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LONG TIME BEHAVIOR OF STOCHASTIC NONLOCAL PARTIAL DIFFERENTIAL
EQUATIONS AND WONG-ZAKAI APPROXIMATIONS*

JIAOHUI XU' AND TOMAS CARABALLO?

Abstract. This paper is devoted to investigating the well-posedness and asymptotic behavior of a class of stochastic
nonlocal partial differential equations driven by nonlinear noise. First, the existence of a weak martingale solution is estab-
lished by using the Faedo-Galerkin approximation and an idea analogous to Da Prato and Zabczyk [12]. Second, we show
the uniqueness and continuous dependence on initial values of solutions to the above stochastic nonlocal problem when there
exist some variational solutions. Third, the asymptotic local stability of steady-state solutions is analyzed either when the
steady-state solutions of the deterministic problem is also solution of the stochastic one, or when this does not happen. Next,
to study the global asymptotic behavior, namely, the existence of attracting sets of solutions, we consider an approximation
of the noise given by Wong-Zakai’s technique using the so called colored noise. For this model, we can use the power of
the theory of random dynamical systems and prove the existence of random attractors. Eventually, particularizing in the
cases of additive and multiplicative noise, it is proved that the Wong-Zakai approximation models possess random attractors
which converge upper-semicontinuously to the respective random attractors of the stochastic equations driven by standard
Brownian motions. This fact justifies the use of this colored noise technique to approximate the asymptotic behavior of the
models with general nonlinear noises, although the convergence of attractors and solutions is still an open problem.

Key words. Nonlinear stochastic term, colored noise, variational solutions, steady-state solution, attractors, upper
semi-continuity.

AMS subject classifications. 60H15, 35B40.

1. Introduction. Nowadays, a big amount of researchers develop stochastic systems to model phe-
nomena from real world in a more realistic way, as can be seen in the published literature (for instance,
[6, 8, 17, 19, 21, 25, 31] and references therein). In this paper, we are concerned with a stochastic version
of a nonlocal partial differential equation, which has been well studied by M. Chipot and his collaborators
(see [9, 10, 11]), to model the behavior of a migrating population in a bounded habitat or problems with
magneto-elastic interactions. Precisely, we are interested in performing a rigorous study of well-posedness
and dynamics of the following stochastic nonlocal reaction-diffusion equation,

9u — a(l(u))Au = f(u) + h(t) + g(t,u) W, in O x (7,00),
(1.1) u =0, on 00 x (T, 00),

u(w, 1) = up(x), in O,
where 7 € R, function a € C(R;RT) and there exist two positive constants m and m, such that
(1.2) m < a(s) <m, Vs € R.

Moreover, let [ € L(L?(O);R), f € C(R) and there exist positive constants as, ag, 1, k and p > 2, such
that

(1.3) (f(s) = fr)(s=7) <m(s—r)?  Vs,reR,
(1.4) — K —agls|? < f(s)s < k — aals|?, Vs € R.
From (1.4), we can deduce that there exists 5 > 0, such that

(1.5) FI<B(sPH+1),  VseR
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2 J.H. XU, AND T. CARABALLO

In addition, let (2, F,{F;}i>0,P) be a stochastic basis with expectation E, K and U be two separable
Hilbert spaces. Let W(t) be a cylindrical Wiener process with values in K defined on the stochastic
basis. Denote by Lo(K,U) the set of Hilbert-Schmidt operators from K to U. Eventually, let the initial
value ug € L*(0) and non-autonomous term h € L? (R; H~(O)). The operator [ acting on u must be
understood as (I, u), but for short we keep the notation I(u).

Now, we impose smoothness condition on the domain, namely, we require @ C R¥ to be a bounded
open set of class C¥, with k > 2 such that k > N(p — 2)/(2p).

Initially, our intention was to prove the well-posedness of problem (1.1) in the sense of Definition 2.6
by following the variational technique which was originally introduced by Pardoux in his thesis [23], and
subsequently in many other papers dealing with stochastic partial differential equations in the variational
framework (see, e.g. [5, 7, 8, 24]). However, on the one hand, the appearance of the nonlocal term a(-) in
our problem makes the analysis more involved, since the main operator, a(l(u))Au, does not satisfy the
standard assumptions of monotonicity which are required in the aforementioned variational set-up. On the
other hand, In the deterministic case (cf. [32]), the compactness method for nonlinear partial differential
equations is somehow easier: when LP bounds on the approximating solutions have been proved, the
approximating equations readily give us estimates on the derivatives, and this implies strong convergence
of some subsequence, while this strategy does not extend to the stochastic case since the solutions are
not differentiable (cf. [14]). Therefore, by carrying out a careful analysis in a satisfactory way, some
conclusions are obtained as follows:

e When [ € £L(L*(O);R), we are able to prove the existence of a solution (see Theorem 2.8) in a
weaker sense, the so called martingale solution (see Definition 2.7).

e One should expect some positive answers, in some particular cases, about existence of variational
solution to problem (1.1). In fact, when [ is not a bounded linear operator as in our current case,
for instance, when the functional [ is given by I(u) = [lu/[3,, the existence and uniqueness of

solution of the following problem ’

Up — a(||u||ilé)Au = f(u) + h(t), (t,x)€ (0,00)x O,
u=0, (tz)€(0,00)x 90,
u(0,2) = up(z), z€O,

were shown in [3]. Moreover, recently, the authors studied in [4] the existence and uniqueness of
variational solution to the stochastic version of the above problem,

U = a(||u\|§lé)Au + fw) + h(t,z) + o(u)dw(t), (t,z) € (1,00) x O,
u=0, (tz)é€ (r,00)x 0,
u(t,z) =u(z), x€0,

by using a monotone iterative approach. Let us point out the key point in the proof is to show
that the nonlocal term —a(||ul|?,,)Au is monotone. This holds true because in [4] it is imposed
that ’

s — a(s%)s is non-decreasing.

However, in our case, it is not possible to prove the monotonicity of the operator —a(l(u))Aw since
l € L(L?(O);R).

e If we adopted a Picard scheme as in [18, Chapter 3], defining operator A(v) := —a(l(u"~1))Awv,
we could construct a sequence {u"}%2 ;, whose limit could be the solution of our problem. In this
way, we would overcome the difficulty of proving monotonicity. However, in the last step to prove
{u™}52, is a Cauchy sequence, we would not have enough regularity to ensure the stopping time

No={r <t<T:|u(t)| = N},

is well defined, since u™ € L?(; L>° (7, T; L*(0)))NL2(Q; L? (1, T; HE(0)))NLP(; LP (1, T; LP(0)))
for p > 2 by the It6 formula. As a result, we are not able to use a monotone iterative approach
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method when [ € L(L?(O);R). As an alternative, we will show the existence of martingale solu-
tions to problem (1.1).

Next, we study the asymptotic local stability when there exist variational solutions to (1.1). Our
analysis is intended in two directions: (i) We study the behavior of the solutions to the stochastic problem
around steady-state solutions (equilibria) of the deterministic one (i.e. g = 0), when the latter are not
necessarily equilibria of the stochastic problem. In this case, we prove exponential convergence (in mean
square and almost surely) of solutions to (1.1) towards some steady-state solution to the deterministic
problem; (ii) When the deterministic and stochastic problems have a common steady-state solution, we
prove a sufficient condition ensuring its asymptotic exponential stability in mean square. However, the
global asymptotic dynamics cannot be carried out by applying the well-established theory of random
dynamical systems in the case of nonlinear noisy terms. This leads us to proceed in a different way as we
will describe below.

Notice that, for the particular case in which the noise term is linear (additive or multiplicative), the
existence of random attractors of (1.1) has been analyzed in [33] by exploiting the tools of the theory
of random dynamical systems. However, when the noise is nonlinear, this theory cannot be applied in a
suitable way because it is not proved yet that the stochastic problem (1.1) generates a random dynamical
system. Recently, B. X. Wang and his collaborators (see, e.g., [15, 17, 22, 30]) have initiated a new
approach to tackle the problem with nonlinear noise. The idea is to replace the noise in (1.1) by a Wong-
Zakai approximation, denoted by (s(6,w),d € (0, 1] (see details in Section 4), whose integral fg Cs(Osw) ds
converges to the Brownian motion W;(w), uniformly for ¢ in bounded intervals of time, as ¢ goes to zero.
Therefore, we will analyze the following random non-autonomous problem driven by colored noise,

Gu — afi(u))Au = f(u) + h(t) + g(t,u)¢s(Brw),  in O x (7,00),
(1.6) u=0, on 90 x (1,00),

U(I’,T) = UO(I)a in O.

Observe that the above random problem can be analyzed for each fixed w, therefore it generates a random
dynamical system. Hence, the deterministic techniques can be adopted here to state the well-posedness
and the existence of a random attractor.

Naturally, one should expect, at least formally, that the random attractor of (1.6) converges in some
sense to a random attractor of the limit problem when § goes to zero. This is a hard problem, there are
answers only in some special cases. Motived by the previous work, for instance [30], we will particularize
our study in the cases of additive and multiplicative noise. Indeed, we first study the dynamics of

% a(i(u)Au = f(u) + ¢, in O x(r,00),
(1.7) u =0, on 90 x (T1,00),
U(SE,T) = Ug, in O,

where, for simplicity, we consider an autonomous version, i.e., h = 0 and g(t,u) = ¢ € H}(O) N H(O).
The corresponding approximate problem is

%us — a(l(us))Aus = f(us) + ¢Cs(0w), I O x (7,00),
(1.8) us =0, on 90 x (r,00),

us(x, T) = uo,s, in O,

where functions a and f satisfy conditions (1.2)-(1.4) with p = 2 and 8 = Cy. Then, by using appropriate
changes of variable given by Ornstein-Uhlenbeck processes, we prove that both problems generate random
dynamical systems which possess random attractors, denoted by A and As, respectively. Furthermore, it
is shown that As converges upper-semicontinuously to A as ¢ goes to zero, and the solutions of problem
(1.8) converge to solutions of (1.7). More precisely, if {6, }22 ; is a sequence satisfying d,, — 0 as n — 400,
us,, and w are the solutions of (1.8) and (1.7) with initial values ug 5, and ug, respectively, and if ug 5, — uo
strongly in L?(O) as n — +00, then for almost all w € Q and t > 7,

us,, (87, w, uo,5,) — w(t; T,w,ug) strongly in L*(0) as n — +oc.
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4 J.H. XU, AND T. CARABALLO
Finally, we carry out a similar analysis in the case of multiplicative noise, i.e.,

QU _ g(l(u))Au = f(u) +ouo D in O x(1,00),

ot dt
(1.9) u =0, on 00 x (T1,00),
u(z, 7) = ug, in O,

and the corresponding approximate problem is

95— a(l(us))Aus = f(us) + ouo (s(fw), n O x (1,00),
(1.10) us =0, on 00 X (1,00),
us(z,7) = uo,s, in O,

where o denotes the Stratonovich sense in stochastic term.

The analysis described above is developed in the following sections. Section 2 is devoted to proving the
main theorem about existence and construction of a martingale solution. In Section 3, the local asymptotic
behavior of solutions is considered, proving some exponential decay of solutions of the stochastic problem
to the steady-state solutions of the deterministic one (i.e., g = 0). The global asymptotic behavior of
solutions is studied in Section 4 by considering the Wong-Zakai approximate problem of our original one
(cf. (1.1)). The theory of random non-autonomous dynamical systems is carried out to prove the existence
of a random non-autonomous attractor for the approximate system (cf. (1.6)), which can be considered
as a reasonable approximation of the dynamics for our original problem. This claim is justified with
the analysis developed in sections 5 and 6, where one can check that the attractors and solutions of the
approximate problems converge, in appropriate sense.

2. Existence of martingale solutions to problem (1.1). In this section, we use the Faedo-
Galerkin approximation and an idea analogous to Da Prato and Zabczyk [12] showing the existence of
a martingale solution to stochastic nonlocal problem (1.1). This theory has received increasing attention
over the last years (see, e.g. [12, 13, 14, 26]). In what follows, we introduce some necessary notations and
most of the hypotheses relevant to our analysis.

2.1. Stochastic setting. Let {Q, 7,P} be a complete probability space and F = {F;},c0,r) an
increasing and right continuous family of sub g-algebras of F, such that Fy contains all of P-null sets of F.
In this manuscript, all stochastic integrals are defined in the sense of It6 and EX denotes the mathematical
expectation of the stochastic process X = X (t,w) with respect to P. Given K and U two separable Hilbert
spaces, W (t) a cylindrical Wiener process with values in K, we denote by L(K,U) the space of continuous
linear mapping from K to U. By Lo(K,U), which is a subspace of L(K,U) consisting of Hilbert-Schmidt
operators from K to U. It is known that Lo (/K U) is a Hilbert space and its norm is denoted by |- ||z, (x,v)-

Given p > 1, a € (0,1), let W*P(0,T;U) be the Sobolev space of all functions u € LP(0,T;U) such

that
T
lu(t) — u(s)|”
/ / t—5|1+°‘P ——————dtds < 0,
endowed with the norm

T P
r _ p |’LL )|
HU'HW&:P(O’T;U) = / | dt + / / ‘t — S|1+O‘p ———— " dtds.

For any progressively measurable process f € L?(Q x [0,T]; L2(K,U)), we denote by I(f) the It6 integral
defined as

t):/o F()AW(s),  te[0,T).

Clearly, I(f) is a progressively measurable process in L2(Q x [0,T];U).
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LEMMA 2.1. ([14, Lemma 2.1]) Let p > 2,0 < a < % Then, for any progressively measurable process
feLP(Qx[0,T]; L2(K,U)), we have

I(f) € LP(Q;W*P(0,T;U)),

and there exists a constant C(p,«) > 0, independent of f, such that

T
B0y < COE [ 17O 00t

2.2. Notations. We also introduce additional notations frequently used throughout the work, for
simplicity, denote by H = L?*(0), V = H}(0O) and V* = H~1(0O). Identifying H with its dual, we have
the usual chain of dense and compact embeddings V' C H C V*. We denote by | - |, the norm in LP(O),
|| and || - ||« the norms in H and V* by (-,-) and ((-,-)) the scalar products in H and V, respectively,
and by < -, - > the duality product between V' and V*. At last, let C°(O) be the space of all functions
of class C*° with compact supports contained in O.

Given real numbers ¢ < b and p > 1, we will denote by I”(a,b; H) the space of all processes X €
LP(Q x (a,b),F ® B((a,b)),dP ® dt; H), where B((a,b)) denotes the Borel o-algebra on (a,b), such that
X(t) is Fi-measurable for a.e. ¢ € (a,b). Moreover, the space I”(a,b; H) is a closed subspace of LP(£) x
(a,b), F @ B((a,b)),dP ® dt; H).

Denote by A = —A with Dirichlet boundary condition in our problem, and let D(A) be the domain of
A. In this way, the linear operator A : D(A) := VNH?(O) C V — H is positive, self-adjoint with compact
resolvent. We denote by 0 < A1 < Ay < --- the eigenvalues of A, and by e, es, -+, a corresponding
complete orthonormal system in L2(0O) of eigenvectors of A. Recall that for every v € V, the Poincaré
inequality

M(O)|v]* < ol?

holds. In the sequel, unless otherwise specified, we write A; instead of A1(O).

2.3. Assumptions on g. Let g: (7,7) x H — Lo(H, H) satisfy:

g1) g(t,0) =0 and ||g(t,u) — g(t,v)||L2(H7H) < Lyjlu—v|, Yu,ve€ H, ae. te(r,T);

g2) For every p € C°(0O), the mapping H 3 u —< g(t,u), p >:= g(t,u)(p) € H is continuous for a.e.

te(r,T).

Remark 2.2. We will show detailedly the proof of existence of martingale solutions to problem (1.1)
in the next theorem. To present ideas clearly, we simply do estimations on g(u) instead of g(t,u). Indeed,
the idea and procedures to obtain existence of martingale solutions to (1.1) with g(¢,u) are similar, we
only need to consider for every t € (r,T], @(t) is F;-measurable, for more details, see [13].

2.4. Preliminaries. We now recall the following results which will be needed to prove the existence
of martingale solutions.

LEMMA 2.3. ([14, Theorem 2.1]) Let By C B C By be Banach spaces, By and By be reflexive, with
compact embedding of By in B. Let p € (1,00) and a € (0,1), let X be the space

X = LP(0,T; By) NW*P(0,T; By)

endowed with the natural norm. Then the embedding of X in LP(0,T; B) is compact.

LEMMA 2.4. ([12, Skorohod theorem]) Let X be a complete, separable metric space. For an arbitrary
sequence {n}, which is tight on (X, B(X)), there exists a subsequence {n, } which converges weakly to a
probability measure p, and a probability space (0, F,P) with X -valued Borel measurable random variables
Ty and x, such that p, is the distribution of x,, w is the distribution of x and x, — x, P-a.s.

LEMMA 2.5. ([26, Vitali’s convergence theorem]) Let p € [1,00), x, € LP(2), and z,, converge to x in
probability. Then the following statements are equivalent:
1. limy o0 T = x in LP(Q);
2. |z, |P is uniformly integrable;
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167 3. limy,—y o0 E[|z,|P] = E[|2|F].
168 Particularly, if sup,, E[|z,|?] < co for some p < q < 0o, or if there exists a y € LP(Q) such that |z,| < y
169 for all n, then the above properties hold true.

170 2.5. Definitions of solutions. We introduce the concepts of solution of problem (1.1).

171 DEFINITION 2.6. (Variational solution) A solution of (1.1) is a stochastic process u € I*(7,T;V) N
172 L2(Q;C(1,T; H)) N IP(1,T; LP(O)) for all T > 7, with the initial value u(t) = ug € L*(Q; H), such that

u(t) :u0+/ a(l(u(s)))Au(s)ds+/ f(u(s))ds+/ h(s)ds
Jr/ g(u(s))dW(s), P-a.s. Vte (r,T],

174 where the above integro-equality should be understood in V* 4+ L1(O), and q is the conjugate exponent of p.

175 DEFINITION 2.7. (Martingale solution) We say there exists a martingale solution of equation (1.1) if
176 there exist o ~
177 e a stochastic basis (Q, F,{Fi};>0: P);
178 e a cylindrical Wiener process W on the space H; R
e a progressively measurable process w : [1,T] x  — H with P-a.e. paths

a(-,w) € LA(r,T; V)N L>®(7,T; H) N LP (7, T; LP(O)),

179 such that for allt € [7,T) and v € VN LP(O),

(u(t),v) +/ a(l(a(s))) < Au(s),v > ds = (g, v) +/ (f(a(s)),v)ds
180 (2.1) T . ) R
+/ < h(s),v>ds+ (/ g(&(s))dW(s),v) ,

181 where the identity holds P-a.s.

182 2.6. Main results. We now prove the existence of martingale solutions to problem (1.1) after pre-
183 senting all the required conditions, lemmas and techniques.

184 THEOREM 2.8. Assume that a € C(R;R™) satisfies (1.2), f € C(R) fulfills (1.3)-(1.4), g : H —
185 Lo(H, H) satisfies g1)-g2). Moreover, h € L} (R;V*) and | € L(L*(O);R). Then, for every initial datum
186 ug € H, there exists at least one martingale solution to problem (1.1).

187 Proof. We split the proof into several steps.

188 Step 1. Faedo-Galerkin approximation. Making use of spectral theory, we recall that {e;}32;

189 is the orthonormal basis of H consisting of the eigenfunctions of A in V. Observe that, thanks to the
190 regularity imposed on the domain O, each eigenfunction e; € LP(O).
191 Before going further, we first define two projection operators related to

P,: H—V,:=spanley, -+ ,ey],
n
. 6 — > (¢,e)er
i=1
193 The first one is given by
Pl VY — V",

94
" v [pEV =< Plu,¢ >:=< v, P >].
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To define the second one, we recall that A = —A with homogeneous Dirichlet boundary condition, i.e. the
isomorphism from V into V*, which can be also seen as an unbounded operator in H. Let us consider the
domains of fractional powers of A,

D(A*?y = {ue H: Zx\f(u, e;)? < oo}
i>1
Now we are ready to define the second projection operator, which is given by
P?2: L1(0) — D(A™F/?),
v — [p € D(AM?) < P2u,¢ > pia—rs2y prarrey= (v, Pag)].

Observe that P! and P? are the continuous extensions in V* and L?(O) of P,, respectively. Therefore,
from now on we will denote both projections by P, making an abuse of notation.
Let us consider the classical Faedo-Galerkin approximation in the space V,,

o {duna) = (a0 un () A (1) + Pof (1)) + Puh(0)) i+ Puglun (D)W (D), 1 € (7,7,
Un(7) = Ppug.

In what follows, we will show for all n € N, there exist three positive constants C, Co and C3, such that

(2.3) E[ sup un(t)|2] <y,
r<t<T
T
(2.4) E/ un ()2t < Cs,
and
T
(2.5) E / fun (£) 2t < Cs.

Applying the It formula to |u,|? (n > 1) and integrating from 7 to T', we have
t t
[, (1))? = | Ppug|? + 2/ a(l(un(s))) < —Aup(s),un(s) > ds + 2/ (P f(un(s)), un(s))ds
t t
+2/ < Poh(s), un(s) > ds +2/ (i (5), P g () AWV (5))

t
+/ ||Png(un(s))H%2(HﬁH)ds, a.e. t € (r,T].

Making use of (1.2) and (1.4), we obtain

t t
un (@) +2m [ ()]s + 20 [ Jun (5)7ds < Juof? + 26/0/(T - 7)

t

+2 IIh(S)H*Hun(S)IIdSJr?/ (un(s), Pog(un(s))dW (s))

t
+/ HPng(un(s))||2L2(11,’H)ds7 a.e. t € (r,T).

Applying the Young inequality and taking into account of g;) to the above inequality, we arrive at

O+ [ ) ds+2a2/\un< s < ol + 24017 =)+ - [ hce)zas

(2.6) t

Ly | un(s)Pds+ 2 / (tn(5), Pag(tn())dW (s))

T
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8 J.H. XU, AND T. CARABALLO

Taking supremum and expectation on both sides of (2.6), by means of the Burkholder-Davis-Gundy in-
equality, we derive

9 t
| s fun ()| < 2Eluol? + 441017~ 1)+ 25 [ )]s

T<s<t

t
+2(1+42C7) Lg/ E[ sup |un(r)|2:| ds,

T<r<s

where C}, is the constant derived from Burkholder-Davis-Gundy estimate. By iterating the preceding
inequality, we obtain

E { sup |un<s>|2} < (2E|U0|2 +4xO|(T —7)+ 2 [ t ||h<s>||ids)

T<s<t

n-1 i i
y Z (2(1 +2C3)L,)" (t — 1) < (2HAC) Ly (T—7)
7! -

< const.
i=0

Moreover, it follows from (2.6) that

¢ 1 ¢ ¢
mE/ |un(s)||%ds < Elug|? + 2x|O|(T — 7) + EE/ Hh(s)||3ds+Lg/ E [ sup |un(7«)|2} ds,

T<r<s

and

t 1 t t
QaQE/ |un(s)|gds < ]E|uo|2 +2:|0O(T — 1) + —IE/ ||h(s)\|zds + Lg/ E [ sup |un(r)|2} ds.
T m T T

T<r<s

Thus, the desired results (2.3)-(2.5) are proved.

Step 2. Tightness. For each n € N, the solution u, of the Galerkin equation defines a measure
L(uy) on L2(r,T; V)N L= (7, T; H) N LP(7,T; LP(O)). Using lemmas 2.1 and 2.3, together with estimates
(2.3)-(2.5), we will prove the tightness of this set of measures.

Decompose now u,, as

t t

U (t) :Pnuo—/ a(l(un(s)))Aun(s)ds—i-/ Pnf(un(s))ds—l—/ P, h(s)ds

(27) . o T
b [ Puglan)dW (o) = 14 12 4 134 14 1,

We will estimate each term of (2.7). Since ug € H, it is easy to check there exists a constant Cy, such that
E|I,[* < Cy.
For I2, by (1.2), (2.4), the Hélder inequality and Fubini Theorem, there exists a constant Cj, such that

a2
BNy = BIL N2 vy + EHEH%%,T;V*)

T

T t T
< (T - T)E/ / | = Aun(s)||2dsdt + mQ]E/ | = Aun ()2t

t 2 T
[ ~attun(s)) Aun(ds| de+E [ - altlen(s)) dun (9)]2ds

T
< C (AT —7)* +m?) ]E/ l|un (1)]|2dt < Cs.
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232 For I3 let ¢ = z% € (1,2) be the conjugate of p, we first derive the following estimate by (1.5),

| f (un) |2 = / |f (un)|9dz < B9 / (lunlP™! +1)%dz < 297187 / |, |17~V dz + 2971 3O
(@] (@] O
= 2971 3%, [P + 2971 37| 0|

231 Observe that P, f(u,) € LI(1,T; H=*(0)) since f(u,) € Li(r,T; L1(0O)). By the above inequality, (2.5),
235 the Holder inequality and Fubini Theorem, there exists a constant Cg, such that

dr3 "

_ 3
wiar,ra-+0) = Bl rim-r0)) T B g Mo asm-+0))

:E/T

< E/TT (/T IPnf(un(S))lHk(o>d8>th+E/TT|f(un(t))Zdt

E|L|

q

T
dt + E/ | P f (i (0)) |51 )

H-k(O
236 ©

/Tt P, f(un(s))ds

T
1

< (@ -7 41) E/ | F(un(t))[2dt < Cs.

T

237 For I%, by the Holder inequality and Fubini Theorem, there exists a constant C7, such that

ar!
Ell L5 r ey = BNl 2y + EHIH%%(T,T;V*)

T
238 =F /
-

< (T =7)* + DE|AlZ2(r 13- < O

t 2 T
/Pnh(s)ds dt+E/ (| Pah(t)]|Zdt

As for the last term I2, by Lemma 2.1, assumption g1) and (2.3), we know there exists a constant Cg(a),
such that for every a € (0, %), we have

EN 13y ez e 1y < C(@).
Obviously, for o € (0, 3), the natural continuous embedding D(A*/2) — H*(O) < LP(O) implies
WhE(r, T, V*) € WH(r, T;V*) € W7, T; V') € W4 (r,T; D(A™F/2)),
We2(r, T H) ¢ W9 (7, T; H) € W, T; V*) € W9(r,T; D(A/2)),

and
Whi(r, T; H5(0)) ¢ W7, T; H-*(0)) ¢ W™ (r,T; D(A~*/2)).

Collecting all the previous estimates for I'-I3 together with the above natural embedding results, we
obtain

Ellun|lwea(r,ripa—r2y) < Cla),
for all @ € (0,3) and C(a) > 0. Actually, thanks to (2.4), we deduce that the laws £(u,) are bounded in
probability in
LA, T; V)N W47, T; D(A™*/?)).
239 Additionally, L?(7,T; V) C Li(t,T; V), hence, it follows from Lemma 2.3 that £(u,,) is tight in L9(, T; H).
240 Step 3. Pass to limit. By Step 2, we obtain the set of measures £(u,) is tight on the space

241 Li(7,T; H). Moreover, Lemma 2.4 implies there exists a stochastic basis (fl,ﬁ, {]:'t}tzo,]fj’), and on this

242 basis, there exist L4(r,T; H)-valued random variables {i,, } (k> 1) and @, such that
243 (2.8) Up,

. has the same law as u,, on LY(7,T; H) and @, — @ in LY(7,T; H), P-a.s.
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In the sequel, let us denote the subsequence ,, again by a,,.
Since u,, € C(7,T; P, H), P-a.s. together with the fact that @, has the same law as u,, we derive for
eachn > 1,
L(i,)(C(r,T; P,H)) =1,  P-a.s.

By similar arguments as (2.3)-(2.5), we know there exist three positive constants Cy, Cy and Cs, such that
foralln > 1,

(2.9) IE[ sup ﬂn(t)|2] < C’l,
T<t<T
T
(2.10) fE/ i (8))|2dt < Cs,
and
T
(2.11) IE:/ |t (t) [Bdt < Cs.

Based on the above estimates, it holds that the sequence {,,(-,w)}5Z; is uniformly bounded in L>(7,T; H)N
L3(7,T;V)NLP(1,T; LP(O)). Also, (2.8) implies that @, — @ in L4(7,T; H), P-a.s. Therefore, we conclude
that

(2.12) a(-,w) € L3(r, T; V)N L (1, T; H) N LP (1, T; LP(0)),  P-a.s.

We will show now that for each n > 1, the process M,, with trajectories in C(7,T; H) defined as
~ t t t
(2.13) M, (t) = Un(t) —Pnﬁ0+/ a(l(ﬁn(s)))PnAﬂn(s)ds—/ Pnf(ﬁn(s))ds—/ P,h(s)ds, te (r,T],

is a square integrable martingale with respect to the filtration fn,t = o{tn(s),7 < s < t}, having the
following quadratic variation

t
(2.14) ((My)): = / Pog(tin(s))g(tn(s))" Pads, ¢ € (7,T].

Indeed, both facts (cf. (2.13)-(2.14)) are true since 4, and u, have the same law. To be more precise, we
define

t t

M, (t) = up(t) — Pyug +/ a(l(un(s)))PpAu,(s)ds 7/ P, f(un(s))ds 7/ P,h(s)ds, te (r,T].

T T

Obviously, M, () is a square integrable martingale with respect to the filtration 7, ; = o{u,(s), 7 < s <t},
since

(2.15) M, (1) :/ P,g(un(s))dW(s), te (r,T].
It follows from (2.8) that

(2.16) L(M,) = L(M,), E|M,(t)|<oco and E|M,(t)* < cc.

Moreover, let ¢ be a real valued bounded and continuous function on Li(7,s; H), 7 < s <t < T, as M,(-)
is a Fpt = 0{u,(s) : 7 < s < t} martingale, we obtain for all 1, ¢ € D(AF/2),

EKMTL(t) - Mn(S), w>¢(un|[r,s])] =0,
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269 and
B (00, 9) V0. €) = (M (5,0 01, (5). €
b -/ (9lutn (0))" Pat, glutn(0))* PaC) 2 )l =0.
271 }"_lfhe notation (-,-) denotes the duality between D(A*/2) and D(A=*/2). Thanks to the fact (2.16),, we
o have
s (27) B[V () = Na(5), ) (itnr.)] = O,
274 and

f [(<Mn<t>, ) (T (8), €) — (VE(s), ) (W (5), C)

Y

075 (2.18) ‘
~ [ 0@ (o) Pat i) Pa) da)mnnmp] 0.

276 We now will take limits in (2.17) and (2.18), let M be a D(A~*/?)-valued process defined by,

bt (219)  BI(E) = a(t) — dio + / a(I(ii(s))) Aii(s)ds — / Fla(s))ds — / h(s)ds, t € (v, T).

278 To prove the final result, we first show some auxiliary lemmas.
279 LEMMA 2.9. Suppose the conditions of Theorem 2.8 are true. Then, for all s,t € (1,T] such that s <t
280 and for all 1 € D(A*/?), we have: 5
281 (a) limp o0 (Un(t), Prw) = (4(t),v), P-a.s.
282 (0) limy o0 [ < a((iin(0))) Atin (o), Pytp > do = [1 < a(l(i(0)))Au(o), ¢ > do, P-a.s.
283 (€) limy oo 1 (f(@n(0)), Patp)do = [ (f(a(0)),)do, P-a.s.
284 Proof. Let us fix s,t € (7,T], s < t and ¢ € D(A*/?). By (2.9)-(2.12), we obtain
T (-, w) = G(-,w) weakly in L?(7,T;V), P-as.
Gin(-,w) = G(-,w) weak-star in L(r,T; H), P-a.s.
s (2.20) Un(,w) = (-, w) weakly in LP(7,T; Lp(0>)l P-a.s.
Un(,w) = (-, w) strongly in Li(r,T; H), P-a.s.
G (t,w) — (t,w) strongly in H, ae. t € (1,T], P-as.
U (t, 2, w) = 4(t, z,w) ae. (t,z) € (1,T] x O, P-as.

286 Thus, assertion (a) holds true since P, — ¢ in H as n — oo, P-a.s.
We now prove (b). On the one hand, since | € L(L*(O);R) and a € C(R;R™), by (2.20),, we have

i) = (I, 1) == (I,0) = I(),

287 hence, a(l(t,)) — a(l(@)) as n — oo. On the other hand, with the help of fact P9 — 1 in V as n — oo,
288 we infer that P-a.s.

/ < a(l(tin(0)))Atin(0), Pytp > do = / a(l(tin(0)))((n (o), Parp))do
289 y ®

m/ a(l(a(0)))((a(o), ¢))do :/ a(l(ua(e))) < Au(o), v > do.
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Thus, (b) is proved.

We will now move to the last assertion. It follows from (2.20), that i, (o, z,w) — (o, z,w) in O for
a.e. (o,z) € (1,7] x O as n — oo. In addition, f(%@,) is bounded in L9(7,T; L1(0)), making use of 20,
Lemma 1.3], we obtain f(a,) — f(@) weakly in L4(7,T; L1(0)). In addition, P,¥p — % in LP(QO), thus,
for almsot all w € 2, we obtain

[ o), o 22 [ (s(aton), vidor

The proof of this lemma is complete. ]

LEMMA 2.10. Suppose the conditions of Theorem 2.8 are true. Then, for all s,t € (1,T)], every s <t
and 1 € D(A*/?), we have,

lim B [(M,(t) = M (), )0 lnr,7)| = B [(V(2) = M (5), e, 1) -

n—oo

Proof. We will prove this lemma by using Vitali’s convergence theorem (cf. Lemma 2.5). Let us
fix s,t € (1,T), for every ¥» € D(A*/?), by the definition of projection operator P, defined in Step 1 of
Theorem 2.8, we derive

<Mn(t) - Mn(5)3¢> = (an(t) - ﬂn(s)a in) +/ a’(l(ﬂn(g))) < Aﬁn(a)a in > do

t t
~ [ Hanlon. Patyio — [ < bio), Pt > do.
S S
By means of Lemma 2.9 and P,¥ — ¥ in V as n — 0o, we obtain

(2.21) lim (M, (t) — My (s),0) = (M(t) — M(s),¢), P-as.

n—roo

Observe that, ¢ is a real valued bounded and continuous function on L4(7, s; H), hence,

lim @ (tpfr,s) = @(Ur,s)), P-a.s. and Slelrl\)l (T [r,s1) [l oo < 00,

n—oo

where we have used the notation || - ||co := || - ||ze=. Let us define

Xn(w) = (M (t,0),8) = (Mo (5,0),8)) (@), @ € Q.

According to Vitali’s convergence theorem, we need to check the functions {X,, (w)},en are uniformly
integrable, namely,

(2.22) sup E| X, |? < oo.

n>1

In fact, for each n € N, we have
(2.23) BIXnl? < 20l 1113 402y E (180 ()2 + 1 (s)2)

Since M, is a continuous martingale with quadratic variation defined in (2.14), by the Burkholder-Davis-
Gundy inequality, (2.9) and ¢ ), we derive
T
/ |t (0)|?do | < oo,
-

here and in the sequel, ¢ is a positive and finite constant obtained by the Burkholder-Davis-Gundy in-
equality estimate. It follows from (2.23)-(2.24) that (2.22) holds. Since the sequence {X,, }nen is uniformly
integrable and by (2.21), it is P-a.s. pointwise convergent, application of the Vitali convergence theorem
completes the proof of this lemma. 0

(2.24) E | sup |[M,(t)*| <cE
te(r,T]

T
/ ||Png(an(0))||%2(H,H)d01 < cL,E
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LEMMA 2.11. Suppose the conditions of Theorem 2.8 are true. Then, for all s,t € (1,T], s <t, every
Y and ¢ € D(A*/?), we have

lim B [ (N (8), ) (M (1), €) = (N (), 0) (W (5),€) ) 9. 5)]

n—oo

— & [(1(0), 0)(1(2),) = (1(5). ) ((5).)) )]

Proof. Let us fix s,t € (7,T], where s < t, for all 1, ¢ € D(A*/2), we define

Xa(w) = [ (W (8), ) (M (£), ) = (Na(5), ) (W (5), Q) #(infir )] w € O

X(w) = [ (010, 0) (M(1),€) = (M(), ) (M (), ) ) plifpr))] w0 € Q.
By Lemma 2.9, we derive lim,,_, o X, (w) = X (w) for P-almost all w € €.

Next, we will prove that the functions {X,, },en are uniformly integrable. To this end, it is enough to
check

(2.25) sup E| X, |P/? < oo.

n>1

Notice that,
(2.26) BI X2 < 220185 2y Wiy B (IO + [N (5)]7)

The same arguments as in Lemma 2.10 deduces that
T p/2
El sup IMn(t)Ip] < cE (/ IIPng(ﬂn(O))IIQLz(H,H>dU>

te(r,T]
T p/2
< cI?’E (/ |ﬂn(0)2d0> < 0.

By (2.27)-(2.26), the conclusion (2.25) holds true. The Vitali convergence theorem shows

(2.27)

lim E[X,(w)] = E[X(w)].

n—oo

Thus, the proof of this lemma is finished. 0

LEMMA 2.12. (Convergence in quadratic variation) Suppose the conditions of Theorem 2.8 are true.
Then, for any s, t € (1,T] and s < t, every ¥, ¢ € D(A*/?), we have

n— o0

i 2] [ ot00(0))" Pt (0))" )l ) )|
=&[( [ toato . atito) o) etags )]
Proof. Let us fix ¢, ¢ € D(A¥/?), we denote
3,0 = ( [ 00001 Bt 00 ) a1 ) )

We will check the functions X, are uniformly integrable and convergent P-a.s.
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Uniform integrability. It is enough to show that

(2.28) sup E| X, |P/? < oo.

n>1
Since v, ¢ € D(A*/?), by g1), for almost all w € Q, we obtain

|9 (0,w))* Patb] < g(Gin (0, )| Lo (rr,10) | Pt ] < v/ Lgltin (o, @)[[$ll pgarrz)-

Thus, by means of the fact that for almost all w € Q, @,(w) € LP(7,T; LP(O)), ¢1) and the Young
inequality, together with the above estimate, we have

p/2

X% = \( / t(gmn(o—))*m,gwn(o))*Pnodo) i)

S

<teli? ([ t<g<an<a>>*m,g<an<a>>*Pnc>da)p/2

t p/2
2 2 ~
< LPIARL I € ey [ TP )

—2
t 2 t
2 2 D ~
< LRI e Ve ([ 17200) [t

p=2 2 2 ~
< LT = 1) @l 10 100 k2 I sy 1 ey
Consequently, by (2.11), we have

= p—2 2 2 =)~
sup B1X, /% < L/2(T = 1) "7 Wl 15 gy IS v Bl ) < 00

which implies (2.28) holds. } .
Pointwise convergence on (). Let us fix w € € such that

Up(,w) = 4(-,w) in LY(7,T; H).

We will show

t

lim (g(ﬂn(U,W))*in,g(ﬁn(UM))*PnC)dJ:/(g(ﬁ(a,w))*d),g(ﬂ(U,W))*C)d&

Indeed, it is sufficient to prove
(2.29) 9t (-, w))* Potp 2225 g(a(-,w)) " in L*(s,t; H).
Notice that,
t
/ 19(@n(0,))* Puth — glii(o, )" do
t
< / (19 (iin(0,0))" (Pt — )] + g(iin (0,0))" — g(ii(, )" ])? do
° t t
<2 / g (iin (o, )17, (1. 1y | Pt — ¥[*dor + 2 / 19(iin (0, w)) ) — g(ii(0, w)) > do

= 2J1(n) + QJQ(TL)
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Let us first consider Jy(n), since ¢ € p(Ak/Q), we have lim,, o || P, — ¥|| = 0, by ¢1) and the fact
that @, € L*(7,T; H) for almost all w € €, we have

t t
/ g (@n (o, )T, 1,mdo < Lg/ (@ (0, w)[*do < Ly (T — T)t s @ (t,w)[* < oo
s s e(r,

Thus,

t
i 1) = i [l (0:) a1 Pt — o =0

n—oo

Now, we will consider the other term Jz(n), it is enough to check for every ¢ € H, Ja(n) — 0 as
n — oco. To this end, we first prove the result is true for every ¢ € C2°(0). Since 1, (-,w) — (-, w) in
Li(7,T; H) for almost all w € Q, there exists a subsequence {ty, (-,w)}ken, such that

Un,, (0,w) = U(o,w) in H a.e. o€ (1,7, as k — oo.
Hence, by assumption g2), we have
g(tn, (o, w))* Y = g(u(o,w))* Y in H ae. o€ (1,T], as k — oo.

In conclusion, by the Vitali convergence theorem, we derive

t
lim / lg(tn,, (o, w))* 1 — g(u(o, w))*w|2do =0 for all ¥ € C°(0).

k—o0

Repeating the above reasoning for all subsequences, we infer that from every subsequence of the sequence
g1y (0,w))*1, we can choose the subsequence convergent in L?(s,t; H) to the same limit. Thus, the whole
sequence ¢(iy, (o, w))*y is convergent to g(u(o,w))*1. At the same time,

lim Jy(n) =0 for every ¢ € C°(O).

n—oo

If 1 € H, then for every ¢ > 0, we can find . € C2°(O) such that [¢) — .| < e. Thanks to the fact
that for almost all w € Q, 4, (-,w), @(-,w) € L (7, T; H), by ¢g1), we obtain

/: |9 (i (0, w))* Y — g(t(o,w))*Y|*do
< 2/: | [9(iin(0,w))" = g(a(o,w))"] (¢ — ve)*do + 2/: | [9(iin(0,w))* = g(i(o,w))*] v *do
= 4/:“9(%(0#))@2(1{,}1) +1g(ii(o, )3, g m)lY — vel*do + 2/: | [g(iin (0, )" — glii(er,w))*] . [2do
< 4Lge? /: (ltn (0, w) | + |0, w)[?) do + 2 /St [ 9(tn(o,w))* = g(a(w, 0))"] e [*do.
In conclusion, we proved that

i [ lg(in(0.0)"0 = gl,)) bl = 0

n—oo

thus, we finish the proof of (2.29) and this lemma. d

Now, we can pass to the limit of (2.17) and (2.18) by using lemmas 2.10 and 2.11-2.12, respectively.
Therefore, for all ¢, ¢ € D(A*/?), we obtain

(2.30) E[(M(t) — M(s),%)¢(d[r,sp] = 0,
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and

I~EK(M(i%w><1\~4(t),<><M(5),¢>< (s),€)

i
(2.31) .
- [ (atito) Pa gl no)@(a m)} —o,

where M is a D(A~%/?)-valued process defined by (2.19).

Continuation of the proof of Theorem 2.8. Eventually, we apply an idea analogous to the
reasoning used by Da Prato and Zabczyk, see [12, Section 8.3]. Consider the operator A : D(A) CV — H,
the inverse operator A~' : H — D(A) C V, which is everywhere well-defined, bounded and compact,
and the dual operator (A~1)* : V* — H. Since V* is a dense subspace of D(A~%/2), we can extend the
continuous operator (A~')* : D(A™*/2) — H. By (2.30) and (2.31) with ¢ := A~'a and ¢ := A7'B,
where o, 8 € H, we infer that (A_l)*M(t), t € (7,T] is a continuous square integrable martingale in H,
whose dual is itself, with respect to the filtration F; := o{@i(s) : 7 < s < t}, having the quadratic variation

t

(A I = [ (A7) (s gla() A ds, te (1),

.
In particular, the continuity of the process (A~1)*M follows from the fact that @ € C(r,T; H). By the
representation theorem [12, Theorem 8.2], there exist

e a stochastic basis (Q, F, {]-:t}tzo,]@);

e a cylindrical Wiener process W defined on this basis;

e a progressively measurable process 4 such that

t

(A1) () — (A1) + (A1) /

T

a(l(ﬁ(s)))Aﬁ(s)ds — (A_l)*/ f(ﬁ(s))ds — (A_l)*/ h(s)ds

t

[ Ay g )ai(s) = (A7) [ gli(s)ai (o).

Hence, it follows from (2.12) that @ : [7,T] x Q — H with P-as. paths,
a(-,w) € LA, T;V) N L (7, Ty H) N LP(7,T; LP(0)),

satisfies for all ¢ € [7,T] and for all v € V N LP(O),

(@0 + [

T

t

S
—~
Va)
S~—
=
(4
Nl
ISH
VA

al(ii(s))) < Afi(s),v > ds = (fig,v) + /Tt(f(
+ /Tt < h(s),v > ds+ (/Ttg(é(s))dﬁ/(s)’”> 7

where the identity holds Iﬁ’—a.s.
The proof of this theorem is finished. 0

Although we are not able to prove the existence of variational solutions to problem (1.1), we can show
that there exists at most one solution when the coefficient a(-) is locally Lipschitz.

THEOREM 2.13. Assume a € C(R;R™) is locally Lipschitz and satisfies (1.2), f € C(R;RY) fulfills
(1.3)-(1.4), g : H — Lo(H, H) satisfies g1) and | € L*(O). In addition, let h € L*(Q; L} _(RT;V*)) and

ug € L2(Q; H). Then, there exists at most one solution to problem (1.1) in the sense of Definition 2.6.
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Proof. Suppose there are two solutions u and v of problem (1.1) in the sense of Definition 2.6. Let
o(t) = exp( ,uf |u(s)||?ds) for all T <t < T, which is positive and well-defined (cf. Step 1 of Theorem

2.8), where y is a proper constant to be chosen later. Applying the It6 formula to o (t)u(t) — v(t)|?, by
(1.2) and (1.3), we have

o(®)lut) — ()] +2m / 9)llu(s) — v(s)|2ds
<2 / o(s)la(l(u(s))) — all(w(s))) llu(s)|us) — v(s)llds + 21 / o()|u(s) — v(s)[?ds
(2.32) T T

2 / o(5) (u(s) — v(5), g(u(s))dW (s) — g(v(s))dW (s)) + / o(5)19(u(s)) — g(0()) |12, (1.51, 05
— i [ o)lu(s) Pluts) — ofs)Pds

Since a is Locally Lipschitz, denote this Lipschitz constant by L,, by the Young inequality, we have

20(s)la(l(u(s))) = a(l(v(s)[lu(s)[l[[u(s) = v(s)]]
< 2La|llo(s)[u(s) = v(s)[[u(s)[l[u(s) = v(s)]|

< uo(s)lu(s)[Plu(s) — o()P + 22T gy (o).

Thus, by g1) and the above inequality, (2.32) becomes

o (®)[u(t) — v(t |2+2m/ ) u(s) — v(s)|2ds

20712 t
< Ll / 7(s)uls) ~ o(s) s+ 2+ L) [ o(s)u(s) = o) ds

+2 [ o(s) (uls) = (), g(u()dIW () ~ g(o(s) AW (5).

Taking the supremum (w.r.t. t) and expectation on both sides of the above inequality, by (1.2), we obtain

(2.33)
| s a(oluls) - u(s)? | < Ll s [ o) — o)
+ 20+ L,)E Li‘i‘i t /T " o)) — v(r)|2dr]
12K [up [ o) o) = o). stutnaw ) - g<v<r>>dw<r>>H ,
and
23y
2 [ o(s)luts) — o) Pds < LR swp [ atlutr) - ot

+(2n+ LyE Lsiilit / t o (r)u(r) — v(r)|2dr]

+ 2E [ sup
T<s<t

/ o) (ulr) — o(r), g(u(r) AW (r) - g(v(r))dmr))u .
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For the first term of the right hand side of (2.33), since u is positive, we have
La|U? ° 2 Lol [ 2
(2.35) ——E | sup o(m)u(r) —v(r)||2dr| = ———E [ o(s)]ju(s) —v(s)||"ds.
H T<s<tJr H T
For the second term of the right hand side of (2.33), by the same arguments as above, we obtain
s t
(2.36) (2n+ Ly)E [ sup / o(r)u(r) — v(r)|2dr] < (2n+ LQ)E/ sup o(r)|u(r) — v(r)|*ds.

T<s5<t T7<r<s

Next, assumption g;), the Burkholder-Davis-Gundy and Young inequalities imply

oF [up [ o) @) = w0, g ) = g o)W 1) }
237 <28 | swp o(oluls) - v [ a(6)latu(s) - s, g ds]

< i]E [ sup o(s)|u(s) — v(s)|2} —|—402LgE/T sup o(r)|u(r) — v(r)|*ds.

T<s<t 7<r<s

Consequently, substituting (2.35)-(2.37) into (2.33)-(2.34), letting mu = L2|l|?, we deduce

E [ sup o (s)[u(s) — v(sﬂ <4 (2 + L, +46L,) /Tt E [ sup o(r)|u(r) — v(r)ﬂ ds.

T<s<t T<r<s

It follows from the Gronwall lemma that

E [ sup o(s)]u(s) — v(s)|2} =0, Vit e (1,T).
T<s<t

Thus, we have u(t) = v(t) for a.a. w € Q and a.e. ¢t € (7,7T] since o(t) is positive. The proof of this

theorem is complete. 0

For the rest of this manuscript, to carry out the analysis of asymptotic behavior of solutions to (1.1)
in the sense of Definition 2.6 and their Wong-Zakai approximation, we will assume, for simplicity, W (t) is
a standard 1D Brownian motion. Moreover, let g : (7,T) x H — H be a nonlinear operator, satisfying:

gl) The mapping t € (1,7) — g(t,u) € H is Lebesgue measurable, for all u € H;

g2) ¢(t,0) =0, ae.te(r,T);

g3) There exists a positive constant L, (we use the same constant when no confusion is possible), such

that
lg(t,u) — g(t,v)|* < Lylu —v|?, Yu,v € H, ae.te(r,T).

3. Asymptotic behavior of solutions to problem (1.1) around steady-state solutions of
the deterministic problem. In this section, we are interested in analyzing the long time behavior of
solutions to problem (1.1) with respect to equilibria of the deterministic elliptic problem,

{—a(z(u»Au = flu)+h in O,

3.1
(8:1) u =0, on 00.

Since we are dealing with stationary solutions, the assumption imposed on function A does not depend
on time, i.e., h € V*. The solutions to (3.1) are the so called steady-state solutions or equilibria and the
formal definition is the following.

DEFINITION 3.1. A stationary or steady-state solution to problem (3.1) (also called equilibrium) is a
function u* € V.1 LP(O) which fulfills

a(l(u))((u*,v)) = (f(u"),v)+ <h,v > VoeVNL(O),
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or, in other words, is a solution of the elliptic equation,
(3.2) a(l(u)Au* = f(u*)+h, in V*+ LI0O).

Observe that a steady-state solution u* to problem (3.1) can only be solution to the stochastic problem
(1.1) (with h(t) = h € V*) if g(t,u*) = 0 for all t € [, +00), which is a very particular situation. Thus, our
main interest is to study how the solutions to stochastic problem (1.1) behave around the equilibria of the
deterministic problem (3.1). In this way, to establish some sufficient conditions ensuring the exponential
decay of solutions to (1.1) towards some solutions of (3.1), we assume the existence of stationary solutions
to (3.1) (see, for instance, [18, Theorem 3.8] ). Notice that, when function f is more general, namely, which
satisfies the conditions (1.3)-(1.4), it is not easy to argue. Therefore, in order to prove the existence of at
least one nontrivial stationary solution to problem (3.1), the authors in [18] studied one particular, but
very interesting case when f : [0,1] — R is given by f(s) = s — 83, for s € [0, 1], the arguments were based
on a fixed point theorem. Whereas, considering again the general form function f and under new suitable
assumptions, the authors in [18] showed that any stationary solution is positive provided its existence is
guaranteed [18, Chapter 3.2].

In the sequel, our goal is to establish sufficient conditions to prove exponential decay of variational
solutions in mean square.

DEFINITION 3.2. A solution u to (1.1) is said to converge to (or to decay to) u* € V.N LP(O) expo-
nentially in mean square, if there exist o > 0 and M = M (ug) > 0 such that

Elu(t) — u*|> < Me=(t=7), vt > T.

DEFINITION 3.3. A solution u to equation (1.1) is said to converge exponentially to u* € V N LP(O)
almost surely, if there exists v > 0 such that

1
lim sup- log |u(t) — u*| < —~, almost surely.
t——+oo

In order to prove the exponential stability results, the following condition as in [6] is considered.
Assume there exists a steady-state solution u* of (3.1) such that g satisfies
gd) |g(t,u)]? < B(t) + (€ +6(t)|u — u*|?, for all u € H, where £ is a positive constant, 3(t), §(¢) are
nonnegative integrable functions, such that there exist real numbers 8 > o, Mg > 1 and Ms > 1
with
B(t) < Mge™® and §(t) < Mse %, vt >0.
We will present in the next theorem that, any variational solution to (1.1) converges exponentially to
w* in mean square, showing that u* is the only relevant stationary solution for the stochastic system. No

matter how many steady-state solutions (3.1) may have, this «* is attracting in mean square any other
solution of the stochastic problem.

THEOREM 3.4. Assume (1.2)-(1.4) and ¢4) hold with
(3.3) (20 + OAE + 2L |Ju* | A2 < m,
where a(-) is supposed to be globally Lipschitz, the Lipschitz constant is still denoted the same by L,. Then:
(i) Any variational solution u(-) of problem (1.1) converges to the stationary solution u* of (3.1)
exponentially in the mean square. That is, there exist « > 0 and M = M (ug) such that,

E|M(t) — ’U,*|2 S ]\'](1)7&(/,7)’ t 2 T

(i) Any variational solution u(t) of problem (1.1) converges to the stationary solution u* of (3.1)
almost surely exponentially.
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Proof. (i) Since (2 4+ &AM + 2La\l|||u>'ﬁ||)\1_1/2 < m, we can choose 0 < a < 6 such that,

(a+ 20+ OA " + 2L |1 |[u* | AT = 2m < 0.

147 By applying the Ito formula to e®*|u(t) — u*|? and taking expectation, we obtain

¢
e Elu(t) — u*|* = e Elug — u*|> + aE/ e |u(s) — u*|*ds
¢

448 + 2]E/ e < a(l(u))Au(s),u(s) —u* > ds + QE/ e**(f(u(s)),u(s) —u*)ds

t t
L oE / e < hyu(s) — u* > ds + E / e\g(s, u(s))[2ds.

149 As u* is the stationary solution to problem (3.1), we have

t t

€ (F(u"), u(s) —u*)ds + E / €95 < B u(s)—u* > ds.

T

t
150 —]E/ e < a(l(u*)Au*,u(s) —u* > ds = IE/

151 It follows from the two above equalities that,

¢
e Elu(t) — u*|* = e Elug — u*|> + aIE/ e |u(s) — u*|*ds

T

452 + QE/ e < a(l(u(s)))Au(s) — a(l(u))Au*,u(s) — u* > ds

+ QE/ e®(f(u(s)) = f(u™),uls) —u)ds + ]E/ e**|g(s, u(s))*ds.

153 By means of assumptions (1.2), (1.4) and g4), together with the fact that a is Lipschitz and the Poincaré
154 inequality, we derive

t
e Elu(t) — u*|* < e Elug — u*|? + ]E/ e (B(s) + 8(s)|u(s) — u*[*) ds
155 (3.4) T .
+ ((a + 20+ A+ 2Ll |lut A~ 2m) E/ e [lu(s) — u*||*ds.

156 Thanks to the fact that ((a + 20+ A+ 2Ll Hu*||/\1_1/2 — Qm) < 0, the last term of (3.4) is negative,
157  we obtain

¢
158 e Elu(t) — u*|* < e Elug — u*|? +/

T

¢
e**B(s)ds +/ 5(s)e* Elu(s) — u*|*ds.

459  Since 0 > a, applying the Gronwall lemma to the above inequality, the result (i) is proved.
460 (ii) We now move to the second assertion, let N be a natural number, by applying the It6 formula to
161 |u(t) — u*|? and using fact that u* is a steady-state solution, it follows that

lu(t) — u*]? = [u(N) — u*|? + 2/N < a(l(u(s)))Au(s) —a(l(u*))Au*,u(s) —u* > ds
10 +2 [ (Fu(s) = f(u) u(s) = uw)ds
+2/ (9(s,u(s)), u(s) —u™)dW(s) +/N l9(s, u(s))[*ds.

N
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Therefore, by (1.2)-(1.3), we have
) =+ 2m [ uts) [P
< 2/ | < (a(l(u(s))) — a(l(u™))Au*,u(s) — u* > |ds
N
+ [u(N) —u*|* + 217/N lu(s) — u*|*ds

t —u* s t s, u(s))|?ds
+2‘/N(9(5’U(5)),U(5) )AW (s) +/N lg(s, u(s))[*ds.

Consequently,

N+1
E [ sup  Ju(t) — u*|2} + QmE/ lu(s) — u*||>ds
N<t<N+1 N

N+1
< 4E / | < (a(l(u(s))) — a(l(u™)))Au*, u(s) — u* > |d51

N

N+1
+ 2E|u(N) —u*|2—|—477]E/ lu(s) — u*|*ds
N

N+1
/ |g<s,u<s>>|2ds] |

N

/ (9(s. u(s)), u(s) — u)dW (s)

+ 4E { sup
N

N<t<N+1

| +22

With the help of the Burkholder-Davis-Gundy and Young inequalities, we have

|

/ (9(5, u(s)), u(s) — u*)dWV (s)

4E [ sup
N

N<t<N+1

1
2

< 4C5E

N+1
/ |g<s7u<s>>|2u<s>—u*|2ds]
N

1
2

< A4C,E

N+1
sup  Ju(t) — u*[? / |g<s,u<s>>|2ds]

N<t<N+1 N
N+1
/ l9(s,u(s))Pds| -

1
<-E { sup  |u(s) — u*|2} +8C3E
N

T 2 [N<t<N+1

Proceeding now as in the proof of the previous theorem and substituting (3.6) into (3.5), it yields

1
-E [ sup  |u(t) — u*|2}
2 |N<i<N+1

N+1
< 2Bfu(N) — o’ [ + (=2m + AL Jilllw A2 + 4nAT ) B / lu(s) = u*|*ds
N
N+1

+(8C2 4+ 2)E / (B(s) + (€ + 8())u(s) — u”[?) ds

N
N+1
< 2E[u(N) — u*|? + (8C2 + 2) /N (B(s) + (€ + 6(s)Efu(s) — u*[?) ds

The last step of above inequality is true thanks to assumption (27 + &)A;* + 2L,1|Z|Hu*||/\;1/2 < m.
Moreover, it follows from condition g4) that (t) < Mge™% and 6(t) < Mse=%, 0 < a < 0, Mg > 1 and



475
476

477

478

479

480

481
182

483

184

22 J.H. XU, AND T. CARABALLO

Ms > 1. Thus, taking into account the exponential decay in mean square stated in Theorem 3.4, there

exists M := M (T, ug) > 0, such that

E| sup |u(t)—u*]?| < Me V.
N<t<NA41

The proof is completed by using the Borel-Cantelli lemma (see [8] for a detailed explanation).

Remark 3.5. Notice that it is enough to assume that (27 -+&)A7* + 2L |l][Ju*||\]

1/2 < 2m in Theorem

3.4 instead of (21 + &)A; + 2LaU|Hu"‘||/\1_1/2 < m. However, in the next theorem it will be necessary to

impose the latter, so we prefer to impose this one in both theorems.

We conclude this section with a result on the exponential stability of the steady-state solution in mean

square, when this becomes also a solution of the stochastic equation.

THEOREM 3.6. Assume (1.2)-(1.4) hold with

(3.7) 2L |1[[u* ([N 4 20A7 4+ LyAT < 2m.

where a(-) is supposed to be globally Lipschitz, the Lipschitz constant is still denoted the same by L,.
Additionally, assume the nonlinear stochastic term g fulfills ¢3), and g(t,u*) =0 for all t > 7. Then the
solution to problem (1.1) converges to the stationary solution of (3.1) u* exponentially in the mean square.

Namely, there exists a real number v > 0, such that

Elu(t) — u*]? < Elug — u*|?e” 77, vt > 7.

Proof. Since u* is the stationary solution of (3.1), combined with (1.1), we derive

t

u(t) —u* =ug —u* + / (a(l(u(s)))Au(s) — a(l(u*)) Au™)ds

T

+ / (Flu(s)) — F(u))ds + / (9(s,u(s)) — gls,u*))dW (s).

Thanks to (3.7), we can choose a sufficiently small v > 0, such that

VAT 4 2L 1wt AT Y2 + 20A7t 4 LoATE — 2m < 0.

Applying now the It6 formula to e?*|u(t) — u*|?, taking expectation and using the same arguments as in

Theorem 3.4, we obtain

t
' Elu(t) — u*|? = 7" Elug — u*|* + ’yE/ lu(s) — u*|*ds

+ 2IE/ e’ < a(l(u(s)))Au(s) — a(l(u*))Au*, u(s) —u* > ds

t

+2E/ 9 (F(u(s)) — F(u*), uls) —u*)ds—HE/ 7 |g(s, u(s)) — gls, u*)2ds

.
t

< " Elup — w2 4 yAT'E / 7 lu(s) — u*|%ds

T

+ (=2m e 2Ll 1T 4 20+ A7) E

T

Due to the choice of v, the result follows immediately.

t

e |lu(s) — u*||*ds.
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4. Attractors of nonlocal stochastic PDEs driven by colored noise. Our aim now is to study
the existence of attractors for the solution of problem (1.1). However, as it is well known, the theory of
random dynamical systems has only been applied successfully to problems modeled by partial differential
equations when the noise possesses a particular form: additive or multiplicative noise. These two cases
have already been analyzed in [33]. Recently, B. X. Wang and his collaborators (see [17, 15, 22]) have
been using an idea to approximate the nonlinear noise by a stochastic process (called colored noise), which
basically is a Wong-Zakai approximation of the derivative of the Wiener process, providing a rigorous
approximation of the cases with additive and multiplicative noise (as we explained in the Introduction).
This is why, in this section, we study the long time behavior of the following non-autonomous nonlocal
partial differential equations driven by colored noise,

9t — a(l(w))Au = f(u) + h(t) + g(t,u)(s(Bw), i O x (7,00),
(4.1) u =0, on 90 x (T,00),

u(mvT) = u‘r(x)a in O,

where (5(0;w) is the colored noise with correlation time § > 0, functions a, f, h and g fulfill the same
assumptions as in Section 2.

4.1. Cocycles for nonlocal PDEs. To describe the global long time behavior of problem (4.1),
it is necessary to establish the existence of a continuous non-autonomous cocycle for (4.1). Let us first
recall some notions, definitions and lemmas which furnish the essential tools used throughout this section
([15, 17, 29, 31]).

Let (Q, F,P) be a standard probability space, where Q = Co(R,R) := {w € C(R,R) : w(0) = 0} with
the open compact topology, F is its Borel o-algebra, and P is the Wiener measure on (£, F). In what
follows, we will consider the Wiener shift {6;};cr defined on the probability space (2, F,P) by

Orw() = w(t +-) — w(t), forall weQ, teR.

It is known that P is an ergodic invariant measure for {0 };cr, and the quadruple (Q, F,P, {0; };cr) forms
a metric dynamical system (see [1]).

In the sequel, we use (X, d) to denote a complete separable metric space. If A and B are two nonempty
subsets of X, then we use distx (A, B) := sup,¢ 4 infyep d(a, b) to denote their Hausdorff semidistance.

DEFINITION 4.1. (/28, Definition 2.6]) Let D : R x Q — 2% be a set-valued mapping with closed
nonempty images. We say D is measurable with respect to F in §, if the mapping w € Q — d(x, D(1,w))
is (F, B(R))-measurable for every fivzed x € X and 7 € R.

DEFINITION 4.2. ([28, Definition 2.7]) Let D be a collection of some families of nonempty subsets of
X and B = {B(1,w) : 7 € R,w € Q} € D. Then B is called a D-pullback absorbing set for @, if for all
T €R, we Q and for every B € D, there exists T =T (B, T,w) > 0 such that

O(t,7—t,0_w,B(r —t,0_w)) C B(1,w) for allt >T.

DEFINITION 4.3. (/28, Definition 2.8]) Let D be a collection of some families of nonempty subsets of
X. Then ® is said to be D-pullback asymptotically compact in X if for all T € R and w € Q, the sequence

{®(tn, T —tn, 0, w,Tn) ooy has a convergent subsequence in X,

whenever t, — oo and T, € D(T — ty,0_4, w) with {D(T,w) : 7 € R,w € Q} € D.

DEFINITION 4.4. (/28, Definition 2.9]) Let D be a collection of some families of nonempty subsets of
X and A ={A(1,w) : 7 € R,w € Q} € D. Then A is called a D-pullback attractor for ® if the following
conditions (i)-(iii) are fulfilled:

(i) A is measurable in the sense of Definition 4.1, and A(r,w) is compact for all T € R and w € Q.

(#4) A is invariant, that is, for every 7 € R and w € Q,

O(t, 7w, A(T,w)) = A(T + ¢, 0w), Vt>0.
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(#i1) A attracts every member of D, that is, for every D = {D(1,w) : 7 € R,w € Q} € D and for every
TER, we,
tlim d(®(t, 7 —t,0_4w,D(T — t,0_w)), A(T,w)) = 0.
—00
We have introduced all required definitions of stochastic dynamical systems, which later on will allow

us to define a cocycle @ : RT x R x Q x H — H for equation (4.1), such that for allt e RT, 7 € R, w € Q
and u, € H,

(4.2) Ot ryw,ur) =ult+ 77,0 rw,ur),

where u(-; 7,w, u,) denotes the solution to (4.1) which will be proved to exist in Section 4.3. Thus, ® will
be a continuous cocycle on H over (Q, F,P,{0;}+cr). Moreover, let D = {D(7,w) : 7 € R,w € Q} be a
tempered family of bounded nonempty subsets of H, that is, for every v > 0, 7 € R and w € ,

(4.3) HMIéﬂDU+L&w”:Q
——00

where |D| = sup,,¢cp |u|. Throughout this section, we will use D to denote the collection of all tempered
families of bounded nonempty subsets of H, i.e.,

(4.4) D={D ={D(r,w) : 7 € R,w € 0} : D satifies (4.3)}.

Remark 4.5. Although the cocycle generated by (4.1) depends on the parameter §, we will omit this
dependence in this section since it will be fixed from the beginning. Hence, we will use ® instead of using
the notation ®g.

4.2. Properties of white and colored noises. We recall some known results for the Wiener process
W (t,w) = w(t) in [1] and the colored noise (5(6;w) in [17, 15], since they play important roles in the proof
of the main theorems.

LEMMA 4.6. Let the correlation time 6 € (0,1]. There exists a {0; }+er-invariant subset (still denoted
by) Q of full measure, such that for all w € Q,

(2)

(4.5) lim —~ =0;

(#9) The mapping
1.
(4.6) (t,w) = (5(6w) = —6—2/ es Ow(s)ds

— 00
is a stationary solution (also called an Ornstein-Uhlenbeck process or a colored noise) of the one-
dimensional stochastic differential equation d(s + %dit = %dW with continuous trajectories, sat-

isfying
(4.7) im 909 o an 0<o <,
t—+oo t
1 t
(4.8) t_l}gl ;/ (s(Osw)ds =FECs =0, uniformly for 0 < <1;
>t Jo

(#i1) For arbitrary T > 0, € > 0, there exists 69 = 0p(T,w,T,e) > 0, such that for all 0 < § < &y and
telr,m+1T],

(4.9)

/0 G (Bus)ds — w(t)‘ <e.

Remark 4.7. Notice that, from (4.9), we can derive that there exist dg = do(7,w,T) and ¢ = é(1,w,T) >
0 such that, for all 0 < § < 6g and ¢ € [r,7 + T,

]
(4.10) /0 Cs(Osw)ds

<ec.
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4.3. Well-posedness of problem (4.1). We are now in a position to show the existence and unique-
ness of solution to equation (4.1) in the following sense.

DEFINITION 4.8. A weak solution to problem (4.1) is a mapping u(:;7,w,u.) : [7,T) — H, for all
T > 7 with u(t) = u,, satisfying for any 7 € R, w € Q,

u(;myw,ur) € C(r,T; H) N L2(T, T;V)n LP(1,T; LP(0)).

Moreover, for everyt > 1 and v € V + LP(O),
(u,v) = (ur,v) +/ a(l(w))((u, v))ds +/ (f(u),v)ds

+/ < h,u>ds+/ (905, u(5))Cs (0s0), v)ds.

Note that, if we denote by A the operator —A with homogeneous boundary condition, then the above equality
can be written as

du . «
5 Tall@)Au= f(u) +h(t) +9(t,u)¢s(0w),  in V" + LIO).

THEOREM 4.9. Assume that function a is locally Lipschitz and satisfies (1.2), f € C(R) fulfills (1.3)-
(14), h € L} (RY;V*) and | € L*(0). Additionally, function g satisfies g1)-g3). Then, for each initial
datum uy € H, there exists a unique weak solution to problem (4.1) in the sense of Definition 4.8. Moreover,
this solution behaves continuously in H with respect to the initial values.

Proof. Since equation (4.1) can be viewed as a deterministic problem parametrized by w (cf. [22]), for
every T > 7 and w € 2, we can prove (4.1) has a unique solution,

u(s7,w,ur) € C(r,Ts H) N L2 (r, T3 V) 0 L (7, T; LP(0)),

by applying the Galerkin method and energy estimations [18, Chapter 3, Theorem 3.3]. ]

In this subsection, we first derive uniform estimations on the solution of (4.1) and then prove D-
pullback asymptotic compactness by using the idea introduced by Ball in [2]. To this end, we need the
following assumptions:

h1) Suppose that

[ emhelids <o, vrer

For the existence of tempered random attractors, we need the assumption below:
h2) For every v > 0, it holds

0
lim e’vt/ N[ (s + )] 2ds = 0.
t——o0 oo

It is worth stressing that hl) and h2) do not require h(t) is bounded in V* as t — +o0.

LEMMA 4.10. Assume conditions of Theorem 4.9 and h1) hold. Then, for every 6 € (0,1], 7 € R,
we€Qand D ={D(1,w) : 7 € Ryw € Q} € D, there exists T = T(1,w,d,D) > 0 such that for allt > T
and o > T —t, the solution of problem (4.1) satisfies,

lu(o; 7 —t,0_rw,ur_)> < e—mA1(0—T)

o—T 2
b e (2o g2 + (2 a0 ) 0] ds.

—00
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568
/ MG (s T — t, 0_rw, ur_y)||*ds
T—t
569 9 9 0 \ 9 ) o—2)
<SS [ e (s )2 + (26 + el (0) P P72) (O] ) ds,
m  m J_o m
570 and
/ MG |y (s T — 1, 0w, ur—¢)[bds
T—t
o 110 2
<ot [ e (Znt el + (264 dosb.P ) 01) ds,
Q9 a2 J_ o m

572 where ur—y € D(T —t,0_4w), and ¢ is a constant which depends on as,p and Ly but not on 6.

573
574 Proof. Multiplying by u(-) on both sides of (4.1) in H, we derive
d
575 (4.11) Z Ul 2a((w) ull® = 2(F(w), u) +2 < h(#),u > +265(0,0) (g(¢, w), w).

576 It follows from (1.4) that

577 (4.12) 2(f(u),u) < 2/ (k — azlul?P) dz < 25|0| — 2az|ul?.
o

578 By the Young inequality, we have

2
o (413) 2 < h(t).u>< ~ (A + 5 [l

580 Conditions g2)-g3) and the Young inequality yield that,

381 2165 (6.0) (gt w), w)| < 2LY/(C5 (010)ul?
552 =2L;/2/ G (0,0)||uf2da
O
= (41) <a [ fulPdo -+ ciO]G(0) P2,
O

584 where c is a constant depending on «ap,p and L.
585 Substituting (4.12)-(4.14) into (4.11), together with (1.2) and the Poincaré inequality, we have

d m 2 _
560 Slul? +maaful? + 2l + asfull < ZIRIE + (26 + clgs 0 P02 [0,
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587 By straightforward computations with u(o; 7 —t,0_(;_4w,u, ;) and replacing w by 6_;w, we obtain,
(4.15)
m g
lu(o; 7 —t,0_rw,ur¢)|* + 5 / MGy — 1,0 w,ur )| ?ds
T—1

o
+ s / emA(s—9) lu(s; 7 —t,0_rw,ur—¢|bds
T—1

< efm)\l(afr+t)|u7__t|2

o 2
+/ eMmA1(s—0) (llh(S)Hi + (2,€ + C|C5(98w)|17/(p—2)) |O|) ds
T—t m

588

< 67mA1(07T+t)|uT_t|2

o—T 2
# [ e (2 st 4 (264 clgs O )P O2) 0] .
—t
589 On the one hand, it follows from h1) that,
o—T 2
590 (4.16) / emM(s=o+T) (||h(s + 7)1 + (2/<£ + c|g5(95+7w)|p/@*2>) |<9|) ds < oc.
oo m
On the other hand, as u,_; € D(7 —t,0_,w) € D, we deduce that
e ™My 42 < emT™MYD(T —t,0_w)]2 =0, as t— oo
Thus, there exists T'= T'(1,w, D) > 0, such that for all t > T,

e—mAl(o—T—l-t) |Ur—t |2 <1,

591  which, along with (4.15) and (4.16), completes the proof. d
592

COROLLARY 4.11. Assume the conditions of Theorem 4.9 and h2) hold. Then the continuous cocycle
O associated with problem (4.1) possesses a closed measurable D-pullback absorbing set K = {K(7,w) :
TER,weQ} €D in H. Namely, for any given § € (0,1], every 7 € R and w € Q, we denote

K(r,w)={u € H: |[u]* < R(1,w)},

where

R(T,w)=1+/0

— 00

2
gmhs <m|h(s )2+ (264 €lGo Oz 7)) OI) ds.

Proof. Since for every 7 € R, R(7,) : Q — R is (F, B)-measurable, we know that K(r,-) : Q@ — 2
is a measurable set-valued mapping. Also, it follows from Lemma 4.10 that for every 7 € R, w € Q and
D € D, there exists T = T(7,w, D) > 0, such that for all t > T,

O(t, 7 —t,0_yw,D(t —t,0_yw)) =u(r;7 —t,0_,w,D(T — t,0_4w)) C K(7,w).

5¢

3 Therefore, to finish this proof, it only remains to show K belongs to D. Let v be an arbitrary positive
594 number, for every 7 € R and w € (), we have that

. ’Yt — . ’Yt
t_l}r_noo eV K (1 +t,0w)| t_l}r_noo eV R(T + t, 0w)
= lim e (1 —|—/ emiis (||h(8 +1+t)2+ (2/1 + c|(5(95+T+tw)|p/(p_2)) |(9|> ds) =0,
t——o0 o m

596 thanks to h2). The desired result is proved. d
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Next, let us discuss the asymptotic compactness of the continuous cocycle @ related to problem (4.1).
Indeed, we prove that the sequence of solutions of (4.1) is compact in H.

LEMMA 4.12. Under assumptions of Lemma 4.10, the continuous cocycle ® associated with problem
(4.1) is D-pullback asymptotically compact in H. That is, for every 7 € R, w € Q, D = {D(1,w) :
T €RweQ} eDandt, — oo, the initial data u,, € D(T — t,,0_,w), the sequence {®(t,, T —
by Ot W, Urp) = W(T; T — tn, 0_rw,urp)} (solutions to problem (4.1)) has a convergence subsequence in
H.

Proof. Let {u;,}r2, be a sequence in D(T — t,,,0_;,w), Lemma 4.10 implies that there exists T :=
T(r,w, D) > 0, such that for all ¢,, > T, we have

(4.17) {u(7 —tn,0_rw,u;,) is bounded in L>®(r — T,7; H) N L*(1 — T,7; V)N LP(1 — T, 7; L*(O)).
On the one hand, making use of (1.5) and (4.17), we obtain

(4.18) {flu(-;7 —tn,0_7w,urp))} is bounded in Li(7 — T, 7; LI(O)).

In addition, it follows from conditions g2)-g3) that

(4.19) {g(,u(57 —tn,0_rw,ur )} is bounded in L*(7 —T,7; H).

On the other hand, by (1.2) and (4.17), we have

/ la(l(u(s; T — tn, 0_rw, uTn)))|2|| — Au(s;T — tp, 0_rw, uTn)Hids
=T

-
S mQC/ ||’LL(S, T = tna 977(")7 uT,TL)HQdS’
=T

which implies that
(4.20) a(l(u(53T — tn, 07w, tur ) Au(; T — tn, 0_rw,ur ) is bounded in L*(7 — T, 7; V*).
Consequently, it follows from (4.18)-(4.20) that
d
(4.21) {dtu(’ T —tn, 0_rw, uTn)} € L*(t —T,7;V)+ LYt — T,7; LY(O)) + L*( — T, 7; H).
Since the embedding V' — H is compact, by (4.17), (4.21) and Aubin-Lions compactness Lemma, we infer
that there exists u € L?(7 — T, 7; H) such that, up to a subsequence,
(4.22) u(37 —ty, 0_rw,ur ) — u strongly in L*(7 — T,7; H).
Therefore, by choosing a further subsequence (still denoted the same), we obtain,
(4.23) w(T — 837 — ty, 0_rw, Ur n) = u(T —s) strongly in H for almost all s e (0,T).

Since 0 < s < T, by (4.23), there exists a constant 0 < 7" < T, such that, the convergence (4.22) is true
for s € (1 = T,7 —T"). Then by the continuity of solution with initial data in H, we obtain from (4.23)
that

W T =ty 0w, Ur ) = (T, T — 8, 0_rw,u(T — $;7 — tp, 0_rw, ur )

= u(r, 7 —8,0_;w,u(T — 5)),

which implies the continuous cocycle ® associated with (4.1) is D-pullback asymptotically compact in H.
The proof is finished. 0
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As an immediate consequence of Lemma 4.12; we obtain the following D-pullback asymptotic compactness
of the continuous cocycle ® associated with (4.1).

THEOREM 4.13. Assume function a is locally Lipschitz and satisfies (1.2), f € C(R) fulfills (1.3)-(1.4),
h € L3 (RT;V*) satisfies h1)-h2), and | € L*(O). In addition, function g satisfies g1)-g3). Then the
continuous cocycle ® associated to problem (4.1) has a unique D-pullback attractor A = {A(T,w) : 7 €

R,weQ}eDin H.

Proof. The result follows from Definition 4.4 immediately combining Corollary 4.11 and Lemma 4.12,
for more details, see [28, Proposition 2.10]. O

Remark 4.14. The results in this Section hold true if we impose a different set of assumptions on
function g. Namely, assume that g : R x R — R is a continuous function such that for all ¢, s € R,

(4.24) lg(t, $)| < dals|™ ™ + 4 (1),

0
(4.25) ‘ai(t’ s)| < dals|" 7% 4 4o (1),

where 2 < r; < ¢1, di and dy are nonnegative constants, ¥, € LI (R; LP*(0)) and ¢, € Li3.(R; L= (0))
(p1 is the conjugated number with ¢1). Then, Theorem 4.13 holds true assuming that function g satisfies

(4.24)-(4.25) instead of gl)-g3) (see [22] for a similar situation).

5. Convergence of random attractors for stochastic nonlocal PDEs with additive noise.
As we mentioned before, since it is not known how to apply the theory of random dynamical systems to
study the long time behavior of problem (1.1), we have applied an approximation of this problem in Section
4 by using colored noise and proved that the approximate problem possesses a random attractor. In the
next two sections, we will consider two particular cases of equation (1.1) which have been analyzed already
within the framework of random dynamical systems (see [33]). When the stochastic forcing term g(t, u(t))
in (1.1) is linear (such as g(t,u) = ou, multiplicative noise) or independent on u (such as, g(t,u) = ¢,
additive noise), the existence of random attractors to problem (1.1) can be constructed via performing a
conjugation which transforms the stochastic equation into a random one. Therefore, a sensible question is:
if we study long time behavior of problem (4.1) with additive colored noise or multiplicative colored noise,
what is the relationship between problem (1.1) and problem (4.1) with additive/multiplicative noise when
the parameter ¢ goes to zero? We will answer this question in the remaining parts of this paper.

To simplify the presentation, in the following lines we assume h(t) = 0, which means we will study
the dynamics of the stochastic autonomous PDEs. Actually, the ideas to work on the stochastic non-
autonomous PDEs are the same (as have been done in the previous sections). In [33, Section 4], the
authors investigated the existence of random attractors of the following stochastic nonlocal PDEs driven
by a white noise,

Gt —a(l(w)Au= f(u) + 9GS, in O x (7,00),
(5.1) u=0, on 90 x (T,00),

u(x, 7) = up, in O,

where ¢ € VN H?(0), functions a and f satisfy conditions (1.2)-(1.4) with p = 2 and 3 = C, respectively.
The main idea is to apply a conjugation given by a transformation involving an Ornstein-Uhlenbeck process:
v(t) = u(t) — ¢pz*(6ww), which takes (5.1) into

(5.2) % = a(l(v) + 2" (0w)l(¢)) Av(t) + f (v + ¢2" (Bw))

+ 92" (0ww) + a(l(v) + 27 (01w)l(4)) 2" (0:0) Ag.
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Motivated by [15], we now study the same problem but driven by a colored noise,

s _ q(I(ug))Augs = f(us) + ¢¢s(Orw), i O x (7,00),
(5.3) us =0, on 90 x (1,00),

Ug(l',’r) = Uo,s, in O.
We now transform (5.3) via the solution of the following random equation driven by colored noise,

d
(5.4) % = —nys + (s (Orw).

For almost all w € 2, one special solution of (5.4) can be represented by

t

Y5(t,w) = e_"t/ e (5 (0sw)ds,

which, in fact, can be rewritten as Y5(t,w) = ys(6:w), where y5 : @ — R is a well-defined random variable
given by ys(w) := fi)oo e"®(s(0sw)ds. Let us recall the properties of ys for later purpose.
LEMMA 5.1. ([17, Lemma 3.2]) Let ys be the random variable defined above. Then the mapping

(5.5) (t,w) = ys(Orw) = e*”t/ e"(s(0sw)ds

— 00

is a stationary solution of (5.4) with continuous trajectories. In addition, E(ys) = 0 and for almost all
w € Q,

(5.6) }in{l} ys(Orw) = 2" (6w) uniformly on [r,7 +T)| with T € R, T > 0;
—
. lys (Orw))| _ . =~
(5.7) t_lgimoo T 0 wuniformly for 0 <6 <
1 t
(5.8) tiuj? E/ ys(0rw)dr =0 wuniformly for 0 <46 < 1;
>t Jo
(5.9) Lim E(Jys (w)]) = E([="(w))),
—0

where 1 = min{1, %}, 2*(w) is the stationary solution of the one-dimensional Ornstein-Uhlenbeck equation
(see [33, Section 2]) given by

0
2" (w) = 777/ e w(s) ds.
— 00
Remark 5.2. In this manuscript, in order to simplify the computations, we take n = 1 in equation
(5.4), then the results of Lemma 5.1 are true for n = 1.

Now, define a new variable
(5.10) vs(t) = us(t) — dys(Oww),

where we denote by us(-) = us(+;7,w, ug,s) the solution of equation (5.3). It follows from (5.3) and (5.10)
that

82}5

(5.11) 5 = l(vs) + ys(0uw)l(@) Avs + f(vs + Bys (6u)

+ dys(0w) + a(l(vs) + ys(0:w)l(9))ys (Orw) Ag,
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with initial value vs(7) = us(T) — ¢ys(6-w) := vos. In a similar way as [33, Theorem 7], we are able to
prove that, problem (5.11) with initial value vg s € H and Dirichlet boundary condition possesses a unique
weak solution,

v 7w, v05) € C(T, T; H) N LA(7,T; V),

for every T" > 7. In addition, this solution is continuous with respect to the initial value vys in H.
Furthermore, this weak solution is a strong solution, namely, for the initial value vy s € V N H%(O),
vs (3T, w,v0,6) € O(T, T; V)N LA (7, T; V N H*(0)).
693 Let us define a mapping Zs : RT x Q x H — H such that
694 (5.12) Es(t, w,uo,5) = vs(t;0,w,v0,5), Vuos € H, VYwe Q.
695 Thanks to the conjugation, there is a mapping ¥s : RT x Q x H — H satisfying

Us(t,w, uo,s) = us(t;0,w, uo,s5)

o5 (5.13
69¢ ( ) — ,U(;(t; O,W,uoﬁ — ¢y6(w)) + ¢y5(9tw)7 V’lj,oﬁ (S H, VUJ S Q

THEOREM 5.3. ([33, Theorem 9]) Suppose that a is locally Lipschitz and fulfills (1.2), f € C(R)
satisfies (1.3) and (1.5) withp =2 and B = Cyf, ¢ € VN H?*(O) and | € L*(0). Also, let mA; > 4C}.
Then, there exists a random Dp-attractor A(w) (where Dp is the universe of fired bounded sets) for the
dynamical system ¥ (t,w,up). In addition, the Dp-pullback absorbing set By = {By(w) :w € Q} € D in H
is given by

Bo(w)={u € H:|u? <A\'Ro(w)}, for almost all w € Q,
697 with
8C/10] 40 C3 O
(m)\l — 4Cf) (m)\l — 4Cf)2
i 4420 Crm +mAh —4Cr + 20f|0|
m(mA; — 4CYy)

* 2 * 2 ~2
e (7002 2051 Q)P | 22
‘ (el 20l 2

Ro(w) = 2[|[*|2" (@)[* + —

698

0
+ (4m~" +20Cy) /

0 B m2
+2 / elmh—aco (A10f|0| (O MCs) 2 (B) PP + mA¢|2)dt.
-1

THEOREM 5.4. Assume the conditions in Theorem 5.3 are true. Then, there exists dg > 0 such that for
all 0 < 6 < 6o, (5.3) has a random Dp-attractor As(w) associated to the dynamical system Us(t,w,ups).
In addition, the Dp-pullback absorbing set Bs := {Bs(w) : w € Q} € D in H is given by

Bs(w)={ue H: |u|2 < Al_le(w)},
699  with
8C|O| N 4)\10%\(9|
(m)q - 40f) (m)\1 - 4Of)2
N 4420 Crm + mA —4Cy 4+ 2C4|O|
m(mA; — 4CYy)

Rs(w) = 2061l (@) + —

0
+ (4m~' +2X,Cy) /

— 00

2 2 ~9
(mA1—4C )t |ys (0rw)] 2C|ys (0rw)| 2m 2
e (el 2ol | 2 ) e

0 ~2
w2 [ et (3051014 (Ch + MCT O PloP + T 80P )t
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Proof. The idea to prove the existence of random Dp-attractor to (5.3) is the same as [33, Theorem 9.
Namely, looking for a random compact absorbing set Bs(w) (which will be given by the ball of center 0
and radius Rs(w) in V') absorbing every bounded deterministic set D C H, together with the compact
embedding V' < H, we achieve the goal. Firstly, multiplying (5.11) by vs(t) := vs(¢; T,w,v0,) in H, by
(1.2), we obtain

d _
2 s + 2mllus(@)[1* < 2(F (vs(t) + Sys(01)), v5(1)) + 2u5(6:10) (@, vs (1)) + 2m | l[[vs ()],
with the help of (1.5), the Young and Poincaré inequalities, we have

Cy|O]

d
@Iva(t)rz +mlls(O)* < (=mAr +2C; (11 + 1) + p2)|vs (O] + "

(5.14)

Cy 1 > ) ) m2 ) ,
+ T 01w +— + psllvs ()%
(ml ) s G) PGNP + =116 + s ()]

m

Letting p1 = 1, o = Cy and p3 = 2 in (5.14), we derive

d
s < =(mAy = 4Cy)[vs (1) + 2C¢|O|

|y5(0t0~))|2 ZCf‘y(;(gtw)P 2m2 ) m ,
—_— t .
*( e vl | L M GO

Neglecting the last term of (5.15) and integrating in [tg, —1] with tg < —1, we have

-1 2 2 ~ 2

_ _ 1 Orw)| 2C ¢ |ys (Orw)| 2m
)2 < o (mAi—4Cp) (~1-t0) / lys (0 I 5
os(-D < e [ (20s101+ (R 4 2EAe Bl 4 2 ) o

(5.15)

x (MM —4Cs)(t—t0) gy | |v5(t0)|2]

< e—(7n/\1—4Cf)(—1—t0) ‘7)5(t0)|2

-1 2 2 2 2~2
+/ e~tmu=1Cn (90 o) 4 (B0l | 20O T | 207 ) 4)2) 4y
to )\1Cf >\1 m

-1 2 2 ~2
_ Ow)| 2C|ys(Orw)] 2m
(mx—4Cpt (9010 |y5(0: S 2) dt.

< €(m>\174Cf) |:e(m)\14Cf)t0 |U6 (t()) ‘2

Consequently, for a given B(0, ps) C H, there exists T(w, ps) < —1, such that for all ty < T'(w, ps) and for
all uyp € B(0, ps),

|vs(—1; o, w, us(to) — dys(Br,w))|* < 73 5(w),
with

T%,é(w) =1+

-1 2 2 ~ 2
2C5|0| +/ o(mA1—4Cy)(t+1) lys (0:w)] + 2C¢|ys(6ew)| + 2m chllzdt,
m)\l — 4Cf Alcf /\1 m

which is well defined. Indeed, it is enough to choose T'(w, ps) such that, for any ¢y < T'(w, ps), we have
e(m)\1—4cf)(t0+1)|,U6(t0)|2 _ e(mA1—4Cf)(to+1)|u5<tO) _ </>y5(9t0w)|2

< Qe(m)\l—4cf)(to+1) (p(QS + ‘¢|2|y6(9t0w)|2)

<1.
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From (5.15), for ¢ € [—1,0], we have

K O.w)|?  2C|ys(Osw)?  2m?
D2 < e (MA—4Cy)(t+1) / 9 |y (0s f s 2
lus(t)|” < e B CrlO] + Wl + N +— 4l

= S lus(s) 2 ) e (-1

Therefore,
(A 2C4|0|
D2 < = (mA1—4Cy)(t+1) 12 f
os(t)? < e T e a7
t 2 2 ~ 9
+/ e~ (MM —4Cy)(t—s) (|y5(95w)| + 2Cf|y5(05w)| + 2m ) H(ZS”QdS,
-1 )\10]0 )\1 m
and
0
- 2 s 4C4|0|
(mA1—4Cy)s 2d < 2 o= (mA1—4Cy) —1 2 f
/e los(s)l2ds < 2 O v e
0 2 2 ~ 9
+ z/ e(mA1—4Cy)s lys (Osw)| + 2Cf|y5(08w)| + 2m H¢||2d5
m J_; MCy A1 m

Thus, we conclude for a given B(0,ps) C H, there exists T(w, ps) < —1, such that for all ¢y < T(w, ps)
and for all ug € B(0, ps),

—(mag— 2C|0|
"U(;(t)|2 <e (mA1 4Cf)(t+1)7'§75(W) + m
! 0s0)> | 2C¢|ys(0sw)* | 2m?
_|_/ e~ (mA1—4Cy)(t—s) <|y5§ SC(:‘J” + f|y§\( sw)] + m ) H(bHQdS,
-1 1bf 1 m
and
0 2 4040
(m)\174Cf)s 2d < _ 7(m)\174Cf) 2 f
- /e Jos(s)]?ds < e o)+ s s
+ z /0 e(m)\l—4Cf)s |y6(08w)|2 + 2Cf|y6(98w)|2 + 2m* H¢||2d8
m J_1 )\le )\1 m

To obtain a bounded absorbing set in V', multiplying (5.11) by —Aws(¢), making use of (1.2), (1.5), the
Poincaré and Young inequalities, we have

d
s I < ~(ma — 40 s DI + MCAIO] + MCyos(h)
)\1 2 2 mz 2
A+ — 0 —|Ag|*.
+ (Ot 28 ) stOo)Plo + 2= a0

Integrating the above inequality between s and 0, where s € [—1, 0], we have

0
R R (R

S

_ m?
(O MO s 00 Plof + 80P .
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733 Integrating again the above inequality in [—1, 0], together with the above inequality, it follows

2 4C4 10
0 2 o 2 —(mA1—4Cy),.2 s i bt B / (m)\l 4Cy)s
o5 < Ze o) + i A s +
S 2 S 2 2
734 % (:‘/5(9 w)| + 2Cs|ys (0sw)| + m >||¢ dS—I—/ e(mA1—4Cy)t
MGy M .

~2
X <A10f0| + M Crlo(t)]? + (Craa + MO ys (61w) P |¢]* + 7:1|A¢|2>dt

Consequently, there exists 74 5(w) satisfying, for a given ps > 0, there exists T'(w, ps) < —1, such that for
all tg < T(w, ps) and |ugs| < ps,

15 (05 to, w, 10,6)[I* = (|05 (0; to,w, w05 — dys(Brew)) + dys(w)|* < 75 5(w),

735 where
- 8C|0 4\ C3|O)
2 _ 2 2 4 Loy, C,) 2 f f
riale) = 20IPlys)? + (4m™ +2005) o) + I+
0 2 2 ~ 9
i pnas0pye (00 0) | 2C5ys(0)® | 272N
736 + (4m~ " + 20 Cy) /7006 < Wl + N + - loll“ds

0 ~2
+2/ elmii=ACs)s <)\1Cf|0+(0f/\1+>\1 ;1)|y5(95w>|2|¢|2+";|A¢I2)ds-

-1

737 Thus, we conclude from [33, Theorem 1] that, there exists a unique random attractor As(w) to equation
738 (5.3) with respect to deterministic bounded sets. O

THEOREM 5.5. Let conditions of Theorem 5.3 hold. Then, for almost all w € 2, we have
lim Rs(w) = Ro(w),
739 where Ry(w) and Rs(w) are given in theorems 5.3 and 5./, respectively.
740 Proof. From (5.6), we obtain

741 (5.17) (%1_)moy5( w) = 2" (w).

742 On the one hand, (5.7) implies that there exist » < 0 and §p > 0, such that for all 0 < § < o,
743 (5.18) lys (Brw)| < |t A

744 Notice that,

0 2 2 2
/ e(m)\1—4Cf)t (|y5(9tw)| + Cf|y5(9tw)‘ ) ||¢H2dt

MCy M
T 2 2
- [ ntop (1BODE | 20O | o
” | (el 2Bl ) g g
0 2 2
iy (W B)E 20BN | o
[ e (ool Zolbell ) e

746 Therefore, for all 0 < § < dg, it follows from (5.18) that

T 2 2
(A =40t |ys (0:0)|” | 2C|ys(Giw)| 2,
R O o e L

’ _ t2 2C¢t?
< (mA1—4Cy)t | f dt < 0o
<[ e et ) I

~
~
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By means of the above inequality, (5.6) and dominated convergence theorem, we have

T

2 2 2
lim e(mA1—4Cy)t <|y6(9tw) + Crlys(0uw)] ) ||¢||2dt

60 ) _ o rMC A
(5.19) - r * o 2 *1 2
:/ e(m)\174cf)t |Z (etw)‘ + QCf|Z (etw” ||¢||2dt
- MCy N

On the other hand, by (5.6), the continuity of ys(f;w) and the dominated convergence theorem, it follows

0 2 ) 2
lim e(mi—4C)t (lyifeg‘)) + Cf|y§\<9tw)| ) ||¢||2dt
(5.20) 0 el !
= [ et (R 2CECORY 10,
. MCy A1 '

By similar arguments to (5.20), it is easy to check

0
lim e(mA1—4Cy)t (C’f>\1 + /\10]?1) lys () ||| *dt

0—0 ) 4
(5.21) .
- /1 NN (O + MCFY) [ (0) 6]t
The conclusion of this theorem follows from (5.19)-(5.21). The proof is complete. |

LEMMA 5.6. Under assumptions of Theorem 5.3, let {0,}22, be a sequence satisfying §, — 0 as
n — +oo. Let us, and u be the solutions of (5.3) and (5.1) with initial values ug s, and ug, respectively.
If ug,5, — uo strongly in H as n — 400, then for almost allw € Q and t > 1,

us,, (t; 7, w, uo.5,) = w(t; T,w, up) strongly in H as n — +oo.

Proof. The proof is similar to [16, Lemma 4.4] and we omit the details here. |

LEMMA 5.7. Assume conditions of Theorem 5.3 hold, let {6,152, be a sequence so that 6, — 0 as
n — +oo. Let vs, and v be the solutions of problems (5.11) and (5.2) with initial data vos, and vo,
respectively. If vos, — vo weakly in H as n — 400, then for almost all w € Q,

(5.22) v, (13T, w,v0,5,) = v(r;T,w,v9) weakly in H, Vr>r,
and
(5.23) vs, (3T, w,v0.6,) — V(5 T, w,v0)  weakly in L*(t,7 +T; V), YT > 0.

Proof. The results follow analogously to the proof of existence of solutions to problem (5.11) [15,
Lemma 3.5]. We therefore omit the details. |

LEMMA 5.8. Suppose conditions of Theorem 5.3 hold, let w € Q be fixed. If 6, — 0 as n — +o00 and
us, € As, (w), then the sequence {us, }2°, has a convergent subsequence in H.

Proof. Since 6, — 0 as n — +oo, by Theorem 5.5, we obtain for almost all w € €, there exists
N = N(w), such that for all n > N

(5.24) Rs, (w) < 2Rp(w).
Thanks to u, := us, (t; 7, w,up s, ) € As, (w) and As, (w) C Rs, (w), hence for all n > N, we have

(5.25) [tn|? < 227 Ro(w).
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In fact, (5.25) implies u,, is bounded in H, thus, up to a subsequence (relabeled the same), we have
(5.26) Up — U weakly in  H.

In what follows, we prove that the weak convergence in (5.26) is actually a strong one. On the one hand,
since u, € A, (w), making use of the invariance of As_, for every k > 1, there exists u, (w) € As, (0_w)
such that

(5.27) Up, = U5, (k,0_pw, un k) = us, (0; —k, w, U ).

Since up ik € As, (0_pw) and As, (0_rw) C Bs, (0_rw), by (5.24), we infer that for each £ > 1 and
n> N :=N(0_jw),

(5.28) [un |> < 20 Ro(0_pw).

On the other hand, by (5.10), we have

(5.29) 035, (05 =k, w, v k) = us,, (0; =k, w, tn k) = ¢ys, (W),

where vy, k= U — ®Ys,, (0_rw). Therefore, (5.27) and (5.29) imply

(5.30) un = 05, (0 =k, w, v k) + ¢ys,, (w).

By (5.28), we have

(5.31) O el* < 2lunkl® + 2|6]ys,, (W)[* < 4ATT Ro(0-kw) + 2|61 |ys,, (w)[*.
It follows from (5.6) and (5.31) that there exists Ny := Np(w, k) such that for every k > 1 and n > Ny,
(5.32) |on. k> < AT Ro(0_kw) + 4|¢1* (1 + 2% (w)[?).

Notice that (5.6), (5.28) and (5.30) imply, as n — +00,

(5.33) s, (05 —k,w,vp k) = 0 weakly in H with o= — ¢2z"(w).

Next, using energy estimations, we evaluate the limit of norm |vs, (0; —k, w, vy, 1)| for each k as n —
+00. By (5.32) we know that for each k& > 1, the sequence {v,, ;}52; is bounded in H, hence by a diagonal
process, we can find a subsequence (relabeled the same) such that for each k > 1, there exists o € H such
that

(5.34) Upk — O weakly in H as n — —+oo.

Lemma 5.7 and (5.34) conclude, as n — 400,

(5.35) vs, (0; —k,w,vp 1) = v(0; —k,w, D) weakly in H,
and
(5.36) vs, (s —k,w, v 1) = V(- —k,w,0)  weakly in  L*(r,7 4+ T; V).

By the uniqueness of limit, from (5.33) and (5.36), we obtain
(5.37) v(0; —k,w, ) = 0.

By energy equality and (5.11), we have

%\’Uén (O +2a(U(vs,) + ys, (Orw)U(d))[lvs, (D1 = 2(f (vs,, + dys, (Brw)), vs,, (1))
+ 2ys,, (01w)(9, vs,, () = 2a(l(vs,,) + Y5, (0:)1(6)) (9, v5,,))
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ie.,

L0, (O + mufus, (O + ©(us, (1) = 2(F(vs, + bys, (6, vs, (1)
205, (00)(6, 3, (1)) — 2a(1(v5,) + 5, (0u2)L(0)) (6. 5,)

where O(vs, (t)) = 2a(l(vs, ) +ys, (0:w)1(d))||vs, (t)]|>—mA1|vs, (£)|?, which is a functional in V. Multiplying
(5.38) by €™t and integrating it from —k to 0, we obtain

(5.38)

0
|vs,, (0; =k, w, vn7k)|2 = efmklk|vn7k|2 - / emAlt@(v(;n (t; =k, w, vy 1))dt
—k

0
+ 2/ em)\lt(f( ( ; _ka w, Un,k) + ¢y§n (etw))v s, (t7 _kvwa U’ﬂ,k))dt

0
e"Mbys (0,w) (¢, vs,, (£ —k, w, v 1)) dt
—k

k

0
2/ M a(U(vs, (6 — s w0, U k) + Us., (0:)1(0)) (6 vs. (£ —k, @, v)) ).
(5

Similarly, by (5.2),(5.33) and (5.37), we have

0
|1~;\2 := |0(0; —k,w,ﬁk)|2 = e*m/\lk|17k|2 —/ em)‘lt@(v(t; —k,w, y))dt
—k

0
+2/ "M (f (v(t; —k, w, B) + 92" (w)), v(t; —k, w, ) )dt
(5.39) *

0
+2/ "M (Grw) (o, v(t; —k, w, D) )dt
—k
0
—9 / ) e™Ma(l(v(t; —k,w, Tx)) + 2% (0:w)1(#)) (¢, v(t; —k, w, Dy)))dt.
It is obvious that

lim sup |vs, (0; =k, w, vp ) 2
n—oo

(5.40) < eTmME (UNTT RO (- jw) + 4]0 (14 |25 (W)[2)) + [8]* — e ™MF |5, 2
< e MMF (AN Ry (0-w) + 4] (14 2% (W) [?)) + [0(0; =k, w, 5y |*.

Notice that, from (5.37) we know for n — 400,
(5.41) v(0; —k,w, 0x) = 0 = u(0; —k,w, Ug) — 92" (w) := @ — ¢pz* (w).
By (5.30), we find

(5.42) vs,, (05 =k, w, v k) = un — BYs,, (w).

It follows from (5.40)-(5.42) that

(5.43) limsup |u,, — ¢y (w)| < e ™MF (AN Ro(0_jw) + 4|¢|% (1 + [2*(w)]?)) + |@ — ¢z*(w)|*.
n—oo

Since Ry and z* are tempered, we have

limsup e~ ™% (4N Ry (0_kw) + 4|0 (1 + |2*(w)[?)) = 0.

k—o0



820

821

826

827

828

829

830
831
832
833
834
835
836

837

38 J.H. XU, AND T. CARABALLO
Let k — +o0 in (5.43), we obtain

(5.44) lim sup |u, — ¢yn(w)] < @ — ¢z*(w)].

n—oo
(5.26) and (5.6) lead us to
Up — PYn(w) = 4 — pz"(w) weakly in  H,
together with (5.44), we have
(5.45) Up — QYn(w) = @ — ¢pz"(w) strongly in  H.
Therefore, by (5.6), we conclude that
Uup, — 4 strongly in H,

as desired. This completes the proof. ]
We are now ready to establish the upper semicontinuity of random attractors as § — 0.

THEOREM 5.9. Suppose that a is locally Lipschitz and fulfills (1.2), f € C(R) satisfies (1.3) and (1.5)
with p = 2 and B = Cy, respectively, ¢ € V.1 H*(O) and | € L*(0). Also, let mA; > 4Cy. Then for
almost all w € Q,

lim distg (As(w), A(w)) = 0.
6—0
Proof. For every fixed w € (1, define

8C;|0) 4MCFO|
(m>\1 — 4Cf) (m>\1 — 4Cf)2

Bw) = {ue #: P <37 (2101 @) +

n 4420 Crm +mA —4Cy + 20f‘(9|
m(mA; — 4CYy)

0 * 2 x 2 =2
_ _ Orw)| 2C¢|z* (6w)| 2m
4 LY (mA1—4Cy)t |Z ( t f 24t
+ (4m~ + 1C’f)/ e MOy + " + m [l

0 ~2
+ 2/ e(mA—4C;)t <Alcf0| + (C’f)\l + Alcf—l) 2% (0,0) 2] 62 + ’Zlmw) dt> }
—1

By Theorem 5.3, we know B := {B(w) : w € Q} is also a Dp-(pullback) random absorbing set for ¥. Let
Bjs be the Dp-(pullback) random absorbing set of Uy given by Theorem 5.4, it follows from Theorem 5.5
that

lim |Bs(w)| = |B(w)| for almost all w € €.
6—0

Which, together with Lemmas 5.6 and 5.8, completes the proof by applying [27, Theorem 3.1]. d

Remark 5.10. Notice that, if for every w € €, the set U5€(071] As(w) is precompact in H, the results
of Lemma 5.8 hold true automatically [27]. Indeed, in our case, we define the absorbing set Bs(w) =
{u € H: |ul <A\ 'Rs(w)} (Theorem 5.4) for every § € (0,1], it is clear that the upper bound of Bj(w)
is uniform with respect to §. In fact, using the similar arguments as Theorem 5.5, with the help of the
properties of ys(6:w) (cf. (5.6)-(5.8)), it is enough to show that |Bs(w)| < C(w), where C(w) is a positive
constant which does not depend on §. Therefore, we can replace the complicated proof of Lemma 5.6 by
this conclusion to prove the upper semicontinuity of random attractors (cf. Theorem 5.9).
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6. Convergence of random attractors for stochastic nonlocal PDEs with multiplicative
noise. We conclude our paper with studying the following stochastic nonlocal partial differential equations
driven by colored noise,

% —a(l(us))Aus = f(us) + ouls(w), in O x (7,00),
(6.1) us =0, on 90 x (T,00),

us(z,7) = UQ,s 5 in O,
which is an approximation of the following one studied in [33],

2 q(l(u)Au = f(u) +ouo D@ in O x (7,00),

ot dt
(6.2) u=0, on 00 x (1,00),
u(x, 7) = ug, in O,

where o denotes the Stratonovich sense in stochastic term. On account of the change of variable v(t) =
e7% (0ew)y(t), (6.2) can be written as,

(6.3) % —a (l(v)e"z*(ef“’)) Av = 77 O (4= (Ow)) L o2 (Bw).

Analogously, to study the pathwise dynamics of problem (6.1), we need to transform the stochastic equa-
tions into random ones parameterized by w € 2. Let

(6.4) vs(t) = u(;(t)e_”y‘;(‘gt“’).
Then, (6.1) and (6.4) imply that

d
(6.5) % —a (l(v(;)e“y“(et“’)> Avs = e~ 7¥5(0:) (456795 (009)) s (H)ays (0,w),

with initial value v 5 1= v5(7) = qufoya(OTw).

PROPOSITION 6.1. Suppose assumptions (1.2)-(1.5) are true with p = 2 and § = Cy, respectively.
Then, for almost all w € Q, function a(w, ) = a (l(~)e"y<‘(9“")) € C(R;R™) is locally Lipschitz and satisfies
(1.2). Furthermore, there exists a constant Cps depending on w, o, Cy and n, such that,

|F(w,s)| < Cps(1+1s]) and (F(w,s)—F(w,r))(s—1)<mn|s— r|2, Vs, r € R,

where F(w,s) = e~ 7% ) f(e7% (@) s) 4+ gys(w)s.

In what follows, we will use vs(-; 7, w, v ¢) to denote the solution of equation (6.5). In a similar way as
[33, Theorem 3], we deduce (6.5) has a unique weak solution in the sense of [33, Definition 7] which belongs
to L*(1,T;V) N L*(7,T; H) for every T > 7. At this point, thanks to the transformation (6.4), there
exists a unique weak solution ugs(;7,w,ugs) € L*(7,T;V) N L*(r,T; H) for every T > 7. In addition,
this solution behaves continuously in H with respect to the initial value.

Define a mapping ¥s : RT x Q x H — H, such that for every t € RT,

Es(t,w,v,5) = vs(t;0,w, vo 5), Vg5 € H, Vw € (L

Thanks to the conjugation [33, Lemma 1], there is a mapping ®s : RT™ x Q x H — H such that for all
teRT,

Os(t,w,up,s) = us(t;0,w,ug ) := v5(£; 0, w, e*"y“(“)vo’g)e"y“(efw), Yugs € H, Yw e Q.

THEOREM 6.2. (/[33, Theorem 5]) Assume that function a € C(R;R™) fulfills (1.2), function f satisfies
(1.3) and (1.5) with p =2 and B = Cy, respectively, | € L*(0O). Also, let mA1 > 3Cy. Then there exists a
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unique random attractor A(w) for the dynamical system ®(t,w, u) associated to problem (6.2). Additionally,
this Dp-pullback absorbing set By := {Bg(w) : w € Q} in H is given by
Bo(w) = {u € H : [u]’ < AT"Ro(w)},
865 with
Ro(w) = ieffl 202" (0sw)ds+202" (w)

m

-1
866 X <1 + Cf|0|/ 6_2”*(gsw)+(m’\1_3cf)s+fs_l2‘72*(97“’)de3>
— 00

1 2 0 " R . ,
+ (Cf|0| + O]%|O|> / 6—202 (Osw)+(mA1—3C¢)s+20z (w)-‘rfso 20z (er)d7d8.
m m

THEOREM 6.3. Under assumptions of Theorem 6.2, there exists 6o > 0 such that for all 0 < § <
do, equation (6.1) generates a random dynamical system ®s5(t,w,ug,5), which possesses a unique random
attractor As(w). Additionally, the Dp-pullback absorbing set Bs := {Bs(w) : w € Q} in H is given by

Bs(w)={uec H: |[u* <\['Rsw)},

867 with
Rs(w) = lef,ol 20ys(0sw)ds+20ys(w)
m
- —20 w mAy— s ~120 w)dTr
868 X (1+Cf|(9|/ 2095 (6:0)H(mA =30 s/ 20y5 (6-w)d ds)
1 2 2 0 —20ys (sw)+(mA1 —3C)s4+20ys (W) + [ 20y5 (0,-w)dr
—1
869 Proof. The same method as [33, Theorem 5] will be used to prove this result. We first derive the

870 boundedness of vs(-) 1= vs(-;to,w,vos) in H for all ¢t € [tg, —1] with tyg < —1, where vy 5 = e oYs (Orgw)qy
871 and ug € D (a deterministic bounded set). Firstly, multiplying (6.5) by vs in H, thanks to (1.5) and the
872 Young inequality, we have

1d - w

L2 s + a(e O i) s (0

873 30
< o200l + (25 + ot ) o),

N =

874 thanks to the Poincaré inequality and (1.2), we have

(6.6 o) )| < (=mA1 +3C) + 20y5(0 t)[> + e 27wy |O
875 (6.6) g vs @7+ mllvs()]]” < (=mAr + 3C; + 20y5(6:w))|vs(£)]” + e 710.
876 Integrating (6.6) between to and —1, it follows

—1
|’U5(—1)|2 < e(mAl*?)Cf) |:e(7n)\1—3cf)t0+ft0 20y5(05w)ds|v5(t0)|2

-1
+ Cf|0| / 6720115 (Gsw)e(m)\lfi’)cf)erf;l 20ys (GTw)deS )
to

Consequently, for a given deterministic bounded set D C H, there exist a constant ps > 0 and T (w, ps) <
—1, P-a.e., such that, for any ug,s € D C B(0, ps), for all tg < T'(w, ps), we have

2
‘1)5 (—1;t0,w, e*Uy‘S(etOw)UO,J)‘ <rfsw),
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878 with
-1 .
]79 T%yé(w) _ 6(m/\173C’f) <1 + Of‘0|/ 672ay5(95w)+(m)\173Cf)s+fs 20y5(9.,.w)d‘rds> ]
—0o0
880 Secondly, we show v € L>(—1,t; H)NL?(—1,t; V) with t € [~1,0] by energy estimations. Integrating

881 (6.6) from —1 to ¢t with ¢ € [—1, 0], we obtain

|’U§(t)|2 < ef(m)\173Cf)(t+1)+fi1 20y5(95w)d5|vé(_1)‘2

t
o (67) + Cf|o‘ /71 672o'y5(OSw)+(3C‘ffm/\1)(tfs)+fS 20y5(97w)d7d5

t
B m/ 6(3Cffm)\1)(tfs)+f: 20ys(0rw)dr HUJ(S) ||2d8.
1

883  Therefore, by similar arguments, we conclude that for a given deterministic subset D C B(0,ps) C H,
881 there exists T'(w, ps) < —1, P-a.e., such that for all tg < T'(w, ps), for all up s € D, we have

|’U§(t)|2 < e—(m/\1—BC'f)(t—i-l)—i-fi1 20y5(95w)dsri§(w)
885 ¢ ¢
+ Cf|0| / e—2o’y5(03w)+(3cf—m/\l)(t—s)-‘rfs 20y5(0.rw)d‘r'd87
-1
886 and
0
1
/ 1 e(m)\l—3Cf)s+f50 QJyJ(GTw)dT”,U(;(S) ||2d8 < Ee—(m)\l—?)cf)—i-fgl QUyg(GSw)dsrié(w)
ss7  (6.8) 0
Cf|(9| —20y5 (0sw)+(mA1 —3Cs)s+ [0 2 0rw)d
+ e 20ys(0s 1 f s 20y5(0-w) Tds.
m -1
888 Thirdly, the boundedness of vs(+) in V for all t € [—1, 0] and the compact embedding V' — H ensure the

889  existence of a compact absorbing ball in H. To obtain a bound in V', we first need to ensure the existence
890 of strong solutions, by slightly improving the regularity of initial value, namely, ug s € V, but assumptions
891 imposed on functions a and f are the same, this result holds, for more details, see [32, Theorem 2.9)].
892 Multiplying (6.5) by —Awvs(t), with the help of (1.3) and the Young inequality, we derive

1d - w
5%\@5(15)”2 + a(e7 O (vs))| — Avs (t)|?
03 (6.9) o2
< i —20’y5(9tw)c20 ~f t 2 TA t 2 0 t 2
< Lo 01+ s + T 1A + oys 00 lo(t) P

894  Using the Poincaré inequality, (6.9) can be bounded by

d 2 2, 2 01N —20ys(0, 2C7 2 2
@HU&(UH < —m|Avs(t)| +ch|0‘e vs(0e) 4 - [v(t)|” + 20ys(O:w)[|vs () |
s95  (6.10
e Y L " B + 2 C2|0e2ovs )
<|-m 1+m7)\1+ oys(0iw) | |lvs()]l +E f| le .

896 Integrating (6.10) between s and 0 with s € [—1, 0], we obtain
05 O)[2 < el =20 manes 12 3us(0-)ir ) 2

897 0
7 n %C?IOI / 02005 (070)+(mA1—2C2 /mAy )7+ [© 20ys (Buw)dt g
S
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898 Integrating the above inequality again in [—1, 0], we have

0
2 0
IO < | el m2e e s i ) s

899
o 0
+ EC]%|O| / e—20‘y5 (GSw)+(m>\1—2C§/mA1)s+f50 20’y5(9rw)drd8.
m -1
2

900 Thanks to assumption 3C'y < mAq, it is easy to check mA; —3Cy < mA; — fni/\fl, together with (6.8), we
901  have

1 _ _ 0

||’U5(0)||2 < Ee (mA1=3Cs)+[°, 20‘y5(93w)ds,ri6(w)

902

0
+ (;cflm + icﬁloo / 2 (0,9 H(mA =80 )5+ [0 200 (0 g

903 Therefore, it is straightforward that
lus (0)]|* = fJvs (0)e7¥s¢) ]2

< le—(m)\l—E}Cf)-&-Qny(g (w)—i—fEl 2¢7y5(05w)dsrf §(UJ)

904 m ’
0
+ lcflo‘ + 302‘O| / e—2ay5(93w)+20y5 (w)+(m)\1—30f)s+fso 20y5(9Tw)d7"dS.
m m ! 1
Consequently, there exists r2 5(w) such that for a given ps > 0, there exists T(w, ps) < —1 satisfying, for
all to < T'(w, ps) and ugs € H with |ug 5| < ps,
[us (0; to, w, uo,6)[I* < 72,5(w),
905 where

7’% é(w) _ leffl 20ys(0sw)ds+20ys(w)ds
’ m

-1
906 X (1 + C¢|O| / ¢~ 20U (Bsw)+(mA1 =8C )+ [ 2”7’5(97“)de5>

0
# (CrIO1+ ZC3H01) [ ettt st e,

907  From (5.7), we know that for a given & = Mé‘iﬁcf, there exists T (e,w) < 0, such that for all t < Ty, we
908  have
m)\l — 3Cf
909 (6.11 0 < 7 "7)
( ) |y5( tw)‘ = 8|0'|
910  Similarly, it follows from (5.8), for any £ > 0, there exists T»(¢,w) < 0, such that for all ¢t < Tb,
t
A —3C

011 (6.12) / ys(0-w)dr| < — 0L 2Ty

0 8|o|

912 Therefore,

-1
/ 6720'115(Osw)Jr(m)\lfSC'f)stf;l 20y5(0,w)d’rd8

min{Ty,T>} —20y5(0sw)+(mA1—3Cy)s+ [ 20ys(0-w)dr
e 20Yys(0s 1 I s yolir ds

— 00

913 =

-1
+/ e—20’y5(OSw)+(m>\1—3Cf)s+fs_1 2Uy5(97w)d‘rd8 _ Il +I2
min{Ty,T>}



914

915

916

917
918

927

928

929
930
931
932

933

934

935

STOCHASTIC NONLOCAL PDES AND WONG-ZAKAI APPROXIMATIONS 43

The continuity of ys(w) guarantees the boundedness of I>. It remains to show I is bounded, it follows
from (6.11)-(6.12) that

min{Ty,T>} —20y5 (0sw)+(mA1—3Cy)s+ [ 20ys(0-w)dr
e—20Ys(0s LT 20T d s

— 00

min{Tl,Tg} 1
< / (210115 (0a) +(mA1 30y )s+] [ 20y5 (0-w)dr] g

— 00

min{Tl,Tg}
< / e(m)\1730f)(8+1/4)ds < 0.

— 00

Thus, we conclude from [33, Theorem 2] that there exists a unique random attractor As(w) to problem
(6.1). d
THEOREM 6.4. Suppose the conditions of Theorem 6.2 are true. Then, for almost all w € €2,

lim Rs(w) = Ro(w),
6—0

where Ry(w) and Rs(w) are given in Theorems 6.2 and 6.3, respectively.

Proof. The proof of this theorem is based on the properties of y5(6,w) (cf. (5.6)-(5.7)). Since the idea
and technique to prove this result are the same as Theorems 5.5, we omit the details. O

LEMMA 6.5. Assume the conditions of Theorem 6.2 are true, let {0, }52; be a sequence so that §, — 0
as n — +oo. Let vs, and v be the solutions of problem (6.1) and (6.3) with initial data vo s, and vo,
respectively. If vo s, — vo weakly in H as n — 400, then for almost all w € Q,

(6.13) vs, (13T, w,v0,5,) = v(r;T,w,v9) weakly in H, Vr>r,
and
(6.14) vs, (3T, w,v0.6,) — v(-T,w,v0)  strongly in L*(t, 7+ T;H), VYT >0.
Proof. The proof is similar to [15, Lemma 3.5] and thus is omitted here. O

LEMMA 6.6. Assume the conditions of Theorem 6.2 are true and a is locally Lipschitz. let {0,152, be
a sequence so that 6, — 0 as n — +o0o. Let vs, and v be the solutions of problem (6.1) and (6.3) with
initial data vy 5, and vy, respectively. If vos, — v in H as n — 400, then for every 7 € R, w €  and
t>T,

(6.15) vs, (t; T w,v08,) = v(t; T, w,v0) in H, Vt>T,

Proof. The proof is similar to [16, Lemma 3.8] and thus is omitted here. O
Now, we prove the uniform compactness of the family of random attractors As(w).

LEMMA 6.7. Assume the conditions of Lemma 6.6 hold, let w € Q is fized. If 6,, — 0 as n — 400 and
un € As, (w), then the sequence {u,}°; has a convergent subsequence in H.

Proof. Since uy,, € As, (w), it follows from the invariance of Ajs, , there exists u, 1 € As, (0_1w), such
that

(6.16) Up = Ds(1,0_1w,up,—1) = us, (0; =1, w, up,—1).
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On the one hand, we deduce from Theorem 6.4 that there exists Ny = Nj(w) > 1, such that for all n > Ny,

Rs, (0_1w)<1+ lefgl 20Ysn (05 1w)ds+20ys,, (0-1w)
" - m

-1
% (1 +Cf\(’)|/ e—QUyan(9s1W)+(m>\1—30f)s+fs_120y5n(9¢1w)d7d8)
—o0

0
+ <;Cf0| + ic}%|0|)/ e—QUygn(Gs,lw)+(mx\1—3Cf)s+20y5n(9,1w)+f50 2ay5n(0¢«,1w)drds.

-1

Thanks to u,,—1 € As, (0—_1w) C Bs, (f_1w), by Theorem 6.3 and (6.16), we obtain for all n > N,
(6.17)

1 0
|um—ﬂ2§Afl<1+7nef1”“%”““”“+%“nw*w)

—1
) (1 +Cf|(9‘/ e—%yén(9s—1w)+(mm—30f>s+fs12oyan(9r—1w)dfd8)

+—10w+2@w|f
m ! m ! 1

e~ 20Ysn (0s—1w)+(mA1—3Cf)s+20ys,, (9,1w)+f50 20Ys,, (0T1w)drds> )

On the other hand, by (6.4), we have

Vs (87 -1, w, 1}717—1) = Us, (87 -1 w, un7—1)8_0y5n(95<‘U)7

and
(6.18) Up—1 = Uy, g€ Yon(0-19),
By (5.6), we know

lim efay,;n(O,lw) _ 670'2*(9,1@')
0n—0 ’

which, along with (6.17)-(6.18) shows that the sequence {v,, _1}72, is bounded in H. Therefore, there
exist a subsequence {v, _1} (relabeled the same) and v_; such that v, 1 — v_; weakly in H. Lemma
6.5 ensures the existence of v := 9(+; —1,w,v_1) € L?(—1,0; H) such that, up to a subsequence,

vs, (s —1,w, v, 1) — U strongly in LQ(—l,O;H)7

which implies, up to a further subsequence,
(6.19) vs, (85 —1,w, v, 1) = 0(s) strongly in H, a.e. s € (—1,0).
By (5.6), (6.18)-(6.19), we obtain
(6.20) us, (8;—1,w,Up, 1) — 7% @=9)5(s) strongly in H, a.e. s € (—1,0).
Since 4, — 0 as n — 400, it follows from Lemma 6.6 and (6.20) that,
(6.21) us, (0;8,w,us, (55 —1,w, Un 1)) = u(0;5,w, e’ @“)5(s))  strongly in H,
where u is solution of (6.2). By cocycle property,

us,, (058, w,us, (55 —1,w,up,—1)) = us, (0; —1,w, up,—1).

Therefore, by (6.21) we have

ug, (0; =1, w, Uy, 1) —= u(0;5,w, e’ @=“)5(s))  strongly in H,

together with (6.16), the proof is complete. d
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We finally present the upper semicontinuity of random (pullback) attractors as 6 — 0.

THEOREM 6.8. Assume that function a € C(R;R™) fulfills (1.2), function f satisfies (1.3) and (1.5)
with p =2 and 3 = Cy, respectively. Also, let mA\y > 3Cy and | € L*(O). Then, for almost all w € Q,

(6.22)

lim distg (As(w), A(w)) = 0.
6—0

Proof. For every fixed w € (2, let

Bl = {“ €H:fu* <At (leffl%z*(%w)dswoz*(w)
m
_1 )
X <1 + Cf|(’)| / 202" (0sw)+(mA=3Cy)s+ [ 202*(9*“’)de3)
— 0o

1 2 0 . . .
+ <Cf|0| + C;|O> / 6—202 (Bsw)+(mA1—3C¢)s+20z (w)+f50 20z (Orw)drds) }
m m -1

By Theorem 6.2 we see B := {B(w),w € Q} belongs to D. Moreover, Theorem 6.4 implies

lim |Bs(w)| = |B(w)|, for almost all w € Q.
5—0

Combine above equality with Lemmas 6.5 and 6.7, we finish the proof of this theorem by [27, Theorem 3.1].0
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