k(O))

= E‖I3n‖
q
Lq(τ,T ;H−k(O))

+ E‖dI
3
n

dt
‖q
Lq(τ,T ;H−k(O))

= E
∫ T

τ

∣∣∣∣∫ t

τ

Pnf(un(s))ds

∣∣∣∣q
H−k(O)

dt+ E
∫ T

τ

|Pnf(un(t))|q
H−k(O)

dt

≤ E
∫ T

τ

(∫ t

τ

|Pnf(un(s))|H−k(O)ds

)q
dt+ E

∫ T

τ

|f(un(t))|qqdt

≤
(

(T − τ)
1
p−1+1 + 1

)
E
∫ T

τ

|f(un(t))|qqdt ≤ C6.

236

For I4n, by the Hölder inequality and Fubini Theorem, there exists a constant C7, such that237

E‖I4n‖2W 1,2(τ,T ;V ∗) = E‖I4n‖2L2(τ,T ;V ∗) + E‖dI
4
n

dt
‖2L2(τ,T ;V ∗)

= E
∫ T

τ

∥∥∥∥∫ t

τ

Pnh(s)ds

∥∥∥∥2
∗
dt+ E

∫ T

τ

‖Pnh(t)‖2∗dt

≤ ((T − τ)2 + 1)E‖h‖2L2(τ,T ;V ∗) ≤ C7.

238

As for the last term I5n, by Lemma 2.1, assumption g1) and (2.3), we know there exists a constant C8(α),
such that for every α ∈ (0, 12 ), we have

E‖I5n‖2Wα,2(τ,T ;H) ≤ C8(α).

Obviously, for α ∈ (0, 12 ), the natural continuous embedding D(Ak/2) ↪→ Hk(O) ↪→ Lp(O) implies

W 1,2(τ, T ;V ∗) ⊂W 1,q(τ, T ;V ∗) ⊂Wα,q(τ, T ;V ∗) ⊂Wα,q(τ, T ;D(A−k/2)),

Wα,2(τ, T ;H) ⊂Wα,q(τ, T ;H) ⊂Wα,q(τ, T ;V ∗) ⊂Wα,q(τ, T ;D(A−k/2)),

and
W 1,q(τ, T ;H−k(O)) ⊂Wα,q(τ, T ;H−k(O)) ⊂Wα,q(τ, T ;D(A−k/2)).

Collecting all the previous estimates for I1n-I5n, together with the above natural embedding results, we
obtain

E‖un‖Wα,q(τ,T ;D(A−k/2)) ≤ C(α),

for all α ∈ (0, 12 ) and C(α) > 0. Actually, thanks to (2.4), we deduce that the laws L(un) are bounded in
probability in

L2(τ, T ;V ) ∩Wα,q(τ, T ;D(A−k/2)).

Additionally, L2(τ, T ;V ) ⊂ Lq(τ, T ;V ), hence, it follows from Lemma 2.3 that L(un) is tight in Lq(τ, T ;H).239

Step 3. Pass to limit. By Step 2, we obtain the set of measures L(un) is tight on the space240

Lq(τ, T ;H). Moreover, Lemma 2.4 implies there exists a stochastic basis (Ω̃, F̃ , {F̃t}t≥0, P̃), and on this241

basis, there exist Lq(τ, T ;H)-valued random variables {ũnk} (k ≥ 1) and ũ, such that242

(2.8) ũnk has the same law as unk on Lq(τ, T ;H) and ũnk → ũ in Lq(τ, T ;H), P̃-a.s.243
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10 J.H. XU, AND T. CARABALLO

In the sequel, let us denote the subsequence ũnk again by ũn.244

Since un ∈ C(τ, T ;PnH), P-a.s. together with the fact that ũn has the same law as un, we derive for
each n ≥ 1,

L(ũn)(C(τ, T ;PnH)) = 1, P̃-a.s.

By similar arguments as (2.3)-(2.5), we know there exist three positive constants C̃1, C̃2 and C̃3, such that245

for all n ≥ 1,246

(2.9) Ẽ
[

sup
τ≤t≤T

|ũn(t)|2
]
≤ C̃1,247

248

(2.10) Ẽ
∫ T

τ

‖ũn(t)‖2dt ≤ C̃2,249

and250

(2.11) Ẽ
∫ T

τ

|ũn(t)|ppdt ≤ C̃3.251

Based on the above estimates, it holds that the sequence {ũn(·, ω)}∞n=1 is uniformly bounded in L∞(τ, T ;H)∩252

L2(τ, T ;V )∩Lp(τ, T ;Lp(O)). Also, (2.8) implies that ũn → ũ in Lq(τ, T ;H), P̃-a.s. Therefore, we conclude253

that254

ũ(·, ω) ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H) ∩ Lp(τ, T ;Lp(O)), P̃-a.s.(2.12)255

We will show now that for each n ≥ 1, the process M̃n with trajectories in C(τ, T ;H) defined as256

(2.13) M̃n(t) = ũn(t)−Pnũ0 +

∫ t

τ

a(l(ũn(s)))PnAũn(s)ds−
∫ t

τ

Pnf(ũn(s))ds−
∫ t

τ

Pnh(s)ds, t ∈ (τ, T ],257

is a square integrable martingale with respect to the filtration F̃n,t = σ{ũn(s), τ ≤ s ≤ t}, having the258

following quadratic variation259

(2.14) 〈〈M̃n〉〉t =

∫ t

τ

Png(ũn(s))g(ũn(s))∗Pnds, t ∈ (τ, T ].260

Indeed, both facts (cf. (2.13)-(2.14)) are true since ũn and un have the same law. To be more precise, we261

define262

Mn(t) = un(t)− Pnu0 +

∫ t

τ

a(l(un(s)))PnAun(s)ds−
∫ t

τ

Pnf(un(s))ds−
∫ t

τ

Pnh(s)ds, t ∈ (τ, T ].263

Obviously, Mn(t) is a square integrable martingale with respect to the filtration Fn,t = σ{un(s), τ ≤ s ≤ t},264

since265

(2.15) Mn(t) =

∫ t

τ

Png(un(s))dW (s), t ∈ (τ, T ].266

It follows from (2.8) that267

(2.16) L(M̃n) = L(Mn), E|Mn(t)| <∞ and Ẽ|M̃n(t)|2 <∞.268

Moreover, let ϕ be a real valued bounded and continuous function on Lq(τ, s;H), τ ≤ s ≤ t ≤ T , as Mn(·)
is a Fn,t = σ{un(s) : τ ≤ s ≤ t} martingale, we obtain for all ψ, ζ ∈ D(Ak/2),

E[〈Mn(t)−Mn(s), ψ〉ϕ(un|[τ,s])] = 0,
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and269

E
[(
〈Mn(t), ψ〉〈Mn(t), ζ〉 − 〈Mn(s), ψ〉〈Mn(s), ζ〉

−
∫ t

s

(g(un(σ))∗Pnψ, g(un(σ))∗Pnζ) dσ

)
ϕ(un|[τ,s])

]
= 0.

270

The notation 〈·, ·〉 denotes the duality between D(Ak/2) and D(A−k/2). Thanks to the fact (2.16)1, we271

have272

(2.17) Ẽ[〈M̃n(t)− M̃n(s), ψ〉ϕ(ũn|[τ,s])] = 0,273

and274

Ẽ
[(
〈M̃n(t), ψ〉〈M̃n(t), ζ〉 − 〈M̃n(s), ψ〉〈M̃n(s), ζ〉

−
∫ t

s

(g(ũn(σ))∗Pnψ, g(ũn(σ))∗Pnζ) dσ

)
ϕ(ũn|[τ,s])

]
= 0.

(2.18)275

We now will take limits in (2.17) and (2.18), let M̃ be a D(A−k/2)-valued process defined by,276

(2.19) M̃(t) = ũ(t)− ũ0 +

∫ t

τ

a(l(ũ(s)))Aũ(s)ds−
∫ t

τ

f(ũ(s))ds−
∫ t

τ

h(s)ds, t ∈ (τ, T ].277

To prove the final result, we first show some auxiliary lemmas.278

Lemma 2.9. Suppose the conditions of Theorem 2.8 are true. Then, for all s, t ∈ (τ, T ] such that s ≤ t279

and for all ψ ∈ D(Ak/2), we have:280

(a) limn→∞(ũn(t), Pnψ) = (ũ(t), ψ), P̃-a.s.281

(b) limn→∞
∫ t
s
< a(l(ũn(σ)))Aũn(σ), Pnψ > dσ =

∫ t
s
< a(l(ũ(σ)))Aũ(σ), ψ > dσ, P̃-a.s.282

(c) limn→∞
∫ t
s
(f(ũn(σ)), Pnψ)dσ =

∫ t
s
(f(ũ(σ)), ψ)dσ, P̃-a.s.283

Proof. Let us fix s, t ∈ (τ, T ], s ≤ t and ψ ∈ D(Ak/2). By (2.9)-(2.12), we obtain284

(2.20)



ũn(·, ω)→ ũ(·, ω) weakly in L2(τ, T ;V ), P̃-a.s.

ũn(·, ω)→ ũ(·, ω) weak-star in L∞(τ, T ;H), P̃-a.s.

ũn(·, ω)→ ũ(·, ω) weakly in Lp(τ, T ;Lp(O)), P̃-a.s.

ũn(·, ω)→ ũ(·, ω) strongly in Lq(τ, T ;H), P̃-a.s.

ũn(t, ω)→ ũ(t, ω) strongly in H, a.e. t ∈ (τ, T ], P̃-a.s.

ũn(t, x, ω)→ ũ(t, x, ω) a.e. (t, x) ∈ (τ, T ]×O, P̃-a.s.

285

Thus, assertion (a) holds true since Pnψ → ψ in H as n→∞, P̃-a.s.286

We now prove (b). On the one hand, since l ∈ L(L2(O);R) and a ∈ C(R;R+), by (2.20)5, we have

l(ũn) = (l, ũn)
n→∞−−−−→ (l, ũ) = l(ũ),

hence, a(l(ũn))→ a(l(ũ)) as n→∞. On the other hand, with the help of fact Pnψ → ψ in V as n→∞,287

we infer that P̃-a.s.288 ∫ t

s

< a(l(ũn(σ)))Aũn(σ), Pnψ > dσ =

∫ t

s

a(l(ũn(σ)))((ũn(σ), Pnψ))dσ

n→∞−−−−→
∫ t

s

a(l(ũ(σ)))((ũ(σ), ψ))dσ =

∫ t

s

a(l(ũ(σ))) < Aũ(σ), ψ > dσ.

289
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Thus, (b) is proved.290

We will now move to the last assertion. It follows from (2.20)6 that ũn(σ, x, ω) → ũ(σ, x, ω) in O for
a.e. (σ, x) ∈ (τ, T ] × O as n → ∞. In addition, f(ũn) is bounded in Lq(τ, T ;Lq(O)), making use of [20,
Lemma 1.3], we obtain f(ũn) → f(ũ) weakly in Lq(τ, T ;Lq(O)). In addition, Pnψ → ψ in Lp(O), thus,
for almsot all ω ∈ Ω̃, we obtain∫ t

s

(f(ũn(σ)), Pnψ)dσ
k→∞−−−−→

∫ t

s

(f(ũ(σ)), ψ)dσ.

The proof of this lemma is complete.291

Lemma 2.10. Suppose the conditions of Theorem 2.8 are true. Then, for all s, t ∈ (τ, T ], every s ≤ t
and ψ ∈ D(Ak/2), we have,

lim
n→∞

Ẽ
[
〈M̃n(t)− M̃n(s), ψ〉ϕ(ũn|[τ,s])

]
= Ẽ

[
〈M̃(t)− M̃(s), ψ〉ϕ(ũ|[τ,s])

]
.

Proof. We will prove this lemma by using Vitali’s convergence theorem (cf. Lemma 2.5). Let us292

fix s, t ∈ (τ, T ], for every ψ ∈ D(Ak/2), by the definition of projection operator Pn defined in Step 1 of293

Theorem 2.8, we derive294

〈M̃n(t)− M̃n(s), ψ〉 = (ũn(t)− ũn(s), Pnψ) +

∫ t

s

a(l(ũn(σ))) < Aũn(σ), Pnψ > dσ

−
∫ t

s

(f(ũn(σ)), Pnψ)dσ −
∫ t

s

< h(σ), Pnψ > dσ.

295

By means of Lemma 2.9 and Pnψ → ψ in V as n→∞, we obtain296

(2.21) lim
n→∞

〈M̃n(t)− M̃n(s), ψ〉 = 〈M̃(t)− M̃(s), ψ〉, P̃-a.s.297

Observe that, ϕ is a real valued bounded and continuous function on Lq(τ, s;H), hence,

lim
n→∞

ϕ(ũn|[τ,s]) = ϕ(ũ|[τ,s]), P̃-a.s. and sup
n∈N
‖ϕ(ũn|[τ,s])‖∞ <∞,

where we have used the notation ‖ · ‖∞ := ‖ · ‖L∞ . Let us define

Xn(ω) :=
(
〈M̃n(t, ω), ψ〉 − 〈M̃n(s, ω), ψ〉

)
ϕ(ũn|[s,τ ]), ω ∈ Ω̃.

According to Vitali’s convergence theorem, we need to check the functions {Xn(ω)}n∈N are uniformly298

integrable, namely,299

(2.22) sup
n≥1

Ẽ|Xn|2 <∞.300

In fact, for each n ∈ N, we have301

(2.23) Ẽ|Xn|2 ≤ 2‖ϕ‖∞‖ψ‖2D(Ak/2)Ẽ
(
|M̃n(t)|2 + |M̃n(s)|2

)
.302

Since M̃n is a continuous martingale with quadratic variation defined in (2.14), by the Burkholder-Davis-303

Gundy inequality, (2.9) and g1), we derive304

Ẽ

[
sup

t∈(τ,T ]

|M̃n(t)|2
]
≤ cẼ

[∫ T

τ

‖Png(ũn(σ))‖2L2(H,H)dσ

]
≤ cLgẼ

[∫ T

τ

|ũn(σ)|2dσ

]
<∞,(2.24)305

here and in the sequel, c is a positive and finite constant obtained by the Burkholder-Davis-Gundy in-306

equality estimate. It follows from (2.23)-(2.24) that (2.22) holds. Since the sequence {Xn}n∈N is uniformly307

integrable and by (2.21), it is P̃-a.s. pointwise convergent, application of the Vitali convergence theorem308

completes the proof of this lemma.309
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Lemma 2.11. Suppose the conditions of Theorem 2.8 are true. Then, for all s, t ∈ (τ, T ], s ≤ t, every310

ψ and ζ ∈ D(Ak/2), we have311

lim
n→∞

Ẽ
[(
〈M̃n(t), ψ〉〈M̃n(t), ζ〉 − 〈M̃n(s), ψ〉〈M̃n(s), ζ〉

)
ϕ(ũn|[τ,s])

]
= Ẽ

[(
〈M̃(t), ψ〉〈M̃(t), ζ〉 − 〈M̃(s), ψ〉〈M̃(s), ζ〉

)
ϕ(ũ|[τ,s])

]
.

312

Proof. Let us fix s, t ∈ (τ, T ], where s ≤ t, for all ψ, ζ ∈ D(Ak/2), we define

Xn(ω) :=
[(
〈M̃n(t), ψ〉〈M̃n(t), ζ〉 − 〈M̃n(s), ψ〉〈M̃n(s), ζ〉

)
ϕ(ũn|[τ,s])

]
, ω ∈ Ω̃.

X(ω) :=
[(
〈M̃(t), ψ〉〈M̃(t), ζ〉 − 〈M̃(s), ψ〉〈M̃(s), ζ〉

)
ϕ(ũ|[τ,s])

]
, ω ∈ Ω̃.

By Lemma 2.9, we derive limn→∞Xn(ω) = X(ω) for P̃-almost all ω ∈ Ω̃.313

Next, we will prove that the functions {Xn}n∈N are uniformly integrable. To this end, it is enough to314

check315

(2.25) sup
n≥1

Ẽ|Xn|p/2 <∞.316

Notice that,317

(2.26) Ẽ|Xn|p/2 ≤ 2‖ϕ‖p/2∞ ‖ψ‖
p/2

D(Ak/2)
‖ζ‖p/2

D(Ak/2)
Ẽ
(
|M̃n(t)|p + |M̃n(s)|p

)
.318

The same arguments as in Lemma 2.10 deduces that319

Ẽ

[
sup

t∈(τ,T ]

|M̃n(t)|p
]
≤ cẼ

(∫ T

τ

‖Png(ũn(σ))‖2L2(H,H)dσ

)p/2

≤ cLp/2g Ẽ

(∫ T

τ

|ũn(σ)|2dσ

)p/2
<∞.

(2.27)320

By (2.27)-(2.26), the conclusion (2.25) holds true. The Vitali convergence theorem shows321

lim
n→∞

Ẽ[Xn(ω)] = Ẽ[X(ω)].322

Thus, the proof of this lemma is finished.323

Lemma 2.12. (Convergence in quadratic variation) Suppose the conditions of Theorem 2.8 are true.324

Then, for any s, t ∈ (τ, T ] and s < t, every ψ, ζ ∈ D(Ak/2), we have325

lim
n→∞

Ẽ
[(∫ t

s

(g(ũn(σ))∗Pnψ, g(ũn(σ))∗Pnζ)dσ

)
ϕ(ũn|[τ,s])

]
= Ẽ

[(∫ t

s

(g(ũ(σ))∗ψ, g(ũ(σ))∗ζ)dσ

)
ϕ(ũ|[τ,s])

]
.

326

Proof. Let us fix ψ, ζ ∈ D(Ak/2), we denote327

Xn(ω) :=

(∫ t

s

(g(ũn(σ))∗Pnψ, g(ũn(σ))∗Pnζ)dσ

)
ϕ(ũn|[τ,s]).328

We will check the functions Xn are uniformly integrable and convergent P̃-a.s.329
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Uniform integrability. It is enough to show that330

(2.28) sup
n≥1

Ẽ|Xn|p/2 <∞.331

Since ψ, ζ ∈ D(Ak/2), by g1), for almost all ω ∈ Ω̃, we obtain332

|g(ũn(σ, ω))∗Pnψ| ≤ ‖g(ũn(σ, ω))‖L2(H,H)|Pnψ| ≤
√
Lg|ũn(σ, ω)|‖ψ‖D(Ak/2).333

Thus, by means of the fact that for almost all ω ∈ Ω̃, ũn(ω) ∈ Lp(τ, T ;Lp(O)), g1) and the Young334

inequality, together with the above estimate, we have335

|Xn|p/2 =

∣∣∣∣(∫ t

s

(g(ũn(σ))∗Pnψ, g(ũn(σ))∗Pnζ)dσ

)
ϕ(ũn|[τ,s])

∣∣∣∣p/2
≤ ‖ϕ‖p/2∞

(∫ t

s

(g(ũn(σ))∗Pnψ, g(ũn(σ))∗Pnζ)dσ

)p/2
≤ Lp/2g ‖ϕ‖p/2∞ ‖ψ‖

p/2

D(Ak/2)
‖ζ‖p/2

D(Ak/2)

(∫ t

s

|ũn(σ)|2dσ
)p/2

≤ Lp/2g ‖ϕ‖p/2∞ ‖ψ‖
p/2

D(Ak/2)
‖ζ‖p/2

D(Ak/2)

(∫ t

s

1
p
p−2 dσ

) p−2
2
∫ t

s

|ũn(σ)|ppdσ

≤ Lp/2g (T − τ)
p−2
2 ‖ϕ‖p/2∞ ‖ψ‖

p/2

D(Ak/2)
‖ζ‖p/2

D(Ak/2)
‖ũn‖pLp(τ,T ;Lp(O)).

336

Consequently, by (2.11), we have337

sup
n≥1

Ẽ|Xn|p/2 ≤ Lp/2g (T − τ)
p−2
2 ‖ϕ‖p/2∞ ‖ψ‖

p/2

D(Ak/2)
‖ζ‖p/2

D(Ak/2)
Ẽ‖ũn‖pLp(τ,T ;Lp(O)) <∞,338

which implies (2.28) holds.339

Pointwise convergence on Ω̃. Let us fix ω ∈ Ω̃ such that

ũn(·, ω)→ ũ(·, ω) in Lq(τ, T ;H).

We will show340

lim
n→∞

∫ t

s

(g(ũn(σ, ω))∗Pnψ, g(ũn(σ, ω))∗Pnζ)dσ =

∫ t

s

(g(ũ(σ, ω))∗ψ, g(ũ(σ, ω))∗ζ)dσ.341

Indeed, it is sufficient to prove342

(2.29) g(ũn(·, ω))∗Pnψ
n→∞−−−−→ g(ũ(·, ω))∗ψ in L2(s, t;H).343

Notice that,344 ∫ t

s

|g(ũn(σ, ω))∗Pnψ − g(ũ(σ, ω))∗ψ|2 dσ

≤
∫ t

s

(|g(ũn(σ, ω))∗(Pnψ − ψ)|+ |g(ũn(σ, ω))∗ψ − g(ũ(σ, ω))∗ψ|)2 dσ

≤ 2

∫ t

s

‖g(ũn(σ, ω))∗‖2L2(H,H)|Pnψ − ψ|
2dσ + 2

∫ t

s

|g(ũn(σ, ω))∗ψ − g(ũ(σ, ω))∗ψ|2dσ

:= 2J1(n) + 2J2(n).

345
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Let us first consider J1(n), since ψ ∈ D(Ak/2), we have limn→∞ ‖Pnψ − ψ‖ = 0 , by g1) and the fact346

that ũn ∈ L∞(τ, T ;H) for almost all ω ∈ Ω̃, we have347 ∫ t

s

‖g(ũn(σ, ω))‖2L2(H,H)dσ ≤ Lg
∫ t

s

|ũn(σ, ω)|2dσ ≤ Lg(T − τ) sup
t∈(τ,T ]

|ũn(t, ω)|2 <∞.348

Thus,349

lim
n→∞

J1(n) = lim
n→∞

∫ t

s

‖g(ũn(σ, ω))‖2L2(H,H)|Pnψ − ψ|
2dσ = 0.350

Now, we will consider the other term J2(n), it is enough to check for every ψ ∈ H, J2(n) → 0 as
n → ∞. To this end, we first prove the result is true for every ψ ∈ C∞c (O). Since ũn(·, ω) → ũ(·, ω) in
Lq(τ, T ;H) for almost all ω ∈ Ω̃, there exists a subsequence {ũnk(·, ω)}k∈N, such that

ũnk(σ, ω)→ ũ(σ, ω) in H a.e. σ ∈ (τ, T ], as k →∞.

Hence, by assumption g2), we have

g(ũnk(σ, ω))∗ψ → g(ũ(σ, ω))∗ψ in H a.e. σ ∈ (τ, T ], as k →∞.

In conclusion, by the Vitali convergence theorem, we derive

lim
k→∞

∫ t

s

|g(ũnk(σ, ω))∗ψ − g(ũ(σ, ω))∗ψ|2dσ = 0 for all ψ ∈ C∞c (O).

Repeating the above reasoning for all subsequences, we infer that from every subsequence of the sequence
g(ũn(σ, ω))∗ψ, we can choose the subsequence convergent in L2(s, t;H) to the same limit. Thus, the whole
sequence g(ũn(σ, ω))∗ψ is convergent to g(ũ(σ, ω))∗ψ. At the same time,

lim
n→∞

J2(n) = 0 for every ψ ∈ C∞c (O).

If ψ ∈ H, then for every ε > 0, we can find ψε ∈ C∞c (O) such that |ψ − ψε| ≤ ε. Thanks to the fact351

that for almost all ω ∈ Ω̃, ũn(·, ω), ũ(·, ω) ∈ L∞(τ, T ;H), by g1), we obtain352 ∫ t

s

|g(ũn(σ, ω))∗ψ − g(ũ(σ, ω))∗ψ|2dσ

≤ 2

∫ t

s

| [g(ũn(σ, ω))∗ − g(ũ(σ, ω))∗] (ψ − ψε)|2dσ + 2

∫ t

s

| [g(ũn(σ, ω))∗ − g(ũ(σ, ω))∗]ψε|2dσ

≤ 4

∫ t

s

[|g(ũn(σ, ω))|2L2(H,H) + |g(ũ(σ, ω))|2L2(H,H)]|ψ − ψε|
2dσ + 2

∫ t

s

| [g(ũn(σ, ω))∗ − g(ũ(σ, ω))∗]ψε|2dσ

≤ 4Lgε
2

∫ t

s

(
|ũn(σ, ω)|2 + |ũ(σ, ω)|2

)
dσ + 2

∫ t

s

| [g(ũn(σ, ω))∗ − g(ũ(ω, σ))∗]ψε|2dσ.

353

In conclusion, we proved that

lim
n→∞

∫ t

s

|g(ũn(σ, ω))∗ψ − g(ũ(σ, ω))∗ψ|2dσ = 0,

thus, we finish the proof of (2.29) and this lemma.354

Now, we can pass to the limit of (2.17) and (2.18) by using lemmas 2.10 and 2.11-2.12, respectively.355

Therefore, for all ψ, ζ ∈ D(Ak/2), we obtain356

(2.30) Ẽ[〈M̃(t)− M̃(s), ψ〉ϕ(ũ|[τ,s])] = 0,357
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16 J.H. XU, AND T. CARABALLO

and358

Ẽ
[(
〈M̃(t), ψ〉〈M̃(t), ζ〉 − 〈M̃(s), ψ〉〈M̃(s), ζ〉

−
∫ t

s

(g(ũ(σ))∗Pnψ, g(ũ(σ))∗Pnζ)

)
ϕ(ũ|[τ,s])

]
= 0,

(2.31)359

where M̃ is a D(A−k/2)-valued process defined by (2.19).360

Continuation of the proof of Theorem 2.8. Eventually, we apply an idea analogous to the361

reasoning used by Da Prato and Zabczyk, see [12, Section 8.3]. Consider the operator A : D(A) ⊂ V → H,362

the inverse operator A−1 : H → D(A) ⊂ V , which is everywhere well-defined, bounded and compact,363

and the dual operator (A−1)∗ : V ∗ → H. Since V ∗ is a dense subspace of D(A−k/2), we can extend the364

continuous operator (A−1)∗ : D(A−k/2) → H. By (2.30) and (2.31) with ψ := A−1α and ζ := A−1β,365

where α, β ∈ H, we infer that (A−1)∗M̃(t), t ∈ (τ, T ] is a continuous square integrable martingale in H,366

whose dual is itself, with respect to the filtration F̃t := σ{ũ(s) : τ ≤ s ≤ t}, having the quadratic variation367

〈〈(A−1)∗M̃〉〉t =

∫ t

τ

(A−1)∗g(ũ(s))(g(ũ(s))A−1)∗ds, t ∈ (τ, T ].368

In particular, the continuity of the process (A−1)∗M̃ follows from the fact that ũ ∈ C(τ, T ;H). By the369

representation theorem [12, Theorem 8.2], there exist370

• a stochastic basis ( ˜̃Ω, ˜̃F , ˜̃{Ft}t≥0, ˜̃P);371

• a cylindrical Wiener process ˜̃W defined on this basis;372

• a progressively measurable process ˜̃u such that373

(A−1)∗ ˜̃u(t)− (A−1)∗ ˜̃u0 + (A−1)∗
∫ t

τ

a(l(˜̃u(s)))A˜̃u(s)ds− (A−1)∗
∫ t

τ

f(˜̃u(s))ds− (A−1)∗
∫ t

τ

h(s)ds

=

∫ t

0

(A−1)∗g(˜̃u(s))d ˜̃W (s).

374

However, ∫ t

τ

(A−1)∗g(˜̃u(s))d ˜̃W (s) = (A−1)∗
∫ t

τ

g(˜̃u(s))d ˜̃W (s).

Hence, it follows from (2.12) that ˜̃u : [τ, T ]× ˜̃Ω→ H with ˜̃P-a.s. paths,

˜̃u(·, ω) ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H) ∩ Lp(τ, T ;Lp(O)),

satisfies for all t ∈ [τ, T ] and for all v ∈ V ∩ Lp(O),375

(˜̃u(t), v) +

∫ t

τ

a(l(˜̃u(s))) < A˜̃u(s), v > ds = (˜̃u0, v) +

∫ t

τ

(f(˜̃u(s)), v)ds

+

∫ t

τ

< h(s), v > ds+

(∫ t

τ

g(˜̃u(s))d ˜̃W (s), v

)
,

376

where the identity holds ˜̃P-a.s.377

The proof of this theorem is finished.378

Although we are not able to prove the existence of variational solutions to problem (1.1), we can show379

that there exists at most one solution when the coefficient a(·) is locally Lipschitz.380

Theorem 2.13. Assume a ∈ C(R;R+) is locally Lipschitz and satisfies (1.2), f ∈ C(R;R+) fulfills381

(1.3)-(1.4), g : H → L2(H,H) satisfies g1) and l ∈ L2(O). In addition, let h ∈ L2(Ω;L2
loc(R+;V ∗)) and382

u0 ∈ L2(Ω;H). Then, there exists at most one solution to problem (1.1) in the sense of Definition 2.6.383
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Proof. Suppose there are two solutions u and v of problem (1.1) in the sense of Definition 2.6. Let384

σ(t) = exp(−µ
∫ t
τ
||u(s)||2ds) for all τ ≤ t ≤ T , which is positive and well-defined (cf. Step 1 of Theorem385

2.8), where µ is a proper constant to be chosen later. Applying the Itô formula to σ(t)|u(t) − v(t)|2, by386

(1.2) and (1.3), we have387

σ(t)|u(t)− v(t)|2 + 2m

∫ t

τ

σ(s)‖u(s)− v(s)‖2ds

≤ 2

∫ t

τ

σ(s)|a(l(u(s)))− a(l(v(s)))|‖u(s)‖‖u(s)− v(s)‖ds+ 2η

∫ t

τ

σ(s)|u(s)− v(s)|2ds

+ 2

∫ t

τ

σ(s) (u(s)− v(s), g(u(s))dW (s)− g(v(s))dW (s)) +

∫ t

τ

σ(s)‖g(u(s))− g(v(s))‖2L2(H,H)ds

− µ
∫ t

τ

σ(s)‖u(s)‖2|u(s)− v(s)|2ds

(2.32)388

Since a is Locally Lipschitz, denote this Lipschitz constant by La, by the Young inequality, we have389

2σ(s)|a(l(u(s)))− a(l(v(s)))|‖u(s)‖‖u(s)− v(s)‖

≤ 2La|l|σ(s)|u(s)− v(s)|‖u(s)‖‖u(s)− v(s)‖

≤ µσ(s)‖u(s)‖2|u(s)− v(s)|2 +
L2
a|l|2σ(s)

µ
‖u(s)− v(s)‖2.

390

Thus, by g1) and the above inequality, (2.32) becomes391

σ(t)|u(t)− v(t)|2 + 2m

∫ t

τ

σ(s)‖u(s)− v(s)‖2ds

≤ L2
a|l|2

µ

∫ t

τ

σ(s)‖u(s)− v(s)‖2ds+ (2η + Lg)

∫ t

τ

σ(s)|u(s)− v(s)|2ds

+ 2

∫ t

τ

σ(s) (u(s)− v(s), g(u(s))dW (s)− g(v(s))dW (s)) .

392

Taking the supremum (w.r.t. t) and expectation on both sides of the above inequality, by (1.2), we obtain393

E
[

sup
τ≤s≤t

σ(s)|u(s)− v(s)|2
]
≤ L2

a|l|2

µ
E
[

sup
τ≤s≤t

∫ s

τ

σ(r)‖u(r)− v(r)‖2dr
]

+ (2η + Lg)E
[

sup
τ≤s≤t

∫ s

τ

σ(r)|u(r)− v(r)|2dr
]

+ 2E
[

sup
τ≤s≤t

∣∣∣∣∫ s

τ

σ(r) (u(r)− v(r), g(u(r))dW (r)− g(v(r))dW (r))

∣∣∣∣] ,

(2.33)

394

and395

2mE
∫ t

τ

σ(s)‖u(s)− v(s)‖2ds ≤ L2
a|l|2

µ
E
[

sup
τ≤s≤t

∫ s

τ

σ(r)‖u(r)− v(r)‖2dr
]

+ (2η + Lg)E
[

sup
τ≤s≤t

∫ t

τ

σ(r)|u(r)− v(r)|2dr
]

+ 2E
[

sup
τ≤s≤t

∣∣∣∣∫ s

τ

σ(r) (u(r)− v(r), g(u(r))dW (r)− g(v(r))dW (r))

∣∣∣∣] .

(2.34)

396
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For the first term of the right hand side of (2.33), since µ is positive, we have397

(2.35)
L2
a|l|2

µ
E
[

sup
τ≤s≤t

∫ s

τ

σ(r)‖u(r)− v(r)‖2dr
]

=
L2
a|l|2

µ
E
∫ t

τ

σ(s)‖u(s)− v(s)‖2ds.398

For the second term of the right hand side of (2.33), by the same arguments as above, we obtain399

(2.36) (2η + Lg)E
[

sup
τ≤s≤t

∫ s

τ

σ(r)|u(r)− v(r)|2dr
]
≤ (2η + Lg)E

∫ t

τ

sup
τ≤r≤s

σ(r)|u(r)− v(r)|2ds.400

Next, assumption g1), the Burkholder-Davis-Gundy and Young inequalities imply401

2E
[

sup
τ≤s≤t

∣∣∣∣∫ s

τ

σ(r) (u(r)− v(r), g(u(r))dW (r)− g(v(r))dW (r))

∣∣∣∣]

≤ 2cE
[

sup
τ≤s≤t

σ(s)|u(s)− v(s)|2
∫ t

τ

σ(s)‖g(u(s))− g(v(s))‖2L2(H,H)ds

] 1
2

≤ 1

4
E
[

sup
τ≤s≤t

σ(s)|u(s)− v(s)|2
]

+ 4c2LgE
∫ t

τ

sup
τ≤r≤s

σ(r)|u(r)− v(r)|2ds.

(2.37)402

Consequently, substituting (2.35)-(2.37) into (2.33)-(2.34), letting mµ = L2
a|l|2, we deduce403

E
[

sup
τ≤s≤t

σ(s)|u(s)− v(s)|2
]
≤ 4

(
2η + Lg + 4c2Lg

) ∫ t

τ

E
[

sup
τ≤r≤s

σ(r)|u(r)− v(r)|2
]
ds.404

It follows from the Gronwall lemma that

E
[

sup
τ≤s≤t

σ(s)|u(s)− v(s)|2
]

= 0, ∀t ∈ (τ, T ].

Thus, we have u(t) = v(t) for a.a. ω ∈ Ω and a.e. t ∈ (τ, T ] since σ(t) is positive. The proof of this405

theorem is complete.406

For the rest of this manuscript, to carry out the analysis of asymptotic behavior of solutions to (1.1)407

in the sense of Definition 2.6 and their Wong-Zakai approximation, we will assume, for simplicity, W (t) is408

a standard 1D Brownian motion. Moreover, let g : (τ, T )×H → H be a nonlinear operator, satisfying:409

g1) The mapping t ∈ (τ, T )→ g(t, u) ∈ H is Lebesgue measurable, for all u ∈ H;410

g2) g(t, 0) = 0, a.e. t ∈ (τ, T );411

g3) There exists a positive constant Lg (we use the same constant when no confusion is possible), such
that

|g(t, u)− g(t, v)|2 ≤ Lg|u− v|2, ∀u, v ∈ H, a.e. t ∈ (τ, T ).

3. Asymptotic behavior of solutions to problem (1.1) around steady-state solutions of412

the deterministic problem. In this section, we are interested in analyzing the long time behavior of413

solutions to problem (1.1) with respect to equilibria of the deterministic elliptic problem,414 {
−a(l(u))∆u = f(u) + h

u = 0,

in O,
on ∂O.

(3.1)415

416

Since we are dealing with stationary solutions, the assumption imposed on function h does not depend417

on time, i.e., h ∈ V ∗. The solutions to (3.1) are the so called steady-state solutions or equilibria and the418

formal definition is the following.419

Definition 3.1. A stationary or steady-state solution to problem (3.1) (also called equilibrium) is a
function u∗ ∈ V ∩ Lp(O) which fulfills

a(l(u∗))((u∗, v)) = (f(u∗), v)+ < h, v >, ∀v ∈ V ∩ Lp(O),
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or, in other words, is a solution of the elliptic equation,420

(3.2) a(l(u∗))∆u∗ = f(u∗) + h, in V ∗ + Lq(O).421

Observe that a steady-state solution u∗ to problem (3.1) can only be solution to the stochastic problem422

(1.1) (with h(t) = h ∈ V ∗) if g(t, u∗) = 0 for all t ∈ [τ,+∞), which is a very particular situation. Thus, our423

main interest is to study how the solutions to stochastic problem (1.1) behave around the equilibria of the424

deterministic problem (3.1). In this way, to establish some sufficient conditions ensuring the exponential425

decay of solutions to (1.1) towards some solutions of (3.1), we assume the existence of stationary solutions426

to (3.1) (see, for instance, [18, Theorem 3.8] ). Notice that, when function f is more general, namely, which427

satisfies the conditions (1.3)-(1.4), it is not easy to argue. Therefore, in order to prove the existence of at428

least one nontrivial stationary solution to problem (3.1), the authors in [18] studied one particular, but429

very interesting case when f : [0, 1]→ R is given by f(s) = s− s3, for s ∈ [0, 1], the arguments were based430

on a fixed point theorem. Whereas, considering again the general form function f and under new suitable431

assumptions, the authors in [18] showed that any stationary solution is positive provided its existence is432

guaranteed [18, Chapter 3.2].433

In the sequel, our goal is to establish sufficient conditions to prove exponential decay of variational434

solutions in mean square.435

Definition 3.2. A solution u to (1.1) is said to converge to (or to decay to) u∗ ∈ V ∩ Lp(O) expo-
nentially in mean square, if there exist α > 0 and M = M(u0) > 0 such that

E|u(t)− u∗|2 ≤Me−α(t−τ), ∀t ≥ τ.

Definition 3.3. A solution u to equation (1.1) is said to converge exponentially to u∗ ∈ V ∩ Lp(O)
almost surely, if there exists γ > 0 such that

lim sup
t→+∞

1

t
log |u(t)− u∗| ≤ −γ, almost surely.

In order to prove the exponential stability results, the following condition as in [6] is considered.436

Assume there exists a steady-state solution u∗ of (3.1) such that g satisfies437

g4) |g(t, u)|2 ≤ β(t) + (ξ + δ(t))|u − u∗|2, for all u ∈ H, where ξ is a positive constant, β(t), δ(t) are
nonnegative integrable functions, such that there exist real numbers θ > α, Mβ ≥ 1 and Mδ ≥ 1
with

β(t) ≤Mβe
−θt and δ(t) ≤Mδe

−θt, ∀t ≥ 0.

We will present in the next theorem that, any variational solution to (1.1) converges exponentially to438

u∗ in mean square, showing that u∗ is the only relevant stationary solution for the stochastic system. No439

matter how many steady-state solutions (3.1) may have, this u∗ is attracting in mean square any other440

solution of the stochastic problem.441

Theorem 3.4. Assume (1.2)-(1.4) and g4) hold with442

(3.3) (2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 < m,443

where a(·) is supposed to be globally Lipschitz, the Lipschitz constant is still denoted the same by La. Then:444

(i) Any variational solution u(·) of problem (1.1) converges to the stationary solution u∗ of (3.1)
exponentially in the mean square. That is, there exist α > 0 and M = M(u0) such that,

E|u(t)− u∗|2 ≤Me−α(t−τ), t ≥ τ ;

(ii) Any variational solution u(t) of problem (1.1) converges to the stationary solution u∗ of (3.1)445

almost surely exponentially.446
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Proof. (i) Since (2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 < m, we can choose 0 < α < θ such that,

(α+ 2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 − 2m < 0.

By applying the Itô formula to eαt|u(t)− u∗|2 and taking expectation, we obtain447

eαtE|u(t)− u∗|2 = eατE|u0 − u∗|2 + αE
∫ t

τ

eαs|u(s)− u∗|2ds

+ 2E
∫ t

τ

eαs < a(l(u))∆u(s), u(s)− u∗ > ds+ 2E
∫ t

τ

eαs(f(u(s)), u(s)− u∗)ds

+ 2E
∫ t

τ

eαs < h, u(s)− u∗ > ds+ E
∫ t

τ

eαs|g(s, u(s))|2ds.

448

As u∗ is the stationary solution to problem (3.1), we have449

−E
∫ t

τ

eαs < a(l(u∗))∆u∗, u(s)−u∗ > ds = E
∫ t

τ

eαs(f(u∗), u(s)−u∗)ds+E
∫ t

τ

eαs < h, u(s)−u∗ > ds.450

It follows from the two above equalities that,451

eαtE|u(t)− u∗|2 = eατE|u0 − u∗|2 + αE
∫ t

τ

eαs|u(s)− u∗|2ds

+ 2E
∫ t

τ

eαs < a(l(u(s)))∆u(s)− a(l(u∗))∆u∗, u(s)− u∗ > ds

+ 2E
∫ t

τ

eαs(f(u(s))− f(u∗), u(s)− u∗)ds+ E
∫ t

τ

eαs|g(s, u(s))|2ds.

452

By means of assumptions (1.2), (1.4) and g4), together with the fact that a is Lipschitz and the Poincaré453

inequality, we derive454

eαtE|u(t)− u∗|2 ≤ eατE|u0 − u∗|2 + E
∫ t

τ

eαs
(
β(s) + δ(s)|u(s)− u∗|2

)
ds

+
(

(α+ 2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 − 2m
)
E
∫ t

τ

eαs‖u(s)− u∗‖2ds.
(3.4)455

Thanks to the fact that
(

(α+ 2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 − 2m
)
< 0, the last term of (3.4) is negative,456

we obtain457

eαtE|u(t)− u∗|2 ≤ eατE|u0 − u∗|2 +

∫ t

τ

eαsβ(s)ds+

∫ t

τ

δ(s)eαsE|u(s)− u∗|2ds.458

Since θ > α, applying the Gronwall lemma to the above inequality, the result (i) is proved.459

(ii) We now move to the second assertion, let N be a natural number, by applying the Itô formula to460

|u(t)− u∗|2 and using fact that u∗ is a steady-state solution, it follows that461

|u(t)− u∗|2 = |u(N)− u∗|2 + 2

∫ t

N

< a(l(u(s)))∆u(s)− a(l(u∗))∆u∗, u(s)− u∗ > ds

+ 2

∫ t

N

(f(u(s))− f(u∗), u(s)− u∗)ds

+ 2

∫ t

N

(g(s, u(s)), u(s)− u∗)dW (s) +

∫ t

N

|g(s, u(s))|2ds.

462
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Therefore, by (1.2)-(1.3), we have463

|u(t)− u∗|2 + 2m

∫ t

N

‖u(s)− u∗‖2ds

≤ 2

∫ t

N

| < (a(l(u(s)))− a(l(u∗)))∆u∗, u(s)− u∗ > |ds

+ |u(N)− u∗|2 + 2η

∫ t

N

|u(s)− u∗|2ds

+ 2

∣∣∣∣∫ t

N

(g(s, u(s)), u(s)− u∗)dW (s)

∣∣∣∣+

∫ t

N

|g(s, u(s))|2ds.

464

Consequently,465

E
[

sup
N≤t≤N+1

|u(t)− u∗|2
]

+ 2mE
∫ N+1

N

‖u(s)− u∗‖2ds

≤ 4E

[∫ N+1

N

| < (a(l(u(s)))− a(l(u∗)))∆u∗, u(s)− u∗ > |ds

]

+ 2E|u(N)− u∗|2 + 4ηE
∫ N+1

N

|u(s)− u∗|2ds

+ 4E
[

sup
N≤t≤N+1

∣∣∣∣∫ t

N

(g(s, u(s)), u(s)− u∗)dW (s)

∣∣∣∣]+ 2E

[∫ N+1

N

|g(s, u(s))|2ds

]
.

(3.5)466

With the help of the Burkholder-Davis-Gundy and Young inequalities, we have467

4E
[

sup
N≤t≤N+1

∣∣∣∣∫ t

N

(g(s, u(s)), u(s)− u∗)dW (s)

∣∣∣∣]

≤ 4C2E

[∫ N+1

N

|g(s, u(s))|2|u(s)− u∗|2ds

] 1
2

≤ 4C2E

[
sup

N≤t≤N+1
|u(t)− u∗|2

∫ N+1

N

|g(s, u(s))|2ds

] 1
2

≤ 1

2
E
[

sup
N≤t≤N+1

|u(s)− u∗|2
]

+ 8C2
2E

[∫ N+1

N

|g(s, u(s))|2ds

]
.

(3.6)468

Proceeding now as in the proof of the previous theorem and substituting (3.6) into (3.5), it yields469

1

2
E
[

sup
N≤t≤N+1

|u(t)− u∗|2
]

≤ 2E|u(N)− u∗|2 +
(
−2m+ 4La|l|‖u∗‖λ−1/21 + 4ηλ−11

)
E
∫ N+1

N

‖u(s)− u∗‖2ds

+ (8C2
2 + 2)E

∫ N+1

N

(
β(s) + (ξ + δ(s))|u(s)− u∗|2

)
ds

≤ 2E|u(N)− u∗|2 + (8C2
2 + 2)

∫ N+1

N

(
β(s) + (ξ + δ(s))E|u(s)− u∗|2

)
ds

470

The last step of above inequality is true thanks to assumption (2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 < m.
Moreover, it follows from condition g4) that β(t) ≤ Mβe

−θt and δ(t) ≤ Mδe
−θt, 0 < α < θ, Mβ ≥ 1 and
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Mδ ≥ 1. Thus, taking into account the exponential decay in mean square stated in Theorem 3.4, there
exists M := M(τ, u0) > 0, such that

E
[

sup
N≤t≤N+1

|u(t)− u∗|2
]
≤Me−αN .

The proof is completed by using the Borel-Cantelli lemma (see [8] for a detailed explanation).471

Remark 3.5. Notice that it is enough to assume that (2η+ ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 < 2m in Theorem472

3.4 instead of (2η + ξ)λ−11 + 2La|l|‖u∗‖λ−1/21 < m. However, in the next theorem it will be necessary to473

impose the latter, so we prefer to impose this one in both theorems.474

We conclude this section with a result on the exponential stability of the steady-state solution in mean475

square, when this becomes also a solution of the stochastic equation.476

Theorem 3.6. Assume (1.2)-(1.4) hold with477

(3.7) 2La|l|‖u∗‖λ−1/21 + 2ηλ−11 + Lgλ
−1
1 < 2m.478

where a(·) is supposed to be globally Lipschitz, the Lipschitz constant is still denoted the same by La.
Additionally, assume the nonlinear stochastic term g fulfills g3), and g(t, u∗) = 0 for all t ≥ τ . Then the
solution to problem (1.1) converges to the stationary solution of (3.1) u∗ exponentially in the mean square.
Namely, there exists a real number γ > 0, such that

E|u(t)− u∗|2 ≤ E|u0 − u∗|2e−γ(t−τ), ∀t ≥ τ.

Proof. Since u∗ is the stationary solution of (3.1), combined with (1.1), we derive479

u(t)− u∗ = u0 − u∗ +

∫ t

τ

(a(l(u(s)))∆u(s)− a(l(u∗)) ∆u∗)ds

+

∫ t

τ

(f(u(s))− f(u∗))ds+

∫ t

τ

(g(s, u(s))− g(s, u∗))dW (s).

480

Thanks to (3.7), we can choose a sufficiently small γ > 0, such that

γλ−11 + 2La|l|‖u∗‖λ−1/21 + 2ηλ−11 + Lgλ
−1
1 − 2m < 0.

Applying now the Itô formula to eγt|u(t) − u∗|2, taking expectation and using the same arguments as in481

Theorem 3.4, we obtain482

eγtE|u(t)− u∗|2 = eγτE|u0 − u∗|2 + γE
∫ t

τ

|u(s)− u∗|2ds

+ 2E
∫ t

τ

eγs < a(l(u(s)))∆u(s)− a(l(u∗))∆u∗, u(s)− u∗ > ds

+ 2E
∫ t

τ

eγs(f(u(s))− f(u∗), u(s)− u∗)ds+ E
∫ t

τ

eγs|g(s, u(s))− g(s, u∗)|2ds

≤ eγτE|u0 − u∗|2 + γλ−11 E
∫ t

τ

eγs‖u(s)− u∗‖2ds

+
(
−2m+ 2La|l|‖u∗‖λ−1/21 + 2ηλ−11 + Lgλ

−1
1

)
E
∫ t

τ

eγs‖u(s)− u∗‖2ds.

483

Due to the choice of γ, the result follows immediately.484
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4. Attractors of nonlocal stochastic PDEs driven by colored noise. Our aim now is to study485

the existence of attractors for the solution of problem (1.1). However, as it is well known, the theory of486

random dynamical systems has only been applied successfully to problems modeled by partial differential487

equations when the noise possesses a particular form: additive or multiplicative noise. These two cases488

have already been analyzed in [33]. Recently, B. X. Wang and his collaborators (see [17, 15, 22]) have489

been using an idea to approximate the nonlinear noise by a stochastic process (called colored noise), which490

basically is a Wong-Zakai approximation of the derivative of the Wiener process, providing a rigorous491

approximation of the cases with additive and multiplicative noise (as we explained in the Introduction).492

This is why, in this section, we study the long time behavior of the following non-autonomous nonlocal493

partial differential equations driven by colored noise,494 
∂u
∂t − a(l(u))∆u = f(u) + h(t) + g(t, u)ζδ(θtω),

u = 0,

u(x, τ) = uτ (x),

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(4.1)495

496

where ζδ(θtω) is the colored noise with correlation time δ > 0, functions a, f , h and g fulfill the same497

assumptions as in Section 2.498

4.1. Cocycles for nonlocal PDEs. To describe the global long time behavior of problem (4.1),499

it is necessary to establish the existence of a continuous non-autonomous cocycle for (4.1). Let us first500

recall some notions, definitions and lemmas which furnish the essential tools used throughout this section501

([15, 17, 29, 31]).502

Let (Ω,F ,P) be a standard probability space, where Ω = C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0} with
the open compact topology, F is its Borel σ-algebra, and P is the Wiener measure on (Ω,F). In what
follows, we will consider the Wiener shift {θt}t∈R defined on the probability space (Ω,F ,P) by

θtω(·) = ω(t+ ·)− ω(t), for all ω ∈ Ω, t ∈ R.

It is known that P is an ergodic invariant measure for {θt}t∈R, and the quadruple (Ω,F ,P, {θt}t∈R) forms503

a metric dynamical system (see [1]).504

In the sequel, we use (X, d) to denote a complete separable metric space. If A and B are two nonempty505

subsets of X, then we use distX(A,B) := supa∈A infb∈B d(a, b) to denote their Hausdorff semidistance.506

Definition 4.1. ([28, Definition 2.6]) Let D : R × Ω → 2X be a set-valued mapping with closed507

nonempty images. We say D is measurable with respect to F in Ω, if the mapping ω ∈ Ω→ d(x,D(τ, ω))508

is (F ,B(R))-measurable for every fixed x ∈ X and τ ∈ R.509

Definition 4.2. ([28, Definition 2.7]) Let D be a collection of some families of nonempty subsets of
X and B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then B is called a D-pullback absorbing set for Φ, if for all
τ ∈ R, ω ∈ Ω and for every B ∈ D, there exists T = T (B, τ, ω) > 0 such that

Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)) ⊂ B(τ, ω) for all t ≥ T.

Definition 4.3. ([28, Definition 2.8]) Let D be a collection of some families of nonempty subsets of
X. Then Φ is said to be D-pullback asymptotically compact in X if for all τ ∈ R and ω ∈ Ω, the sequence

{Φ(tn, τ − tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in X,

whenever tn →∞ and xn ∈ D(τ − tn, θ−tnω) with {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.510

Definition 4.4. ([28, Definition 2.9]) Let D be a collection of some families of nonempty subsets of511

X and A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then A is called a D-pullback attractor for Φ if the following512

conditions (i)-(iii) are fulfilled:513

(i) A is measurable in the sense of Definition 4.1, and A(τ, ω) is compact for all τ ∈ R and ω ∈ Ω.514

(ii) A is invariant, that is, for every τ ∈ R and ω ∈ Ω,

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀t ≥ 0.
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(iii) A attracts every member of D, that is, for every D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and for every
τ ∈ R, ω ∈ Ω,

lim
t→∞

d(Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0.

We have introduced all required definitions of stochastic dynamical systems, which later on will allow515

us to define a cocycle Φ : R+ ×R×Ω×H → H for equation (4.1), such that for all t ∈ R+, τ ∈ R, ω ∈ Ω516

and uτ ∈ H,517

(4.2) Φ(t, τ, ω, uτ ) = u(t+ τ ; τ, θ−τω, uτ ),518

where u(·; τ, ω, uτ ) denotes the solution to (4.1) which will be proved to exist in Section 4.3. Thus, Φ will519

be a continuous cocycle on H over (Ω,F ,P, {θt}t∈R). Moreover, let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a520

tempered family of bounded nonempty subsets of H, that is, for every γ > 0, τ ∈ R and ω ∈ Ω,521

(4.3) lim
t→−∞

eγt|D(τ + t, θtω)| = 0,522

where |D| = supu∈D |u|. Throughout this section, we will use D to denote the collection of all tempered523

families of bounded nonempty subsets of H, i.e.,524

(4.4) D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satifies (4.3)}.525

Remark 4.5. Although the cocycle generated by (4.1) depends on the parameter δ, we will omit this526

dependence in this section since it will be fixed from the beginning. Hence, we will use Φ instead of using527

the notation Φδ.528

4.2. Properties of white and colored noises. We recall some known results for the Wiener process529

W (t, ω) = ω(t) in [1] and the colored noise ζδ(θtω) in [17, 15], since they play important roles in the proof530

of the main theorems.531

Lemma 4.6. Let the correlation time δ ∈ (0, 1]. There exists a {θt}t∈R-invariant subset (still denoted532

by) Ω of full measure, such that for all ω ∈ Ω,533

(i)

(4.5) lim
t→±∞

ω(t)

t
= 0;534

(ii) The mapping535

(4.6) (t, ω)→ ζδ(θtω) = − 1

δ2

∫ 0

−∞
e
s
δ θtω(s)ds536

is a stationary solution (also called an Ornstein-Uhlenbeck process or a colored noise) of the one-537

dimensional stochastic differential equation dζδ + 1
δ ζδdt = 1

δdW with continuous trajectories, sat-538

isfying539

(4.7) lim
t→±∞

ζδ(θtω)

t
= 0 for all 0 < δ ≤ 1,540

541

(4.8) lim
t→±∞

1

t

∫ t

0

ζδ(θsω)ds = Eζδ = 0, uniformly for 0 < δ ≤ 1;542

(iii) For arbitrary T > 0, ε > 0, there exists δ0 = δ0(τ, ω, T, ε) > 0, such that for all 0 < δ < δ0 and543

t ∈ [τ, τ + T ],544

(4.9)

∣∣∣∣∫ t

0

ζδ(θsω)ds− ω(t)

∣∣∣∣ < ε.545

Remark 4.7. Notice that, from (4.9), we can derive that there exist δ0 = δ0(τ, ω, T ) and c̃ = c̃(τ, ω, T ) >546

0 such that, for all 0 < δ < δ0 and t ∈ [τ, τ + T ],547

(4.10)

∣∣∣∣∫ t

0

ζδ(θsω)ds

∣∣∣∣ ≤ c̃.548
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4.3. Well-posedness of problem (4.1). We are now in a position to show the existence and unique-549

ness of solution to equation (4.1) in the following sense.550

Definition 4.8. A weak solution to problem (4.1) is a mapping u(·; τ, ω, uτ ) : [τ, T ) → H, for all
T > τ with u(τ) = uτ , satisfying for any τ ∈ R, ω ∈ Ω,

u(·; τ, ω, uτ ) ∈ C(τ, T ;H) ∩ L2(τ, T ;V ) ∩ Lp(τ, T ;Lp(O)).

Moreover, for every t > τ and v ∈ V + Lp(O),551

(u, v) = (uτ , v) +

∫ t

τ

a(l(u))((u, v))ds+

∫ t

τ

(f(u), v)ds

+

∫ t

τ

< h, v > ds+

∫ t

τ

(g(s, u(s))ζδ(θsω), v)ds.

552

Note that, if we denote by A the operator −∆ with homogeneous boundary condition, then the above equality
can be written as

du

dt
+ a(l(u))Au = f(u) + h(t) + g(t, u)ζδ(θtω), in V ∗ + Lq(O).

Theorem 4.9. Assume that function a is locally Lipschitz and satisfies (1.2), f ∈ C(R) fulfills (1.3)-553

(1.4), h ∈ L2
loc(R+;V ∗) and l ∈ L2(O). Additionally, function g satisfies g1)-g3). Then, for each initial554

datum u0 ∈ H, there exists a unique weak solution to problem (4.1) in the sense of Definition 4.8. Moreover,555

this solution behaves continuously in H with respect to the initial values.556

Proof. Since equation (4.1) can be viewed as a deterministic problem parametrized by ω (cf. [22]), for
every T > τ and ω ∈ Ω, we can prove (4.1) has a unique solution,

u(·; τ, ω, uτ ) ∈ C(τ, T ;H) ∩ L2(τ, T ;V ) ∩ Lp(τ, T ;Lp(O)),

by applying the Galerkin method and energy estimations [18, Chapter 3, Theorem 3.3].557

558

In this subsection, we first derive uniform estimations on the solution of (4.1) and then prove D-559

pullback asymptotic compactness by using the idea introduced by Ball in [2]. To this end, we need the560

following assumptions:561

h1) Suppose that ∫ τ

−∞
emλ1s‖h(s)‖2∗ds <∞, ∀τ ∈ R.

For the existence of tempered random attractors, we need the assumption below:562

h2) For every γ > 0, it holds

lim
t→−∞

eγt
∫ 0

−∞
emλ1s‖h(s+ t)‖2∗ds = 0.

It is worth stressing that h1) and h2) do not require h(t) is bounded in V ∗ as t→ ±∞.563

Lemma 4.10. Assume conditions of Theorem 4.9 and h1) hold. Then, for every δ ∈ (0, 1], τ ∈ R,564

ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω, δ,D) > 0 such that for all t ≥ T565

and σ ≥ τ − t, the solution of problem (4.1) satisfies,566

|u(σ; τ − t, θ−τω, uτ−t)|2 ≤ e−mλ1(σ−τ)

+

∫ σ−τ

−∞
emλ1(s−σ+t)

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θsω)|p/(p−2)

)
|O|
)
ds,

567
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568 ∫ τ

τ−t
emλ1(s−τ)‖u(s; τ − t, θ−τω, uτ−t)‖2ds

≤ 2

m
+

2

m

∫ 0

−∞
emλ1s

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θsω)|p/(p−2)

)
|O|
)
ds,

569

and570

∫ τ

τ−t
emλ1(s−τ)|u(s; τ − t, θ−τω, uτ−t)|ppds

≤ 1

α2
+

1

α2

∫ 0

−∞
emλ1s

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θsω)|p/(p−2)

)
|O|
)
ds,

571

where uτ−t ∈ D(τ − t, θ−tω), and c is a constant which depends on α2, p and Lg but not on δ.572

573

Proof. Multiplying by u(·) on both sides of (4.1) in H, we derive574

(4.11)
d

dt
|u|2 + 2a(l(u))‖u‖2 = 2(f(u), u) + 2 < h(t), u > +2ζδ(θtω)(g(t, u), u).575

It follows from (1.4) that576

(4.12) 2(f(u), u) ≤ 2

∫
O

(κ− α2|u|p) dx ≤ 2κ|O| − 2α2|u|pp.577

By the Young inequality, we have578

(4.13) 2 < h(t), u >≤ 2

m
‖h(t)‖2∗ +

m

2
‖u‖2.579

Conditions g2)-g3) and the Young inequality yield that,580

2|ζδ(θtω)(g(t, u), u)| ≤ 2L1/2
g |ζδ(θtω)||u|2581

= 2L1/2
g

∫
O
|ζδ(θtω)||u|2dx582

≤ α2

∫
O
|u|pdx+ c|O||ζδ(θtω)|p/(p−2),(4.14)583

where c is a constant depending on α2, p and Lg.584

Substituting (4.12)-(4.14) into (4.11), together with (1.2) and the Poincaré inequality, we have585

d

dt
|u|2 +mλ1|u|2 +

m

2
‖u‖2 + α2|u|pp ≤

2

m
‖h(t)‖2∗ +

(
2κ+ c|ζδ(θtω)|p/(p−2)

)
|O|.586
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By straightforward computations with u(σ; τ − t, θ−(τ−t)ω, uτ−t) and replacing ω by θ−tω, we obtain,587

|u(σ; τ − t, θ−τω, uτ−t)|2 +
m

2

∫ σ

τ−t
emλ1(s−σ)‖u(s; τ − t, θ−τω, uτ−t)‖2ds

+ α2

∫ σ

τ−t
emλ1(s−σ)|u(s; τ − t, θ−τω, uτ−t|ppds

≤ e−mλ1(σ−τ+t)|uτ−t|2

+

∫ σ

τ−t
emλ1(s−σ)

(
2

m
‖h(s)‖2∗ +

(
2κ+ c|ζδ(θsω)|p/(p−2)

)
|O|
)
ds

≤ e−mλ1(σ−τ+t)|uτ−t|2

+

∫ σ−τ

−t
emλ1(s−σ+τ)

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θs+τω)|p/(p−2)

)
|O|
)
ds.

(4.15)

588

On the one hand, it follows from h1) that,589

(4.16)

∫ σ−τ

−∞
emλ1(s−σ+τ)

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θs+τω)|p/(p−2)

)
|O|
)
ds <∞.590

On the other hand, as uτ−t ∈ D(τ − t, θ−tω) ∈ D, we deduce that

e−mλ1t|uτ−t|2 ≤ e−mλ1t|D(τ − t, θ−tω)|2 → 0, as t→∞.

Thus, there exists T = T (τ, ω,D) > 0, such that for all t ≥ T ,

e−mλ1(σ−τ+t)|uτ−t|2 ≤ 1,

which, along with (4.15) and (4.16), completes the proof.591

592

Corollary 4.11. Assume the conditions of Theorem 4.9 and h2) hold. Then the continuous cocycle
Φ associated with problem (4.1) possesses a closed measurable D-pullback absorbing set K = {K(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D in H. Namely, for any given δ ∈ (0, 1], every τ ∈ R and ω ∈ Ω, we denote

K(τ, ω) = {u ∈ H : |u|2 ≤ R(τ, ω)},

where

R(τ, ω) = 1 +

∫ 0

−∞
emλ1s

(
2

m
‖h(s+ τ)‖2∗ +

(
2κ+ c|ζδ(θs+τω)|p/(p−2)

)
|O|
)
ds.

Proof. Since for every τ ∈ R, R(τ, ·) : Ω → R is (F ,B)-measurable, we know that K(τ, ·) : Ω → 2H

is a measurable set-valued mapping. Also, it follows from Lemma 4.10 that for every τ ∈ R, ω ∈ Ω and
D ∈ D, there exists T = T (τ, ω,D) > 0, such that for all t ≥ T ,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) = u(τ ; τ − t, θ−τω,D(τ − t, θ−tω)) ⊂ K(τ, ω).

Therefore, to finish this proof, it only remains to show K belongs to D. Let γ be an arbitrary positive593

number, for every τ ∈ R and ω ∈ Ω, we have that594

lim
t→−∞

eγt|K(τ + t, θtω)| = lim
t→−∞

eγtR(τ + t, θtω)

= lim
t→−∞

eγt
(

1 +

∫ 0

−∞
emλ1s

(
2

m
‖h(s+ τ + t)‖2∗ +

(
2κ+ c|ζδ(θs+τ+tω)|p/(p−2)

)
|O|
)
ds

)
= 0,

595

thanks to h2). The desired result is proved.596
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Next, let us discuss the asymptotic compactness of the continuous cocycle Φ related to problem (4.1).597

Indeed, we prove that the sequence of solutions of (4.1) is compact in H.598

Lemma 4.12. Under assumptions of Lemma 4.10, the continuous cocycle Φ associated with problem599

(4.1) is D-pullback asymptotically compact in H. That is, for every τ ∈ R, ω ∈ Ω, D = {D(τ, ω) :600

τ ∈ R, ω ∈ Ω} ∈ D and tn → ∞, the initial data uτ,n ∈ D(τ − tn, θ−tnω), the sequence {Φ(tn, τ −601

tn, θ−tnω, uτ,n) = u(τ ; τ − tn, θ−τω, uτ,n)} (solutions to problem (4.1)) has a convergence subsequence in602

H.603

Proof. Let {uτ,n}∞n=1 be a sequence in D(τ − tn, θ−tnω), Lemma 4.10 implies that there exists T :=604

T (τ, ω,D) > 0, such that for all tn > T , we have605

(4.17) {u(·; τ − tn, θ−τω, uτ,n) is bounded in L∞(τ − T, τ ;H) ∩ L2(τ − T, τ ;V ) ∩ Lp(τ − T, τ ;Lp(O)).606

On the one hand, making use of (1.5) and (4.17), we obtain607

(4.18) {f(u(·; τ − tn, θ−τω, uτ,n))} is bounded in Lq(τ − T, τ ;Lq(O)).608

In addition, it follows from conditions g2)-g3) that609

(4.19) {g(·, u(·; τ − tn, θ−τω, uτ,n))} is bounded in L2(τ − T, τ ;H).610

On the other hand, by (1.2) and (4.17), we have611 ∫ τ

τ−T
|a(l(u(s; τ − tn, θ−τω, uτ,n)))|2‖ −∆u(s; τ − tn, θ−τω, uτ,n)‖2∗ds

≤ m̃2C

∫ τ

τ−T
‖u(s; τ − tn, θ−τω, uτ,n)‖2ds,

612

which implies that613

(4.20) a(l(u(·; τ − tn, θ−τω, uτ,n)))∆u(·; τ − tn, θ−τω, uτ,n) is bounded in L2(τ − T, τ ;V ∗).614

Consequently, it follows from (4.18)-(4.20) that615

(4.21)

{
d

dt
u(·; τ − tn, θ−τω, uτ,n)

}
∈ L2(τ − T, τ ;V ∗)+Lq(τ − T, τ ;Lq(O)) + L2(τ − T, τ ;H).616

Since the embedding V ↪→ H is compact, by (4.17), (4.21) and Aubin-Lions compactness Lemma, we infer617

that there exists u ∈ L2(τ − T, τ ;H) such that, up to a subsequence,618

(4.22) u(·; τ − tn, θ−τω, uτ,n)→ u strongly in L2(τ − T, τ ;H).619

Therefore, by choosing a further subsequence (still denoted the same), we obtain,620

(4.23) u(τ − s; τ − tn, θ−τω, uτ,n)→ u(τ − s) strongly in H for almost all s ∈ (0, T ).621

Since 0 < s < T , by (4.23), there exists a constant 0 < T ′ < T , such that, the convergence (4.22) is true622

for s ∈ (τ − T, τ − T ′). Then by the continuity of solution with initial data in H, we obtain from (4.23)623

that624

u(τ ; τ − tn, θ−τω, uτ,n) = u(τ ; τ − s, θ−τω, u(τ − s; τ − tn, θ−τω, uτ,n))

→ u(τ, τ − s, θ−τω, u(τ − s)),625

which implies the continuous cocycle Φ associated with (4.1) is D-pullback asymptotically compact in H.626

The proof is finished.627
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As an immediate consequence of Lemma 4.12, we obtain the following D-pullback asymptotic compactness628

of the continuous cocycle Φ associated with (4.1).629

630

Theorem 4.13. Assume function a is locally Lipschitz and satisfies (1.2), f ∈ C(R) fulfills (1.3)-(1.4),631

h ∈ L2
loc(R+;V ∗) satisfies h1)-h2), and l ∈ L2(O). In addition, function g satisfies g1)-g3). Then the632

continuous cocycle Φ associated to problem (4.1) has a unique D-pullback attractor A = {A(τ, ω) : τ ∈633

R, ω ∈ Ω} ∈ D in H.634

Proof. The result follows from Definition 4.4 immediately combining Corollary 4.11 and Lemma 4.12,635

for more details, see [28, Proposition 2.10].636

Remark 4.14. The results in this Section hold true if we impose a different set of assumptions on637

function g. Namely, assume that g : R× R→ R is a continuous function such that for all t, s ∈ R,638

|g(t, s)| ≤ d1|s|r1−1 + ψ1(t),(4.24)639 ∣∣∣∣∂g∂s (t, s)

∣∣∣∣ ≤ d2|s|r1−2 + ψ2(t),(4.25)640

where 2 ≤ r1 < q1, d1 and d2 are nonnegative constants, ψ1 ∈ Lp1loc(R;Lp1(O)) and ψ2 ∈ L∞loc(R;L∞(O))641

(p1 is the conjugated number with q1). Then, Theorem 4.13 holds true assuming that function g satisfies642

(4.24)-(4.25) instead of g1)-g3) (see [22] for a similar situation).643

644

5. Convergence of random attractors for stochastic nonlocal PDEs with additive noise.645

As we mentioned before, since it is not known how to apply the theory of random dynamical systems to646

study the long time behavior of problem (1.1), we have applied an approximation of this problem in Section647

4 by using colored noise and proved that the approximate problem possesses a random attractor. In the648

next two sections, we will consider two particular cases of equation (1.1) which have been analyzed already649

within the framework of random dynamical systems (see [33]). When the stochastic forcing term g(t, u(t))650

in (1.1) is linear (such as g(t, u) = σu, multiplicative noise) or independent on u (such as, g(t, u) = φ,651

additive noise), the existence of random attractors to problem (1.1) can be constructed via performing a652

conjugation which transforms the stochastic equation into a random one. Therefore, a sensible question is:653

if we study long time behavior of problem (4.1) with additive colored noise or multiplicative colored noise,654

what is the relationship between problem (1.1) and problem (4.1) with additive/multiplicative noise when655

the parameter δ goes to zero? We will answer this question in the remaining parts of this paper.656

To simplify the presentation, in the following lines we assume h(t) = 0, which means we will study657

the dynamics of the stochastic autonomous PDEs. Actually, the ideas to work on the stochastic non-658

autonomous PDEs are the same (as have been done in the previous sections). In [33, Section 4], the659

authors investigated the existence of random attractors of the following stochastic nonlocal PDEs driven660

by a white noise,661 
∂u
∂t − a(l(u))∆u = f(u) + φdW (t)

dt ,

u = 0,

u(x, τ) = u0,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(5.1)662

663

where φ ∈ V ∩H2(O), functions a and f satisfy conditions (1.2)-(1.4) with p = 2 and β = Cf , respectively.664

The main idea is to apply a conjugation given by a transformation involving an Ornstein-Uhlenbeck process:665

v(t) = u(t)− φz∗(θtω), which takes (5.1) into666

∂v

∂t
= a(l(v) + z∗(θtω)l(φ))∆v(t) + f(v + φz∗(θtω))

+ φz∗(θtω) + a(l(v) + z∗(θtω)l(φ))z∗(θtω)∆φ.
(5.2)667
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Motivated by [15], we now study the same problem but driven by a colored noise,668 
∂uδ
∂t − a(l(uδ))∆uδ = f(uδ) + φζδ(θtω),

uδ = 0,

uδ(x, τ) = u0,δ,

in O × (τ,∞),

on ∂O × (τ,∞),

in O.
(5.3)669

670

We now transform (5.3) via the solution of the following random equation driven by colored noise,671

(5.4)
dyδ
dt

= −ηyδ + ζδ(θtω).672

For almost all ω ∈ Ω, one special solution of (5.4) can be represented by

Yδ(t, ω) = e−ηt
∫ t

−∞
eηsζδ(θsω)ds,

which, in fact, can be rewritten as Yδ(t, ω) = yδ(θtω), where yδ : Ω→ R is a well-defined random variable673

given by yδ(ω) :=
∫ 0

−∞ eηsζδ(θsω)ds. Let us recall the properties of yδ for later purpose.674

Lemma 5.1. ([17, Lemma 3.2]) Let yδ be the random variable defined above. Then the mapping675

(5.5) (t, ω)→ yδ(θtω) = e−ηt
∫ t

−∞
eηsζδ(θsω)ds676

is a stationary solution of (5.4) with continuous trajectories. In addition, E(yδ) = 0 and for almost all677

ω ∈ Ω,678

(5.6) lim
δ→0

yδ(θtω) = z∗(θtω) uniformly on [τ, τ + T ] with τ ∈ R, T > 0;679

680

(5.7) lim
t→±∞

|yδ(θtω)|
|t|

= 0 uniformly for 0 < δ < η̃;681

682

(5.8) lim
t→±∞

1

t

∫ t

0

yδ(θrω)dr = 0 uniformly for 0 < δ < η̃;683

684

(5.9) lim
δ→0

E(|yδ(ω)|) = E(|z∗(ω)|),685

where η̃ = min{1, 1
2η}, z

∗(ω) is the stationary solution of the one-dimensional Ornstein-Uhlenbeck equation

(see [33, Section 2]) given by

z∗(ω) = −η
∫ 0

−∞
eηsω(s) ds.

Remark 5.2. In this manuscript, in order to simplify the computations, we take η = 1 in equation686

(5.4), then the results of Lemma 5.1 are true for η = 1.687

Now, define a new variable688

(5.10) vδ(t) = uδ(t)− φyδ(θtω),689

where we denote by uδ(·) = uδ(·; τ, ω, u0,δ) the solution of equation (5.3). It follows from (5.3) and (5.10)690

that691

∂vδ
∂t

= a(l(vδ) + yδ(θtω)l(φ))∆vδ + f(vδ + φyδ(θtω))

+ φyδ(θtω) + a(l(vδ) + yδ(θtω)l(φ))yδ(θtω)∆φ,
(5.11)692
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with initial value vδ(τ) = uδ(τ) − φyδ(θτω) := v0,δ. In a similar way as [33, Theorem 7], we are able to
prove that, problem (5.11) with initial value v0,δ ∈ H and Dirichlet boundary condition possesses a unique
weak solution,

vδ(·; τ, ω, v0,δ) ∈ C(τ, T ;H) ∩ L2(τ, T ;V ),

for every T > τ . In addition, this solution is continuous with respect to the initial value v0,δ in H.
Furthermore, this weak solution is a strong solution, namely, for the initial value v0,δ ∈ V ∩H2(O),

vδ(·; τ, ω, v0,δ) ∈ C(τ, T ;V ) ∩ L2(τ, T ;V ∩H2(O)).

Let us define a mapping Ξδ : R+ × Ω×H → H such that693

(5.12) Ξδ(t, ω, u0,δ) = vδ(t; 0, ω, v0,δ), ∀v0,δ ∈ H, ∀ω ∈ Ω.694

Thanks to the conjugation, there is a mapping Ψδ : R+ × Ω×H → H satisfying695

Ψδ(t, ω, u0,δ) = uδ(t; 0, ω, u0,δ)

= vδ(t; 0, ω, u0,δ − φyδ(ω)) + φyδ(θtω), ∀u0,δ ∈ H, ∀ω ∈ Ω.
(5.13)696

Theorem 5.3. ([33, Theorem 9]) Suppose that a is locally Lipschitz and fulfills (1.2), f ∈ C(R)
satisfies (1.3) and (1.5) with p = 2 and β = Cf , φ ∈ V ∩ H2(O) and l ∈ L2(O). Also, let mλ1 > 4Cf .
Then, there exists a random DF -attractor A(ω) (where DF is the universe of fixed bounded sets) for the
dynamical system Ψ(t, ω, u0). In addition, the DF -pullback absorbing set B0 = {B0(ω) : ω ∈ Ω} ∈ D in H
is given by

B0(ω) = {u ∈ H : |u|2 ≤ λ−11 R0(ω)}, for almost all ω ∈ Ω,

with697

R0(ω) = 2‖φ‖2|z∗(ω)|2 +
8Cf |O|

m(mλ1 − 4Cf )
+

4λ1C
2
f |O|

(mλ1 − 4Cf )2

+
4 + 2λ1Cfm+mλ1 − 4Cf + 2Cf |O|

m(mλ1 − 4Cf )

+
(
4m−1 + 2λ1Cf

) ∫ 0

−∞
e(mλ1−4Cf )t

(
|z∗(θtω)|2

λ1Cf
+

2Cf |z∗(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2dt

+ 2

∫ 0

−1
e(mλ1−4Cf )t

(
λ1Cf |O|+

(
Cfλ1 + λ1C

−1
f

)
|z∗(θtω)|2|φ|2 +

m̃2

m
|∆φ|2

)
dt.

698

Theorem 5.4. Assume the conditions in Theorem 5.3 are true. Then, there exists δ0 > 0 such that for
all 0 < δ < δ0, (5.3) has a random DF -attractor Aδ(ω) associated to the dynamical system Ψδ(t, ω, u0,δ).
In addition, the DF -pullback absorbing set Bδ := {Bδ(ω) : ω ∈ Ω} ∈ D in H is given by

Bδ(ω) = {u ∈ H : |u|2 ≤ λ−11 Rδ(ω)},

with699

Rδ(ω) = 2‖φ‖2|yδ(ω)|2 +
8Cf |O|

m(mλ1 − 4Cf )
+

4λ1C
2
f |O|

(mλ1 − 4Cf )2

+
4 + 2λ1Cfm+mλ1 − 4Cf + 2Cf |O|

m(mλ1 − 4Cf )

+
(
4m−1 + 2λ1Cf

) ∫ 0

−∞
e(mλ1−4Cf )t

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2dt

+ 2

∫ 0

−1
e(mλ1−4Cf )t

(
λ1Cf |O|+ (Cfλ1 + λ1C

−1
f )|yδ(θtω)|2|φ|2 +

m̃2

m
|∆φ|2

)
dt.

700
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Proof. The idea to prove the existence of random DF -attractor to (5.3) is the same as [33, Theorem 9].701

Namely, looking for a random compact absorbing set Bδ(ω) (which will be given by the ball of center 0702

and radius Rδ(ω) in V ) absorbing every bounded deterministic set D ⊂ H, together with the compact703

embedding V ↪→ H, we achieve the goal. Firstly, multiplying (5.11) by vδ(t) := vδ(t; τ, ω, v0,δ) in H, by704

(1.2), we obtain705

d

dt
|vδ(t)|2 + 2m‖vδ(t)‖2 ≤ 2(f(vδ(t) + φyδ(θtω)), vδ(t)) + 2yδ(θtω)(φ, vδ(t)) + 2m̃‖φ‖‖vδ(t)‖,706

with the help of (1.5), the Young and Poincaré inequalities, we have707

d

dt
|vδ(t)|2 +m‖vδ(t)‖2 ≤ (−mλ1 + 2Cf (µ1 + 1) + µ2)|vδ(t)|2 +

Cf |O|
µ1

+

(
Cf
µ1λ1

+
1

µ2λ1

)
|yδ(θtω)|2‖φ‖2 +

m̃2

µ3
‖φ‖2 + µ3‖vδ(t)‖2.

(5.14)708

Letting µ1 = 1
2 , µ2 = Cf and µ3 = m

2 in (5.14), we derive709

d

dt
|vδ(t)|2 ≤ −(mλ1 − 4Cf )|vδ(t)|2 + 2Cf |O|

+

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2 − m

2
‖vδ(t)‖2.

(5.15)710

Neglecting the last term of (5.15) and integrating in [t0,−1] with t0 ≤ −1, we have711

|vδ(−1)|2 ≤ e−(mλ1−4Cf )(−1−t0)
[ ∫ −1

t0

(
2Cf |O|+

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2

)
× e(mλ1−4Cf )(t−t0)dt+ |vδ(t0)|2

]
≤ e−(mλ1−4Cf )(−1−t0)|vδ(t0)|2

+

∫ −1
t0

e−(mλ1−4Cf )(−t−1)
(

2Cf |O|+
(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2

)
dt

≤ e(mλ1−4Cf )
[
e(mλ1−4Cf )t0 |vδ(t0)|2

+

∫ −1
t0

e(mλ1−4Cf )t
(

2Cf |O|+
(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2

)
dt

]
.

712

Consequently, for a given B(0, ρδ) ⊂ H, there exists T (ω, ρδ) ≤ −1, such that for all t0 ≤ T (ω, ρδ) and for
all u0 ∈ B(0, ρδ),

|vδ(−1; t0, ω, uδ(t0)− φyδ(θt0ω))|2 ≤ r23,δ(ω),

with713

r23,δ(ω) = 1 +
2Cf |O|

mλ1 − 4Cf
+

∫ −1
−∞

e(mλ1−4Cf )(t+1)

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2dt,714

which is well defined. Indeed, it is enough to choose T (ω, ρδ) such that, for any t0 ≤ T (ω, ρδ), we have715

e(mλ1−4Cf )(t0+1)|vδ(t0)|2 = e(mλ1−4Cf )(t0+1)|uδ(t0)− φyδ(θt0ω)|2

≤ 2e(mλ1−4Cf )(t0+1)
(
ρ2δ + |φ|2|yδ(θt0ω)|2

)
≤ 1.

716
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From (5.15), for t ∈ [−1, 0], we have717

|vδ(t)|2 ≤ e−(mλ1−4Cf )(t+1)

[ ∫ t

−1

(
2Cf |O|+

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2

− m

2
‖vδ(s)‖2

)
e(mλ1−4Cf )(s+1)ds+ |vδ(−1)|2

]
.

718

Therefore,719

|vδ(t)|2 ≤ e−(mλ1−4Cf )(t+1)|vδ(−1)|2 +
2Cf |O|

mλ1 − 4Cf

+

∫ t

−1
e−(mλ1−4Cf )(t−s)

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds,

720

and721 ∫ 0

−1
e(mλ1−4Cf )s‖vδ(s)‖2ds ≤

2

m
e−(mλ1−4Cf )|vδ(−1)|2 +

4Cf |O|
m(mλ1 − 4Cf )

+
2

m

∫ 0

−1
e(mλ1−4Cf )s

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds.

722

Thus, we conclude for a given B(0, ρδ) ⊂ H, there exists T (ω, ρδ) ≤ −1, such that for all t0 ≤ T (ω, ρδ)723

and for all u0 ∈ B(0, ρδ),724

|vδ(t)|2 ≤ e−(mλ1−4Cf )(t+1)r23,δ(ω) +
2Cf |O|

mλ1 − 4Cf

+

∫ t

−1
e−(mλ1−4Cf )(t−s)

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds,

725

and726 ∫ 0

−1
e(mλ1−4Cf )s‖vδ(s)‖2ds ≤

2

m
e−(mλ1−4Cf )r23,δ(ω) +

4Cf |O|
m(mλ1 − 4Cf )

+
2

m

∫ 0

−1
e(mλ1−4Cf )s

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds.

(5.16)727

To obtain a bounded absorbing set in V , multiplying (5.11) by −∆vδ(t), making use of (1.2), (1.5), the728

Poincaré and Young inequalities, we have729

d

dt
‖vδ(t)‖2 ≤ −(mλ1 − 4Cf )‖vδ(t)‖2 + λ1Cf |O|+ λ1Cf |vδ(t)|2

+

(
Cfλ1 +

λ1
Cf

)
|yδ(θtω)|2|φ|2 +

m̃2

m
|∆φ|2.

730

Integrating the above inequality between s and 0, where s ∈ [−1, 0], we have731

‖vδ(0)‖2 ≤ e(mλ1−4Cf )s‖vδ(s)‖2 +

∫ 0

s

e(mλ1−4Cf )t
(
λ1Cf |O|+ λ1Cf |vδ(t)|2

+ (Cfλ1 + λ1C
−1
f )|yδ(θtω)|2|φ|2 +

m̃2

m
|∆φ|2

)
dt.

732
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Integrating again the above inequality in [−1, 0], together with the above inequality, it follows733

‖vδ(0)‖2 ≤ 2

m
e−(mλ1−4Cf )r23,δ(ω) +

4Cf |O|
m(mλ1 − 4Cf )

+
2

m

∫ 0

−1
e(mλ1−4Cf )s

×
(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds+

∫ 0

−1
e(mλ1−4Cf )t

×
(
λ1Cf |O|+ λ1Cf |v(t)|2 + (Cfλ1 + λ1C

−1
f )|yδ(θtω)|2|φ|2 +

m̃2

m
|∆φ|2

)
dt.

734

Consequently, there exists r4,δ(ω) satisfying, for a given ρδ > 0, there exists T (ω, ρδ) ≤ −1, such that for
all t0 ≤ T (ω, ρδ) and |u0,δ| ≤ ρδ,

‖uδ(0; t0, ω, u0,δ)‖2 = ‖vδ(0; t0, ω, u0,δ − φyδ(θt0ω)) + φyδ(ω)‖2 ≤ r24,δ(ω),

where735

r24,δ(ω) = 2‖φ‖2|yδ(ω)|2 +
(
4m−1 + 2λ1Cf

)
r23,δ(ω) +

8Cf |O|
m(mλ1 − 4Cf )

+
4λ1C

2
f |O|

(mλ1 − 4Cf )2

+
(
4m−1 + 2λ1Cf

) ∫ 0

−∞
e(mλ1−4Cf )s

(
|yδ(θsω)|2

λ1Cf
+

2Cf |yδ(θsω)|2

λ1
+

2m̃2

m

)
‖φ‖2ds

+ 2

∫ 0

−1
e(mλ1−4Cf )s

(
λ1Cf |O|+ (Cfλ1 + λ1C

−1
f )|yδ(θsω)|2|φ|2 +

m̃2

m
|∆φ|2

)
ds.

736

Thus, we conclude from [33, Theorem 1] that, there exists a unique random attractor Aδ(ω) to equation737

(5.3) with respect to deterministic bounded sets.738

Theorem 5.5. Let conditions of Theorem 5.3 hold. Then, for almost all ω ∈ Ω, we have

lim
δ→0

Rδ(ω) = R0(ω),

where R0(ω) and Rδ(ω) are given in theorems 5.3 and 5.4, respectively.739

Proof. From (5.6), we obtain740

(5.17) lim
δ→0

yδ(ω) = z∗(ω).741

On the one hand, (5.7) implies that there exist r < 0 and δ0 > 0, such that for all 0 < δ < δ0,742

(5.18) |yδ(θtω)| ≤ |t|, ∀t ≤ r.743

Notice that,744 ∫ 0

−∞
e(mλ1−4Cf )t

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt

=

∫ r

−∞
e(mλ1−4Cf )t

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt

+

∫ 0

r

e(mλ1−4Cf )t
(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt.

745

Therefore, for all 0 < δ < δ0, it follows from (5.18) that746 ∫ r

−∞
e(mλ1−4Cf )t

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt

≤
∫ r

−∞
e(mλ1−4Cf )t

(
|t|2

λ1Cf
+

2Cf |t|2

λ1

)
‖φ‖2dt <∞.

747
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By means of the above inequality, (5.6) and dominated convergence theorem, we have748

lim
δ→0

∫ r

−∞
e(mλ1−4Cf )t

(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt

=

∫ r

−∞
e(mλ1−4Cf )t

(
|z∗(θtω)|2

λ1Cf
+

2Cf |z∗(θtω)|2

λ1

)
||φ‖2dt.

(5.19)749

On the other hand, by (5.6), the continuity of yδ(θtω) and the dominated convergence theorem, it follows750

lim
δ→0

∫ 0

r

e(mλ1−4Cf )t
(
|yδ(θtω)|2

λ1Cf
+

2Cf |yδ(θtω)|2

λ1

)
||φ‖2dt

=

∫ 0

r

e(mλ1−4Cf )t
(
|z∗(θtω)|2

λ1Cf
+

2Cf |z∗(θtω)|2

λ1

)
||φ‖2dt.

(5.20)751

By similar arguments to (5.20), it is easy to check752

lim
δ→0

∫ 0

−1
e(mλ1−4Cf )t

(
Cfλ1 + λ1C

−1
f

)
|yδ(θtω)|2||φ‖2dt

=

∫ 0

−1
e(mλ1−4Cf )t

(
Cfλ1 + λ1C

−1
f

)
|z∗(θtω)|‖φ‖2dt.

(5.21)753

The conclusion of this theorem follows from (5.19)-(5.21). The proof is complete.754

Lemma 5.6. Under assumptions of Theorem 5.3, let {δn}∞n=1 be a sequence satisfying δn → 0 as
n→ +∞. Let uδn and u be the solutions of (5.3) and (5.1) with initial values u0,δn and u0, respectively.
If u0,δn → u0 strongly in H as n→ +∞, then for almost all ω ∈ Ω and t ≥ τ ,

uδn(t; τ, ω, u0,δn)→ u(t; τ, ω, u0) strongly in H as n→ +∞.

Proof. The proof is similar to [16, Lemma 4.4] and we omit the details here.755

Lemma 5.7. Assume conditions of Theorem 5.3 hold, let {δn}∞n=1 be a sequence so that δn → 0 as756

n → +∞. Let vδn and v be the solutions of problems (5.11) and (5.2) with initial data v0,δn and v0,757

respectively. If v0,δn → v0 weakly in H as n→ +∞, then for almost all ω ∈ Ω,758

(5.22) vδn(r; τ, ω, v0,δn)→ v(r; τ, ω, v0) weakly in H, ∀r ≥ τ,759

and760

(5.23) vδn(·; τ, ω, v0,δn)→ v(·; τ, ω, v0) weakly in L2(τ, τ + T ;V ), ∀T > 0.761

Proof. The results follow analogously to the proof of existence of solutions to problem (5.11) [15,762

Lemma 3.5]. We therefore omit the details.763

Lemma 5.8. Suppose conditions of Theorem 5.3 hold, let ω ∈ Ω be fixed. If δn → 0 as n → +∞ and764

uδn ∈ Aδn(ω), then the sequence {uδn}∞n=1 has a convergent subsequence in H.765

Proof. Since δn → 0 as n → +∞, by Theorem 5.5, we obtain for almost all ω ∈ Ω, there exists766

N = N(ω), such that for all n ≥ N767

(5.24) Rδn(ω) ≤ 2R0(ω).768

Thanks to un := uδn(t; τ, ω, u0,δn) ∈ Aδn(ω) and Aδn(ω) ⊂ Rδn(ω), hence for all n ≥ N , we have769

(5.25) |un|2 ≤ 2λ−11 R0(ω).770
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In fact, (5.25) implies un is bounded in H, thus, up to a subsequence (relabeled the same), we have771

(5.26) un → ũ weakly in H.772

In what follows, we prove that the weak convergence in (5.26) is actually a strong one. On the one hand,773

since un ∈ Aδn(ω), making use of the invariance of Aδn , for every k ≥ 1, there exists un,k(ω) ∈ Aδn(θ−kω)774

such that775

(5.27) un = Ψδn(k, θ−kω, un,k) = uδn(0;−k, ω, un,k).776

Since un,k ∈ Aδn(θ−kω) and Aδn(θ−kω) ⊂ Bδn(θ−kω), by (5.24), we infer that for each k ≥ 1 and777

n ≥ N := N(θ−kω),778

(5.28) |un,k|2 ≤ 2λ−11 R0(θ−kω).779

On the other hand, by (5.10), we have780

(5.29) vδn(0;−k, ω, vn,k) = uδn(0;−k, ω, un,k)− φyδn(ω),781

where vn,k = un,k − φyδn(θ−kω). Therefore, (5.27) and (5.29) imply782

(5.30) un = vδn(0;−k, ω, vn,k) + φyδn(ω).783

By (5.28), we have784

(5.31) |vn,k|2 ≤ 2|un,k|2 + 2|φ|2|yδn(ω)|2 ≤ 4λ−11 R0(θ−kω) + 2|φ|2|yδn(ω)|2.785

It follows from (5.6) and (5.31) that there exists N1 := N1(ω, k) such that for every k ≥ 1 and n ≥ N1,786

(5.32) |vn,k|2 ≤ 4λ−11 R0(θ−kω) + 4|φ|2(1 + |z∗(ω)|2).787

Notice that (5.6), (5.28) and (5.30) imply, as n→ +∞,788

(5.33) vδn(0;−k, ω, vn,k)→ ṽ weakly in H with ṽ = ũ− φz∗(ω).789

Next, using energy estimations, we evaluate the limit of norm |vδn(0;−k, ω, vn,k)| for each k as n →790

+∞. By (5.32) we know that for each k ≥ 1, the sequence {vn,k}∞n=1 is bounded in H, hence by a diagonal791

process, we can find a subsequence (relabeled the same) such that for each k ≥ 1, there exists v̄k ∈ H such792

that793

(5.34) vn,k → v̄k weakly in H as n→ +∞.794

Lemma 5.7 and (5.34) conclude, as n→ +∞,795

(5.35) vδn(0;−k, ω, vn,k)→ v(0;−k, ω, v̄k) weakly in H,796

and797

(5.36) vδn(·;−k, ω, vn,k)→ v(·;−k, ω, v̄k) weakly in L2(τ, τ + T ;V ).798

By the uniqueness of limit, from (5.33) and (5.36), we obtain799

(5.37) v(0;−k, ω, v̄k) = ṽ.800

By energy equality and (5.11), we have801

d

dt
|vδn(t)|2 + 2a(l(vδn) + yδn(θtω)l(φ))‖vδn(t)‖2 = 2(f(vδn + φyδn(θtω)), vδn(t))

+ 2yδn(θtω)(φ, vδn(t))− 2a(l(vδn) + yδn(θtω)l(φ))((φ, vδn)),
802
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i.e.,803

d

dt
|vδn(t)|2 +mλ1|vδn(t)|2 + Θ(vδn(t)) = 2(f(vδn + φyδn(θtω)), vδn(t))

+ 2yδn(θtω)(φ, vδn(t))− 2a(l(vδn) + yδn(θtω)l(φ))((φ, vδn)),
(5.38)804

where Θ(vδn(t)) = 2a(l(vδn)+yδn(θtω)l(φ))‖vδn(t)‖2−mλ1|vδn(t)|2, which is a functional in V . Multiplying805

(5.38) by emλ1t and integrating it from −k to 0, we obtain806

|vδn(0;−k, ω, vn,k)|2 = e−mλ1k|vn,k|2 −
∫ 0

−k
emλ1tΘ(vδn(t;−k, ω, vn,k))dt

+ 2

∫ 0

−k
emλ1t(f(vδn(t;−k, ω, vn,k) + φyδn(θtω)), vδn(t;−k, ω, vn,k))dt

+ 2

∫ 0

−k
emλ1tyδn(θtω)(φ, vδn(t;−k, ω, vn,k))dt

− 2

∫ 0

−k
emλ1ta(l(vδn(t;−k, ω, vn,k)) + yδn(θtω)l(φ))((φ, vδn(t;−k, ω, vn,k)))dt.

807

Similarly, by (5.2),(5.33) and (5.37), we have808

|ṽ|2 := |ṽ(0;−k, ω, v̄k)|2 = e−mλ1k|v̄k|2 −
∫ 0

−k
emλ1tΘ(v(t;−k, ω, v̄k))dt

+ 2

∫ 0

−k
emλ1t(f(v(t;−k, ω, v̄k) + φz∗(θtω)), v(t;−k, ω, v̄k))dt

+ 2

∫ 0

−k
emλ1tz∗(θtω)(φ, v(t;−k, ω, v̄k))dt

− 2

∫ 0

−k
emλ1ta(l(v(t;−k, ω, v̄k)) + z∗(θtω)l(φ))((φ, v(t;−k, ω, v̄k)))dt.

(5.39)809

It is obvious that810

lim sup
n→∞

|vδn(0;−k, ω, vn,k)|2

≤ e−mλ1k
(
4λ−11 R0(θ−kω) + 4|φ|2

(
1 + |z∗(ω)|2

))
+ |ṽ|2 − e−mλ1k|v̄k|2

≤ e−mλ1k
(
4λ−11 R0(θ−kω) + 4|φ|2

(
1 + |z∗(ω)|2

))
+ |v(0;−k, ω, v̄k)|2.

(5.40)811

Notice that, from (5.37) we know for n→ +∞,812

(5.41) v(0;−k, ω, v̄k) = ṽ = u(0;−k, ω, ūk)− φz∗(ω) := ũ− φz∗(ω).813

By (5.30), we find814

(5.42) vδn(0;−k, ω, vn,k) = un − φyδn(ω).815

It follows from (5.40)-(5.42) that816

(5.43) lim sup
n→∞

|un − φyn(ω)| ≤ e−mλ1k
(
4λ−11 R0(θ−kω) + 4|φ|2

(
1 + |z∗(ω)|2

))
+ |ũ− φz∗(ω)|2.817

Since R0 and z∗ are tempered, we have818

lim sup
k→∞

e−mλ1k
(
4λ−11 R0(θ−kω) + 4|φ|2

(
1 + |z∗(ω)|2

))
= 0.819
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Let k → +∞ in (5.43), we obtain820

(5.44) lim sup
n→∞

|un − φyn(ω)| ≤ |ũ− φz∗(ω)|.821

(5.26) and (5.6) lead us to822

un − φyn(ω)→ ũ− φz∗(ω) weakly in H,823

together with (5.44), we have824

(5.45) un − φyn(ω)→ ũ− φz∗(ω) strongly in H.825

Therefore, by (5.6), we conclude that

un → ũ strongly in H,

as desired. This completes the proof.826

We are now ready to establish the upper semicontinuity of random attractors as δ → 0.827

Theorem 5.9. Suppose that a is locally Lipschitz and fulfills (1.2), f ∈ C(R) satisfies (1.3) and (1.5)
with p = 2 and β = Cf , respectively, φ ∈ V ∩ H2(O) and l ∈ L2(O). Also, let mλ1 > 4Cf . Then for
almost all ω ∈ Ω,

lim
δ→0

distH(Aδ(ω),A(ω)) = 0.

Proof. For every fixed ω ∈ Ω, define828

B̄(ω) =

{
u ∈ H : |u|2 ≤ λ−11

(
2‖φ‖2|z∗(ω)|2 +

8Cf |O|
m(mλ1 − 4Cf )

+
4λ1C

2
f |O|

(mλ1 − 4Cf )2

+
4 + 2λ1Cfm+mλ1 − 4Cf + 2Cf |O|

m(mλ1 − 4Cf )

+
(
4m−1 + 2λ1Cf

) ∫ 0

−∞
e(mλ1−4Cf )t

(
|z∗(θtω)|2

λ1Cf
+

2Cf |z∗(θtω)|2

λ1
+

2m̃2

m

)
‖φ‖2dt

+ 2

∫ 0

−1
e(mλ1−4Cf )t

(
λ1Cf |O|+

(
Cfλ1 + λ1C

−1
f

)
|z∗(θtω)|2|φ|2 +

m̃2

m
|∆φ|2

)
dt

)}
.

829

By Theorem 5.3, we know B̄ := {B̄(ω) : ω ∈ Ω} is also a DF -(pullback) random absorbing set for Ψ. Let
Bδ be the DF -(pullback) random absorbing set of Ψδ given by Theorem 5.4, it follows from Theorem 5.5
that

lim
δ→0
|Bδ(ω)| = |B̄(ω)| for almost all ω ∈ Ω.

Which, together with Lemmas 5.6 and 5.8, completes the proof by applying [27, Theorem 3.1].830

Remark 5.10. Notice that, if for every ω ∈ Ω, the set
⋃
δ∈(0,1]Aδ(ω) is precompact in H, the results831

of Lemma 5.8 hold true automatically [27]. Indeed, in our case, we define the absorbing set Bδ(ω) =832

{u ∈ H : |u| ≤ λ−11 Rδ(ω)} (Theorem 5.4) for every δ ∈ (0, 1], it is clear that the upper bound of Bδ(ω)833

is uniform with respect to δ. In fact, using the similar arguments as Theorem 5.5, with the help of the834

properties of yδ(θtω) (cf. (5.6)-(5.8)), it is enough to show that |Bδ(ω)| ≤ C(ω), where C(ω) is a positive835

constant which does not depend on δ. Therefore, we can replace the complicated proof of Lemma 5.6 by836

this conclusion to prove the upper semicontinuity of random attractors (cf. Theorem 5.9).837
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6. Convergence of random attractors for stochastic nonlocal PDEs with multiplicative838

noise. We conclude our paper with studying the following stochastic nonlocal partial differential equations839

driven by colored noise,840 
∂uδ
∂t − a(l(uδ))∆uδ = f(uδ) + σuζδ(θtω),

uδ = 0,

uδ(x, τ) = u0,δ,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(6.1)841

842

which is an approximation of the following one studied in [33],843 
∂u
∂t − a(l(u))∆u = f(u) + σu ◦ dWdt ,
u = 0,

u(x, τ) = u0,

in O × (τ,∞),

on ∂O × (τ,∞),

in O,
(6.2)844

845

where ◦ denotes the Stratonovich sense in stochastic term. On account of the change of variable v(t) =846

e−σz
∗(θtω)u(t), (6.2) can be written as,847

(6.3)
dv

dt
− a

(
l(v)eσz

∗(θtω)
)

∆v = e−σz
∗(θtω)f(veσz

∗(θtω)) + vσz∗(θtω).848

Analogously, to study the pathwise dynamics of problem (6.1), we need to transform the stochastic equa-849

tions into random ones parameterized by ω ∈ Ω. Let850

(6.4) vδ(t) = uδ(t)e
−σyδ(θtω).851

Then, (6.1) and (6.4) imply that852

(6.5)
dvδ
dt
− a

(
l(vδ)e

σyδ(θtω)
)

∆vδ = e−σyδ(θtω)f(vδe
σyδ(θtω)) + vδ(t)σyδ(θtω),853

with initial value v0,δ := vδ(τ) = u0e
−σyδ(θτω).854

Proposition 6.1. Suppose assumptions (1.2)-(1.5) are true with p = 2 and β = Cf , respectively.855

Then, for almost all ω ∈ Ω, function a(ω, ·) = a
(
l(·)eσyδ(θtω)

)
∈ C(R;R+) is locally Lipschitz and satisfies856

(1.2). Furthermore, there exists a constant CF,δ depending on ω, σ, Cf and η, such that,857

|F (ω, s)| ≤ CF,δ(1 + |s|) and (F (ω, s)− F (ω, r))(s− r) ≤ η|s− r|2, ∀s, r ∈ R,858

where F (ω, s) = e−σyδ(ω)f(eσyδ(ω)s) + σyδ(ω)s.859

In what follows, we will use vδ(·; τ, ω, v0,δ) to denote the solution of equation (6.5). In a similar way as860

[33, Theorem 3], we deduce (6.5) has a unique weak solution in the sense of [33, Definition 7] which belongs861

to L2(τ, T ;V ) ∩ L∞(τ, T ;H) for every T ≥ τ . At this point, thanks to the transformation (6.4), there862

exists a unique weak solution uδ(·; τ, ω, u0,δ) ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H) for every T ≥ τ . In addition,863

this solution behaves continuously in H with respect to the initial value.864

Define a mapping Σδ : R+ × Ω×H → H, such that for every t ∈ R+,

Σδ(t, ω, v0,δ) = vδ(t; 0, ω, v0,δ), ∀v0,δ ∈ H, ∀ω ∈ Ω.

Thanks to the conjugation [33, Lemma 1], there is a mapping Φδ : R+ × Ω × H → H such that for all
t ∈ R+,

Φδ(t, ω, u0,δ) = uδ(t; 0, ω, u0,δ) := vδ(t; 0, ω, e−σyδ(ω)v0,δ)e
σyδ(θtω), ∀u0,δ ∈ H, ∀ω ∈ Ω.

Theorem 6.2. ([33, Theorem 5]) Assume that function a ∈ C(R;R+) fulfills (1.2), function f satisfies
(1.3) and (1.5) with p = 2 and β = Cf , respectively, l ∈ L2(O). Also, let mλ1 > 3Cf . Then there exists a

This manuscript is for review purposes only.



40 J.H. XU, AND T. CARABALLO

unique random attractor A(ω) for the dynamical system Φ(t, ω, u) associated to problem (6.2). Additionally,
this DF -pullback absorbing set B0 := {B0(ω) : ω ∈ Ω} in H is given by

B0(ω) = {u ∈ H : |u|2 ≤ λ−11 R0(ω)},

with865

R0(ω) =
1

m
e
∫ 0
−1

2σz∗(θsω)ds+2σz∗(ω)

×
(

1 + Cf |O|
∫ −1
−∞

e−2σz
∗(θsω)+(mλ1−3Cf )s+

∫−1
s

2σz∗(θτω)dτds

)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σz

∗(θsω)+(mλ1−3Cf )s+2σz∗(ω)+
∫ 0
s
2σz∗(θrω)drds.

866

Theorem 6.3. Under assumptions of Theorem 6.2, there exists δ0 > 0 such that for all 0 < δ <
δ0, equation (6.1) generates a random dynamical system Φδ(t, ω, u0,δ), which possesses a unique random
attractor Aδ(ω). Additionally, the DF -pullback absorbing set Bδ := {Bδ(ω) : ω ∈ Ω} in H is given by

Bδ(ω) = {u ∈ H : |u|2 ≤ λ−11 Rδ(ω)},

with867

Rδ(ω) =
1

m
e
∫ 0
−1

2σyδ(θsω)ds+2σyδ(ω)

×
(

1 + Cf |O|
∫ −1
−∞

e−2σyδ(θsω)+(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds

)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδ(θsω)+(mλ1−3Cf )s+2σyδ(ω)+

∫ 0
s
2σyδ(θrω)drds.

868

Proof. The same method as [33, Theorem 5] will be used to prove this result. We first derive the869

boundedness of vδ(·) := vδ(·; t0, ω, v0,δ) in H for all t ∈ [t0,−1] with t0 ≤ −1, where v0,δ = e−σyδ(θt0ω)u0870

and u0 ∈ D (a deterministic bounded set). Firstly, multiplying (6.5) by vδ in H, thanks to (1.5) and the871

Young inequality, we have872

1

2

d

dt
|vδ(t)|2 + a(eσyδ(θtω)l(vδ))‖vδ(t)‖2

≤ 1

2
e−2σyδ(θtω)Cf |O|+

(
3Cf

2
+ σyδ(θtω)

)
|vδ(t)|2,

873

thanks to the Poincaré inequality and (1.2), we have874

(6.6)
d

dt
|vδ(t)|2 +m‖vδ(t)‖2 ≤ (−mλ1 + 3Cf + 2σyδ(θtω))|vδ(t)|2 + e−2σyδ(θtω)Cf |O|.875

Integrating (6.6) between t0 and −1, it follows876

|vδ(−1)|2 ≤ e(mλ1−3Cf )
[
e
(mλ1−3Cf )t0+

∫−1
t0

2σyδ(θsω)ds|vδ(t0)|2

+ Cf |O|
∫ −1
t0

e−2σyδ(θsω)e(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds

]
.

877

Consequently, for a given deterministic bounded set D ⊂ H, there exist a constant ρδ > 0 and T (ω, ρδ) ≤
−1, P-a.e., such that, for any u0,δ ∈ D ⊂ B(0, ρδ), for all t0 ≤ T (ω, ρδ), we have∣∣∣vδ (−1; t0, ω, e

−σyδ(θt0ω)u0,δ

)∣∣∣2 ≤ r21,δ(ω),
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with878

r21,δ(ω) = e(mλ1−3Cf )
(

1 + Cf |O|
∫ −1
−∞

e−2σyδ(θsω)+(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds

)
.879

Secondly, we show v ∈ L∞(−1, t;H)∩L2(−1, t;V ) with t ∈ [−1, 0] by energy estimations. Integrating880

(6.6) from −1 to t with t ∈ [−1, 0], we obtain881

|vδ(t)|2 ≤ e−(mλ1−3Cf )(t+1)+
∫ t
−1

2σyδ(θsω)ds|vδ(−1)|2

+ Cf |O|
∫ t

−1
e−2σyδ(θsω)+(3Cf−mλ1)(t−s)+

∫ t
s
2σyδ(θτω)dτds

−m
∫ t

−1
e(3Cf−mλ1)(t−s)+

∫ t
s
2σyδ(θτω)dτ‖vδ(s)‖2ds.

(6.7)882

Therefore, by similar arguments, we conclude that for a given deterministic subset D ⊂ B(0, ρδ) ⊂ H,883

there exists T (ω, ρδ) ≤ −1, P-a.e., such that for all t0 ≤ T (ω, ρδ), for all u0,δ ∈ D, we have884

|vδ(t)|2 ≤ e−(mλ1−3Cf )(t+1)+
∫ t
−1

2σyδ(θsω)dsr21,δ(ω)

+ Cf |O|
∫ t

−1
e−2σyδ(θsω)+(3Cf−mλ1)(t−s)+

∫ t
s
2σyδ(θτω)dτds,

885

and886 ∫ 0

−1
e(mλ1−3Cf )s+

∫ 0
s
2σyδ(θτω)dτ‖vδ(s)‖2ds ≤

1

m
e−(mλ1−3Cf )+

∫ 0
−1

2σyδ(θsω)dsr21,δ(ω)

+
Cf |O|
m

∫ 0

−1
e−2σyδ(θsω)+(mλ1−3Cf )s+

∫ 0
s
2σyδ(θτω)dτds.

(6.8)887

Thirdly, the boundedness of vδ(·) in V for all t ∈ [−1, 0] and the compact embedding V ↪→ H ensure the888

existence of a compact absorbing ball in H. To obtain a bound in V , we first need to ensure the existence889

of strong solutions, by slightly improving the regularity of initial value, namely, u0,δ ∈ V , but assumptions890

imposed on functions a and f are the same, this result holds, for more details, see [32, Theorem 2.9].891

Multiplying (6.5) by −∆vδ(t), with the help of (1.3) and the Young inequality, we derive892

1

2

d

dt
‖vδ(t)‖2 + a(eσyδ(θtω)l(vδ))| −∆vδ(t)|2

≤ 1

m
e−2σyδ(θtω)C2

f |O|+
C2
f

m
|vδ(t)|2 +

m

2
|∆v(t)|2 + σyδ(θtω)‖v(t)‖2.

(6.9)893

Using the Poincaré inequality, (6.9) can be bounded by894

d

dt
‖vδ(t)‖2 ≤ −m|∆vδ(t)|2 +

2

m
C2
f |O|e−2σyδ(θtω) +

2C2
f

m
|v(t)|2 + 2σyδ(θtω)‖vδ(t)‖2

≤

(
−mλ1 +

2C2
f

mλ1
+ 2σyδ(θtω)

)
‖vδ(t)‖2 +

2

m
C2
f |O|e−2σyδ(θtω).

(6.10)895

Integrating (6.10) between s and 0 with s ∈ [−1, 0], we obtain896

‖vδ(0)‖2 ≤ e(mλ1−2C2
f/mλ1)s+

∫ 0
s
2σyδ(θτω)dτ‖vδ(s)‖2

+
2

m
C2
f |O|

∫ 0

s

e−2σyδ(θτω)+(mλ1−2C2
f/mλ1)τ+

∫ 0
τ
2σyδ(θtω)dtdτ.

897
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Integrating the above inequality again in [−1, 0], we have898

‖vδ(0)‖2 ≤
∫ 0

−1
e(mλ1−2C2

f/mλ1)s+
∫ 0
s
2σyδ(θτω)dτ‖vδ(s)‖2ds

+
2

m
C2
f |O|

∫ 0

−1
e−2σyδ(θsω)+(mλ1−2C2

f/mλ1)s+
∫ 0
s
2σyδ(θrω)drds.

899

Thanks to assumption 3Cf < mλ1, it is easy to check mλ1 − 3Cf < mλ1 −
2C2

f

mλ1
, together with (6.8), we900

have901

‖vδ(0)‖2 ≤ 1

m
e−(mλ1−3Cf )+

∫ 0
−1

2σyδ(θsω)dsr21,δ(ω)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδ(θsω)+(mλ1−3Cf )s+

∫ 0
s
2σyδ(θrω)drds.

902

Therefore, it is straightforward that903

‖uδ(0)‖2 = ‖vδ(0)eσyδ(ω)‖2

≤ 1

m
e−(mλ1−3Cf )+2σyδ(ω)+

∫ 0
−1

2σyδ(θsω)dsr21,δ(ω)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδ(θsω)+2σyδ(ω)+(mλ1−3Cf )s+

∫ 0
s
2σyδ(θrω)drds.

904

Consequently, there exists r2,δ(ω) such that for a given ρδ > 0, there exists T̃ (ω, ρδ) ≤ −1 satisfying, for

all t0 ≤ T̃ (ω, ρδ) and u0,δ ∈ H with |u0,δ| ≤ ρδ,

‖uδ(0; t0, ω, u0,δ)‖2 ≤ r2,δ(ω),

where905

r22,δ(ω) =
1

m
e
∫ 0
−1

2σyδ(θsω)ds+2σyδ(ω)ds

×
(

1 + Cf |O|
∫ −1
−∞

e−2σyδ(θsω)+(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds

)
+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδ(θsω)+(mλ1−3Cf )s+2σyδ(ω)+

∫ 0
s
2σyδ(θrω)drds.

906

From (5.7), we know that for a given ε =
mλ1−3Cf

8|σ| , there exists T1(ε, ω) < 0, such that for all t ≤ T1, we907

have908

(6.11) |yδ(θtω)| ≤ −mλ1 − 3Cf
8|σ|

t.909

Similarly, it follows from (5.8), for any ε > 0, there exists T2(ε, ω) < 0, such that for all t ≤ T2,910

(6.12)

∣∣∣∣∫ t

0

yδ(θτω)dτ

∣∣∣∣ ≤ −mλ1 − 3Cf
8|σ|

t.911

Therefore,912 ∫ −1
−∞

e−2σyδ(θsω)+(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds

=

∫ min{T1,T2}

−∞
e−2σyδ(θsω)+(mλ1−3Cf )s+

∫−1
s

2σyδ(θτω)dτds

+

∫ −1
min{T1,T2}

e−2σyδ(θsω)+(mλ1−3Cf )s+
∫−1
s

2σyδ(θτω)dτds = I1 + I2.

913
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The continuity of yδ(ω) guarantees the boundedness of I2. It remains to show I1 is bounded, it follows914

from (6.11)-(6.12) that915

∫ min{T1,T2}

−∞
e−2σyδ(θsω)+(mλ1−3Cf )s+

∫−1
s

2σyδ(θτω)dτds

≤
∫ min{T1,T2}

−∞
e2|σ||yδ(θsω)|+(mλ1−3Cf )s+|

∫−1
s

2σyδ(θτω)dτ |ds

≤
∫ min{T1,T2}

−∞
e(mλ1−3Cf )(s+1/4)ds <∞.

916

Thus, we conclude from [33, Theorem 2] that there exists a unique random attractor Aδ(ω) to problem917

(6.1).918

Theorem 6.4. Suppose the conditions of Theorem 6.2 are true. Then, for almost all ω ∈ Ω,

lim
δ→0

Rδ(ω) = R0(ω),

where R0(ω) and Rδ(ω) are given in Theorems 6.2 and 6.3, respectively.919

Proof. The proof of this theorem is based on the properties of yδ(θtω) (cf. (5.6)-(5.7)). Since the idea920

and technique to prove this result are the same as Theorems 5.5, we omit the details.921

Lemma 6.5. Assume the conditions of Theorem 6.2 are true, let {δn}∞n=1 be a sequence so that δn → 0922

as n → +∞. Let vδn and v be the solutions of problem (6.1) and (6.3) with initial data v0,δn and v0,923

respectively. If v0,δn → v0 weakly in H as n→ +∞, then for almost all ω ∈ Ω,924

(6.13) vδn(r; τ, ω, v0,δn)→ v(r; τ, ω, v0) weakly in H, ∀r ≥ τ,925

and926

(6.14) vδn(·; τ, ω, v0,δn)→ v(·; τ, ω, v0) strongly in L2(τ, τ + T ;H), ∀T > 0.927

Proof. The proof is similar to [15, Lemma 3.5] and thus is omitted here.928

Lemma 6.6. Assume the conditions of Theorem 6.2 are true and a is locally Lipschitz. let {δn}∞n=1 be929

a sequence so that δn → 0 as n → +∞. Let vδn and v be the solutions of problem (6.1) and (6.3) with930

initial data v0,δn and v0, respectively. If v0,δn → v0 in H as n → +∞, then for every τ ∈ R, ω ∈ Ω and931

t ≥ τ ,932

(6.15) vδn(t; τ, ω, v0,δn)→ v(t; τ, ω, v0) in H, ∀t ≥ τ,933

934

Proof. The proof is similar to [16, Lemma 3.8] and thus is omitted here.935

Now, we prove the uniform compactness of the family of random attractors Aδ(ω).936

Lemma 6.7. Assume the conditions of Lemma 6.6 hold, let ω ∈ Ω is fixed. If δn → 0 as n→ +∞ and937

un ∈ Aδn(ω), then the sequence {un}∞n=1 has a convergent subsequence in H.938

Proof. Since un ∈ Aδn(ω), it follows from the invariance of Aδn , there exists un,−1 ∈ Aδn(θ−1ω), such939

that940

(6.16) un = Φδ(1, θ−1ω, un,−1) = uδn(0;−1, ω, un,−1).941

This manuscript is for review purposes only.



44 J.H. XU, AND T. CARABALLO

On the one hand, we deduce from Theorem 6.4 that there exists N1 = N1(ω) ≥ 1, such that for all n ≥ N1,942

Rδn(θ−1ω)≤1 +
1

m
e
∫ 0
−1

2σyδn (θs−1ω)ds+2σyδn (θ−1ω)

×
(

1 + Cf |O|
∫ −1
−∞

e−2σyδn (θs−1ω)+(mλ1−3Cf )s+
∫−1
s

2σyδn (θτ−1ω)dτds

)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδn (θs−1ω)+(mλ1−3Cf )s+2σyδn (θ−1ω)+

∫ 0
s
2σyδn (θr−1ω)drds.

943

Thanks to un,−1 ∈ Aδn(θ−1ω) ⊂ Bδn(θ−1ω), by Theorem 6.3 and (6.16), we obtain for all n ≥ N1,944

|un,−1|2 ≤ λ−11

(
1 +

1

m
e
∫ 0
−1

2σyδn (θs−1ω)ds+2σyδn (θ−1ω)

×
(

1 + Cf |O|
∫ −1
−∞

e−2σyδn (θs−1ω)+(mλ1−3Cf )s+
∫−1
s

2σyδn (θτ−1ω)dτds

)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σyδn (θs−1ω)+(mλ1−3Cf )s+2σyδn (θ−1ω)+

∫ 0
s
2σyδn (θr−1ω)drds

)
.

(6.17)

945

On the other hand, by (6.4), we have946

vδn(s;−1, ω, vn,−1) = uδn(s;−1, ω, un,−1)e−σyδn (θsω),947

and948

(6.18) vn,−1 = un,−1e
−σyδn (θ−1ω).949

By (5.6), we know
lim
δn→0

e−σyδn (θ−1ω) = e−σz
∗(θ−1ω),

which, along with (6.17)-(6.18) shows that the sequence {vn,−1}∞n=1 is bounded in H. Therefore, there
exist a subsequence {vn,−1} (relabeled the same) and v−1 such that vn,−1 → v−1 weakly in H. Lemma
6.5 ensures the existence of v̄ := v̄(·;−1, ω, v−1) ∈ L2(−1, 0;H) such that, up to a subsequence,

vδn(·;−1, ω, vn,−1)→ v̄ strongly in L2(−1, 0;H),

which implies, up to a further subsequence,950

(6.19) vδn(s;−1, ω, vn,−1)→ v̄(s) strongly in H, a.e. s ∈ (−1, 0).951

By (5.6), (6.18)-(6.19), we obtain952

(6.20) uδn(s;−1, ω, un,−1)→ eσz
∗(θsω)v̄(s) strongly in H, a.e. s ∈ (−1, 0).953

Since δn → 0 as n→ +∞, it follows from Lemma 6.6 and (6.20) that,954

(6.21) uδn(0; s, ω, uδn(s;−1, ω, un,−1))→ u(0; s, ω, eσz
∗(θsω)v̄(s)) strongly in H,955

where u is solution of (6.2). By cocycle property,

uδn(0; s, ω, uδn(s;−1, ω, un,−1)) = uδn(0;−1, ω, un,−1).

Therefore, by (6.21) we have956

uδn(0;−1, ω, un,−1)→ u(0; s, ω, eσz
∗(θsω)v̄(s)) strongly in H,957

together with (6.16), the proof is complete.958
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We finally present the upper semicontinuity of random (pullback) attractors as δ → 0.959

Theorem 6.8. Assume that function a ∈ C(R;R+) fulfills (1.2), function f satisfies (1.3) and (1.5)960

with p = 2 and β = Cf , respectively. Also, let mλ1 > 3Cf and l ∈ L2(O). Then, for almost all ω ∈ Ω,961

(6.22) lim
δ→0

distH(Aδ(ω),A(ω)) = 0.962

Proof. For every fixed ω ∈ Ω, let963

B̃(ω) =

{
u ∈ H : |u|2 ≤ λ−11

(
1

m
e
∫ 0
−1

2σz∗(θsω)ds+2σz∗(ω)

×
(

1 + Cf |O|
∫ −1
−∞

e−2σz
∗(θsω)+(mλ1−3Cf )s+

∫−1
s

2σz∗(θτω)dτds

)

+

(
1

m
Cf |O|+

2

m
C2
f |O|

)∫ 0

−1
e−2σz

∗(θsω)+(mλ1−3Cf )s+2σz∗(ω)+
∫ 0
s
2σz∗(θrω)drds

)}
.

964

By Theorem 6.2 we see B̃ := {B̃(ω), ω ∈ Ω} belongs to D. Moreover, Theorem 6.4 implies

lim
δ→0
|Bδ(ω)| = |B̃(ω)|, for almost all ω ∈ Ω.

Combine above equality with Lemmas 6.5 and 6.7, we finish the proof of this theorem by [27, Theorem 3.1].965
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