
Generative Ensemble Regression: Learning

Particle Dynamics from Observations of

Ensembles with Physics-Informed Deep

Generative Models

Liu Yang1, Constantinos Daskalakis2, and George Em
Karniadakis1,3,*

1Division of Applied Mathematics, Brown University, Providence,
RI 02912, USA

2Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts,

USA
3Pacific Northwest National Laboratory, Richland, WA 99354, USA

*Correspondence author, george karniadakis@brown.edu

Abstract

We propose a new method for inferring the governing stochastic or-
dinary differential equations (SODEs) by observing particle ensembles at
discrete and sparse time instants, i.e., multiple “snapshots”. Particle coor-
dinates at a single time instant, possibly noisy or truncated, are recorded
in each snapshot but are unpaired across the snapshots. By training a
physics-informed generative model that generates “fake” sample paths,
we aim to fit the observed particle ensemble distributions with a curve
in the probability measure space, which is induced from the inferred par-
ticle dynamics. We employ different metrics to quantify the differences
between distributions, e.g., the sliced Wasserstein distances and the ad-
versarial losses in generative adversarial networks (GANs). We refer to
this method as generative “ensemble-regression” (GER), in analogy to
the classic “point-regression”, where we infer the dynamics by performing
regression in the Euclidean space. We illustrate the GER by learning the
drift and diffusion terms of particle ensembles governed by SODEs with
Brownian motions and Lévy processes up to 100 dimensions. We also dis-
cuss how to treat cases with noisy or truncated observations. Apart from
systems consisting of independent particles, we also tackle nonlocal inter-
acting particle systems with unknown interaction potential parameters by
constructing a physics-informed loss function. Finally, we investigate sce-
narios of paired observations and discuss how to reduce the dimensionality
in such cases by proving a convergence theorem that provides theoretical
support.

1

ar
X

iv
:2

00
8.

01
91

5v
2

 [
cs

.L
G

]
 2

1
M

ar
 2

02
1

Introduction

Classic methods for inferring the ordinary differential equation (ODE) dynam-
ics from data usually require observations of a point or particle governed by
the ODE at different time instants. We refer this learning paradigm as “point-
regression”. More specifically, as illustrated in Figure 1, in point-regression
problems we aim to infer the governing ODE of a point and perhaps also the
initial condition, given the (possibly noisy) observations of its coordinates at
different time instants. Typically, we optimize the dynamics and the initial
coordinate so that the inferred curve matches the data in the Euclidean dis-
tance. Let us consider, for simplicity, the one-dimensional linear regression
with quadratic loss as an example. Given observations of x at multiple t, we
want to optimize the parameter a in the ODE dxt/dt = a as well as the initial
point x0 = b so that the mean squared L2 distance between predictions and data
points is minimized, where a and b are the slope and the intercept of the linear
function. Other examples in this category include logistic regression, recurrent
neural networks [1] and the neural ODE [2] for time series, etc.

For systems consisting of an ensemble of particles, point-regression may fail
to apply. For example, we want to infer the governing stochastic ordinary differ-
ential equations (SODE) from observations of particle ensembles at discrete and
sparse time instants, but the data of an individual particle are not sufficiently
informative for dynamic inference. Another example is a system consisting of a
large number of interacting particles, even close to the mean field limit, e.g., we
may want to infer how the fish interact with each other from discrete snapshots
of the fish school. In such scenarios, instead of learning from individual particles,
we need to learn from the particle ensembles. Specifically, we wish to infer the
governing dynamics and perhaps also the initial condition, using observations
of an ensemble of particle at discrete time instants. We call an observation at
a single time instant a “snapshot”, where part or all of the particle coordinates
in the ensemble are recorded. Since the particles could be indistinguishable in
observations, especially in a large system, we thus consider the case where the
data are not labeled with particle indices, in other words, we cannot pair data
across snapshots.

We call this paradigm “ensemble-regression” in analogy to the “point-regression”.
As illustrated in Figure 1, the initial condition and dynamics for particles would
induce a curve t → ρt in the probability measure space, where ρt denotes the
particle distributions at time t. Such ρt will be governed by a corresponding
partial differential equation (PDE), e.g., the Fokker-Planck equation if the par-
ticles are governed by SODEs of diffusion processes. We aim to optimize the
dynamics and the initial distribution so that the inferred curve matches the
distributions from the data, and the differences can be quantified with certain
metrics.

2

𝑡

!𝒙!
!# = 𝑓$(𝒙#, 𝑡)

𝒙 (𝜌)

Euclidean Space
(Probability Measure Space)

0

𝒙% (𝜌%)

(&'!
&#

= 𝐿$(𝜌#, 𝑡))

Individual points
(Particle ensembles)

point-regression ensemble-regression
space Euclidean space probability measure space

dynamics ODE ODE/SODE(particles), PDE(measures)
goal fit individual points fit particle ensembles

metrics Euclidean distance, etc. Wasserstein distance, GAN loss, etc.

Figure 1: Schematic showing the two paradigms of point-regression and
ensemble-regression for dynamic inference. In point-regression problems (black
labels), we aim to fit the point coordinates (blue dots) from data with the in-
ferred curve (orange curve), determined by the initial coordinate x0 as well
as the ODE dxt/dt = fθ(xt, t), where fθ is a function. As an analogue, in
ensemble-regression problems (red labels), we aim to fit the distributions of the
ensemble in the snapshots (blue dots) with the inferred curve (orange curve),
determined by the initial distribution ρ0 as well as the PDE ∂ρt/∂t = Lθ(ρt, t),
where Lθ is an operator.

Herein we propose a new method to perform ensemble-regression. We use a
generative model with deep neural networks as build blocks, which will generate
“fake” particle systems, to represent the inferred curve in the probability mea-
sure space, and then perform regression in the probability measure space with
the inferred curve. We thus name our method as generative ensemble-regression.
In this paper we test the sliced Wasserstein (SW) distance [3] and the loss in
generative adversarial networks (GANs) [4, 5] as two examples of metrics, the
latter proved to be very effective when analyzing high dimensional data [6] in
our problems.

The deep generative model is physics-informed in that our partial physical
knowledge of the dynamics will be encoded into the architecture or the loss
function. Such physical knowledge is sometimes essential for a correct dynamic
inference, since the particle dynamic can be not unique even if the curve t→ ρt
and its governing PDE are fully given. For example, the following two particle

3

dynamics with N (0, 1) as the initial distribution will lead to the same curve
ρt = N (0, t+ 1):

• Standard Brownian motion with no drift.

• dxt/dt = xt/(2t+ 2) with no diffusion, i.e., xt = x0

√
t+ 1.

However, if we know that the particle dynamic is in the form of dxt/dt = vt(x, t),
so that ρt is governed by the continuity equation dρt/dt = −∇ · (vtρt), and vt
is limited to the L2(ρt;Rd) closure of {∇ϕ : ϕ ∈ C∞c (Rd)}, then the solution of
vt is unique, for any curve t → ρt absolutely continuous from [a, b] to P2(Rd),
where P2(Rd) is the Wasserstein-2 space of probability measures with finite
quadratic moments in Rd [7, 8].

In the generative model, we use discretized ODE or SODE with unknown
terms parameterized as neural networks. This is referred as the “neural ODE”
and “neural SDE” in the literature [2, 9, 10, 11, 12, 13], but in applications
the observations are mainly a time series, i.e., observations of a single particle.
The idea of employing a neural networks as velocity surrogates with physics-
informed loss functions in particle systems was also used for solving mean field
game/control problems [14]. There are other works using GANs to solve inverse
problems, including [15], where GANs were applied to learn parameters in time-
independent stochastic differential equations, and [16] where GANs were applied
to learn the random parameters from the (paired) observations of independent
ODEs.

In this paper, we tackle two typical types of particle systems: (1) inde-
pendent particle systems governed by SODEs, and (2) interacting particle sys-
tems governed by nonlocal flocking dynamics. For inferring dynamics governed
by SODE, most algorithms are based on observations of a sample path, and
perform the inference by calculating or approximating the probability of ob-
servations conditioned on the system parameters, using Euler-Maruyama dis-
cretization [17, 18], Kalman filtering [19], variational Gaussian process-based
approximation [20, 21], etc. There are other works inferring the stochastic dy-
namics with the (estimated) densities from the perspective of Fokker-Planck
equations [22], but this approach is hard to scale to high dimensional problems.
For flocking dynamic systems, other researchers infer the key parameters in the
influence function by fitting the velocity field via Bayesian optimization [23], or
fitting the density field by solving a system of transformed PDEs and optimiz-
ing the parameters [24]. But these methods require the knowledge of the initial
condition, including the distribution and velocity field.

Problem Setup

We start from a system consisting of an ensemble of particles, where the dy-
namics of the particles is independent of other particles. The most commonly
used stochastic processes in physics and biology are diffusion processes and Lévy

4

……

Initial
Generator

Noise

𝑡

Discre1zed ODE or SODE
𝑡! 𝑡" 𝑡#……

"𝜌$! "𝜌$" "𝜌$#
𝐿%&'$(&)*$&+# =&

&,!

#

𝑑("𝜌$$, *𝜌-$)

"𝜌.

Velocity Surrogate

Particle Interaction

𝐷"𝝁
𝐷𝑡

=
𝜕"𝝁
𝜕𝑡
+ "𝝁 (𝛁"𝝁

Material Derivative

𝐿/01$+#

Figure 2: Schematic of the generative model for ensemble-regression. We first
use a feed-forward neural network to map the input noise to the output X̃0 ∈ Rd,
whose distribution ρ̃0 is intended to approximate the initial distribution ρ0.
Subsequently, we apply the discretized ODE or SODE with trainable parameters
to generate particle trajectories X̃t for t > 0 with X̃0 as the initial condition
(brown curves). Differences between the distributions of X̃t and the snapshots
from data are quantified as (a part of) our loss function. For interacting particle
systems, a neural network is employed as the velocity surrogate to generate
the particle trajectories. Another loss function term, namely the Newton loss
LNewton, is defined to quantify the consistency between the particle accelerations
derived from the material derivatives, and the forces calculated from the particle
interactions. With LNewton, we enforce the inferred velocity to be consistent with
our partial knowledge of the dynamics.

processes; in particular, the particle dynamics is governed by the stochastic dif-
ferential equation:

dXt = µtdt+ σtdBt, t ≥ 0, (1)

for diffusion processes, and

dXt = µtdt+ σtdL
α
t , t ≥ 0, (2)

for Lévy processes, where Xt ∈ Rd is the position of a particle at time t with
X0 randomly drawn from the initial distribution ρ0, µt ∈ Rd is the determinis-
tic drift, Bt and Lαt are the d-dimensional standard Brownian motion and the
α-stable symmetric Lévy process, respectively, and σt ∈ Rd×d is the diffusion
coefficient. In the mean field limit, the density of the particles would be gov-
erned by Fokker-Planck equations or fractional Fokker-Planck equations. For
simplicity, in this work we assume that µt is a function of Xt while σt is con-
stant, but, in principle, our proposed method can also tackle the time-dependent
case.

Apart from systems consisting of independent particles, we further consider
systems where particles interact with each other and the particle distributions
exhibit more complicated behavior. As an example, we consider the Cucker-
Smale particle model [25], which describes individuals in flocks with nonlocal

5

interactions. The individual or particle motion is characterized by the following
governing equations:

dX
(i)
t /dt = µ

(i)
t ,

dµ
(i)
t /dt =

1

N − 1

∑
j 6=i

φ(‖X(i)
t −X

(j)
t ‖)(µ

(j)
t − µ

(i)
t),

(3)

where the superscripts denote the index of the particles, N � 1 is the number
of particles in the system, and φ is the influence function. Here, we set

φ(r) = cd,α|r|−(d+α), cd,α =
αΓ(d+α

2)

2πα+d/2Γ(1− α/2)
, (4)

where Γ is the gamma function, d is the dimension of X
(i)
t , and α is the factor

that characterizes the decay rate of particle interactions as the distance r grows.
In the mean field limit, as N grows the density of the particles is governed by
the following fractional PDE:

∂ρ

∂t
+∇ · (ρu) = 0,

∂u

∂t
+ u · ∇u = [L,u](ρ),

[L,u](ρ)(x) = p.v. cd,α

∫
Rd

u(y)− u(x)

‖x− y‖d+α
ρ(y)dy,

(5)

where ρ is the density, u is the velocity field, and p.v. means the principle value.
Note that α determines the fractional order.

We consider the scenario where the data available are the observations of
the particles coordinates at different time instants {ti}ni=1 with 0 ≤ t1 < t2... <
tn, namely “snapshots”. In other words, the data Di for time ti will be a
set of samples drawn from ρti , the particle distributions at ti. If {Di}ni=1 are
observations of the same set of particles and we can distinguish these particles,
we refer to these cases as the “paired” observations since we can pair the particles
from different snapshots. In other cases, {Di}ni=1 are observations of different
sets of particles, or we cannot distinguish the particles. We refer to these cases
as the “unpaired” observations. In this paper we mainly focus on the unpaired
cases, but we also present some work on the paired cases in Paired Observations
section, where we introduce how to reduce the effective dimensionality and we
prove a theorem to support the introduced method. For independent particle
systems, we assume that we are unaware of µt and σt, or we may only know the
parametrized forms of these terms, and we aim to infer these terms directly or
through a proper parametization. For interacting particle systems, we assume
we know the forms of the dynamics and the influence function, i.e., Equation 3
and 4, but need to infer the velocity field and the key parameter α.

6

Physics-informed Generative Model

To perform ensemble regression, we will use a generative model with deep neu-
ral networks to represent a curve in the probability measure space. Note that
the curve is determined by the initial condition ρ0 and the governing equation,
hence, the generative model consists of two parts. In the first part, we employ
a feed-forward neural network G to represent ρ0. In particular, G takes sam-
ples from random noise N , e.g., Gaussian noise, as input and the generated
distribution G#N is intended to approximate ρ0, where # denotes the push
forward operator. The second part of the generative model will generate “fake”
particle trajectories with initial coordinates generated by G, and the marginal
distribution ρ̃t at time t ≥ 0 will be used to represent ρt in the curve.

Our knowledge of the physics will be incorporated into the generative model
in two ways. For non-interacting particle systems, our knowledge including the
form of the drift and diffusion as well as the type of stochastic processes will be
directly embedded into the architecture of the generative model in the second
part. For interacting particle systems, while we have no direct knowledge of
the velocity field, we will enforce the inferred velocity to be consistent with our
knowledge of the dynamics with a physics-based soft penalty. In the following,
we introduce the details of the learning algorithm for both types of systems
separately. A schematic overview of the method is shown in Figure 2.

Non-interacting Particle Systems

For non-interacting particle systems, generating particle trajectories is relatively
straightforward by directly applying the discretization of governing SODE or
ODE. For example, if the particle trajectories are diffusion processes or Lévy
processes, we can use the following forward Euler scheme:

X̃0 = G(z), z ∼ N

X̃(i+1)∆t = X̃i∆t + µt∆t+ σt
√

∆tξi, i ≥ 0,

or X̃(i+1)∆t = X̃i∆t + µt∆t+ σt∆t
1/αζα,i, i ≥ 0,

(6)

where ∆t is the time step, ξi and ζα,i are i.i.d. standard Gaussian random
variables and α-stable random variables, respectively. We could represent µt
and σt with neural networks if they are unknown, or represent the unknown
parameters with trainable variables if we know their parameterized form.

Our target is to tune the trainable variables in the generative model, includ-
ing the parameters in G and those for parameterizing µt and σt, so that the
generated marginal distribution ρ̃ti fits the data Di for each i. We thus need
to define a distance function d(·, ·) to measure the difference between the two
input distributions, which can be estimated from samples drawn from the two
distributions. Consequently the loss function in non-interacting particle systems
is defined as:

Ldistribution =

n∑
i=1

d(ρ̃ti , ρ̂Di), (7)

7

where ρ̂Di is the empirical distribution induced from the sample set Di. We will
refer to it as the distribution loss.

There could be many ways to define d, including Wasserstein distances,
maximum mean discrepancy, etc. In this paper we use two approaches to define
d.

First we choose the squared sliced Wasserstein-2 (SW) distance [26, 3] as
the function d:

d(µ, ν) = SW 2
2 (µ, ν) :=

∫
Sd−1

W 2
2 (πe#µ, πe#ν)dHd−1(e), (8)

where W2 is the Wasserstein-2 distance, and πe#µ is the one dimensional dis-
tribution induced by projecting µ onto the direction e, defined by

(πe#µ)(A) = µ({x ∈ Rd : e · x ∈ A}),∀A ∈ B(R), (9)

similarly for πe#ν. Hd−1 is the uniform Hausdorff measure on the sphere Sd−1.
In short, the squared sliced Wasserstein-2 distance is the expectation of the
squared Wasserstein-2 distance between the two input measures projected onto
uniformly random directions. The sliced Wasserstein-2 distance is exactly the
Wasserstein-2 distance for one-dimensional distributions, but is easier to calcu-
late for higher dimensional distributions. We present the details of the estima-
tion in the Supplementary Information section S1.

We also use GANs to obtain d. The generative model we introduced above
can generate “fake” samples X̃ti at {ti}ni=1, and for each i, we use a discriminator
Di to discriminate generated samples X̃ti and real samples Xti from Di. The
adversarial loss given by Di can act as a metric of the difference between ρ̃ti
and ρ̂Di

. In particular, we use WGAN-GP [5] as our version of GANs in our
paper, with

d(ρ̃ti , ρ̂Di) = −EX̃ti
∼ρ̃ti

[Di(X̃ti)] + EXti
∼ρ̂Di

[Di(Xti)], (10)

and the loss function for each discriminator Di is defined as

LDi
=EX̃ti

∼ρ̃ti
[Di(X̃ti)]− EXti

∼ρ̂Di
[Di(Xti)]

+ λEx̂i∼ρx̂i
[(‖∇x̂i

Di(x̂i)‖2 − 1)2], for i = 1, 2...n,
(11)

where ρx̂i
is the distribution generated by uniform sampling on straight lines

between pairs of points sampled from ρ̃ti and ρ̂Di
, and λ = 0.1 is the gradi-

ent penalty coefficient. Here, d(ρ̃ti , ρ̂Di
) can be mathematically interpreted as

the Wasserstein-1 distance between the two input distributions. WGAN-GP is
computationally more expensive than the sliced Wasserstein distance since we
need to train the generative model and the discriminators iteratively, but it is
more scalable to high dimensional problems, for which we made a comparison
in the supplementary information section S1.

8

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8
de

ns
ity

Training Data
t=0.2
t=0.5
t=1.0
reference

3 2 1 0 1 2 3
x

7.5

5.0

2.5

0.0

2.5

5.0

7.5

dr
ift

Drift
parameters
neural network
reference

0 50 100 150 200
training steps/1000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

in
fe

re
nc

e

Stochastic Term Coefficient

parameters
neural network
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Polynomial
t=0.2
t=0.5
t=1.0
t=5.0
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Neural Network
t=0.2
t=0.5
t=1.0
t=5.0
reference

(a)

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Training Data
t=0.2
t=0.5
t=1.0
reference 3 2 1 0 1 2 3

x

7.5

5.0

2.5

0.0

2.5

5.0

7.5
dr

ift

Drift
parameters
neural network
reference

0 100 200 300 400 500 600
training steps/1000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

in
fe

re
nc

e

Stochastic Term Coefficient

parameters
neural network
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Polynomial
t=0.2
t=0.5
t=1.0
t=5.0
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Neural Network
t=0.2
t=0.5
t=1.0
t=5.0
reference

3 2 1 0 1 2 3
x

7.5

5.0

2.5

0.0

2.5

5.0

7.5

dr
ift

Drift
parameters
neural network
reference

0 50 100 150 200
training steps/1000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

in
fe

re
nc

e

Stochastic Term Coefficient

parameters
neural network
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Polynomial
t=0.2
t=0.5
t=1.0
t=5.0
reference

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Inferred Density, Neural Network
t=0.2
t=0.5
t=1.0
t=5.0
reference

(b)

Figure 3: Results for 1D problems with (a) Brownian Motion and (b) Lévy
process as the stochastic term. The two rows of (b) show the results with
(top row) and without (bottom row) bounded map pre-processing, respectively.
The first column visualizes densities estimated from training data. The second
column shows the inferred drift functions in the end of training. The third
column shows the inferred coefficient for the stochastic term during training.
The fourth and fifth columns show the inferred densities in the two cases of using
a cubic polynomial and a neural network to parameterize the drift, respectively.
The solid lines and shaded areas refer to the mean and two standard deviations
of three runs with different data.

Interacting Particle Systems

The straightforward discretization of the governing Equations 3 cannot be di-
rectly applied to generate “fake” particle trajectories in interacting particle sys-
tems, especially for those with strong nonlocal interactions, since the computa-
tional cost for one time step would be O(N2), where N is the number of particles
required so that the system is close to the mean field limit, which makes the
learning almost intractable. Instead, we propose to first employ a neural network
µ̃ as a surrogate model of the velocity field µt in the spatial-temporal domain to
generate trajectories, and then apply an additional penalty in the loss function
to enforce the velocity field µ̃ to be consistent with the Equations 3. In this
paper we use the forward Euler scheme to generate trajectories:

X̃0 = G(z), z ∼ N
X̃(i+1)∆t = X̃i∆t + µ̃(X̃i∆t, i∆t)∆t, i ≥ 0,

(12)

where ∆t is the time step. By employing the surrogate model for velocity, the
computational cost for generating the particle trajectories is linear, instead of

9

quadratic, with the number of particles.
To enforce µ̃ to be consistent with our knowledge of the dynamics of Equa-

tions 3, we first randomly generate K particle trajectories with Equation 12,

denoted as {{X̃(k)
i∆t}Ii=0}Kk=1, and then calculate the “forces” applied on these

k particles by another M randomly generated particles {{Ỹ (m)
i∆t }Ii=0}Mm=1, us-

ing the formula of interactions in Equations 3, where we replace the unknown
parameter α with a trainable variable. Meanwhile, from the velocity field µ̃
we can directly calculate the accelerations for these k particles using a material
derivative. The forces and accelerations should be consistent with each other.
We can thus define an L2 loss:

LNewton =
1

I + 1

I∑
i=0

1

K

K∑
k=1

(F
(k)
i − a(k)

i)2,

F
(k)
i =

1

M

M∑
m=1

φ(‖X̃(k)
i∆t − Ỹ

(m)
i∆t ‖)(µ̃(Ỹ

(m)
i∆t , i∆t)− µ̃(X̃

(k)
i∆t, i∆t)),

a
(k)
i =

Dµ̃(X̃
(k)
i∆t, i∆t))

Dt

=
∂µ̃(X̃

(k)
i∆t, i∆t))

∂t
+ µ̃(X̃

(k)
i∆t, i∆t)) · ∇µ̃(X̃

(k)
i∆t, i∆t)),

(13)

and we name it as the Newton loss. The time span [0, I∆t] should cover the
time for the latest snapshot tn, and in this paper we simply set I as the ceiling
of tn/∆t. To reduce computational cost, the average over I + 1 time steps in
LNewton can also be approximated by mini-batch, i.e., taking average over B
random time steps in each training step.

For one time step, the computational cost is O(KM) for calculating the force
terms and O(K) for the acceleration terms. Note that M should be larger than
or equal to N , but K can be much less than N , thus the total computational
cost for LNewton can be much less than O(N2), and this makes the learning
tractable.

In the end, the loss for interacting particle systems will be a combination of
the Newton loss and the distribution loss:

L = ηLNewton +
1

n

n∑
i=1

d(ρ̃ti , ρ̂Di
), (14)

where the weight η is set as 1 in this paper.

Modifications to the Distributions

In order to provide flexibility and adapt the method to different problems, we
can also modify the generated distribution and real data before feeding them
to the distance function d and calculate the distribution loss. We present some
examples here.

10

In some cases ρt may have heavy tails, e.g., when the particle trajectories
correspond to a Lévy process. The heavy tails could spoil the training, since the
rare outlier samples could dominate the loss function. We can choose a suitable
bounded map h : Rd → Rd to preprocess both the generated samples and the
real data so that the heavy tails are removed. If the observations of the particle
coordinates are noisy, we can also perturb the generated samples to add artificial
noise. By scaling the artificial noise with trainable variables, the size of the noise
in observations can also be learned. If we can only make observations of particles
in a specific domain, i.e., the observations are truncated, we will also filter the
generated samples using a corresponding mask so that the effective domain for
the generated samples and observations are the same.

Computational Results

All the neural networks in the main text are feed-forward neural networks with
three hidden layers, each of width 128, except the discriminator for high di-
mensional problems which is a ResNet with 5 hidden layers, each of width
256, and shortcut connections skipping one hidden layer. We use the leaky
ReLu [27] activation function with α = 0.2 for the discriminator neural net-
works in WGAN-GP, while using the hyperbolic tangent activation function
for other neural networks. The neural network weights are initialized with the
uniform Xavier initializer, and the biases are initialized as 0. The variables
for parameterizing the diffusion and noise size are initialized as 0 (before been
activated by the softplus function). The drift parameters are initialized as 0
in 1D problems, −0.5 in high dimensional problems, and randomly initialized
with standard Gaussian distribution in 2D problems. The batch size for the
distribution loss is 1000 for non-interacting particle systems, except in the 2D
problem with truncated observations, where we generate 10000 samples to com-
pensate the loss of samples due to filtering. We use the Adam optimizer [28]
with lr = 0.0001, β1 = 0.9, β2 = 0.999 for the cases using the sliced Wasserstein
distance, while lr = 0.0001, β1 = 0.5, β2 = 0.9 for the cases with WGAN-GP.
The time step in the generative model is set as ∆t = 0.01.

1D Problems: Brownian Motion and Lévy Process

In this section, we test our method on the 1D problems using the sliced Wasser-
stein distance as d. We first consider the SODE with Brownian motion and then
with the α-stable symmetric Lévy process as the stochastic term:

dXt = (Xt −Xt
3)dt+ dBt,

or dXt = (Xt −Xt
3)dt+ dLαt , t ≥ 0,

(15)

where α = 1.5, with ρ0 = N (0, 0.04).
Note that we have no knowledge of ρ0 in learning. Also, we assume we know

that the stochastic term has a constant coefficient but we need to infer it; here

11

the ground truth is 1.0. To represent the unknown coefficient, we use a trainable
variable rectified by a softplus function softplus(x) = ln(1 + ex), which ensures
positivity. As for the drift µ(x) = x − x3, we consider the following two cases
for both SODE problems. In case 1, we know that the drift µ(x) is a cubic
polynomial of x. In this case, we use a cubic polynomial a0 + a1x+ a2x

2 + a3x
3

to parameterize µ(x), and want to infer the four coefficients a0, a1, a2 and a3.
In case 2, we only know that the drift µ(x) is a function of x and hence we use
a neural network to parameterize µ(x).

For the SODE problem with Brownian motion, we first prepare a pool of 105

sample paths, then independently draw 10, 000 samples at t = 0.2, 0.5, 1.0 from
the pool as our training data. The results for both cases of drift parameterization
are illustrated in Figure 3a. In the figure, all the densities are estimated using
Gaussian kernel density estimation with Scott’s rule, and the inferred densities
and the reference densities come from 106 samples produced by the generative
model or simulation.

Both cases of drift parameterization provide a good inference of the diffusion
coefficient, with an error less than 7% after 2×105 training steps, in all the runs.
When using the cubic polynomial parameterization, the inferred drift fits well
with the ground truth, with the relative L2 error about 3% in [−3, 3] averaged
over three runs. The inferred drift using the neural network only fits the ground
truth in the region between -1.5 and 1.5. This is reasonable since the particles
mainly concentrate in this region, and we can hardly learn the drift outside
this region, where the training data are sparse. However, we note that such an
inference of drift is sufficiently good for an accurate time extrapolation of the
particle distribution at t = 5.

One interesting observation is that in case 1 the inferred densities are more
accurate than those estimated from the training data. This is because our
knowledge of the governing SODE bridges the limited samples in three snap-
shots, and as we infer the density at, e.g., t = 0.2, we are not only utilizing the
data at t = 0.2 but also implicitly leveraging the data at t = 0.5 and 1.0. We
can make an analogy in the context of linear regression: multiple noisy data
are helpful for inferring the hidden ground truth, since they are bridged by the
regressed linear function. We present a more detailed discussion on this topic
in the supplementary information in section S2.

For the SODE problem with Lévy process, we prepare 1.5 × 105 sample
paths, then independently draw 10, 000 samples within the region [−1000, 1000]
at t = 0.2, 0.5, 1.0 from the pool as our training data. To prevent instability
during the training, we apply double precision and clip the generated α-stable
random variable in Equation 2 between −100 and 100.

We first test our method without pre-processing the samples as in the prob-
lem with Brownian motion. As we can see in the second row of Figure 3b, the
inferences are far away from the ground truth. This is due to the heavy tail
of ρt in the Lévy process: some samples far away from 0, although rare, could
dominate the loss function and spoil the training. To deal with this problem,
we then apply a bounded map h(x) = 2 tanh(x/2) to all the generated and real
samples before feeding them to d. The results are shown in the first row of Fig-

12

ure 3b where we can see the inferences are much improved. In case 2 where the
drift is parameterized by neural networks, the inferred drift outside [−1.5, 1.5]
is better than that in the problem with Brownian motion. This is because the
samples are more scattered in the Lévy case.

2D Problems: Various Scenarios of Observations

In this section, we test our method on 2D problems using the sliced Wasserstein
distance as d, with various scenarios of observations. We consider the following
2D SODE:

dXt = µ(Xt)dt+

[
s0 0
s1 s2

]
dBt (16)

where
µ(x) = ∇xϕ(x), (17)

and
ϕ(x) =− (x1 + a0)2(x2 + a1)2

− (x1 + a2)2(x2 + a3)2 for x = (x1, x2).
(18)

The parameters are set as a0 = a1 = s0 = s1 = s2 = 1.0, a2 = a3 = −0.5.
We set the initial distribution as ρ0 = N (0, I2). We assume we know that the
diffusion coefficient is a constant lower triangular matrix but we need to infer the
three unknown parameters s0, s1, s2. In particular, we use (softplus(s̃0), s̃1, softplus(s̃2))
to approximate (s0, s1, s2), where s̃0, s̃1, s̃2 are three trainable variables. Similar
as in the 1D problems, we consider the following two cases for the drift. In case
1, we know the form of µ and ϕ in Equation 17 and 18 but we need to infer
a0, a1, a2 and a3 ((a0, a1) and (a2, a3) are exchangeable). In case 2, we only
know that µ is a gradient of ϕ in Equation 17, but we have no knowledge of ϕ.
In this case, we use a neural network to parameterize ϕ.

For the training data, we prepare 105 sample paths, and consider the follow-
ing various scenarios of observations at t = 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0. The data
are visualized in the supplementary information section S3.

• Scenario 1: we assume that our observations are ideal, i.e., we make ac-
curate observations of all the particle coordinates as the training data.

• Scenario 2: we assume that our observations are noisy. Specifically, we
make observations of all the particle coordinates, but each coordinate is
perturbed by an i.i.d. random noise N (0, e2I2), where e is set as 0.2 but
also need to be inferred during learning.

• Scenario 3: we assume that our observations are truncated. Specifically,
we make observations of the particle coordinates in Ω = (∞, 0.5)×R, with
the particles outside of Ω dropped.

For the first scenario, the inferred drift and diffusion are illustrated in Fig-
ure 4a. In case 1, all the inferred drift and diffusion parameters approach the
ground truth during the training, with relative error less than 0.3% for each ai

13

and less than 4% for each σi after 2× 105 training steps. In case 2, the inferred
diffusion parameters are also close to the ground truth, with error comparable
with that in case 1. In the region where the training data are dense (i.e., the
density estimated from all the training data is no less than 0.05), the inferred
drift field has a relative L2 error about 13%. The inference is much worse in
other regions, and the reason is the same as in the 1D problem: the neural
network can hardly learn the drift field where the training data are sparse.

For the second and third scenarios, we apply the technique of perturbing
and filtering the generated samples, respectively. In Figure 4b and Figure 4c
we show the results of case 1 with the drift parameterized by four parameters.
After 2 × 105 training steps, all the parameters converge to ground truth. For
scenario 2, the error is less than 0.5% for each drift parameter ai, less than 3%
for each diffusion parameter si, and about 5% for the noise parameter e. For
scenario 3, the error is less than 0.2% for each drift parameter ai, less than 1%
for each diffusion parameter si. We remark that we failed to learn the drift with
neural network parameterization in the second and third scenario, suggesting a
room for further improvements.

14

0 50 100 150 200
training steps/1000

1.0

0.5

0.0

0.5

1.0

1.5

2.0
in

fe
re

nc
e

Drift, Parameters
a0
a1
a2

a3
reference

2 1 0 1 2

2

1

0

1

2
Drift, Neural Network

0 50 100 150 200
training steps/1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

in
fe

re
nc

e

Diffusion, Parameters

s0
s1
s2
reference

0 50 100 150 200
training steps/1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

in
fe

re
nc

e

Diffusion, Neural Network

s0
s1
s2
reference

(a)

0 50 100 150 200
training steps/1000

1.0

0.5

0.0

0.5

1.0

1.5

2.0

in
fe

re
nc

e

Drift
a0
a1
a2

a3
reference

0 50 100 150 200
training steps/1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

in
fe

re
nc

e

Diffusion and Noise

s0
s1
s2

e
reference

(b)

0 50 100 150 200
training steps/1000

0.5

0.0

0.5

1.0

1.5

2.0

in
fe

re
nc

e

Drift
a0
a1
a2

a3
reference

0 50 100 150 200
training steps/1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

in
fe

re
nc

e

Diffusion

s0
s1
s2
reference

(c)

Figure 4: Inferred drift and diffusion in 2D problems, with (a) ideal observa-
tions, (b) noisy observations, and (c) truncated observations. In (a), the left
column shows the results in case 1 where the drift is parameterized by four
parameters, while the right column shows the results in case 2 where the drift is
parameterized by a neural network. In the top right figure of (a), we visualize
the drift field where the training data are dense. The red and black arrows
represent the inferred drift and the exact drift, respectively. For each arrow,
the length represents the norm of the drift, scaled by 0.1. The green dots are
samples from the merged training data.

15

Higher Dimensional Problems

In this section, we test our method on higher dimensional non-interacting par-
ticle systems. Note that the sliced Wasserstein distance does not perform well
in high dimensional problems, and we thus switch to the WGAN-GP to provide
d. The comparison between the sliced Wasserstein distance and WGAN-GP
in high dimensional problems is presented in the supplementary information
section S1.

We consider a d-dimensional SODE:

dXt = µ(Xt)dt+ σdBt (19)

where

µ(i)(Xt) = X
(i)
t − (X

(i)
t)3, i = 1, 2..., d, (20)

for µ(i) as the i-th component of µ ∈ Rd, and X
(i)
t is the i-th component of

Xt ∈ Rd. We set the diffusion coefficient matrix as

σ =

s1 0 0 0 · · · 0
s′2 s2 0 0 · · · 0
0 s′3 s3 0 · · · 0
0 0 s′4 s4 · · · 0
...

...
...

...
. . .

...
0 0 0 · · · s′d sd

, (21)

where the 2d − 1 nonzero entries {si}di=1 and {s′i}di=2 are set as 1. The initial
distribution is ρ0 = N (0, 0.04Id). Due to the non-diagonal diffusion coefficient
matrix, the motion in different dimensions are coupled.

16

2 0 2
x

20

0

20

dr
ift

Drift, 5D
(i)

reference

2 0 2
x

20

0

20

dr
ift

Drift, 10D
(i)

reference

2 0 2
x

20

0

20

dr
ift

Drift, 50D
(i)

reference

2 0 2
x

20

0

20

dr
ift

Drift, 100D
(i)

reference

0 50 100 150 200
training steps/1000

0.0

0.5

1.0

in
fe

re
nc

e

Diffusion, 5D

si

s′i
reference

0 50 100 150 200
training steps/1000

0.0

0.5

1.0

in
fe

re
nc

e

Diffusion, 10D

si

s′i
reference

0 50 100 150 200
training steps/1000

0.0

0.5

1.0

in
fe

re
nc

e

Diffusion, 50D

si

s′i
reference

0 200 400 600
training steps/1000

0.0

0.5

1.0

in
fe

re
nc

e

Diffusion, 100D

si

s′i
reference

Figure 5: Inferred drift in the end of training and diffusion parameters during
training, in 5D, 10D, 50D and 100D problems. The solid lines and shaded areas
are the mean and two standard deviations over all i and three runs with different
random seeds.

We prepare 105 sample paths and observe all the particle positions at t =
0.2, 0.5, 1.0 as our training data. We use a cubic polynomial with four variables

to parameterize µ(i) as a function of X
(i)
t for each i, while using 2d−1 trainable

variables to learn the nonzero entries in the diffusion coefficient matrix, with the
diagonal entries rectified by a softplus function for positivity. In other words, we
use 6d−1 variables to parameterize the drift and diffusion for the d-dimensional

17

SODE. The results are shown in Figure 5. Even for the 100-dimensional prob-
lem, after 6× 105 training steps, the average error of the diffusion coefficients is
about 0.04, and the average relative L2 error of the drift in the interval [−3, 3]
in each dimension is about 14%.

It may appear surprising that we can solve a 100-dimensional problem with
only 105 samples since usually an exponentially large number of samples is
required to describe the distribution. However, we remark that the difficulty of
the learning task is significantly reduced since our partial knowledge, i.e., the
form of the SODE, is encoded into the generator.

Interacting Particle Systems

In this section we consider the 1D and 2D cases of the interacting particle system
with governing equations 3. To prepare the training data, we follow [23] and
set the initial condition, including the density and velocity as

ρ0(x) = 1[−0.75,0.75]
π

3
cos

(
3πx

2

)
,

µ0(x) = −1

2
sin

(
3πx

2

)
,

(22)

for the 1D case and

ρ0(x1, x2) = 1[−0.75,0.75]2

(π
3

)2

cos

(
3πx1

2

)
cos

(
3πx2

2

)
,

µ0(x1, x2) =

(
− 1

2
√

2
sin(

3πx1

2
),− 1

2
√

2
sin(

3πx2

2
)

) (23)

for the 2D case, where 1 is the indicator function. Using the Velocity-Verlet
method with time step 0.01, we perform simulations with 1024 and 9976 particles
for the 1D and 2D cases, respectively, and generate data at t = 0.5, 0.6, ..., 2.0,
i.e., 16 snapshots in total. The input radius r of the influence function φ(r) is
clipped to be at least rmin = 0.01, both in simulation and learning, to avoid the
singularity. While using the same number of particles and make observations
at the same time instants as in [23], our method does not require knowledge of
the initial condition or the velocity field in the data snapshots, as opposed to
their method based on Bayesian optimization to infer α.

We apply the sliced Wasserstein distance for the distribution loss, with the
batch size equal to the number of particles in training data. When calculating
the distance at each time instant, the generated and real distributions are nor-
malized with the mean and standard deviation of the real distribution. For the
Newton loss, we set K = 16, M = 10000 and B = 10. We use 2 × sigmoid(β)
to represent the inferred α so that the inference is bounded by 0 and 2, and the
variable β is initialized as 0.

18

0 50 100 150 200
training steps/1000

0.3

0.4

0.5

0.6

0.7

0.8
Inferred

1D, with G
2D, with G
2D, without G
reference

(a)

0.75 0.50 0.25 0.00 0.25 0.50 0.75
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

ve
lo

cit
y

1D, Velocity
reference
t = 0.0
t = 0.25
t = 0.5
t = 1.0
t = 1.5
t = 2.0

(b)

0.5 0.0 0.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

2D, Velocity, t=0.0

0.5 0.0 0.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

2D, Velocity, t=0.25

0.5 0.0 0.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

2D, Velocity, t=0.5

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

2D, Velocity, t=1.0

0.2 0.0 0.2
0.3

0.2

0.1

0.0

0.1

0.2

0.3
2D, Velocity, t=1.5

0.2 0.0 0.2
0.3

0.2

0.1

0.0

0.1

0.2

0.3
2D, Velocity, t=2.0

(c)

Figure 6: Results for the 1D and 2D problems of interacting particle systems.
(a): The inferred alpha in 1D and 2D problems. (b): The inferred velocity field
against the reference velocity from simulation in the 1D problem. The dots
also show the distribution of training data. (c): The inferred velocity field (red
arrows) against the reference velocity from simulation (black arrows) in the 2D
problem. For each arrow, the length represents the norm of the velocity scaled
by 0.3. The green dots are random samples from training data.

The results are visualized in Figure 6. For the 1D case, the inferred α is 0.492
with ground truth 0.5 in the end of training. As a comparison, the inference is
0.480 for the 1D case in [23]. Our inferred velocity field also matches well with
the reference ground truth at different time instants, even at t = 0 and 0.25 when
we have no observations at all. This is because we incorporated the knowledge
of dynamics in the learning system. For the 2D case, while the inferred velocity
field also matches well with the ground truth, the inferred α is 0.469 with ground
truth 0.5 in the end of training, i.e., about 6% error, much larger than in the 1D
case. We attribute the error to the fact that the singularity problem for φ(r),

19

where the order for r is dimension-dependent, is more severe in the 2D case. In
supplementary information section S4, we show that as we increase rmin from
0.01 to 0.1, the error is reduced from 6% to 2%. Alternatively, in the 2D case
we also try to directly use the data at t = 0.5 as the starting coordinates to
generate trajectories for t ≥ 0.5 (M is also reduced to the data size 9976), so
that the initial generator G is removed from the generative model. By doing so,
the number of trainable variables is reduced and the learning becomes easier.
The inferred α is 0.493 in the end of training. As a comparison, the inference
is 0.513 for the 2D case in [23]. However, we remark that while this strategy
helps to infer α without extra data, we cannot infer the velocity or density for
0 ≤ t < 0.5.

Paired Observations

We should note that the convergence of the marginal distribution in each snap-
shot does not necessarily lead to the convergence of the joint distribution of
coordinate tuples (Xt1 ,Xt2 , ...,Xtn). While the joint distribution is not avail-
able for unpaired observations that we are focused on so far, in other cases where
the observed particle coordinates can be paired across snapshots, it is possible
to improve the inference by fitting the joint distribution of coordinate tuples
with the corresponding generated joint distribution.

In [29], the authors pointed out that Wasserstein convergence of the dis-
tribution of (Xt1 ,Xt2 , ...,Xtn) is equivalent to Wasserstein convergence of the
distributions of (Xti ,Xti+1) for all i = 1, 2, ..., n − 1, if (Xt1 ,Xt2 , ...,Xtn) is
a Markov chain. However, the sample spaces for {Xti}ni=1 are limited to be
finite and discrete in [29], thus the result doesn’t apply to dynamic systems
in continuous spaces. Here, we present a new theorem for continuous sample
spaces:

Theorem 1. Let (X1, X2, ...XT) be a Markov chain of length T ≥ 3 and we use
Xi:j to denote the nodes (Xi, Xi+1...Xj), for i ≤ j. Suppose the domain Dt for
Xt is a compact subset of Rdt for t = 1, 2...T . We use the lq (q ≥ 1) Euclidean
metric for all the Euclidean spaces with different dimensions.

Let {PXi:j
n }∞n=1 and PXi:j be probability measures of Xi:j for i ≤ j, P

Xi|Xj
n

and PXi|Xj be the corresponding probability transition kernels. If P
Xt:t+1
n con-

verges to PXt:t+1 in Wasserstein-p (p ≥ 1) metric for all t = 1, 2...T − 1,

P
Xt|Xt+1
n and PXt+2|Xt+1 as functions of Xt+1 are C-Lipschitz continuous in

Wasserstein-p metric for all t = 1, 2...T − 2 and n, where C is a constant, then
PX1:T
n converges to PX1:T in Wasserstein-p metric.

We present the proof for Theorem 1 in the supplementary information section
S5. The assumption on the continuity of the probability transition kernels is
not required for finite discrete sample spaces in [29], but the theorem does not
hold without it for continuous sample space. We provide a counter-example in
the supplementary information section S6.

20

The theorem states that under certain conditions, we can set our goal as
fitting the distributions of (Xti ,Xti+1), i.e., coordinate pairs from adjacent
snapshots. This should be easier compared with directly fitting the distribution
of (Xt1 ,Xt2 , ...,Xtn), since the effective dimensionality is reduced. We still can
view this approach as “ensemble-regression”, except that instead of a curve, we
try to fit the data with a 2D surface (ti, tj)→ ρti,tj in the probability measure
space, where ρti,tj denotes the joint distributions of (Xti ,Xtj).

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

dr
ift

Drift

joint, parameters
joint, neural network
marginal, parameters
marginal, neural network
reference

0 50 100 150 200
training steps/1000

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

in
fe

re
nc

e

Diffusion
joint, parameters
joint, neural network
marginal, parameters
marginal, neural network
reference

Figure 7: Inferred drift function in the end of training and diffusion coefficient
during training for the OU process problem, using a linear function or a neural
network to parameterize the drift function.

As an illustration, we study the 1D Ornstein–Uhlenbeck (OU) process:

dXt = −Xtdt+
√

2dWt, (24)

with ρ0 = N (0, 1), so that ρt = N (0, 1) for any t > 0. This is a special
example as the governing SODE is not unique given ρt. We make observations
of 100 particles at t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 as data, and compare the
inferences by fitting the marginal distributions of individual coordinates or the
joint distributions of adjacent coordinate pairs using the SW distance. The drift
function is parameterized by a linear function y(x) = ax or a neural network,
while the diffusion coefficient is represented by a trainable variable rectified by
a softplus function. We present the results in Figure 7, where we can clearly
see the failure in the cases of fitting the marginal distributions, while fitting the
joint distributions works very well.

Summary and Discussion

We have proposed a new method for inferring the governing dynamics of par-
ticles from unpaired observations of their coordinates at multiple time instants,
namely “snapshots”. We fitted the observed particle ensemble distribution with
a physics-informed generative model, which can be viewed as performing regres-
sion in the probability measure space. We refer to this approach as generative

21

“ensemble-regression”, in analogy to the classic “point-regression”, where we
infer the dynamics by performing regression in the Euclidean space.

We first applied the method to particle systems governed by independent
stochastic ordinary differential equations (SODE) with Brownian or Lévy noises,
where we inferred the drift and the diffusion terms from a small number of
snapshots. In the Lévy noise case, we demonstrated that the heavy tails in the
distributions could spoil the training, but we addressed this issue by applying a
preprocessing map to both the generated and target distributions. In scenarios
with noisy or truncated training data, we modified the generated distributions
accordingly by perturbing or filtering the generated samples. We then addressed
high-dimensional SODE problems using the adversarial loss in GANs. In the
end, we managed to learn the parameters for particle interactions in a nonlocal
flocking systems.

It is possible to apply our method to learn the interaction parameters for
particle-based simulation methods. In particular, we will fit the target mass and
velocity distributions coming from the analytical solution or other simulation
methods that are accurate but expensive. We leave this promising research
direction for future work.

Acknowledgement

This work was supported by the PhILMS grant DE-SC0019453 and by the
OSD/AFOSR MURI Grant FA9550-20-1-0358. We would like to thank Prof.
Hui Wang and Ms. Tingwei Meng for carefully checking the proof of our theo-
rem. We also want to thank Dr. Zhongqiang Zhang for helpful discussions.

Supplementary Information

S1. Comparison between Sliced Wasserstein Distance and
WGAN-GP

The squared sliced Wasserstein-2 distance is the expectation of the squared
Wasserstein-2 distance between the two input measures projected onto uni-
formly random directions. To estimate SW2(µ, ν) from samples of µ and ν, we
use the following process introduced in [3].

• Draw samples independently from µ and ν with batch size b, denoted as
U and V.

• Uniformly sample m projection directions {ej}mj=1 in Rd. In this paper
we set m = 1000.

• For each random direction ej , project and sort the samples in U and V
in the direction of ej , getting {ui,j}bi=1 and {vi,j}bi=1, where ui,j ≤ ui+1,j

and vi,j ≤ vi+1,j for i = 1, 2...b− 1. Calculate Lj =
∑b
i=1(ui,j − vi,j)2/b.

• Calculate L =
∑m
j=1 Lj/m as the estimation of squared SW2(µ, ν).

22

Compared with GANs, the sliced Wasserstein distance does not need dis-
criminators, and is more robust than WGAN-GP in low dimensional problems.
Take the following 1D problem as an example. We consider the SODE:

dXt = adt+ bdBt, t ≥ 0, (25)

with ρ0 = N (−0.5, 0.5). We set a = b = 1 so that the exact solution is

ρt = N (t− 0.5, t+ 0.5). (26)

We have 10, 000 samples at t = 0.5 and 1.5, respectively, as the training data,
and wish to infer the constant drift and diffusion coefficients. The input noise to
the generator is uniform noise from -1 to 1. The results are shown in Figure 8.

0 5 10 15 20
training steps/1000

0.50

0.75

1.00

1.25

1.50

1.75

2.00

dr
ift

0.00

0.25

0.50

0.75

1.00

1.25

1.50
di

ffu
sio

n
Sliced Wasserstein Distance

(a)

0 5 10 15 20
training steps/1000

0.50

0.75

1.00

1.25

1.50

1.75

2.00

dr
ift

0.00

0.25

0.50

0.75

1.00

1.25

1.50

di
ffu

sio
n

WGAN-GP

(b)

Figure 8: Inferred drift and diffusion coefficient during the training, using (a) the
squared sliced Wasserstein-2 distance or (b) WGAN-GP for d. The black dashed
lines represent the ground truth, while the multiple colored lines represent the
results in three independent runs.

We can clearly see oscillations of the inferred drift coefficient for WGAN-
GP. This can be attributed to the two-player game between the generator and
discriminator, which was also reported in [30].

We did not observe significant oscillations using WGAN-GP in higher di-
mensional problems. Indeed, WGAN-GP outperforms the sliced Wasserstein
distance in high dimensional problems. Let us consider the following simple
SODE problem as an example, where the motions are uncoupled between di-
mensions:

dX
(i)
t = (X

(i)
t − (X

(i)
t)3)dt+ dB

(i)
t , i = 1, 2, ...d (27)

where X
(i)
t is the i-th component of Xt ∈ Rd, with ρ0 = N (0, 0.04Id). We

prepare 105 sample paths and observe all the particle positions at t = 0.2, 0.5, 1.0

as our training data. We use a cubic polynomial a
(i)
0 + a

(i)
1 x+ a

(i)
2 x2 + a

(i)
3 x3 to

parameterize the i-th component of the drift. We use another trainable variable
rectified by a softplus function to represent the diffusion coefficient s(i) = 1 in

23

0 50 100 150 200
training steps/1000

0.00

0.25

0.50

0.75

1.00
er

ro
r

SW2
2 , 2D

a(i)
0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 200 400
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

SW2
2 , 5D

a(i)
0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 250 500 750 1000
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

SW2
2 , 10D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 250 500 750 1000
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

SW2
2 , 20D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

(a)

0 50 100 150 200
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

WGAN-GP, 2D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 50 100 150 200
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

WGAN-GP, 5D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 50 100 150 200
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

WGAN-GP, 10D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

0 50 100 150 200
training steps/1000

0.00

0.25

0.50

0.75

1.00

er
ro

r

WGAN-GP, 20D
a(i)

0

a(i)
2

s(i)

a(i)
1

a(i)
3

(b)

Figure 9: Results of 2D, 5D, 10D and 20D problems, using (a) the squared sliced
Wasserstein-2 distance or (b) WGAN-GP for d. The solid lines and shaded areas
represent the mean and two standard deviations of the errors over all dimensions.

each direction. In total, 5d variables are used to parameterize the d-dimensional
SODE. The results are shown in Figure 9. While the SW distance works for
2D problems, it does not scale well to high dimensional problems for which
WGAN-GP gives much better inferences.

S2. A Study on the Density Estimation

In this section, we wish to show that our method can make use of the SODE
and multiple snapshots to reduce the error of density estimation from limited
samples. We consider the one-dimensional SODE:

dXt = (4Xt −Xt
3)dt+ 0.4dBt, t ≥ 0, (28)

with ρ0 = 0.5N (−0.5, 0.32) + 0.5N (0.5, 0.32).
We test the following two cases of training data sets. In both cases we have

1000 samples at t = 0.05, 0.1, 0.15, 0.2, 0.25, but the particle trajectories are
different.

• Case 1: We make observations from different sets of trajectories at different
time instants.

• Case 2: We make observations from the same set of trajectories at different
time instants.

We assume that we know Equation 28, but have no knowledge of ρ0. We
could make the analogy of performing linear regression, where we know the
slope but do not know the intercept. In Figure 10 we show the comparison
between the inferred densities and the densities estimated directly from data.

24

All the densities are estimated using Gaussian kernel density estimation. The
inferred densities and the ground truth come from 105 samples produced by the
generative model or simulation, with bandwidth decided by the Scott’s rule. To
remove the effect of bandwidth selection in the density estimation directly from
data, we perform a grid search of the optimal bandwidth factor via the L2 error
against ground truth, from 0.01 to 0.5 with grid size 0.01 (Scott’s rule suggests
about 0.25).

0.00 0.05 0.10 0.15 0.20 0.25
t

10 4

10 3

10 2

In
te

gr
at

ed
 S

qu
ar

ed
 E

rro
r from generated samples

from training data

(a)

0.00 0.05 0.10 0.15 0.20 0.25
t

10 4

10 3

10 2

In
te

gr
at

ed
 S

qu
ar

ed
 E

rro
r

from generated samples
from training data

(b)

Figure 10: Integrated squared errors (ISE) of the inferred density functions at
different time instants in (a) case 1 and (b) case 2. The squared errors are
integrated from -4 to 4. The colored lines show the ISE averaged over three
independent runs, while the markers with the corresponding colors show the
ISE in each run.

The grid search strategy is actually infeasible in practice since we don’t know
the ground truth, but it should perform better than any bandwidth selector.
Despite that, in Figure 10a we can clearly see that in case 1 our inferred densities
with naive Scott’s rule significantly outperform the ones estimated directly from
training data with grid search. This cannot be attributed to the number of
samples, since in case 2 the inferred densities with our method cannot perform
better, as shown in Figure 10b.

The different performances in two cases are reasonable. In case 1, our method
can utilize the SODE and the observations at multiple time instants to reduce
the error from limited samples. As we infer the density at t = 0.05, we are not
only utilizing the data at t = 0.05 but also implicitly taking advantage of the
data at later time instants. In case 2, since the observations come from the same
sample paths, the observations at later time instants cannot provide additional
information considering that the SODE is already known. Let us again make
an analogy in the context of linear regression: if the observations have indepen-
dent noise, multiple observations will be more helpful than a single observation.
However, if the observations have the same noise, multiple observations cannot
help us more than a single observation, if we already know the slope.

25

S3. Training Data in 2D Problems with Various Scenarios
of Observations

In Figure 11 we visualize the training data in 2D problems with various scenarios
of observations.

2 0 2

2

0

2

Ideal, t=0.0

2 0 2

Ideal, t=0.1

2 0 2

Ideal, t=0.2

2 0 2

Ideal, t=0.3

2 0 2

Ideal, t=0.5

2 0 2

Ideal, t=0.7

2 0 2

Ideal, t=1.0

2 0 2

2

0

2

Noisy, t=0.0

2 0 2

Noisy, t=0.1

2 0 2

Noisy, t=0.2

2 0 2

Noisy, t=0.3

2 0 2

Noisy, t=0.5

2 0 2

Noisy, t=0.7

2 0 2

Noisy, t=1.0

2 0 2

2

0

2

Truncated, t=0.0

2 0 2

Truncated, t=0.1

2 0 2

Truncated, t=0.2

2 0 2

Truncated, t=0.3

2 0 2

Truncated, t=0.5

2 0 2

Truncated, t=0.7

2 0 2

Truncated, t=1.0

Figure 11: Samples from the training data in 2D problems with ideal, noisy, or
truncated observations.

S4. Effect of Clipping Radius in the Interacting Particle
System

0 50 100 150 200
training steps/1000

0.4

0.5

0.6

0.7
Inferred

rmin = 0.01
rmin = 0.04
rmin = 0.08
rmin = 0.10
reference

Figure 12: Inferred α in the 2D interacting particle system during training, with
different clipping radius rmin.

In this section we study the effect of various clipping radius rmin from 0.01 to
0.1, both in the simulation for data generation and the learning algorithm. We

26

remark that changing rmin in this range would not make a huge difference to the
system behavior, since the dynamics are dominated by non-local interactions.
In Figure 12 we show the inferred α during the training. As rmin increase from
0.01 to 0.1, the inferred α in the end of training increases from 0.469 to 0.490,
with the ground truth 0.5. This suggests that the error mainly comes from the
singularity problem of φ(r) when r is small.

S5. Proof for Theorem 1

The proof is based on the weak convergence: convergence of a sequence of proba-
bility measures {Pn}∞n=1 to a probability measure P in the Wasserstein-p metric
is equivalent to the weak convergence plus the convergence of p-th moments of
{Pn}∞n=1 to P [31]. Here, the weak convergence mean EPn [f(x)] converges to
EP [f(x)] for each f ∈ F , where F = {all bounded and continuous functions}
or F = {all bounded and Lipschitz functions}, which are equivalent[32]. Note
that in Theorem 1 we assume that the domain for Xt is a compact subset of
Euclidean space for each t, thus ‖X1:T ‖p is a bounded and continuous function
of X1:T . The convergence of p-th moment then directly comes from the weak
convergence, i.e., we only need to show that {Pn}∞n=1 converges to P weakly.
This is proved in Lemma 4 below.

The notations are inherited from Theorem 1. For simplicity, we will some-
times use X,Y, Z to represent the nodes in sequence, and use PXY to represent
the probability measure of (X,Y), etc.

Lemma 1. Let Py mapping from the Euclidean space to the probability measure
space be C-Lipschitz in Wasserstein-p metric (p ≥ 1). For any f(x, y, z) :
Rdx × Rdy × Rdz → R K-Lipschitz,

g(x, y) =

∫
f(x, y, z)dPy(z)

is (C + 1)K-Lipschitz.

Proof. Note that

|g(x+ ε, y + ξ)− g(x, y)|

=

∣∣∣∣∫ f(x+ ε, y + ξ, z)dPy+ξ(z)−
∫
f(x, y, z)dPy(z)

∣∣∣∣
≤
∣∣∣∣∫ f(x+ ε, y + ξ, z)dPy+ξ(z)−

∫
f(x+ ε, y + ξ, z)dPy(z)

∣∣∣∣+∣∣∣∣∫ f(x+ ε, y + ξ, z)dPy(z)−
∫
f(x, y, z)dPy(z)

∣∣∣∣ .
(29)

27

Firstly ∣∣∣∣∫ f(x+ ε, y + ξ, z)dPy+ξ(z)−
∫
f(x+ ε, y + ξ, z)dPy(z)

∣∣∣∣
≤KW1(Py, Py+ξ)

≤KWp(Py, Py+ξ)

≤CK‖ε‖,

(30)

where the first inequality comes from the Kantorovich–Rubinstein formula [31]
and that f(x+ ε, y + ξ, z) is K-Lipschitz. The last inequality comes from that
Py is C-Lipschitz in Wasserstein-p sense.

Secondly, ∣∣∣∣∫ f(x+ ε, y + ξ, z)dPy(z)−
∫
f(x, y, z)dPy(z)

∣∣∣∣
≤
∫
|f(x+ ε, y + ξ, z)− f(x, y, z)| dPy(z)

≤
∫
K‖(ε, ξ)‖dPy(z)

=K‖(ε, ξ)‖.

(31)

We conclude that

|g(x+ ε, y + ξ)− g(x, y)| ≤ (C + 1)K‖(ε, ξ)‖, (32)

i.e. g(x, y) is (C + 1)K-Lipschitz

Lemma 2. If PXYn converge to PXY weakly, then PXn converge to PX weakly.

Proof. For any bounded and continuous function f(x)∫
f(x)PXn (x)−

∫
f(x)PX(x)

=

∫∫
f(x)PXYn (x, y)−

∫∫
f(x)PXY (x, y)→ 0.

(33)

The convergence comes from the weak convergence of PXYn and that f(x) is
bounded and continuous as a function of x and y.

Lemma 3. Suppose PY Zn converge to PY Z weakly, PZ|Y=y is Lipschitz in
Wasserstein-p metric. For any g(y, z) : Rdy × Rdz → R bounded and Lips-
chitz, we have ∫∫

g(y, z)dPZ|Y=y
n (z)dPYn (y)

−
∫∫

g(y, z)dPZ|Y=y(z)dPYn (y)→ 0.

(34)

28

Proof. Since g(y, z) is bounded and continuous, and PY Zn converge to PY Z

weakly, ∫∫
g(y, z)dPY Zn (y, z)−

∫∫
g(y, z)dPY Z(y, z)→ 0, (35)

i.e. ∫∫
g(y, z)dPZ|Y=y

n (z)dPYn (y)

−
∫∫

g(y, z)dPZ|Y=y(z)dPY (y)→ 0.

(36)

Since g(y, z) is bounded and Lipschitz, PZ|Y=y is Lipschitz, we have∫
g(y, z)dPZ|Y=y(z) (37)

is Lipschitz. Further since PYn converge to PY weakly (from Lemma 2):∫∫
g(y, z)dPZ|Y=y(z)dPYn (y)

−
∫∫

g(y, z)dPZ|Y=y(z)dPY (y)→ 0.

(38)

Combining 36 and 38, we have∫∫
g(y, z)dPZ|Y=y

n (z)dPYn (y)

−
∫∫

g(y, z)dPZ|Y=y(z)dPYn (y)→ 0.

(39)

Lemma 4. Let (X1, X2, ...XT) be a Markov chain of length T ≥ 3 and we use
Xi:j to denote the nodes (Xi, Xi+1...Xj), for i ≤ j. Suppose the domain Dt for
Xt is a compact subset of Rdt for t = 1, 2...T . We use the lq (q ≥ 1) Euclidean
metric for all the Euclidean spaces with different dimensions.

Let {PXi:j
n }∞n=1 and PXi:j be probability measures of Xi:j for i ≤ j, P

Xi|Xj
n

and PXi|Xj be the corresponding probability transition kernels. If P
Xt:t+1
n con-

verges to PXt:t+1 weakly for all t = 1, 2...T − 1, P
Xt|Xt+1
n and PXt+2|Xt+1 are

C-Lipschitz continuous in Wasserstein-p metric for all t = 1, 2...T − 2 and n,
where C is a constant, then PX1:T

n converges to PX1:T weakly.

Proof. We start from the case T = 3. For simplicity, we use X,Y, Z to denote
the nodes in sequence.

29

For any f(x, y, z) K-Lipschitz and bounded, we have∫
f(x, y, z)dPXY Zn (x, y, z)

=

∫ (∫
f(x, y, z)dPZ|Y=y

n (z)

)
dPXYn (x, y)

=

∫
(gn(x, y)− g(x, y))dPXYn (x, y)

+

∫
g(x, y)dPXYn (x, y),

(40)

where

g(x, y) =

∫
f(x, y, z)dPZ|Y=y(z)

gn(x, y) =

∫
f(x, y, z)dPZ|Y=y

n (z).

(41)

From Lemma 1, since f(x, y, z) is Lipschitz, PZ|Y=y is Lipschitz in Wasserstein-
p sense, we have g(x, y) is Lipschitz. g(x, y) is also bounded since f(x, y, z) is
bounded. So we have∫

g(x, y)dPXYn (x, y)→
∫
g(x, y)dPXY (x, y), (42)

since PXYn converge to PXY weakly.
We then need to show

∫
(gn(x, y) − g(x, y))dPXYn (x, y) converges to 0. We

prove by contradiction. Suppose it does not converge, then there exists ε > 0
and a subsequence of n (denote as i) such that∣∣∣∣∫ (gi(x, y)− g(x, y))dPXYi (x, y)

∣∣∣∣ ≥ ε,∀i. (43)

Without loss of generality, we assume that∫
(gi(x, y)− g(x, y))dPXYi (x, y) ≥ ε > 0,∀i, (44)

i.e. ∫∫∫
f(x, y, z)dP

Z|Y=y
i (z)dP

X|Y=y
i (x)dPYi (y)

−
∫∫∫

f(x, y, z)dPZ|Y=y(z)dP
X|Y=y
i (x)dPYi (y) ≥ ε > 0,∀i.

(45)

Let

hi(y, z) =

∫
f(x, y, z)dP

X|Y=y
i (x), (46)

then ∫∫
hi(y, z)dP

Z|Y=y
i (z)dPYi (y)

−
∫∫

hi(y, z)dP
Z|Y=y(z)dPYi (y) ≥ ε > 0,∀i.

(47)

30

Note that f is K-Lipschitz, P
X|Y=y
i is K-Lipschitz, we have hi are all

K(C + 1)-Lipschitz, thus uniformly equicontinuous. Also hi(y, z) are uniformly
bounded by the bound of f , and the domain for (Y,Z) is compact (since the
domain Dt for Xt is compact for all t). By the Arzela-Ascoli theorem, there ex-
ists a subsequence j such that hj → h uniformly, where h is K(C+ 1)-Lipschitz
and bounded. Therefore,∫∫

(hj(y, z)− h(y, z))dP
Z|Y=y
j (z)dPYj (y)

−
∫∫

(hj(y, z)− h(y, z))dPZ|Y=y(z)dPYj (y)→ 0.

(48)

From Lemma 3 ∫∫
h(y, z)dP

Z|Y=y
j (z)dPYj (y)

−
∫∫

h(y, z)dPZ|Y=y(z)dPYj (y)→ 0.

(49)

We then have ∫∫
hj(y, z)dP

Z|Y=y
j (z)dPYj (y)

−
∫∫

hj(y, z)dP
Z|Y=y(z)dPYj (y)→ 0.

(50)

We have a contradiction between Equation 47 and 50. We finish the proof for
T = 3.

We then prove the case for general T by induction. Suppose it holds for
T = N , we now prove it for T = N + 1.

From the conditions for the case T = N + 1 and that the theorem holds for
T = N , we have PX1:N

n converges to PX1:N weakly and P
X2:N+1
n converges to

PX2:N+1 weakly. We now view X1 as X, view the Cartesian product of X2:N as
Y , and view XN+1 as Z, so we have PXYn converges to PXY weakly and PY Zn
converges to PY Z weakly. Also P

X|Y
n and PZ|Y are C-Lipschitz continuious and

Wasserstein-p metric for all n, since P
X|Y
n = P

X1|X2
n and PZ|Y = PXN+1|XN

from the Markovian property, and that ‖X2‖ ≤ ‖X2:N‖, ‖XN‖ ≤ ‖X2:N‖.
Therefore, from the theorem for T = 3 case we have that PXY Zn converges to

PXY Z weakly, i.e., P
X1:N+1
n converges to PX1:N+1 weakly.

S6. A Counterexample in Continuous Sample Space

As a direct implementation of Corollary 7 in [29], for the Markov chain X1:T in a

finite discrete sample space, P
Xt:t+1
n converges to PXt:t+1 in Wasserstein-p sense

for each t = 1, 2...T − 1 implies that PX1:T
n converges to PX1:T in Wasserstein-p

sense. However, if the Markov chains are defined in the continuous sample space,
the implementation is, in general, not correct without further assumptions, e.g.,
the assumption of continuity for probability transition kernels. In this section,
we provide a counterexample to show that.

31

We consider the Markov chain with T = 3 and use X,Y, Z to denote the
nodes in sequence. We define PXY Zn as follows:

PXY Zn (0, 0, 0) =
1

2
,

PXY Zn (1,
1

n
, 1) =

1

2
,

(51)

and PXY Z as following:

PXY Z(0, 0, 0) =
1

4
,

PXY Z(0, 0, 1) =
1

4
,

PXY Z(1, 0, 0) =
1

4
,

PXY Z(1, 0, 1) =
1

4
.

(52)

We can easily check that PXYn converges to PXY in Wasserstein-p metric, since

PXYn (0, 0) =
1

2
,

PXYn (1,
1

n
) =

1

2
,

(53)

and

PXY (0, 0) =
1

2
,

PXY (1, 0) =
1

2
,

(54)

Similarly PY Zn converges to PY Z in Wasserstein-p metric. However, PXY Zn

does not converge to PXY Z in Wasserstein-p metric: the support of PXY Zn and
(0, 0, 1) always have a distance larger than 1.

References

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[2] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. In Advances in Neural Information
Processing Systems, pages 6571–6583, 2018.

[3] Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative mod-
eling using the sliced Wasserstein distance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3483–3491,
2018.

32

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of Wasserstein GANs. In Advances
in Neural Information Processing Systems, pages 5767–5777, 2017.

[6] David L Donoho et al. High-dimensional data analysis: The curses and
blessings of dimensionality. AMS math challenges lecture, 1(2000):32, 2000.

[7] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in
metric spaces and in the space of probability measures. Springer Science &
Business Media, 2008.

[8] Luigi Ambrosio and Wilfrid Gangbo. Hamiltonian ODEs in the Wasser-
stein space of probability measures. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 61(1):18–53, 2008.

[9] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duve-
naud. Scalable gradients for stochastic differential equations. arXiv preprint
arXiv:2001.01328, 2020.

[10] Junteng Jia and Austin R Benson. Neural jump stochastic differential
equations. In Advances in Neural Information Processing Systems, pages
9843–9854, 2019.

[11] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh.
Neural SDE: Stabilizing neural ODE networks with stochastic noise. arXiv
preprint arXiv:1906.02355, 2019.

[12] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equa-
tions: Deep latent Gaussian models in the diffusion limit. arXiv preprint
arXiv:1905.09883, 2019.

[13] Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling
and inference in generative models with latent diffusions. arXiv preprint
arXiv:1903.01608, 2019.

[14] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and
Samy Wu Fung. A machine learning framework for solving high-dimensional
mean field game and mean field control problems. Proceedings of the Na-
tional Academy of Sciences, 117(17):9183–9193, 2020.

[15] Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed
generative adversarial networks for stochastic differential equations. SIAM
Journal on Scientific Computing, 42(1):A292–A317, 2020.

33

[16] Junyu Liu, Zichao Long, Ranran Wang, Jie Sun, and Bin Dong. RODE-
Net: Learning ordinary differential equations with randomness from data.
arXiv preprint arXiv:2006.02377, 2020.

[17] Ola Elerian, Siddhartha Chib, and Neil Shephard. Likelihood inference
for discretely observed nonlinear diffusions. Econometrica, 69(4):959–993,
2001.

[18] Bjørn Eraker. MCMC analysis of diffusion models with application to
finance. Journal of Business & Economic Statistics, 19(2):177–191, 2001.

[19] Simo Särkkä, Jouni Hartikainen, Isambi Sailon Mbalawata, and Heikki
Haario. Posterior inference on parameters of stochastic differential equa-
tions via non-linear Gaussian filtering and adaptive MCMC. Statistics and
Computing, 25(2):427–437, 2015.

[20] Cedric Archambeau, Dan Cornford, Manfred Opper, and John Shawe-
Taylor. Gaussian process approximations of stochastic differential equa-
tions. Journal of Machine Learning Research, 1:1–16, 2007.

[21] Michail D Vrettas, Manfred Opper, and Dan Cornford. Variational mean-
field algorithm for efficient inference in large systems of stochastic differen-
tial equations. Physical Review E, 91(1):012148, 2015.

[22] Joseph Bakarji and Daniel M Tartakovsky. Data-driven discovery of coarse-
grained equations. Journal of Computational Physics, page 110219, 2021.

[23] Zhiping Mao, Zhen Li, and George Em Karniadakis. Nonlocal flocking
dynamics: Learning the fractional order of pdes from particle simulations.
Communications on Applied Mathematics and Computation, 1(4):597–619,
2019.

[24] Christos N Mavridis, Amoolya Tirumalai, and John S Baras. Learning
interaction dynamics from particle trajectories and density evolution. In
2020 59th IEEE Conference on Decision and Control (CDC), pages 1014–
1019. IEEE, 2020.

[25] Felipe Cucker and Steve Smale. Emergent behavior in flocks. IEEE Trans-
actions on automatic control, 52(5):852–862, 2007.

[26] Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows:
an overview. Bulletin of Mathematical Sciences, 7(1):87–154, 2017.

[27] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Proceedings of the
International Conference on Machine Learning, volume 30, page 3, 2013.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

34

[29] Mucong Ding, Constantinos Daskalakis, and Soheil Feizi. Subadditivity
of probability divergences on Bayes-Nets with applications to time series
GANs. CoRR, abs/2003.00652, 2020.

[30] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang
Zeng. Training GANs with optimism. In International Conference on
Learning Representations, 2018.

[31] Cédric Villani. Optimal transport: old and new, volume 338. Springer
Science & Business Media, 2008.

[32] Achim Klenke. Probability theory: a comprehensive course. Springer Sci-
ence & Business Media, 2013.

35

